summaryrefslogtreecommitdiffstats
path: root/gfx/ycbcr/yuv_convert.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/ycbcr/yuv_convert.cpp')
-rw-r--r--gfx/ycbcr/yuv_convert.cpp510
1 files changed, 510 insertions, 0 deletions
diff --git a/gfx/ycbcr/yuv_convert.cpp b/gfx/ycbcr/yuv_convert.cpp
new file mode 100644
index 000000000..78fd4ee89
--- /dev/null
+++ b/gfx/ycbcr/yuv_convert.cpp
@@ -0,0 +1,510 @@
+// Copyright (c) 2010 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// This webpage shows layout of YV12 and other YUV formats
+// http://www.fourcc.org/yuv.php
+// The actual conversion is best described here
+// http://en.wikipedia.org/wiki/YUV
+// An article on optimizing YUV conversion using tables instead of multiplies
+// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
+//
+// YV12 is a full plane of Y and a half height, half width chroma planes
+// YV16 is a full plane of Y and a full height, half width chroma planes
+// YV24 is a full plane of Y and a full height, full width chroma planes
+//
+// ARGB pixel format is output, which on little endian is stored as BGRA.
+// The alpha is set to 255, allowing the application to use RGBA or RGB32.
+
+#include "yuv_convert.h"
+
+#include "gfxPrefs.h"
+#include "libyuv.h"
+#include "scale_yuv_argb.h"
+// Header for low level row functions.
+#include "yuv_row.h"
+#include "mozilla/SSE.h"
+
+namespace mozilla {
+
+namespace gfx {
+
+// 16.16 fixed point arithmetic
+const int kFractionBits = 16;
+const int kFractionMax = 1 << kFractionBits;
+const int kFractionMask = ((1 << kFractionBits) - 1);
+
+YUVType TypeFromSize(int ywidth,
+ int yheight,
+ int cbcrwidth,
+ int cbcrheight)
+{
+ if (ywidth == cbcrwidth && yheight == cbcrheight) {
+ return YV24;
+ }
+ else if ((ywidth + 1) / 2 == cbcrwidth && yheight == cbcrheight) {
+ return YV16;
+ }
+ else {
+ return YV12;
+ }
+}
+
+libyuv::FourCC FourCCFromYUVType(YUVType aYUVType)
+{
+ if (aYUVType == YV24) {
+ return libyuv::FOURCC_I444;
+ } else if (aYUVType == YV16) {
+ return libyuv::FOURCC_I422;
+ } else if (aYUVType == YV12) {
+ return libyuv::FOURCC_I420;
+ } else {
+ return libyuv::FOURCC_ANY;
+ }
+}
+
+// Convert a frame of YUV to 32 bit ARGB.
+void ConvertYCbCrToRGB32(const uint8* y_buf,
+ const uint8* u_buf,
+ const uint8* v_buf,
+ uint8* rgb_buf,
+ int pic_x,
+ int pic_y,
+ int pic_width,
+ int pic_height,
+ int y_pitch,
+ int uv_pitch,
+ int rgb_pitch,
+ YUVType yuv_type,
+ YUVColorSpace yuv_color_space) {
+
+
+ // Deprecated function's conversion is accurate.
+ // libyuv converion is a bit inaccurate to get performance. It dynamically
+ // calculates RGB from YUV to use simd. In it, signed byte is used for conversion's
+ // coefficient, but it requests 129. libyuv cut 129 to 127. And only 6 bits are
+ // used for a decimal part during the dynamic calculation.
+ //
+ // The function is still fast on some old intel chips.
+ // See Bug 1256475.
+ bool use_deprecated = gfxPrefs::YCbCrAccurateConversion() ||
+ (supports_mmx() && supports_sse() && !supports_sse3() &&
+ yuv_color_space == YUVColorSpace::BT601);
+ // The deprecated function only support BT601.
+ // See Bug 1210357.
+ if (yuv_color_space != YUVColorSpace::BT601) {
+ use_deprecated = false;
+ }
+ if (use_deprecated) {
+ ConvertYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, rgb_buf,
+ pic_x, pic_y, pic_width, pic_height,
+ y_pitch, uv_pitch, rgb_pitch, yuv_type);
+ return;
+ }
+
+ if (yuv_type == YV24) {
+ const uint8* src_y = y_buf + y_pitch * pic_y + pic_x;
+ const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x;
+ const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x;
+ DebugOnly<int> err = libyuv::I444ToARGB(src_y, y_pitch,
+ src_u, uv_pitch,
+ src_v, uv_pitch,
+ rgb_buf, rgb_pitch,
+ pic_width, pic_height);
+ MOZ_ASSERT(!err);
+ } else if (yuv_type == YV16) {
+ const uint8* src_y = y_buf + y_pitch * pic_y + pic_x;
+ const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x / 2;
+ const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x / 2;
+ DebugOnly<int> err = libyuv::I422ToARGB(src_y, y_pitch,
+ src_u, uv_pitch,
+ src_v, uv_pitch,
+ rgb_buf, rgb_pitch,
+ pic_width, pic_height);
+ MOZ_ASSERT(!err);
+ } else {
+ MOZ_ASSERT(yuv_type == YV12);
+ const uint8* src_y = y_buf + y_pitch * pic_y + pic_x;
+ const uint8* src_u = u_buf + (uv_pitch * pic_y + pic_x) / 2;
+ const uint8* src_v = v_buf + (uv_pitch * pic_y + pic_x) / 2;
+ if (yuv_color_space == YUVColorSpace::BT709) {
+ DebugOnly<int> err = libyuv::H420ToARGB(src_y, y_pitch,
+ src_u, uv_pitch,
+ src_v, uv_pitch,
+ rgb_buf, rgb_pitch,
+ pic_width, pic_height);
+ MOZ_ASSERT(!err);
+ } else {
+ MOZ_ASSERT(yuv_color_space == YUVColorSpace::BT601);
+ DebugOnly<int> err = libyuv::I420ToARGB(src_y, y_pitch,
+ src_u, uv_pitch,
+ src_v, uv_pitch,
+ rgb_buf, rgb_pitch,
+ pic_width, pic_height);
+ MOZ_ASSERT(!err);
+ }
+ }
+}
+
+// Convert a frame of YUV to 32 bit ARGB.
+void ConvertYCbCrToRGB32_deprecated(const uint8* y_buf,
+ const uint8* u_buf,
+ const uint8* v_buf,
+ uint8* rgb_buf,
+ int pic_x,
+ int pic_y,
+ int pic_width,
+ int pic_height,
+ int y_pitch,
+ int uv_pitch,
+ int rgb_pitch,
+ YUVType yuv_type) {
+ unsigned int y_shift = yuv_type == YV12 ? 1 : 0;
+ unsigned int x_shift = yuv_type == YV24 ? 0 : 1;
+ // Test for SSE because the optimized code uses movntq, which is not part of MMX.
+ bool has_sse = supports_mmx() && supports_sse();
+ // There is no optimized YV24 SSE routine so we check for this and
+ // fall back to the C code.
+ has_sse &= yuv_type != YV24;
+ bool odd_pic_x = yuv_type != YV24 && pic_x % 2 != 0;
+ int x_width = odd_pic_x ? pic_width - 1 : pic_width;
+
+ for (int y = pic_y; y < pic_height + pic_y; ++y) {
+ uint8* rgb_row = rgb_buf + (y - pic_y) * rgb_pitch;
+ const uint8* y_ptr = y_buf + y * y_pitch + pic_x;
+ const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift);
+ const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift);
+
+ if (odd_pic_x) {
+ // Handle the single odd pixel manually and use the
+ // fast routines for the remaining.
+ FastConvertYUVToRGB32Row_C(y_ptr++,
+ u_ptr++,
+ v_ptr++,
+ rgb_row,
+ 1,
+ x_shift);
+ rgb_row += 4;
+ }
+
+ if (has_sse) {
+ FastConvertYUVToRGB32Row(y_ptr,
+ u_ptr,
+ v_ptr,
+ rgb_row,
+ x_width);
+ }
+ else {
+ FastConvertYUVToRGB32Row_C(y_ptr,
+ u_ptr,
+ v_ptr,
+ rgb_row,
+ x_width,
+ x_shift);
+ }
+ }
+
+ // MMX used for FastConvertYUVToRGB32Row requires emms instruction.
+ if (has_sse)
+ EMMS();
+}
+
+// C version does 8 at a time to mimic MMX code
+static void FilterRows_C(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
+ int source_width, int source_y_fraction) {
+ int y1_fraction = source_y_fraction;
+ int y0_fraction = 256 - y1_fraction;
+ uint8* end = ybuf + source_width;
+ do {
+ ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8;
+ ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8;
+ ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8;
+ ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8;
+ ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8;
+ ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8;
+ ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8;
+ ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8;
+ y0_ptr += 8;
+ y1_ptr += 8;
+ ybuf += 8;
+ } while (ybuf < end);
+}
+
+#ifdef MOZILLA_MAY_SUPPORT_MMX
+void FilterRows_MMX(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
+ int source_width, int source_y_fraction);
+#endif
+
+#ifdef MOZILLA_MAY_SUPPORT_SSE2
+void FilterRows_SSE2(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
+ int source_width, int source_y_fraction);
+#endif
+
+static inline void FilterRows(uint8* ybuf, const uint8* y0_ptr,
+ const uint8* y1_ptr, int source_width,
+ int source_y_fraction) {
+#ifdef MOZILLA_MAY_SUPPORT_SSE2
+ if (mozilla::supports_sse2()) {
+ FilterRows_SSE2(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
+ return;
+ }
+#endif
+
+#ifdef MOZILLA_MAY_SUPPORT_MMX
+ if (mozilla::supports_mmx()) {
+ FilterRows_MMX(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
+ return;
+ }
+#endif
+
+ FilterRows_C(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
+}
+
+
+// Scale a frame of YUV to 32 bit ARGB.
+void ScaleYCbCrToRGB32(const uint8* y_buf,
+ const uint8* u_buf,
+ const uint8* v_buf,
+ uint8* rgb_buf,
+ int source_width,
+ int source_height,
+ int width,
+ int height,
+ int y_pitch,
+ int uv_pitch,
+ int rgb_pitch,
+ YUVType yuv_type,
+ YUVColorSpace yuv_color_space,
+ ScaleFilter filter) {
+
+ bool use_deprecated = gfxPrefs::YCbCrAccurateConversion() ||
+#if defined(XP_WIN) && defined(_M_X64)
+ // libyuv does not support SIMD scaling on win 64bit. See Bug 1295927.
+ supports_sse3() ||
+#endif
+ (supports_mmx() && supports_sse() && !supports_sse3());
+ // The deprecated function only support BT601.
+ // See Bug 1210357.
+ if (yuv_color_space != YUVColorSpace::BT601) {
+ use_deprecated = false;
+ }
+ if (use_deprecated) {
+ ScaleYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf,
+ rgb_buf,
+ source_width, source_height,
+ width, height,
+ y_pitch, uv_pitch,
+ rgb_pitch,
+ yuv_type,
+ ROTATE_0,
+ filter);
+ return;
+ }
+
+ DebugOnly<int> err =
+ libyuv::YUVToARGBScale(y_buf, y_pitch,
+ u_buf, uv_pitch,
+ v_buf, uv_pitch,
+ FourCCFromYUVType(yuv_type),
+ yuv_color_space,
+ source_width, source_height,
+ rgb_buf, rgb_pitch,
+ width, height,
+ libyuv::kFilterBilinear);
+ MOZ_ASSERT(!err);
+ return;
+}
+
+// Scale a frame of YUV to 32 bit ARGB.
+void ScaleYCbCrToRGB32_deprecated(const uint8* y_buf,
+ const uint8* u_buf,
+ const uint8* v_buf,
+ uint8* rgb_buf,
+ int source_width,
+ int source_height,
+ int width,
+ int height,
+ int y_pitch,
+ int uv_pitch,
+ int rgb_pitch,
+ YUVType yuv_type,
+ Rotate view_rotate,
+ ScaleFilter filter) {
+ bool has_mmx = supports_mmx();
+
+ // 4096 allows 3 buffers to fit in 12k.
+ // Helps performance on CPU with 16K L1 cache.
+ // Large enough for 3830x2160 and 30" displays which are 2560x1600.
+ const int kFilterBufferSize = 4096;
+ // Disable filtering if the screen is too big (to avoid buffer overflows).
+ // This should never happen to regular users: they don't have monitors
+ // wider than 4096 pixels.
+ // TODO(fbarchard): Allow rotated videos to filter.
+ if (source_width > kFilterBufferSize || view_rotate)
+ filter = FILTER_NONE;
+
+ unsigned int y_shift = yuv_type == YV12 ? 1 : 0;
+ // Diagram showing origin and direction of source sampling.
+ // ->0 4<-
+ // 7 3
+ //
+ // 6 5
+ // ->1 2<-
+ // Rotations that start at right side of image.
+ if ((view_rotate == ROTATE_180) ||
+ (view_rotate == ROTATE_270) ||
+ (view_rotate == MIRROR_ROTATE_0) ||
+ (view_rotate == MIRROR_ROTATE_90)) {
+ y_buf += source_width - 1;
+ u_buf += source_width / 2 - 1;
+ v_buf += source_width / 2 - 1;
+ source_width = -source_width;
+ }
+ // Rotations that start at bottom of image.
+ if ((view_rotate == ROTATE_90) ||
+ (view_rotate == ROTATE_180) ||
+ (view_rotate == MIRROR_ROTATE_90) ||
+ (view_rotate == MIRROR_ROTATE_180)) {
+ y_buf += (source_height - 1) * y_pitch;
+ u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
+ v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
+ source_height = -source_height;
+ }
+
+ // Handle zero sized destination.
+ if (width == 0 || height == 0)
+ return;
+ int source_dx = source_width * kFractionMax / width;
+ int source_dy = source_height * kFractionMax / height;
+ int source_dx_uv = source_dx;
+
+ if ((view_rotate == ROTATE_90) ||
+ (view_rotate == ROTATE_270)) {
+ int tmp = height;
+ height = width;
+ width = tmp;
+ tmp = source_height;
+ source_height = source_width;
+ source_width = tmp;
+ int original_dx = source_dx;
+ int original_dy = source_dy;
+ source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits;
+ source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits;
+ source_dy = original_dx;
+ if (view_rotate == ROTATE_90) {
+ y_pitch = -1;
+ uv_pitch = -1;
+ source_height = -source_height;
+ } else {
+ y_pitch = 1;
+ uv_pitch = 1;
+ }
+ }
+
+ // Need padding because FilterRows() will write 1 to 16 extra pixels
+ // after the end for SSE2 version.
+ uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
+ uint8* ybuf =
+ reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
+ uint8* ubuf = ybuf + kFilterBufferSize;
+ uint8* vbuf = ubuf + kFilterBufferSize;
+ // TODO(fbarchard): Fixed point math is off by 1 on negatives.
+ int yscale_fixed = (source_height << kFractionBits) / height;
+
+ // TODO(fbarchard): Split this into separate function for better efficiency.
+ for (int y = 0; y < height; ++y) {
+ uint8* dest_pixel = rgb_buf + y * rgb_pitch;
+ int source_y_subpixel = (y * yscale_fixed);
+ if (yscale_fixed >= (kFractionMax * 2)) {
+ source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter.
+ }
+ int source_y = source_y_subpixel >> kFractionBits;
+
+ const uint8* y0_ptr = y_buf + source_y * y_pitch;
+ const uint8* y1_ptr = y0_ptr + y_pitch;
+
+ const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
+ const uint8* u1_ptr = u0_ptr + uv_pitch;
+ const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
+ const uint8* v1_ptr = v0_ptr + uv_pitch;
+
+ // vertical scaler uses 16.8 fixed point
+ int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
+ int source_uv_fraction =
+ ((source_y_subpixel >> y_shift) & kFractionMask) >> 8;
+
+ const uint8* y_ptr = y0_ptr;
+ const uint8* u_ptr = u0_ptr;
+ const uint8* v_ptr = v0_ptr;
+ // Apply vertical filtering if necessary.
+ // TODO(fbarchard): Remove memcpy when not necessary.
+ if (filter & mozilla::gfx::FILTER_BILINEAR_V) {
+ if (yscale_fixed != kFractionMax &&
+ source_y_fraction && ((source_y + 1) < source_height)) {
+ FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
+ } else {
+ memcpy(ybuf, y0_ptr, source_width);
+ }
+ y_ptr = ybuf;
+ ybuf[source_width] = ybuf[source_width-1];
+ int uv_source_width = (source_width + 1) / 2;
+ if (yscale_fixed != kFractionMax &&
+ source_uv_fraction &&
+ (((source_y >> y_shift) + 1) < (source_height >> y_shift))) {
+ FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction);
+ FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction);
+ } else {
+ memcpy(ubuf, u0_ptr, uv_source_width);
+ memcpy(vbuf, v0_ptr, uv_source_width);
+ }
+ u_ptr = ubuf;
+ v_ptr = vbuf;
+ ubuf[uv_source_width] = ubuf[uv_source_width - 1];
+ vbuf[uv_source_width] = vbuf[uv_source_width - 1];
+ }
+ if (source_dx == kFractionMax) { // Not scaled
+ FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
+ dest_pixel, width);
+ } else if (filter & FILTER_BILINEAR_H) {
+ LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
+ dest_pixel, width, source_dx);
+ } else {
+// Specialized scalers and rotation.
+#if defined(MOZILLA_MAY_SUPPORT_SSE) && defined(_MSC_VER) && defined(_M_IX86)
+ if(mozilla::supports_sse()) {
+ if (width == (source_width * 2)) {
+ DoubleYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
+ dest_pixel, width);
+ } else if ((source_dx & kFractionMask) == 0) {
+ // Scaling by integer scale factor. ie half.
+ ConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
+ dest_pixel, width,
+ source_dx >> kFractionBits);
+ } else if (source_dx_uv == source_dx) { // Not rotated.
+ ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
+ dest_pixel, width, source_dx);
+ } else {
+ RotateConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
+ dest_pixel, width,
+ source_dx >> kFractionBits,
+ source_dx_uv >> kFractionBits);
+ }
+ }
+ else {
+ ScaleYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr,
+ dest_pixel, width, source_dx);
+ }
+#else
+ (void)source_dx_uv;
+ ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
+ dest_pixel, width, source_dx);
+#endif
+ }
+ }
+ // MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms.
+ if (has_mmx)
+ EMMS();
+}
+
+} // namespace gfx
+} // namespace mozilla