diff options
Diffstat (limited to 'dom/smil/nsSMILKeySpline.cpp')
-rw-r--r-- | dom/smil/nsSMILKeySpline.cpp | 151 |
1 files changed, 151 insertions, 0 deletions
diff --git a/dom/smil/nsSMILKeySpline.cpp b/dom/smil/nsSMILKeySpline.cpp new file mode 100644 index 000000000..716437aab --- /dev/null +++ b/dom/smil/nsSMILKeySpline.cpp @@ -0,0 +1,151 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "nsSMILKeySpline.h" +#include <stdint.h> +#include <math.h> + +#define NEWTON_ITERATIONS 4 +#define NEWTON_MIN_SLOPE 0.02 +#define SUBDIVISION_PRECISION 0.0000001 +#define SUBDIVISION_MAX_ITERATIONS 10 + +const double nsSMILKeySpline::kSampleStepSize = + 1.0 / double(kSplineTableSize - 1); + +void +nsSMILKeySpline::Init(double aX1, + double aY1, + double aX2, + double aY2) +{ + mX1 = aX1; + mY1 = aY1; + mX2 = aX2; + mY2 = aY2; + + if (mX1 != mY1 || mX2 != mY2) + CalcSampleValues(); +} + +double +nsSMILKeySpline::GetSplineValue(double aX) const +{ + if (mX1 == mY1 && mX2 == mY2) + return aX; + + return CalcBezier(GetTForX(aX), mY1, mY2); +} + +void +nsSMILKeySpline::GetSplineDerivativeValues(double aX, double& aDX, double& aDY) const +{ + double t = GetTForX(aX); + aDX = GetSlope(t, mX1, mX2); + aDY = GetSlope(t, mY1, mY2); +} + +void +nsSMILKeySpline::CalcSampleValues() +{ + for (uint32_t i = 0; i < kSplineTableSize; ++i) { + mSampleValues[i] = CalcBezier(double(i) * kSampleStepSize, mX1, mX2); + } +} + +/*static*/ double +nsSMILKeySpline::CalcBezier(double aT, + double aA1, + double aA2) +{ + // use Horner's scheme to evaluate the Bezier polynomial + return ((A(aA1, aA2)*aT + B(aA1, aA2))*aT + C(aA1))*aT; +} + +/*static*/ double +nsSMILKeySpline::GetSlope(double aT, + double aA1, + double aA2) +{ + return 3.0 * A(aA1, aA2)*aT*aT + 2.0 * B(aA1, aA2) * aT + C(aA1); +} + +double +nsSMILKeySpline::GetTForX(double aX) const +{ + // Early return when aX == 1.0 to avoid floating-point inaccuracies. + if (aX == 1.0) { + return 1.0; + } + // Find interval where t lies + double intervalStart = 0.0; + const double* currentSample = &mSampleValues[1]; + const double* const lastSample = &mSampleValues[kSplineTableSize - 1]; + for (; currentSample != lastSample && *currentSample <= aX; + ++currentSample) { + intervalStart += kSampleStepSize; + } + --currentSample; // t now lies between *currentSample and *currentSample+1 + + // Interpolate to provide an initial guess for t + double dist = (aX - *currentSample) / + (*(currentSample+1) - *currentSample); + double guessForT = intervalStart + dist * kSampleStepSize; + + // Check the slope to see what strategy to use. If the slope is too small + // Newton-Raphson iteration won't converge on a root so we use bisection + // instead. + double initialSlope = GetSlope(guessForT, mX1, mX2); + if (initialSlope >= NEWTON_MIN_SLOPE) { + return NewtonRaphsonIterate(aX, guessForT); + } else if (initialSlope == 0.0) { + return guessForT; + } else { + return BinarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize); + } +} + +double +nsSMILKeySpline::NewtonRaphsonIterate(double aX, double aGuessT) const +{ + // Refine guess with Newton-Raphson iteration + for (uint32_t i = 0; i < NEWTON_ITERATIONS; ++i) { + // We're trying to find where f(t) = aX, + // so we're actually looking for a root for: CalcBezier(t) - aX + double currentX = CalcBezier(aGuessT, mX1, mX2) - aX; + double currentSlope = GetSlope(aGuessT, mX1, mX2); + + if (currentSlope == 0.0) + return aGuessT; + + aGuessT -= currentX / currentSlope; + } + + return aGuessT; +} + +double +nsSMILKeySpline::BinarySubdivide(double aX, double aA, double aB) const +{ + double currentX; + double currentT; + uint32_t i = 0; + + do + { + currentT = aA + (aB - aA) / 2.0; + currentX = CalcBezier(currentT, mX1, mX2) - aX; + + if (currentX > 0.0) { + aB = currentT; + } else { + aA = currentT; + } + } while (fabs(currentX) > SUBDIVISION_PRECISION + && ++i < SUBDIVISION_MAX_ITERATIONS); + + return currentT; +} |