diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /third_party/rust/byteorder/src/lib.rs | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'third_party/rust/byteorder/src/lib.rs')
-rw-r--r-- | third_party/rust/byteorder/src/lib.rs | 802 |
1 files changed, 802 insertions, 0 deletions
diff --git a/third_party/rust/byteorder/src/lib.rs b/third_party/rust/byteorder/src/lib.rs new file mode 100644 index 000000000..a25bab6e0 --- /dev/null +++ b/third_party/rust/byteorder/src/lib.rs @@ -0,0 +1,802 @@ +/*! +This crate provides convenience methods for encoding and decoding numbers +in either big-endian or little-endian order. + +The organization of the crate is pretty simple. A trait, `ByteOrder`, specifies +byte conversion methods for each type of number in Rust (sans numbers that have +a platform dependent size like `usize` and `isize`). Two types, `BigEndian` +and `LittleEndian` implement these methods. Finally, `ReadBytesExt` and +`WriteBytesExt` provide convenience methods available to all types that +implement `Read` and `Write`. + +# Examples + +Read unsigned 16 bit big-endian integers from a `Read` type: + +```rust +use std::io::Cursor; +use byteorder::{BigEndian, ReadBytesExt}; + +let mut rdr = Cursor::new(vec![2, 5, 3, 0]); +// Note that we use type parameters to indicate which kind of byte order +// we want! +assert_eq!(517, rdr.read_u16::<BigEndian>().unwrap()); +assert_eq!(768, rdr.read_u16::<BigEndian>().unwrap()); +``` + +Write unsigned 16 bit little-endian integers to a `Write` type: + +```rust +use byteorder::{LittleEndian, WriteBytesExt}; + +let mut wtr = vec![]; +wtr.write_u16::<LittleEndian>(517).unwrap(); +wtr.write_u16::<LittleEndian>(768).unwrap(); +assert_eq!(wtr, vec![5, 2, 0, 3]); +``` +*/ + +#![crate_name = "byteorder"] +#![doc(html_root_url = "http://burntsushi.net/rustdoc/byteorder")] + +#![cfg_attr(not(feature = "std"), no_std)] + +#![deny(missing_docs)] + +#[cfg(feature = "std")] +extern crate core; + +use core::mem::transmute; +use core::ptr::copy_nonoverlapping; + +#[cfg(feature = "std")] +pub use new::{ReadBytesExt, WriteBytesExt}; + +#[cfg(feature = "std")] +mod new; + +#[inline] +fn extend_sign(val: u64, nbytes: usize) -> i64 { + let shift = (8 - nbytes) * 8; + (val << shift) as i64 >> shift +} + +#[inline] +fn unextend_sign(val: i64, nbytes: usize) -> u64 { + let shift = (8 - nbytes) * 8; + (val << shift) as u64 >> shift +} + +#[inline] +fn pack_size(n: u64) -> usize { + if n < 1 << 8 { + 1 + } else if n < 1 << 16 { + 2 + } else if n < 1 << 24 { + 3 + } else if n < 1 << 32 { + 4 + } else if n < 1 << 40 { + 5 + } else if n < 1 << 48 { + 6 + } else if n < 1 << 56 { + 7 + } else { + 8 + } +} + +/// ByteOrder describes types that can serialize integers as bytes. +/// +/// Note that `Self` does not appear anywhere in this trait's definition! +/// Therefore, in order to use it, you'll need to use syntax like +/// `T::read_u16(&[0, 1])` where `T` implements `ByteOrder`. +/// +/// This crate provides two types that implement `ByteOrder`: `BigEndian` +/// and `LittleEndian`. +/// +/// # Examples +/// +/// Write and read `u32` numbers in little endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, LittleEndian}; +/// +/// let mut buf = [0; 4]; +/// LittleEndian::write_u32(&mut buf, 1_000_000); +/// assert_eq!(1_000_000, LittleEndian::read_u32(&buf)); +/// ``` +/// +/// Write and read `i16` numbers in big endian order: +/// +/// ```rust +/// use byteorder::{ByteOrder, BigEndian}; +/// +/// let mut buf = [0; 2]; +/// BigEndian::write_i16(&mut buf, -50_000); +/// assert_eq!(-50_000, BigEndian::read_i16(&buf)); +/// ``` +pub trait ByteOrder { + /// Reads an unsigned 16 bit integer from `buf`. + /// + /// Panics when `buf.len() < 2`. + fn read_u16(buf: &[u8]) -> u16; + + /// Reads an unsigned 32 bit integer from `buf`. + /// + /// Panics when `buf.len() < 4`. + fn read_u32(buf: &[u8]) -> u32; + + /// Reads an unsigned 64 bit integer from `buf`. + /// + /// Panics when `buf.len() < 8`. + fn read_u64(buf: &[u8]) -> u64; + + /// Reads an unsigned n-bytes integer from `buf`. + /// + /// Panics when `nbytes < 1` or `nbytes > 8` or + /// `buf.len() < nbytes` + fn read_uint(buf: &[u8], nbytes: usize) -> u64; + + /// Writes an unsigned 16 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 2`. + fn write_u16(buf: &mut [u8], n: u16); + + /// Writes an unsigned 32 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 4`. + fn write_u32(buf: &mut [u8], n: u32); + + /// Writes an unsigned 64 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 8`. + fn write_u64(buf: &mut [u8], n: u64); + + /// Writes an unsigned integer `n` to `buf` using only `nbytes`. + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 8`, then + /// this method panics. + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize); + + /// Reads a signed 16 bit integer from `buf`. + /// + /// Panics when `buf.len() < 2`. + #[inline] + fn read_i16(buf: &[u8]) -> i16 { + Self::read_u16(buf) as i16 + } + + /// Reads a signed 32 bit integer from `buf`. + /// + /// Panics when `buf.len() < 4`. + #[inline] + fn read_i32(buf: &[u8]) -> i32 { + Self::read_u32(buf) as i32 + } + + /// Reads a signed 64 bit integer from `buf`. + /// + /// Panics when `buf.len() < 8`. + #[inline] + fn read_i64(buf: &[u8]) -> i64 { + Self::read_u64(buf) as i64 + } + + /// Reads a signed n-bytes integer from `buf`. + /// + /// Panics when `nbytes < 1` or `nbytes > 8` or + /// `buf.len() < nbytes` + #[inline] + fn read_int(buf: &[u8], nbytes: usize) -> i64 { + extend_sign(Self::read_uint(buf, nbytes), nbytes) + } + + /// Reads a IEEE754 single-precision (4 bytes) floating point number. + /// + /// Panics when `buf.len() < 4`. + #[inline] + fn read_f32(buf: &[u8]) -> f32 { + unsafe { transmute(Self::read_u32(buf)) } + } + + /// Reads a IEEE754 double-precision (8 bytes) floating point number. + /// + /// Panics when `buf.len() < 8`. + #[inline] + fn read_f64(buf: &[u8]) -> f64 { + unsafe { transmute(Self::read_u64(buf)) } + } + + /// Writes a signed 16 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 2`. + #[inline] + fn write_i16(buf: &mut [u8], n: i16) { + Self::write_u16(buf, n as u16) + } + + /// Writes a signed 32 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 4`. + #[inline] + fn write_i32(buf: &mut [u8], n: i32) { + Self::write_u32(buf, n as u32) + } + + /// Writes a signed 64 bit integer `n` to `buf`. + /// + /// Panics when `buf.len() < 8`. + #[inline] + fn write_i64(buf: &mut [u8], n: i64) { + Self::write_u64(buf, n as u64) + } + + /// Writes a signed integer `n` to `buf` using only `nbytes`. + /// + /// If `n` is not representable in `nbytes`, or if `nbytes` is `> 8`, then + /// this method panics. + #[inline] + fn write_int(buf: &mut [u8], n: i64, nbytes: usize) { + Self::write_uint(buf, unextend_sign(n, nbytes), nbytes) + } + + /// Writes a IEEE754 single-precision (4 bytes) floating point number. + /// + /// Panics when `buf.len() < 4`. + #[inline] + fn write_f32(buf: &mut [u8], n: f32) { + Self::write_u32(buf, unsafe { transmute(n) }) + } + + /// Writes a IEEE754 double-precision (8 bytes) floating point number. + /// + /// Panics when `buf.len() < 8`. + #[inline] + fn write_f64(buf: &mut [u8], n: f64) { + Self::write_u64(buf, unsafe { transmute(n) }) + } +} + +/// Defines big-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +#[allow(missing_copy_implementations)] pub enum BigEndian {} + +/// Defines little-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +#[allow(missing_copy_implementations)] pub enum LittleEndian {} + +/// Defines network byte order serialization. +/// +/// Network byte order is defined by [RFC 1700][1] to be big-endian, and is +/// referred to in several protocol specifications. This type is an alias of +/// BigEndian. +/// +/// [1]: https://tools.ietf.org/html/rfc1700 +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +pub type NetworkEndian = BigEndian; + +/// Defines system native-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +#[cfg(target_endian = "little")] +pub type NativeEndian = LittleEndian; + +/// Defines system native-endian serialization. +/// +/// Note that this type has no value constructor. It is used purely at the +/// type level. +#[cfg(target_endian = "big")] +pub type NativeEndian = BigEndian; + +macro_rules! read_num_bytes { + ($ty:ty, $size:expr, $src:expr, $which:ident) => ({ + assert!($size == ::core::mem::size_of::<$ty>()); + assert!($size <= $src.len()); + let mut data: $ty = 0; + unsafe { + copy_nonoverlapping( + $src.as_ptr(), + &mut data as *mut $ty as *mut u8, + $size); + } + data.$which() + }); +} + +macro_rules! write_num_bytes { + ($ty:ty, $size:expr, $n:expr, $dst:expr, $which:ident) => ({ + assert!($size <= $dst.len()); + unsafe { + // N.B. https://github.com/rust-lang/rust/issues/22776 + let bytes = transmute::<_, [u8; $size]>($n.$which()); + copy_nonoverlapping((&bytes).as_ptr(), $dst.as_mut_ptr(), $size); + } + }); +} + +impl ByteOrder for BigEndian { + #[inline] + fn read_u16(buf: &[u8]) -> u16 { + read_num_bytes!(u16, 2, buf, to_be) + } + + #[inline] + fn read_u32(buf: &[u8]) -> u32 { + read_num_bytes!(u32, 4, buf, to_be) + } + + #[inline] + fn read_u64(buf: &[u8]) -> u64 { + read_num_bytes!(u64, 8, buf, to_be) + } + + #[inline] + fn read_uint(buf: &[u8], nbytes: usize) -> u64 { + assert!(1 <= nbytes && nbytes <= 8 && nbytes <= buf.len()); + let mut out = [0u8; 8]; + let ptr_out = out.as_mut_ptr(); + unsafe { + copy_nonoverlapping( + buf.as_ptr(), ptr_out.offset((8 - nbytes) as isize), nbytes); + (*(ptr_out as *const u64)).to_be() + } + } + + #[inline] + fn write_u16(buf: &mut [u8], n: u16) { + write_num_bytes!(u16, 2, n, buf, to_be); + } + + #[inline] + fn write_u32(buf: &mut [u8], n: u32) { + write_num_bytes!(u32, 4, n, buf, to_be); + } + + #[inline] + fn write_u64(buf: &mut [u8], n: u64) { + write_num_bytes!(u64, 8, n, buf, to_be); + } + + #[inline] + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) { + assert!(pack_size(n) <= nbytes && nbytes <= 8); + assert!(nbytes <= buf.len()); + unsafe { + let bytes: [u8; 8] = transmute(n.to_be()); + copy_nonoverlapping( + bytes.as_ptr().offset((8 - nbytes) as isize), + buf.as_mut_ptr(), + nbytes); + } + } +} + +impl ByteOrder for LittleEndian { + #[inline] + fn read_u16(buf: &[u8]) -> u16 { + read_num_bytes!(u16, 2, buf, to_le) + } + + #[inline] + fn read_u32(buf: &[u8]) -> u32 { + read_num_bytes!(u32, 4, buf, to_le) + } + + #[inline] + fn read_u64(buf: &[u8]) -> u64 { + read_num_bytes!(u64, 8, buf, to_le) + } + + #[inline] + fn read_uint(buf: &[u8], nbytes: usize) -> u64 { + assert!(1 <= nbytes && nbytes <= 8 && nbytes <= buf.len()); + let mut out = [0u8; 8]; + let ptr_out = out.as_mut_ptr(); + unsafe { + copy_nonoverlapping(buf.as_ptr(), ptr_out, nbytes); + (*(ptr_out as *const u64)).to_le() + } + } + + #[inline] + fn write_u16(buf: &mut [u8], n: u16) { + write_num_bytes!(u16, 2, n, buf, to_le); + } + + #[inline] + fn write_u32(buf: &mut [u8], n: u32) { + write_num_bytes!(u32, 4, n, buf, to_le); + } + + #[inline] + fn write_u64(buf: &mut [u8], n: u64) { + write_num_bytes!(u64, 8, n, buf, to_le); + } + + #[inline] + fn write_uint(buf: &mut [u8], n: u64, nbytes: usize) { + assert!(pack_size(n as u64) <= nbytes && nbytes <= 8); + assert!(nbytes <= buf.len()); + unsafe { + let bytes: [u8; 8] = transmute(n.to_le()); + copy_nonoverlapping(bytes.as_ptr(), buf.as_mut_ptr(), nbytes); + } + } +} + +#[cfg(test)] +mod test { + extern crate quickcheck; + extern crate rand; + + use test::rand::thread_rng; + use test::quickcheck::{QuickCheck, StdGen, Testable}; + + const U64_MAX: u64 = ::std::u64::MAX; + const I64_MAX: u64 = ::std::i64::MAX as u64; + + fn qc_sized<A: Testable>(f: A, size: u64) { + QuickCheck::new() + .gen(StdGen::new(thread_rng(), size as usize)) + .tests(1_00) + .max_tests(10_000) + .quickcheck(f); + } + + macro_rules! qc_byte_order { + ($name:ident, $ty_int:ident, $max:expr, + $bytes:expr, $read:ident, $write:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + use super::qc_sized; + + #[test] + fn big_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 8]; + BigEndian::$write(&mut buf, n, $bytes); + n == BigEndian::$read(&mut buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + + #[test] + fn little_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 8]; + LittleEndian::$write(&mut buf, n, $bytes); + n == LittleEndian::$read(&mut buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + + #[test] + fn native_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut buf = [0; 8]; + NativeEndian::$write(&mut buf, n, $bytes); + n == NativeEndian::$read(&mut buf[..$bytes], $bytes) + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + } + ); + ($name:ident, $ty_int:ident, $max:expr, + $read:ident, $write:ident) => ( + mod $name { + use std::mem::size_of; + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + use super::qc_sized; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 8]; + BigEndian::$write(&mut buf[8 - bytes..], n); + n == BigEndian::$read(&mut buf[8 - bytes..]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 8]; + LittleEndian::$write(&mut buf[..bytes], n); + n == LittleEndian::$read(&mut buf[..bytes]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let bytes = size_of::<$ty_int>(); + let mut buf = [0; 8]; + NativeEndian::$write(&mut buf[..bytes], n); + n == NativeEndian::$read(&mut buf[..bytes]) + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + } + ); + } + + qc_byte_order!(prop_u16, u16, ::std::u16::MAX as u64, read_u16, write_u16); + qc_byte_order!(prop_i16, i16, ::std::i16::MAX as u64, read_i16, write_i16); + qc_byte_order!(prop_u32, u32, ::std::u32::MAX as u64, read_u32, write_u32); + qc_byte_order!(prop_i32, i32, ::std::i32::MAX as u64, read_i32, write_i32); + qc_byte_order!(prop_u64, u64, ::std::u64::MAX as u64, read_u64, write_u64); + qc_byte_order!(prop_i64, i64, ::std::i64::MAX as u64, read_i64, write_i64); + qc_byte_order!(prop_f32, f32, ::std::u64::MAX as u64, read_f32, write_f32); + qc_byte_order!(prop_f64, f64, ::std::i64::MAX as u64, read_f64, write_f64); + + qc_byte_order!(prop_uint_1, u64, super::U64_MAX, 1, read_uint, write_uint); + qc_byte_order!(prop_uint_2, u64, super::U64_MAX, 2, read_uint, write_uint); + qc_byte_order!(prop_uint_3, u64, super::U64_MAX, 3, read_uint, write_uint); + qc_byte_order!(prop_uint_4, u64, super::U64_MAX, 4, read_uint, write_uint); + qc_byte_order!(prop_uint_5, u64, super::U64_MAX, 5, read_uint, write_uint); + qc_byte_order!(prop_uint_6, u64, super::U64_MAX, 6, read_uint, write_uint); + qc_byte_order!(prop_uint_7, u64, super::U64_MAX, 7, read_uint, write_uint); + qc_byte_order!(prop_uint_8, u64, super::U64_MAX, 8, read_uint, write_uint); + + qc_byte_order!(prop_int_1, i64, super::I64_MAX, 1, read_int, write_int); + qc_byte_order!(prop_int_2, i64, super::I64_MAX, 2, read_int, write_int); + qc_byte_order!(prop_int_3, i64, super::I64_MAX, 3, read_int, write_int); + qc_byte_order!(prop_int_4, i64, super::I64_MAX, 4, read_int, write_int); + qc_byte_order!(prop_int_5, i64, super::I64_MAX, 5, read_int, write_int); + qc_byte_order!(prop_int_6, i64, super::I64_MAX, 6, read_int, write_int); + qc_byte_order!(prop_int_7, i64, super::I64_MAX, 7, read_int, write_int); + qc_byte_order!(prop_int_8, i64, super::I64_MAX, 8, read_int, write_int); + + macro_rules! qc_bytes_ext { + ($name:ident, $ty_int:ident, $max:expr, + $bytes:expr, $read:ident, $write:ident) => ( + mod $name { + use std::io::Cursor; + use { + ReadBytesExt, WriteBytesExt, + BigEndian, NativeEndian, LittleEndian, + }; + use super::qc_sized; + + #[test] + fn big_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<BigEndian>(n).unwrap(); + let mut rdr = Vec::new(); + rdr.extend(wtr[8 - $bytes..].iter().map(|&x|x)); + let mut rdr = Cursor::new(rdr); + n == rdr.$read::<BigEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + + #[test] + fn little_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<LittleEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<LittleEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + + #[test] + fn native_endian() { + let max = ($max - 1) >> (8 * (8 - $bytes)); + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<NativeEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<NativeEndian>($bytes).unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, max); + } + } + ); + ($name:ident, $ty_int:ident, $max:expr, $read:ident, $write:ident) => ( + mod $name { + use std::io::Cursor; + use { + ReadBytesExt, WriteBytesExt, + BigEndian, NativeEndian, LittleEndian, + }; + use super::qc_sized; + + #[test] + fn big_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<BigEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<BigEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn little_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<LittleEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<LittleEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + + #[test] + fn native_endian() { + fn prop(n: $ty_int) -> bool { + let mut wtr = vec![]; + wtr.$write::<NativeEndian>(n).unwrap(); + let mut rdr = Cursor::new(wtr); + n == rdr.$read::<NativeEndian>().unwrap() + } + qc_sized(prop as fn($ty_int) -> bool, $max - 1); + } + } + ); + } + + qc_bytes_ext!(prop_ext_u16, u16, ::std::u16::MAX as u64, read_u16, write_u16); + qc_bytes_ext!(prop_ext_i16, i16, ::std::i16::MAX as u64, read_i16, write_i16); + qc_bytes_ext!(prop_ext_u32, u32, ::std::u32::MAX as u64, read_u32, write_u32); + qc_bytes_ext!(prop_ext_i32, i32, ::std::i32::MAX as u64, read_i32, write_i32); + qc_bytes_ext!(prop_ext_u64, u64, ::std::u64::MAX as u64, read_u64, write_u64); + qc_bytes_ext!(prop_ext_i64, i64, ::std::i64::MAX as u64, read_i64, write_i64); + qc_bytes_ext!(prop_ext_f32, f32, ::std::u64::MAX as u64, read_f32, write_f32); + qc_bytes_ext!(prop_ext_f64, f64, ::std::i64::MAX as u64, read_f64, write_f64); + + qc_bytes_ext!(prop_ext_uint_1, u64, super::U64_MAX, 1, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_2, u64, super::U64_MAX, 2, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_3, u64, super::U64_MAX, 3, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_4, u64, super::U64_MAX, 4, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_5, u64, super::U64_MAX, 5, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_6, u64, super::U64_MAX, 6, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_7, u64, super::U64_MAX, 7, read_uint, write_u64); + qc_bytes_ext!(prop_ext_uint_8, u64, super::U64_MAX, 8, read_uint, write_u64); + + qc_bytes_ext!(prop_ext_int_1, i64, super::I64_MAX, 1, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_2, i64, super::I64_MAX, 2, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_3, i64, super::I64_MAX, 3, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_4, i64, super::I64_MAX, 4, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_5, i64, super::I64_MAX, 5, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_6, i64, super::I64_MAX, 6, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_7, i64, super::I64_MAX, 7, read_int, write_i64); + qc_bytes_ext!(prop_ext_int_8, i64, super::I64_MAX, 8, read_int, write_i64); + + // Test that all of the byte conversion functions panic when given a + // buffer that is too small. + // + // These tests are critical to ensure safety, otherwise we might end up + // with a buffer overflow. + macro_rules! too_small { + ($name:ident, $maximally_small:expr, $zero:expr, + $read:ident, $write:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + + #[test] + #[should_panic] + fn read_big_endian() { + let buf = [0; $maximally_small]; + BigEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let buf = [0; $maximally_small]; + LittleEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let buf = [0; $maximally_small]; + NativeEndian::$read(&buf); + } + + #[test] + #[should_panic] + fn write_big_endian() { + let mut buf = [0; $maximally_small]; + BigEndian::$write(&mut buf, $zero); + } + + #[test] + #[should_panic] + fn write_little_endian() { + let mut buf = [0; $maximally_small]; + LittleEndian::$write(&mut buf, $zero); + } + + #[test] + #[should_panic] + fn write_native_endian() { + let mut buf = [0; $maximally_small]; + NativeEndian::$write(&mut buf, $zero); + } + } + ); + ($name:ident, $maximally_small:expr, $read:ident) => ( + mod $name { + use {BigEndian, ByteOrder, NativeEndian, LittleEndian}; + + #[test] + #[should_panic] + fn read_big_endian() { + let buf = [0; $maximally_small]; + BigEndian::$read(&buf, $maximally_small + 1); + } + + #[test] + #[should_panic] + fn read_little_endian() { + let buf = [0; $maximally_small]; + LittleEndian::$read(&buf, $maximally_small + 1); + } + + #[test] + #[should_panic] + fn read_native_endian() { + let buf = [0; $maximally_small]; + NativeEndian::$read(&buf, $maximally_small + 1); + } + } + ); + } + + too_small!(small_u16, 1, 0, read_u16, write_u16); + too_small!(small_i16, 1, 0, read_i16, write_i16); + too_small!(small_u32, 3, 0, read_u32, write_u32); + too_small!(small_i32, 3, 0, read_i32, write_i32); + too_small!(small_u64, 7, 0, read_u64, write_u64); + too_small!(small_i64, 7, 0, read_i64, write_i64); + too_small!(small_f32, 3, 0.0, read_f32, write_f32); + too_small!(small_f64, 7, 0.0, read_f64, write_f64); + + too_small!(small_uint_1, 1, read_uint); + too_small!(small_uint_2, 2, read_uint); + too_small!(small_uint_3, 3, read_uint); + too_small!(small_uint_4, 4, read_uint); + too_small!(small_uint_5, 5, read_uint); + too_small!(small_uint_6, 6, read_uint); + too_small!(small_uint_7, 7, read_uint); + + too_small!(small_int_1, 1, read_int); + too_small!(small_int_2, 2, read_int); + too_small!(small_int_3, 3, read_int); + too_small!(small_int_4, 4, read_int); + too_small!(small_int_5, 5, read_int); + too_small!(small_int_6, 6, read_int); + too_small!(small_int_7, 7, read_int); + + #[test] + fn uint_bigger_buffer() { + use {ByteOrder, LittleEndian}; + let n = LittleEndian::read_uint(&[1, 2, 3, 4, 5, 6, 7, 8], 5); + assert_eq!(n, 0x0504030201); + } +} |