summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/utils/SkTextureCompressor_Blitter.h
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/utils/SkTextureCompressor_Blitter.h')
-rw-r--r--gfx/skia/skia/src/utils/SkTextureCompressor_Blitter.h733
1 files changed, 733 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/utils/SkTextureCompressor_Blitter.h b/gfx/skia/skia/src/utils/SkTextureCompressor_Blitter.h
new file mode 100644
index 000000000..f488707a3
--- /dev/null
+++ b/gfx/skia/skia/src/utils/SkTextureCompressor_Blitter.h
@@ -0,0 +1,733 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkTextureCompressor_Blitter_DEFINED
+#define SkTextureCompressor_Blitter_DEFINED
+
+#include "SkTypes.h"
+#include "SkBlitter.h"
+
+namespace SkTextureCompressor {
+
+// Ostensibly, SkBlitter::BlitRect is supposed to set a rect of pixels to full
+// alpha. This becomes problematic when using compressed texture blitters, since
+// the rect rarely falls along block boundaries. The proper way to handle this is
+// to update the compressed encoding of a block by resetting the proper parameters
+// (and even recompressing the block) where a rect falls inbetween block boundaries.
+// PEDANTIC_BLIT_RECT attempts to do this by requiring the struct passed to
+// SkTCompressedAlphaBlitter to implement an UpdateBlock function call.
+//
+// However, the way that BlitRect gets used almost exclusively is to bracket inverse
+// fills for paths. In other words, the top few rows and bottom few rows of a path
+// that's getting inverse filled are called using blitRect. The rest are called using
+// the standard blitAntiH. As a result, we can just call blitAntiH with a faux RLE
+// of full alpha values, and then check in our flush() call that we don't run off the
+// edge of the buffer. This is why we do not need this flag to be turned on.
+//
+// NOTE: This code is unfinished, but is inteded as a starting point if an when
+// bugs are introduced from the existing code.
+#define PEDANTIC_BLIT_RECT 0
+
+// This class implements a blitter that blits directly into a buffer that will
+// be used as an compressed alpha texture. We compute this buffer by
+// buffering scan lines and then outputting them all at once. The number of
+// scan lines buffered is controlled by kBlockSize
+//
+// The CompressorType is a struct with a bunch of static methods that provides
+// the specialized compression functionality of the blitter. A complete CompressorType
+// will implement the following static functions;
+//
+// struct CompressorType {
+// // The function used to compress an A8 block. The layout of the
+// // block is also expected to be in column-major order.
+// static void CompressA8Vertical(uint8_t* dst, const uint8_t block[]);
+//
+// // The function used to compress an A8 block. The layout of the
+// // block is also expected to be in row-major order.
+// static void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, int srcRowBytes);
+//
+#if PEDANTIC_BLIT_RECT
+// // The function used to update an already compressed block. This will
+// // most likely be implementation dependent. The mask variable will have
+// // 0xFF in positions where the block should be updated and 0 in positions
+// // where it shouldn't. src contains an uncompressed buffer of pixels.
+// static void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
+// const uint8_t* mask);
+#endif
+// };
+template<int BlockDim, int EncodedBlockSize, typename CompressorType>
+class SkTCompressedAlphaBlitter : public SkBlitter {
+public:
+ SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer)
+ // 0x7FFE is one minus the largest positive 16-bit int. We use it for
+ // debugging to make sure that we're properly setting the nextX distance
+ // in flushRuns().
+#ifdef SK_DEBUG
+ : fCalledOnceWithNonzeroY(false)
+ , fBlitMaskCalled(false),
+#else
+ :
+#endif
+ kLongestRun(0x7FFE), kZeroAlpha(0)
+ , fNextRun(0)
+ , fWidth(width)
+ , fHeight(height)
+ , fBuffer(compressedBuffer)
+ {
+ SkASSERT((width % BlockDim) == 0);
+ SkASSERT((height % BlockDim) == 0);
+ }
+
+ virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); }
+
+ // Blit a horizontal run of one or more pixels.
+ void blitH(int x, int y, int width) override {
+ // This function is intended to be called from any standard RGB
+ // buffer, so we should never encounter it. However, if some code
+ // path does end up here, then this needs to be investigated.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
+ // zero-terminated run-length encoding of spans of constant alpha values.
+ void blitAntiH(int x, int y,
+ const SkAlpha antialias[],
+ const int16_t runs[]) override {
+ SkASSERT(0 == x);
+
+ // Make sure that the new row to blit is either the first
+ // row that we're blitting, or it's exactly the next scan row
+ // since the last row that we blit. This is to ensure that when
+ // we go to flush the runs, that they are all the same four
+ // runs.
+ if (fNextRun > 0 &&
+ ((x != fBufferedRuns[fNextRun-1].fX) ||
+ (y-1 != fBufferedRuns[fNextRun-1].fY))) {
+ this->flushRuns();
+ }
+
+ // Align the rows to a block boundary. If we receive rows that
+ // are not on a block boundary, then fill in the preceding runs
+ // with zeros. We do this by producing a single RLE that says
+ // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
+ const int row = BlockDim * (y / BlockDim);
+ while ((row + fNextRun) < y) {
+ fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
+ fBufferedRuns[fNextRun].fRuns = &kLongestRun;
+ fBufferedRuns[fNextRun].fX = 0;
+ fBufferedRuns[fNextRun].fY = row + fNextRun;
+ ++fNextRun;
+ }
+
+ // Make sure that our assumptions aren't violated...
+ SkASSERT(fNextRun == (y % BlockDim));
+ SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
+
+ // Set the values of the next run
+ fBufferedRuns[fNextRun].fAlphas = antialias;
+ fBufferedRuns[fNextRun].fRuns = runs;
+ fBufferedRuns[fNextRun].fX = x;
+ fBufferedRuns[fNextRun].fY = y;
+
+ // If we've output a block of scanlines in a row that don't violate our
+ // assumptions, then it's time to flush them...
+ if (BlockDim == ++fNextRun) {
+ this->flushRuns();
+ }
+ }
+
+ // Blit a vertical run of pixels with a constant alpha value.
+ void blitV(int x, int y, int height, SkAlpha alpha) override {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented in one of two ways:
+ // 1. Buffer each vertical column value and then construct a list
+ // of alpha values and output all of the blocks at once. This only
+ // requires a write to the compressed buffer
+ // 2. Replace the indices of each block with the proper indices based
+ // on the alpha value. This requires a read and write of the compressed
+ // buffer, but much less overhead.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a solid rectangle one or more pixels wide. It's assumed that blitRect
+ // is called as a way to bracket blitAntiH where above and below the path the
+ // called path just needs a solid rectangle to fill in the mask.
+#ifdef SK_DEBUG
+ bool fCalledOnceWithNonzeroY;
+#endif
+ void blitRect(int x, int y, int width, int height) override {
+
+ // Assumptions:
+ SkASSERT(0 == x);
+ SkASSERT(width <= fWidth);
+
+ // Make sure that we're only ever bracketing calls to blitAntiH.
+ SkASSERT((0 == y) || (!fCalledOnceWithNonzeroY && (fCalledOnceWithNonzeroY = true)));
+
+#if !(PEDANTIC_BLIT_RECT)
+ for (int i = 0; i < height; ++i) {
+ const SkAlpha kFullAlpha = 0xFF;
+ this->blitAntiH(x, y+i, &kFullAlpha, &kLongestRun);
+ }
+#else
+ const int startBlockX = (x / BlockDim) * BlockDim;
+ const int startBlockY = (y / BlockDim) * BlockDim;
+
+ const int endBlockX = ((x + width) / BlockDim) * BlockDim;
+ const int endBlockY = ((y + height) / BlockDim) * BlockDim;
+
+ // If start and end are the same, then we only need to update a single block...
+ if (startBlockY == endBlockY && startBlockX == endBlockX) {
+ uint8_t mask[BlockDim*BlockDim];
+ memset(mask, 0, sizeof(mask));
+
+ const int xoff = x - startBlockX;
+ SkASSERT((xoff + width) <= BlockDim);
+
+ const int yoff = y - startBlockY;
+ SkASSERT((yoff + height) <= BlockDim);
+
+ for (int j = 0; j < height; ++j) {
+ memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, width);
+ }
+
+ uint8_t* dst = this->getBlock(startBlockX, startBlockY);
+ CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
+
+ // If start and end are the same in the y dimension, then we can freely update an
+ // entire row of blocks...
+ } else if (startBlockY == endBlockY) {
+
+ this->updateBlockRow(x, y, width, height, startBlockY, startBlockX, endBlockX);
+
+ // Similarly, if the start and end are in the same column, then we can just update
+ // an entire column of blocks...
+ } else if (startBlockX == endBlockX) {
+
+ this->updateBlockCol(x, y, width, height, startBlockX, startBlockY, endBlockY);
+
+ // Otherwise, the rect spans a non-trivial region of blocks, and we have to construct
+ // a kind of 9-patch to update each of the pieces of the rect. The top and bottom
+ // rows are updated using updateBlockRow, and the left and right columns are updated
+ // using updateBlockColumn. Anything in the middle is simply memset to an opaque block
+ // encoding.
+ } else {
+
+ const int innerStartBlockX = startBlockX + BlockDim;
+ const int innerStartBlockY = startBlockY + BlockDim;
+
+ // Blit top row
+ const int topRowHeight = innerStartBlockY - y;
+ this->updateBlockRow(x, y, width, topRowHeight, startBlockY,
+ startBlockX, endBlockX);
+
+ // Advance y
+ y += topRowHeight;
+ height -= topRowHeight;
+
+ // Blit middle
+ if (endBlockY > innerStartBlockY) {
+
+ // Update left row
+ this->updateBlockCol(x, y, innerStartBlockX - x, endBlockY, startBlockY,
+ startBlockX, innerStartBlockX);
+
+ // Update the middle with an opaque encoding...
+ uint8_t mask[BlockDim*BlockDim];
+ memset(mask, 0xFF, sizeof(mask));
+
+ uint8_t opaqueEncoding[EncodedBlockSize];
+ CompressorType::CompressA8Horizontal(opaqueEncoding, mask, BlockDim);
+
+ for (int j = innerStartBlockY; j < endBlockY; j += BlockDim) {
+ uint8_t* opaqueDst = this->getBlock(innerStartBlockX, j);
+ for (int i = innerStartBlockX; i < endBlockX; i += BlockDim) {
+ memcpy(opaqueDst, opaqueEncoding, EncodedBlockSize);
+ opaqueDst += EncodedBlockSize;
+ }
+ }
+
+ // If we need to update the right column, do that too
+ if (x + width > endBlockX) {
+ this->updateBlockCol(endBlockX, y, x + width - endBlockX, endBlockY,
+ endBlockX, innerStartBlockY, endBlockY);
+ }
+
+ // Advance y
+ height = y + height - endBlockY;
+ y = endBlockY;
+ }
+
+ // If we need to update the last row, then do that, too.
+ if (height > 0) {
+ this->updateBlockRow(x, y, width, height, endBlockY,
+ startBlockX, endBlockX);
+ }
+ }
+#endif
+ }
+
+ // Blit a rectangle with one alpha-blended column on the left,
+ // width (zero or more) opaque pixels, and one alpha-blended column
+ // on the right. The result will always be at least two pixels wide.
+ void blitAntiRect(int x, int y, int width, int height,
+ SkAlpha leftAlpha, SkAlpha rightAlpha) override {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented as follows:
+ // 1. If width/height are smaller than a block, then update the
+ // indices of the affected blocks.
+ // 2. If width/height are larger than a block, then construct a 9-patch
+ // of block encodings that represent the rectangle, and write them
+ // to the compressed buffer as necessary. Whether or not the blocks
+ // are overwritten by zeros or just their indices are updated is up
+ // to debate.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a pattern of pixels defined by a rectangle-clipped mask; We make an
+ // assumption here that if this function gets called, then it will replace all
+ // of the compressed texture blocks that it touches. Hence, two separate calls
+ // to blitMask that have clips next to one another will cause artifacts. Most
+ // of the time, however, this function gets called because constructing the mask
+ // was faster than constructing the RLE for blitAntiH, and this function will
+ // only be called once.
+#ifdef SK_DEBUG
+ bool fBlitMaskCalled;
+#endif
+ void blitMask(const SkMask& mask, const SkIRect& clip) override {
+
+ // Assumptions:
+ SkASSERT(!fBlitMaskCalled);
+ SkDEBUGCODE(fBlitMaskCalled = true);
+ SkASSERT(SkMask::kA8_Format == mask.fFormat);
+ SkASSERT(mask.fBounds.contains(clip));
+
+ // Start from largest block boundary less than the clip boundaries.
+ const int startI = BlockDim * (clip.left() / BlockDim);
+ const int startJ = BlockDim * (clip.top() / BlockDim);
+
+ for (int j = startJ; j < clip.bottom(); j += BlockDim) {
+
+ // Get the destination for this block row
+ uint8_t* dst = this->getBlock(startI, j);
+ for (int i = startI; i < clip.right(); i += BlockDim) {
+
+ // At this point, the block should intersect the clip.
+ SkASSERT(SkIRect::IntersectsNoEmptyCheck(
+ SkIRect::MakeXYWH(i, j, BlockDim, BlockDim), clip));
+
+ // Do we need to pad it?
+ if (i < clip.left() || j < clip.top() ||
+ i + BlockDim > clip.right() || j + BlockDim > clip.bottom()) {
+
+ uint8_t block[BlockDim*BlockDim];
+ memset(block, 0, sizeof(block));
+
+ const int startX = SkMax32(i, clip.left());
+ const int startY = SkMax32(j, clip.top());
+
+ const int endX = SkMin32(i + BlockDim, clip.right());
+ const int endY = SkMin32(j + BlockDim, clip.bottom());
+
+ for (int y = startY; y < endY; ++y) {
+ const int col = startX - i;
+ const int row = y - j;
+ const int valsWide = endX - startX;
+ SkASSERT(valsWide <= BlockDim);
+ SkASSERT(0 <= col && col < BlockDim);
+ SkASSERT(0 <= row && row < BlockDim);
+ memcpy(block + row*BlockDim + col,
+ mask.getAddr8(startX, j + row), valsWide);
+ }
+
+ CompressorType::CompressA8Horizontal(dst, block, BlockDim);
+ } else {
+ // Otherwise, just compress it.
+ uint8_t*const src = mask.getAddr8(i, j);
+ const uint32_t rb = mask.fRowBytes;
+ CompressorType::CompressA8Horizontal(dst, src, rb);
+ }
+
+ dst += EncodedBlockSize;
+ }
+ }
+ }
+
+ // If the blitter just sets a single value for each pixel, return the
+ // bitmap it draws into, and assign value. If not, return nullptr and ignore
+ // the value parameter.
+ const SkPixmap* justAnOpaqueColor(uint32_t* value) override {
+ return nullptr;
+ }
+
+ /**
+ * Compressed texture blitters only really work correctly if they get
+ * BlockDim rows at a time. That being said, this blitter tries it's best
+ * to preserve semantics if blitAntiH doesn't get called in too many
+ * weird ways...
+ */
+ int requestRowsPreserved() const override { return BlockDim; }
+
+private:
+ static const int kPixelsPerBlock = BlockDim * BlockDim;
+
+ // The longest possible run of pixels that this blitter will receive.
+ // This is initialized in the constructor to 0x7FFE, which is one less
+ // than the largest positive 16-bit integer. We make sure that it's one
+ // less for debugging purposes. We also don't make this variable static
+ // in order to make sure that we can construct a valid pointer to it.
+ const int16_t kLongestRun;
+
+ // Usually used in conjunction with kLongestRun. This is initialized to
+ // zero.
+ const SkAlpha kZeroAlpha;
+
+ // This is the information that we buffer whenever we're asked to blit
+ // a row with this blitter.
+ struct BufferedRun {
+ const SkAlpha* fAlphas;
+ const int16_t* fRuns;
+ int fX, fY;
+ } fBufferedRuns[BlockDim];
+
+ // The next row [0, BlockDim) that we need to blit.
+ int fNextRun;
+
+ // The width and height of the image that we're blitting
+ const int fWidth;
+ const int fHeight;
+
+ // The compressed buffer that we're blitting into. It is assumed that the buffer
+ // is large enough to store a compressed image of size fWidth*fHeight.
+ void* const fBuffer;
+
+ // Various utility functions
+ int blocksWide() const { return fWidth / BlockDim; }
+ int blocksTall() const { return fHeight / BlockDim; }
+ int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
+
+ // Returns the block index for the block containing pixel (x, y). Block
+ // indices start at zero and proceed in raster order.
+ int getBlockOffset(int x, int y) const {
+ SkASSERT(x < fWidth);
+ SkASSERT(y < fHeight);
+ const int blockCol = x / BlockDim;
+ const int blockRow = y / BlockDim;
+ return blockRow * this->blocksWide() + blockCol;
+ }
+
+ // Returns a pointer to the block containing pixel (x, y)
+ uint8_t *getBlock(int x, int y) const {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer);
+ return ptr + EncodedBlockSize*this->getBlockOffset(x, y);
+ }
+
+ // Updates the block whose columns are stored in block. curAlphai is expected
+ // to store the alpha values that will be placed within each of the columns in
+ // the range [col, col+colsLeft).
+ typedef uint32_t Column[BlockDim/4];
+ typedef uint32_t Block[BlockDim][BlockDim/4];
+ inline void updateBlockColumns(Block block, const int col,
+ const int colsLeft, const Column curAlphai) {
+ SkASSERT(block);
+ SkASSERT(col + colsLeft <= BlockDim);
+
+ for (int i = col; i < (col + colsLeft); ++i) {
+ memcpy(block[i], curAlphai, sizeof(Column));
+ }
+ }
+
+ // The following function writes the buffered runs to compressed blocks.
+ // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with
+ // the constant zero buffer.
+ void flushRuns() {
+ // If we don't have any runs, then just return.
+ if (0 == fNextRun) {
+ return;
+ }
+
+#ifndef NDEBUG
+ // Make sure that if we have any runs, they all match
+ for (int i = 1; i < fNextRun; ++i) {
+ SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
+ SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
+ }
+#endif
+
+ // If we don't have as many runs as we have rows, fill in the remaining
+ // runs with constant zeros.
+ for (int i = fNextRun; i < BlockDim; ++i) {
+ fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
+ fBufferedRuns[i].fX = fBufferedRuns[0].fX;
+ fBufferedRuns[i].fAlphas = &kZeroAlpha;
+ fBufferedRuns[i].fRuns = &kLongestRun;
+ }
+
+ // Make sure that our assumptions aren't violated.
+ SkASSERT(fNextRun > 0 && fNextRun <= BlockDim);
+ SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0);
+
+ // The following logic walks BlockDim rows at a time and outputs compressed
+ // blocks to the buffer passed into the constructor.
+ // We do the following:
+ //
+ // c1 c2 c3 c4
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[0]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[1]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[2]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[3]
+ // -----------------------------------------------------------------------
+ //
+ // curX -- the macro X value that we've gotten to.
+ // c[BlockDim] -- the buffers that represent the columns of the current block
+ // that we're operating on
+ // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns.
+ // nextX -- for each run, the next point at which we need to update curAlphaColumn
+ // after the value of curX.
+ // finalX -- the minimum of all the nextX values.
+ //
+ // curX advances to finalX outputting any blocks that it passes along
+ // the way. Since finalX will not change when we reach the end of a
+ // run, the termination criteria will be whenever curX == finalX at the
+ // end of a loop.
+
+ // Setup:
+ Block block;
+ sk_bzero(block, sizeof(block));
+
+ Column curAlphaColumn;
+ sk_bzero(curAlphaColumn, sizeof(curAlphaColumn));
+
+ SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
+
+ int nextX[BlockDim];
+ for (int i = 0; i < BlockDim; ++i) {
+ nextX[i] = 0x7FFFFF;
+ }
+
+ uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
+
+ // Populate the first set of runs and figure out how far we need to
+ // advance on the first step
+ int curX = 0;
+ int finalX = 0xFFFFF;
+ for (int i = 0; i < BlockDim; ++i) {
+ nextX[i] = *(fBufferedRuns[i].fRuns);
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas);
+
+ finalX = SkMin32(nextX[i], finalX);
+ }
+
+ // Make sure that we have a valid right-bound X value
+ SkASSERT(finalX < 0xFFFFF);
+
+ // If the finalX is the longest run, then just blit until we have
+ // width...
+ if (kLongestRun == finalX) {
+ finalX = fWidth;
+ }
+
+ // Run the blitter...
+ while (curX != finalX) {
+ SkASSERT(finalX >= curX);
+
+ // Do we need to populate the rest of the block?
+ if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) {
+ const int col = curX % BlockDim;
+ const int colsLeft = BlockDim - col;
+ SkASSERT(curX + colsLeft <= finalX);
+
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
+
+ // Write this block
+ CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
+ outPtr += EncodedBlockSize;
+ curX += colsLeft;
+ }
+
+ // If we can advance even further, then just keep memsetting the block
+ if ((finalX - curX) >= BlockDim) {
+ SkASSERT((curX % BlockDim) == 0);
+
+ const int col = 0;
+ const int colsLeft = BlockDim;
+
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
+
+ // While we can keep advancing, just keep writing the block.
+ uint8_t lastBlock[EncodedBlockSize];
+ CompressorType::CompressA8Vertical(lastBlock, reinterpret_cast<uint8_t*>(block));
+ while((finalX - curX) >= BlockDim) {
+ memcpy(outPtr, lastBlock, EncodedBlockSize);
+ outPtr += EncodedBlockSize;
+ curX += BlockDim;
+ }
+ }
+
+ // If we haven't advanced within the block then do so.
+ if (curX < finalX) {
+ const int col = curX % BlockDim;
+ const int colsLeft = finalX - curX;
+
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
+ curX += colsLeft;
+ }
+
+ SkASSERT(curX == finalX);
+
+ // Figure out what the next advancement is...
+ if (finalX < fWidth) {
+ for (int i = 0; i < BlockDim; ++i) {
+ if (nextX[i] == finalX) {
+ const int16_t run = *(fBufferedRuns[i].fRuns);
+ fBufferedRuns[i].fRuns += run;
+ fBufferedRuns[i].fAlphas += run;
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas);
+ nextX[i] += *(fBufferedRuns[i].fRuns);
+ }
+ }
+
+ finalX = 0xFFFFF;
+ for (int i = 0; i < BlockDim; ++i) {
+ finalX = SkMin32(nextX[i], finalX);
+ }
+ } else {
+ curX = finalX;
+ }
+ }
+
+ // If we didn't land on a block boundary, output the block...
+ if ((curX % BlockDim) > 0) {
+#ifdef SK_DEBUG
+ for (int i = 0; i < BlockDim; ++i) {
+ SkASSERT(nextX[i] == kLongestRun || nextX[i] == curX);
+ }
+#endif
+ const int col = curX % BlockDim;
+ const int colsLeft = BlockDim - col;
+
+ memset(curAlphaColumn, 0, sizeof(curAlphaColumn));
+ this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
+
+ CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
+ }
+
+ fNextRun = 0;
+ }
+
+#if PEDANTIC_BLIT_RECT
+ void updateBlockRow(int x, int y, int width, int height,
+ int blockRow, int startBlockX, int endBlockX) {
+ if (0 == width || 0 == height || startBlockX == endBlockX) {
+ return;
+ }
+
+ uint8_t* dst = this->getBlock(startBlockX, BlockDim * (y / BlockDim));
+
+ // One horizontal strip to update
+ uint8_t mask[BlockDim*BlockDim];
+ memset(mask, 0, sizeof(mask));
+
+ // Update the left cap
+ int blockX = startBlockX;
+ const int yoff = y - blockRow;
+ for (int j = 0; j < height; ++j) {
+ const int xoff = x - blockX;
+ memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, BlockDim - xoff);
+ }
+ CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
+ dst += EncodedBlockSize;
+ blockX += BlockDim;
+
+ // Update the middle
+ if (blockX < endBlockX) {
+ for (int j = 0; j < height; ++j) {
+ memset(mask + (j + yoff)*BlockDim, 0xFF, BlockDim);
+ }
+ while (blockX < endBlockX) {
+ CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
+ dst += EncodedBlockSize;
+ blockX += BlockDim;
+ }
+ }
+
+ SkASSERT(endBlockX == blockX);
+
+ // Update the right cap (if we need to)
+ if (x + width > endBlockX) {
+ memset(mask, 0, sizeof(mask));
+ for (int j = 0; j < height; ++j) {
+ const int xoff = (x+width-blockX);
+ memset(mask + (j+yoff)*BlockDim, 0xFF, xoff);
+ }
+ CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
+ }
+ }
+
+ void updateBlockCol(int x, int y, int width, int height,
+ int blockCol, int startBlockY, int endBlockY) {
+ if (0 == width || 0 == height || startBlockY == endBlockY) {
+ return;
+ }
+
+ // One vertical strip to update
+ uint8_t mask[BlockDim*BlockDim];
+ memset(mask, 0, sizeof(mask));
+ const int maskX0 = x - blockCol;
+ const int maskWidth = maskX0 + width;
+ SkASSERT(maskWidth <= BlockDim);
+
+ // Update the top cap
+ int blockY = startBlockY;
+ for (int j = (y - blockY); j < BlockDim; ++j) {
+ memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
+ }
+ CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), mask, BlockDim, mask);
+ blockY += BlockDim;
+
+ // Update middle
+ if (blockY < endBlockY) {
+ for (int j = 0; j < BlockDim; ++j) {
+ memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
+ }
+ while (blockY < endBlockY) {
+ CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
+ mask, BlockDim, mask);
+ blockY += BlockDim;
+ }
+ }
+
+ SkASSERT(endBlockY == blockY);
+
+ // Update bottom
+ if (y + height > endBlockY) {
+ for (int j = y+height; j < endBlockY + BlockDim; ++j) {
+ memset(mask + (j-endBlockY)*BlockDim, 0, BlockDim);
+ }
+ CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
+ mask, BlockDim, mask);
+ }
+ }
+#endif // PEDANTIC_BLIT_RECT
+
+};
+
+} // namespace SkTextureCompressor
+
+#endif // SkTextureCompressor_Blitter_DEFINED