diff options
Diffstat (limited to 'gfx/thebes/gfxCoreTextShaper.cpp')
-rw-r--r-- | gfx/thebes/gfxCoreTextShaper.cpp | 800 |
1 files changed, 800 insertions, 0 deletions
diff --git a/gfx/thebes/gfxCoreTextShaper.cpp b/gfx/thebes/gfxCoreTextShaper.cpp new file mode 100644 index 000000000..08217b82f --- /dev/null +++ b/gfx/thebes/gfxCoreTextShaper.cpp @@ -0,0 +1,800 @@ +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "mozilla/ArrayUtils.h" +#include "gfxCoreTextShaper.h" +#include "gfxMacFont.h" +#include "gfxFontUtils.h" +#include "gfxTextRun.h" +#include "mozilla/gfx/2D.h" +#include "mozilla/UniquePtrExtensions.h" + +#include <algorithm> + +#include <dlfcn.h> + +using namespace mozilla; + +// standard font descriptors that we construct the first time they're needed +CTFontDescriptorRef gfxCoreTextShaper::sDefaultFeaturesDescriptor = nullptr; +CTFontDescriptorRef gfxCoreTextShaper::sDisableLigaturesDescriptor = nullptr; +CTFontDescriptorRef gfxCoreTextShaper::sIndicFeaturesDescriptor = nullptr; +CTFontDescriptorRef gfxCoreTextShaper::sIndicDisableLigaturesDescriptor = nullptr; + +static CFStringRef sCTWritingDirectionAttributeName = nullptr; + +// See CTStringAttributes.h +enum { + kMyCTWritingDirectionEmbedding = (0 << 1), + kMyCTWritingDirectionOverride = (1 << 1) +}; + +// Helper to create a CFDictionary with the right attributes for shaping our +// text, including imposing the given directionality. +// This will only be called if we're on 10.8 or later. +CFDictionaryRef +gfxCoreTextShaper::CreateAttrDict(bool aRightToLeft) +{ + // Because we always shape unidirectional runs, and may have applied + // directional overrides, we want to force a direction rather than + // allowing CoreText to do its own unicode-based bidi processing. + SInt16 dirOverride = kMyCTWritingDirectionOverride | + (aRightToLeft ? kCTWritingDirectionRightToLeft + : kCTWritingDirectionLeftToRight); + CFNumberRef dirNumber = + ::CFNumberCreate(kCFAllocatorDefault, + kCFNumberSInt16Type, &dirOverride); + CFArrayRef dirArray = + ::CFArrayCreate(kCFAllocatorDefault, + (const void **) &dirNumber, 1, + &kCFTypeArrayCallBacks); + ::CFRelease(dirNumber); + CFTypeRef attrs[] = { kCTFontAttributeName, sCTWritingDirectionAttributeName }; + CFTypeRef values[] = { mCTFont, dirArray }; + CFDictionaryRef attrDict = + ::CFDictionaryCreate(kCFAllocatorDefault, + attrs, values, ArrayLength(attrs), + &kCFTypeDictionaryKeyCallBacks, + &kCFTypeDictionaryValueCallBacks); + ::CFRelease(dirArray); + return attrDict; +} + +CFDictionaryRef +gfxCoreTextShaper::CreateAttrDictWithoutDirection() +{ + CFTypeRef attrs[] = { kCTFontAttributeName }; + CFTypeRef values[] = { mCTFont }; + CFDictionaryRef attrDict = + ::CFDictionaryCreate(kCFAllocatorDefault, + attrs, values, ArrayLength(attrs), + &kCFTypeDictionaryKeyCallBacks, + &kCFTypeDictionaryValueCallBacks); + return attrDict; +} + +gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont *aFont) + : gfxFontShaper(aFont) + , mAttributesDictLTR(nullptr) + , mAttributesDictRTL(nullptr) +{ + static bool sInitialized = false; + if (!sInitialized) { + CFStringRef* pstr = (CFStringRef*) + dlsym(RTLD_DEFAULT, "kCTWritingDirectionAttributeName"); + if (pstr) { + sCTWritingDirectionAttributeName = *pstr; + } + sInitialized = true; + } + + // Create our CTFontRef + mCTFont = CreateCTFontWithFeatures(aFont->GetAdjustedSize(), + GetDefaultFeaturesDescriptor()); +} + +gfxCoreTextShaper::~gfxCoreTextShaper() +{ + if (mAttributesDictLTR) { + ::CFRelease(mAttributesDictLTR); + } + if (mAttributesDictRTL) { + ::CFRelease(mAttributesDictRTL); + } + if (mCTFont) { + ::CFRelease(mCTFont); + } +} + +static bool +IsBuggyIndicScript(unicode::Script aScript) +{ + return aScript == unicode::Script::BENGALI || + aScript == unicode::Script::KANNADA; +} + +bool +gfxCoreTextShaper::ShapeText(DrawTarget *aDrawTarget, + const char16_t *aText, + uint32_t aOffset, + uint32_t aLength, + Script aScript, + bool aVertical, + gfxShapedText *aShapedText) +{ + // Create a CFAttributedString with text and style info, so we can use CoreText to lay it out. + bool isRightToLeft = aShapedText->IsRightToLeft(); + const UniChar* text = reinterpret_cast<const UniChar*>(aText); + uint32_t length = aLength; + + uint32_t startOffset; + CFStringRef stringObj; + CFDictionaryRef attrObj; + + if (sCTWritingDirectionAttributeName) { + startOffset = 0; + stringObj = ::CFStringCreateWithCharactersNoCopy(kCFAllocatorDefault, + text, length, + kCFAllocatorNull); + + // Get an attributes dictionary suitable for shaping text in the + // current direction, creating it if necessary. + attrObj = isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR; + if (!attrObj) { + attrObj = CreateAttrDict(isRightToLeft); + (isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR) = attrObj; + } + } else { + // OS is too old to support kCTWritingDirectionAttributeName: + // we need to bidi-wrap the text if the run is RTL, + // or if it is an LTR run but may contain (overridden) RTL chars + bool bidiWrap = isRightToLeft; + if (!bidiWrap && !aShapedText->TextIs8Bit()) { + uint32_t i; + for (i = 0; i < length; ++i) { + if (gfxFontUtils::PotentialRTLChar(aText[i])) { + bidiWrap = true; + break; + } + } + } + + // If there's a possibility of any bidi, we wrap the text with + // direction overrides to ensure neutrals or characters that were + // bidi-overridden in HTML behave properly. + static const UniChar beginLTR[] = { 0x202d, 0x20 }; + static const UniChar beginRTL[] = { 0x202e, 0x20 }; + static const UniChar endBidiWrap[] = { 0x20, 0x2e, 0x202c }; + + if (bidiWrap) { + startOffset = isRightToLeft ? ArrayLength(beginRTL) + : ArrayLength(beginLTR); + CFMutableStringRef mutableString = + ::CFStringCreateMutable(kCFAllocatorDefault, + length + startOffset + + ArrayLength(endBidiWrap)); + ::CFStringAppendCharacters(mutableString, + isRightToLeft ? beginRTL : beginLTR, + startOffset); + ::CFStringAppendCharacters(mutableString, text, length); + ::CFStringAppendCharacters(mutableString, endBidiWrap, + ArrayLength(endBidiWrap)); + stringObj = mutableString; + } else { + startOffset = 0; + stringObj = + ::CFStringCreateWithCharactersNoCopy(kCFAllocatorDefault, + text, length, + kCFAllocatorNull); + } + + // Get an attributes dictionary suitable for shaping text, + // creating it if necessary. (This dict is not LTR-specific, + // but we use that field to store it anyway.) + if (!mAttributesDictLTR) { + mAttributesDictLTR = CreateAttrDictWithoutDirection(); + } + attrObj = mAttributesDictLTR; + } + + CTFontRef tempCTFont = nullptr; + if (IsBuggyIndicScript(aScript)) { + // To work around buggy Indic AAT fonts shipped with OS X, + // we re-enable the Line Initial Smart Swashes feature that is needed + // for "split vowels" to work in at least Bengali and Kannada fonts. + // Affected fonts include Bangla MN, Bangla Sangam MN, Kannada MN, + // Kannada Sangam MN. See bugs 686225, 728557, 953231, 1145515. + tempCTFont = + CreateCTFontWithFeatures(::CTFontGetSize(mCTFont), + aShapedText->DisableLigatures() + ? GetIndicDisableLigaturesDescriptor() + : GetIndicFeaturesDescriptor()); + } else if (aShapedText->DisableLigatures()) { + // For letterspacing (or maybe other situations) we need to make + // a copy of the CTFont with the ligature feature disabled. + tempCTFont = + CreateCTFontWithFeatures(::CTFontGetSize(mCTFont), + GetDisableLigaturesDescriptor()); + } + + // For the disabled-ligature or buggy-indic-font case, we need to replace + // the standard CTFont in the attribute dictionary with a tweaked version. + CFMutableDictionaryRef mutableAttr = nullptr; + if (tempCTFont) { + mutableAttr = ::CFDictionaryCreateMutableCopy(kCFAllocatorDefault, 2, + attrObj); + ::CFDictionaryReplaceValue(mutableAttr, + kCTFontAttributeName, tempCTFont); + // Having created the dict, we're finished with our temporary + // Indic and/or ligature-disabled CTFontRef. + ::CFRelease(tempCTFont); + attrObj = mutableAttr; + } + + // Now we can create an attributed string + CFAttributedStringRef attrStringObj = + ::CFAttributedStringCreate(kCFAllocatorDefault, stringObj, attrObj); + ::CFRelease(stringObj); + + // Create the CoreText line from our string, then we're done with it + CTLineRef line = ::CTLineCreateWithAttributedString(attrStringObj); + ::CFRelease(attrStringObj); + + // and finally retrieve the glyph data and store into the gfxTextRun + CFArrayRef glyphRuns = ::CTLineGetGlyphRuns(line); + uint32_t numRuns = ::CFArrayGetCount(glyphRuns); + + // Iterate through the glyph runs. + // Note that this includes the bidi wrapper, so we have to be careful + // not to include the extra glyphs from there + bool success = true; + for (uint32_t runIndex = 0; runIndex < numRuns; runIndex++) { + CTRunRef aCTRun = + (CTRunRef)::CFArrayGetValueAtIndex(glyphRuns, runIndex); + // If the range is purely within bidi-wrapping text, ignore it. + CFRange range = ::CTRunGetStringRange(aCTRun); + if (uint32_t(range.location + range.length) <= startOffset || + range.location - startOffset >= aLength) { + continue; + } + CFDictionaryRef runAttr = ::CTRunGetAttributes(aCTRun); + if (runAttr != attrObj) { + // If Core Text manufactured a new dictionary, this may indicate + // unexpected font substitution. In that case, we fail (and fall + // back to harfbuzz shaping)... + const void* font1 = + ::CFDictionaryGetValue(attrObj, kCTFontAttributeName); + const void* font2 = + ::CFDictionaryGetValue(runAttr, kCTFontAttributeName); + if (font1 != font2) { + // ...except that if the fallback was only for a variation + // selector or join control that is otherwise unsupported, + // we just ignore it. + if (range.length == 1) { + char16_t ch = aText[range.location - startOffset]; + if (gfxFontUtils::IsJoinControl(ch) || + gfxFontUtils::IsVarSelector(ch)) { + continue; + } + } + NS_WARNING("unexpected font fallback in Core Text"); + success = false; + break; + } + } + if (SetGlyphsFromRun(aShapedText, aOffset, aLength, aCTRun, + startOffset) != NS_OK) { + success = false; + break; + } + } + + if (mutableAttr) { + ::CFRelease(mutableAttr); + } + ::CFRelease(line); + + return success; +} + +#define SMALL_GLYPH_RUN 128 // preallocated size of our auto arrays for per-glyph data; + // some testing indicates that 90%+ of glyph runs will fit + // without requiring a separate allocation + +nsresult +gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText *aShapedText, + uint32_t aOffset, + uint32_t aLength, + CTRunRef aCTRun, + int32_t aStringOffset) +{ + // The word has been bidi-wrapped; aStringOffset is the number + // of chars at the beginning of the CTLine that we should skip. + // aCTRun is a glyph run from the CoreText layout process. + + int32_t direction = aShapedText->IsRightToLeft() ? -1 : 1; + + int32_t numGlyphs = ::CTRunGetGlyphCount(aCTRun); + if (numGlyphs == 0) { + return NS_OK; + } + + int32_t wordLength = aLength; + + // character offsets get really confusing here, as we have to keep track of + // (a) the text in the actual textRun we're constructing + // (c) the string that was handed to CoreText, which contains the text of the font run + // plus directional-override padding + // (d) the CTRun currently being processed, which may be a sub-run of the CoreText line + // (but may extend beyond the actual font run into the bidi wrapping text). + // aStringOffset tells us how many initial characters of the line to ignore. + + // get the source string range within the CTLine's text + CFRange stringRange = ::CTRunGetStringRange(aCTRun); + // skip the run if it is entirely outside the actual range of the font run + if (stringRange.location - aStringOffset + stringRange.length <= 0 || + stringRange.location - aStringOffset >= wordLength) { + return NS_OK; + } + + // retrieve the laid-out glyph data from the CTRun + UniquePtr<CGGlyph[]> glyphsArray; + UniquePtr<CGPoint[]> positionsArray; + UniquePtr<CFIndex[]> glyphToCharArray; + const CGGlyph* glyphs = nullptr; + const CGPoint* positions = nullptr; + const CFIndex* glyphToChar = nullptr; + + // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds, + // and so allocating a new array and copying data with CTRunGetGlyphs + // will be extremely rare. + // If this were not the case, we could use an AutoTArray<> to + // try and avoid the heap allocation for small runs. + // It's possible that some future change to CoreText will mean that + // CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<> + // may become an attractive option. + glyphs = ::CTRunGetGlyphsPtr(aCTRun); + if (!glyphs) { + glyphsArray = MakeUniqueFallible<CGGlyph[]>(numGlyphs); + if (!glyphsArray) { + return NS_ERROR_OUT_OF_MEMORY; + } + ::CTRunGetGlyphs(aCTRun, ::CFRangeMake(0, 0), glyphsArray.get()); + glyphs = glyphsArray.get(); + } + + positions = ::CTRunGetPositionsPtr(aCTRun); + if (!positions) { + positionsArray = MakeUniqueFallible<CGPoint[]>(numGlyphs); + if (!positionsArray) { + return NS_ERROR_OUT_OF_MEMORY; + } + ::CTRunGetPositions(aCTRun, ::CFRangeMake(0, 0), positionsArray.get()); + positions = positionsArray.get(); + } + + // Remember that the glyphToChar indices relate to the CoreText line, + // not to the beginning of the textRun, the font run, + // or the stringRange of the glyph run + glyphToChar = ::CTRunGetStringIndicesPtr(aCTRun); + if (!glyphToChar) { + glyphToCharArray = MakeUniqueFallible<CFIndex[]>(numGlyphs); + if (!glyphToCharArray) { + return NS_ERROR_OUT_OF_MEMORY; + } + ::CTRunGetStringIndices(aCTRun, ::CFRangeMake(0, 0), glyphToCharArray.get()); + glyphToChar = glyphToCharArray.get(); + } + + double runWidth = ::CTRunGetTypographicBounds(aCTRun, ::CFRangeMake(0, 0), + nullptr, nullptr, nullptr); + + AutoTArray<gfxShapedText::DetailedGlyph,1> detailedGlyphs; + gfxShapedText::CompressedGlyph *charGlyphs = + aShapedText->GetCharacterGlyphs() + aOffset; + + // CoreText gives us the glyphindex-to-charindex mapping, which relates each glyph + // to a source text character; we also need the charindex-to-glyphindex mapping to + // find the glyph for a given char. Note that some chars may not map to any glyph + // (ligature continuations), and some may map to several glyphs (eg Indic split vowels). + // We set the glyph index to NO_GLYPH for chars that have no associated glyph, and we + // record the last glyph index for cases where the char maps to several glyphs, + // so that our clumping will include all the glyph fragments for the character. + + // The charToGlyph array is indexed by char position within the stringRange of the glyph run. + + static const int32_t NO_GLYPH = -1; + AutoTArray<int32_t,SMALL_GLYPH_RUN> charToGlyphArray; + if (!charToGlyphArray.SetLength(stringRange.length, fallible)) { + return NS_ERROR_OUT_OF_MEMORY; + } + int32_t *charToGlyph = charToGlyphArray.Elements(); + for (int32_t offset = 0; offset < stringRange.length; ++offset) { + charToGlyph[offset] = NO_GLYPH; + } + for (int32_t i = 0; i < numGlyphs; ++i) { + int32_t loc = glyphToChar[i] - stringRange.location; + if (loc >= 0 && loc < stringRange.length) { + charToGlyph[loc] = i; + } + } + + // Find character and glyph clumps that correspond, allowing for ligatures, + // indic reordering, split glyphs, etc. + // + // The idea is that we'll find a character sequence starting at the first char of stringRange, + // and extend it until it includes the character associated with the first glyph; + // we also extend it as long as there are "holes" in the range of glyphs. So we + // will eventually have a contiguous sequence of characters, starting at the beginning + // of the range, that map to a contiguous sequence of glyphs, starting at the beginning + // of the glyph array. That's a clump; then we update the starting positions and repeat. + // + // NB: In the case of RTL layouts, we iterate over the stringRange in reverse. + // + + // This may find characters that fall outside the range 0:wordLength, + // so we won't necessarily use everything we find here. + + bool isRightToLeft = aShapedText->IsRightToLeft(); + int32_t glyphStart = 0; // looking for a clump that starts at this glyph index + int32_t charStart = isRightToLeft ? + stringRange.length - 1 : 0; // and this char index (in the stringRange of the glyph run) + + while (glyphStart < numGlyphs) { // keep finding groups until all glyphs are accounted for + bool inOrder = true; + int32_t charEnd = glyphToChar[glyphStart] - stringRange.location; + NS_WARNING_ASSERTION( + charEnd >= 0 && charEnd < stringRange.length, + "glyph-to-char mapping points outside string range"); + // clamp charEnd to the valid range of the string + charEnd = std::max(charEnd, 0); + charEnd = std::min(charEnd, int32_t(stringRange.length)); + + int32_t glyphEnd = glyphStart; + int32_t charLimit = isRightToLeft ? -1 : stringRange.length; + do { + // This is normally executed once for each iteration of the outer loop, + // but in unusual cases where the character/glyph association is complex, + // the initial character range might correspond to a non-contiguous + // glyph range with "holes" in it. If so, we will repeat this loop to + // extend the character range until we have a contiguous glyph sequence. + NS_ASSERTION((direction > 0 && charEnd < charLimit) || + (direction < 0 && charEnd > charLimit), + "no characters left in range?"); + charEnd += direction; + while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) { + charEnd += direction; + } + + // find the maximum glyph index covered by the clump so far + if (isRightToLeft) { + for (int32_t i = charStart; i > charEnd; --i) { + if (charToGlyph[i] != NO_GLYPH) { + // update extent of glyph range + glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1); + } + } + } else { + for (int32_t i = charStart; i < charEnd; ++i) { + if (charToGlyph[i] != NO_GLYPH) { + // update extent of glyph range + glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1); + } + } + } + + if (glyphEnd == glyphStart + 1) { + // for the common case of a single-glyph clump, we can skip the following checks + break; + } + + if (glyphEnd == glyphStart) { + // no glyphs, try to extend the clump + continue; + } + + // check whether all glyphs in the range are associated with the characters + // in our clump; if not, we have a discontinuous range, and should extend it + // unless we've reached the end of the text + bool allGlyphsAreWithinCluster = true; + int32_t prevGlyphCharIndex = charStart; + for (int32_t i = glyphStart; i < glyphEnd; ++i) { + int32_t glyphCharIndex = glyphToChar[i] - stringRange.location; + if (isRightToLeft) { + if (glyphCharIndex > charStart || glyphCharIndex <= charEnd) { + allGlyphsAreWithinCluster = false; + break; + } + if (glyphCharIndex > prevGlyphCharIndex) { + inOrder = false; + } + prevGlyphCharIndex = glyphCharIndex; + } else { + if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) { + allGlyphsAreWithinCluster = false; + break; + } + if (glyphCharIndex < prevGlyphCharIndex) { + inOrder = false; + } + prevGlyphCharIndex = glyphCharIndex; + } + } + if (allGlyphsAreWithinCluster) { + break; + } + } while (charEnd != charLimit); + + NS_WARNING_ASSERTION(glyphStart < glyphEnd, + "character/glyph clump contains no glyphs!"); + if (glyphStart == glyphEnd) { + ++glyphStart; // make progress - avoid potential infinite loop + charStart = charEnd; + continue; + } + + NS_WARNING_ASSERTION(charStart != charEnd, + "character/glyph clump contains no characters!"); + if (charStart == charEnd) { + glyphStart = glyphEnd; // this is bad - we'll discard the glyph(s), + // as there's nowhere to attach them + continue; + } + + // Now charStart..charEnd is a ligature clump, corresponding to glyphStart..glyphEnd; + // Set baseCharIndex to the char we'll actually attach the glyphs to (1st of ligature), + // and endCharIndex to the limit (position beyond the last char), + // adjusting for the offset of the stringRange relative to the textRun. + int32_t baseCharIndex, endCharIndex; + if (isRightToLeft) { + while (charEnd >= 0 && charToGlyph[charEnd] == NO_GLYPH) { + charEnd--; + } + baseCharIndex = charEnd + stringRange.location - aStringOffset + 1; + endCharIndex = charStart + stringRange.location - aStringOffset + 1; + } else { + while (charEnd < stringRange.length && charToGlyph[charEnd] == NO_GLYPH) { + charEnd++; + } + baseCharIndex = charStart + stringRange.location - aStringOffset; + endCharIndex = charEnd + stringRange.location - aStringOffset; + } + + // Then we check if the clump falls outside our actual string range; if so, just go to the next. + if (endCharIndex <= 0 || baseCharIndex >= wordLength) { + glyphStart = glyphEnd; + charStart = charEnd; + continue; + } + // Ensure we won't try to go beyond the valid length of the word's text + baseCharIndex = std::max(baseCharIndex, 0); + endCharIndex = std::min(endCharIndex, wordLength); + + // Now we're ready to set the glyph info in the textRun; measure the glyph width + // of the first (perhaps only) glyph, to see if it is "Simple" + int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit(); + double toNextGlyph; + if (glyphStart < numGlyphs-1) { + toNextGlyph = positions[glyphStart+1].x - positions[glyphStart].x; + } else { + toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x; + } + int32_t advance = int32_t(toNextGlyph * appUnitsPerDevUnit); + + // Check if it's a simple one-to-one mapping + int32_t glyphsInClump = glyphEnd - glyphStart; + if (glyphsInClump == 1 && + gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs[glyphStart]) && + gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) && + charGlyphs[baseCharIndex].IsClusterStart() && + positions[glyphStart].y == 0.0) + { + charGlyphs[baseCharIndex].SetSimpleGlyph(advance, + glyphs[glyphStart]); + } else { + // collect all glyphs in a list to be assigned to the first char; + // there must be at least one in the clump, and we already measured its advance, + // hence the placement of the loop-exit test and the measurement of the next glyph + while (1) { + gfxTextRun::DetailedGlyph *details = detailedGlyphs.AppendElement(); + details->mGlyphID = glyphs[glyphStart]; + details->mXOffset = 0; + details->mYOffset = -positions[glyphStart].y * appUnitsPerDevUnit; + details->mAdvance = advance; + if (++glyphStart >= glyphEnd) { + break; + } + if (glyphStart < numGlyphs-1) { + toNextGlyph = positions[glyphStart+1].x - positions[glyphStart].x; + } else { + toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x; + } + advance = int32_t(toNextGlyph * appUnitsPerDevUnit); + } + + gfxTextRun::CompressedGlyph textRunGlyph; + textRunGlyph.SetComplex(charGlyphs[baseCharIndex].IsClusterStart(), + true, detailedGlyphs.Length()); + aShapedText->SetGlyphs(aOffset + baseCharIndex, textRunGlyph, + detailedGlyphs.Elements()); + + detailedGlyphs.Clear(); + } + + // the rest of the chars in the group are ligature continuations, no associated glyphs + while (++baseCharIndex != endCharIndex && baseCharIndex < wordLength) { + gfxShapedText::CompressedGlyph &shapedTextGlyph = charGlyphs[baseCharIndex]; + NS_ASSERTION(!shapedTextGlyph.IsSimpleGlyph(), "overwriting a simple glyph"); + shapedTextGlyph.SetComplex(inOrder && shapedTextGlyph.IsClusterStart(), false, 0); + } + + glyphStart = glyphEnd; + charStart = charEnd; + } + + return NS_OK; +} + +#undef SMALL_GLYPH_RUN + +// Construct the font attribute descriptor that we'll apply by default when +// creating a CTFontRef. This will turn off line-edge swashes by default, +// because we don't know the actual line breaks when doing glyph shaping. + +// We also cache feature descriptors for shaping with disabled ligatures, and +// for buggy Indic AAT font workarounds, created on an as-needed basis. + +#define MAX_FEATURES 3 // max used by any of our Get*Descriptor functions + +CTFontDescriptorRef +gfxCoreTextShaper::CreateFontFeaturesDescriptor( + const std::pair<SInt16,SInt16> aFeatures[], + size_t aCount) +{ + MOZ_ASSERT(aCount <= MAX_FEATURES); + + CFDictionaryRef featureSettings[MAX_FEATURES]; + + for (size_t i = 0; i < aCount; i++) { + CFNumberRef type = ::CFNumberCreate(kCFAllocatorDefault, + kCFNumberSInt16Type, + &aFeatures[i].first); + CFNumberRef selector = ::CFNumberCreate(kCFAllocatorDefault, + kCFNumberSInt16Type, + &aFeatures[i].second); + + CFTypeRef keys[] = { kCTFontFeatureTypeIdentifierKey, + kCTFontFeatureSelectorIdentifierKey }; + CFTypeRef values[] = { type, selector }; + featureSettings[i] = + ::CFDictionaryCreate(kCFAllocatorDefault, + (const void **) keys, + (const void **) values, + ArrayLength(keys), + &kCFTypeDictionaryKeyCallBacks, + &kCFTypeDictionaryValueCallBacks); + + ::CFRelease(selector); + ::CFRelease(type); + } + + CFArrayRef featuresArray = + ::CFArrayCreate(kCFAllocatorDefault, + (const void **) featureSettings, + aCount, // not ArrayLength(featureSettings), as we + // may not have used all the allocated slots + &kCFTypeArrayCallBacks); + + for (size_t i = 0; i < aCount; i++) { + ::CFRelease(featureSettings[i]); + } + + const CFTypeRef attrKeys[] = { kCTFontFeatureSettingsAttribute }; + const CFTypeRef attrValues[] = { featuresArray }; + CFDictionaryRef attributesDict = + ::CFDictionaryCreate(kCFAllocatorDefault, + (const void **) attrKeys, + (const void **) attrValues, + ArrayLength(attrKeys), + &kCFTypeDictionaryKeyCallBacks, + &kCFTypeDictionaryValueCallBacks); + ::CFRelease(featuresArray); + + CTFontDescriptorRef descriptor = + ::CTFontDescriptorCreateWithAttributes(attributesDict); + ::CFRelease(attributesDict); + + return descriptor; +} + +CTFontDescriptorRef +gfxCoreTextShaper::GetDefaultFeaturesDescriptor() +{ + if (sDefaultFeaturesDescriptor == nullptr) { + const std::pair<SInt16,SInt16> kDefaultFeatures[] = { + { kSmartSwashType, kLineInitialSwashesOffSelector }, + { kSmartSwashType, kLineFinalSwashesOffSelector } + }; + sDefaultFeaturesDescriptor = + CreateFontFeaturesDescriptor(kDefaultFeatures, + ArrayLength(kDefaultFeatures)); + } + return sDefaultFeaturesDescriptor; +} + +CTFontDescriptorRef +gfxCoreTextShaper::GetDisableLigaturesDescriptor() +{ + if (sDisableLigaturesDescriptor == nullptr) { + const std::pair<SInt16,SInt16> kDisableLigatures[] = { + { kSmartSwashType, kLineInitialSwashesOffSelector }, + { kSmartSwashType, kLineFinalSwashesOffSelector }, + { kLigaturesType, kCommonLigaturesOffSelector } + }; + sDisableLigaturesDescriptor = + CreateFontFeaturesDescriptor(kDisableLigatures, + ArrayLength(kDisableLigatures)); + } + return sDisableLigaturesDescriptor; +} + +CTFontDescriptorRef +gfxCoreTextShaper::GetIndicFeaturesDescriptor() +{ + if (sIndicFeaturesDescriptor == nullptr) { + const std::pair<SInt16,SInt16> kIndicFeatures[] = { + { kSmartSwashType, kLineFinalSwashesOffSelector } + }; + sIndicFeaturesDescriptor = + CreateFontFeaturesDescriptor(kIndicFeatures, + ArrayLength(kIndicFeatures)); + } + return sIndicFeaturesDescriptor; +} + +CTFontDescriptorRef +gfxCoreTextShaper::GetIndicDisableLigaturesDescriptor() +{ + if (sIndicDisableLigaturesDescriptor == nullptr) { + const std::pair<SInt16,SInt16> kIndicDisableLigatures[] = { + { kSmartSwashType, kLineFinalSwashesOffSelector }, + { kLigaturesType, kCommonLigaturesOffSelector } + }; + sIndicDisableLigaturesDescriptor = + CreateFontFeaturesDescriptor(kIndicDisableLigatures, + ArrayLength(kIndicDisableLigatures)); + } + return sIndicDisableLigaturesDescriptor; +} + +CTFontRef +gfxCoreTextShaper::CreateCTFontWithFeatures(CGFloat aSize, + CTFontDescriptorRef aDescriptor) +{ + gfxMacFont *f = static_cast<gfxMacFont*>(mFont); + return ::CTFontCreateWithGraphicsFont(f->GetCGFontRef(), aSize, nullptr, + aDescriptor); +} + +void +gfxCoreTextShaper::Shutdown() // [static] +{ + if (sIndicDisableLigaturesDescriptor != nullptr) { + ::CFRelease(sIndicDisableLigaturesDescriptor); + sIndicDisableLigaturesDescriptor = nullptr; + } + if (sIndicFeaturesDescriptor != nullptr) { + ::CFRelease(sIndicFeaturesDescriptor); + sIndicFeaturesDescriptor = nullptr; + } + if (sDisableLigaturesDescriptor != nullptr) { + ::CFRelease(sDisableLigaturesDescriptor); + sDisableLigaturesDescriptor = nullptr; + } + if (sDefaultFeaturesDescriptor != nullptr) { + ::CFRelease(sDefaultFeaturesDescriptor); + sDefaultFeaturesDescriptor = nullptr; + } +} |