diff options
Diffstat (limited to 'gfx/skia/skia/src/codec/SkRawCodec.cpp')
-rw-r--r-- | gfx/skia/skia/src/codec/SkRawCodec.cpp | 782 |
1 files changed, 782 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/codec/SkRawCodec.cpp b/gfx/skia/skia/src/codec/SkRawCodec.cpp new file mode 100644 index 000000000..2a6a48fdb --- /dev/null +++ b/gfx/skia/skia/src/codec/SkRawCodec.cpp @@ -0,0 +1,782 @@ +/* + * Copyright 2016 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "SkCodec.h" +#include "SkCodecPriv.h" +#include "SkColorPriv.h" +#include "SkData.h" +#include "SkJpegCodec.h" +#include "SkMutex.h" +#include "SkRawCodec.h" +#include "SkRefCnt.h" +#include "SkStream.h" +#include "SkStreamPriv.h" +#include "SkSwizzler.h" +#include "SkTArray.h" +#include "SkTaskGroup.h" +#include "SkTemplates.h" +#include "SkTypes.h" + +#include "dng_area_task.h" +#include "dng_color_space.h" +#include "dng_errors.h" +#include "dng_exceptions.h" +#include "dng_host.h" +#include "dng_info.h" +#include "dng_memory.h" +#include "dng_render.h" +#include "dng_stream.h" + +#include "src/piex.h" + +#include <cmath> // for std::round,floor,ceil +#include <limits> + +namespace { + +// Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal +// directions. +dng_point num_tiles_in_area(const dng_point &areaSize, + const dng_point_real64 &tileSize) { + // FIXME: Add a ceil_div() helper in SkCodecPriv.h + return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v), + static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h)); +} + +int num_tasks_required(const dng_point& tilesInTask, + const dng_point& tilesInArea) { + return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) * + ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h); +} + +// Calculate the number of tiles to process per task, taking into account the maximum number of +// tasks. It prefers to increase horizontally for better locality of reference. +dng_point num_tiles_per_task(const int maxTasks, + const dng_point &tilesInArea) { + dng_point tilesInTask = {1, 1}; + while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) { + if (tilesInTask.h < tilesInArea.h) { + ++tilesInTask.h; + } else if (tilesInTask.v < tilesInArea.v) { + ++tilesInTask.v; + } else { + ThrowProgramError("num_tiles_per_task calculation is wrong."); + } + } + return tilesInTask; +} + +std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area, + const dng_point& tileSize) { + std::vector<dng_rect> taskAreas; + const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize); + const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea); + const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v, + tilesPerTask.h * tileSize.h}; + for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) { + for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) { + dng_rect taskArea; + taskArea.t = area.t + v * tileSize.v; + taskArea.l = area.l + h * tileSize.h; + taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b); + taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r); + + taskAreas.push_back(taskArea); + } + } + return taskAreas; +} + +class SkDngHost : public dng_host { +public: + explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {} + + void PerformAreaTask(dng_area_task& task, const dng_rect& area) override { + // The area task gets split up into max_tasks sub-tasks. The max_tasks is defined by the + // dng-sdks default implementation of dng_area_task::MaxThreads() which returns 8 or 32 + // sub-tasks depending on the architecture. + const int maxTasks = static_cast<int>(task.MaxThreads()); + + SkTaskGroup taskGroup; + + // tileSize is typically 256x256 + const dng_point tileSize(task.FindTileSize(area)); + const std::vector<dng_rect> taskAreas = compute_task_areas(maxTasks, area, tileSize); + const int numTasks = static_cast<int>(taskAreas.size()); + + SkMutex mutex; + SkTArray<dng_exception> exceptions; + task.Start(numTasks, tileSize, &Allocator(), Sniffer()); + for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) { + taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] { + try { + task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer()); + } catch (dng_exception& exception) { + SkAutoMutexAcquire lock(mutex); + exceptions.push_back(exception); + } catch (...) { + SkAutoMutexAcquire lock(mutex); + exceptions.push_back(dng_exception(dng_error_unknown)); + } + }); + } + + taskGroup.wait(); + task.Finish(numTasks); + + // Currently we only re-throw the first catched exception. + if (!exceptions.empty()) { + Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr); + } + } + + uint32 PerformAreaTaskThreads() override { + // FIXME: Need to get the real amount of available threads used in the SkTaskGroup. + return kMaxMPThreads; + } + +private: + typedef dng_host INHERITED; +}; + +// T must be unsigned type. +template <class T> +bool safe_add_to_size_t(T arg1, T arg2, size_t* result) { + SkASSERT(arg1 >= 0); + SkASSERT(arg2 >= 0); + if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) { + T sum = arg1 + arg2; + if (sum <= std::numeric_limits<size_t>::max()) { + *result = static_cast<size_t>(sum); + return true; + } + } + return false; +} + +class SkDngMemoryAllocator : public dng_memory_allocator { +public: + ~SkDngMemoryAllocator() override {} + + dng_memory_block* Allocate(uint32 size) override { + // To avoid arbitary allocation requests which might lead to out-of-memory, limit the + // amount of memory that can be allocated at once. The memory limit is based on experiments + // and supposed to be sufficient for all valid DNG images. + if (size > 300 * 1024 * 1024) { // 300 MB + ThrowMemoryFull(); + } + return dng_memory_allocator::Allocate(size); + } +}; + +bool is_asset_stream(const SkStream& stream) { + return stream.hasLength() && stream.hasPosition(); +} + +} // namespace + +class SkRawStream { +public: + virtual ~SkRawStream() {} + + /* + * Gets the length of the stream. Depending on the type of stream, this may require reading to + * the end of the stream. + */ + virtual uint64 getLength() = 0; + + virtual bool read(void* data, size_t offset, size_t length) = 0; + + /* + * Creates an SkMemoryStream from the offset with size. + * Note: for performance reason, this function is destructive to the SkRawStream. One should + * abandon current object after the function call. + */ + virtual SkMemoryStream* transferBuffer(size_t offset, size_t size) = 0; +}; + +class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream { +public: + virtual ~SkRawLimitedDynamicMemoryWStream() {} + + bool write(const void* buffer, size_t size) override { + size_t newSize; + if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) || + newSize > kMaxStreamSize) + { + SkCodecPrintf("Error: Stream size exceeds the limit.\n"); + return false; + } + return this->INHERITED::write(buffer, size); + } + +private: + // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid + // streaming too large data chunk. We can always adjust the limit here if we need. + const size_t kMaxStreamSize = 100 * 1024 * 1024; // 100MB + + typedef SkDynamicMemoryWStream INHERITED; +}; + +// Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream). +class SkRawBufferedStream : public SkRawStream { +public: + // Will take the ownership of the stream. + explicit SkRawBufferedStream(SkStream* stream) + : fStream(stream) + , fWholeStreamRead(false) + { + // Only use SkRawBufferedStream when the stream is not an asset stream. + SkASSERT(!is_asset_stream(*stream)); + } + + ~SkRawBufferedStream() override {} + + uint64 getLength() override { + if (!this->bufferMoreData(kReadToEnd)) { // read whole stream + ThrowReadFile(); + } + return fStreamBuffer.bytesWritten(); + } + + bool read(void* data, size_t offset, size_t length) override { + if (length == 0) { + return true; + } + + size_t sum; + if (!safe_add_to_size_t(offset, length, &sum)) { + return false; + } + + return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length); + } + + SkMemoryStream* transferBuffer(size_t offset, size_t size) override { + sk_sp<SkData> data(SkData::MakeUninitialized(size)); + if (offset > fStreamBuffer.bytesWritten()) { + // If the offset is not buffered, read from fStream directly and skip the buffering. + const size_t skipLength = offset - fStreamBuffer.bytesWritten(); + if (fStream->skip(skipLength) != skipLength) { + return nullptr; + } + const size_t bytesRead = fStream->read(data->writable_data(), size); + if (bytesRead < size) { + data = SkData::MakeSubset(data.get(), 0, bytesRead); + } + } else { + const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size); + if (alreadyBuffered > 0 && + !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) { + return nullptr; + } + + const size_t remaining = size - alreadyBuffered; + if (remaining) { + auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered; + const size_t bytesRead = fStream->read(dst, remaining); + size_t newSize; + if (bytesRead < remaining) { + if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) { + return nullptr; + } + data = SkData::MakeSubset(data.get(), 0, newSize); + } + } + } + return new SkMemoryStream(data); + } + +private: + // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream. + bool bufferMoreData(size_t newSize) { + if (newSize == kReadToEnd) { + if (fWholeStreamRead) { // already read-to-end. + return true; + } + + // TODO: optimize for the special case when the input is SkMemoryStream. + return SkStreamCopy(&fStreamBuffer, fStream.get()); + } + + if (newSize <= fStreamBuffer.bytesWritten()) { // already buffered to newSize + return true; + } + if (fWholeStreamRead) { // newSize is larger than the whole stream. + return false; + } + + // Try to read at least 8192 bytes to avoid to many small reads. + const size_t kMinSizeToRead = 8192; + const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten(); + const size_t sizeToRead = SkTMax(kMinSizeToRead, sizeRequested); + SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead); + const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead); + if (bytesRead < sizeRequested) { + return false; + } + return fStreamBuffer.write(tempBuffer.get(), bytesRead); + } + + SkAutoTDelete<SkStream> fStream; + bool fWholeStreamRead; + + // Use a size-limited stream to avoid holding too huge buffer. + SkRawLimitedDynamicMemoryWStream fStreamBuffer; + + const size_t kReadToEnd = 0; +}; + +class SkRawAssetStream : public SkRawStream { +public: + // Will take the ownership of the stream. + explicit SkRawAssetStream(SkStream* stream) + : fStream(stream) + { + // Only use SkRawAssetStream when the stream is an asset stream. + SkASSERT(is_asset_stream(*stream)); + } + + ~SkRawAssetStream() override {} + + uint64 getLength() override { + return fStream->getLength(); + } + + + bool read(void* data, size_t offset, size_t length) override { + if (length == 0) { + return true; + } + + size_t sum; + if (!safe_add_to_size_t(offset, length, &sum)) { + return false; + } + + return fStream->seek(offset) && (fStream->read(data, length) == length); + } + + SkMemoryStream* transferBuffer(size_t offset, size_t size) override { + if (fStream->getLength() < offset) { + return nullptr; + } + + size_t sum; + if (!safe_add_to_size_t(offset, size, &sum)) { + return nullptr; + } + + // This will allow read less than the requested "size", because the JPEG codec wants to + // handle also a partial JPEG file. + const size_t bytesToRead = SkTMin(sum, fStream->getLength()) - offset; + if (bytesToRead == 0) { + return nullptr; + } + + if (fStream->getMemoryBase()) { // directly copy if getMemoryBase() is available. + sk_sp<SkData> data(SkData::MakeWithCopy( + static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead)); + fStream.reset(); + return new SkMemoryStream(data); + } else { + sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead)); + if (!fStream->seek(offset)) { + return nullptr; + } + const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead); + if (bytesRead < bytesToRead) { + data = SkData::MakeSubset(data.get(), 0, bytesRead); + } + return new SkMemoryStream(data); + } + } +private: + SkAutoTDelete<SkStream> fStream; +}; + +class SkPiexStream : public ::piex::StreamInterface { +public: + // Will NOT take the ownership of the stream. + explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {} + + ~SkPiexStream() override {} + + ::piex::Error GetData(const size_t offset, const size_t length, + uint8* data) override { + return fStream->read(static_cast<void*>(data), offset, length) ? + ::piex::Error::kOk : ::piex::Error::kFail; + } + +private: + SkRawStream* fStream; +}; + +class SkDngStream : public dng_stream { +public: + // Will NOT take the ownership of the stream. + SkDngStream(SkRawStream* stream) : fStream(stream) {} + + ~SkDngStream() override {} + + uint64 DoGetLength() override { return fStream->getLength(); } + + void DoRead(void* data, uint32 count, uint64 offset) override { + size_t sum; + if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) || + !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) { + ThrowReadFile(); + } + } + +private: + SkRawStream* fStream; +}; + +class SkDngImage { +public: + /* + * Initializes the object with the information from Piex in a first attempt. This way it can + * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern + * which is essential for the demosaicing of the sensor image. + * Note: this will take the ownership of the stream. + */ + static SkDngImage* NewFromStream(SkRawStream* stream) { + SkAutoTDelete<SkDngImage> dngImage(new SkDngImage(stream)); + if (!dngImage->isTiffHeaderValid()) { + return nullptr; + } + + if (!dngImage->initFromPiex()) { + if (!dngImage->readDng()) { + return nullptr; + } + } + + return dngImage.release(); + } + + /* + * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors + * down to 80 pixels on the short edge. The rendered image will be close to the specified size, + * but there is no guarantee that any of the edges will match the requested size. E.g. + * 100% size: 4000 x 3000 + * requested size: 1600 x 1200 + * returned size could be: 2000 x 1500 + */ + dng_image* render(int width, int height) { + if (!fHost || !fInfo || !fNegative || !fDngStream) { + if (!this->readDng()) { + return nullptr; + } + } + + // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension. + const int preferredSize = SkTMax(width, height); + try { + // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available. + SkAutoTDelete<dng_host> host(fHost.release()); + SkAutoTDelete<dng_info> info(fInfo.release()); + SkAutoTDelete<dng_negative> negative(fNegative.release()); + SkAutoTDelete<dng_stream> dngStream(fDngStream.release()); + + host->SetPreferredSize(preferredSize); + host->ValidateSizes(); + + negative->ReadStage1Image(*host, *dngStream, *info); + + if (info->fMaskIndex != -1) { + negative->ReadTransparencyMask(*host, *dngStream, *info); + } + + negative->ValidateRawImageDigest(*host); + if (negative->IsDamaged()) { + return nullptr; + } + + const int32 kMosaicPlane = -1; + negative->BuildStage2Image(*host); + negative->BuildStage3Image(*host, kMosaicPlane); + + dng_render render(*host, *negative); + render.SetFinalSpace(dng_space_sRGB::Get()); + render.SetFinalPixelType(ttByte); + + dng_point stage3_size = negative->Stage3Image()->Size(); + render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v)); + + return render.Render(); + } catch (...) { + return nullptr; + } + } + + const SkEncodedInfo& getEncodedInfo() const { + return fEncodedInfo; + } + + int width() const { + return fWidth; + } + + int height() const { + return fHeight; + } + + bool isScalable() const { + return fIsScalable; + } + + bool isXtransImage() const { + return fIsXtransImage; + } + +private: + // Quick check if the image contains a valid TIFF header as requested by DNG format. + bool isTiffHeaderValid() const { + const size_t kHeaderSize = 4; + SkAutoSTMalloc<kHeaderSize, unsigned char> header(kHeaderSize); + if (!fStream->read(header.get(), 0 /* offset */, kHeaderSize)) { + return false; + } + + // Check if the header is valid (endian info and magic number "42"). + bool littleEndian; + if (!is_valid_endian_marker(header, &littleEndian)) { + return false; + } + + return 0x2A == get_endian_short(header + 2, littleEndian); + } + + void init(int width, int height, const dng_point& cfaPatternSize) { + fWidth = width; + fHeight = height; + + // The DNG SDK scales only during demosaicing, so scaling is only possible when + // a mosaic info is available. + fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0; + fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false; + } + + bool initFromPiex() { + // Does not take the ownership of rawStream. + SkPiexStream piexStream(fStream.get()); + ::piex::PreviewImageData imageData; + if (::piex::IsRaw(&piexStream) + && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk) + { + // Verify the size information, as it is only optional information for PIEX. + if (imageData.full_width == 0 || imageData.full_height == 0) { + return false; + } + + dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]); + this->init(static_cast<int>(imageData.full_width), + static_cast<int>(imageData.full_height), cfaPatternSize); + return true; + } + return false; + } + + bool readDng() { + try { + // Due to the limit of DNG SDK, we need to reset host and info. + fHost.reset(new SkDngHost(&fAllocator)); + fInfo.reset(new dng_info); + fDngStream.reset(new SkDngStream(fStream)); + + fHost->ValidateSizes(); + fInfo->Parse(*fHost, *fDngStream); + fInfo->PostParse(*fHost); + if (!fInfo->IsValidDNG()) { + return false; + } + + fNegative.reset(fHost->Make_dng_negative()); + fNegative->Parse(*fHost, *fDngStream, *fInfo); + fNegative->PostParse(*fHost, *fDngStream, *fInfo); + fNegative->SynchronizeMetadata(); + + dng_point cfaPatternSize(0, 0); + if (fNegative->GetMosaicInfo() != nullptr) { + cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize; + } + this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()), + static_cast<int>(fNegative->DefaultCropSizeV().As_real64()), + cfaPatternSize); + return true; + } catch (...) { + return false; + } + } + + SkDngImage(SkRawStream* stream) + : fStream(stream) + , fEncodedInfo(SkEncodedInfo::Make(SkEncodedInfo::kRGB_Color, + SkEncodedInfo::kOpaque_Alpha, 8)) + {} + + SkDngMemoryAllocator fAllocator; + SkAutoTDelete<SkRawStream> fStream; + SkAutoTDelete<dng_host> fHost; + SkAutoTDelete<dng_info> fInfo; + SkAutoTDelete<dng_negative> fNegative; + SkAutoTDelete<dng_stream> fDngStream; + + int fWidth; + int fHeight; + SkEncodedInfo fEncodedInfo; + bool fIsScalable; + bool fIsXtransImage; +}; + +/* + * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a + * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases, + * fallback to create SkRawCodec for DNG images. + */ +SkCodec* SkRawCodec::NewFromStream(SkStream* stream) { + SkAutoTDelete<SkRawStream> rawStream; + if (is_asset_stream(*stream)) { + rawStream.reset(new SkRawAssetStream(stream)); + } else { + rawStream.reset(new SkRawBufferedStream(stream)); + } + + // Does not take the ownership of rawStream. + SkPiexStream piexStream(rawStream.get()); + ::piex::PreviewImageData imageData; + if (::piex::IsRaw(&piexStream)) { + ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData); + + // Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only + // handle the JPEG compressed preview image here. + if (error == ::piex::Error::kOk && imageData.preview.length > 0 && + imageData.preview.format == ::piex::Image::kJpegCompressed) + { + // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this + // function call. + // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream. + SkMemoryStream* memoryStream = + rawStream->transferBuffer(imageData.preview.offset, imageData.preview.length); + return memoryStream ? SkJpegCodec::NewFromStream(memoryStream) : nullptr; + } else if (error == ::piex::Error::kFail) { + return nullptr; + } + } + + // Takes the ownership of the rawStream. + SkAutoTDelete<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release())); + if (!dngImage) { + return nullptr; + } + + return new SkRawCodec(dngImage.release()); +} + +SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst, + size_t dstRowBytes, const Options& options, + SkPMColor ctable[], int* ctableCount, + int* rowsDecoded) { + if (!conversion_possible_ignore_color_space(requestedInfo, this->getInfo())) { + SkCodecPrintf("Error: cannot convert input type to output type.\n"); + return kInvalidConversion; + } + + SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler( + this->getEncodedInfo(), nullptr, requestedInfo, options)); + SkASSERT(swizzler); + + const int width = requestedInfo.width(); + const int height = requestedInfo.height(); + SkAutoTDelete<dng_image> image(fDngImage->render(width, height)); + if (!image) { + return kInvalidInput; + } + + // Because the DNG SDK can not guarantee to render to requested size, we allow a small + // difference. Only the overlapping region will be converted. + const float maxDiffRatio = 1.03f; + const dng_point& imageSize = image->Size(); + if (imageSize.h / width > maxDiffRatio || imageSize.h < width || + imageSize.v / height > maxDiffRatio || imageSize.v < height) { + return SkCodec::kInvalidScale; + } + + void* dstRow = dst; + SkAutoTMalloc<uint8_t> srcRow(width * 3); + + dng_pixel_buffer buffer; + buffer.fData = &srcRow[0]; + buffer.fPlane = 0; + buffer.fPlanes = 3; + buffer.fColStep = buffer.fPlanes; + buffer.fPlaneStep = 1; + buffer.fPixelType = ttByte; + buffer.fPixelSize = sizeof(uint8_t); + buffer.fRowStep = width * 3; + + for (int i = 0; i < height; ++i) { + buffer.fArea = dng_rect(i, 0, i + 1, width); + + try { + image->Get(buffer, dng_image::edge_zero); + } catch (...) { + *rowsDecoded = i; + return kIncompleteInput; + } + + swizzler->swizzle(dstRow, &srcRow[0]); + dstRow = SkTAddOffset<void>(dstRow, dstRowBytes); + } + return kSuccess; +} + +SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const { + SkASSERT(desiredScale <= 1.f); + + const SkISize dim = this->getInfo().dimensions(); + SkASSERT(dim.fWidth != 0 && dim.fHeight != 0); + + if (!fDngImage->isScalable()) { + return dim; + } + + // Limits the minimum size to be 80 on the short edge. + const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight)); + if (desiredScale < 80.f / shortEdge) { + desiredScale = 80.f / shortEdge; + } + + // For Xtrans images, the integer-factor scaling does not support the half-size scaling case + // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead. + if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) { + desiredScale = 1.f / 3.f; + } + + // Round to integer-factors. + const float finalScale = std::floor(1.f/ desiredScale); + return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)), + static_cast<int32_t>(std::floor(dim.fHeight / finalScale))); +} + +bool SkRawCodec::onDimensionsSupported(const SkISize& dim) { + const SkISize fullDim = this->getInfo().dimensions(); + const float fullShortEdge = static_cast<float>(SkTMin(fullDim.fWidth, fullDim.fHeight)); + const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight)); + + SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge)); + SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge)); + return sizeFloor == dim || sizeCeil == dim; +} + +SkRawCodec::~SkRawCodec() {} + +SkRawCodec::SkRawCodec(SkDngImage* dngImage) + : INHERITED(dngImage->width(), dngImage->height(), dngImage->getEncodedInfo(), nullptr) + , fDngImage(dngImage) {} |