summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/codec/SkRawCodec.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/codec/SkRawCodec.cpp')
-rw-r--r--gfx/skia/skia/src/codec/SkRawCodec.cpp782
1 files changed, 782 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/codec/SkRawCodec.cpp b/gfx/skia/skia/src/codec/SkRawCodec.cpp
new file mode 100644
index 000000000..2a6a48fdb
--- /dev/null
+++ b/gfx/skia/skia/src/codec/SkRawCodec.cpp
@@ -0,0 +1,782 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkCodec.h"
+#include "SkCodecPriv.h"
+#include "SkColorPriv.h"
+#include "SkData.h"
+#include "SkJpegCodec.h"
+#include "SkMutex.h"
+#include "SkRawCodec.h"
+#include "SkRefCnt.h"
+#include "SkStream.h"
+#include "SkStreamPriv.h"
+#include "SkSwizzler.h"
+#include "SkTArray.h"
+#include "SkTaskGroup.h"
+#include "SkTemplates.h"
+#include "SkTypes.h"
+
+#include "dng_area_task.h"
+#include "dng_color_space.h"
+#include "dng_errors.h"
+#include "dng_exceptions.h"
+#include "dng_host.h"
+#include "dng_info.h"
+#include "dng_memory.h"
+#include "dng_render.h"
+#include "dng_stream.h"
+
+#include "src/piex.h"
+
+#include <cmath> // for std::round,floor,ceil
+#include <limits>
+
+namespace {
+
+// Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal
+// directions.
+dng_point num_tiles_in_area(const dng_point &areaSize,
+ const dng_point_real64 &tileSize) {
+ // FIXME: Add a ceil_div() helper in SkCodecPriv.h
+ return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v),
+ static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h));
+}
+
+int num_tasks_required(const dng_point& tilesInTask,
+ const dng_point& tilesInArea) {
+ return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) *
+ ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h);
+}
+
+// Calculate the number of tiles to process per task, taking into account the maximum number of
+// tasks. It prefers to increase horizontally for better locality of reference.
+dng_point num_tiles_per_task(const int maxTasks,
+ const dng_point &tilesInArea) {
+ dng_point tilesInTask = {1, 1};
+ while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) {
+ if (tilesInTask.h < tilesInArea.h) {
+ ++tilesInTask.h;
+ } else if (tilesInTask.v < tilesInArea.v) {
+ ++tilesInTask.v;
+ } else {
+ ThrowProgramError("num_tiles_per_task calculation is wrong.");
+ }
+ }
+ return tilesInTask;
+}
+
+std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area,
+ const dng_point& tileSize) {
+ std::vector<dng_rect> taskAreas;
+ const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize);
+ const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea);
+ const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v,
+ tilesPerTask.h * tileSize.h};
+ for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) {
+ for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) {
+ dng_rect taskArea;
+ taskArea.t = area.t + v * tileSize.v;
+ taskArea.l = area.l + h * tileSize.h;
+ taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b);
+ taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r);
+
+ taskAreas.push_back(taskArea);
+ }
+ }
+ return taskAreas;
+}
+
+class SkDngHost : public dng_host {
+public:
+ explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {}
+
+ void PerformAreaTask(dng_area_task& task, const dng_rect& area) override {
+ // The area task gets split up into max_tasks sub-tasks. The max_tasks is defined by the
+ // dng-sdks default implementation of dng_area_task::MaxThreads() which returns 8 or 32
+ // sub-tasks depending on the architecture.
+ const int maxTasks = static_cast<int>(task.MaxThreads());
+
+ SkTaskGroup taskGroup;
+
+ // tileSize is typically 256x256
+ const dng_point tileSize(task.FindTileSize(area));
+ const std::vector<dng_rect> taskAreas = compute_task_areas(maxTasks, area, tileSize);
+ const int numTasks = static_cast<int>(taskAreas.size());
+
+ SkMutex mutex;
+ SkTArray<dng_exception> exceptions;
+ task.Start(numTasks, tileSize, &Allocator(), Sniffer());
+ for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) {
+ taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] {
+ try {
+ task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer());
+ } catch (dng_exception& exception) {
+ SkAutoMutexAcquire lock(mutex);
+ exceptions.push_back(exception);
+ } catch (...) {
+ SkAutoMutexAcquire lock(mutex);
+ exceptions.push_back(dng_exception(dng_error_unknown));
+ }
+ });
+ }
+
+ taskGroup.wait();
+ task.Finish(numTasks);
+
+ // Currently we only re-throw the first catched exception.
+ if (!exceptions.empty()) {
+ Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr);
+ }
+ }
+
+ uint32 PerformAreaTaskThreads() override {
+ // FIXME: Need to get the real amount of available threads used in the SkTaskGroup.
+ return kMaxMPThreads;
+ }
+
+private:
+ typedef dng_host INHERITED;
+};
+
+// T must be unsigned type.
+template <class T>
+bool safe_add_to_size_t(T arg1, T arg2, size_t* result) {
+ SkASSERT(arg1 >= 0);
+ SkASSERT(arg2 >= 0);
+ if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) {
+ T sum = arg1 + arg2;
+ if (sum <= std::numeric_limits<size_t>::max()) {
+ *result = static_cast<size_t>(sum);
+ return true;
+ }
+ }
+ return false;
+}
+
+class SkDngMemoryAllocator : public dng_memory_allocator {
+public:
+ ~SkDngMemoryAllocator() override {}
+
+ dng_memory_block* Allocate(uint32 size) override {
+ // To avoid arbitary allocation requests which might lead to out-of-memory, limit the
+ // amount of memory that can be allocated at once. The memory limit is based on experiments
+ // and supposed to be sufficient for all valid DNG images.
+ if (size > 300 * 1024 * 1024) { // 300 MB
+ ThrowMemoryFull();
+ }
+ return dng_memory_allocator::Allocate(size);
+ }
+};
+
+bool is_asset_stream(const SkStream& stream) {
+ return stream.hasLength() && stream.hasPosition();
+}
+
+} // namespace
+
+class SkRawStream {
+public:
+ virtual ~SkRawStream() {}
+
+ /*
+ * Gets the length of the stream. Depending on the type of stream, this may require reading to
+ * the end of the stream.
+ */
+ virtual uint64 getLength() = 0;
+
+ virtual bool read(void* data, size_t offset, size_t length) = 0;
+
+ /*
+ * Creates an SkMemoryStream from the offset with size.
+ * Note: for performance reason, this function is destructive to the SkRawStream. One should
+ * abandon current object after the function call.
+ */
+ virtual SkMemoryStream* transferBuffer(size_t offset, size_t size) = 0;
+};
+
+class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream {
+public:
+ virtual ~SkRawLimitedDynamicMemoryWStream() {}
+
+ bool write(const void* buffer, size_t size) override {
+ size_t newSize;
+ if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) ||
+ newSize > kMaxStreamSize)
+ {
+ SkCodecPrintf("Error: Stream size exceeds the limit.\n");
+ return false;
+ }
+ return this->INHERITED::write(buffer, size);
+ }
+
+private:
+ // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid
+ // streaming too large data chunk. We can always adjust the limit here if we need.
+ const size_t kMaxStreamSize = 100 * 1024 * 1024; // 100MB
+
+ typedef SkDynamicMemoryWStream INHERITED;
+};
+
+// Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream).
+class SkRawBufferedStream : public SkRawStream {
+public:
+ // Will take the ownership of the stream.
+ explicit SkRawBufferedStream(SkStream* stream)
+ : fStream(stream)
+ , fWholeStreamRead(false)
+ {
+ // Only use SkRawBufferedStream when the stream is not an asset stream.
+ SkASSERT(!is_asset_stream(*stream));
+ }
+
+ ~SkRawBufferedStream() override {}
+
+ uint64 getLength() override {
+ if (!this->bufferMoreData(kReadToEnd)) { // read whole stream
+ ThrowReadFile();
+ }
+ return fStreamBuffer.bytesWritten();
+ }
+
+ bool read(void* data, size_t offset, size_t length) override {
+ if (length == 0) {
+ return true;
+ }
+
+ size_t sum;
+ if (!safe_add_to_size_t(offset, length, &sum)) {
+ return false;
+ }
+
+ return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length);
+ }
+
+ SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
+ sk_sp<SkData> data(SkData::MakeUninitialized(size));
+ if (offset > fStreamBuffer.bytesWritten()) {
+ // If the offset is not buffered, read from fStream directly and skip the buffering.
+ const size_t skipLength = offset - fStreamBuffer.bytesWritten();
+ if (fStream->skip(skipLength) != skipLength) {
+ return nullptr;
+ }
+ const size_t bytesRead = fStream->read(data->writable_data(), size);
+ if (bytesRead < size) {
+ data = SkData::MakeSubset(data.get(), 0, bytesRead);
+ }
+ } else {
+ const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size);
+ if (alreadyBuffered > 0 &&
+ !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) {
+ return nullptr;
+ }
+
+ const size_t remaining = size - alreadyBuffered;
+ if (remaining) {
+ auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered;
+ const size_t bytesRead = fStream->read(dst, remaining);
+ size_t newSize;
+ if (bytesRead < remaining) {
+ if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) {
+ return nullptr;
+ }
+ data = SkData::MakeSubset(data.get(), 0, newSize);
+ }
+ }
+ }
+ return new SkMemoryStream(data);
+ }
+
+private:
+ // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream.
+ bool bufferMoreData(size_t newSize) {
+ if (newSize == kReadToEnd) {
+ if (fWholeStreamRead) { // already read-to-end.
+ return true;
+ }
+
+ // TODO: optimize for the special case when the input is SkMemoryStream.
+ return SkStreamCopy(&fStreamBuffer, fStream.get());
+ }
+
+ if (newSize <= fStreamBuffer.bytesWritten()) { // already buffered to newSize
+ return true;
+ }
+ if (fWholeStreamRead) { // newSize is larger than the whole stream.
+ return false;
+ }
+
+ // Try to read at least 8192 bytes to avoid to many small reads.
+ const size_t kMinSizeToRead = 8192;
+ const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten();
+ const size_t sizeToRead = SkTMax(kMinSizeToRead, sizeRequested);
+ SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead);
+ const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead);
+ if (bytesRead < sizeRequested) {
+ return false;
+ }
+ return fStreamBuffer.write(tempBuffer.get(), bytesRead);
+ }
+
+ SkAutoTDelete<SkStream> fStream;
+ bool fWholeStreamRead;
+
+ // Use a size-limited stream to avoid holding too huge buffer.
+ SkRawLimitedDynamicMemoryWStream fStreamBuffer;
+
+ const size_t kReadToEnd = 0;
+};
+
+class SkRawAssetStream : public SkRawStream {
+public:
+ // Will take the ownership of the stream.
+ explicit SkRawAssetStream(SkStream* stream)
+ : fStream(stream)
+ {
+ // Only use SkRawAssetStream when the stream is an asset stream.
+ SkASSERT(is_asset_stream(*stream));
+ }
+
+ ~SkRawAssetStream() override {}
+
+ uint64 getLength() override {
+ return fStream->getLength();
+ }
+
+
+ bool read(void* data, size_t offset, size_t length) override {
+ if (length == 0) {
+ return true;
+ }
+
+ size_t sum;
+ if (!safe_add_to_size_t(offset, length, &sum)) {
+ return false;
+ }
+
+ return fStream->seek(offset) && (fStream->read(data, length) == length);
+ }
+
+ SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
+ if (fStream->getLength() < offset) {
+ return nullptr;
+ }
+
+ size_t sum;
+ if (!safe_add_to_size_t(offset, size, &sum)) {
+ return nullptr;
+ }
+
+ // This will allow read less than the requested "size", because the JPEG codec wants to
+ // handle also a partial JPEG file.
+ const size_t bytesToRead = SkTMin(sum, fStream->getLength()) - offset;
+ if (bytesToRead == 0) {
+ return nullptr;
+ }
+
+ if (fStream->getMemoryBase()) { // directly copy if getMemoryBase() is available.
+ sk_sp<SkData> data(SkData::MakeWithCopy(
+ static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead));
+ fStream.reset();
+ return new SkMemoryStream(data);
+ } else {
+ sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead));
+ if (!fStream->seek(offset)) {
+ return nullptr;
+ }
+ const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead);
+ if (bytesRead < bytesToRead) {
+ data = SkData::MakeSubset(data.get(), 0, bytesRead);
+ }
+ return new SkMemoryStream(data);
+ }
+ }
+private:
+ SkAutoTDelete<SkStream> fStream;
+};
+
+class SkPiexStream : public ::piex::StreamInterface {
+public:
+ // Will NOT take the ownership of the stream.
+ explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {}
+
+ ~SkPiexStream() override {}
+
+ ::piex::Error GetData(const size_t offset, const size_t length,
+ uint8* data) override {
+ return fStream->read(static_cast<void*>(data), offset, length) ?
+ ::piex::Error::kOk : ::piex::Error::kFail;
+ }
+
+private:
+ SkRawStream* fStream;
+};
+
+class SkDngStream : public dng_stream {
+public:
+ // Will NOT take the ownership of the stream.
+ SkDngStream(SkRawStream* stream) : fStream(stream) {}
+
+ ~SkDngStream() override {}
+
+ uint64 DoGetLength() override { return fStream->getLength(); }
+
+ void DoRead(void* data, uint32 count, uint64 offset) override {
+ size_t sum;
+ if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) ||
+ !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) {
+ ThrowReadFile();
+ }
+ }
+
+private:
+ SkRawStream* fStream;
+};
+
+class SkDngImage {
+public:
+ /*
+ * Initializes the object with the information from Piex in a first attempt. This way it can
+ * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern
+ * which is essential for the demosaicing of the sensor image.
+ * Note: this will take the ownership of the stream.
+ */
+ static SkDngImage* NewFromStream(SkRawStream* stream) {
+ SkAutoTDelete<SkDngImage> dngImage(new SkDngImage(stream));
+ if (!dngImage->isTiffHeaderValid()) {
+ return nullptr;
+ }
+
+ if (!dngImage->initFromPiex()) {
+ if (!dngImage->readDng()) {
+ return nullptr;
+ }
+ }
+
+ return dngImage.release();
+ }
+
+ /*
+ * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors
+ * down to 80 pixels on the short edge. The rendered image will be close to the specified size,
+ * but there is no guarantee that any of the edges will match the requested size. E.g.
+ * 100% size: 4000 x 3000
+ * requested size: 1600 x 1200
+ * returned size could be: 2000 x 1500
+ */
+ dng_image* render(int width, int height) {
+ if (!fHost || !fInfo || !fNegative || !fDngStream) {
+ if (!this->readDng()) {
+ return nullptr;
+ }
+ }
+
+ // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension.
+ const int preferredSize = SkTMax(width, height);
+ try {
+ // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available.
+ SkAutoTDelete<dng_host> host(fHost.release());
+ SkAutoTDelete<dng_info> info(fInfo.release());
+ SkAutoTDelete<dng_negative> negative(fNegative.release());
+ SkAutoTDelete<dng_stream> dngStream(fDngStream.release());
+
+ host->SetPreferredSize(preferredSize);
+ host->ValidateSizes();
+
+ negative->ReadStage1Image(*host, *dngStream, *info);
+
+ if (info->fMaskIndex != -1) {
+ negative->ReadTransparencyMask(*host, *dngStream, *info);
+ }
+
+ negative->ValidateRawImageDigest(*host);
+ if (negative->IsDamaged()) {
+ return nullptr;
+ }
+
+ const int32 kMosaicPlane = -1;
+ negative->BuildStage2Image(*host);
+ negative->BuildStage3Image(*host, kMosaicPlane);
+
+ dng_render render(*host, *negative);
+ render.SetFinalSpace(dng_space_sRGB::Get());
+ render.SetFinalPixelType(ttByte);
+
+ dng_point stage3_size = negative->Stage3Image()->Size();
+ render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v));
+
+ return render.Render();
+ } catch (...) {
+ return nullptr;
+ }
+ }
+
+ const SkEncodedInfo& getEncodedInfo() const {
+ return fEncodedInfo;
+ }
+
+ int width() const {
+ return fWidth;
+ }
+
+ int height() const {
+ return fHeight;
+ }
+
+ bool isScalable() const {
+ return fIsScalable;
+ }
+
+ bool isXtransImage() const {
+ return fIsXtransImage;
+ }
+
+private:
+ // Quick check if the image contains a valid TIFF header as requested by DNG format.
+ bool isTiffHeaderValid() const {
+ const size_t kHeaderSize = 4;
+ SkAutoSTMalloc<kHeaderSize, unsigned char> header(kHeaderSize);
+ if (!fStream->read(header.get(), 0 /* offset */, kHeaderSize)) {
+ return false;
+ }
+
+ // Check if the header is valid (endian info and magic number "42").
+ bool littleEndian;
+ if (!is_valid_endian_marker(header, &littleEndian)) {
+ return false;
+ }
+
+ return 0x2A == get_endian_short(header + 2, littleEndian);
+ }
+
+ void init(int width, int height, const dng_point& cfaPatternSize) {
+ fWidth = width;
+ fHeight = height;
+
+ // The DNG SDK scales only during demosaicing, so scaling is only possible when
+ // a mosaic info is available.
+ fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0;
+ fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false;
+ }
+
+ bool initFromPiex() {
+ // Does not take the ownership of rawStream.
+ SkPiexStream piexStream(fStream.get());
+ ::piex::PreviewImageData imageData;
+ if (::piex::IsRaw(&piexStream)
+ && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk)
+ {
+ // Verify the size information, as it is only optional information for PIEX.
+ if (imageData.full_width == 0 || imageData.full_height == 0) {
+ return false;
+ }
+
+ dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]);
+ this->init(static_cast<int>(imageData.full_width),
+ static_cast<int>(imageData.full_height), cfaPatternSize);
+ return true;
+ }
+ return false;
+ }
+
+ bool readDng() {
+ try {
+ // Due to the limit of DNG SDK, we need to reset host and info.
+ fHost.reset(new SkDngHost(&fAllocator));
+ fInfo.reset(new dng_info);
+ fDngStream.reset(new SkDngStream(fStream));
+
+ fHost->ValidateSizes();
+ fInfo->Parse(*fHost, *fDngStream);
+ fInfo->PostParse(*fHost);
+ if (!fInfo->IsValidDNG()) {
+ return false;
+ }
+
+ fNegative.reset(fHost->Make_dng_negative());
+ fNegative->Parse(*fHost, *fDngStream, *fInfo);
+ fNegative->PostParse(*fHost, *fDngStream, *fInfo);
+ fNegative->SynchronizeMetadata();
+
+ dng_point cfaPatternSize(0, 0);
+ if (fNegative->GetMosaicInfo() != nullptr) {
+ cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize;
+ }
+ this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()),
+ static_cast<int>(fNegative->DefaultCropSizeV().As_real64()),
+ cfaPatternSize);
+ return true;
+ } catch (...) {
+ return false;
+ }
+ }
+
+ SkDngImage(SkRawStream* stream)
+ : fStream(stream)
+ , fEncodedInfo(SkEncodedInfo::Make(SkEncodedInfo::kRGB_Color,
+ SkEncodedInfo::kOpaque_Alpha, 8))
+ {}
+
+ SkDngMemoryAllocator fAllocator;
+ SkAutoTDelete<SkRawStream> fStream;
+ SkAutoTDelete<dng_host> fHost;
+ SkAutoTDelete<dng_info> fInfo;
+ SkAutoTDelete<dng_negative> fNegative;
+ SkAutoTDelete<dng_stream> fDngStream;
+
+ int fWidth;
+ int fHeight;
+ SkEncodedInfo fEncodedInfo;
+ bool fIsScalable;
+ bool fIsXtransImage;
+};
+
+/*
+ * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a
+ * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases,
+ * fallback to create SkRawCodec for DNG images.
+ */
+SkCodec* SkRawCodec::NewFromStream(SkStream* stream) {
+ SkAutoTDelete<SkRawStream> rawStream;
+ if (is_asset_stream(*stream)) {
+ rawStream.reset(new SkRawAssetStream(stream));
+ } else {
+ rawStream.reset(new SkRawBufferedStream(stream));
+ }
+
+ // Does not take the ownership of rawStream.
+ SkPiexStream piexStream(rawStream.get());
+ ::piex::PreviewImageData imageData;
+ if (::piex::IsRaw(&piexStream)) {
+ ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData);
+
+ // Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only
+ // handle the JPEG compressed preview image here.
+ if (error == ::piex::Error::kOk && imageData.preview.length > 0 &&
+ imageData.preview.format == ::piex::Image::kJpegCompressed)
+ {
+ // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this
+ // function call.
+ // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream.
+ SkMemoryStream* memoryStream =
+ rawStream->transferBuffer(imageData.preview.offset, imageData.preview.length);
+ return memoryStream ? SkJpegCodec::NewFromStream(memoryStream) : nullptr;
+ } else if (error == ::piex::Error::kFail) {
+ return nullptr;
+ }
+ }
+
+ // Takes the ownership of the rawStream.
+ SkAutoTDelete<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release()));
+ if (!dngImage) {
+ return nullptr;
+ }
+
+ return new SkRawCodec(dngImage.release());
+}
+
+SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst,
+ size_t dstRowBytes, const Options& options,
+ SkPMColor ctable[], int* ctableCount,
+ int* rowsDecoded) {
+ if (!conversion_possible_ignore_color_space(requestedInfo, this->getInfo())) {
+ SkCodecPrintf("Error: cannot convert input type to output type.\n");
+ return kInvalidConversion;
+ }
+
+ SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(
+ this->getEncodedInfo(), nullptr, requestedInfo, options));
+ SkASSERT(swizzler);
+
+ const int width = requestedInfo.width();
+ const int height = requestedInfo.height();
+ SkAutoTDelete<dng_image> image(fDngImage->render(width, height));
+ if (!image) {
+ return kInvalidInput;
+ }
+
+ // Because the DNG SDK can not guarantee to render to requested size, we allow a small
+ // difference. Only the overlapping region will be converted.
+ const float maxDiffRatio = 1.03f;
+ const dng_point& imageSize = image->Size();
+ if (imageSize.h / width > maxDiffRatio || imageSize.h < width ||
+ imageSize.v / height > maxDiffRatio || imageSize.v < height) {
+ return SkCodec::kInvalidScale;
+ }
+
+ void* dstRow = dst;
+ SkAutoTMalloc<uint8_t> srcRow(width * 3);
+
+ dng_pixel_buffer buffer;
+ buffer.fData = &srcRow[0];
+ buffer.fPlane = 0;
+ buffer.fPlanes = 3;
+ buffer.fColStep = buffer.fPlanes;
+ buffer.fPlaneStep = 1;
+ buffer.fPixelType = ttByte;
+ buffer.fPixelSize = sizeof(uint8_t);
+ buffer.fRowStep = width * 3;
+
+ for (int i = 0; i < height; ++i) {
+ buffer.fArea = dng_rect(i, 0, i + 1, width);
+
+ try {
+ image->Get(buffer, dng_image::edge_zero);
+ } catch (...) {
+ *rowsDecoded = i;
+ return kIncompleteInput;
+ }
+
+ swizzler->swizzle(dstRow, &srcRow[0]);
+ dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
+ }
+ return kSuccess;
+}
+
+SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const {
+ SkASSERT(desiredScale <= 1.f);
+
+ const SkISize dim = this->getInfo().dimensions();
+ SkASSERT(dim.fWidth != 0 && dim.fHeight != 0);
+
+ if (!fDngImage->isScalable()) {
+ return dim;
+ }
+
+ // Limits the minimum size to be 80 on the short edge.
+ const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
+ if (desiredScale < 80.f / shortEdge) {
+ desiredScale = 80.f / shortEdge;
+ }
+
+ // For Xtrans images, the integer-factor scaling does not support the half-size scaling case
+ // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead.
+ if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) {
+ desiredScale = 1.f / 3.f;
+ }
+
+ // Round to integer-factors.
+ const float finalScale = std::floor(1.f/ desiredScale);
+ return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)),
+ static_cast<int32_t>(std::floor(dim.fHeight / finalScale)));
+}
+
+bool SkRawCodec::onDimensionsSupported(const SkISize& dim) {
+ const SkISize fullDim = this->getInfo().dimensions();
+ const float fullShortEdge = static_cast<float>(SkTMin(fullDim.fWidth, fullDim.fHeight));
+ const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
+
+ SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge));
+ SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge));
+ return sizeFloor == dim || sizeCeil == dim;
+}
+
+SkRawCodec::~SkRawCodec() {}
+
+SkRawCodec::SkRawCodec(SkDngImage* dngImage)
+ : INHERITED(dngImage->width(), dngImage->height(), dngImage->getEncodedInfo(), nullptr)
+ , fDngImage(dngImage) {}