diff options
Diffstat (limited to 'gfx/skia/skia/src/gpu/GrPathUtils.cpp')
-rw-r--r-- | gfx/skia/skia/src/gpu/GrPathUtils.cpp | 826 |
1 files changed, 826 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/gpu/GrPathUtils.cpp b/gfx/skia/skia/src/gpu/GrPathUtils.cpp new file mode 100644 index 000000000..bff949011 --- /dev/null +++ b/gfx/skia/skia/src/gpu/GrPathUtils.cpp @@ -0,0 +1,826 @@ +/* + * Copyright 2011 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "GrPathUtils.h" + +#include "GrTypes.h" +#include "SkGeometry.h" +#include "SkMathPriv.h" + +SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol, + const SkMatrix& viewM, + const SkRect& pathBounds) { + // In order to tesselate the path we get a bound on how much the matrix can + // scale when mapping to screen coordinates. + SkScalar stretch = viewM.getMaxScale(); + SkScalar srcTol = devTol; + + if (stretch < 0) { + // take worst case mapRadius amoung four corners. + // (less than perfect) + for (int i = 0; i < 4; ++i) { + SkMatrix mat; + mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight, + (i < 2) ? pathBounds.fTop : pathBounds.fBottom); + mat.postConcat(viewM); + stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1)); + } + } + return srcTol / stretch; +} + +static const int MAX_POINTS_PER_CURVE = 1 << 10; +static const SkScalar gMinCurveTol = 0.0001f; + +uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], + SkScalar tol) { + if (tol < gMinCurveTol) { + tol = gMinCurveTol; + } + SkASSERT(tol > 0); + + SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]); + if (!SkScalarIsFinite(d)) { + return MAX_POINTS_PER_CURVE; + } else if (d <= tol) { + return 1; + } else { + // Each time we subdivide, d should be cut in 4. So we need to + // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x) + // points. + // 2^(log4(x)) = sqrt(x); + SkScalar divSqrt = SkScalarSqrt(d / tol); + if (((SkScalar)SK_MaxS32) <= divSqrt) { + return MAX_POINTS_PER_CURVE; + } else { + int temp = SkScalarCeilToInt(divSqrt); + int pow2 = GrNextPow2(temp); + // Because of NaNs & INFs we can wind up with a degenerate temp + // such that pow2 comes out negative. Also, our point generator + // will always output at least one pt. + if (pow2 < 1) { + pow2 = 1; + } + return SkTMin(pow2, MAX_POINTS_PER_CURVE); + } + } +} + +uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0, + const SkPoint& p1, + const SkPoint& p2, + SkScalar tolSqd, + SkPoint** points, + uint32_t pointsLeft) { + if (pointsLeft < 2 || + (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { + (*points)[0] = p2; + *points += 1; + return 1; + } + + SkPoint q[] = { + { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, + { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, + }; + SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; + + pointsLeft >>= 1; + uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft); + uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft); + return a + b; +} + +uint32_t GrPathUtils::cubicPointCount(const SkPoint points[], + SkScalar tol) { + if (tol < gMinCurveTol) { + tol = gMinCurveTol; + } + SkASSERT(tol > 0); + + SkScalar d = SkTMax( + points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]), + points[2].distanceToLineSegmentBetweenSqd(points[0], points[3])); + d = SkScalarSqrt(d); + if (!SkScalarIsFinite(d)) { + return MAX_POINTS_PER_CURVE; + } else if (d <= tol) { + return 1; + } else { + SkScalar divSqrt = SkScalarSqrt(d / tol); + if (((SkScalar)SK_MaxS32) <= divSqrt) { + return MAX_POINTS_PER_CURVE; + } else { + int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol)); + int pow2 = GrNextPow2(temp); + // Because of NaNs & INFs we can wind up with a degenerate temp + // such that pow2 comes out negative. Also, our point generator + // will always output at least one pt. + if (pow2 < 1) { + pow2 = 1; + } + return SkTMin(pow2, MAX_POINTS_PER_CURVE); + } + } +} + +uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0, + const SkPoint& p1, + const SkPoint& p2, + const SkPoint& p3, + SkScalar tolSqd, + SkPoint** points, + uint32_t pointsLeft) { + if (pointsLeft < 2 || + (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && + p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { + (*points)[0] = p3; + *points += 1; + return 1; + } + SkPoint q[] = { + { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, + { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, + { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } + }; + SkPoint r[] = { + { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, + { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } + }; + SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; + pointsLeft >>= 1; + uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft); + uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft); + return a + b; +} + +int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, + SkScalar tol) { + if (tol < gMinCurveTol) { + tol = gMinCurveTol; + } + SkASSERT(tol > 0); + + int pointCount = 0; + *subpaths = 1; + + bool first = true; + + SkPath::Iter iter(path, false); + SkPath::Verb verb; + + SkPoint pts[4]; + while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { + + switch (verb) { + case SkPath::kLine_Verb: + pointCount += 1; + break; + case SkPath::kConic_Verb: { + SkScalar weight = iter.conicWeight(); + SkAutoConicToQuads converter; + const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f); + for (int i = 0; i < converter.countQuads(); ++i) { + pointCount += quadraticPointCount(quadPts + 2*i, tol); + } + } + case SkPath::kQuad_Verb: + pointCount += quadraticPointCount(pts, tol); + break; + case SkPath::kCubic_Verb: + pointCount += cubicPointCount(pts, tol); + break; + case SkPath::kMove_Verb: + pointCount += 1; + if (!first) { + ++(*subpaths); + } + break; + default: + break; + } + first = false; + } + return pointCount; +} + +void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) { + SkMatrix m; + // We want M such that M * xy_pt = uv_pt + // We know M * control_pts = [0 1/2 1] + // [0 0 1] + // [1 1 1] + // And control_pts = [x0 x1 x2] + // [y0 y1 y2] + // [1 1 1 ] + // We invert the control pt matrix and post concat to both sides to get M. + // Using the known form of the control point matrix and the result, we can + // optimize and improve precision. + + double x0 = qPts[0].fX; + double y0 = qPts[0].fY; + double x1 = qPts[1].fX; + double y1 = qPts[1].fY; + double x2 = qPts[2].fX; + double y2 = qPts[2].fY; + double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2; + + if (!sk_float_isfinite(det) + || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) { + // The quad is degenerate. Hopefully this is rare. Find the pts that are + // farthest apart to compute a line (unless it is really a pt). + SkScalar maxD = qPts[0].distanceToSqd(qPts[1]); + int maxEdge = 0; + SkScalar d = qPts[1].distanceToSqd(qPts[2]); + if (d > maxD) { + maxD = d; + maxEdge = 1; + } + d = qPts[2].distanceToSqd(qPts[0]); + if (d > maxD) { + maxD = d; + maxEdge = 2; + } + // We could have a tolerance here, not sure if it would improve anything + if (maxD > 0) { + // Set the matrix to give (u = 0, v = distance_to_line) + SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge]; + // when looking from the point 0 down the line we want positive + // distances to be to the left. This matches the non-degenerate + // case. + lineVec.setOrthog(lineVec, SkPoint::kLeft_Side); + // first row + fM[0] = 0; + fM[1] = 0; + fM[2] = 0; + // second row + fM[3] = lineVec.fX; + fM[4] = lineVec.fY; + fM[5] = -lineVec.dot(qPts[maxEdge]); + } else { + // It's a point. It should cover zero area. Just set the matrix such + // that (u, v) will always be far away from the quad. + fM[0] = 0; fM[1] = 0; fM[2] = 100.f; + fM[3] = 0; fM[4] = 0; fM[5] = 100.f; + } + } else { + double scale = 1.0/det; + + // compute adjugate matrix + double a2, a3, a4, a5, a6, a7, a8; + a2 = x1*y2-x2*y1; + + a3 = y2-y0; + a4 = x0-x2; + a5 = x2*y0-x0*y2; + + a6 = y0-y1; + a7 = x1-x0; + a8 = x0*y1-x1*y0; + + // this performs the uv_pts*adjugate(control_pts) multiply, + // then does the scale by 1/det afterwards to improve precision + m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale); + m[SkMatrix::kMSkewX] = (float)((0.5*a4 + a7)*scale); + m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale); + + m[SkMatrix::kMSkewY] = (float)(a6*scale); + m[SkMatrix::kMScaleY] = (float)(a7*scale); + m[SkMatrix::kMTransY] = (float)(a8*scale); + + // kMPersp0 & kMPersp1 should algebraically be zero + m[SkMatrix::kMPersp0] = 0.0f; + m[SkMatrix::kMPersp1] = 0.0f; + m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale); + + // It may not be normalized to have 1.0 in the bottom right + float m33 = m.get(SkMatrix::kMPersp2); + if (1.f != m33) { + m33 = 1.f / m33; + fM[0] = m33 * m.get(SkMatrix::kMScaleX); + fM[1] = m33 * m.get(SkMatrix::kMSkewX); + fM[2] = m33 * m.get(SkMatrix::kMTransX); + fM[3] = m33 * m.get(SkMatrix::kMSkewY); + fM[4] = m33 * m.get(SkMatrix::kMScaleY); + fM[5] = m33 * m.get(SkMatrix::kMTransY); + } else { + fM[0] = m.get(SkMatrix::kMScaleX); + fM[1] = m.get(SkMatrix::kMSkewX); + fM[2] = m.get(SkMatrix::kMTransX); + fM[3] = m.get(SkMatrix::kMSkewY); + fM[4] = m.get(SkMatrix::kMScaleY); + fM[5] = m.get(SkMatrix::kMTransY); + } + } +} + +//////////////////////////////////////////////////////////////////////////////// + +// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 ) +// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1)) +// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2)) +void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) { + const SkScalar w2 = 2.f * weight; + klm[0] = p[2].fY - p[0].fY; + klm[1] = p[0].fX - p[2].fX; + klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX; + + klm[3] = w2 * (p[1].fY - p[0].fY); + klm[4] = w2 * (p[0].fX - p[1].fX); + klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY); + + klm[6] = w2 * (p[2].fY - p[1].fY); + klm[7] = w2 * (p[1].fX - p[2].fX); + klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY); + + // scale the max absolute value of coeffs to 10 + SkScalar scale = 0.f; + for (int i = 0; i < 9; ++i) { + scale = SkMaxScalar(scale, SkScalarAbs(klm[i])); + } + SkASSERT(scale > 0.f); + scale = 10.f / scale; + for (int i = 0; i < 9; ++i) { + klm[i] *= scale; + } +} + +//////////////////////////////////////////////////////////////////////////////// + +namespace { + +// a is the first control point of the cubic. +// ab is the vector from a to the second control point. +// dc is the vector from the fourth to the third control point. +// d is the fourth control point. +// p is the candidate quadratic control point. +// this assumes that the cubic doesn't inflect and is simple +bool is_point_within_cubic_tangents(const SkPoint& a, + const SkVector& ab, + const SkVector& dc, + const SkPoint& d, + SkPathPriv::FirstDirection dir, + const SkPoint p) { + SkVector ap = p - a; + SkScalar apXab = ap.cross(ab); + if (SkPathPriv::kCW_FirstDirection == dir) { + if (apXab > 0) { + return false; + } + } else { + SkASSERT(SkPathPriv::kCCW_FirstDirection == dir); + if (apXab < 0) { + return false; + } + } + + SkVector dp = p - d; + SkScalar dpXdc = dp.cross(dc); + if (SkPathPriv::kCW_FirstDirection == dir) { + if (dpXdc < 0) { + return false; + } + } else { + SkASSERT(SkPathPriv::kCCW_FirstDirection == dir); + if (dpXdc > 0) { + return false; + } + } + return true; +} + +void convert_noninflect_cubic_to_quads(const SkPoint p[4], + SkScalar toleranceSqd, + bool constrainWithinTangents, + SkPathPriv::FirstDirection dir, + SkTArray<SkPoint, true>* quads, + int sublevel = 0) { + + // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is + // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1]. + + SkVector ab = p[1] - p[0]; + SkVector dc = p[2] - p[3]; + + if (ab.lengthSqd() < SK_ScalarNearlyZero) { + if (dc.lengthSqd() < SK_ScalarNearlyZero) { + SkPoint* degQuad = quads->push_back_n(3); + degQuad[0] = p[0]; + degQuad[1] = p[0]; + degQuad[2] = p[3]; + return; + } + ab = p[2] - p[0]; + } + if (dc.lengthSqd() < SK_ScalarNearlyZero) { + dc = p[1] - p[3]; + } + + // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the + // constraint that the quad point falls between the tangents becomes hard to enforce and we are + // likely to hit the max subdivision count. However, in this case the cubic is approaching a + // line and the accuracy of the quad point isn't so important. We check if the two middle cubic + // control points are very close to the baseline vector. If so then we just pick quadratic + // points on the control polygon. + + if (constrainWithinTangents) { + SkVector da = p[0] - p[3]; + bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero || + ab.lengthSqd() < SK_ScalarNearlyZero; + if (!doQuads) { + SkScalar invDALengthSqd = da.lengthSqd(); + if (invDALengthSqd > SK_ScalarNearlyZero) { + invDALengthSqd = SkScalarInvert(invDALengthSqd); + // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a. + // same goes for point c using vector cd. + SkScalar detABSqd = ab.cross(da); + detABSqd = SkScalarSquare(detABSqd); + SkScalar detDCSqd = dc.cross(da); + detDCSqd = SkScalarSquare(detDCSqd); + if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd && + SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) { + doQuads = true; + } + } + } + if (doQuads) { + SkPoint b = p[0] + ab; + SkPoint c = p[3] + dc; + SkPoint mid = b + c; + mid.scale(SK_ScalarHalf); + // Insert two quadratics to cover the case when ab points away from d and/or dc + // points away from a. + if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) { + SkPoint* qpts = quads->push_back_n(6); + qpts[0] = p[0]; + qpts[1] = b; + qpts[2] = mid; + qpts[3] = mid; + qpts[4] = c; + qpts[5] = p[3]; + } else { + SkPoint* qpts = quads->push_back_n(3); + qpts[0] = p[0]; + qpts[1] = mid; + qpts[2] = p[3]; + } + return; + } + } + + static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2; + static const int kMaxSubdivs = 10; + + ab.scale(kLengthScale); + dc.scale(kLengthScale); + + // e0 and e1 are extrapolations along vectors ab and dc. + SkVector c0 = p[0]; + c0 += ab; + SkVector c1 = p[3]; + c1 += dc; + + SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1); + if (dSqd < toleranceSqd) { + SkPoint cAvg = c0; + cAvg += c1; + cAvg.scale(SK_ScalarHalf); + + bool subdivide = false; + + if (constrainWithinTangents && + !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) { + // choose a new cAvg that is the intersection of the two tangent lines. + ab.setOrthog(ab); + SkScalar z0 = -ab.dot(p[0]); + dc.setOrthog(dc); + SkScalar z1 = -dc.dot(p[3]); + cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY); + cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1); + SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX); + z = SkScalarInvert(z); + cAvg.fX *= z; + cAvg.fY *= z; + if (sublevel <= kMaxSubdivs) { + SkScalar d0Sqd = c0.distanceToSqd(cAvg); + SkScalar d1Sqd = c1.distanceToSqd(cAvg); + // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know + // the distances and tolerance can't be negative. + // (d0 + d1)^2 > toleranceSqd + // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd + SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd)); + subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd; + } + } + if (!subdivide) { + SkPoint* pts = quads->push_back_n(3); + pts[0] = p[0]; + pts[1] = cAvg; + pts[2] = p[3]; + return; + } + } + SkPoint choppedPts[7]; + SkChopCubicAtHalf(p, choppedPts); + convert_noninflect_cubic_to_quads(choppedPts + 0, + toleranceSqd, + constrainWithinTangents, + dir, + quads, + sublevel + 1); + convert_noninflect_cubic_to_quads(choppedPts + 3, + toleranceSqd, + constrainWithinTangents, + dir, + quads, + sublevel + 1); +} +} + +void GrPathUtils::convertCubicToQuads(const SkPoint p[4], + SkScalar tolScale, + SkTArray<SkPoint, true>* quads) { + SkPoint chopped[10]; + int count = SkChopCubicAtInflections(p, chopped); + + const SkScalar tolSqd = SkScalarSquare(tolScale); + + for (int i = 0; i < count; ++i) { + SkPoint* cubic = chopped + 3*i; + // The direction param is ignored if the third param is false. + convert_noninflect_cubic_to_quads(cubic, tolSqd, false, + SkPathPriv::kCCW_FirstDirection, quads); + } +} + +void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4], + SkScalar tolScale, + SkPathPriv::FirstDirection dir, + SkTArray<SkPoint, true>* quads) { + SkPoint chopped[10]; + int count = SkChopCubicAtInflections(p, chopped); + + const SkScalar tolSqd = SkScalarSquare(tolScale); + + for (int i = 0; i < count; ++i) { + SkPoint* cubic = chopped + 3*i; + convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads); + } +} + +//////////////////////////////////////////////////////////////////////////////// + +// Solves linear system to extract klm +// P.K = k (similarly for l, m) +// Where P is matrix of control points +// K is coefficients for the line K +// k is vector of values of K evaluated at the control points +// Solving for K, thus K = P^(-1) . k +static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4], + const SkScalar controlL[4], const SkScalar controlM[4], + SkScalar k[3], SkScalar l[3], SkScalar m[3]) { + SkMatrix matrix; + matrix.setAll(p[0].fX, p[0].fY, 1.f, + p[1].fX, p[1].fY, 1.f, + p[2].fX, p[2].fY, 1.f); + SkMatrix inverse; + if (matrix.invert(&inverse)) { + inverse.mapHomogeneousPoints(k, controlK, 1); + inverse.mapHomogeneousPoints(l, controlL, 1); + inverse.mapHomogeneousPoints(m, controlM, 1); + } + +} + +static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { + SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]); + SkScalar ls = 3.f * d[1] - tempSqrt; + SkScalar lt = 6.f * d[0]; + SkScalar ms = 3.f * d[1] + tempSqrt; + SkScalar mt = 6.f * d[0]; + + k[0] = ls * ms; + k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f; + k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f; + k[3] = (lt - ls) * (mt - ms); + + l[0] = ls * ls * ls; + const SkScalar lt_ls = lt - ls; + l[1] = ls * ls * lt_ls * -1.f; + l[2] = lt_ls * lt_ls * ls; + l[3] = -1.f * lt_ls * lt_ls * lt_ls; + + m[0] = ms * ms * ms; + const SkScalar mt_ms = mt - ms; + m[1] = ms * ms * mt_ms * -1.f; + m[2] = mt_ms * mt_ms * ms; + m[3] = -1.f * mt_ms * mt_ms * mt_ms; + + // If d0 < 0 we need to flip the orientation of our curve + // This is done by negating the k and l values + // We want negative distance values to be on the inside + if ( d[0] > 0) { + for (int i = 0; i < 4; ++i) { + k[i] = -k[i]; + l[i] = -l[i]; + } + } +} + +static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { + SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); + SkScalar ls = d[1] - tempSqrt; + SkScalar lt = 2.f * d[0]; + SkScalar ms = d[1] + tempSqrt; + SkScalar mt = 2.f * d[0]; + + k[0] = ls * ms; + k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f; + k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f; + k[3] = (lt - ls) * (mt - ms); + + l[0] = ls * ls * ms; + l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f; + l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f; + l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms); + + m[0] = ls * ms * ms; + m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f; + m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f; + m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms); + + + // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0), + // we need to flip the orientation of our curve. + // This is done by negating the k and l values + if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) { + for (int i = 0; i < 4; ++i) { + k[i] = -k[i]; + l[i] = -l[i]; + } + } +} + +static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { + const SkScalar ls = d[2]; + const SkScalar lt = 3.f * d[1]; + + k[0] = ls; + k[1] = ls - lt / 3.f; + k[2] = ls - 2.f * lt / 3.f; + k[3] = ls - lt; + + l[0] = ls * ls * ls; + const SkScalar ls_lt = ls - lt; + l[1] = ls * ls * ls_lt; + l[2] = ls_lt * ls_lt * ls; + l[3] = ls_lt * ls_lt * ls_lt; + + m[0] = 1.f; + m[1] = 1.f; + m[2] = 1.f; + m[3] = 1.f; +} + +// For the case when a cubic is actually a quadratic +// M = +// 0 0 0 +// 1/3 0 1/3 +// 2/3 1/3 2/3 +// 1 1 1 +static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { + k[0] = 0.f; + k[1] = 1.f/3.f; + k[2] = 2.f/3.f; + k[3] = 1.f; + + l[0] = 0.f; + l[1] = 0.f; + l[2] = 1.f/3.f; + l[3] = 1.f; + + m[0] = 0.f; + m[1] = 1.f/3.f; + m[2] = 2.f/3.f; + m[3] = 1.f; + + // If d2 < 0 we need to flip the orientation of our curve + // This is done by negating the k and l values + if ( d[2] > 0) { + for (int i = 0; i < 4; ++i) { + k[i] = -k[i]; + l[i] = -l[i]; + } + } +} + +int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9], + SkScalar klm_rev[3]) { + // Variable to store the two parametric values at the loop double point + SkScalar smallS = 0.f; + SkScalar largeS = 0.f; + + SkScalar d[3]; + SkCubicType cType = SkClassifyCubic(src, d); + + int chop_count = 0; + if (kLoop_SkCubicType == cType) { + SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); + SkScalar ls = d[1] - tempSqrt; + SkScalar lt = 2.f * d[0]; + SkScalar ms = d[1] + tempSqrt; + SkScalar mt = 2.f * d[0]; + ls = ls / lt; + ms = ms / mt; + // need to have t values sorted since this is what is expected by SkChopCubicAt + if (ls <= ms) { + smallS = ls; + largeS = ms; + } else { + smallS = ms; + largeS = ls; + } + + SkScalar chop_ts[2]; + if (smallS > 0.f && smallS < 1.f) { + chop_ts[chop_count++] = smallS; + } + if (largeS > 0.f && largeS < 1.f) { + chop_ts[chop_count++] = largeS; + } + if(dst) { + SkChopCubicAt(src, dst, chop_ts, chop_count); + } + } else { + if (dst) { + memcpy(dst, src, sizeof(SkPoint) * 4); + } + } + + if (klm && klm_rev) { + // Set klm_rev to to match the sub_section of cubic that needs to have its orientation + // flipped. This will always be the section that is the "loop" + if (2 == chop_count) { + klm_rev[0] = 1.f; + klm_rev[1] = -1.f; + klm_rev[2] = 1.f; + } else if (1 == chop_count) { + if (smallS < 0.f) { + klm_rev[0] = -1.f; + klm_rev[1] = 1.f; + } else { + klm_rev[0] = 1.f; + klm_rev[1] = -1.f; + } + } else { + if (smallS < 0.f && largeS > 1.f) { + klm_rev[0] = -1.f; + } else { + klm_rev[0] = 1.f; + } + } + SkScalar controlK[4]; + SkScalar controlL[4]; + SkScalar controlM[4]; + + if (kSerpentine_SkCubicType == cType || (kCusp_SkCubicType == cType && 0.f != d[0])) { + set_serp_klm(d, controlK, controlL, controlM); + } else if (kLoop_SkCubicType == cType) { + set_loop_klm(d, controlK, controlL, controlM); + } else if (kCusp_SkCubicType == cType) { + SkASSERT(0.f == d[0]); + set_cusp_klm(d, controlK, controlL, controlM); + } else if (kQuadratic_SkCubicType == cType) { + set_quadratic_klm(d, controlK, controlL, controlM); + } + + calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]); + } + return chop_count + 1; +} + +void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) { + SkScalar d[3]; + SkCubicType cType = SkClassifyCubic(p, d); + + SkScalar controlK[4]; + SkScalar controlL[4]; + SkScalar controlM[4]; + + if (kSerpentine_SkCubicType == cType || (kCusp_SkCubicType == cType && 0.f != d[0])) { + set_serp_klm(d, controlK, controlL, controlM); + } else if (kLoop_SkCubicType == cType) { + set_loop_klm(d, controlK, controlL, controlM); + } else if (kCusp_SkCubicType == cType) { + SkASSERT(0.f == d[0]); + set_cusp_klm(d, controlK, controlL, controlM); + } else if (kQuadratic_SkCubicType == cType) { + set_quadratic_klm(d, controlK, controlL, controlM); + } + + calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]); +} |