summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/utrie2_builder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/common/utrie2_builder.cpp')
-rw-r--r--intl/icu/source/common/utrie2_builder.cpp1441
1 files changed, 1441 insertions, 0 deletions
diff --git a/intl/icu/source/common/utrie2_builder.cpp b/intl/icu/source/common/utrie2_builder.cpp
new file mode 100644
index 000000000..664051c5f
--- /dev/null
+++ b/intl/icu/source/common/utrie2_builder.cpp
@@ -0,0 +1,1441 @@
+// Copyright (C) 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+******************************************************************************
+*
+* Copyright (C) 2001-2014, International Business Machines
+* Corporation and others. All Rights Reserved.
+*
+******************************************************************************
+* file name: utrie2_builder.cpp
+* encoding: US-ASCII
+* tab size: 8 (not used)
+* indentation:4
+*
+* created on: 2008sep26 (split off from utrie2.c)
+* created by: Markus W. Scherer
+*
+* This is a common implementation of a Unicode trie.
+* It is a kind of compressed, serializable table of 16- or 32-bit values associated with
+* Unicode code points (0..0x10ffff).
+* This is the second common version of a Unicode trie (hence the name UTrie2).
+* See utrie2.h for a comparison.
+*
+* This file contains only the builder code.
+* See utrie2.c for the runtime and enumeration code.
+*/
+#ifdef UTRIE2_DEBUG
+# include <stdio.h>
+#endif
+
+#include "unicode/utypes.h"
+#include "cmemory.h"
+#include "utrie2.h"
+#include "utrie2_impl.h"
+
+#include "utrie.h" /* for utrie2_fromUTrie() and utrie_swap() */
+
+/* Implementation notes ----------------------------------------------------- */
+
+/*
+ * The UTRIE2_SHIFT_1, UTRIE2_SHIFT_2, UTRIE2_INDEX_SHIFT and other values
+ * have been chosen to minimize trie sizes overall.
+ * Most of the code is flexible enough to work with a range of values,
+ * within certain limits.
+ *
+ * Exception: Support for separate values for lead surrogate code _units_
+ * vs. code _points_ was added after the constants were fixed,
+ * and has not been tested nor particularly designed for different constant values.
+ * (Especially the utrie2_enum() code that jumps to the special LSCP index-2
+ * part and back.)
+ *
+ * Requires UTRIE2_SHIFT_2<=6. Otherwise 0xc0 which is the top of the ASCII-linear data
+ * including the bad-UTF-8-data block is not a multiple of UTRIE2_DATA_BLOCK_LENGTH
+ * and map[block>>UTRIE2_SHIFT_2] (used in reference counting and compaction
+ * remapping) stops working.
+ *
+ * Requires UTRIE2_SHIFT_1>=10 because utrie2_enumForLeadSurrogate()
+ * assumes that a single index-2 block is used for 0x400 code points
+ * corresponding to one lead surrogate.
+ *
+ * Requires UTRIE2_SHIFT_1<=16. Otherwise one single index-2 block contains
+ * more than one Unicode plane, and the split of the index-2 table into a BMP
+ * part and a supplementary part, with a gap in between, would not work.
+ *
+ * Requires UTRIE2_INDEX_SHIFT>=1 not because of the code but because
+ * there is data with more than 64k distinct values,
+ * for example for Unihan collation with a separate collation weight per
+ * Han character.
+ */
+
+/* Building a trie ----------------------------------------------------------*/
+
+enum {
+ /** The null index-2 block, following the gap in the index-2 table. */
+ UNEWTRIE2_INDEX_2_NULL_OFFSET=UNEWTRIE2_INDEX_GAP_OFFSET+UNEWTRIE2_INDEX_GAP_LENGTH,
+
+ /** The start of allocated index-2 blocks. */
+ UNEWTRIE2_INDEX_2_START_OFFSET=UNEWTRIE2_INDEX_2_NULL_OFFSET+UTRIE2_INDEX_2_BLOCK_LENGTH,
+
+ /**
+ * The null data block.
+ * Length 64=0x40 even if UTRIE2_DATA_BLOCK_LENGTH is smaller,
+ * to work with 6-bit trail bytes from 2-byte UTF-8.
+ */
+ UNEWTRIE2_DATA_NULL_OFFSET=UTRIE2_DATA_START_OFFSET,
+
+ /** The start of allocated data blocks. */
+ UNEWTRIE2_DATA_START_OFFSET=UNEWTRIE2_DATA_NULL_OFFSET+0x40,
+
+ /**
+ * The start of data blocks for U+0800 and above.
+ * Below, compaction uses a block length of 64 for 2-byte UTF-8.
+ * From here on, compaction uses UTRIE2_DATA_BLOCK_LENGTH.
+ * Data values for 0x780 code points beyond ASCII.
+ */
+ UNEWTRIE2_DATA_0800_OFFSET=UNEWTRIE2_DATA_START_OFFSET+0x780
+};
+
+/* Start with allocation of 16k data entries. */
+#define UNEWTRIE2_INITIAL_DATA_LENGTH ((int32_t)1<<14)
+
+/* Grow about 8x each time. */
+#define UNEWTRIE2_MEDIUM_DATA_LENGTH ((int32_t)1<<17)
+
+static int32_t
+allocIndex2Block(UNewTrie2 *trie);
+
+U_CAPI UTrie2 * U_EXPORT2
+utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode) {
+ UTrie2 *trie;
+ UNewTrie2 *newTrie;
+ uint32_t *data;
+ int32_t i, j;
+
+ if(U_FAILURE(*pErrorCode)) {
+ return NULL;
+ }
+
+ trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2));
+ newTrie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2));
+ data=(uint32_t *)uprv_malloc(UNEWTRIE2_INITIAL_DATA_LENGTH*4);
+ if(trie==NULL || newTrie==NULL || data==NULL) {
+ uprv_free(trie);
+ uprv_free(newTrie);
+ uprv_free(data);
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+
+ uprv_memset(trie, 0, sizeof(UTrie2));
+ trie->initialValue=initialValue;
+ trie->errorValue=errorValue;
+ trie->highStart=0x110000;
+ trie->newTrie=newTrie;
+
+ newTrie->data=data;
+ newTrie->dataCapacity=UNEWTRIE2_INITIAL_DATA_LENGTH;
+ newTrie->initialValue=initialValue;
+ newTrie->errorValue=errorValue;
+ newTrie->highStart=0x110000;
+ newTrie->firstFreeBlock=0; /* no free block in the list */
+ newTrie->isCompacted=FALSE;
+
+ /*
+ * preallocate and reset
+ * - ASCII
+ * - the bad-UTF-8-data block
+ * - the null data block
+ */
+ for(i=0; i<0x80; ++i) {
+ newTrie->data[i]=initialValue;
+ }
+ for(; i<0xc0; ++i) {
+ newTrie->data[i]=errorValue;
+ }
+ for(i=UNEWTRIE2_DATA_NULL_OFFSET; i<UNEWTRIE2_DATA_START_OFFSET; ++i) {
+ newTrie->data[i]=initialValue;
+ }
+ newTrie->dataNullOffset=UNEWTRIE2_DATA_NULL_OFFSET;
+ newTrie->dataLength=UNEWTRIE2_DATA_START_OFFSET;
+
+ /* set the index-2 indexes for the 2=0x80>>UTRIE2_SHIFT_2 ASCII data blocks */
+ for(i=0, j=0; j<0x80; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
+ newTrie->index2[i]=j;
+ newTrie->map[i]=1;
+ }
+ /* reference counts for the bad-UTF-8-data block */
+ for(; j<0xc0; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
+ newTrie->map[i]=0;
+ }
+ /*
+ * Reference counts for the null data block: all blocks except for the ASCII blocks.
+ * Plus 1 so that we don't drop this block during compaction.
+ * Plus as many as needed for lead surrogate code points.
+ */
+ /* i==newTrie->dataNullOffset */
+ newTrie->map[i++]=
+ (0x110000>>UTRIE2_SHIFT_2)-
+ (0x80>>UTRIE2_SHIFT_2)+
+ 1+
+ UTRIE2_LSCP_INDEX_2_LENGTH;
+ j+=UTRIE2_DATA_BLOCK_LENGTH;
+ for(; j<UNEWTRIE2_DATA_START_OFFSET; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) {
+ newTrie->map[i]=0;
+ }
+
+ /*
+ * set the remaining indexes in the BMP index-2 block
+ * to the null data block
+ */
+ for(i=0x80>>UTRIE2_SHIFT_2; i<UTRIE2_INDEX_2_BMP_LENGTH; ++i) {
+ newTrie->index2[i]=UNEWTRIE2_DATA_NULL_OFFSET;
+ }
+
+ /*
+ * Fill the index gap with impossible values so that compaction
+ * does not overlap other index-2 blocks with the gap.
+ */
+ for(i=0; i<UNEWTRIE2_INDEX_GAP_LENGTH; ++i) {
+ newTrie->index2[UNEWTRIE2_INDEX_GAP_OFFSET+i]=-1;
+ }
+
+ /* set the indexes in the null index-2 block */
+ for(i=0; i<UTRIE2_INDEX_2_BLOCK_LENGTH; ++i) {
+ newTrie->index2[UNEWTRIE2_INDEX_2_NULL_OFFSET+i]=UNEWTRIE2_DATA_NULL_OFFSET;
+ }
+ newTrie->index2NullOffset=UNEWTRIE2_INDEX_2_NULL_OFFSET;
+ newTrie->index2Length=UNEWTRIE2_INDEX_2_START_OFFSET;
+
+ /* set the index-1 indexes for the linear index-2 block */
+ for(i=0, j=0;
+ i<UTRIE2_OMITTED_BMP_INDEX_1_LENGTH;
+ ++i, j+=UTRIE2_INDEX_2_BLOCK_LENGTH
+ ) {
+ newTrie->index1[i]=j;
+ }
+
+ /* set the remaining index-1 indexes to the null index-2 block */
+ for(; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) {
+ newTrie->index1[i]=UNEWTRIE2_INDEX_2_NULL_OFFSET;
+ }
+
+ /*
+ * Preallocate and reset data for U+0080..U+07ff,
+ * for 2-byte UTF-8 which will be compacted in 64-blocks
+ * even if UTRIE2_DATA_BLOCK_LENGTH is smaller.
+ */
+ for(i=0x80; i<0x800; i+=UTRIE2_DATA_BLOCK_LENGTH) {
+ utrie2_set32(trie, i, initialValue, pErrorCode);
+ }
+
+ return trie;
+}
+
+static UNewTrie2 *
+cloneBuilder(const UNewTrie2 *other) {
+ UNewTrie2 *trie;
+
+ trie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2));
+ if(trie==NULL) {
+ return NULL;
+ }
+
+ trie->data=(uint32_t *)uprv_malloc(other->dataCapacity*4);
+ if(trie->data==NULL) {
+ uprv_free(trie);
+ return NULL;
+ }
+ trie->dataCapacity=other->dataCapacity;
+
+ /* clone data */
+ uprv_memcpy(trie->index1, other->index1, sizeof(trie->index1));
+ uprv_memcpy(trie->index2, other->index2, (size_t)other->index2Length*4);
+ trie->index2NullOffset=other->index2NullOffset;
+ trie->index2Length=other->index2Length;
+
+ uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4);
+ trie->dataNullOffset=other->dataNullOffset;
+ trie->dataLength=other->dataLength;
+
+ /* reference counters */
+ if(other->isCompacted) {
+ trie->firstFreeBlock=0;
+ } else {
+ uprv_memcpy(trie->map, other->map, ((size_t)other->dataLength>>UTRIE2_SHIFT_2)*4);
+ trie->firstFreeBlock=other->firstFreeBlock;
+ }
+
+ trie->initialValue=other->initialValue;
+ trie->errorValue=other->errorValue;
+ trie->highStart=other->highStart;
+ trie->isCompacted=other->isCompacted;
+
+ return trie;
+}
+
+U_CAPI UTrie2 * U_EXPORT2
+utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode) {
+ UTrie2 *trie;
+
+ if(U_FAILURE(*pErrorCode)) {
+ return NULL;
+ }
+ if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return NULL;
+ }
+
+ trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2));
+ if(trie==NULL) {
+ return NULL;
+ }
+ uprv_memcpy(trie, other, sizeof(UTrie2));
+
+ if(other->memory!=NULL) {
+ trie->memory=uprv_malloc(other->length);
+ if(trie->memory!=NULL) {
+ trie->isMemoryOwned=TRUE;
+ uprv_memcpy(trie->memory, other->memory, other->length);
+
+ /* make the clone's pointers point to its own memory */
+ trie->index=(uint16_t *)trie->memory+(other->index-(uint16_t *)other->memory);
+ if(other->data16!=NULL) {
+ trie->data16=(uint16_t *)trie->memory+(other->data16-(uint16_t *)other->memory);
+ }
+ if(other->data32!=NULL) {
+ trie->data32=(uint32_t *)trie->memory+(other->data32-(uint32_t *)other->memory);
+ }
+ }
+ } else /* other->newTrie!=NULL */ {
+ trie->newTrie=cloneBuilder(other->newTrie);
+ }
+
+ if(trie->memory==NULL && trie->newTrie==NULL) {
+ uprv_free(trie);
+ trie=NULL;
+ }
+ return trie;
+}
+
+typedef struct NewTrieAndStatus {
+ UTrie2 *trie;
+ UErrorCode errorCode;
+ UBool exclusiveLimit; /* rather than inclusive range end */
+} NewTrieAndStatus;
+
+static UBool U_CALLCONV
+copyEnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value) {
+ NewTrieAndStatus *nt=(NewTrieAndStatus *)context;
+ if(value!=nt->trie->initialValue) {
+ if(nt->exclusiveLimit) {
+ --end;
+ }
+ if(start==end) {
+ utrie2_set32(nt->trie, start, value, &nt->errorCode);
+ } else {
+ utrie2_setRange32(nt->trie, start, end, value, TRUE, &nt->errorCode);
+ }
+ return U_SUCCESS(nt->errorCode);
+ } else {
+ return TRUE;
+ }
+}
+
+#ifdef UTRIE2_DEBUG
+static void
+utrie_printLengths(const UTrie *trie) {
+ long indexLength=trie->indexLength;
+ long dataLength=(long)trie->dataLength;
+ long totalLength=(long)sizeof(UTrieHeader)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2);
+ printf("**UTrieLengths** index:%6ld data:%6ld serialized:%6ld\n",
+ indexLength, dataLength, totalLength);
+}
+
+static void
+utrie2_printLengths(const UTrie2 *trie, const char *which) {
+ long indexLength=trie->indexLength;
+ long dataLength=(long)trie->dataLength;
+ long totalLength=(long)sizeof(UTrie2Header)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2);
+ printf("**UTrie2Lengths(%s)** index:%6ld data:%6ld serialized:%6ld\n",
+ which, indexLength, dataLength, totalLength);
+}
+#endif
+
+U_CAPI UTrie2 * U_EXPORT2
+utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode) {
+ NewTrieAndStatus context;
+ UChar lead;
+
+ if(U_FAILURE(*pErrorCode)) {
+ return NULL;
+ }
+ if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return NULL;
+ }
+ if(other->newTrie!=NULL && !other->newTrie->isCompacted) {
+ return utrie2_clone(other, pErrorCode); /* clone an unfrozen trie */
+ }
+
+ /* Clone the frozen trie by enumerating it and building a new one. */
+ context.trie=utrie2_open(other->initialValue, other->errorValue, pErrorCode);
+ if(U_FAILURE(*pErrorCode)) {
+ return NULL;
+ }
+ context.exclusiveLimit=FALSE;
+ context.errorCode=*pErrorCode;
+ utrie2_enum(other, NULL, copyEnumRange, &context);
+ *pErrorCode=context.errorCode;
+ for(lead=0xd800; lead<0xdc00; ++lead) {
+ uint32_t value;
+ if(other->data32==NULL) {
+ value=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(other, lead);
+ } else {
+ value=UTRIE2_GET32_FROM_U16_SINGLE_LEAD(other, lead);
+ }
+ if(value!=other->initialValue) {
+ utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode);
+ }
+ }
+ if(U_FAILURE(*pErrorCode)) {
+ utrie2_close(context.trie);
+ context.trie=NULL;
+ }
+ return context.trie;
+}
+
+/* Almost the same as utrie2_cloneAsThawed() but copies a UTrie and freezes the clone. */
+U_CAPI UTrie2 * U_EXPORT2
+utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode) {
+ NewTrieAndStatus context;
+ UChar lead;
+
+ if(U_FAILURE(*pErrorCode)) {
+ return NULL;
+ }
+ if(trie1==NULL) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return NULL;
+ }
+ context.trie=utrie2_open(trie1->initialValue, errorValue, pErrorCode);
+ if(U_FAILURE(*pErrorCode)) {
+ return NULL;
+ }
+ context.exclusiveLimit=TRUE;
+ context.errorCode=*pErrorCode;
+ utrie_enum(trie1, NULL, copyEnumRange, &context);
+ *pErrorCode=context.errorCode;
+ for(lead=0xd800; lead<0xdc00; ++lead) {
+ uint32_t value;
+ if(trie1->data32==NULL) {
+ value=UTRIE_GET16_FROM_LEAD(trie1, lead);
+ } else {
+ value=UTRIE_GET32_FROM_LEAD(trie1, lead);
+ }
+ if(value!=trie1->initialValue) {
+ utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode);
+ }
+ }
+ if(U_SUCCESS(*pErrorCode)) {
+ utrie2_freeze(context.trie,
+ trie1->data32!=NULL ? UTRIE2_32_VALUE_BITS : UTRIE2_16_VALUE_BITS,
+ pErrorCode);
+ }
+#ifdef UTRIE2_DEBUG
+ if(U_SUCCESS(*pErrorCode)) {
+ utrie_printLengths(trie1);
+ utrie2_printLengths(context.trie, "fromUTrie");
+ }
+#endif
+ if(U_FAILURE(*pErrorCode)) {
+ utrie2_close(context.trie);
+ context.trie=NULL;
+ }
+ return context.trie;
+}
+
+static inline UBool
+isInNullBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
+ int32_t i2, block;
+
+ if(U_IS_LEAD(c) && forLSCP) {
+ i2=(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2))+
+ (c>>UTRIE2_SHIFT_2);
+ } else {
+ i2=trie->index1[c>>UTRIE2_SHIFT_1]+
+ ((c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK);
+ }
+ block=trie->index2[i2];
+ return (UBool)(block==trie->dataNullOffset);
+}
+
+static int32_t
+allocIndex2Block(UNewTrie2 *trie) {
+ int32_t newBlock, newTop;
+
+ newBlock=trie->index2Length;
+ newTop=newBlock+UTRIE2_INDEX_2_BLOCK_LENGTH;
+ if(newTop>UPRV_LENGTHOF(trie->index2)) {
+ /*
+ * Should never occur.
+ * Either UTRIE2_MAX_BUILD_TIME_INDEX_LENGTH is incorrect,
+ * or the code writes more values than should be possible.
+ */
+ return -1;
+ }
+ trie->index2Length=newTop;
+ uprv_memcpy(trie->index2+newBlock, trie->index2+trie->index2NullOffset, UTRIE2_INDEX_2_BLOCK_LENGTH*4);
+ return newBlock;
+}
+
+static int32_t
+getIndex2Block(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
+ int32_t i1, i2;
+
+ if(U_IS_LEAD(c) && forLSCP) {
+ return UTRIE2_LSCP_INDEX_2_OFFSET;
+ }
+
+ i1=c>>UTRIE2_SHIFT_1;
+ i2=trie->index1[i1];
+ if(i2==trie->index2NullOffset) {
+ i2=allocIndex2Block(trie);
+ if(i2<0) {
+ return -1; /* program error */
+ }
+ trie->index1[i1]=i2;
+ }
+ return i2;
+}
+
+static int32_t
+allocDataBlock(UNewTrie2 *trie, int32_t copyBlock) {
+ int32_t newBlock, newTop;
+
+ if(trie->firstFreeBlock!=0) {
+ /* get the first free block */
+ newBlock=trie->firstFreeBlock;
+ trie->firstFreeBlock=-trie->map[newBlock>>UTRIE2_SHIFT_2];
+ } else {
+ /* get a new block from the high end */
+ newBlock=trie->dataLength;
+ newTop=newBlock+UTRIE2_DATA_BLOCK_LENGTH;
+ if(newTop>trie->dataCapacity) {
+ /* out of memory in the data array */
+ int32_t capacity;
+ uint32_t *data;
+
+ if(trie->dataCapacity<UNEWTRIE2_MEDIUM_DATA_LENGTH) {
+ capacity=UNEWTRIE2_MEDIUM_DATA_LENGTH;
+ } else if(trie->dataCapacity<UNEWTRIE2_MAX_DATA_LENGTH) {
+ capacity=UNEWTRIE2_MAX_DATA_LENGTH;
+ } else {
+ /*
+ * Should never occur.
+ * Either UNEWTRIE2_MAX_DATA_LENGTH is incorrect,
+ * or the code writes more values than should be possible.
+ */
+ return -1;
+ }
+ data=(uint32_t *)uprv_malloc(capacity*4);
+ if(data==NULL) {
+ return -1;
+ }
+ uprv_memcpy(data, trie->data, (size_t)trie->dataLength*4);
+ uprv_free(trie->data);
+ trie->data=data;
+ trie->dataCapacity=capacity;
+ }
+ trie->dataLength=newTop;
+ }
+ uprv_memcpy(trie->data+newBlock, trie->data+copyBlock, UTRIE2_DATA_BLOCK_LENGTH*4);
+ trie->map[newBlock>>UTRIE2_SHIFT_2]=0;
+ return newBlock;
+}
+
+/* call when the block's reference counter reaches 0 */
+static void
+releaseDataBlock(UNewTrie2 *trie, int32_t block) {
+ /* put this block at the front of the free-block chain */
+ trie->map[block>>UTRIE2_SHIFT_2]=-trie->firstFreeBlock;
+ trie->firstFreeBlock=block;
+}
+
+static inline UBool
+isWritableBlock(UNewTrie2 *trie, int32_t block) {
+ return (UBool)(block!=trie->dataNullOffset && 1==trie->map[block>>UTRIE2_SHIFT_2]);
+}
+
+static inline void
+setIndex2Entry(UNewTrie2 *trie, int32_t i2, int32_t block) {
+ int32_t oldBlock;
+ ++trie->map[block>>UTRIE2_SHIFT_2]; /* increment first, in case block==oldBlock! */
+ oldBlock=trie->index2[i2];
+ if(0 == --trie->map[oldBlock>>UTRIE2_SHIFT_2]) {
+ releaseDataBlock(trie, oldBlock);
+ }
+ trie->index2[i2]=block;
+}
+
+/**
+ * No error checking for illegal arguments.
+ *
+ * @return -1 if no new data block available (out of memory in data array)
+ * @internal
+ */
+static int32_t
+getDataBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) {
+ int32_t i2, oldBlock, newBlock;
+
+ i2=getIndex2Block(trie, c, forLSCP);
+ if(i2<0) {
+ return -1; /* program error */
+ }
+
+ i2+=(c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK;
+ oldBlock=trie->index2[i2];
+ if(isWritableBlock(trie, oldBlock)) {
+ return oldBlock;
+ }
+
+ /* allocate a new data block */
+ newBlock=allocDataBlock(trie, oldBlock);
+ if(newBlock<0) {
+ /* out of memory in the data array */
+ return -1;
+ }
+ setIndex2Entry(trie, i2, newBlock);
+ return newBlock;
+}
+
+/**
+ * @return TRUE if the value was successfully set
+ */
+static void
+set32(UNewTrie2 *trie,
+ UChar32 c, UBool forLSCP, uint32_t value,
+ UErrorCode *pErrorCode) {
+ int32_t block;
+
+ if(trie==NULL || trie->isCompacted) {
+ *pErrorCode=U_NO_WRITE_PERMISSION;
+ return;
+ }
+
+ block=getDataBlock(trie, c, forLSCP);
+ if(block<0) {
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+
+ trie->data[block+(c&UTRIE2_DATA_MASK)]=value;
+}
+
+U_CAPI void U_EXPORT2
+utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode) {
+ if(U_FAILURE(*pErrorCode)) {
+ return;
+ }
+ if((uint32_t)c>0x10ffff) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ set32(trie->newTrie, c, TRUE, value, pErrorCode);
+}
+
+U_CAPI void U_EXPORT2
+utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie,
+ UChar32 c, uint32_t value,
+ UErrorCode *pErrorCode) {
+ if(U_FAILURE(*pErrorCode)) {
+ return;
+ }
+ if(!U_IS_LEAD(c)) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ set32(trie->newTrie, c, FALSE, value, pErrorCode);
+}
+
+static void
+writeBlock(uint32_t *block, uint32_t value) {
+ uint32_t *limit=block+UTRIE2_DATA_BLOCK_LENGTH;
+ while(block<limit) {
+ *block++=value;
+ }
+}
+
+/**
+ * initialValue is ignored if overwrite=TRUE
+ * @internal
+ */
+static void
+fillBlock(uint32_t *block, UChar32 start, UChar32 limit,
+ uint32_t value, uint32_t initialValue, UBool overwrite) {
+ uint32_t *pLimit;
+
+ pLimit=block+limit;
+ block+=start;
+ if(overwrite) {
+ while(block<pLimit) {
+ *block++=value;
+ }
+ } else {
+ while(block<pLimit) {
+ if(*block==initialValue) {
+ *block=value;
+ }
+ ++block;
+ }
+ }
+}
+
+U_CAPI void U_EXPORT2
+utrie2_setRange32(UTrie2 *trie,
+ UChar32 start, UChar32 end,
+ uint32_t value, UBool overwrite,
+ UErrorCode *pErrorCode) {
+ /*
+ * repeat value in [start..end]
+ * mark index values for repeat-data blocks by setting bit 31 of the index values
+ * fill around existing values if any, if(overwrite)
+ */
+ UNewTrie2 *newTrie;
+ int32_t block, rest, repeatBlock;
+ UChar32 limit;
+
+ if(U_FAILURE(*pErrorCode)) {
+ return;
+ }
+ if((uint32_t)start>0x10ffff || (uint32_t)end>0x10ffff || start>end) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ newTrie=trie->newTrie;
+ if(newTrie==NULL || newTrie->isCompacted) {
+ *pErrorCode=U_NO_WRITE_PERMISSION;
+ return;
+ }
+ if(!overwrite && value==newTrie->initialValue) {
+ return; /* nothing to do */
+ }
+
+ limit=end+1;
+ if(start&UTRIE2_DATA_MASK) {
+ UChar32 nextStart;
+
+ /* set partial block at [start..following block boundary[ */
+ block=getDataBlock(newTrie, start, TRUE);
+ if(block<0) {
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+
+ nextStart=(start+UTRIE2_DATA_BLOCK_LENGTH)&~UTRIE2_DATA_MASK;
+ if(nextStart<=limit) {
+ fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, UTRIE2_DATA_BLOCK_LENGTH,
+ value, newTrie->initialValue, overwrite);
+ start=nextStart;
+ } else {
+ fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, limit&UTRIE2_DATA_MASK,
+ value, newTrie->initialValue, overwrite);
+ return;
+ }
+ }
+
+ /* number of positions in the last, partial block */
+ rest=limit&UTRIE2_DATA_MASK;
+
+ /* round down limit to a block boundary */
+ limit&=~UTRIE2_DATA_MASK;
+
+ /* iterate over all-value blocks */
+ if(value==newTrie->initialValue) {
+ repeatBlock=newTrie->dataNullOffset;
+ } else {
+ repeatBlock=-1;
+ }
+
+ while(start<limit) {
+ int32_t i2;
+ UBool setRepeatBlock=FALSE;
+
+ if(value==newTrie->initialValue && isInNullBlock(newTrie, start, TRUE)) {
+ start+=UTRIE2_DATA_BLOCK_LENGTH; /* nothing to do */
+ continue;
+ }
+
+ /* get index value */
+ i2=getIndex2Block(newTrie, start, TRUE);
+ if(i2<0) {
+ *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
+ return;
+ }
+ i2+=(start>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK;
+ block=newTrie->index2[i2];
+ if(isWritableBlock(newTrie, block)) {
+ /* already allocated */
+ if(overwrite && block>=UNEWTRIE2_DATA_0800_OFFSET) {
+ /*
+ * We overwrite all values, and it's not a
+ * protected (ASCII-linear or 2-byte UTF-8) block:
+ * replace with the repeatBlock.
+ */
+ setRepeatBlock=TRUE;
+ } else {
+ /* !overwrite, or protected block: just write the values into this block */
+ fillBlock(newTrie->data+block,
+ 0, UTRIE2_DATA_BLOCK_LENGTH,
+ value, newTrie->initialValue, overwrite);
+ }
+ } else if(newTrie->data[block]!=value && (overwrite || block==newTrie->dataNullOffset)) {
+ /*
+ * Set the repeatBlock instead of the null block or previous repeat block:
+ *
+ * If !isWritableBlock() then all entries in the block have the same value
+ * because it's the null block or a range block (the repeatBlock from a previous
+ * call to utrie2_setRange32()).
+ * No other blocks are used multiple times before compacting.
+ *
+ * The null block is the only non-writable block with the initialValue because
+ * of the repeatBlock initialization above. (If value==initialValue, then
+ * the repeatBlock will be the null data block.)
+ *
+ * We set our repeatBlock if the desired value differs from the block's value,
+ * and if we overwrite any data or if the data is all initial values
+ * (which is the same as the block being the null block, see above).
+ */
+ setRepeatBlock=TRUE;
+ }
+ if(setRepeatBlock) {
+ if(repeatBlock>=0) {
+ setIndex2Entry(newTrie, i2, repeatBlock);
+ } else {
+ /* create and set and fill the repeatBlock */
+ repeatBlock=getDataBlock(newTrie, start, TRUE);
+ if(repeatBlock<0) {
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ writeBlock(newTrie->data+repeatBlock, value);
+ }
+ }
+
+ start+=UTRIE2_DATA_BLOCK_LENGTH;
+ }
+
+ if(rest>0) {
+ /* set partial block at [last block boundary..limit[ */
+ block=getDataBlock(newTrie, start, TRUE);
+ if(block<0) {
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+
+ fillBlock(newTrie->data+block, 0, rest, value, newTrie->initialValue, overwrite);
+ }
+
+ return;
+}
+
+/* compaction --------------------------------------------------------------- */
+
+static inline UBool
+equal_int32(const int32_t *s, const int32_t *t, int32_t length) {
+ while(length>0 && *s==*t) {
+ ++s;
+ ++t;
+ --length;
+ }
+ return (UBool)(length==0);
+}
+
+static inline UBool
+equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) {
+ while(length>0 && *s==*t) {
+ ++s;
+ ++t;
+ --length;
+ }
+ return (UBool)(length==0);
+}
+
+static int32_t
+findSameIndex2Block(const int32_t *idx, int32_t index2Length, int32_t otherBlock) {
+ int32_t block;
+
+ /* ensure that we do not even partially get past index2Length */
+ index2Length-=UTRIE2_INDEX_2_BLOCK_LENGTH;
+
+ for(block=0; block<=index2Length; ++block) {
+ if(equal_int32(idx+block, idx+otherBlock, UTRIE2_INDEX_2_BLOCK_LENGTH)) {
+ return block;
+ }
+ }
+ return -1;
+}
+
+static int32_t
+findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t blockLength) {
+ int32_t block;
+
+ /* ensure that we do not even partially get past dataLength */
+ dataLength-=blockLength;
+
+ for(block=0; block<=dataLength; block+=UTRIE2_DATA_GRANULARITY) {
+ if(equal_uint32(data+block, data+otherBlock, blockLength)) {
+ return block;
+ }
+ }
+ return -1;
+}
+
+/*
+ * Find the start of the last range in the trie by enumerating backward.
+ * Indexes for supplementary code points higher than this will be omitted.
+ */
+static UChar32
+findHighStart(UNewTrie2 *trie, uint32_t highValue) {
+ const uint32_t *data32;
+
+ uint32_t value, initialValue;
+ UChar32 c, prev;
+ int32_t i1, i2, j, i2Block, prevI2Block, index2NullOffset, block, prevBlock, nullBlock;
+
+ data32=trie->data;
+ initialValue=trie->initialValue;
+
+ index2NullOffset=trie->index2NullOffset;
+ nullBlock=trie->dataNullOffset;
+
+ /* set variables for previous range */
+ if(highValue==initialValue) {
+ prevI2Block=index2NullOffset;
+ prevBlock=nullBlock;
+ } else {
+ prevI2Block=-1;
+ prevBlock=-1;
+ }
+ prev=0x110000;
+
+ /* enumerate index-2 blocks */
+ i1=UNEWTRIE2_INDEX_1_LENGTH;
+ c=prev;
+ while(c>0) {
+ i2Block=trie->index1[--i1];
+ if(i2Block==prevI2Block) {
+ /* the index-2 block is the same as the previous one, and filled with highValue */
+ c-=UTRIE2_CP_PER_INDEX_1_ENTRY;
+ continue;
+ }
+ prevI2Block=i2Block;
+ if(i2Block==index2NullOffset) {
+ /* this is the null index-2 block */
+ if(highValue!=initialValue) {
+ return c;
+ }
+ c-=UTRIE2_CP_PER_INDEX_1_ENTRY;
+ } else {
+ /* enumerate data blocks for one index-2 block */
+ for(i2=UTRIE2_INDEX_2_BLOCK_LENGTH; i2>0;) {
+ block=trie->index2[i2Block+ --i2];
+ if(block==prevBlock) {
+ /* the block is the same as the previous one, and filled with highValue */
+ c-=UTRIE2_DATA_BLOCK_LENGTH;
+ continue;
+ }
+ prevBlock=block;
+ if(block==nullBlock) {
+ /* this is the null data block */
+ if(highValue!=initialValue) {
+ return c;
+ }
+ c-=UTRIE2_DATA_BLOCK_LENGTH;
+ } else {
+ for(j=UTRIE2_DATA_BLOCK_LENGTH; j>0;) {
+ value=data32[block+ --j];
+ if(value!=highValue) {
+ return c;
+ }
+ --c;
+ }
+ }
+ }
+ }
+ }
+
+ /* deliver last range */
+ return 0;
+}
+
+/*
+ * Compact a build-time trie.
+ *
+ * The compaction
+ * - removes blocks that are identical with earlier ones
+ * - overlaps adjacent blocks as much as possible (if overlap==TRUE)
+ * - moves blocks in steps of the data granularity
+ * - moves and overlaps blocks that overlap with multiple values in the overlap region
+ *
+ * It does not
+ * - try to move and overlap blocks that are not already adjacent
+ */
+static void
+compactData(UNewTrie2 *trie) {
+ int32_t start, newStart, movedStart;
+ int32_t blockLength, overlap;
+ int32_t i, mapIndex, blockCount;
+
+ /* do not compact linear-ASCII data */
+ newStart=UTRIE2_DATA_START_OFFSET;
+ for(start=0, i=0; start<newStart; start+=UTRIE2_DATA_BLOCK_LENGTH, ++i) {
+ trie->map[i]=start;
+ }
+
+ /*
+ * Start with a block length of 64 for 2-byte UTF-8,
+ * then switch to UTRIE2_DATA_BLOCK_LENGTH.
+ */
+ blockLength=64;
+ blockCount=blockLength>>UTRIE2_SHIFT_2;
+ for(start=newStart; start<trie->dataLength;) {
+ /*
+ * start: index of first entry of current block
+ * newStart: index where the current block is to be moved
+ * (right after current end of already-compacted data)
+ */
+ if(start==UNEWTRIE2_DATA_0800_OFFSET) {
+ blockLength=UTRIE2_DATA_BLOCK_LENGTH;
+ blockCount=1;
+ }
+
+ /* skip blocks that are not used */
+ if(trie->map[start>>UTRIE2_SHIFT_2]<=0) {
+ /* advance start to the next block */
+ start+=blockLength;
+
+ /* leave newStart with the previous block! */
+ continue;
+ }
+
+ /* search for an identical block */
+ if( (movedStart=findSameDataBlock(trie->data, newStart, start, blockLength))
+ >=0
+ ) {
+ /* found an identical block, set the other block's index value for the current block */
+ for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
+ trie->map[mapIndex++]=movedStart;
+ movedStart+=UTRIE2_DATA_BLOCK_LENGTH;
+ }
+
+ /* advance start to the next block */
+ start+=blockLength;
+
+ /* leave newStart with the previous block! */
+ continue;
+ }
+
+ /* see if the beginning of this block can be overlapped with the end of the previous block */
+ /* look for maximum overlap (modulo granularity) with the previous, adjacent block */
+ for(overlap=blockLength-UTRIE2_DATA_GRANULARITY;
+ overlap>0 && !equal_uint32(trie->data+(newStart-overlap), trie->data+start, overlap);
+ overlap-=UTRIE2_DATA_GRANULARITY) {}
+
+ if(overlap>0 || newStart<start) {
+ /* some overlap, or just move the whole block */
+ movedStart=newStart-overlap;
+ for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
+ trie->map[mapIndex++]=movedStart;
+ movedStart+=UTRIE2_DATA_BLOCK_LENGTH;
+ }
+
+ /* move the non-overlapping indexes to their new positions */
+ start+=overlap;
+ for(i=blockLength-overlap; i>0; --i) {
+ trie->data[newStart++]=trie->data[start++];
+ }
+ } else /* no overlap && newStart==start */ {
+ for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) {
+ trie->map[mapIndex++]=start;
+ start+=UTRIE2_DATA_BLOCK_LENGTH;
+ }
+ newStart=start;
+ }
+ }
+
+ /* now adjust the index-2 table */
+ for(i=0; i<trie->index2Length; ++i) {
+ if(i==UNEWTRIE2_INDEX_GAP_OFFSET) {
+ /* Gap indexes are invalid (-1). Skip over the gap. */
+ i+=UNEWTRIE2_INDEX_GAP_LENGTH;
+ }
+ trie->index2[i]=trie->map[trie->index2[i]>>UTRIE2_SHIFT_2];
+ }
+ trie->dataNullOffset=trie->map[trie->dataNullOffset>>UTRIE2_SHIFT_2];
+
+ /* ensure dataLength alignment */
+ while((newStart&(UTRIE2_DATA_GRANULARITY-1))!=0) {
+ trie->data[newStart++]=trie->initialValue;
+ }
+
+#ifdef UTRIE2_DEBUG
+ /* we saved some space */
+ printf("compacting UTrie2: count of 32-bit data words %lu->%lu\n",
+ (long)trie->dataLength, (long)newStart);
+#endif
+
+ trie->dataLength=newStart;
+}
+
+static void
+compactIndex2(UNewTrie2 *trie) {
+ int32_t i, start, newStart, movedStart, overlap;
+
+ /* do not compact linear-BMP index-2 blocks */
+ newStart=UTRIE2_INDEX_2_BMP_LENGTH;
+ for(start=0, i=0; start<newStart; start+=UTRIE2_INDEX_2_BLOCK_LENGTH, ++i) {
+ trie->map[i]=start;
+ }
+
+ /* Reduce the index table gap to what will be needed at runtime. */
+ newStart+=UTRIE2_UTF8_2B_INDEX_2_LENGTH+((trie->highStart-0x10000)>>UTRIE2_SHIFT_1);
+
+ for(start=UNEWTRIE2_INDEX_2_NULL_OFFSET; start<trie->index2Length;) {
+ /*
+ * start: index of first entry of current block
+ * newStart: index where the current block is to be moved
+ * (right after current end of already-compacted data)
+ */
+
+ /* search for an identical block */
+ if( (movedStart=findSameIndex2Block(trie->index2, newStart, start))
+ >=0
+ ) {
+ /* found an identical block, set the other block's index value for the current block */
+ trie->map[start>>UTRIE2_SHIFT_1_2]=movedStart;
+
+ /* advance start to the next block */
+ start+=UTRIE2_INDEX_2_BLOCK_LENGTH;
+
+ /* leave newStart with the previous block! */
+ continue;
+ }
+
+ /* see if the beginning of this block can be overlapped with the end of the previous block */
+ /* look for maximum overlap with the previous, adjacent block */
+ for(overlap=UTRIE2_INDEX_2_BLOCK_LENGTH-1;
+ overlap>0 && !equal_int32(trie->index2+(newStart-overlap), trie->index2+start, overlap);
+ --overlap) {}
+
+ if(overlap>0 || newStart<start) {
+ /* some overlap, or just move the whole block */
+ trie->map[start>>UTRIE2_SHIFT_1_2]=newStart-overlap;
+
+ /* move the non-overlapping indexes to their new positions */
+ start+=overlap;
+ for(i=UTRIE2_INDEX_2_BLOCK_LENGTH-overlap; i>0; --i) {
+ trie->index2[newStart++]=trie->index2[start++];
+ }
+ } else /* no overlap && newStart==start */ {
+ trie->map[start>>UTRIE2_SHIFT_1_2]=start;
+ start+=UTRIE2_INDEX_2_BLOCK_LENGTH;
+ newStart=start;
+ }
+ }
+
+ /* now adjust the index-1 table */
+ for(i=0; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) {
+ trie->index1[i]=trie->map[trie->index1[i]>>UTRIE2_SHIFT_1_2];
+ }
+ trie->index2NullOffset=trie->map[trie->index2NullOffset>>UTRIE2_SHIFT_1_2];
+
+ /*
+ * Ensure data table alignment:
+ * Needs to be granularity-aligned for 16-bit trie
+ * (so that dataMove will be down-shiftable),
+ * and 2-aligned for uint32_t data.
+ */
+ while((newStart&((UTRIE2_DATA_GRANULARITY-1)|1))!=0) {
+ /* Arbitrary value: 0x3fffc not possible for real data. */
+ trie->index2[newStart++]=(int32_t)0xffff<<UTRIE2_INDEX_SHIFT;
+ }
+
+#ifdef UTRIE2_DEBUG
+ /* we saved some space */
+ printf("compacting UTrie2: count of 16-bit index-2 words %lu->%lu\n",
+ (long)trie->index2Length, (long)newStart);
+#endif
+
+ trie->index2Length=newStart;
+}
+
+static void
+compactTrie(UTrie2 *trie, UErrorCode *pErrorCode) {
+ UNewTrie2 *newTrie;
+ UChar32 highStart, suppHighStart;
+ uint32_t highValue;
+
+ newTrie=trie->newTrie;
+
+ /* find highStart and round it up */
+ highValue=utrie2_get32(trie, 0x10ffff);
+ highStart=findHighStart(newTrie, highValue);
+ highStart=(highStart+(UTRIE2_CP_PER_INDEX_1_ENTRY-1))&~(UTRIE2_CP_PER_INDEX_1_ENTRY-1);
+ if(highStart==0x110000) {
+ highValue=trie->errorValue;
+ }
+
+ /*
+ * Set trie->highStart only after utrie2_get32(trie, highStart).
+ * Otherwise utrie2_get32(trie, highStart) would try to read the highValue.
+ */
+ trie->highStart=newTrie->highStart=highStart;
+
+#ifdef UTRIE2_DEBUG
+ printf("UTrie2: highStart U+%04lx highValue 0x%lx initialValue 0x%lx\n",
+ (long)highStart, (long)highValue, (long)trie->initialValue);
+#endif
+
+ if(highStart<0x110000) {
+ /* Blank out [highStart..10ffff] to release associated data blocks. */
+ suppHighStart= highStart<=0x10000 ? 0x10000 : highStart;
+ utrie2_setRange32(trie, suppHighStart, 0x10ffff, trie->initialValue, TRUE, pErrorCode);
+ if(U_FAILURE(*pErrorCode)) {
+ return;
+ }
+ }
+
+ compactData(newTrie);
+ if(highStart>0x10000) {
+ compactIndex2(newTrie);
+#ifdef UTRIE2_DEBUG
+ } else {
+ printf("UTrie2: highStart U+%04lx count of 16-bit index-2 words %lu->%lu\n",
+ (long)highStart, (long)trie->newTrie->index2Length, (long)UTRIE2_INDEX_1_OFFSET);
+#endif
+ }
+
+ /*
+ * Store the highValue in the data array and round up the dataLength.
+ * Must be done after compactData() because that assumes that dataLength
+ * is a multiple of UTRIE2_DATA_BLOCK_LENGTH.
+ */
+ newTrie->data[newTrie->dataLength++]=highValue;
+ while((newTrie->dataLength&(UTRIE2_DATA_GRANULARITY-1))!=0) {
+ newTrie->data[newTrie->dataLength++]=trie->initialValue;
+ }
+
+ newTrie->isCompacted=TRUE;
+}
+
+/* serialization ------------------------------------------------------------ */
+
+/**
+ * Maximum length of the runtime index array.
+ * Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength.
+ * (The actual maximum length is lower,
+ * (0x110000>>UTRIE2_SHIFT_2)+UTRIE2_UTF8_2B_INDEX_2_LENGTH+UTRIE2_MAX_INDEX_1_LENGTH.)
+ */
+#define UTRIE2_MAX_INDEX_LENGTH 0xffff
+
+/**
+ * Maximum length of the runtime data array.
+ * Limited by 16-bit index values that are left-shifted by UTRIE2_INDEX_SHIFT,
+ * and by uint16_t UTrie2Header.shiftedDataLength.
+ */
+#define UTRIE2_MAX_DATA_LENGTH (0xffff<<UTRIE2_INDEX_SHIFT)
+
+/* Compact and internally serialize the trie. */
+U_CAPI void U_EXPORT2
+utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode) {
+ UNewTrie2 *newTrie;
+ UTrie2Header *header;
+ uint32_t *p;
+ uint16_t *dest16;
+ int32_t i, length;
+ int32_t allIndexesLength;
+ int32_t dataMove; /* >0 if the data is moved to the end of the index array */
+ UChar32 highStart;
+
+ /* argument check */
+ if(U_FAILURE(*pErrorCode)) {
+ return;
+ }
+ if( trie==NULL ||
+ valueBits<0 || UTRIE2_COUNT_VALUE_BITS<=valueBits
+ ) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ newTrie=trie->newTrie;
+ if(newTrie==NULL) {
+ /* already frozen */
+ UTrie2ValueBits frozenValueBits=
+ trie->data16!=NULL ? UTRIE2_16_VALUE_BITS : UTRIE2_32_VALUE_BITS;
+ if(valueBits!=frozenValueBits) {
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ }
+ return;
+ }
+
+ /* compact if necessary */
+ if(!newTrie->isCompacted) {
+ compactTrie(trie, pErrorCode);
+ if(U_FAILURE(*pErrorCode)) {
+ return;
+ }
+ }
+ highStart=trie->highStart;
+
+ if(highStart<=0x10000) {
+ allIndexesLength=UTRIE2_INDEX_1_OFFSET;
+ } else {
+ allIndexesLength=newTrie->index2Length;
+ }
+ if(valueBits==UTRIE2_16_VALUE_BITS) {
+ dataMove=allIndexesLength;
+ } else {
+ dataMove=0;
+ }
+
+ /* are indexLength and dataLength within limits? */
+ if( /* for unshifted indexLength */
+ allIndexesLength>UTRIE2_MAX_INDEX_LENGTH ||
+ /* for unshifted dataNullOffset */
+ (dataMove+newTrie->dataNullOffset)>0xffff ||
+ /* for unshifted 2-byte UTF-8 index-2 values */
+ (dataMove+UNEWTRIE2_DATA_0800_OFFSET)>0xffff ||
+ /* for shiftedDataLength */
+ (dataMove+newTrie->dataLength)>UTRIE2_MAX_DATA_LENGTH
+ ) {
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
+ return;
+ }
+
+ /* calculate the total serialized length */
+ length=sizeof(UTrie2Header)+allIndexesLength*2;
+ if(valueBits==UTRIE2_16_VALUE_BITS) {
+ length+=newTrie->dataLength*2;
+ } else {
+ length+=newTrie->dataLength*4;
+ }
+
+ trie->memory=uprv_malloc(length);
+ if(trie->memory==NULL) {
+ *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ trie->length=length;
+ trie->isMemoryOwned=TRUE;
+
+ trie->indexLength=allIndexesLength;
+ trie->dataLength=newTrie->dataLength;
+ if(highStart<=0x10000) {
+ trie->index2NullOffset=0xffff;
+ } else {
+ trie->index2NullOffset=UTRIE2_INDEX_2_OFFSET+newTrie->index2NullOffset;
+ }
+ trie->dataNullOffset=(uint16_t)(dataMove+newTrie->dataNullOffset);
+ trie->highValueIndex=dataMove+trie->dataLength-UTRIE2_DATA_GRANULARITY;
+
+ /* set the header fields */
+ header=(UTrie2Header *)trie->memory;
+
+ header->signature=UTRIE2_SIG; /* "Tri2" */
+ header->options=(uint16_t)valueBits;
+
+ header->indexLength=(uint16_t)trie->indexLength;
+ header->shiftedDataLength=(uint16_t)(trie->dataLength>>UTRIE2_INDEX_SHIFT);
+ header->index2NullOffset=trie->index2NullOffset;
+ header->dataNullOffset=trie->dataNullOffset;
+ header->shiftedHighStart=(uint16_t)(highStart>>UTRIE2_SHIFT_1);
+
+ /* fill the index and data arrays */
+ dest16=(uint16_t *)(header+1);
+ trie->index=dest16;
+
+ /* write the index-2 array values shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove */
+ p=(uint32_t *)newTrie->index2;
+ for(i=UTRIE2_INDEX_2_BMP_LENGTH; i>0; --i) {
+ *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT);
+ }
+
+ /* write UTF-8 2-byte index-2 values, not right-shifted */
+ for(i=0; i<(0xc2-0xc0); ++i) { /* C0..C1 */
+ *dest16++=(uint16_t)(dataMove+UTRIE2_BAD_UTF8_DATA_OFFSET);
+ }
+ for(; i<(0xe0-0xc0); ++i) { /* C2..DF */
+ *dest16++=(uint16_t)(dataMove+newTrie->index2[i<<(6-UTRIE2_SHIFT_2)]);
+ }
+
+ if(highStart>0x10000) {
+ int32_t index1Length=(highStart-0x10000)>>UTRIE2_SHIFT_1;
+ int32_t index2Offset=UTRIE2_INDEX_2_BMP_LENGTH+UTRIE2_UTF8_2B_INDEX_2_LENGTH+index1Length;
+
+ /* write 16-bit index-1 values for supplementary code points */
+ p=(uint32_t *)newTrie->index1+UTRIE2_OMITTED_BMP_INDEX_1_LENGTH;
+ for(i=index1Length; i>0; --i) {
+ *dest16++=(uint16_t)(UTRIE2_INDEX_2_OFFSET + *p++);
+ }
+
+ /*
+ * write the index-2 array values for supplementary code points,
+ * shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove
+ */
+ p=(uint32_t *)newTrie->index2+index2Offset;
+ for(i=newTrie->index2Length-index2Offset; i>0; --i) {
+ *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT);
+ }
+ }
+
+ /* write the 16/32-bit data array */
+ switch(valueBits) {
+ case UTRIE2_16_VALUE_BITS:
+ /* write 16-bit data values */
+ trie->data16=dest16;
+ trie->data32=NULL;
+ p=newTrie->data;
+ for(i=newTrie->dataLength; i>0; --i) {
+ *dest16++=(uint16_t)*p++;
+ }
+ break;
+ case UTRIE2_32_VALUE_BITS:
+ /* write 32-bit data values */
+ trie->data16=NULL;
+ trie->data32=(uint32_t *)dest16;
+ uprv_memcpy(dest16, newTrie->data, (size_t)newTrie->dataLength*4);
+ break;
+ default:
+ *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+
+ /* Delete the UNewTrie2. */
+ uprv_free(newTrie->data);
+ uprv_free(newTrie);
+ trie->newTrie=NULL;
+}
+
+/*
+ * This is here to avoid a dependency from utrie2.cpp on utrie.c.
+ * This file already depends on utrie.c.
+ * Otherwise, this should be in utrie2.cpp right after utrie2_swap().
+ */
+U_CAPI int32_t U_EXPORT2
+utrie2_swapAnyVersion(const UDataSwapper *ds,
+ const void *inData, int32_t length, void *outData,
+ UErrorCode *pErrorCode) {
+ if(U_SUCCESS(*pErrorCode)) {
+ switch(utrie2_getVersion(inData, length, TRUE)) {
+ case 1:
+ return utrie_swap(ds, inData, length, outData, pErrorCode);
+ case 2:
+ return utrie2_swap(ds, inData, length, outData, pErrorCode);
+ default:
+ *pErrorCode=U_INVALID_FORMAT_ERROR;
+ return 0;
+ }
+ }
+ return 0;
+}