summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/rbbiscan.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/common/rbbiscan.cpp')
-rw-r--r--intl/icu/source/common/rbbiscan.cpp1290
1 files changed, 1290 insertions, 0 deletions
diff --git a/intl/icu/source/common/rbbiscan.cpp b/intl/icu/source/common/rbbiscan.cpp
new file mode 100644
index 000000000..df30f2c20
--- /dev/null
+++ b/intl/icu/source/common/rbbiscan.cpp
@@ -0,0 +1,1290 @@
+// Copyright (C) 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+//
+// file: rbbiscan.cpp
+//
+// Copyright (C) 2002-2016, International Business Machines Corporation and others.
+// All Rights Reserved.
+//
+// This file contains the Rule Based Break Iterator Rule Builder functions for
+// scanning the rules and assembling a parse tree. This is the first phase
+// of compiling the rules.
+//
+// The overall of the rules is managed by class RBBIRuleBuilder, which will
+// create and use an instance of this class as part of the process.
+//
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_BREAK_ITERATION
+
+#include "unicode/unistr.h"
+#include "unicode/uniset.h"
+#include "unicode/uchar.h"
+#include "unicode/uchriter.h"
+#include "unicode/parsepos.h"
+#include "unicode/parseerr.h"
+#include "cmemory.h"
+#include "cstring.h"
+
+#include "rbbirpt.h" // Contains state table for the rbbi rules parser.
+ // generated by a Perl script.
+#include "rbbirb.h"
+#include "rbbinode.h"
+#include "rbbiscan.h"
+#include "rbbitblb.h"
+
+#include "uassert.h"
+
+//------------------------------------------------------------------------------
+//
+// Unicode Set init strings for each of the character classes needed for parsing a rule file.
+// (Initialized with hex values for portability to EBCDIC based machines.
+// Really ugly, but there's no good way to avoid it.)
+//
+// The sets are referred to by name in the rbbirpt.txt, which is the
+// source form of the state transition table for the RBBI rule parser.
+//
+//------------------------------------------------------------------------------
+static const UChar gRuleSet_rule_char_pattern[] = {
+ // [ ^ [ \ p { Z } \ u 0 0 2 0
+ 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
+ // - \ u 0 0 7 f ] - [ \ p
+ 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
+ // { L } ] - [ \ p { N } ] ]
+ 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
+
+static const UChar gRuleSet_name_char_pattern[] = {
+// [ _ \ p { L } \ p { N } ]
+ 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
+
+static const UChar gRuleSet_digit_char_pattern[] = {
+// [ 0 - 9 ]
+ 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
+
+static const UChar gRuleSet_name_start_char_pattern[] = {
+// [ _ \ p { L } ]
+ 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
+
+static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any"
+
+
+U_CDECL_BEGIN
+static void U_CALLCONV RBBISetTable_deleter(void *p) {
+ icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p;
+ delete px->key;
+ // Note: px->val is owned by the linked list "fSetsListHead" in scanner.
+ // Don't delete the value nodes here.
+ uprv_free(px);
+}
+U_CDECL_END
+
+U_NAMESPACE_BEGIN
+
+//------------------------------------------------------------------------------
+//
+// Constructor.
+//
+//------------------------------------------------------------------------------
+RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
+{
+ fRB = rb;
+ fScanIndex = 0;
+ fNextIndex = 0;
+ fQuoteMode = FALSE;
+ fLineNum = 1;
+ fCharNum = 0;
+ fLastChar = 0;
+
+ fStateTable = NULL;
+ fStack[0] = 0;
+ fStackPtr = 0;
+ fNodeStack[0] = NULL;
+ fNodeStackPtr = 0;
+
+ fReverseRule = FALSE;
+ fLookAheadRule = FALSE;
+ fNoChainInRule = FALSE;
+
+ fSymbolTable = NULL;
+ fSetTable = NULL;
+ fRuleNum = 0;
+ fOptionStart = 0;
+
+ // Do not check status until after all critical fields are sufficiently initialized
+ // that the destructor can run cleanly.
+ if (U_FAILURE(*rb->fStatus)) {
+ return;
+ }
+
+ //
+ // Set up the constant Unicode Sets.
+ // Note: These could be made static, lazily initialized, and shared among
+ // all instances of RBBIRuleScanners. BUT this is quite a bit simpler,
+ // and the time to build these few sets should be small compared to a
+ // full break iterator build.
+ fRuleSets[kRuleSet_rule_char-128]
+ = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus);
+ // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:]
+ fRuleSets[kRuleSet_white_space-128].
+ add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029);
+ fRuleSets[kRuleSet_name_char-128]
+ = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus);
+ fRuleSets[kRuleSet_name_start_char-128]
+ = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus);
+ fRuleSets[kRuleSet_digit_char-128]
+ = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus);
+ if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
+ // This case happens if ICU's data is missing. UnicodeSet tries to look up property
+ // names from the init string, can't find them, and claims an illegal argument.
+ // Change the error so that the actual problem will be clearer to users.
+ *rb->fStatus = U_BRK_INIT_ERROR;
+ }
+ if (U_FAILURE(*rb->fStatus)) {
+ return;
+ }
+
+ fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
+ if (fSymbolTable == NULL) {
+ *rb->fStatus = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
+ if (U_FAILURE(*rb->fStatus)) {
+ return;
+ }
+ uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// Destructor
+//
+//------------------------------------------------------------------------------
+RBBIRuleScanner::~RBBIRuleScanner() {
+ delete fSymbolTable;
+ if (fSetTable != NULL) {
+ uhash_close(fSetTable);
+ fSetTable = NULL;
+
+ }
+
+
+ // Node Stack.
+ // Normally has one entry, which is the entire parse tree for the rules.
+ // If errors occured, there may be additional subtrees left on the stack.
+ while (fNodeStackPtr > 0) {
+ delete fNodeStack[fNodeStackPtr];
+ fNodeStackPtr--;
+ }
+
+}
+
+//------------------------------------------------------------------------------
+//
+// doParseAction Do some action during rule parsing.
+// Called by the parse state machine.
+// Actions build the parse tree and Unicode Sets,
+// and maintain the parse stack for nested expressions.
+//
+// TODO: unify EParseAction and RBBI_RuleParseAction enum types.
+// They represent exactly the same thing. They're separate
+// only to work around enum forward declaration restrictions
+// in some compilers, while at the same time avoiding multiple
+// definitions problems. I'm sure that there's a better way.
+//
+//------------------------------------------------------------------------------
+UBool RBBIRuleScanner::doParseActions(int32_t action)
+{
+ RBBINode *n = NULL;
+
+ UBool returnVal = TRUE;
+
+ switch (action) {
+
+ case doExprStart:
+ pushNewNode(RBBINode::opStart);
+ fRuleNum++;
+ break;
+
+
+ case doNoChain:
+ // Scanned a '^' while on the rule start state.
+ fNoChainInRule = TRUE;
+ break;
+
+
+ case doExprOrOperator:
+ {
+ fixOpStack(RBBINode::precOpCat);
+ RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
+ RBBINode *orNode = pushNewNode(RBBINode::opOr);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ orNode->fLeftChild = operandNode;
+ operandNode->fParent = orNode;
+ }
+ break;
+
+ case doExprCatOperator:
+ // concatenation operator.
+ // For the implicit concatenation of adjacent terms in an expression that are
+ // not separated by any other operator. Action is invoked between the
+ // actions for the two terms.
+ {
+ fixOpStack(RBBINode::precOpCat);
+ RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
+ RBBINode *catNode = pushNewNode(RBBINode::opCat);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ catNode->fLeftChild = operandNode;
+ operandNode->fParent = catNode;
+ }
+ break;
+
+ case doLParen:
+ // Open Paren.
+ // The openParen node is a dummy operation type with a low precedence,
+ // which has the affect of ensuring that any real binary op that
+ // follows within the parens binds more tightly to the operands than
+ // stuff outside of the parens.
+ pushNewNode(RBBINode::opLParen);
+ break;
+
+ case doExprRParen:
+ fixOpStack(RBBINode::precLParen);
+ break;
+
+ case doNOP:
+ break;
+
+ case doStartAssign:
+ // We've just scanned "$variable = "
+ // The top of the node stack has the $variable ref node.
+
+ // Save the start position of the RHS text in the StartExpression node
+ // that precedes the $variableReference node on the stack.
+ // This will eventually be used when saving the full $variable replacement
+ // text as a string.
+ n = fNodeStack[fNodeStackPtr-1];
+ n->fFirstPos = fNextIndex; // move past the '='
+
+ // Push a new start-of-expression node; needed to keep parse of the
+ // RHS expression happy.
+ pushNewNode(RBBINode::opStart);
+ break;
+
+
+
+
+ case doEndAssign:
+ {
+ // We have reached the end of an assignement statement.
+ // Current scan char is the ';' that terminates the assignment.
+
+ // Terminate expression, leaves expression parse tree rooted in TOS node.
+ fixOpStack(RBBINode::precStart);
+
+ RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2];
+ RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1];
+ RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr];
+
+ // Save original text of right side of assignment, excluding the terminating ';'
+ // in the root of the node for the right-hand-side expression.
+ RHSExprNode->fFirstPos = startExprNode->fFirstPos;
+ RHSExprNode->fLastPos = fScanIndex;
+ fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
+
+ // Expression parse tree becomes l. child of the $variable reference node.
+ varRefNode->fLeftChild = RHSExprNode;
+ RHSExprNode->fParent = varRefNode;
+
+ // Make a symbol table entry for the $variableRef node.
+ fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
+ if (U_FAILURE(*fRB->fStatus)) {
+ // This is a round-about way to get the parse position set
+ // so that duplicate symbols error messages include a line number.
+ UErrorCode t = *fRB->fStatus;
+ *fRB->fStatus = U_ZERO_ERROR;
+ error(t);
+ }
+
+ // Clean up the stack.
+ delete startExprNode;
+ fNodeStackPtr-=3;
+ break;
+ }
+
+ case doEndOfRule:
+ {
+ fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression
+ if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node.
+ break;
+ }
+#ifdef RBBI_DEBUG
+ if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
+#endif
+ U_ASSERT(fNodeStackPtr == 1);
+ RBBINode *thisRule = fNodeStack[fNodeStackPtr];
+
+ // If this rule includes a look-ahead '/', add a endMark node to the
+ // expression tree.
+ if (fLookAheadRule) {
+ RBBINode *endNode = pushNewNode(RBBINode::endMark);
+ RBBINode *catNode = pushNewNode(RBBINode::opCat);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ fNodeStackPtr -= 2;
+ catNode->fLeftChild = thisRule;
+ catNode->fRightChild = endNode;
+ fNodeStack[fNodeStackPtr] = catNode;
+ endNode->fVal = fRuleNum;
+ endNode->fLookAheadEnd = TRUE;
+ thisRule = catNode;
+
+ // TODO: Disable chaining out of look-ahead (hard break) rules.
+ // The break on rule match is forced, so there is no point in building up
+ // the state table to chain into another rule for a longer match.
+ }
+
+ // Mark this node as being the root of a rule.
+ thisRule->fRuleRoot = TRUE;
+
+ // Flag if chaining into this rule is wanted.
+ //
+ if (fRB->fChainRules && // If rule chaining is enabled globally via !!chain
+ !fNoChainInRule) { // and no '^' chain-in inhibit was on this rule
+ thisRule->fChainIn = TRUE;
+ }
+
+
+ // All rule expressions are ORed together.
+ // The ';' that terminates an expression really just functions as a '|' with
+ // a low operator prededence.
+ //
+ // Each of the four sets of rules are collected separately.
+ // (forward, reverse, safe_forward, safe_reverse)
+ // OR this rule into the appropriate group of them.
+ //
+ RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree);
+
+ if (*destRules != NULL) {
+ // This is not the first rule encounted.
+ // OR previous stuff (from *destRules)
+ // with the current rule expression (on the Node Stack)
+ // with the resulting OR expression going to *destRules
+ //
+ RBBINode *thisRule = fNodeStack[fNodeStackPtr];
+ RBBINode *prevRules = *destRules;
+ RBBINode *orNode = pushNewNode(RBBINode::opOr);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ orNode->fLeftChild = prevRules;
+ prevRules->fParent = orNode;
+ orNode->fRightChild = thisRule;
+ thisRule->fParent = orNode;
+ *destRules = orNode;
+ }
+ else
+ {
+ // This is the first rule encountered (for this direction).
+ // Just move its parse tree from the stack to *destRules.
+ *destRules = fNodeStack[fNodeStackPtr];
+ }
+ fReverseRule = FALSE; // in preparation for the next rule.
+ fLookAheadRule = FALSE;
+ fNoChainInRule = FALSE;
+ fNodeStackPtr = 0;
+ }
+ break;
+
+
+ case doRuleError:
+ error(U_BRK_RULE_SYNTAX);
+ returnVal = FALSE;
+ break;
+
+
+ case doVariableNameExpectedErr:
+ error(U_BRK_RULE_SYNTAX);
+ break;
+
+
+ //
+ // Unary operands + ? *
+ // These all appear after the operand to which they apply.
+ // When we hit one, the operand (may be a whole sub expression)
+ // will be on the top of the stack.
+ // Unary Operator becomes TOS, with the old TOS as its one child.
+ case doUnaryOpPlus:
+ {
+ RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
+ RBBINode *plusNode = pushNewNode(RBBINode::opPlus);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ plusNode->fLeftChild = operandNode;
+ operandNode->fParent = plusNode;
+ }
+ break;
+
+ case doUnaryOpQuestion:
+ {
+ RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
+ RBBINode *qNode = pushNewNode(RBBINode::opQuestion);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ qNode->fLeftChild = operandNode;
+ operandNode->fParent = qNode;
+ }
+ break;
+
+ case doUnaryOpStar:
+ {
+ RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
+ RBBINode *starNode = pushNewNode(RBBINode::opStar);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ starNode->fLeftChild = operandNode;
+ operandNode->fParent = starNode;
+ }
+ break;
+
+ case doRuleChar:
+ // A "Rule Character" is any single character that is a literal part
+ // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]"
+ // These are pretty uncommon in break rules; the terms are more commonly
+ // sets. To keep things uniform, treat these characters like as
+ // sets that just happen to contain only one character.
+ {
+ n = pushNewNode(RBBINode::setRef);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ findSetFor(UnicodeString(fC.fChar), n);
+ n->fFirstPos = fScanIndex;
+ n->fLastPos = fNextIndex;
+ fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
+ break;
+ }
+
+ case doDotAny:
+ // scanned a ".", meaning match any single character.
+ {
+ n = pushNewNode(RBBINode::setRef);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ findSetFor(UnicodeString(TRUE, kAny, 3), n);
+ n->fFirstPos = fScanIndex;
+ n->fLastPos = fNextIndex;
+ fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
+ break;
+ }
+
+ case doSlash:
+ // Scanned a '/', which identifies a look-ahead break position in a rule.
+ n = pushNewNode(RBBINode::lookAhead);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ n->fVal = fRuleNum;
+ n->fFirstPos = fScanIndex;
+ n->fLastPos = fNextIndex;
+ fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
+ fLookAheadRule = TRUE;
+ break;
+
+
+ case doStartTagValue:
+ // Scanned a '{', the opening delimiter for a tag value within a rule.
+ n = pushNewNode(RBBINode::tag);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ n->fVal = 0;
+ n->fFirstPos = fScanIndex;
+ n->fLastPos = fNextIndex;
+ break;
+
+ case doTagDigit:
+ // Just scanned a decimal digit that's part of a tag value
+ {
+ n = fNodeStack[fNodeStackPtr];
+ uint32_t v = u_charDigitValue(fC.fChar);
+ U_ASSERT(v < 10);
+ n->fVal = n->fVal*10 + v;
+ break;
+ }
+
+ case doTagValue:
+ n = fNodeStack[fNodeStackPtr];
+ n->fLastPos = fNextIndex;
+ fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
+ break;
+
+ case doTagExpectedError:
+ error(U_BRK_MALFORMED_RULE_TAG);
+ returnVal = FALSE;
+ break;
+
+ case doOptionStart:
+ // Scanning a !!option. At the start of string.
+ fOptionStart = fScanIndex;
+ break;
+
+ case doOptionEnd:
+ {
+ UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
+ if (opt == UNICODE_STRING("chain", 5)) {
+ fRB->fChainRules = TRUE;
+ } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
+ fRB->fLBCMNoChain = TRUE;
+ } else if (opt == UNICODE_STRING("forward", 7)) {
+ fRB->fDefaultTree = &fRB->fForwardTree;
+ } else if (opt == UNICODE_STRING("reverse", 7)) {
+ fRB->fDefaultTree = &fRB->fReverseTree;
+ } else if (opt == UNICODE_STRING("safe_forward", 12)) {
+ fRB->fDefaultTree = &fRB->fSafeFwdTree;
+ } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
+ fRB->fDefaultTree = &fRB->fSafeRevTree;
+ } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
+ fRB->fLookAheadHardBreak = TRUE;
+ } else {
+ error(U_BRK_UNRECOGNIZED_OPTION);
+ }
+ }
+ break;
+
+ case doReverseDir:
+ fReverseRule = TRUE;
+ break;
+
+ case doStartVariableName:
+ n = pushNewNode(RBBINode::varRef);
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+ n->fFirstPos = fScanIndex;
+ break;
+
+ case doEndVariableName:
+ n = fNodeStack[fNodeStackPtr];
+ if (n==NULL || n->fType != RBBINode::varRef) {
+ error(U_BRK_INTERNAL_ERROR);
+ break;
+ }
+ n->fLastPos = fScanIndex;
+ fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
+ // Look the newly scanned name up in the symbol table
+ // If there's an entry, set the l. child of the var ref to the replacement expression.
+ // (We also pass through here when scanning assignments, but no harm is done, other
+ // than a slight wasted effort that seems hard to avoid. Lookup will be null)
+ n->fLeftChild = fSymbolTable->lookupNode(n->fText);
+ break;
+
+ case doCheckVarDef:
+ n = fNodeStack[fNodeStackPtr];
+ if (n->fLeftChild == NULL) {
+ error(U_BRK_UNDEFINED_VARIABLE);
+ returnVal = FALSE;
+ }
+ break;
+
+ case doExprFinished:
+ break;
+
+ case doRuleErrorAssignExpr:
+ error(U_BRK_ASSIGN_ERROR);
+ returnVal = FALSE;
+ break;
+
+ case doExit:
+ returnVal = FALSE;
+ break;
+
+ case doScanUnicodeSet:
+ scanSet();
+ break;
+
+ default:
+ error(U_BRK_INTERNAL_ERROR);
+ returnVal = FALSE;
+ break;
+ }
+ return returnVal && U_SUCCESS(*fRB->fStatus);
+}
+
+
+
+
+//------------------------------------------------------------------------------
+//
+// Error Report a rule parse error.
+// Only report it if no previous error has been recorded.
+//
+//------------------------------------------------------------------------------
+void RBBIRuleScanner::error(UErrorCode e) {
+ if (U_SUCCESS(*fRB->fStatus)) {
+ *fRB->fStatus = e;
+ if (fRB->fParseError) {
+ fRB->fParseError->line = fLineNum;
+ fRB->fParseError->offset = fCharNum;
+ fRB->fParseError->preContext[0] = 0;
+ fRB->fParseError->postContext[0] = 0;
+ }
+ }
+}
+
+
+
+
+//------------------------------------------------------------------------------
+//
+// fixOpStack The parse stack holds partially assembled chunks of the parse tree.
+// An entry on the stack may be as small as a single setRef node,
+// or as large as the parse tree
+// for an entire expression (this will be the one item left on the stack
+// when the parsing of an RBBI rule completes.
+//
+// This function is called when a binary operator is encountered.
+// It looks back up the stack for operators that are not yet associated
+// with a right operand, and if the precedence of the stacked operator >=
+// the precedence of the current operator, binds the operand left,
+// to the previously encountered operator.
+//
+//------------------------------------------------------------------------------
+void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
+ RBBINode *n;
+ // printNodeStack("entering fixOpStack()");
+ for (;;) {
+ n = fNodeStack[fNodeStackPtr-1]; // an operator node
+ if (n->fPrecedence == 0) {
+ RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
+ error(U_BRK_INTERNAL_ERROR);
+ return;
+ }
+
+ if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
+ // The most recent operand goes with the current operator,
+ // not with the previously stacked one.
+ break;
+ }
+ // Stack operator is a binary op ( '|' or concatenation)
+ // TOS operand becomes right child of this operator.
+ // Resulting subexpression becomes the TOS operand.
+ n->fRightChild = fNodeStack[fNodeStackPtr];
+ fNodeStack[fNodeStackPtr]->fParent = n;
+ fNodeStackPtr--;
+ // printNodeStack("looping in fixOpStack() ");
+ }
+
+ if (p <= RBBINode::precLParen) {
+ // Scan is at a right paren or end of expression.
+ // The scanned item must match the stack, or else there was an error.
+ // Discard the left paren (or start expr) node from the stack,
+ // leaving the completed (sub)expression as TOS.
+ if (n->fPrecedence != p) {
+ // Right paren encountered matched start of expression node, or
+ // end of expression matched with a left paren node.
+ error(U_BRK_MISMATCHED_PAREN);
+ }
+ fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
+ fNodeStackPtr--;
+ // Delete the now-discarded LParen or Start node.
+ delete n;
+ }
+ // printNodeStack("leaving fixOpStack()");
+}
+
+
+
+
+//------------------------------------------------------------------------------
+//
+// findSetFor given a UnicodeString,
+// - find the corresponding Unicode Set (uset node)
+// (create one if necessary)
+// - Set fLeftChild of the caller's node (should be a setRef node)
+// to the uset node
+// Maintain a hash table of uset nodes, so the same one is always used
+// for the same string.
+// If a "to adopt" set is provided and we haven't seen this key before,
+// add the provided set to the hash table.
+// If the string is one (32 bit) char in length, the set contains
+// just one element which is the char in question.
+// If the string is "any", return a set containing all chars.
+//
+//------------------------------------------------------------------------------
+void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
+
+ RBBISetTableEl *el;
+
+ // First check whether we've already cached a set for this string.
+ // If so, just use the cached set in the new node.
+ // delete any set provided by the caller, since we own it.
+ el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
+ if (el != NULL) {
+ delete setToAdopt;
+ node->fLeftChild = el->val;
+ U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
+ return;
+ }
+
+ // Haven't seen this set before.
+ // If the caller didn't provide us with a prebuilt set,
+ // create a new UnicodeSet now.
+ if (setToAdopt == NULL) {
+ if (s.compare(kAny, -1) == 0) {
+ setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
+ } else {
+ UChar32 c;
+ c = s.char32At(0);
+ setToAdopt = new UnicodeSet(c, c);
+ }
+ }
+
+ //
+ // Make a new uset node to refer to this UnicodeSet
+ // This new uset node becomes the child of the caller's setReference node.
+ //
+ RBBINode *usetNode = new RBBINode(RBBINode::uset);
+ if (usetNode == NULL) {
+ error(U_MEMORY_ALLOCATION_ERROR);
+ return;
+ }
+ usetNode->fInputSet = setToAdopt;
+ usetNode->fParent = node;
+ node->fLeftChild = usetNode;
+ usetNode->fText = s;
+
+
+ //
+ // Add the new uset node to the list of all uset nodes.
+ //
+ fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
+
+
+ //
+ // Add the new set to the set hash table.
+ //
+ el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
+ UnicodeString *tkey = new UnicodeString(s);
+ if (tkey == NULL || el == NULL || setToAdopt == NULL) {
+ // Delete to avoid memory leak
+ delete tkey;
+ tkey = NULL;
+ uprv_free(el);
+ el = NULL;
+ delete setToAdopt;
+ setToAdopt = NULL;
+
+ error(U_MEMORY_ALLOCATION_ERROR);
+ return;
+ }
+ el->key = tkey;
+ el->val = usetNode;
+ uhash_put(fSetTable, el->key, el, fRB->fStatus);
+
+ return;
+}
+
+
+
+//
+// Assorted Unicode character constants.
+// Numeric because there is no portable way to enter them as literals.
+// (Think EBCDIC).
+//
+static const UChar chCR = 0x0d; // New lines, for terminating comments.
+static const UChar chLF = 0x0a;
+static const UChar chNEL = 0x85; // NEL newline variant
+static const UChar chLS = 0x2028; // Unicode Line Separator
+static const UChar chApos = 0x27; // single quote, for quoted chars.
+static const UChar chPound = 0x23; // '#', introduces a comment.
+static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
+static const UChar chLParen = 0x28;
+static const UChar chRParen = 0x29;
+
+
+//------------------------------------------------------------------------------
+//
+// stripRules Return a rules string without unnecessary
+// characters.
+//
+//------------------------------------------------------------------------------
+UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
+ UnicodeString strippedRules;
+ int rulesLength = rules.length();
+ for (int idx = 0; idx < rulesLength; ) {
+ UChar ch = rules[idx++];
+ if (ch == chPound) {
+ while (idx < rulesLength
+ && ch != chCR && ch != chLF && ch != chNEL)
+ {
+ ch = rules[idx++];
+ }
+ }
+ if (!u_isISOControl(ch)) {
+ strippedRules.append(ch);
+ }
+ }
+ // strippedRules = strippedRules.unescape();
+ return strippedRules;
+}
+
+
+//------------------------------------------------------------------------------
+//
+// nextCharLL Low Level Next Char from rule input source.
+// Get a char from the input character iterator,
+// keep track of input position for error reporting.
+//
+//------------------------------------------------------------------------------
+UChar32 RBBIRuleScanner::nextCharLL() {
+ UChar32 ch;
+
+ if (fNextIndex >= fRB->fRules.length()) {
+ return (UChar32)-1;
+ }
+ ch = fRB->fRules.char32At(fNextIndex);
+ fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
+
+ if (ch == chCR ||
+ ch == chNEL ||
+ ch == chLS ||
+ (ch == chLF && fLastChar != chCR)) {
+ // Character is starting a new line. Bump up the line number, and
+ // reset the column to 0.
+ fLineNum++;
+ fCharNum=0;
+ if (fQuoteMode) {
+ error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
+ fQuoteMode = FALSE;
+ }
+ }
+ else {
+ // Character is not starting a new line. Except in the case of a
+ // LF following a CR, increment the column position.
+ if (ch != chLF) {
+ fCharNum++;
+ }
+ }
+ fLastChar = ch;
+ return ch;
+}
+
+
+//------------------------------------------------------------------------------
+//
+// nextChar for rules scanning. At this level, we handle stripping
+// out comments and processing backslash character escapes.
+// The rest of the rules grammar is handled at the next level up.
+//
+//------------------------------------------------------------------------------
+void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
+
+ // Unicode Character constants needed for the processing done by nextChar(),
+ // in hex because literals wont work on EBCDIC machines.
+
+ fScanIndex = fNextIndex;
+ c.fChar = nextCharLL();
+ c.fEscaped = FALSE;
+
+ //
+ // check for '' sequence.
+ // These are recognized in all contexts, whether in quoted text or not.
+ //
+ if (c.fChar == chApos) {
+ if (fRB->fRules.char32At(fNextIndex) == chApos) {
+ c.fChar = nextCharLL(); // get nextChar officially so character counts
+ c.fEscaped = TRUE; // stay correct.
+ }
+ else
+ {
+ // Single quote, by itself.
+ // Toggle quoting mode.
+ // Return either '(' or ')', because quotes cause a grouping of the quoted text.
+ fQuoteMode = !fQuoteMode;
+ if (fQuoteMode == TRUE) {
+ c.fChar = chLParen;
+ } else {
+ c.fChar = chRParen;
+ }
+ c.fEscaped = FALSE; // The paren that we return is not escaped.
+ return;
+ }
+ }
+
+ if (fQuoteMode) {
+ c.fEscaped = TRUE;
+ }
+ else
+ {
+ // We are not in a 'quoted region' of the source.
+ //
+ if (c.fChar == chPound) {
+ // Start of a comment. Consume the rest of it.
+ // The new-line char that terminates the comment is always returned.
+ // It will be treated as white-space, and serves to break up anything
+ // that might otherwise incorrectly clump together with a comment in
+ // the middle (a variable name, for example.)
+ for (;;) {
+ c.fChar = nextCharLL();
+ if (c.fChar == (UChar32)-1 || // EOF
+ c.fChar == chCR ||
+ c.fChar == chLF ||
+ c.fChar == chNEL ||
+ c.fChar == chLS) {break;}
+ }
+ }
+ if (c.fChar == (UChar32)-1) {
+ return;
+ }
+
+ //
+ // check for backslash escaped characters.
+ // Use UnicodeString::unescapeAt() to handle them.
+ //
+ if (c.fChar == chBackSlash) {
+ c.fEscaped = TRUE;
+ int32_t startX = fNextIndex;
+ c.fChar = fRB->fRules.unescapeAt(fNextIndex);
+ if (fNextIndex == startX) {
+ error(U_BRK_HEX_DIGITS_EXPECTED);
+ }
+ fCharNum += fNextIndex-startX;
+ }
+ }
+ // putc(c.fChar, stdout);
+}
+
+//------------------------------------------------------------------------------
+//
+// Parse RBBI rules. The state machine for rules parsing is here.
+// The state tables are hand-written in the file rbbirpt.txt,
+// and converted to the form used here by a perl
+// script rbbicst.pl
+//
+//------------------------------------------------------------------------------
+void RBBIRuleScanner::parse() {
+ uint16_t state;
+ const RBBIRuleTableEl *tableEl;
+
+ if (U_FAILURE(*fRB->fStatus)) {
+ return;
+ }
+
+ state = 1;
+ nextChar(fC);
+ //
+ // Main loop for the rule parsing state machine.
+ // Runs once per state transition.
+ // Each time through optionally performs, depending on the state table,
+ // - an advance to the the next input char
+ // - an action to be performed.
+ // - pushing or popping a state to/from the local state return stack.
+ //
+ for (;;) {
+ // Bail out if anything has gone wrong.
+ // RBBI rule file parsing stops on the first error encountered.
+ if (U_FAILURE(*fRB->fStatus)) {
+ break;
+ }
+
+ // Quit if state == 0. This is the normal way to exit the state machine.
+ //
+ if (state == 0) {
+ break;
+ }
+
+ // Find the state table element that matches the input char from the rule, or the
+ // class of the input character. Start with the first table row for this
+ // state, then linearly scan forward until we find a row that matches the
+ // character. The last row for each state always matches all characters, so
+ // the search will stop there, if not before.
+ //
+ tableEl = &gRuleParseStateTable[state];
+ #ifdef RBBI_DEBUG
+ if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
+ RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ",
+ fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
+ }
+ #endif
+
+ for (;;) {
+ #ifdef RBBI_DEBUG
+ if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf("."); fflush(stdout);}
+ #endif
+ if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) {
+ // Table row specified an individual character, not a set, and
+ // the input character is not escaped, and
+ // the input character matched it.
+ break;
+ }
+ if (tableEl->fCharClass == 255) {
+ // Table row specified default, match anything character class.
+ break;
+ }
+ if (tableEl->fCharClass == 254 && fC.fEscaped) {
+ // Table row specified "escaped" and the char was escaped.
+ break;
+ }
+ if (tableEl->fCharClass == 253 && fC.fEscaped &&
+ (fC.fChar == 0x50 || fC.fChar == 0x70 )) {
+ // Table row specified "escaped P" and the char is either 'p' or 'P'.
+ break;
+ }
+ if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) {
+ // Table row specified eof and we hit eof on the input.
+ break;
+ }
+
+ if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
+ fC.fEscaped == FALSE && // char is not escaped &&
+ fC.fChar != (UChar32)-1) { // char is not EOF
+ U_ASSERT((tableEl->fCharClass-128) < UPRV_LENGTHOF(fRuleSets));
+ if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
+ // Table row specified a character class, or set of characters,
+ // and the current char matches it.
+ break;
+ }
+ }
+
+ // No match on this row, advance to the next row for this state,
+ tableEl++;
+ }
+ if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}
+
+ //
+ // We've found the row of the state table that matches the current input
+ // character from the rules string.
+ // Perform any action specified by this row in the state table.
+ if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
+ // Break out of the state machine loop if the
+ // the action signalled some kind of error, or
+ // the action was to exit, occurs on normal end-of-rules-input.
+ break;
+ }
+
+ if (tableEl->fPushState != 0) {
+ fStackPtr++;
+ if (fStackPtr >= kStackSize) {
+ error(U_BRK_INTERNAL_ERROR);
+ RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
+ fStackPtr--;
+ }
+ fStack[fStackPtr] = tableEl->fPushState;
+ }
+
+ if (tableEl->fNextChar) {
+ nextChar(fC);
+ }
+
+ // Get the next state from the table entry, or from the
+ // state stack if the next state was specified as "pop".
+ if (tableEl->fNextState != 255) {
+ state = tableEl->fNextState;
+ } else {
+ state = fStack[fStackPtr];
+ fStackPtr--;
+ if (fStackPtr < 0) {
+ error(U_BRK_INTERNAL_ERROR);
+ RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
+ fStackPtr++;
+ }
+ }
+
+ }
+
+ if (U_FAILURE(*fRB->fStatus)) {
+ return;
+ }
+
+ // If there are no forward rules set an error.
+ //
+ if (fRB->fForwardTree == NULL) {
+ error(U_BRK_RULE_SYNTAX);
+ return;
+ }
+
+ //
+ // If there were NO user specified reverse rules, set up the equivalent of ".*;"
+ //
+ if (fRB->fReverseTree == NULL) {
+ fRB->fReverseTree = pushNewNode(RBBINode::opStar);
+ RBBINode *operand = pushNewNode(RBBINode::setRef);
+ if (U_FAILURE(*fRB->fStatus)) {
+ return;
+ }
+ findSetFor(UnicodeString(TRUE, kAny, 3), operand);
+ fRB->fReverseTree->fLeftChild = operand;
+ operand->fParent = fRB->fReverseTree;
+ fNodeStackPtr -= 2;
+ }
+
+
+ //
+ // Parsing of the input RBBI rules is complete.
+ // We now have a parse tree for the rule expressions
+ // and a list of all UnicodeSets that are referenced.
+ //
+#ifdef RBBI_DEBUG
+ if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
+ if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) {
+ RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
+ RBBINode::printTree(fRB->fForwardTree, TRUE);
+ RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
+ RBBINode::printTree(fRB->fReverseTree, TRUE);
+ RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
+ RBBINode::printTree(fRB->fSafeFwdTree, TRUE);
+ RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
+ RBBINode::printTree(fRB->fSafeRevTree, TRUE);
+ }
+#endif
+}
+
+
+//------------------------------------------------------------------------------
+//
+// printNodeStack for debugging...
+//
+//------------------------------------------------------------------------------
+#ifdef RBBI_DEBUG
+void RBBIRuleScanner::printNodeStack(const char *title) {
+ int i;
+ RBBIDebugPrintf("%s. Dumping node stack...\n", title);
+ for (i=fNodeStackPtr; i>0; i--) {RBBINode::printTree(fNodeStack[i], TRUE);}
+}
+#endif
+
+
+
+
+//------------------------------------------------------------------------------
+//
+// pushNewNode create a new RBBINode of the specified type and push it
+// onto the stack of nodes.
+//
+//------------------------------------------------------------------------------
+RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) {
+ if (U_FAILURE(*fRB->fStatus)) {
+ return NULL;
+ }
+ fNodeStackPtr++;
+ if (fNodeStackPtr >= kStackSize) {
+ error(U_BRK_INTERNAL_ERROR);
+ RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
+ *fRB->fStatus = U_BRK_INTERNAL_ERROR;
+ return NULL;
+ }
+ fNodeStack[fNodeStackPtr] = new RBBINode(t);
+ if (fNodeStack[fNodeStackPtr] == NULL) {
+ *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
+ }
+ return fNodeStack[fNodeStackPtr];
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// scanSet Construct a UnicodeSet from the text at the current scan
+// position. Advance the scan position to the first character
+// after the set.
+//
+// A new RBBI setref node referring to the set is pushed onto the node
+// stack.
+//
+// The scan position is normally under the control of the state machine
+// that controls rule parsing. UnicodeSets, however, are parsed by
+// the UnicodeSet constructor, not by the RBBI rule parser.
+//
+//------------------------------------------------------------------------------
+void RBBIRuleScanner::scanSet() {
+ UnicodeSet *uset;
+ ParsePosition pos;
+ int startPos;
+ int i;
+
+ if (U_FAILURE(*fRB->fStatus)) {
+ return;
+ }
+
+ pos.setIndex(fScanIndex);
+ startPos = fScanIndex;
+ UErrorCode localStatus = U_ZERO_ERROR;
+ uset = new UnicodeSet();
+ if (uset == NULL) {
+ localStatus = U_MEMORY_ALLOCATION_ERROR;
+ } else {
+ uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus);
+ }
+ if (U_FAILURE(localStatus)) {
+ // TODO: Get more accurate position of the error from UnicodeSet's return info.
+ // UnicodeSet appears to not be reporting correctly at this time.
+ #ifdef RBBI_DEBUG
+ RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
+ #endif
+ error(localStatus);
+ delete uset;
+ return;
+ }
+
+ // Verify that the set contains at least one code point.
+ //
+ U_ASSERT(uset!=NULL);
+ if (uset->isEmpty()) {
+ // This set is empty.
+ // Make it an error, because it almost certainly is not what the user wanted.
+ // Also, avoids having to think about corner cases in the tree manipulation code
+ // that occurs later on.
+ error(U_BRK_RULE_EMPTY_SET);
+ delete uset;
+ return;
+ }
+
+
+ // Advance the RBBI parse postion over the UnicodeSet pattern.
+ // Don't just set fScanIndex because the line/char positions maintained
+ // for error reporting would be thrown off.
+ i = pos.getIndex();
+ for (;;) {
+ if (fNextIndex >= i) {
+ break;
+ }
+ nextCharLL();
+ }
+
+ if (U_SUCCESS(*fRB->fStatus)) {
+ RBBINode *n;
+
+ n = pushNewNode(RBBINode::setRef);
+ if (U_FAILURE(*fRB->fStatus)) {
+ return;
+ }
+ n->fFirstPos = startPos;
+ n->fLastPos = fNextIndex;
+ fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
+ // findSetFor() serves several purposes here:
+ // - Adopts storage for the UnicodeSet, will be responsible for deleting.
+ // - Mantains collection of all sets in use, needed later for establishing
+ // character categories for run time engine.
+ // - Eliminates mulitiple instances of the same set.
+ // - Creates a new uset node if necessary (if this isn't a duplicate.)
+ findSetFor(n->fText, n, uset);
+ }
+
+}
+
+U_NAMESPACE_END
+
+#endif /* #if !UCONFIG_NO_BREAK_ITERATION */