diff options
author | trav90 <travawine@palemoon.org> | 2018-10-15 21:45:30 -0500 |
---|---|---|
committer | trav90 <travawine@palemoon.org> | 2018-10-15 21:45:30 -0500 |
commit | 68569dee1416593955c1570d638b3d9250b33012 (patch) | |
tree | d960f017cd7eba3f125b7e8a813789ee2e076310 /third_party/aom/test/dct16x16_test.cc | |
parent | 07c17b6b98ed32fcecff15c083ab0fd878de3cf0 (diff) | |
download | UXP-68569dee1416593955c1570d638b3d9250b33012.tar UXP-68569dee1416593955c1570d638b3d9250b33012.tar.gz UXP-68569dee1416593955c1570d638b3d9250b33012.tar.lz UXP-68569dee1416593955c1570d638b3d9250b33012.tar.xz UXP-68569dee1416593955c1570d638b3d9250b33012.zip |
Import aom library
This is the reference implementation for the Alliance for Open Media's av1 video code.
The commit used was 4d668d7feb1f8abd809d1bca0418570a7f142a36.
Diffstat (limited to 'third_party/aom/test/dct16x16_test.cc')
-rw-r--r-- | third_party/aom/test/dct16x16_test.cc | 876 |
1 files changed, 876 insertions, 0 deletions
diff --git a/third_party/aom/test/dct16x16_test.cc b/third_party/aom/test/dct16x16_test.cc new file mode 100644 index 000000000..89263ce89 --- /dev/null +++ b/third_party/aom/test/dct16x16_test.cc @@ -0,0 +1,876 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. +*/ + +#include <math.h> +#include <stdlib.h> +#include <string.h> + +#include "third_party/googletest/src/googletest/include/gtest/gtest.h" + +#include "./av1_rtcd.h" +#include "./aom_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "av1/common/entropy.h" +#include "av1/common/scan.h" +#include "aom/aom_codec.h" +#include "aom/aom_integer.h" +#include "aom_ports/mem.h" +#include "aom_ports/msvc.h" // for round() + +using libaom_test::ACMRandom; + +namespace { + +const int kNumCoeffs = 256; +const double C1 = 0.995184726672197; +const double C2 = 0.98078528040323; +const double C3 = 0.956940335732209; +const double C4 = 0.923879532511287; +const double C5 = 0.881921264348355; +const double C6 = 0.831469612302545; +const double C7 = 0.773010453362737; +const double C8 = 0.707106781186548; +const double C9 = 0.634393284163646; +const double C10 = 0.555570233019602; +const double C11 = 0.471396736825998; +const double C12 = 0.38268343236509; +const double C13 = 0.290284677254462; +const double C14 = 0.195090322016128; +const double C15 = 0.098017140329561; + +void butterfly_16x16_dct_1d(double input[16], double output[16]) { + double step[16]; + double intermediate[16]; + double temp1, temp2; + + // step 1 + step[0] = input[0] + input[15]; + step[1] = input[1] + input[14]; + step[2] = input[2] + input[13]; + step[3] = input[3] + input[12]; + step[4] = input[4] + input[11]; + step[5] = input[5] + input[10]; + step[6] = input[6] + input[9]; + step[7] = input[7] + input[8]; + step[8] = input[7] - input[8]; + step[9] = input[6] - input[9]; + step[10] = input[5] - input[10]; + step[11] = input[4] - input[11]; + step[12] = input[3] - input[12]; + step[13] = input[2] - input[13]; + step[14] = input[1] - input[14]; + step[15] = input[0] - input[15]; + + // step 2 + output[0] = step[0] + step[7]; + output[1] = step[1] + step[6]; + output[2] = step[2] + step[5]; + output[3] = step[3] + step[4]; + output[4] = step[3] - step[4]; + output[5] = step[2] - step[5]; + output[6] = step[1] - step[6]; + output[7] = step[0] - step[7]; + + temp1 = step[8] * C7; + temp2 = step[15] * C9; + output[8] = temp1 + temp2; + + temp1 = step[9] * C11; + temp2 = step[14] * C5; + output[9] = temp1 - temp2; + + temp1 = step[10] * C3; + temp2 = step[13] * C13; + output[10] = temp1 + temp2; + + temp1 = step[11] * C15; + temp2 = step[12] * C1; + output[11] = temp1 - temp2; + + temp1 = step[11] * C1; + temp2 = step[12] * C15; + output[12] = temp2 + temp1; + + temp1 = step[10] * C13; + temp2 = step[13] * C3; + output[13] = temp2 - temp1; + + temp1 = step[9] * C5; + temp2 = step[14] * C11; + output[14] = temp2 + temp1; + + temp1 = step[8] * C9; + temp2 = step[15] * C7; + output[15] = temp2 - temp1; + + // step 3 + step[0] = output[0] + output[3]; + step[1] = output[1] + output[2]; + step[2] = output[1] - output[2]; + step[3] = output[0] - output[3]; + + temp1 = output[4] * C14; + temp2 = output[7] * C2; + step[4] = temp1 + temp2; + + temp1 = output[5] * C10; + temp2 = output[6] * C6; + step[5] = temp1 + temp2; + + temp1 = output[5] * C6; + temp2 = output[6] * C10; + step[6] = temp2 - temp1; + + temp1 = output[4] * C2; + temp2 = output[7] * C14; + step[7] = temp2 - temp1; + + step[8] = output[8] + output[11]; + step[9] = output[9] + output[10]; + step[10] = output[9] - output[10]; + step[11] = output[8] - output[11]; + + step[12] = output[12] + output[15]; + step[13] = output[13] + output[14]; + step[14] = output[13] - output[14]; + step[15] = output[12] - output[15]; + + // step 4 + output[0] = (step[0] + step[1]); + output[8] = (step[0] - step[1]); + + temp1 = step[2] * C12; + temp2 = step[3] * C4; + temp1 = temp1 + temp2; + output[4] = 2 * (temp1 * C8); + + temp1 = step[2] * C4; + temp2 = step[3] * C12; + temp1 = temp2 - temp1; + output[12] = 2 * (temp1 * C8); + + output[2] = 2 * ((step[4] + step[5]) * C8); + output[14] = 2 * ((step[7] - step[6]) * C8); + + temp1 = step[4] - step[5]; + temp2 = step[6] + step[7]; + output[6] = (temp1 + temp2); + output[10] = (temp1 - temp2); + + intermediate[8] = step[8] + step[14]; + intermediate[9] = step[9] + step[15]; + + temp1 = intermediate[8] * C12; + temp2 = intermediate[9] * C4; + temp1 = temp1 - temp2; + output[3] = 2 * (temp1 * C8); + + temp1 = intermediate[8] * C4; + temp2 = intermediate[9] * C12; + temp1 = temp2 + temp1; + output[13] = 2 * (temp1 * C8); + + output[9] = 2 * ((step[10] + step[11]) * C8); + + intermediate[11] = step[10] - step[11]; + intermediate[12] = step[12] + step[13]; + intermediate[13] = step[12] - step[13]; + intermediate[14] = step[8] - step[14]; + intermediate[15] = step[9] - step[15]; + + output[15] = (intermediate[11] + intermediate[12]); + output[1] = -(intermediate[11] - intermediate[12]); + + output[7] = 2 * (intermediate[13] * C8); + + temp1 = intermediate[14] * C12; + temp2 = intermediate[15] * C4; + temp1 = temp1 - temp2; + output[11] = -2 * (temp1 * C8); + + temp1 = intermediate[14] * C4; + temp2 = intermediate[15] * C12; + temp1 = temp2 + temp1; + output[5] = 2 * (temp1 * C8); +} + +void reference_16x16_dct_2d(int16_t input[256], double output[256]) { + // First transform columns + for (int i = 0; i < 16; ++i) { + double temp_in[16], temp_out[16]; + for (int j = 0; j < 16; ++j) temp_in[j] = input[j * 16 + i]; + butterfly_16x16_dct_1d(temp_in, temp_out); + for (int j = 0; j < 16; ++j) output[j * 16 + i] = temp_out[j]; + } + // Then transform rows + for (int i = 0; i < 16; ++i) { + double temp_in[16], temp_out[16]; + for (int j = 0; j < 16; ++j) temp_in[j] = output[j + i * 16]; + butterfly_16x16_dct_1d(temp_in, temp_out); + // Scale by some magic number + for (int j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j] / 2; + } +} + +typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); +typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); +typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, + int tx_type); +typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, + int tx_type); + +typedef std::tr1::tuple<FdctFunc, IdctFunc, int, aom_bit_depth_t> Dct16x16Param; +typedef std::tr1::tuple<FhtFunc, IhtFunc, int, aom_bit_depth_t> Ht16x16Param; +typedef std::tr1::tuple<IdctFunc, IdctFunc, int, aom_bit_depth_t> + Idct16x16Param; + +void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride, + int /*tx_type*/) { + aom_fdct16x16_c(in, out, stride); +} + +void idct16x16_ref(const tran_low_t *in, uint8_t *dest, int stride, + int /*tx_type*/) { + aom_idct16x16_256_add_c(in, dest, stride); +} + +void fht16x16_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { + av1_fht16x16_c(in, out, stride, tx_type); +} + +void iht16x16_ref(const tran_low_t *in, uint8_t *dest, int stride, + int tx_type) { + av1_iht16x16_256_add_c(in, dest, stride, tx_type); +} + +#if CONFIG_HIGHBITDEPTH +void iht16x16_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { + av1_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 10); +} + +void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { + av1_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 12); +} +#endif // CONFIG_HIGHBITDEPTH + +class Trans16x16TestBase { + public: + virtual ~Trans16x16TestBase() {} + + protected: + virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0; + + virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0; + + void RunAccuracyCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + uint32_t max_error = 0; + int64_t total_error = 0; + const int count_test_block = 10000; + for (int i = 0; i < count_test_block; ++i) { + DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); +#endif + + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == AOM_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + test_input_block[j] = src[j] - dst[j]; +#if CONFIG_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + test_input_block[j] = src16[j] - dst16[j]; +#endif + } + } + + ASM_REGISTER_STATE_CHECK( + RunFwdTxfm(test_input_block, test_temp_block, pitch_)); + if (bit_depth_ == AOM_BITS_8) { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); +#if CONFIG_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); +#endif + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_HIGHBITDEPTH + const int32_t diff = + bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int32_t diff = dst[j] - src[j]; +#endif + const uint32_t error = diff * diff; + if (max_error < error) max_error = error; + total_error += error; + } + } + + EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) + << "Error: 16x16 FHT/IHT has an individual round trip error > 1"; + + EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) + << "Error: 16x16 FHT/IHT has average round trip error > 1 per block"; + } + + void RunCoeffCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) + input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); + + fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_); + ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_)); + + // The minimum quant value is 4. + for (int j = 0; j < kNumCoeffs; ++j) + EXPECT_EQ(output_block[j], output_ref_block[j]); + } + } + + void RunMemCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; + } + if (i == 0) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; + } else if (i == 1) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; + } + + fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); + ASM_REGISTER_STATE_CHECK( + RunFwdTxfm(input_extreme_block, output_block, pitch_)); + + // The minimum quant value is 4. + for (int j = 0; j < kNumCoeffs; ++j) { + EXPECT_EQ(output_block[j], output_ref_block[j]); + EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) + << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; + } + } + } + + void RunQuantCheck(int dc_thred, int ac_thred) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 100000; + DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); +#if CONFIG_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; + } + if (i == 0) + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; + if (i == 1) + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; + + fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); + + // clear reconstructed pixel buffers + memset(dst, 0, kNumCoeffs * sizeof(uint8_t)); + memset(ref, 0, kNumCoeffs * sizeof(uint8_t)); +#if CONFIG_HIGHBITDEPTH + memset(dst16, 0, kNumCoeffs * sizeof(uint16_t)); + memset(ref16, 0, kNumCoeffs * sizeof(uint16_t)); +#endif + + // quantization with maximum allowed step sizes + output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred; + for (int j = 1; j < kNumCoeffs; ++j) + output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred; + if (bit_depth_ == AOM_BITS_8) { + inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_); + ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_)); +#if CONFIG_HIGHBITDEPTH + } else { + inv_txfm_ref(output_ref_block, CONVERT_TO_BYTEPTR(ref16), pitch_, + tx_type_); + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(output_ref_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); +#endif + } + if (bit_depth_ == AOM_BITS_8) { + for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref[j], dst[j]); +#if CONFIG_HIGHBITDEPTH + } else { + for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref16[j], dst16[j]); +#endif + } + } + } + + void RunInvAccuracyCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); +#endif // CONFIG_HIGHBITDEPTH + + for (int i = 0; i < count_test_block; ++i) { + double out_r[kNumCoeffs]; + + // Initialize a test block with input range [-255, 255]. + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == AOM_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + in[j] = src[j] - dst[j]; +#if CONFIG_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + in[j] = src16[j] - dst16[j]; +#endif // CONFIG_HIGHBITDEPTH + } + } + + reference_16x16_dct_2d(in, out_r); + for (int j = 0; j < kNumCoeffs; ++j) + coeff[j] = static_cast<tran_low_t>(round(out_r[j])); + + if (bit_depth_ == AOM_BITS_8) { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16)); +#if CONFIG_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), 16)); +#endif // CONFIG_HIGHBITDEPTH + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_HIGHBITDEPTH + const int diff = + bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int diff = dst[j] - src[j]; +#endif // CONFIG_HIGHBITDEPTH + const uint32_t error = diff * diff; + EXPECT_GE(1u, error) << "Error: 16x16 IDCT has error " << error + << " at index " << j; + } + } + } + + void CompareInvReference(IdctFunc ref_txfm, int thresh) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 10000; + const int eob = 10; + const int16_t *scan = av1_default_scan_orders[TX_16X16].scan; + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); +#if CONFIG_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); +#endif // CONFIG_HIGHBITDEPTH + + for (int i = 0; i < count_test_block; ++i) { + for (int j = 0; j < kNumCoeffs; ++j) { + if (j < eob) { + // Random values less than the threshold, either positive or negative + coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2)); + } else { + coeff[scan[j]] = 0; + } + if (bit_depth_ == AOM_BITS_8) { + dst[j] = 0; + ref[j] = 0; +#if CONFIG_HIGHBITDEPTH + } else { + dst16[j] = 0; + ref16[j] = 0; +#endif // CONFIG_HIGHBITDEPTH + } + } + if (bit_depth_ == AOM_BITS_8) { + ref_txfm(coeff, ref, pitch_); + ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); + } else { +#if CONFIG_HIGHBITDEPTH + ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_); + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); +#endif // CONFIG_HIGHBITDEPTH + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_HIGHBITDEPTH + const int diff = + bit_depth_ == AOM_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j]; +#else + const int diff = dst[j] - ref[j]; +#endif // CONFIG_HIGHBITDEPTH + const uint32_t error = diff * diff; + EXPECT_EQ(0u, error) << "Error: 16x16 IDCT Comparison has error " + << error << " at index " << j; + } + } + } + + int pitch_; + int tx_type_; + aom_bit_depth_t bit_depth_; + int mask_; + FhtFunc fwd_txfm_ref; + IhtFunc inv_txfm_ref; +}; + +class Trans16x16DCT : public Trans16x16TestBase, + public ::testing::TestWithParam<Dct16x16Param> { + public: + virtual ~Trans16x16DCT() {} + + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + tx_type_ = GET_PARAM(2); + bit_depth_ = GET_PARAM(3); + pitch_ = 16; + fwd_txfm_ref = fdct16x16_ref; + inv_txfm_ref = idct16x16_ref; + mask_ = (1 << bit_depth_) - 1; + inv_txfm_ref = idct16x16_ref; + } + virtual void TearDown() { libaom_test::ClearSystemState(); } + + protected: + void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { + fwd_txfm_(in, out, stride); + } + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride); + } + + FdctFunc fwd_txfm_; + IdctFunc inv_txfm_; +}; + +TEST_P(Trans16x16DCT, AccuracyCheck) { RunAccuracyCheck(); } + +TEST_P(Trans16x16DCT, CoeffCheck) { RunCoeffCheck(); } + +TEST_P(Trans16x16DCT, MemCheck) { RunMemCheck(); } + +TEST_P(Trans16x16DCT, QuantCheck) { + // Use maximally allowed quantization step sizes for DC and AC + // coefficients respectively. + RunQuantCheck(1336, 1828); +} + +TEST_P(Trans16x16DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } + +class Trans16x16HT : public Trans16x16TestBase, + public ::testing::TestWithParam<Ht16x16Param> { + public: + virtual ~Trans16x16HT() {} + + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + tx_type_ = GET_PARAM(2); + bit_depth_ = GET_PARAM(3); + pitch_ = 16; + fwd_txfm_ref = fht16x16_ref; + inv_txfm_ref = iht16x16_ref; + mask_ = (1 << bit_depth_) - 1; +#if CONFIG_HIGHBITDEPTH + switch (bit_depth_) { + case AOM_BITS_10: inv_txfm_ref = iht16x16_10; break; + case AOM_BITS_12: inv_txfm_ref = iht16x16_12; break; + default: inv_txfm_ref = iht16x16_ref; break; + } +#else + inv_txfm_ref = iht16x16_ref; +#endif + } + virtual void TearDown() { libaom_test::ClearSystemState(); } + + protected: + void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { + fwd_txfm_(in, out, stride, tx_type_); + } + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride, tx_type_); + } + + FhtFunc fwd_txfm_; + IhtFunc inv_txfm_; +}; + +TEST_P(Trans16x16HT, AccuracyCheck) { RunAccuracyCheck(); } + +TEST_P(Trans16x16HT, CoeffCheck) { RunCoeffCheck(); } + +TEST_P(Trans16x16HT, MemCheck) { RunMemCheck(); } + +TEST_P(Trans16x16HT, QuantCheck) { + // The encoder skips any non-DC intra prediction modes, + // when the quantization step size goes beyond 988. + RunQuantCheck(429, 729); +} + +class InvTrans16x16DCT : public Trans16x16TestBase, + public ::testing::TestWithParam<Idct16x16Param> { + public: + virtual ~InvTrans16x16DCT() {} + + virtual void SetUp() { + ref_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + thresh_ = GET_PARAM(2); + bit_depth_ = GET_PARAM(3); + pitch_ = 16; + mask_ = (1 << bit_depth_) - 1; + } + virtual void TearDown() { libaom_test::ClearSystemState(); } + + protected: + void RunFwdTxfm(int16_t * /*in*/, tran_low_t * /*out*/, int /*stride*/) {} + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride); + } + + IdctFunc ref_txfm_; + IdctFunc inv_txfm_; + int thresh_; +}; + +TEST_P(InvTrans16x16DCT, CompareReference) { + CompareInvReference(ref_txfm_, thresh_); +} + +class PartialTrans16x16Test : public ::testing::TestWithParam< + std::tr1::tuple<FdctFunc, aom_bit_depth_t> > { + public: + virtual ~PartialTrans16x16Test() {} + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + bit_depth_ = GET_PARAM(1); + } + + virtual void TearDown() { libaom_test::ClearSystemState(); } + + protected: + aom_bit_depth_t bit_depth_; + FdctFunc fwd_txfm_; +}; + +TEST_P(PartialTrans16x16Test, Extremes) { +#if CONFIG_HIGHBITDEPTH + const int16_t maxval = + static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_)); +#else + const int16_t maxval = 255; +#endif + const int minval = -maxval; + DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); + + for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval; + output[0] = 0; + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16)); + EXPECT_EQ((maxval * kNumCoeffs) >> 1, output[0]); + + for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval; + output[0] = 0; + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16)); + EXPECT_EQ((minval * kNumCoeffs) >> 1, output[0]); +} + +TEST_P(PartialTrans16x16Test, Random) { +#if CONFIG_HIGHBITDEPTH + const int16_t maxval = + static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_)); +#else + const int16_t maxval = 255; +#endif + DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); + ACMRandom rnd(ACMRandom::DeterministicSeed()); + + int sum = 0; + for (int i = 0; i < kNumCoeffs; ++i) { + const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1); + input[i] = val; + sum += val; + } + output[0] = 0; + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16)); + EXPECT_EQ(sum >> 1, output[0]); +} + +using std::tr1::make_tuple; + +#if CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT, + ::testing::Values(make_tuple(&aom_fdct16x16_c, + &aom_idct16x16_256_add_c, + 0, AOM_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT, + ::testing::Values(make_tuple(&aom_fdct16x16_c, + &aom_idct16x16_256_add_c, + 0, AOM_BITS_8))); +#endif // CONFIG_HIGHBITDEPTH + +#if CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, Trans16x16HT, + ::testing::Values( + make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 0, AOM_BITS_10), + make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 1, AOM_BITS_10), + make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 2, AOM_BITS_10), + make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 3, AOM_BITS_10), + make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 0, AOM_BITS_12), + make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 1, AOM_BITS_12), + make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 2, AOM_BITS_12), + make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 3, AOM_BITS_12), + make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 0, AOM_BITS_8), + make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 1, AOM_BITS_8), + make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 2, AOM_BITS_8), + make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 3, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P( + C, PartialTrans16x16Test, + ::testing::Values(make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_8), + make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_10), + make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_12))); +#else +INSTANTIATE_TEST_CASE_P( + C, Trans16x16HT, + ::testing::Values( + make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 0, AOM_BITS_8), + make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 1, AOM_BITS_8), + make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 2, AOM_BITS_8), + make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 3, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P(C, PartialTrans16x16Test, + ::testing::Values(make_tuple(&aom_fdct16x16_1_c, + AOM_BITS_8))); +#endif // CONFIG_HIGHBITDEPTH + +#if HAVE_NEON_ASM && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + NEON, Trans16x16DCT, + ::testing::Values(make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_neon, + 0, AOM_BITS_8))); +#endif + +#if HAVE_SSE2 && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + SSE2, Trans16x16DCT, + ::testing::Values(make_tuple(&aom_fdct16x16_sse2, + &aom_idct16x16_256_add_sse2, 0, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P( + SSE2, Trans16x16HT, + ::testing::Values(make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2, + 0, AOM_BITS_8), + make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2, + 1, AOM_BITS_8), + make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2, + 2, AOM_BITS_8), + make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2, + 3, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans16x16Test, + ::testing::Values(make_tuple(&aom_fdct16x16_1_sse2, + AOM_BITS_8))); +#endif // HAVE_SSE2 && !CONFIG_HIGHBITDEPTH + +#if HAVE_AVX2 && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(AVX2, PartialTrans16x16Test, + ::testing::Values(make_tuple(&aom_fdct16x16_1_avx2, + AOM_BITS_8))); +#endif // HAVE_AVX2 && !CONFIG_HIGHBITDEPTH + +#if HAVE_SSE2 && CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(SSE2, Trans16x16DCT, + ::testing::Values(make_tuple(&aom_fdct16x16_sse2, + &aom_idct16x16_256_add_c, + 0, AOM_BITS_8))); +INSTANTIATE_TEST_CASE_P( + SSE2, Trans16x16HT, + ::testing::Values( + make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 0, AOM_BITS_8), + make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 1, AOM_BITS_8), + make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 2, AOM_BITS_8), + make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 3, + AOM_BITS_8))); +// TODO(luoyi): +// For this test case, we should test function: aom_highbd_fdct16x16_1_sse2. +// However this function is not available yet. if we mistakely test +// aom_fdct16x16_1_sse2, it could only pass AOM_BITS_8/AOM_BITS_10 but not +// AOM_BITS_12. +INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans16x16Test, + ::testing::Values(make_tuple(&aom_fdct16x16_1_sse2, + AOM_BITS_8))); +#endif // HAVE_SSE2 && CONFIG_HIGHBITDEPTH + +#if HAVE_MSA && !CONFIG_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(MSA, Trans16x16DCT, + ::testing::Values(make_tuple(&aom_fdct16x16_msa, + &aom_idct16x16_256_add_msa, + 0, AOM_BITS_8))); +#if !CONFIG_EXT_TX +// TODO(yaowu): re-enable this after msa versions are updated to match C. +INSTANTIATE_TEST_CASE_P( + DISABLED_MSA, Trans16x16HT, + ::testing::Values( + make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 0, AOM_BITS_8), + make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 1, AOM_BITS_8), + make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 2, AOM_BITS_8), + make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 3, + AOM_BITS_8))); +#endif // !CONFIG_EXT_TX +INSTANTIATE_TEST_CASE_P(MSA, PartialTrans16x16Test, + ::testing::Values(make_tuple(&aom_fdct16x16_1_msa, + AOM_BITS_8))); +#endif // HAVE_MSA && !CONFIG_HIGHBITDEPTH +} // namespace |