diff options
Diffstat (limited to 'gfx/ycbcr/yuv_convert.cpp')
-rw-r--r-- | gfx/ycbcr/yuv_convert.cpp | 510 |
1 files changed, 510 insertions, 0 deletions
diff --git a/gfx/ycbcr/yuv_convert.cpp b/gfx/ycbcr/yuv_convert.cpp new file mode 100644 index 000000000..78fd4ee89 --- /dev/null +++ b/gfx/ycbcr/yuv_convert.cpp @@ -0,0 +1,510 @@ +// Copyright (c) 2010 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// This webpage shows layout of YV12 and other YUV formats +// http://www.fourcc.org/yuv.php +// The actual conversion is best described here +// http://en.wikipedia.org/wiki/YUV +// An article on optimizing YUV conversion using tables instead of multiplies +// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf +// +// YV12 is a full plane of Y and a half height, half width chroma planes +// YV16 is a full plane of Y and a full height, half width chroma planes +// YV24 is a full plane of Y and a full height, full width chroma planes +// +// ARGB pixel format is output, which on little endian is stored as BGRA. +// The alpha is set to 255, allowing the application to use RGBA or RGB32. + +#include "yuv_convert.h" + +#include "gfxPrefs.h" +#include "libyuv.h" +#include "scale_yuv_argb.h" +// Header for low level row functions. +#include "yuv_row.h" +#include "mozilla/SSE.h" + +namespace mozilla { + +namespace gfx { + +// 16.16 fixed point arithmetic +const int kFractionBits = 16; +const int kFractionMax = 1 << kFractionBits; +const int kFractionMask = ((1 << kFractionBits) - 1); + +YUVType TypeFromSize(int ywidth, + int yheight, + int cbcrwidth, + int cbcrheight) +{ + if (ywidth == cbcrwidth && yheight == cbcrheight) { + return YV24; + } + else if ((ywidth + 1) / 2 == cbcrwidth && yheight == cbcrheight) { + return YV16; + } + else { + return YV12; + } +} + +libyuv::FourCC FourCCFromYUVType(YUVType aYUVType) +{ + if (aYUVType == YV24) { + return libyuv::FOURCC_I444; + } else if (aYUVType == YV16) { + return libyuv::FOURCC_I422; + } else if (aYUVType == YV12) { + return libyuv::FOURCC_I420; + } else { + return libyuv::FOURCC_ANY; + } +} + +// Convert a frame of YUV to 32 bit ARGB. +void ConvertYCbCrToRGB32(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + int pic_x, + int pic_y, + int pic_width, + int pic_height, + int y_pitch, + int uv_pitch, + int rgb_pitch, + YUVType yuv_type, + YUVColorSpace yuv_color_space) { + + + // Deprecated function's conversion is accurate. + // libyuv converion is a bit inaccurate to get performance. It dynamically + // calculates RGB from YUV to use simd. In it, signed byte is used for conversion's + // coefficient, but it requests 129. libyuv cut 129 to 127. And only 6 bits are + // used for a decimal part during the dynamic calculation. + // + // The function is still fast on some old intel chips. + // See Bug 1256475. + bool use_deprecated = gfxPrefs::YCbCrAccurateConversion() || + (supports_mmx() && supports_sse() && !supports_sse3() && + yuv_color_space == YUVColorSpace::BT601); + // The deprecated function only support BT601. + // See Bug 1210357. + if (yuv_color_space != YUVColorSpace::BT601) { + use_deprecated = false; + } + if (use_deprecated) { + ConvertYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, rgb_buf, + pic_x, pic_y, pic_width, pic_height, + y_pitch, uv_pitch, rgb_pitch, yuv_type); + return; + } + + if (yuv_type == YV24) { + const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; + const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x; + const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x; + DebugOnly<int> err = libyuv::I444ToARGB(src_y, y_pitch, + src_u, uv_pitch, + src_v, uv_pitch, + rgb_buf, rgb_pitch, + pic_width, pic_height); + MOZ_ASSERT(!err); + } else if (yuv_type == YV16) { + const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; + const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x / 2; + const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x / 2; + DebugOnly<int> err = libyuv::I422ToARGB(src_y, y_pitch, + src_u, uv_pitch, + src_v, uv_pitch, + rgb_buf, rgb_pitch, + pic_width, pic_height); + MOZ_ASSERT(!err); + } else { + MOZ_ASSERT(yuv_type == YV12); + const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; + const uint8* src_u = u_buf + (uv_pitch * pic_y + pic_x) / 2; + const uint8* src_v = v_buf + (uv_pitch * pic_y + pic_x) / 2; + if (yuv_color_space == YUVColorSpace::BT709) { + DebugOnly<int> err = libyuv::H420ToARGB(src_y, y_pitch, + src_u, uv_pitch, + src_v, uv_pitch, + rgb_buf, rgb_pitch, + pic_width, pic_height); + MOZ_ASSERT(!err); + } else { + MOZ_ASSERT(yuv_color_space == YUVColorSpace::BT601); + DebugOnly<int> err = libyuv::I420ToARGB(src_y, y_pitch, + src_u, uv_pitch, + src_v, uv_pitch, + rgb_buf, rgb_pitch, + pic_width, pic_height); + MOZ_ASSERT(!err); + } + } +} + +// Convert a frame of YUV to 32 bit ARGB. +void ConvertYCbCrToRGB32_deprecated(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + int pic_x, + int pic_y, + int pic_width, + int pic_height, + int y_pitch, + int uv_pitch, + int rgb_pitch, + YUVType yuv_type) { + unsigned int y_shift = yuv_type == YV12 ? 1 : 0; + unsigned int x_shift = yuv_type == YV24 ? 0 : 1; + // Test for SSE because the optimized code uses movntq, which is not part of MMX. + bool has_sse = supports_mmx() && supports_sse(); + // There is no optimized YV24 SSE routine so we check for this and + // fall back to the C code. + has_sse &= yuv_type != YV24; + bool odd_pic_x = yuv_type != YV24 && pic_x % 2 != 0; + int x_width = odd_pic_x ? pic_width - 1 : pic_width; + + for (int y = pic_y; y < pic_height + pic_y; ++y) { + uint8* rgb_row = rgb_buf + (y - pic_y) * rgb_pitch; + const uint8* y_ptr = y_buf + y * y_pitch + pic_x; + const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift); + const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift); + + if (odd_pic_x) { + // Handle the single odd pixel manually and use the + // fast routines for the remaining. + FastConvertYUVToRGB32Row_C(y_ptr++, + u_ptr++, + v_ptr++, + rgb_row, + 1, + x_shift); + rgb_row += 4; + } + + if (has_sse) { + FastConvertYUVToRGB32Row(y_ptr, + u_ptr, + v_ptr, + rgb_row, + x_width); + } + else { + FastConvertYUVToRGB32Row_C(y_ptr, + u_ptr, + v_ptr, + rgb_row, + x_width, + x_shift); + } + } + + // MMX used for FastConvertYUVToRGB32Row requires emms instruction. + if (has_sse) + EMMS(); +} + +// C version does 8 at a time to mimic MMX code +static void FilterRows_C(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, + int source_width, int source_y_fraction) { + int y1_fraction = source_y_fraction; + int y0_fraction = 256 - y1_fraction; + uint8* end = ybuf + source_width; + do { + ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8; + ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8; + ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8; + ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8; + ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8; + ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8; + ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8; + ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8; + y0_ptr += 8; + y1_ptr += 8; + ybuf += 8; + } while (ybuf < end); +} + +#ifdef MOZILLA_MAY_SUPPORT_MMX +void FilterRows_MMX(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, + int source_width, int source_y_fraction); +#endif + +#ifdef MOZILLA_MAY_SUPPORT_SSE2 +void FilterRows_SSE2(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, + int source_width, int source_y_fraction); +#endif + +static inline void FilterRows(uint8* ybuf, const uint8* y0_ptr, + const uint8* y1_ptr, int source_width, + int source_y_fraction) { +#ifdef MOZILLA_MAY_SUPPORT_SSE2 + if (mozilla::supports_sse2()) { + FilterRows_SSE2(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); + return; + } +#endif + +#ifdef MOZILLA_MAY_SUPPORT_MMX + if (mozilla::supports_mmx()) { + FilterRows_MMX(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); + return; + } +#endif + + FilterRows_C(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); +} + + +// Scale a frame of YUV to 32 bit ARGB. +void ScaleYCbCrToRGB32(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + int source_width, + int source_height, + int width, + int height, + int y_pitch, + int uv_pitch, + int rgb_pitch, + YUVType yuv_type, + YUVColorSpace yuv_color_space, + ScaleFilter filter) { + + bool use_deprecated = gfxPrefs::YCbCrAccurateConversion() || +#if defined(XP_WIN) && defined(_M_X64) + // libyuv does not support SIMD scaling on win 64bit. See Bug 1295927. + supports_sse3() || +#endif + (supports_mmx() && supports_sse() && !supports_sse3()); + // The deprecated function only support BT601. + // See Bug 1210357. + if (yuv_color_space != YUVColorSpace::BT601) { + use_deprecated = false; + } + if (use_deprecated) { + ScaleYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, + rgb_buf, + source_width, source_height, + width, height, + y_pitch, uv_pitch, + rgb_pitch, + yuv_type, + ROTATE_0, + filter); + return; + } + + DebugOnly<int> err = + libyuv::YUVToARGBScale(y_buf, y_pitch, + u_buf, uv_pitch, + v_buf, uv_pitch, + FourCCFromYUVType(yuv_type), + yuv_color_space, + source_width, source_height, + rgb_buf, rgb_pitch, + width, height, + libyuv::kFilterBilinear); + MOZ_ASSERT(!err); + return; +} + +// Scale a frame of YUV to 32 bit ARGB. +void ScaleYCbCrToRGB32_deprecated(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + int source_width, + int source_height, + int width, + int height, + int y_pitch, + int uv_pitch, + int rgb_pitch, + YUVType yuv_type, + Rotate view_rotate, + ScaleFilter filter) { + bool has_mmx = supports_mmx(); + + // 4096 allows 3 buffers to fit in 12k. + // Helps performance on CPU with 16K L1 cache. + // Large enough for 3830x2160 and 30" displays which are 2560x1600. + const int kFilterBufferSize = 4096; + // Disable filtering if the screen is too big (to avoid buffer overflows). + // This should never happen to regular users: they don't have monitors + // wider than 4096 pixels. + // TODO(fbarchard): Allow rotated videos to filter. + if (source_width > kFilterBufferSize || view_rotate) + filter = FILTER_NONE; + + unsigned int y_shift = yuv_type == YV12 ? 1 : 0; + // Diagram showing origin and direction of source sampling. + // ->0 4<- + // 7 3 + // + // 6 5 + // ->1 2<- + // Rotations that start at right side of image. + if ((view_rotate == ROTATE_180) || + (view_rotate == ROTATE_270) || + (view_rotate == MIRROR_ROTATE_0) || + (view_rotate == MIRROR_ROTATE_90)) { + y_buf += source_width - 1; + u_buf += source_width / 2 - 1; + v_buf += source_width / 2 - 1; + source_width = -source_width; + } + // Rotations that start at bottom of image. + if ((view_rotate == ROTATE_90) || + (view_rotate == ROTATE_180) || + (view_rotate == MIRROR_ROTATE_90) || + (view_rotate == MIRROR_ROTATE_180)) { + y_buf += (source_height - 1) * y_pitch; + u_buf += ((source_height >> y_shift) - 1) * uv_pitch; + v_buf += ((source_height >> y_shift) - 1) * uv_pitch; + source_height = -source_height; + } + + // Handle zero sized destination. + if (width == 0 || height == 0) + return; + int source_dx = source_width * kFractionMax / width; + int source_dy = source_height * kFractionMax / height; + int source_dx_uv = source_dx; + + if ((view_rotate == ROTATE_90) || + (view_rotate == ROTATE_270)) { + int tmp = height; + height = width; + width = tmp; + tmp = source_height; + source_height = source_width; + source_width = tmp; + int original_dx = source_dx; + int original_dy = source_dy; + source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits; + source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits; + source_dy = original_dx; + if (view_rotate == ROTATE_90) { + y_pitch = -1; + uv_pitch = -1; + source_height = -source_height; + } else { + y_pitch = 1; + uv_pitch = 1; + } + } + + // Need padding because FilterRows() will write 1 to 16 extra pixels + // after the end for SSE2 version. + uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; + uint8* ybuf = + reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15); + uint8* ubuf = ybuf + kFilterBufferSize; + uint8* vbuf = ubuf + kFilterBufferSize; + // TODO(fbarchard): Fixed point math is off by 1 on negatives. + int yscale_fixed = (source_height << kFractionBits) / height; + + // TODO(fbarchard): Split this into separate function for better efficiency. + for (int y = 0; y < height; ++y) { + uint8* dest_pixel = rgb_buf + y * rgb_pitch; + int source_y_subpixel = (y * yscale_fixed); + if (yscale_fixed >= (kFractionMax * 2)) { + source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter. + } + int source_y = source_y_subpixel >> kFractionBits; + + const uint8* y0_ptr = y_buf + source_y * y_pitch; + const uint8* y1_ptr = y0_ptr + y_pitch; + + const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch; + const uint8* u1_ptr = u0_ptr + uv_pitch; + const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch; + const uint8* v1_ptr = v0_ptr + uv_pitch; + + // vertical scaler uses 16.8 fixed point + int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; + int source_uv_fraction = + ((source_y_subpixel >> y_shift) & kFractionMask) >> 8; + + const uint8* y_ptr = y0_ptr; + const uint8* u_ptr = u0_ptr; + const uint8* v_ptr = v0_ptr; + // Apply vertical filtering if necessary. + // TODO(fbarchard): Remove memcpy when not necessary. + if (filter & mozilla::gfx::FILTER_BILINEAR_V) { + if (yscale_fixed != kFractionMax && + source_y_fraction && ((source_y + 1) < source_height)) { + FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); + } else { + memcpy(ybuf, y0_ptr, source_width); + } + y_ptr = ybuf; + ybuf[source_width] = ybuf[source_width-1]; + int uv_source_width = (source_width + 1) / 2; + if (yscale_fixed != kFractionMax && + source_uv_fraction && + (((source_y >> y_shift) + 1) < (source_height >> y_shift))) { + FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction); + FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction); + } else { + memcpy(ubuf, u0_ptr, uv_source_width); + memcpy(vbuf, v0_ptr, uv_source_width); + } + u_ptr = ubuf; + v_ptr = vbuf; + ubuf[uv_source_width] = ubuf[uv_source_width - 1]; + vbuf[uv_source_width] = vbuf[uv_source_width - 1]; + } + if (source_dx == kFractionMax) { // Not scaled + FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, + dest_pixel, width); + } else if (filter & FILTER_BILINEAR_H) { + LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, + dest_pixel, width, source_dx); + } else { +// Specialized scalers and rotation. +#if defined(MOZILLA_MAY_SUPPORT_SSE) && defined(_MSC_VER) && defined(_M_IX86) + if(mozilla::supports_sse()) { + if (width == (source_width * 2)) { + DoubleYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, + dest_pixel, width); + } else if ((source_dx & kFractionMask) == 0) { + // Scaling by integer scale factor. ie half. + ConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, + dest_pixel, width, + source_dx >> kFractionBits); + } else if (source_dx_uv == source_dx) { // Not rotated. + ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, + dest_pixel, width, source_dx); + } else { + RotateConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, + dest_pixel, width, + source_dx >> kFractionBits, + source_dx_uv >> kFractionBits); + } + } + else { + ScaleYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr, + dest_pixel, width, source_dx); + } +#else + (void)source_dx_uv; + ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, + dest_pixel, width, source_dx); +#endif + } + } + // MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms. + if (has_mmx) + EMMS(); +} + +} // namespace gfx +} // namespace mozilla |