diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /toolkit/crashreporter/google-breakpad/src/common/dwarf/bytereader.h | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'toolkit/crashreporter/google-breakpad/src/common/dwarf/bytereader.h')
-rw-r--r-- | toolkit/crashreporter/google-breakpad/src/common/dwarf/bytereader.h | 315 |
1 files changed, 315 insertions, 0 deletions
diff --git a/toolkit/crashreporter/google-breakpad/src/common/dwarf/bytereader.h b/toolkit/crashreporter/google-breakpad/src/common/dwarf/bytereader.h new file mode 100644 index 000000000..59d430348 --- /dev/null +++ b/toolkit/crashreporter/google-breakpad/src/common/dwarf/bytereader.h @@ -0,0 +1,315 @@ +// -*- mode: C++ -*- + +// Copyright (c) 2010 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef COMMON_DWARF_BYTEREADER_H__ +#define COMMON_DWARF_BYTEREADER_H__ + +#include <stdint.h> + +#include <string> + +#include "common/dwarf/types.h" +#include "common/dwarf/dwarf2enums.h" + +namespace dwarf2reader { + +// We can't use the obvious name of LITTLE_ENDIAN and BIG_ENDIAN +// because it conflicts with a macro +enum Endianness { + ENDIANNESS_BIG, + ENDIANNESS_LITTLE +}; + +// A ByteReader knows how to read single- and multi-byte values of +// various endiannesses, sizes, and encodings, as used in DWARF +// debugging information and Linux C++ exception handling data. +class ByteReader { + public: + // Construct a ByteReader capable of reading one-, two-, four-, and + // eight-byte values according to ENDIANNESS, absolute machine-sized + // addresses, DWARF-style "initial length" values, signed and + // unsigned LEB128 numbers, and Linux C++ exception handling data's + // encoded pointers. + explicit ByteReader(enum Endianness endianness); + virtual ~ByteReader(); + + // Read a single byte from BUFFER and return it as an unsigned 8 bit + // number. + uint8 ReadOneByte(const uint8_t *buffer) const; + + // Read two bytes from BUFFER and return them as an unsigned 16 bit + // number, using this ByteReader's endianness. + uint16 ReadTwoBytes(const uint8_t *buffer) const; + + // Read four bytes from BUFFER and return them as an unsigned 32 bit + // number, using this ByteReader's endianness. This function returns + // a uint64 so that it is compatible with ReadAddress and + // ReadOffset. The number it returns will never be outside the range + // of an unsigned 32 bit integer. + uint64 ReadFourBytes(const uint8_t *buffer) const; + + // Read eight bytes from BUFFER and return them as an unsigned 64 + // bit number, using this ByteReader's endianness. + uint64 ReadEightBytes(const uint8_t *buffer) const; + + // Read an unsigned LEB128 (Little Endian Base 128) number from + // BUFFER and return it as an unsigned 64 bit integer. Set LEN to + // the number of bytes read. + // + // The unsigned LEB128 representation of an integer N is a variable + // number of bytes: + // + // - If N is between 0 and 0x7f, then its unsigned LEB128 + // representation is a single byte whose value is N. + // + // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) | + // 0x80, followed by the unsigned LEB128 representation of N / + // 128, rounded towards negative infinity. + // + // In other words, we break VALUE into groups of seven bits, put + // them in little-endian order, and then write them as eight-bit + // bytes with the high bit on all but the last. + uint64 ReadUnsignedLEB128(const uint8_t *buffer, size_t *len) const; + + // Read a signed LEB128 number from BUFFER and return it as an + // signed 64 bit integer. Set LEN to the number of bytes read. + // + // The signed LEB128 representation of an integer N is a variable + // number of bytes: + // + // - If N is between -0x40 and 0x3f, then its signed LEB128 + // representation is a single byte whose value is N in two's + // complement. + // + // - Otherwise, its signed LEB128 representation is (N & 0x7f) | + // 0x80, followed by the signed LEB128 representation of N / 128, + // rounded towards negative infinity. + // + // In other words, we break VALUE into groups of seven bits, put + // them in little-endian order, and then write them as eight-bit + // bytes with the high bit on all but the last. + int64 ReadSignedLEB128(const uint8_t *buffer, size_t *len) const; + + // Indicate that addresses on this architecture are SIZE bytes long. SIZE + // must be either 4 or 8. (DWARF allows addresses to be any number of + // bytes in length from 1 to 255, but we only support 32- and 64-bit + // addresses at the moment.) You must call this before using the + // ReadAddress member function. + // + // For data in a .debug_info section, or something that .debug_info + // refers to like line number or macro data, the compilation unit + // header's address_size field indicates the address size to use. Call + // frame information doesn't indicate its address size (a shortcoming of + // the spec); you must supply the appropriate size based on the + // architecture of the target machine. + void SetAddressSize(uint8 size); + + // Return the current address size, in bytes. This is either 4, + // indicating 32-bit addresses, or 8, indicating 64-bit addresses. + uint8 AddressSize() const { return address_size_; } + + // Read an address from BUFFER and return it as an unsigned 64 bit + // integer, respecting this ByteReader's endianness and address size. You + // must call SetAddressSize before calling this function. + uint64 ReadAddress(const uint8_t *buffer) const; + + // DWARF actually defines two slightly different formats: 32-bit DWARF + // and 64-bit DWARF. This is *not* related to the size of registers or + // addresses on the target machine; it refers only to the size of section + // offsets and data lengths appearing in the DWARF data. One only needs + // 64-bit DWARF when the debugging data itself is larger than 4GiB. + // 32-bit DWARF can handle x86_64 or PPC64 code just fine, unless the + // debugging data itself is very large. + // + // DWARF information identifies itself as 32-bit or 64-bit DWARF: each + // compilation unit and call frame information entry begins with an + // "initial length" field, which, in addition to giving the length of the + // data, also indicates the size of section offsets and lengths appearing + // in that data. The ReadInitialLength member function, below, reads an + // initial length and sets the ByteReader's offset size as a side effect. + // Thus, in the normal process of reading DWARF data, the appropriate + // offset size is set automatically. So, you should only need to call + // SetOffsetSize if you are using the same ByteReader to jump from the + // midst of one block of DWARF data into another. + + // Read a DWARF "initial length" field from START, and return it as + // an unsigned 64 bit integer, respecting this ByteReader's + // endianness. Set *LEN to the length of the initial length in + // bytes, either four or twelve. As a side effect, set this + // ByteReader's offset size to either 4 (if we see a 32-bit DWARF + // initial length) or 8 (if we see a 64-bit DWARF initial length). + // + // A DWARF initial length is either: + // + // - a byte count stored as an unsigned 32-bit value less than + // 0xffffff00, indicating that the data whose length is being + // measured uses the 32-bit DWARF format, or + // + // - The 32-bit value 0xffffffff, followed by a 64-bit byte count, + // indicating that the data whose length is being measured uses + // the 64-bit DWARF format. + uint64 ReadInitialLength(const uint8_t *start, size_t *len); + + // Read an offset from BUFFER and return it as an unsigned 64 bit + // integer, respecting the ByteReader's endianness. In 32-bit DWARF, the + // offset is 4 bytes long; in 64-bit DWARF, the offset is eight bytes + // long. You must call ReadInitialLength or SetOffsetSize before calling + // this function; see the comments above for details. + uint64 ReadOffset(const uint8_t *buffer) const; + + // Return the current offset size, in bytes. + // A return value of 4 indicates that we are reading 32-bit DWARF. + // A return value of 8 indicates that we are reading 64-bit DWARF. + uint8 OffsetSize() const { return offset_size_; } + + // Indicate that section offsets and lengths are SIZE bytes long. SIZE + // must be either 4 (meaning 32-bit DWARF) or 8 (meaning 64-bit DWARF). + // Usually, you should not call this function yourself; instead, let a + // call to ReadInitialLength establish the data's offset size + // automatically. + void SetOffsetSize(uint8 size); + + // The Linux C++ ABI uses a variant of DWARF call frame information + // for exception handling. This data is included in the program's + // address space as the ".eh_frame" section, and intepreted at + // runtime to walk the stack, find exception handlers, and run + // cleanup code. The format is mostly the same as DWARF CFI, with + // some adjustments made to provide the additional + // exception-handling data, and to make the data easier to work with + // in memory --- for example, to allow it to be placed in read-only + // memory even when describing position-independent code. + // + // In particular, exception handling data can select a number of + // different encodings for pointers that appear in the data, as + // described by the DwarfPointerEncoding enum. There are actually + // four axes(!) to the encoding: + // + // - The pointer size: pointers can be 2, 4, or 8 bytes long, or use + // the DWARF LEB128 encoding. + // + // - The pointer's signedness: pointers can be signed or unsigned. + // + // - The pointer's base address: the data stored in the exception + // handling data can be the actual address (that is, an absolute + // pointer), or relative to one of a number of different base + // addreses --- including that of the encoded pointer itself, for + // a form of "pc-relative" addressing. + // + // - The pointer may be indirect: it may be the address where the + // true pointer is stored. (This is used to refer to things via + // global offset table entries, program linkage table entries, or + // other tricks used in position-independent code.) + // + // There are also two options that fall outside that matrix + // altogether: the pointer may be omitted, or it may have padding to + // align it on an appropriate address boundary. (That last option + // may seem like it should be just another axis, but it is not.) + + // Indicate that the exception handling data is loaded starting at + // SECTION_BASE, and that the start of its buffer in our own memory + // is BUFFER_BASE. This allows us to find the address that a given + // byte in our buffer would have when loaded into the program the + // data describes. We need this to resolve DW_EH_PE_pcrel pointers. + void SetCFIDataBase(uint64 section_base, const uint8_t *buffer_base); + + // Indicate that the base address of the program's ".text" section + // is TEXT_BASE. We need this to resolve DW_EH_PE_textrel pointers. + void SetTextBase(uint64 text_base); + + // Indicate that the base address for DW_EH_PE_datarel pointers is + // DATA_BASE. The proper value depends on the ABI; it is usually the + // address of the global offset table, held in a designated register in + // position-independent code. You will need to look at the startup code + // for the target system to be sure. I tried; my eyes bled. + void SetDataBase(uint64 data_base); + + // Indicate that the base address for the FDE we are processing is + // FUNCTION_BASE. This is the start address of DW_EH_PE_funcrel + // pointers. (This encoding does not seem to be used by the GNU + // toolchain.) + void SetFunctionBase(uint64 function_base); + + // Indicate that we are no longer processing any FDE, so any use of + // a DW_EH_PE_funcrel encoding is an error. + void ClearFunctionBase(); + + // Return true if ENCODING is a valid pointer encoding. + bool ValidEncoding(DwarfPointerEncoding encoding) const; + + // Return true if we have all the information we need to read a + // pointer that uses ENCODING. This checks that the appropriate + // SetFooBase function for ENCODING has been called. + bool UsableEncoding(DwarfPointerEncoding encoding) const; + + // Read an encoded pointer from BUFFER using ENCODING; return the + // absolute address it represents, and set *LEN to the pointer's + // length in bytes, including any padding for aligned pointers. + // + // This function calls 'abort' if ENCODING is invalid or refers to a + // base address this reader hasn't been given, so you should check + // with ValidEncoding and UsableEncoding first if you would rather + // die in a more helpful way. + uint64 ReadEncodedPointer(const uint8_t *buffer, + DwarfPointerEncoding encoding, + size_t *len) const; + + Endianness GetEndianness() const; + private: + + // Function pointer type for our address and offset readers. + typedef uint64 (ByteReader::*AddressReader)(const uint8_t *) const; + + // Read an offset from BUFFER and return it as an unsigned 64 bit + // integer. DWARF2/3 define offsets as either 4 or 8 bytes, + // generally depending on the amount of DWARF2/3 info present. + // This function pointer gets set by SetOffsetSize. + AddressReader offset_reader_; + + // Read an address from BUFFER and return it as an unsigned 64 bit + // integer. DWARF2/3 allow addresses to be any size from 0-255 + // bytes currently. Internally we support 4 and 8 byte addresses, + // and will CHECK on anything else. + // This function pointer gets set by SetAddressSize. + AddressReader address_reader_; + + Endianness endian_; + uint8 address_size_; + uint8 offset_size_; + + // Base addresses for Linux C++ exception handling data's encoded pointers. + bool have_section_base_, have_text_base_, have_data_base_; + bool have_function_base_; + uint64 section_base_, text_base_, data_base_, function_base_; + const uint8_t *buffer_base_; +}; + +} // namespace dwarf2reader + +#endif // COMMON_DWARF_BYTEREADER_H__ |