summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/gpu/batches/GrAAConvexTessellator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/gpu/batches/GrAAConvexTessellator.cpp')
-rw-r--r--gfx/skia/skia/src/gpu/batches/GrAAConvexTessellator.cpp1103
1 files changed, 1103 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/gpu/batches/GrAAConvexTessellator.cpp b/gfx/skia/skia/src/gpu/batches/GrAAConvexTessellator.cpp
new file mode 100644
index 000000000..b9c44ff9b
--- /dev/null
+++ b/gfx/skia/skia/src/gpu/batches/GrAAConvexTessellator.cpp
@@ -0,0 +1,1103 @@
+/*
+ * Copyright 2015 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "GrAAConvexTessellator.h"
+#include "SkCanvas.h"
+#include "SkPath.h"
+#include "SkPoint.h"
+#include "SkString.h"
+#include "GrPathUtils.h"
+
+// Next steps:
+// add an interactive sample app slide
+// add debug check that all points are suitably far apart
+// test more degenerate cases
+
+// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
+static const SkScalar kClose = (SK_Scalar1 / 16);
+static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
+
+// tesselation tolerance values, in device space pixels
+static const SkScalar kQuadTolerance = 0.2f;
+static const SkScalar kCubicTolerance = 0.2f;
+static const SkScalar kConicTolerance = 0.5f;
+
+// dot product below which we use a round cap between curve segments
+static const SkScalar kRoundCapThreshold = 0.8f;
+
+// dot product above which we consider two adjacent curves to be part of the "same" curve
+static const SkScalar kCurveConnectionThreshold = 0.8f;
+
+static bool intersect(const SkPoint& p0, const SkPoint& n0,
+ const SkPoint& p1, const SkPoint& n1,
+ SkScalar* t) {
+ const SkPoint v = p1 - p0;
+ SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
+ if (SkScalarNearlyZero(perpDot)) {
+ return false;
+ }
+ *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
+ SkASSERT(SkScalarIsFinite(*t));
+ return true;
+}
+
+// This is a special case version of intersect where we have the vector
+// perpendicular to the second line rather than the vector parallel to it.
+static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
+ const SkPoint& p1, const SkPoint& perp) {
+ const SkPoint v = p1 - p0;
+ SkScalar perpDot = n0.dot(perp);
+ return v.dot(perp) / perpDot;
+}
+
+static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
+ SkScalar distSq = p0.distanceToSqd(p1);
+ return distSq < kCloseSqd;
+}
+
+static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
+ SkPoint testV = test - p0;
+ SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
+ return SkScalarAbs(dist);
+}
+
+int GrAAConvexTessellator::addPt(const SkPoint& pt,
+ SkScalar depth,
+ SkScalar coverage,
+ bool movable,
+ CurveState curve) {
+ this->validate();
+
+ int index = fPts.count();
+ *fPts.push() = pt;
+ *fCoverages.push() = coverage;
+ *fMovable.push() = movable;
+ *fCurveState.push() = curve;
+
+ this->validate();
+ return index;
+}
+
+void GrAAConvexTessellator::popLastPt() {
+ this->validate();
+
+ fPts.pop();
+ fCoverages.pop();
+ fMovable.pop();
+ fCurveState.pop();
+
+ this->validate();
+}
+
+void GrAAConvexTessellator::popFirstPtShuffle() {
+ this->validate();
+
+ fPts.removeShuffle(0);
+ fCoverages.removeShuffle(0);
+ fMovable.removeShuffle(0);
+ fCurveState.removeShuffle(0);
+
+ this->validate();
+}
+
+void GrAAConvexTessellator::updatePt(int index,
+ const SkPoint& pt,
+ SkScalar depth,
+ SkScalar coverage) {
+ this->validate();
+ SkASSERT(fMovable[index]);
+
+ fPts[index] = pt;
+ fCoverages[index] = coverage;
+}
+
+void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
+ if (i0 == i1 || i1 == i2 || i2 == i0) {
+ return;
+ }
+
+ *fIndices.push() = i0;
+ *fIndices.push() = i1;
+ *fIndices.push() = i2;
+}
+
+void GrAAConvexTessellator::rewind() {
+ fPts.rewind();
+ fCoverages.rewind();
+ fMovable.rewind();
+ fIndices.rewind();
+ fNorms.rewind();
+ fCurveState.rewind();
+ fInitialRing.rewind();
+ fCandidateVerts.rewind();
+#if GR_AA_CONVEX_TESSELLATOR_VIZ
+ fRings.rewind(); // TODO: leak in this case!
+#else
+ fRings[0].rewind();
+ fRings[1].rewind();
+#endif
+}
+
+void GrAAConvexTessellator::computeBisectors() {
+ fBisectors.setCount(fNorms.count());
+
+ int prev = fBisectors.count() - 1;
+ for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
+ fBisectors[cur] = fNorms[cur] + fNorms[prev];
+ if (!fBisectors[cur].normalize()) {
+ SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide);
+ fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide);
+ SkVector other;
+ other.setOrthog(fNorms[prev], fSide);
+ fBisectors[cur] += other;
+ SkAssertResult(fBisectors[cur].normalize());
+ } else {
+ fBisectors[cur].negate(); // make the bisector face in
+ }
+ if (fCurveState[prev] == kIndeterminate_CurveState) {
+ if (fCurveState[cur] == kSharp_CurveState) {
+ fCurveState[prev] = kSharp_CurveState;
+ } else {
+ if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
+ fCurveState[prev] = kCurve_CurveState;
+ fCurveState[cur] = kCurve_CurveState;
+ } else {
+ fCurveState[prev] = kSharp_CurveState;
+ fCurveState[cur] = kSharp_CurveState;
+ }
+ }
+ }
+
+ SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
+ }
+}
+
+// Create as many rings as we need to (up to a predefined limit) to reach the specified target
+// depth. If we are in fill mode, the final ring will automatically be fanned.
+bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
+ SkScalar initialCoverage, SkScalar targetDepth,
+ SkScalar targetCoverage, Ring** finalRing) {
+ static const int kMaxNumRings = 8;
+
+ if (previousRing.numPts() < 3) {
+ return false;
+ }
+ Ring* currentRing = &previousRing;
+ int i;
+ for (i = 0; i < kMaxNumRings; ++i) {
+ Ring* nextRing = this->getNextRing(currentRing);
+ SkASSERT(nextRing != currentRing);
+
+ bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
+ targetDepth, targetCoverage, i == 0);
+ currentRing = nextRing;
+ if (done) {
+ break;
+ }
+ currentRing->init(*this);
+ }
+
+ if (kMaxNumRings == i) {
+ // Bail if we've exceeded the amount of time we want to throw at this.
+ this->terminate(*currentRing);
+ return false;
+ }
+ bool done = currentRing->numPts() >= 3;
+ if (done) {
+ currentRing->init(*this);
+ }
+ *finalRing = currentRing;
+ return done;
+}
+
+// The general idea here is to, conceptually, start with the original polygon and slide
+// the vertices along the bisectors until the first intersection. At that
+// point two of the edges collapse and the process repeats on the new polygon.
+// The polygon state is captured in the Ring class while the GrAAConvexTessellator
+// controls the iteration. The CandidateVerts holds the formative points for the
+// next ring.
+bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
+ if (!this->extractFromPath(m, path)) {
+ return false;
+ }
+
+ SkScalar coverage = 1.0f;
+ SkScalar scaleFactor = 0.0f;
+
+ if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
+ SkASSERT(m.isSimilarity());
+ scaleFactor = m.getMaxScale(); // x and y scale are the same
+ SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
+ Ring outerStrokeAndAARing;
+ this->createOuterRing(fInitialRing,
+ effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
+ &outerStrokeAndAARing);
+
+ // discard all the triangles added between the originating ring and the new outer ring
+ fIndices.rewind();
+
+ outerStrokeAndAARing.init(*this);
+
+ outerStrokeAndAARing.makeOriginalRing();
+
+ // Add the outer stroke ring's normals to the originating ring's normals
+ // so it can also act as an originating ring
+ fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
+ for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
+ SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
+ fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
+ }
+
+ // the bisectors are only needed for the computation of the outer ring
+ fBisectors.rewind();
+
+ Ring* insetAARing;
+ this->createInsetRings(outerStrokeAndAARing,
+ 0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
+ &insetAARing);
+
+ SkDEBUGCODE(this->validate();)
+ return true;
+ }
+
+ if (SkStrokeRec::kStroke_Style == fStyle) {
+ SkASSERT(fStrokeWidth >= 0.0f);
+ SkASSERT(m.isSimilarity());
+ scaleFactor = m.getMaxScale(); // x and y scale are the same
+ SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
+ Ring outerStrokeRing;
+ this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
+ coverage, &outerStrokeRing);
+ outerStrokeRing.init(*this);
+ Ring outerAARing;
+ this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
+ } else {
+ Ring outerAARing;
+ this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
+ }
+
+ // the bisectors are only needed for the computation of the outer ring
+ fBisectors.rewind();
+ if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
+ SkASSERT(fStrokeWidth >= 0.0f);
+ SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
+ Ring* insetStrokeRing;
+ SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
+ if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
+ &insetStrokeRing)) {
+ Ring* insetAARing;
+ this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
+ kAntialiasingRadius * 2, 0.0f, &insetAARing);
+ }
+ } else {
+ Ring* insetAARing;
+ this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
+ }
+
+ SkDEBUGCODE(this->validate();)
+ return true;
+}
+
+SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
+ SkASSERT(edgeIdx < fNorms.count());
+
+ SkPoint v = p - fPts[edgeIdx];
+ SkScalar depth = -fNorms[edgeIdx].dot(v);
+ return depth;
+}
+
+// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
+// along the 'bisector' from the 'startIdx'-th point.
+bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
+ const SkVector& bisector,
+ int edgeIdx,
+ SkScalar desiredDepth,
+ SkPoint* result) const {
+ const SkPoint& norm = fNorms[edgeIdx];
+
+ // First find the point where the edge and the bisector intersect
+ SkPoint newP;
+
+ SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
+ if (SkScalarNearlyEqual(t, 0.0f)) {
+ // the start point was one of the original ring points
+ SkASSERT(startIdx < fPts.count());
+ newP = fPts[startIdx];
+ } else if (t < 0.0f) {
+ newP = bisector;
+ newP.scale(t);
+ newP += fPts[startIdx];
+ } else {
+ return false;
+ }
+
+ // Then offset along the bisector from that point the correct distance
+ SkScalar dot = bisector.dot(norm);
+ t = -desiredDepth / dot;
+ *result = bisector;
+ result->scale(t);
+ *result += newP;
+
+ return true;
+}
+
+bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
+ SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
+
+ // Outer ring: 3*numPts
+ // Middle ring: numPts
+ // Presumptive inner ring: numPts
+ this->reservePts(5*path.countPoints());
+ // Outer ring: 12*numPts
+ // Middle ring: 0
+ // Presumptive inner ring: 6*numPts + 6
+ fIndices.setReserve(18*path.countPoints() + 6);
+
+ fNorms.setReserve(path.countPoints());
+
+ // TODO: is there a faster way to extract the points from the path? Perhaps
+ // get all the points via a new entry point, transform them all in bulk
+ // and then walk them to find duplicates?
+ SkPath::Iter iter(path, true);
+ SkPoint pts[4];
+ SkPath::Verb verb;
+ while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
+ switch (verb) {
+ case SkPath::kLine_Verb:
+ this->lineTo(m, pts[1], kSharp_CurveState);
+ break;
+ case SkPath::kQuad_Verb:
+ this->quadTo(m, pts);
+ break;
+ case SkPath::kCubic_Verb:
+ this->cubicTo(m, pts);
+ break;
+ case SkPath::kConic_Verb:
+ this->conicTo(m, pts, iter.conicWeight());
+ break;
+ case SkPath::kMove_Verb:
+ case SkPath::kClose_Verb:
+ case SkPath::kDone_Verb:
+ break;
+ }
+ }
+
+ if (this->numPts() < 2) {
+ return false;
+ }
+
+ // check if last point is a duplicate of the first point. If so, remove it.
+ if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
+ this->popLastPt();
+ fNorms.pop();
+ }
+
+ SkASSERT(fPts.count() == fNorms.count()+1);
+ if (this->numPts() >= 3) {
+ if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
+ // The last point is on the line from the second to last to the first point.
+ this->popLastPt();
+ fNorms.pop();
+ }
+
+ *fNorms.push() = fPts[0] - fPts.top();
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
+ SkASSERT(len > 0.0f);
+ SkASSERT(fPts.count() == fNorms.count());
+ }
+
+ if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
+ // The first point is on the line from the last to the second.
+ this->popFirstPtShuffle();
+ fNorms.removeShuffle(0);
+ fNorms[0] = fPts[1] - fPts[0];
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
+ SkASSERT(len > 0.0f);
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
+ }
+
+ if (this->numPts() >= 3) {
+ // Check the cross product of the final trio
+ SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
+ if (cross > 0.0f) {
+ fSide = SkPoint::kRight_Side;
+ } else {
+ fSide = SkPoint::kLeft_Side;
+ }
+
+ // Make all the normals face outwards rather than along the edge
+ for (int cur = 0; cur < fNorms.count(); ++cur) {
+ fNorms[cur].setOrthog(fNorms[cur], fSide);
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
+ }
+
+ this->computeBisectors();
+ } else if (this->numPts() == 2) {
+ // We've got two points, so we're degenerate.
+ if (fStyle == SkStrokeRec::kFill_Style) {
+ // it's a fill, so we don't need to worry about degenerate paths
+ return false;
+ }
+ // For stroking, we still need to process the degenerate path, so fix it up
+ fSide = SkPoint::kLeft_Side;
+
+ // Make all the normals face outwards rather than along the edge
+ for (int cur = 0; cur < fNorms.count(); ++cur) {
+ fNorms[cur].setOrthog(fNorms[cur], fSide);
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
+ }
+
+ fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
+ // we won't actually use the bisectors, so just push zeroes
+ fBisectors.push(SkPoint::Make(0.0, 0.0));
+ fBisectors.push(SkPoint::Make(0.0, 0.0));
+ } else {
+ return false;
+ }
+
+ fCandidateVerts.setReserve(this->numPts());
+ fInitialRing.setReserve(this->numPts());
+ for (int i = 0; i < this->numPts(); ++i) {
+ fInitialRing.addIdx(i, i);
+ }
+ fInitialRing.init(fNorms, fBisectors);
+
+ this->validate();
+ return true;
+}
+
+GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
+#if GR_AA_CONVEX_TESSELLATOR_VIZ
+ Ring* ring = *fRings.push() = new Ring;
+ ring->setReserve(fInitialRing.numPts());
+ ring->rewind();
+ return ring;
+#else
+ // Flip flop back and forth between fRings[0] & fRings[1]
+ int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
+ fRings[nextRing].setReserve(fInitialRing.numPts());
+ fRings[nextRing].rewind();
+ return &fRings[nextRing];
+#endif
+}
+
+void GrAAConvexTessellator::fanRing(const Ring& ring) {
+ // fan out from point 0
+ int startIdx = ring.index(0);
+ for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
+ this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
+ }
+}
+
+void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
+ SkScalar coverage, Ring* nextRing) {
+ const int numPts = previousRing.numPts();
+ if (numPts == 0) {
+ return;
+ }
+
+ int prev = numPts - 1;
+ int lastPerpIdx = -1, firstPerpIdx = -1;
+
+ const SkScalar outsetSq = SkScalarMul(outset, outset);
+ SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit);
+ miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq);
+ for (int cur = 0; cur < numPts; ++cur) {
+ int originalIdx = previousRing.index(cur);
+ // For each vertex of the original polygon we add at least two points to the
+ // outset polygon - one extending perpendicular to each impinging edge. Connecting these
+ // two points yields a bevel join. We need one additional point for a mitered join, and
+ // a round join requires one or more points depending upon curvature.
+
+ // The perpendicular point for the last edge
+ SkPoint normal1 = previousRing.norm(prev);
+ SkPoint perp1 = normal1;
+ perp1.scale(outset);
+ perp1 += this->point(originalIdx);
+
+ // The perpendicular point for the next edge.
+ SkPoint normal2 = previousRing.norm(cur);
+ SkPoint perp2 = normal2;
+ perp2.scale(outset);
+ perp2 += fPts[originalIdx];
+
+ CurveState curve = fCurveState[originalIdx];
+
+ // We know it isn't a duplicate of the prior point (since it and this
+ // one are just perpendicular offsets from the non-merged polygon points)
+ int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
+ nextRing->addIdx(perp1Idx, originalIdx);
+
+ int perp2Idx;
+ // For very shallow angles all the corner points could fuse.
+ if (duplicate_pt(perp2, this->point(perp1Idx))) {
+ perp2Idx = perp1Idx;
+ } else {
+ perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
+ }
+
+ if (perp2Idx != perp1Idx) {
+ if (curve == kCurve_CurveState) {
+ // bevel or round depending upon curvature
+ SkScalar dotProd = normal1.dot(normal2);
+ if (dotProd < kRoundCapThreshold) {
+ // Currently we "round" by creating a single extra point, which produces
+ // good results for common cases. For thick strokes with high curvature, we will
+ // need to add more points; for the time being we simply fall back to software
+ // rendering for thick strokes.
+ SkPoint miter = previousRing.bisector(cur);
+ miter.setLength(-outset);
+ miter += fPts[originalIdx];
+
+ // For very shallow angles all the corner points could fuse
+ if (!duplicate_pt(miter, this->point(perp1Idx))) {
+ int miterIdx;
+ miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
+ nextRing->addIdx(miterIdx, originalIdx);
+ // The two triangles for the corner
+ this->addTri(originalIdx, perp1Idx, miterIdx);
+ this->addTri(originalIdx, miterIdx, perp2Idx);
+ }
+ } else {
+ this->addTri(originalIdx, perp1Idx, perp2Idx);
+ }
+ } else {
+ switch (fJoin) {
+ case SkPaint::Join::kMiter_Join: {
+ // The bisector outset point
+ SkPoint miter = previousRing.bisector(cur);
+ SkScalar dotProd = normal1.dot(normal2);
+ SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
+ SkScalar lengthSq = outsetSq / sinHalfAngleSq;
+ if (lengthSq > miterLimitSq) {
+ // just bevel it
+ this->addTri(originalIdx, perp1Idx, perp2Idx);
+ break;
+ }
+ miter.setLength(-SkScalarSqrt(lengthSq));
+ miter += fPts[originalIdx];
+
+ // For very shallow angles all the corner points could fuse
+ if (!duplicate_pt(miter, this->point(perp1Idx))) {
+ int miterIdx;
+ miterIdx = this->addPt(miter, -outset, coverage, false,
+ kSharp_CurveState);
+ nextRing->addIdx(miterIdx, originalIdx);
+ // The two triangles for the corner
+ this->addTri(originalIdx, perp1Idx, miterIdx);
+ this->addTri(originalIdx, miterIdx, perp2Idx);
+ }
+ break;
+ }
+ case SkPaint::Join::kBevel_Join:
+ this->addTri(originalIdx, perp1Idx, perp2Idx);
+ break;
+ default:
+ // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
+ // only willing to draw mitered or beveled, so we should never get here.
+ SkASSERT(false);
+ }
+ }
+
+ nextRing->addIdx(perp2Idx, originalIdx);
+ }
+
+ if (0 == cur) {
+ // Store the index of the first perpendicular point to finish up
+ firstPerpIdx = perp1Idx;
+ SkASSERT(-1 == lastPerpIdx);
+ } else {
+ // The triangles for the previous edge
+ int prevIdx = previousRing.index(prev);
+ this->addTri(prevIdx, perp1Idx, originalIdx);
+ this->addTri(prevIdx, lastPerpIdx, perp1Idx);
+ }
+
+ // Track the last perpendicular outset point so we can construct the
+ // trailing edge triangles.
+ lastPerpIdx = perp2Idx;
+ prev = cur;
+ }
+
+ // pick up the final edge rect
+ int lastIdx = previousRing.index(numPts - 1);
+ this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
+ this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
+
+ this->validate();
+}
+
+// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
+// and fan it.
+void GrAAConvexTessellator::terminate(const Ring& ring) {
+ if (fStyle != SkStrokeRec::kStroke_Style) {
+ this->fanRing(ring);
+ }
+}
+
+static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
+ SkScalar targetDepth, SkScalar targetCoverage) {
+ if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
+ return targetCoverage;
+ }
+ SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
+ (targetCoverage - initialCoverage) + initialCoverage;
+ return SkScalarClampMax(result, 1.0f);
+}
+
+// return true when processing is complete
+bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
+ SkScalar initialDepth, SkScalar initialCoverage,
+ SkScalar targetDepth, SkScalar targetCoverage,
+ bool forceNew) {
+ bool done = false;
+
+ fCandidateVerts.rewind();
+
+ // Loop through all the points in the ring and find the intersection with the smallest depth
+ SkScalar minDist = SK_ScalarMax, minT = 0.0f;
+ int minEdgeIdx = -1;
+
+ for (int cur = 0; cur < lastRing.numPts(); ++cur) {
+ int next = (cur + 1) % lastRing.numPts();
+
+ SkScalar t;
+ bool result = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
+ this->point(lastRing.index(next)), lastRing.bisector(next),
+ &t);
+ if (!result) {
+ continue;
+ }
+ SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
+
+ if (minDist > dist) {
+ minDist = dist;
+ minT = t;
+ minEdgeIdx = cur;
+ }
+ }
+
+ if (minEdgeIdx == -1) {
+ return false;
+ }
+ SkPoint newPt = lastRing.bisector(minEdgeIdx);
+ newPt.scale(minT);
+ newPt += this->point(lastRing.index(minEdgeIdx));
+
+ SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
+ if (depth >= targetDepth) {
+ // None of the bisectors intersect before reaching the desired depth.
+ // Just step them all to the desired depth
+ depth = targetDepth;
+ done = true;
+ }
+
+ // 'dst' stores where each point in the last ring maps to/transforms into
+ // in the next ring.
+ SkTDArray<int> dst;
+ dst.setCount(lastRing.numPts());
+
+ // Create the first point (who compares with no one)
+ if (!this->computePtAlongBisector(lastRing.index(0),
+ lastRing.bisector(0),
+ lastRing.origEdgeID(0),
+ depth, &newPt)) {
+ this->terminate(lastRing);
+ return true;
+ }
+ dst[0] = fCandidateVerts.addNewPt(newPt,
+ lastRing.index(0), lastRing.origEdgeID(0),
+ !this->movable(lastRing.index(0)));
+
+ // Handle the middle points (who only compare with the prior point)
+ for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
+ if (!this->computePtAlongBisector(lastRing.index(cur),
+ lastRing.bisector(cur),
+ lastRing.origEdgeID(cur),
+ depth, &newPt)) {
+ this->terminate(lastRing);
+ return true;
+ }
+ if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
+ dst[cur] = fCandidateVerts.addNewPt(newPt,
+ lastRing.index(cur), lastRing.origEdgeID(cur),
+ !this->movable(lastRing.index(cur)));
+ } else {
+ dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
+ }
+ }
+
+ // Check on the last point (handling the wrap around)
+ int cur = lastRing.numPts()-1;
+ if (!this->computePtAlongBisector(lastRing.index(cur),
+ lastRing.bisector(cur),
+ lastRing.origEdgeID(cur),
+ depth, &newPt)) {
+ this->terminate(lastRing);
+ return true;
+ }
+ bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
+ bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
+
+ if (!dupPrev && !dupNext) {
+ dst[cur] = fCandidateVerts.addNewPt(newPt,
+ lastRing.index(cur), lastRing.origEdgeID(cur),
+ !this->movable(lastRing.index(cur)));
+ } else if (dupPrev && !dupNext) {
+ dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
+ } else if (!dupPrev && dupNext) {
+ dst[cur] = fCandidateVerts.fuseWithNext();
+ } else {
+ bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
+
+ if (!dupPrevVsNext) {
+ dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
+ } else {
+ const int fused = fCandidateVerts.fuseWithBoth();
+ dst[cur] = fused;
+ const int targetIdx = dst[cur - 1];
+ for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
+ dst[i] = fused;
+ }
+ }
+ }
+
+ // Fold the new ring's points into the global pool
+ for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
+ int newIdx;
+ if (fCandidateVerts.needsToBeNew(i) || forceNew) {
+ // if the originating index is still valid then this point wasn't
+ // fused (and is thus movable)
+ SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
+ targetDepth, targetCoverage);
+ newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
+ fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
+ } else {
+ SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
+ this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
+ targetCoverage);
+ newIdx = fCandidateVerts.originatingIdx(i);
+ }
+
+ nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
+ }
+
+ // 'dst' currently has indices into the ring. Remap these to be indices
+ // into the global pool since the triangulation operates in that space.
+ for (int i = 0; i < dst.count(); ++i) {
+ dst[i] = nextRing->index(dst[i]);
+ }
+
+ for (int i = 0; i < lastRing.numPts(); ++i) {
+ int next = (i + 1) % lastRing.numPts();
+
+ this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
+ this->addTri(lastRing.index(i), dst[next], dst[i]);
+ }
+
+ if (done && fStyle != SkStrokeRec::kStroke_Style) {
+ // fill or stroke-and-fill
+ this->fanRing(*nextRing);
+ }
+
+ if (nextRing->numPts() < 3) {
+ done = true;
+ }
+ return done;
+}
+
+void GrAAConvexTessellator::validate() const {
+ SkASSERT(fPts.count() == fMovable.count());
+ SkASSERT(fPts.count() == fCoverages.count());
+ SkASSERT(fPts.count() == fCurveState.count());
+ SkASSERT(0 == (fIndices.count() % 3));
+ SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
+}
+
+//////////////////////////////////////////////////////////////////////////////
+void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
+ this->computeNormals(tess);
+ this->computeBisectors(tess);
+}
+
+void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
+ const SkTDArray<SkVector>& bisectors) {
+ for (int i = 0; i < fPts.count(); ++i) {
+ fPts[i].fNorm = norms[i];
+ fPts[i].fBisector = bisectors[i];
+ }
+}
+
+// Compute the outward facing normal at each vertex.
+void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
+ for (int cur = 0; cur < fPts.count(); ++cur) {
+ int next = (cur + 1) % fPts.count();
+
+ fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
+ SkPoint::Normalize(&fPts[cur].fNorm);
+ fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
+ }
+}
+
+void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
+ int prev = fPts.count() - 1;
+ for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
+ fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
+ if (!fPts[cur].fBisector.normalize()) {
+ SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side());
+ fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side());
+ SkVector other;
+ other.setOrthog(fPts[prev].fNorm, tess.side());
+ fPts[cur].fBisector += other;
+ SkAssertResult(fPts[cur].fBisector.normalize());
+ } else {
+ fPts[cur].fBisector.negate(); // make the bisector face in
+ }
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+#ifdef SK_DEBUG
+// Is this ring convex?
+bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
+ if (fPts.count() < 3) {
+ return true;
+ }
+
+ SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
+ SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
+ SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
+ SkScalar maxDot = minDot;
+
+ prev = cur;
+ for (int i = 1; i < fPts.count(); ++i) {
+ int next = (i + 1) % fPts.count();
+
+ cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
+ SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
+
+ minDot = SkMinScalar(minDot, dot);
+ maxDot = SkMaxScalar(maxDot, dot);
+
+ prev = cur;
+ }
+
+ if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
+ maxDot = 0;
+ }
+ if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
+ minDot = 0;
+ }
+ return (maxDot >= 0.0f) == (minDot >= 0.0f);
+}
+
+#endif
+
+void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
+ if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
+ return;
+ }
+
+ SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
+ if (this->numPts() >= 2 && abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) {
+ // The old last point is on the line from the second to last to the new point
+ this->popLastPt();
+ fNorms.pop();
+ // double-check that the new last point is not a duplicate of the new point. In an ideal
+ // world this wouldn't be necessary (since it's only possible for non-convex paths), but
+ // floating point precision issues mean it can actually happen on paths that were
+ // determined to be convex.
+ if (duplicate_pt(p, this->lastPoint())) {
+ return;
+ }
+ }
+ SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
+ this->addPt(p, 0.0f, initialRingCoverage, false, curve);
+ if (this->numPts() > 1) {
+ *fNorms.push() = fPts.top() - fPts[fPts.count()-2];
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
+ SkASSERT(len > 0.0f);
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
+ }
+}
+
+void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, CurveState curve) {
+ m.mapPoints(&p, 1);
+ this->lineTo(p, curve);
+}
+
+void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
+ int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
+ fPointBuffer.setReserve(maxCount);
+ SkPoint* target = fPointBuffer.begin();
+ int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
+ kQuadTolerance, &target, maxCount);
+ fPointBuffer.setCount(count);
+ for (int i = 0; i < count - 1; i++) {
+ this->lineTo(fPointBuffer[i], kCurve_CurveState);
+ }
+ this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
+}
+
+void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
+ m.mapPoints(pts, 3);
+ this->quadTo(pts);
+}
+
+void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
+ m.mapPoints(pts, 4);
+ int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
+ fPointBuffer.setReserve(maxCount);
+ SkPoint* target = fPointBuffer.begin();
+ int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
+ kCubicTolerance, &target, maxCount);
+ fPointBuffer.setCount(count);
+ for (int i = 0; i < count - 1; i++) {
+ this->lineTo(fPointBuffer[i], kCurve_CurveState);
+ }
+ this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
+}
+
+// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
+#include "SkGeometry.h"
+
+void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
+ m.mapPoints(pts, 3);
+ SkAutoConicToQuads quadder;
+ const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
+ SkPoint lastPoint = *(quads++);
+ int count = quadder.countQuads();
+ for (int i = 0; i < count; ++i) {
+ SkPoint quadPts[3];
+ quadPts[0] = lastPoint;
+ quadPts[1] = quads[0];
+ quadPts[2] = i == count - 1 ? pts[2] : quads[1];
+ this->quadTo(quadPts);
+ lastPoint = quadPts[2];
+ quads += 2;
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+#if GR_AA_CONVEX_TESSELLATOR_VIZ
+static const SkScalar kPointRadius = 0.02f;
+static const SkScalar kArrowStrokeWidth = 0.0f;
+static const SkScalar kArrowLength = 0.2f;
+static const SkScalar kEdgeTextSize = 0.1f;
+static const SkScalar kPointTextSize = 0.02f;
+
+static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
+ SkPaint paint;
+ SkASSERT(paramValue <= 1.0f);
+ int gs = int(255*paramValue);
+ paint.setARGB(255, gs, gs, gs);
+
+ canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
+
+ if (stroke) {
+ SkPaint stroke;
+ stroke.setColor(SK_ColorYELLOW);
+ stroke.setStyle(SkPaint::kStroke_Style);
+ stroke.setStrokeWidth(kPointRadius/3.0f);
+ canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
+ }
+}
+
+static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
+ SkPaint p;
+ p.setColor(color);
+
+ canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
+}
+
+static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
+ SkScalar len, SkColor color) {
+ SkPaint paint;
+ paint.setColor(color);
+ paint.setStrokeWidth(kArrowStrokeWidth);
+ paint.setStyle(SkPaint::kStroke_Style);
+
+ canvas->drawLine(p.fX, p.fY,
+ p.fX + len * n.fX, p.fY + len * n.fY,
+ paint);
+}
+
+void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
+ SkPaint paint;
+ paint.setTextSize(kEdgeTextSize);
+
+ for (int cur = 0; cur < fPts.count(); ++cur) {
+ int next = (cur + 1) % fPts.count();
+
+ draw_line(canvas,
+ tess.point(fPts[cur].fIndex),
+ tess.point(fPts[next].fIndex),
+ SK_ColorGREEN);
+
+ SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
+ mid.scale(0.5f);
+
+ if (fPts.count()) {
+ draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
+ mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
+ mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
+ }
+
+ SkString num;
+ num.printf("%d", this->origEdgeID(cur));
+ canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
+
+ if (fPts.count()) {
+ draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
+ kArrowLength, SK_ColorBLUE);
+ }
+ }
+}
+
+void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
+ for (int i = 0; i < fIndices.count(); i += 3) {
+ SkASSERT(fIndices[i] < this->numPts()) ;
+ SkASSERT(fIndices[i+1] < this->numPts()) ;
+ SkASSERT(fIndices[i+2] < this->numPts()) ;
+
+ draw_line(canvas,
+ this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
+ SK_ColorBLACK);
+ draw_line(canvas,
+ this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
+ SK_ColorBLACK);
+ draw_line(canvas,
+ this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
+ SK_ColorBLACK);
+ }
+
+ fInitialRing.draw(canvas, *this);
+ for (int i = 0; i < fRings.count(); ++i) {
+ fRings[i]->draw(canvas, *this);
+ }
+
+ for (int i = 0; i < this->numPts(); ++i) {
+ draw_point(canvas,
+ this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
+ !this->movable(i));
+
+ SkPaint paint;
+ paint.setTextSize(kPointTextSize);
+ paint.setTextAlign(SkPaint::kCenter_Align);
+ if (this->depth(i) <= -kAntialiasingRadius) {
+ paint.setColor(SK_ColorWHITE);
+ }
+
+ SkString num;
+ num.printf("%d", i);
+ canvas->drawText(num.c_str(), num.size(),
+ this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
+ paint);
+ }
+}
+
+#endif