diff options
author | wolfbeast <mcwerewolf@gmail.com> | 2018-05-12 11:09:44 +0200 |
---|---|---|
committer | wolfbeast <mcwerewolf@gmail.com> | 2018-05-12 11:09:44 +0200 |
commit | cfe5ef4ac7cd59f094b538252161ad74223c47da (patch) | |
tree | e5c0ee7e70db84bd2bfc6062784006769e9df730 /widget/gonk/libui/android_input.h | |
parent | 28cf922aa9af4d4b8e0a3ce91dc1270a55986909 (diff) | |
download | UXP-cfe5ef4ac7cd59f094b538252161ad74223c47da.tar UXP-cfe5ef4ac7cd59f094b538252161ad74223c47da.tar.gz UXP-cfe5ef4ac7cd59f094b538252161ad74223c47da.tar.lz UXP-cfe5ef4ac7cd59f094b538252161ad74223c47da.tar.xz UXP-cfe5ef4ac7cd59f094b538252161ad74223c47da.zip |
Remove Gonk build directories
Diffstat (limited to 'widget/gonk/libui/android_input.h')
-rw-r--r-- | widget/gonk/libui/android_input.h | 850 |
1 files changed, 0 insertions, 850 deletions
diff --git a/widget/gonk/libui/android_input.h b/widget/gonk/libui/android_input.h deleted file mode 100644 index 00e81b28d..000000000 --- a/widget/gonk/libui/android_input.h +++ /dev/null @@ -1,850 +0,0 @@ -/* - * Copyright (C) 2010 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef _ANDROID_INPUT_H -#define _ANDROID_INPUT_H - -/****************************************************************** - * - * IMPORTANT NOTICE: - * - * This file is part of Android's set of stable system headers - * exposed by the Android NDK (Native Development Kit). - * - * Third-party source AND binary code relies on the definitions - * here to be FROZEN ON ALL UPCOMING PLATFORM RELEASES. - * - * - DO NOT MODIFY ENUMS (EXCEPT IF YOU ADD NEW 32-BIT VALUES) - * - DO NOT MODIFY CONSTANTS OR FUNCTIONAL MACROS - * - DO NOT CHANGE THE SIGNATURE OF FUNCTIONS IN ANY WAY - * - DO NOT CHANGE THE LAYOUT OR SIZE OF STRUCTURES - */ - -/* - * Structures and functions to receive and process input events in - * native code. - * - * NOTE: These functions MUST be implemented by /system/lib/libui.so - */ - -#include <stdint.h> -#include <sys/types.h> -#include "android_keycodes.h" -#include <android/looper.h> - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * Key states (may be returned by queries about the current state of a - * particular key code, scan code or switch). - */ -enum { - /* The key state is unknown or the requested key itself is not supported. */ - AKEY_STATE_UNKNOWN = -1, - - /* The key is up. */ - AKEY_STATE_UP = 0, - - /* The key is down. */ - AKEY_STATE_DOWN = 1, - - /* The key is down but is a virtual key press that is being emulated by the system. */ - AKEY_STATE_VIRTUAL = 2 -}; - -/* - * Meta key / modifer state. - */ -enum { - /* No meta keys are pressed. */ - AMETA_NONE = 0, - - /* This mask is used to check whether one of the ALT meta keys is pressed. */ - AMETA_ALT_ON = 0x02, - - /* This mask is used to check whether the left ALT meta key is pressed. */ - AMETA_ALT_LEFT_ON = 0x10, - - /* This mask is used to check whether the right ALT meta key is pressed. */ - AMETA_ALT_RIGHT_ON = 0x20, - - /* This mask is used to check whether one of the SHIFT meta keys is pressed. */ - AMETA_SHIFT_ON = 0x01, - - /* This mask is used to check whether the left SHIFT meta key is pressed. */ - AMETA_SHIFT_LEFT_ON = 0x40, - - /* This mask is used to check whether the right SHIFT meta key is pressed. */ - AMETA_SHIFT_RIGHT_ON = 0x80, - - /* This mask is used to check whether the SYM meta key is pressed. */ - AMETA_SYM_ON = 0x04, - - /* This mask is used to check whether the FUNCTION meta key is pressed. */ - AMETA_FUNCTION_ON = 0x08, - - /* This mask is used to check whether one of the CTRL meta keys is pressed. */ - AMETA_CTRL_ON = 0x1000, - - /* This mask is used to check whether the left CTRL meta key is pressed. */ - AMETA_CTRL_LEFT_ON = 0x2000, - - /* This mask is used to check whether the right CTRL meta key is pressed. */ - AMETA_CTRL_RIGHT_ON = 0x4000, - - /* This mask is used to check whether one of the META meta keys is pressed. */ - AMETA_META_ON = 0x10000, - - /* This mask is used to check whether the left META meta key is pressed. */ - AMETA_META_LEFT_ON = 0x20000, - - /* This mask is used to check whether the right META meta key is pressed. */ - AMETA_META_RIGHT_ON = 0x40000, - - /* This mask is used to check whether the CAPS LOCK meta key is on. */ - AMETA_CAPS_LOCK_ON = 0x100000, - - /* This mask is used to check whether the NUM LOCK meta key is on. */ - AMETA_NUM_LOCK_ON = 0x200000, - - /* This mask is used to check whether the SCROLL LOCK meta key is on. */ - AMETA_SCROLL_LOCK_ON = 0x400000, -}; - -/* - * Input events. - * - * Input events are opaque structures. Use the provided accessors functions to - * read their properties. - */ -struct AInputEvent; -typedef struct AInputEvent AInputEvent; - -/* - * Input event types. - */ -enum { - /* Indicates that the input event is a key event. */ - AINPUT_EVENT_TYPE_KEY = 1, - - /* Indicates that the input event is a motion event. */ - AINPUT_EVENT_TYPE_MOTION = 2 -}; - -/* - * Key event actions. - */ -enum { - /* The key has been pressed down. */ - AKEY_EVENT_ACTION_DOWN = 0, - - /* The key has been released. */ - AKEY_EVENT_ACTION_UP = 1, - - /* Multiple duplicate key events have occurred in a row, or a complex string is - * being delivered. The repeat_count property of the key event contains the number - * of times the given key code should be executed. - */ - AKEY_EVENT_ACTION_MULTIPLE = 2 -}; - -/* - * Key event flags. - */ -enum { - /* This mask is set if the device woke because of this key event. */ - AKEY_EVENT_FLAG_WOKE_HERE = 0x1, - - /* This mask is set if the key event was generated by a software keyboard. */ - AKEY_EVENT_FLAG_SOFT_KEYBOARD = 0x2, - - /* This mask is set if we don't want the key event to cause us to leave touch mode. */ - AKEY_EVENT_FLAG_KEEP_TOUCH_MODE = 0x4, - - /* This mask is set if an event was known to come from a trusted part - * of the system. That is, the event is known to come from the user, - * and could not have been spoofed by a third party component. */ - AKEY_EVENT_FLAG_FROM_SYSTEM = 0x8, - - /* This mask is used for compatibility, to identify enter keys that are - * coming from an IME whose enter key has been auto-labelled "next" or - * "done". This allows TextView to dispatch these as normal enter keys - * for old applications, but still do the appropriate action when - * receiving them. */ - AKEY_EVENT_FLAG_EDITOR_ACTION = 0x10, - - /* When associated with up key events, this indicates that the key press - * has been canceled. Typically this is used with virtual touch screen - * keys, where the user can slide from the virtual key area on to the - * display: in that case, the application will receive a canceled up - * event and should not perform the action normally associated with the - * key. Note that for this to work, the application can not perform an - * action for a key until it receives an up or the long press timeout has - * expired. */ - AKEY_EVENT_FLAG_CANCELED = 0x20, - - /* This key event was generated by a virtual (on-screen) hard key area. - * Typically this is an area of the touchscreen, outside of the regular - * display, dedicated to "hardware" buttons. */ - AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY = 0x40, - - /* This flag is set for the first key repeat that occurs after the - * long press timeout. */ - AKEY_EVENT_FLAG_LONG_PRESS = 0x80, - - /* Set when a key event has AKEY_EVENT_FLAG_CANCELED set because a long - * press action was executed while it was down. */ - AKEY_EVENT_FLAG_CANCELED_LONG_PRESS = 0x100, - - /* Set for AKEY_EVENT_ACTION_UP when this event's key code is still being - * tracked from its initial down. That is, somebody requested that tracking - * started on the key down and a long press has not caused - * the tracking to be canceled. */ - AKEY_EVENT_FLAG_TRACKING = 0x200, - - /* Set when a key event has been synthesized to implement default behavior - * for an event that the application did not handle. - * Fallback key events are generated by unhandled trackball motions - * (to emulate a directional keypad) and by certain unhandled key presses - * that are declared in the key map (such as special function numeric keypad - * keys when numlock is off). */ - AKEY_EVENT_FLAG_FALLBACK = 0x400, -}; - -/* - * Motion event actions. - */ - -/* Bit shift for the action bits holding the pointer index as - * defined by AMOTION_EVENT_ACTION_POINTER_INDEX_MASK. - */ -#define AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT 8 - -enum { - /* Bit mask of the parts of the action code that are the action itself. - */ - AMOTION_EVENT_ACTION_MASK = 0xff, - - /* Bits in the action code that represent a pointer index, used with - * AMOTION_EVENT_ACTION_POINTER_DOWN and AMOTION_EVENT_ACTION_POINTER_UP. Shifting - * down by AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT provides the actual pointer - * index where the data for the pointer going up or down can be found. - */ - AMOTION_EVENT_ACTION_POINTER_INDEX_MASK = 0xff00, - - /* A pressed gesture has started, the motion contains the initial starting location. - */ - AMOTION_EVENT_ACTION_DOWN = 0, - - /* A pressed gesture has finished, the motion contains the final release location - * as well as any intermediate points since the last down or move event. - */ - AMOTION_EVENT_ACTION_UP = 1, - - /* A change has happened during a press gesture (between AMOTION_EVENT_ACTION_DOWN and - * AMOTION_EVENT_ACTION_UP). The motion contains the most recent point, as well as - * any intermediate points since the last down or move event. - */ - AMOTION_EVENT_ACTION_MOVE = 2, - - /* The current gesture has been aborted. - * You will not receive any more points in it. You should treat this as - * an up event, but not perform any action that you normally would. - */ - AMOTION_EVENT_ACTION_CANCEL = 3, - - /* A movement has happened outside of the normal bounds of the UI element. - * This does not provide a full gesture, but only the initial location of the movement/touch. - */ - AMOTION_EVENT_ACTION_OUTSIDE = 4, - - /* A non-primary pointer has gone down. - * The bits in AMOTION_EVENT_ACTION_POINTER_INDEX_MASK indicate which pointer changed. - */ - AMOTION_EVENT_ACTION_POINTER_DOWN = 5, - - /* A non-primary pointer has gone up. - * The bits in AMOTION_EVENT_ACTION_POINTER_INDEX_MASK indicate which pointer changed. - */ - AMOTION_EVENT_ACTION_POINTER_UP = 6, - - /* A change happened but the pointer is not down (unlike AMOTION_EVENT_ACTION_MOVE). - * The motion contains the most recent point, as well as any intermediate points since - * the last hover move event. - */ - AMOTION_EVENT_ACTION_HOVER_MOVE = 7, - - /* The motion event contains relative vertical and/or horizontal scroll offsets. - * Use getAxisValue to retrieve the information from AMOTION_EVENT_AXIS_VSCROLL - * and AMOTION_EVENT_AXIS_HSCROLL. - * The pointer may or may not be down when this event is dispatched. - * This action is always delivered to the winder under the pointer, which - * may not be the window currently touched. - */ - AMOTION_EVENT_ACTION_SCROLL = 8, - - /* The pointer is not down but has entered the boundaries of a window or view. - */ - AMOTION_EVENT_ACTION_HOVER_ENTER = 9, - - /* The pointer is not down but has exited the boundaries of a window or view. - */ - AMOTION_EVENT_ACTION_HOVER_EXIT = 10, -}; - -/* - * Motion event flags. - */ -enum { - /* This flag indicates that the window that received this motion event is partly - * or wholly obscured by another visible window above it. This flag is set to true - * even if the event did not directly pass through the obscured area. - * A security sensitive application can check this flag to identify situations in which - * a malicious application may have covered up part of its content for the purpose - * of misleading the user or hijacking touches. An appropriate response might be - * to drop the suspect touches or to take additional precautions to confirm the user's - * actual intent. - */ - AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED = 0x1, -}; - -/* - * Motion event edge touch flags. - */ -enum { - /* No edges intersected */ - AMOTION_EVENT_EDGE_FLAG_NONE = 0, - - /* Flag indicating the motion event intersected the top edge of the screen. */ - AMOTION_EVENT_EDGE_FLAG_TOP = 0x01, - - /* Flag indicating the motion event intersected the bottom edge of the screen. */ - AMOTION_EVENT_EDGE_FLAG_BOTTOM = 0x02, - - /* Flag indicating the motion event intersected the left edge of the screen. */ - AMOTION_EVENT_EDGE_FLAG_LEFT = 0x04, - - /* Flag indicating the motion event intersected the right edge of the screen. */ - AMOTION_EVENT_EDGE_FLAG_RIGHT = 0x08 -}; - -/* - * Constants that identify each individual axis of a motion event. - * Refer to the documentation on the MotionEvent class for descriptions of each axis. - */ -enum { - AMOTION_EVENT_AXIS_X = 0, - AMOTION_EVENT_AXIS_Y = 1, - AMOTION_EVENT_AXIS_PRESSURE = 2, - AMOTION_EVENT_AXIS_SIZE = 3, - AMOTION_EVENT_AXIS_TOUCH_MAJOR = 4, - AMOTION_EVENT_AXIS_TOUCH_MINOR = 5, - AMOTION_EVENT_AXIS_TOOL_MAJOR = 6, - AMOTION_EVENT_AXIS_TOOL_MINOR = 7, - AMOTION_EVENT_AXIS_ORIENTATION = 8, - AMOTION_EVENT_AXIS_VSCROLL = 9, - AMOTION_EVENT_AXIS_HSCROLL = 10, - AMOTION_EVENT_AXIS_Z = 11, - AMOTION_EVENT_AXIS_RX = 12, - AMOTION_EVENT_AXIS_RY = 13, - AMOTION_EVENT_AXIS_RZ = 14, - AMOTION_EVENT_AXIS_HAT_X = 15, - AMOTION_EVENT_AXIS_HAT_Y = 16, - AMOTION_EVENT_AXIS_LTRIGGER = 17, - AMOTION_EVENT_AXIS_RTRIGGER = 18, - AMOTION_EVENT_AXIS_THROTTLE = 19, - AMOTION_EVENT_AXIS_RUDDER = 20, - AMOTION_EVENT_AXIS_WHEEL = 21, - AMOTION_EVENT_AXIS_GAS = 22, - AMOTION_EVENT_AXIS_BRAKE = 23, - AMOTION_EVENT_AXIS_DISTANCE = 24, - AMOTION_EVENT_AXIS_TILT = 25, - AMOTION_EVENT_AXIS_GENERIC_1 = 32, - AMOTION_EVENT_AXIS_GENERIC_2 = 33, - AMOTION_EVENT_AXIS_GENERIC_3 = 34, - AMOTION_EVENT_AXIS_GENERIC_4 = 35, - AMOTION_EVENT_AXIS_GENERIC_5 = 36, - AMOTION_EVENT_AXIS_GENERIC_6 = 37, - AMOTION_EVENT_AXIS_GENERIC_7 = 38, - AMOTION_EVENT_AXIS_GENERIC_8 = 39, - AMOTION_EVENT_AXIS_GENERIC_9 = 40, - AMOTION_EVENT_AXIS_GENERIC_10 = 41, - AMOTION_EVENT_AXIS_GENERIC_11 = 42, - AMOTION_EVENT_AXIS_GENERIC_12 = 43, - AMOTION_EVENT_AXIS_GENERIC_13 = 44, - AMOTION_EVENT_AXIS_GENERIC_14 = 45, - AMOTION_EVENT_AXIS_GENERIC_15 = 46, - AMOTION_EVENT_AXIS_GENERIC_16 = 47, - - // NOTE: If you add a new axis here you must also add it to several other files. - // Refer to frameworks/base/core/java/android/view/MotionEvent.java for the full list. -}; - -/* - * Constants that identify buttons that are associated with motion events. - * Refer to the documentation on the MotionEvent class for descriptions of each button. - */ -enum { - AMOTION_EVENT_BUTTON_PRIMARY = 1 << 0, - AMOTION_EVENT_BUTTON_SECONDARY = 1 << 1, - AMOTION_EVENT_BUTTON_TERTIARY = 1 << 2, - AMOTION_EVENT_BUTTON_BACK = 1 << 3, - AMOTION_EVENT_BUTTON_FORWARD = 1 << 4, -}; - -/* - * Constants that identify tool types. - * Refer to the documentation on the MotionEvent class for descriptions of each tool type. - */ -enum { - AMOTION_EVENT_TOOL_TYPE_UNKNOWN = 0, - AMOTION_EVENT_TOOL_TYPE_FINGER = 1, - AMOTION_EVENT_TOOL_TYPE_STYLUS = 2, - AMOTION_EVENT_TOOL_TYPE_MOUSE = 3, - AMOTION_EVENT_TOOL_TYPE_ERASER = 4, -}; - -/* - * Input sources. - * - * Refer to the documentation on android.view.InputDevice for more details about input sources - * and their correct interpretation. - */ -enum { - AINPUT_SOURCE_CLASS_MASK = 0x000000ff, - - AINPUT_SOURCE_CLASS_NONE = 0x00000000, - AINPUT_SOURCE_CLASS_BUTTON = 0x00000001, - AINPUT_SOURCE_CLASS_POINTER = 0x00000002, - AINPUT_SOURCE_CLASS_NAVIGATION = 0x00000004, - AINPUT_SOURCE_CLASS_POSITION = 0x00000008, - AINPUT_SOURCE_CLASS_JOYSTICK = 0x00000010, -}; - -enum { - AINPUT_SOURCE_UNKNOWN = 0x00000000, - - AINPUT_SOURCE_KEYBOARD = 0x00000100 | AINPUT_SOURCE_CLASS_BUTTON, - AINPUT_SOURCE_DPAD = 0x00000200 | AINPUT_SOURCE_CLASS_BUTTON, - AINPUT_SOURCE_GAMEPAD = 0x00000400 | AINPUT_SOURCE_CLASS_BUTTON, - AINPUT_SOURCE_TOUCHSCREEN = 0x00001000 | AINPUT_SOURCE_CLASS_POINTER, - AINPUT_SOURCE_MOUSE = 0x00002000 | AINPUT_SOURCE_CLASS_POINTER, - AINPUT_SOURCE_STYLUS = 0x00004000 | AINPUT_SOURCE_CLASS_POINTER, - AINPUT_SOURCE_TRACKBALL = 0x00010000 | AINPUT_SOURCE_CLASS_NAVIGATION, - AINPUT_SOURCE_TOUCHPAD = 0x00100000 | AINPUT_SOURCE_CLASS_POSITION, - AINPUT_SOURCE_TOUCH_NAVIGATION = 0x00200000 | AINPUT_SOURCE_CLASS_NONE, - AINPUT_SOURCE_JOYSTICK = 0x01000000 | AINPUT_SOURCE_CLASS_JOYSTICK, - - AINPUT_SOURCE_ANY = 0xffffff00, -}; - -/* - * Keyboard types. - * - * Refer to the documentation on android.view.InputDevice for more details. - */ -enum { - AINPUT_KEYBOARD_TYPE_NONE = 0, - AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC = 1, - AINPUT_KEYBOARD_TYPE_ALPHABETIC = 2, -}; - -/* - * Constants used to retrieve information about the range of motion for a particular - * coordinate of a motion event. - * - * Refer to the documentation on android.view.InputDevice for more details about input sources - * and their correct interpretation. - * - * DEPRECATION NOTICE: These constants are deprecated. Use AMOTION_EVENT_AXIS_* constants instead. - */ -enum { - AINPUT_MOTION_RANGE_X = AMOTION_EVENT_AXIS_X, - AINPUT_MOTION_RANGE_Y = AMOTION_EVENT_AXIS_Y, - AINPUT_MOTION_RANGE_PRESSURE = AMOTION_EVENT_AXIS_PRESSURE, - AINPUT_MOTION_RANGE_SIZE = AMOTION_EVENT_AXIS_SIZE, - AINPUT_MOTION_RANGE_TOUCH_MAJOR = AMOTION_EVENT_AXIS_TOUCH_MAJOR, - AINPUT_MOTION_RANGE_TOUCH_MINOR = AMOTION_EVENT_AXIS_TOUCH_MINOR, - AINPUT_MOTION_RANGE_TOOL_MAJOR = AMOTION_EVENT_AXIS_TOOL_MAJOR, - AINPUT_MOTION_RANGE_TOOL_MINOR = AMOTION_EVENT_AXIS_TOOL_MINOR, - AINPUT_MOTION_RANGE_ORIENTATION = AMOTION_EVENT_AXIS_ORIENTATION, -} __attribute__ ((deprecated)); - - -/* - * Input event accessors. - * - * Note that most functions can only be used on input events that are of a given type. - * Calling these functions on input events of other types will yield undefined behavior. - */ - -/*** Accessors for all input events. ***/ - -/* Get the input event type. */ -int32_t AInputEvent_getType(const AInputEvent* event); - -/* Get the id for the device that an input event came from. - * - * Input events can be generated by multiple different input devices. - * Use the input device id to obtain information about the input - * device that was responsible for generating a particular event. - * - * An input device id of 0 indicates that the event didn't come from a physical device; - * other numbers are arbitrary and you shouldn't depend on the values. - * Use the provided input device query API to obtain information about input devices. - */ -int32_t AInputEvent_getDeviceId(const AInputEvent* event); - -/* Get the input event source. */ -int32_t AInputEvent_getSource(const AInputEvent* event); - -/*** Accessors for key events only. ***/ - -/* Get the key event action. */ -int32_t AKeyEvent_getAction(const AInputEvent* key_event); - -/* Get the key event flags. */ -int32_t AKeyEvent_getFlags(const AInputEvent* key_event); - -/* Get the key code of the key event. - * This is the physical key that was pressed, not the Unicode character. */ -int32_t AKeyEvent_getKeyCode(const AInputEvent* key_event); - -/* Get the hardware key id of this key event. - * These values are not reliable and vary from device to device. */ -int32_t AKeyEvent_getScanCode(const AInputEvent* key_event); - -/* Get the meta key state. */ -int32_t AKeyEvent_getMetaState(const AInputEvent* key_event); - -/* Get the repeat count of the event. - * For both key up an key down events, this is the number of times the key has - * repeated with the first down starting at 0 and counting up from there. For - * multiple key events, this is the number of down/up pairs that have occurred. */ -int32_t AKeyEvent_getRepeatCount(const AInputEvent* key_event); - -/* Get the time of the most recent key down event, in the - * java.lang.System.nanoTime() time base. If this is a down event, - * this will be the same as eventTime. - * Note that when chording keys, this value is the down time of the most recently - * pressed key, which may not be the same physical key of this event. */ -int64_t AKeyEvent_getDownTime(const AInputEvent* key_event); - -/* Get the time this event occurred, in the - * java.lang.System.nanoTime() time base. */ -int64_t AKeyEvent_getEventTime(const AInputEvent* key_event); - -/*** Accessors for motion events only. ***/ - -/* Get the combined motion event action code and pointer index. */ -int32_t AMotionEvent_getAction(const AInputEvent* motion_event); - -/* Get the motion event flags. */ -int32_t AMotionEvent_getFlags(const AInputEvent* motion_event); - -/* Get the state of any meta / modifier keys that were in effect when the - * event was generated. */ -int32_t AMotionEvent_getMetaState(const AInputEvent* motion_event); - -/* Get the button state of all buttons that are pressed. */ -int32_t AMotionEvent_getButtonState(const AInputEvent* motion_event); - -/* Get a bitfield indicating which edges, if any, were touched by this motion event. - * For touch events, clients can use this to determine if the user's finger was - * touching the edge of the display. */ -int32_t AMotionEvent_getEdgeFlags(const AInputEvent* motion_event); - -/* Get the time when the user originally pressed down to start a stream of - * position events, in the java.lang.System.nanoTime() time base. */ -int64_t AMotionEvent_getDownTime(const AInputEvent* motion_event); - -/* Get the time when this specific event was generated, - * in the java.lang.System.nanoTime() time base. */ -int64_t AMotionEvent_getEventTime(const AInputEvent* motion_event); - -/* Get the X coordinate offset. - * For touch events on the screen, this is the delta that was added to the raw - * screen coordinates to adjust for the absolute position of the containing windows - * and views. */ -float AMotionEvent_getXOffset(const AInputEvent* motion_event); - -/* Get the precision of the Y coordinates being reported. - * For touch events on the screen, this is the delta that was added to the raw - * screen coordinates to adjust for the absolute position of the containing windows - * and views. */ -float AMotionEvent_getYOffset(const AInputEvent* motion_event); - -/* Get the precision of the X coordinates being reported. - * You can multiply this number with an X coordinate sample to find the - * actual hardware value of the X coordinate. */ -float AMotionEvent_getXPrecision(const AInputEvent* motion_event); - -/* Get the precision of the Y coordinates being reported. - * You can multiply this number with a Y coordinate sample to find the - * actual hardware value of the Y coordinate. */ -float AMotionEvent_getYPrecision(const AInputEvent* motion_event); - -/* Get the number of pointers of data contained in this event. - * Always >= 1. */ -size_t AMotionEvent_getPointerCount(const AInputEvent* motion_event); - -/* Get the pointer identifier associated with a particular pointer - * data index in this event. The identifier tells you the actual pointer - * number associated with the data, accounting for individual pointers - * going up and down since the start of the current gesture. */ -int32_t AMotionEvent_getPointerId(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the tool type of a pointer for the given pointer index. - * The tool type indicates the type of tool used to make contact such as a - * finger or stylus, if known. */ -int32_t AMotionEvent_getToolType(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the original raw X coordinate of this event. - * For touch events on the screen, this is the original location of the event - * on the screen, before it had been adjusted for the containing window - * and views. */ -float AMotionEvent_getRawX(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the original raw X coordinate of this event. - * For touch events on the screen, this is the original location of the event - * on the screen, before it had been adjusted for the containing window - * and views. */ -float AMotionEvent_getRawY(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current X coordinate of this event for the given pointer index. - * Whole numbers are pixels; the value may have a fraction for input devices - * that are sub-pixel precise. */ -float AMotionEvent_getX(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current Y coordinate of this event for the given pointer index. - * Whole numbers are pixels; the value may have a fraction for input devices - * that are sub-pixel precise. */ -float AMotionEvent_getY(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current pressure of this event for the given pointer index. - * The pressure generally ranges from 0 (no pressure at all) to 1 (normal pressure), - * although values higher than 1 may be generated depending on the calibration of - * the input device. */ -float AMotionEvent_getPressure(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current scaled value of the approximate size for the given pointer index. - * This represents some approximation of the area of the screen being - * pressed; the actual value in pixels corresponding to the - * touch is normalized with the device specific range of values - * and scaled to a value between 0 and 1. The value of size can be used to - * determine fat touch events. */ -float AMotionEvent_getSize(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current length of the major axis of an ellipse that describes the touch area - * at the point of contact for the given pointer index. */ -float AMotionEvent_getTouchMajor(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current length of the minor axis of an ellipse that describes the touch area - * at the point of contact for the given pointer index. */ -float AMotionEvent_getTouchMinor(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current length of the major axis of an ellipse that describes the size - * of the approaching tool for the given pointer index. - * The tool area represents the estimated size of the finger or pen that is - * touching the device independent of its actual touch area at the point of contact. */ -float AMotionEvent_getToolMajor(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current length of the minor axis of an ellipse that describes the size - * of the approaching tool for the given pointer index. - * The tool area represents the estimated size of the finger or pen that is - * touching the device independent of its actual touch area at the point of contact. */ -float AMotionEvent_getToolMinor(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the current orientation of the touch area and tool area in radians clockwise from - * vertical for the given pointer index. - * An angle of 0 degrees indicates that the major axis of contact is oriented - * upwards, is perfectly circular or is of unknown orientation. A positive angle - * indicates that the major axis of contact is oriented to the right. A negative angle - * indicates that the major axis of contact is oriented to the left. - * The full range is from -PI/2 radians (finger pointing fully left) to PI/2 radians - * (finger pointing fully right). */ -float AMotionEvent_getOrientation(const AInputEvent* motion_event, size_t pointer_index); - -/* Get the value of the request axis for the given pointer index. */ -float AMotionEvent_getAxisValue(const AInputEvent* motion_event, - int32_t axis, size_t pointer_index); - -/* Get the number of historical points in this event. These are movements that - * have occurred between this event and the previous event. This only applies - * to AMOTION_EVENT_ACTION_MOVE events -- all other actions will have a size of 0. - * Historical samples are indexed from oldest to newest. */ -size_t AMotionEvent_getHistorySize(const AInputEvent* motion_event); - -/* Get the time that a historical movement occurred between this event and - * the previous event, in the java.lang.System.nanoTime() time base. */ -int64_t AMotionEvent_getHistoricalEventTime(AInputEvent* motion_event, - size_t history_index); - -/* Get the historical raw X coordinate of this event for the given pointer index that - * occurred between this event and the previous motion event. - * For touch events on the screen, this is the original location of the event - * on the screen, before it had been adjusted for the containing window - * and views. - * Whole numbers are pixels; the value may have a fraction for input devices - * that are sub-pixel precise. */ -float AMotionEvent_getHistoricalRawX(const AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical raw Y coordinate of this event for the given pointer index that - * occurred between this event and the previous motion event. - * For touch events on the screen, this is the original location of the event - * on the screen, before it had been adjusted for the containing window - * and views. - * Whole numbers are pixels; the value may have a fraction for input devices - * that are sub-pixel precise. */ -float AMotionEvent_getHistoricalRawY(const AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical X coordinate of this event for the given pointer index that - * occurred between this event and the previous motion event. - * Whole numbers are pixels; the value may have a fraction for input devices - * that are sub-pixel precise. */ -float AMotionEvent_getHistoricalX(AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical Y coordinate of this event for the given pointer index that - * occurred between this event and the previous motion event. - * Whole numbers are pixels; the value may have a fraction for input devices - * that are sub-pixel precise. */ -float AMotionEvent_getHistoricalY(AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical pressure of this event for the given pointer index that - * occurred between this event and the previous motion event. - * The pressure generally ranges from 0 (no pressure at all) to 1 (normal pressure), - * although values higher than 1 may be generated depending on the calibration of - * the input device. */ -float AMotionEvent_getHistoricalPressure(AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the current scaled value of the approximate size for the given pointer index that - * occurred between this event and the previous motion event. - * This represents some approximation of the area of the screen being - * pressed; the actual value in pixels corresponding to the - * touch is normalized with the device specific range of values - * and scaled to a value between 0 and 1. The value of size can be used to - * determine fat touch events. */ -float AMotionEvent_getHistoricalSize(AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical length of the major axis of an ellipse that describes the touch area - * at the point of contact for the given pointer index that - * occurred between this event and the previous motion event. */ -float AMotionEvent_getHistoricalTouchMajor(const AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical length of the minor axis of an ellipse that describes the touch area - * at the point of contact for the given pointer index that - * occurred between this event and the previous motion event. */ -float AMotionEvent_getHistoricalTouchMinor(const AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical length of the major axis of an ellipse that describes the size - * of the approaching tool for the given pointer index that - * occurred between this event and the previous motion event. - * The tool area represents the estimated size of the finger or pen that is - * touching the device independent of its actual touch area at the point of contact. */ -float AMotionEvent_getHistoricalToolMajor(const AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical length of the minor axis of an ellipse that describes the size - * of the approaching tool for the given pointer index that - * occurred between this event and the previous motion event. - * The tool area represents the estimated size of the finger or pen that is - * touching the device independent of its actual touch area at the point of contact. */ -float AMotionEvent_getHistoricalToolMinor(const AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical orientation of the touch area and tool area in radians clockwise from - * vertical for the given pointer index that - * occurred between this event and the previous motion event. - * An angle of 0 degrees indicates that the major axis of contact is oriented - * upwards, is perfectly circular or is of unknown orientation. A positive angle - * indicates that the major axis of contact is oriented to the right. A negative angle - * indicates that the major axis of contact is oriented to the left. - * The full range is from -PI/2 radians (finger pointing fully left) to PI/2 radians - * (finger pointing fully right). */ -float AMotionEvent_getHistoricalOrientation(const AInputEvent* motion_event, size_t pointer_index, - size_t history_index); - -/* Get the historical value of the request axis for the given pointer index - * that occurred between this event and the previous motion event. */ -float AMotionEvent_getHistoricalAxisValue(const AInputEvent* motion_event, - int32_t axis, size_t pointer_index, size_t history_index); - - -/* - * Input queue - * - * An input queue is the facility through which you retrieve input - * events. - */ -struct AInputQueue; -typedef struct AInputQueue AInputQueue; - -/* - * Add this input queue to a looper for processing. See - * ALooper_addFd() for information on the ident, callback, and data params. - */ -void AInputQueue_attachLooper(AInputQueue* queue, ALooper* looper, - int ident, ALooper_callbackFunc callback, void* data); - -/* - * Remove the input queue from the looper it is currently attached to. - */ -void AInputQueue_detachLooper(AInputQueue* queue); - -/* - * Returns true if there are one or more events available in the - * input queue. Returns 1 if the queue has events; 0 if - * it does not have events; and a negative value if there is an error. - */ -int32_t AInputQueue_hasEvents(AInputQueue* queue); - -/* - * Returns the next available event from the queue. Returns a negative - * value if no events are available or an error has occurred. - */ -int32_t AInputQueue_getEvent(AInputQueue* queue, AInputEvent** outEvent); - -/* - * Sends the key for standard pre-dispatching -- that is, possibly deliver - * it to the current IME to be consumed before the app. Returns 0 if it - * was not pre-dispatched, meaning you can process it right now. If non-zero - * is returned, you must abandon the current event processing and allow the - * event to appear again in the event queue (if it does not get consumed during - * pre-dispatching). - */ -int32_t AInputQueue_preDispatchEvent(AInputQueue* queue, AInputEvent* event); - -/* - * Report that dispatching has finished with the given event. - * This must be called after receiving an event with AInputQueue_get_event(). - */ -void AInputQueue_finishEvent(AInputQueue* queue, AInputEvent* event, int handled); - -#ifdef __cplusplus -} -#endif - -#endif // _ANDROID_INPUT_H |