diff options
author | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:15 -0500 |
---|---|---|
committer | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:20 -0500 |
commit | bbcc64772580c8a979288791afa02d30bc476d2e (patch) | |
tree | 437ce94c3fdd7497508e5b55de06c6d011678597 /third_party/aom/av1/encoder/ratectrl_xiph.c | |
parent | 14805f6ddbfb173c327768fff9f81f40ce5e81b0 (diff) | |
download | UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.gz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.lz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.xz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.zip |
Update aom to v1.0.0
Update aom to commit id d14c5bb4f336ef1842046089849dee4a301fbbf0.
Diffstat (limited to 'third_party/aom/av1/encoder/ratectrl_xiph.c')
-rw-r--r-- | third_party/aom/av1/encoder/ratectrl_xiph.c | 1244 |
1 files changed, 0 insertions, 1244 deletions
diff --git a/third_party/aom/av1/encoder/ratectrl_xiph.c b/third_party/aom/av1/encoder/ratectrl_xiph.c index b9f827528..e69de29bb 100644 --- a/third_party/aom/av1/encoder/ratectrl_xiph.c +++ b/third_party/aom/av1/encoder/ratectrl_xiph.c @@ -1,1244 +0,0 @@ -/* - * Copyright (c) 2001-2017, Alliance for Open Media. All rights reserved - * - * This source code is subject to the terms of the BSD 2 Clause License and - * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License - * was not distributed with this source code in the LICENSE file, you can - * obtain it at www.aomedia.org/license/software. If the Alliance for Open - * Media Patent License 1.0 was not distributed with this source code in the - * PATENTS file, you can obtain it at www.aomedia.org/license/patent. - */ - -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include <limits.h> -#include "av1/common/odintrin.h" -#include "av1/encoder/ratectrl_xiph.h" - -#define OD_Q57(v) ((int64_t)((uint64_t)(v) << 57)) -#define OD_F_Q45(v) ((int64_t)(((v) * ((int64_t)1 << 45)))) -#define OD_F_Q12(v) ((int32_t)(((v) * ((int32_t)1 << 12)))) - -/*A rough lookup table for tan(x), 0 <= x < pi/2. - The values are Q12 fixed-point and spaced at 5 degree intervals. - These decisions are somewhat arbitrary, but sufficient for the 2nd order - Bessel follower below. - Values of x larger than 85 degrees are extrapolated from the last interval, - which is way off, but "good enough".*/ -static uint16_t OD_ROUGH_TAN_LOOKUP[18] = { 0, 358, 722, 1098, 1491, - 1910, 2365, 2868, 3437, 4096, - 4881, 5850, 7094, 8784, 11254, - 15286, 23230, 46817 }; - -/*alpha is Q24 in the range [0,0.5). - The return values is 5.12.*/ -static int od_warp_alpha(int alpha) { - int i; - int d; - int t0; - int t1; - i = alpha * 36 >> 24; - if (i >= 17) i = 16; - t0 = OD_ROUGH_TAN_LOOKUP[i]; - t1 = OD_ROUGH_TAN_LOOKUP[i + 1]; - d = alpha * 36 - (i << 24); - return (int)((((int64_t)t0 << 32) + ((t1 - t0) << 8) * (int64_t)d) >> 32); -} - -static const int64_t OD_ATANH_LOG2[32] = { - 0x32B803473F7AD0F4LL, 0x2F2A71BD4E25E916LL, 0x2E68B244BB93BA06LL, - 0x2E39FB9198CE62E4LL, 0x2E2E683F68565C8FLL, 0x2E2B850BE2077FC1LL, - 0x2E2ACC58FE7B78DBLL, 0x2E2A9E2DE52FD5F2LL, 0x2E2A92A338D53EECLL, - 0x2E2A8FC08F5E19B6LL, 0x2E2A8F07E51A485ELL, 0x2E2A8ED9BA8AF388LL, - 0x2E2A8ECE2FE7384ALL, 0x2E2A8ECB4D3E4B1ALL, 0x2E2A8ECA94940FE8LL, - 0x2E2A8ECA6669811DLL, 0x2E2A8ECA5ADEDD6ALL, 0x2E2A8ECA57FC347ELL, - 0x2E2A8ECA57438A43LL, 0x2E2A8ECA57155FB4LL, 0x2E2A8ECA5709D510LL, - 0x2E2A8ECA5706F267LL, 0x2E2A8ECA570639BDLL, 0x2E2A8ECA57060B92LL, - 0x2E2A8ECA57060008LL, 0x2E2A8ECA5705FD25LL, 0x2E2A8ECA5705FC6CLL, - 0x2E2A8ECA5705FC3ELL, 0x2E2A8ECA5705FC33LL, 0x2E2A8ECA5705FC30LL, - 0x2E2A8ECA5705FC2FLL, 0x2E2A8ECA5705FC2FLL -}; - -static int od_ilog64(int64_t v) { - static const unsigned char OD_DEBRUIJN_IDX64[64] = { - 0, 1, 2, 7, 3, 13, 8, 19, 4, 25, 14, 28, 9, 34, 20, 40, - 5, 17, 26, 38, 15, 46, 29, 48, 10, 31, 35, 54, 21, 50, 41, 57, - 63, 6, 12, 18, 24, 27, 33, 39, 16, 37, 45, 47, 30, 53, 49, 56, - 62, 11, 23, 32, 36, 44, 52, 55, 61, 22, 43, 51, 60, 42, 59, 58 - }; - int ret; - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v |= v >> 32; - ret = (int)v & 1; - v = (v >> 1) + 1; - ret += OD_DEBRUIJN_IDX64[v * UINT64_C(0x218A392CD3D5DBF) >> 58 & 0x3F]; - return ret; -} - -/*Computes the binary exponential of logq57. - input: a log base 2 in Q57 format - output: a 64 bit integer in Q0 (no fraction) */ -static int64_t od_bexp64(int64_t logq57) { - int64_t w; - int64_t z; - int ipart; - ipart = (int)(logq57 >> 57); - if (ipart < 0) return 0; - if (ipart >= 63) return 0x7FFFFFFFFFFFFFFFLL; - z = logq57 - OD_Q57(ipart); - if (z) { - int64_t mask; - int64_t wlo; - int i; - /*C doesn't give us 64x64->128 muls, so we use CORDIC. - This is not particularly fast, but it's not being used in time-critical - code; it is very accurate.*/ - /*z is the fractional part of the log in Q62 format. - We need 1 bit of headroom since the magnitude can get larger than 1 - during the iteration, and a sign bit.*/ - z <<= 5; - /*w is the exponential in Q61 format (since it also needs headroom and can - get as large as 2.0); we could get another bit if we dropped the sign, - but we'll recover that bit later anyway. - Ideally this should start out as - \lim_{n->\infty} 2^{61}/\product_{i=1}^n \sqrt{1-2^{-2i}} - but in order to guarantee convergence we have to repeat iterations 4, - 13 (=3*4+1), and 40 (=3*13+1, etc.), so it winds up somewhat larger.*/ - w = 0x26A3D0E401DD846DLL; - for (i = 0;; i++) { - mask = -(z < 0); - w += ((w >> (i + 1)) + mask) ^ mask; - z -= (OD_ATANH_LOG2[i] + mask) ^ mask; - /*Repeat iteration 4.*/ - if (i >= 3) break; - z *= 2; - } - for (;; i++) { - mask = -(z < 0); - w += ((w >> (i + 1)) + mask) ^ mask; - z -= (OD_ATANH_LOG2[i] + mask) ^ mask; - /*Repeat iteration 13.*/ - if (i >= 12) break; - z *= 2; - } - for (; i < 32; i++) { - mask = -(z < 0); - w += ((w >> (i + 1)) + mask) ^ mask; - z = (z - ((OD_ATANH_LOG2[i] + mask) ^ mask)) * 2; - } - wlo = 0; - /*Skip the remaining iterations unless we really require that much - precision. - We could have bailed out earlier for smaller iparts, but that would - require initializing w from a table, as the limit doesn't converge to - 61-bit precision until n=30.*/ - if (ipart > 30) { - /*For these iterations, we just update the low bits, as the high bits - can't possibly be affected. - OD_ATANH_LOG2 has also converged (it actually did so one iteration - earlier, but that's no reason for an extra special case).*/ - for (;; i++) { - mask = -(z < 0); - wlo += ((w >> i) + mask) ^ mask; - z -= (OD_ATANH_LOG2[31] + mask) ^ mask; - /*Repeat iteration 40.*/ - if (i >= 39) break; - z <<= 1; - } - for (; i < 61; i++) { - mask = -(z < 0); - wlo += ((w >> i) + mask) ^ mask; - z = (z - ((OD_ATANH_LOG2[31] + mask) ^ mask)) << 1; - } - } - w = (w << 1) + wlo; - } else { - w = (int64_t)1 << 62; - } - if (ipart < 62) { - w = ((w >> (61 - ipart)) + 1) >> 1; - } - return w; -} - -/*Computes the binary log of w - input: a 64-bit integer in Q0 (no fraction) - output: a 64-bit log in Q57 */ -static int64_t od_blog64(int64_t w) { - int64_t z; - int ipart; - if (w <= 0) return -1; - ipart = od_ilog64(w) - 1; - if (ipart > 61) { - w >>= ipart - 61; - } else { - w <<= 61 - ipart; - } - z = 0; - if (w & (w - 1)) { - int64_t x; - int64_t y; - int64_t u; - int64_t mask; - int i; - /*C doesn't give us 64x64->128 muls, so we use CORDIC. - This is not particularly fast, but it's not being used in time-critical - code; it is very accurate.*/ - /*z is the fractional part of the log in Q61 format.*/ - /*x and y are the cosh() and sinh(), respectively, in Q61 format. - We are computing z = 2*atanh(y/x) = 2*atanh((w - 1)/(w + 1)).*/ - x = w + ((int64_t)1 << 61); - y = w - ((int64_t)1 << 61); - for (i = 0; i < 4; i++) { - mask = -(y < 0); - z += ((OD_ATANH_LOG2[i] >> i) + mask) ^ mask; - u = x >> (i + 1); - x -= ((y >> (i + 1)) + mask) ^ mask; - y -= (u + mask) ^ mask; - } - /*Repeat iteration 4.*/ - for (i--; i < 13; i++) { - mask = -(y < 0); - z += ((OD_ATANH_LOG2[i] >> i) + mask) ^ mask; - u = x >> (i + 1); - x -= ((y >> (i + 1)) + mask) ^ mask; - y -= (u + mask) ^ mask; - } - /*Repeat iteration 13.*/ - for (i--; i < 32; i++) { - mask = -(y < 0); - z += ((OD_ATANH_LOG2[i] >> i) + mask) ^ mask; - u = x >> (i + 1); - x -= ((y >> (i + 1)) + mask) ^ mask; - y -= (u + mask) ^ mask; - } - /*OD_ATANH_LOG2 has converged.*/ - for (; i < 40; i++) { - mask = -(y < 0); - z += ((OD_ATANH_LOG2[31] >> i) + mask) ^ mask; - u = x >> (i + 1); - x -= ((y >> (i + 1)) + mask) ^ mask; - y -= (u + mask) ^ mask; - } - /*Repeat iteration 40.*/ - for (i--; i < 62; i++) { - mask = -(y < 0); - z += ((OD_ATANH_LOG2[31] >> i) + mask) ^ mask; - u = x >> (i + 1); - x -= ((y >> (i + 1)) + mask) ^ mask; - y -= (u + mask) ^ mask; - } - z = (z + 8) >> 4; - } - return OD_Q57(ipart) + z; -} - -/*Convenience function converts Q57 value to a clamped 32-bit Q24 value - in: input in Q57 format. - Return: same number in Q24 */ -static int32_t od_q57_to_q24(int64_t in) { - int64_t ret; - ret = (in + ((int64_t)1 << 32)) >> 33; - /*0x80000000 is automatically converted to unsigned on 32-bit systems. - -0x7FFFFFFF-1 is needed to avoid "promoting" the whole expression to - unsigned.*/ - return (int32_t)OD_CLAMPI(-0x7FFFFFFF - 1, ret, 0x7FFFFFFF); -} - -/*Binary exponential of log_scale with 24-bit fractional precision and - saturation. - log_scale: A binary logarithm in Q57 format. - Return: The binary exponential in Q24 format, saturated to 2**31-1 if - log_scale was too large.*/ -static int32_t od_bexp64_q24(int64_t log_scale) { - if (log_scale < OD_Q57(8)) { - int64_t ret; - ret = od_bexp64(log_scale + OD_Q57(24)); - return ret < 0x7FFFFFFF ? (int32_t)ret : 0x7FFFFFFF; - } - return 0x7FFFFFFF; -} - -/*Re-initialize Bessel filter coefficients with the specified delay. - This does not alter the x/y state, but changes the reaction time of the - filter. - Altering the time constant of a reactive filter without alterning internal - state is something that has to be done carefuly, but our design operates at - high enough delays and with small enough time constant changes to make it - safe.*/ -static void od_iir_bessel2_reinit(od_iir_bessel2 *f, int delay) { - int alpha; - int64_t one48; - int64_t warp; - int64_t k1; - int64_t k2; - int64_t d; - int64_t a; - int64_t ik2; - int64_t b1; - int64_t b2; - /*This borrows some code from an unreleased version of Postfish. - See the recipe at http://unicorn.us.com/alex/2polefilters.html for details - on deriving the filter coefficients.*/ - /*alpha is Q24*/ - alpha = (1 << 24) / delay; - one48 = (int64_t)1 << 48; - /*warp is 7.12*/ - warp = OD_MAXI(od_warp_alpha(alpha), 1); - /*k1 is 9.12*/ - k1 = 3 * warp; - /*k2 is 16.24.*/ - k2 = k1 * warp; - /*d is 16.15.*/ - d = ((((1 << 12) + k1) << 12) + k2 + 256) >> 9; - /*a is 0.32, since d is larger than both 1.0 and k2.*/ - a = (k2 << 23) / d; - /*ik2 is 25.24.*/ - ik2 = one48 / k2; - /*b1 is Q56; in practice, the integer ranges between -2 and 2.*/ - b1 = 2 * a * (ik2 - (1 << 24)); - /*b2 is Q56; in practice, the integer ranges between -2 and 2.*/ - b2 = (one48 << 8) - ((4 * a) << 24) - b1; - /*All of the filter parameters are Q24.*/ - f->c[0] = (int32_t)((b1 + ((int64_t)1 << 31)) >> 32); - f->c[1] = (int32_t)((b2 + ((int64_t)1 << 31)) >> 32); - f->g = (int32_t)((a + 128) >> 8); -} - -/*Initialize a 2nd order low-pass Bessel filter with the corresponding delay - and initial value. - value is Q24.*/ -static void od_iir_bessel2_init(od_iir_bessel2 *f, int delay, int32_t value) { - od_iir_bessel2_reinit(f, delay); - f->y[1] = f->y[0] = f->x[1] = f->x[0] = value; -} - -static int64_t od_iir_bessel2_update(od_iir_bessel2 *f, int32_t x) { - int64_t c0; - int64_t c1; - int64_t g; - int64_t x0; - int64_t x1; - int64_t y0; - int64_t y1; - int64_t ya; - c0 = f->c[0]; - c1 = f->c[1]; - g = f->g; - x0 = f->x[0]; - x1 = f->x[1]; - y0 = f->y[0]; - y1 = f->y[1]; - ya = ((x + x0 * 2 + x1) * g + y0 * c0 + y1 * c1 + (1 << 23)) >> 24; - f->x[1] = (int32_t)x0; - f->x[0] = x; - f->y[1] = (int32_t)y0; - f->y[0] = (int32_t)ya; - return ya; -} - -static void od_enc_rc_reset(od_rc_state *rc) { - int64_t npixels; - int64_t ibpp; - rc->bits_per_frame = (int64_t)(rc->target_bitrate / rc->framerate); - /*Insane framerates or frame sizes mean insane bitrates. - Let's not get carried away.*/ - if (rc->bits_per_frame > 0x400000000000LL) { - rc->bits_per_frame = (int64_t)0x400000000000LL; - } else { - if (rc->bits_per_frame < 32) { - rc->bits_per_frame = 32; - } - } - rc->reservoir_frame_delay = OD_MAXI(rc->reservoir_frame_delay, 12); - rc->reservoir_max = rc->bits_per_frame * rc->reservoir_frame_delay; - /*Start with a buffer fullness and fullness target of 50% */ - rc->reservoir_target = (rc->reservoir_max + 1) >> 1; - rc->reservoir_fullness = rc->reservoir_target; - /*Pick exponents and initial scales for quantizer selection.*/ - npixels = rc->frame_width * (int64_t)rc->frame_height; - rc->log_npixels = od_blog64(npixels); - ibpp = npixels / rc->bits_per_frame; - /*All of these initial scale/exp values are from Theora, and have not yet - been adapted to Daala, so they're certainly wrong. - The B-frame values especially are simply copies of the P-frame values.*/ - if (ibpp < 1) { - rc->exp[OD_I_FRAME] = 59; - rc->log_scale[OD_I_FRAME] = od_blog64(1997) - OD_Q57(OD_COEFF_SHIFT); - } else if (ibpp < 2) { - rc->exp[OD_I_FRAME] = 55; - rc->log_scale[OD_I_FRAME] = od_blog64(1604) - OD_Q57(OD_COEFF_SHIFT); - } else { - rc->exp[OD_I_FRAME] = 48; - rc->log_scale[OD_I_FRAME] = od_blog64(834) - OD_Q57(OD_COEFF_SHIFT); - } - if (ibpp < 4) { - rc->exp[OD_P_FRAME] = 100; - rc->log_scale[OD_P_FRAME] = od_blog64(2249) - OD_Q57(OD_COEFF_SHIFT); - } else if (ibpp < 8) { - rc->exp[OD_P_FRAME] = 95; - rc->log_scale[OD_P_FRAME] = od_blog64(1751) - OD_Q57(OD_COEFF_SHIFT); - } else { - rc->exp[OD_P_FRAME] = 73; - rc->log_scale[OD_P_FRAME] = od_blog64(1260) - OD_Q57(OD_COEFF_SHIFT); - } - /*Golden P-frames both use the same log_scale and exp modeling - values as regular P-frames and the same scale follower. - For convenience in the rate calculation code, we maintain a copy of - the scale and exp values in OD_GOLDEN_P_FRAME.*/ - rc->exp[OD_GOLDEN_P_FRAME] = rc->exp[OD_P_FRAME]; - rc->log_scale[OD_GOLDEN_P_FRAME] = rc->log_scale[OD_P_FRAME]; - rc->exp[OD_ALTREF_P_FRAME] = rc->exp[OD_P_FRAME]; - rc->log_scale[OD_ALTREF_P_FRAME] = rc->log_scale[OD_P_FRAME]; - /*We clamp the actual I and B frame delays to a minimum of 10 to work within - the range of values where later incrementing the delay works as designed. - 10 is not an exact choice, but rather a good working trade-off.*/ - rc->inter_p_delay = 10; - rc->inter_delay_target = rc->reservoir_frame_delay >> 1; - memset(rc->frame_count, 0, sizeof(rc->frame_count)); - /*Drop-frame tracking is concerned with more than just the basic three frame - types. - It needs to track boosted and cut subtypes (of which there is only one - right now, OD_GOLDEN_P_FRAME). */ - rc->prev_drop_count[OD_I_FRAME] = 0; - rc->log_drop_scale[OD_I_FRAME] = OD_Q57(0); - rc->prev_drop_count[OD_P_FRAME] = 0; - rc->log_drop_scale[OD_P_FRAME] = OD_Q57(0); - rc->prev_drop_count[OD_GOLDEN_P_FRAME] = 0; - rc->log_drop_scale[OD_GOLDEN_P_FRAME] = OD_Q57(0); - rc->prev_drop_count[OD_ALTREF_P_FRAME] = 0; - rc->log_drop_scale[OD_ALTREF_P_FRAME] = OD_Q57(0); - /*Set up second order followers, initialized according to corresponding - time constants.*/ - od_iir_bessel2_init(&rc->scalefilter[OD_I_FRAME], 4, - od_q57_to_q24(rc->log_scale[OD_I_FRAME])); - od_iir_bessel2_init(&rc->scalefilter[OD_P_FRAME], rc->inter_p_delay, - od_q57_to_q24(rc->log_scale[OD_P_FRAME])); - od_iir_bessel2_init(&rc->vfrfilter[OD_I_FRAME], 4, - od_bexp64_q24(rc->log_drop_scale[OD_I_FRAME])); - od_iir_bessel2_init(&rc->vfrfilter[OD_P_FRAME], 4, - od_bexp64_q24(rc->log_drop_scale[OD_P_FRAME])); - od_iir_bessel2_init(&rc->vfrfilter[OD_GOLDEN_P_FRAME], 4, - od_bexp64_q24(rc->log_drop_scale[OD_GOLDEN_P_FRAME])); - od_iir_bessel2_init(&rc->vfrfilter[OD_ALTREF_P_FRAME], 4, - od_bexp64_q24(rc->log_drop_scale[OD_ALTREF_P_FRAME])); -} - -int od_enc_rc_resize(od_rc_state *rc) { - /*If encoding has not yet begun, reset the buffer state.*/ - if (rc->cur_frame == 0) { - od_enc_rc_reset(rc); - } else { - int idt; - /*Otherwise, update the bounds on the buffer, but not the current - fullness.*/ - rc->bits_per_frame = (int64_t)(rc->target_bitrate / rc->framerate); - /*Insane framerates or frame sizes mean insane bitrates. - Let's not get carried away.*/ - if (rc->bits_per_frame > 0x400000000000LL) { - rc->bits_per_frame = (int64_t)0x400000000000LL; - } else { - if (rc->bits_per_frame < 32) { - rc->bits_per_frame = 32; - } - } - rc->reservoir_frame_delay = OD_MAXI(rc->reservoir_frame_delay, 12); - rc->reservoir_max = rc->bits_per_frame * rc->reservoir_frame_delay; - rc->reservoir_target = - ((rc->reservoir_max + 1) >> 1) + - ((rc->bits_per_frame + 2) >> 2) * - OD_MINI(rc->keyframe_rate, rc->reservoir_frame_delay); - /*Update the INTER-frame scale filter delay. - We jump to it immediately if we've already seen enough frames; otherwise - it is simply set as the new target.*/ - rc->inter_delay_target = idt = OD_MAXI(rc->reservoir_frame_delay >> 1, 10); - if (idt < OD_MINI(rc->inter_p_delay, rc->frame_count[OD_P_FRAME])) { - od_iir_bessel2_init(&rc->scalefilter[OD_P_FRAME], idt, - rc->scalefilter[OD_P_FRAME].y[0]); - rc->inter_p_delay = idt; - } - } - return 0; -} - -int od_enc_rc_init(od_rc_state *rc, int64_t bitrate, int delay_ms) { - if (rc->framerate <= 0) return 1; - if (rc->target_bitrate > 0) { - /*State has already been initialized; rather than reinitialize, - adjust the buffering for the new target rate. */ - rc->target_bitrate = bitrate; - return od_enc_rc_resize(rc); - } - rc->target_quantizer = 0; - rc->target_bitrate = bitrate; - rc->rate_bias = 0; - if (bitrate > 0) { - /* The buffer size is clamped between [12, 256], this interval is short - enough to - allow reaction, but long enough to allow looking into the next GOP - (avoiding - the case where the last frames before an I-frame get starved). - The 12 frame minimum gives us some chance to distribute bit estimation - errors in the worst case. The 256 frame maximum means we'll require 8-10 - seconds - of pre-buffering at 24-30 fps, which is not unreasonable.*/ - rc->reservoir_frame_delay = - (int)OD_MINI((delay_ms / 1000) * rc->framerate, 256); - rc->drop_frames = 1; - rc->cap_overflow = 1; - rc->cap_underflow = 0; - rc->twopass_state = 0; - od_enc_rc_reset(rc); - } - return 0; -} - -/*Scale the number of frames by the number of expected drops/duplicates.*/ -static int od_rc_scale_drop(od_rc_state *rc, int frame_type, int nframes) { - if (rc->prev_drop_count[frame_type] > 0 || - rc->log_drop_scale[frame_type] > OD_Q57(0)) { - int64_t dup_scale; - dup_scale = od_bexp64(((rc->log_drop_scale[frame_type] + - od_blog64(rc->prev_drop_count[frame_type] + 1)) >> - 1) + - OD_Q57(8)); - if (dup_scale < nframes << 8) { - int dup_scalei; - dup_scalei = (int)dup_scale; - if (dup_scalei > 0) { - nframes = ((nframes << 8) + dup_scalei - 1) / dup_scalei; - } - } else { - nframes = !!nframes; - } - } - return nframes; -} - -/*Closed form version of frame determination code. - Used by rate control to predict frame types and subtypes into the future. - No side effects, may be called any number of times. - Note that it ignores end-of-file conditions; one-pass planning *should* - ignore end-of-file. */ -int od_frame_type(od_rc_state *rc, int64_t coding_frame_count, int *is_golden, - int *is_altref, int64_t *ip_count) { - int frame_type; - if (coding_frame_count == 0) { - *is_golden = 1; - *is_altref = 1; - *ip_count = 0; - frame_type = OD_I_FRAME; - } else { - int keyrate = rc->keyframe_rate; - if (rc->closed_gop) { - int ip_per_gop; - int gop_n; - int gop_i; - ip_per_gop = (keyrate - 1) / 2; - gop_n = coding_frame_count / keyrate; - gop_i = coding_frame_count - gop_n * keyrate; - *ip_count = gop_n * ip_per_gop + (gop_i > 0) + (gop_i - 1); - frame_type = gop_i == 0 ? OD_I_FRAME : OD_P_FRAME; - } else { - int ip_per_gop; - int gop_n; - int gop_i; - ip_per_gop = (keyrate); - gop_n = (coding_frame_count - 1) / keyrate; - gop_i = coding_frame_count - gop_n * keyrate - 1; - *ip_count = (coding_frame_count > 0) + gop_n * ip_per_gop + (gop_i); - frame_type = gop_i / 1 < ip_per_gop - 1 ? OD_P_FRAME : OD_I_FRAME; - } - } - *is_golden = - (*ip_count % rc->goldenframe_rate) == 0 || frame_type == OD_I_FRAME; - *is_altref = (*ip_count % rc->altref_rate) == 0 || frame_type == OD_I_FRAME; - return frame_type; -} - -/*Count frames types forward from the current frame up to but not including - the last I-frame in reservoir_frame_delay. - If reservoir_frame_delay contains no I-frames (or the current frame is the - only I-frame), count all reservoir_frame_delay frames. - Returns the number of frames counted. - Right now, this implementation is simple, brute-force, and expensive. - It is also easy to understand and debug. - TODO: replace with a virtual FIFO that keeps running totals as - repeating the counting over-and-over will have a performance impact on - whole-file 2pass usage.*/ -static int frame_type_count(od_rc_state *rc, int nframes[OD_FRAME_NSUBTYPES]) { - int i; - int j; - int acc[OD_FRAME_NSUBTYPES]; - int count; - int reservoir_frames; - int reservoir_frame_delay; - memset(nframes, 0, OD_FRAME_NSUBTYPES * sizeof(*nframes)); - memset(acc, 0, sizeof(acc)); - count = 0; - reservoir_frames = 0; -#if 1 - /*Go ahead and count past end-of-stream. - We won't nail the exact bitrate on short files that end with a partial - GOP, but we also won't [potentially] destroy the quality of the last few - frames in that same case when we suddenly find out the stream is ending - before the original planning horizon.*/ - reservoir_frame_delay = rc->reservoir_frame_delay; -#else - /*Don't count past the end of the stream (once we know where end-of-stream - is).*/ - reservoir_frame_delay = - rc->end_of_input ? rc->input_size + 1 : rc->reservoir_frame_delay; -#endif - for (i = 0; i < reservoir_frame_delay; i++) { - int frame_type; - int is_golden; - int is_altref; - int64_t dummy; - frame_type = - od_frame_type(rc, rc->cur_frame + i, &is_golden, &is_altref, &dummy); - switch (frame_type) { - case OD_I_FRAME: { - for (j = 0; j < OD_FRAME_NSUBTYPES; j++) nframes[j] += acc[j]; - reservoir_frames += count; - memset(acc, 0, sizeof(acc)); - acc[OD_I_FRAME] = 1; - count = 1; - break; - } - case OD_P_FRAME: { - if (is_golden) { - ++acc[OD_GOLDEN_P_FRAME]; - ++count; - } else if (is_altref) { - ++acc[OD_ALTREF_P_FRAME]; - ++count; - } else { - ++acc[OD_P_FRAME]; - ++count; - } - break; - } - } - } - /*If there were no I-frames at all, or only the first frame was an I-frame, - the accumulators never flushed and still contain the counts for the - entire buffer. - In both these cases, we return these counts. - Otherwise, we discard what remains in the accumulators as they contain - the counts from and past the last I-frame.*/ - if (reservoir_frames == 0) { - for (i = 0; i < OD_FRAME_NSUBTYPES; i++) nframes[i] = acc[i]; - reservoir_frames += count; - } - return reservoir_frames; -} - -static int convert_to_ac_quant(int q, int bit_depth) { - return lrint(av1_convert_qindex_to_q(q, bit_depth)); -} - -int od_enc_rc_select_quantizers_and_lambdas(od_rc_state *rc, - int is_golden_frame, - int is_altref_frame, int frame_type, - int *bottom_idx, int *top_idx) { - int frame_subtype; - int64_t log_cur_scale; - int lossy_quantizer_min; - int lossy_quantizer_max; - double mqp_i = OD_MQP_I; - double mqp_p = OD_MQP_P; - double mqp_gp = OD_MQP_GP; - double mqp_ap = OD_MQP_AP; - int reservoir_frames; - int nframes[OD_FRAME_NSUBTYPES]; - int32_t mqp_Q12[OD_FRAME_NSUBTYPES]; - int64_t dqp_Q45[OD_FRAME_NSUBTYPES]; - /*Verify the closed-form frame type determination code matches what the - input queue set.*/ - /*One pseudo-non-closed-form caveat: - Once we've seen end-of-input, the batched frame determination code - suppresses the last open-GOP's I-frame (since it would only be - useful for the next GOP, which doesn't exist). - Thus, don't check one the input queue is drained.*/ - if (!rc->end_of_input) { - int closed_form_type; - int closed_form_golden; - int closed_form_altref; - int64_t closed_form_cur_frame; - closed_form_type = - od_frame_type(rc, rc->cur_frame, &closed_form_golden, - &closed_form_altref, &closed_form_cur_frame); - OD_UNUSED(closed_form_type); - OD_UNUSED(is_altref_frame); - assert(closed_form_type == frame_type); - assert(closed_form_cur_frame == rc->cur_frame); - assert(closed_form_altref == is_altref_frame); - assert(closed_form_golden == is_golden_frame); - } - - log_cur_scale = (int64_t)rc->scalefilter[frame_type].y[0] << 33; - - /*Count the various types and classes of frames.*/ - reservoir_frames = frame_type_count(rc, nframes); - nframes[OD_I_FRAME] = od_rc_scale_drop(rc, OD_I_FRAME, nframes[OD_I_FRAME]); - nframes[OD_P_FRAME] = od_rc_scale_drop(rc, OD_P_FRAME, nframes[OD_P_FRAME]); - nframes[OD_GOLDEN_P_FRAME] = - od_rc_scale_drop(rc, OD_GOLDEN_P_FRAME, nframes[OD_GOLDEN_P_FRAME]); - nframes[OD_ALTREF_P_FRAME] = - od_rc_scale_drop(rc, OD_ALTREF_P_FRAME, nframes[OD_ALTREF_P_FRAME]); - - switch (rc->twopass_state) { - default: break; - case 1: { - /*Pass 1 mode: use a fixed qi value.*/ - return rc->firstpass_quant; - } break; - case 2: { - int i; - int64_t scale_sum[OD_FRAME_NSUBTYPES]; - int qti; - /*Pass 2 mode: we know exactly how much of each frame type there is in - the current buffer window, and have estimates for the scales.*/ - for (i = 0; i < OD_FRAME_NSUBTYPES; i++) { - nframes[i] = rc->nframes[i]; - nframes[i] = rc->nframes[i]; - scale_sum[i] = rc->scale_sum[i]; - } - /*If we're not using the same frame type as in pass 1 (because someone - changed the keyframe interval), remove that scale estimate. - We'll add in a replacement for the correct frame type below.*/ - qti = rc->cur_metrics.frame_type; - if (qti != frame_type) { - nframes[qti]--; - scale_sum[qti] -= od_bexp64_q24(rc->cur_metrics.log_scale); - } - /*Compute log_scale estimates for each frame type from the pass-1 scales - we measured in the current window.*/ - for (qti = 0; qti < OD_FRAME_NSUBTYPES; qti++) { - rc->log_scale[qti] = nframes[qti] > 0 - ? od_blog64(scale_sum[qti]) - - od_blog64(nframes[qti]) - OD_Q57(24) - : -rc->log_npixels; - } - /*If we're not using the same frame type as in pass 1, add a scale - estimate for the corresponding frame using the current low-pass - filter value. - This is mostly to ensure we have a valid estimate even when pass 1 had - no frames of this type in the buffer window. - TODO: We could also plan ahead and figure out how many keyframes we'll - be forced to add in the current buffer window.*/ - qti = rc->cur_metrics.frame_type; - if (qti != frame_type) { - int64_t scale; - scale = rc->log_scale[frame_type] < OD_Q57(23) - ? od_bexp64(rc->log_scale[frame_type] + OD_Q57(24)) - : 0x7FFFFFFFFFFFLL; - scale *= nframes[frame_type]; - nframes[frame_type]++; - scale += od_bexp64_q24(log_cur_scale >> 33); - rc->log_scale[frame_type] = - od_blog64(scale) - od_blog64(nframes[qti]) - OD_Q57(24); - } else { - log_cur_scale = (int64_t)rc->cur_metrics.log_scale << 33; - } - } break; - } - - /*Quantizer selection sticks to the codable, lossy portion of the quantizer - range.*/ - lossy_quantizer_min = convert_to_ac_quant(rc->minq, rc->bit_depth); - lossy_quantizer_max = convert_to_ac_quant(rc->maxq, rc->bit_depth); - frame_subtype = frame_type; - /*Stash quantizer modulation by frame type.*/ - mqp_Q12[OD_I_FRAME] = OD_F_Q12(mqp_i); - mqp_Q12[OD_P_FRAME] = OD_F_Q12(mqp_p); - mqp_Q12[OD_GOLDEN_P_FRAME] = OD_F_Q12(mqp_gp); - mqp_Q12[OD_ALTREF_P_FRAME] = OD_F_Q12(mqp_ap); - dqp_Q45[OD_I_FRAME] = OD_F_Q45(OD_DQP_I); - dqp_Q45[OD_P_FRAME] = OD_F_Q45(OD_DQP_P); - dqp_Q45[OD_GOLDEN_P_FRAME] = OD_F_Q45(OD_DQP_GP); - dqp_Q45[OD_ALTREF_P_FRAME] = OD_F_Q45(OD_DQP_AP); - /*Is rate control active?*/ - if (rc->target_bitrate <= 0) { - /*Rate control is not active; derive quantizer directly from - quality parameter and frame type. */ - /*Can't use the OD_LOSSLESS macro, as it uses state.quantizer to intuit, - and we've not set it yet.*/ - if (rc->quality == 0) { - /*Lossless coding requested.*/ - rc->base_quantizer = 0; - rc->target_quantizer = 0; - } else { - int64_t log_quantizer; - - /* Adjust the modulation constants using the last frame's quantizer. */ - double mqp_delta = (255 - rc->target_quantizer) / 2000.0f; - mqp_i -= mqp_delta; - mqp_p += mqp_delta; - mqp_gp -= mqp_delta; - mqp_Q12[OD_I_FRAME] = OD_F_Q12(mqp_i); - mqp_Q12[OD_P_FRAME] = OD_F_Q12(mqp_p); - mqp_Q12[OD_GOLDEN_P_FRAME] = OD_F_Q12(mqp_gp); - mqp_Q12[OD_ALTREF_P_FRAME] = OD_F_Q12(mqp_ap); - - if (rc->quality == -1) { - /*A quality of -1 means quality was unset; use a default.*/ - rc->base_quantizer = convert_to_ac_quant(10, rc->bit_depth); - } else { - rc->base_quantizer = convert_to_ac_quant(rc->quality, rc->bit_depth); - } - - if (rc->periodic_boosts && !is_golden_frame) { - int pattern_rate = (rc->goldenframe_rate >> 1); - int dist_to_golden = rc->cur_frame % pattern_rate; - int dist_away_golden = pattern_rate - dist_to_golden; - int boost = dist_to_golden; - if (dist_away_golden > dist_to_golden) boost = dist_away_golden; - boost -= pattern_rate; - boost *= (rc->base_quantizer) / OD_PERIODIC_BOOST_DIV; - rc->base_quantizer = rc->base_quantizer + boost; - } - - /*As originally written, qp modulation is applied to the coded quantizer. - Because we now have and use a more precise target quantizer for various - calculation, that needs to be modulated as well. - Calculate what is, effectively, a fractional coded quantizer. */ - /*Get the log2 quantizer in Q57 (normalized for coefficient shift).*/ - log_quantizer = od_blog64(rc->base_quantizer) - OD_Q57(OD_COEFF_SHIFT); - /*log_quantizer to Q21.*/ - log_quantizer >>= 36; - /*scale log quantizer, result is Q33.*/ - log_quantizer *= OD_LOG_QUANTIZER_BASE_Q12; - /*Add Q33 offset to Q33 log_quantizer.*/ - log_quantizer += OD_LOG_QUANTIZER_OFFSET_Q45 >> 12; - /*Modulate quantizer according to frame type; result is Q45.*/ - log_quantizer *= mqp_Q12[frame_subtype]; - /*Add Q45 boost/cut to Q45 fractional coded quantizer.*/ - log_quantizer += dqp_Q45[frame_subtype]; - /*Back to log2 quantizer in Q57.*/ - log_quantizer = (log_quantizer - OD_LOG_QUANTIZER_OFFSET_Q45) * - OD_LOG_QUANTIZER_EXP_Q12 + - OD_Q57(OD_COEFF_SHIFT); - /*Convert Q57 log2 quantizer to unclamped linear target quantizer value.*/ - rc->target_quantizer = od_bexp64(log_quantizer); - } - } else { - int clamp; - int64_t rate_bias; - int64_t rate_total; - int base_quantizer; - int64_t log_quantizer; - int qlo; - int qhi; - int i; - /*We clamp the allowed amount of qi change (after initialization).*/ - clamp = rc->cur_frame > 0; - /*Figure out how to re-distribute bits so that we hit our fullness target - before the last keyframe in our current buffer window (after the current - frame), or the end of the buffer window, whichever comes first.*/ - /*Single pass only right now.*/ - /*If we've been missing our target, add a penalty term.*/ - rate_bias = (rc->rate_bias / (rc->cur_frame + 1000)) * reservoir_frames; - /*rate_total is the total bits available over the next - reservoir_frames frames.*/ - rate_total = rc->reservoir_fullness - rc->reservoir_target + rate_bias + - reservoir_frames * rc->bits_per_frame; - /*Find a target quantizer that meets our rate target for the specific mix - of frame types we'll have over the next frame_delay frames. - We model the rate<->quantizer relationship as: - rate = scale*(quantizer**-exp) - In this case, we have our desired rate, an exponent selected in setup, - and a scale that's been measured over our frame history, so we're - solving for the quantizer. - Exponentiation with arbitrary exponents is expensive, so we work in - the binary log domain (binary exp and log aren't too bad): - rate = e2(log2_scale - log2_quantizer * exp) - There's no easy closed form solution, so we bisection search for it.*/ - /*We do not currently allow rate control to select lossless encoding.*/ - qlo = 1; - /*If there's a quality specified, it's used to select the - coarsest base quantizer we can select. - Otherwise we can use up to and including the coarsest codable - quantizer.*/ - if (rc->quality > 0) - qhi = convert_to_ac_quant(rc->quality, rc->bit_depth); - else - qhi = lossy_quantizer_max; - base_quantizer = (qlo + qhi) >> 1; - while (qlo < qhi) { - volatile int64_t log_base_quantizer; - int64_t diff; - int64_t bits; - /*Count bits contributed by each frame type using the model.*/ - bits = 0; - log_base_quantizer = od_blog64(base_quantizer); - for (i = 0; i < OD_FRAME_NSUBTYPES; i++) { - /*Modulate base quantizer by frame type.*/ - /*Get the log2 quantizer in Q57 (normalized for coefficient shift).*/ - log_quantizer = log_base_quantizer - OD_Q57(OD_COEFF_SHIFT); - /*log_quantizer to Q21.*/ - log_quantizer >>= 36; - /*scale log quantizer, result is Q33.*/ - log_quantizer *= OD_LOG_QUANTIZER_BASE_Q12; - /*Add Q33 offset to Q33 log_quantizer.*/ - log_quantizer += OD_LOG_QUANTIZER_OFFSET_Q45 >> 12; - /*Modulate quantizer according to frame type; result is Q45.*/ - log_quantizer *= mqp_Q12[i]; - /*Add Q45 boost/cut to Q45 fractional coded quantizer.*/ - log_quantizer += dqp_Q45[i]; - /*Back to log2 quantizer in Q57.*/ - log_quantizer = (log_quantizer - OD_LOG_QUANTIZER_OFFSET_Q45) * - OD_LOG_QUANTIZER_EXP_Q12 + - OD_Q57(OD_COEFF_SHIFT); - /*Clamp modulated quantizer values.*/ - log_quantizer = OD_CLAMPI(od_blog64(lossy_quantizer_min), log_quantizer, - od_blog64(lossy_quantizer_max)); - /* All the fields here are Q57 except for the exponent which is Q6.*/ - bits += nframes[i] * od_bexp64(rc->log_scale[i] + rc->log_npixels - - (log_quantizer >> 6) * rc->exp[i]); - } - diff = bits - rate_total; - if (diff > 0) { - qlo = base_quantizer + 1; - } else if (diff < 0) { - qhi = base_quantizer - 1; - } else { - break; - } - base_quantizer = (qlo + qhi) >> 1; - } - /*If this was not one of the initial frames, limit the change in base - quantizer to within [0.8*Q,1.2*Q], where Q is the previous frame's - base quantizer.*/ - if (clamp) { - base_quantizer = OD_CLAMPI((rc->base_quantizer * 0x0CCCD + 0x8000) >> 16, - base_quantizer, - (rc->base_quantizer * 0x13333 + 0x8000) >> 16); - } - /*Modulate chosen base quantizer to produce target quantizer.*/ - log_quantizer = od_blog64(base_quantizer); - /*Get the log2 quantizer in Q57 (normalized for coefficient shift).*/ - log_quantizer -= OD_Q57(OD_COEFF_SHIFT); - /*log_quantizer to Q21.*/ - log_quantizer >>= 36; - /*scale log quantizer, result is Q33.*/ - log_quantizer *= OD_LOG_QUANTIZER_BASE_Q12; - /*Add Q33 offset to Q33 log_quantizer.*/ - log_quantizer += OD_LOG_QUANTIZER_OFFSET_Q45 >> 12; - /*Modulate quantizer according to frame type; result is Q45.*/ - log_quantizer *= mqp_Q12[frame_subtype]; - /*Add Q45 boost/cut to Q45 fractional coded quantizer.*/ - log_quantizer += dqp_Q45[frame_subtype]; - /*Back to log2 quantizer in Q57.*/ - log_quantizer = (log_quantizer - OD_LOG_QUANTIZER_OFFSET_Q45) * - OD_LOG_QUANTIZER_EXP_Q12 + - OD_Q57(OD_COEFF_SHIFT); - /*Clamp modulated quantizer values.*/ - log_quantizer = OD_CLAMPI(od_blog64(lossy_quantizer_min), log_quantizer, - od_blog64(lossy_quantizer_max)); - /*The above allocation looks only at the total rate we'll accumulate in - the next reservoir_frame_delay frames. - However we could overflow the bit reservoir on the very next frame, so - check for that here if we're not using a soft target.*/ - if (rc->cap_overflow) { - int64_t margin; - int64_t soft_limit; - int64_t log_soft_limit; - int64_t log_scale_pixels; - int64_t exp; - int64_t log_qexp; - /*Allow 3% of the buffer for prediction error. - This should be plenty, and we don't mind if we go a bit over; we only - want to keep these bits from being completely wasted.*/ - margin = (rc->reservoir_max + 31) >> 5; - /*We want to use at least this many bits next frame.*/ - soft_limit = rc->reservoir_fullness + rc->bits_per_frame - - (rc->reservoir_max - margin); - log_soft_limit = od_blog64(soft_limit); - /*If we're predicting we won't use that many bits...*/ - log_scale_pixels = rc->log_scale[frame_subtype] + rc->log_npixels; - exp = rc->exp[frame_subtype]; - log_qexp = (log_quantizer >> 6) * exp; - if (log_scale_pixels - log_qexp < log_soft_limit) { - /*Scale the adjustment based on how far into the margin we are.*/ - log_qexp += ((log_scale_pixels - log_soft_limit - log_qexp) >> 32) * - (OD_MINI(margin, soft_limit) << 32) / margin; - log_quantizer = (((log_qexp + (exp >> 1)) / exp) << 6); - } - } - /*We just checked we don't overflow the reservoir next frame, now check - we don't underflow and bust the budget (when not using a soft target). - Disabled when a quality bound is set; if we saturate quantizer to the - maximum possible size when we have a limiting max quality, the - resulting lambda can cause strange behavior.*/ - if (rc->quality == -1) { - int64_t exp; - int64_t log_qexp; - int64_t log_scale_pixels; - int64_t log_hard_limit; - /*Compute the maximum number of bits we can use in the next frame. - Allow 50% of the rate for a single frame for prediction error. - This may not be enough for keyframes or sudden changes in - complexity.*/ - log_hard_limit = - od_blog64(rc->reservoir_fullness + (rc->bits_per_frame >> 1)); - /*If we're predicting we'll use more than this...*/ - log_scale_pixels = rc->log_scale[frame_subtype] + rc->log_npixels; - exp = rc->exp[frame_subtype]; - log_qexp = (log_quantizer >> 6) * exp; - if (log_scale_pixels - log_qexp > log_hard_limit) { - /*Force the target to hit our limit exactly.*/ - log_qexp = log_scale_pixels - log_hard_limit; - log_quantizer = (log_qexp + (exp >> 1)) / exp << 6; - /*If that target is unreasonable, oh well; we'll have to drop.*/ - log_quantizer = OD_MAXI(log_quantizer, od_blog64(lossy_quantizer_max)); - } - } - /*Compute a final estimate of the number of bits we plan to use, update - the running rate bias measurement.*/ - { - int64_t log_qexp; - int64_t log_scale_pixels; - log_scale_pixels = rc->log_scale[frame_subtype] + rc->log_npixels; - log_qexp = (log_quantizer >> 6) * rc->exp[frame_subtype]; - rc->rate_bias += od_bexp64(log_scale_pixels - log_qexp); - } - rc->target_quantizer = od_bexp64(log_quantizer); - /*The various cappings and adjustments may have altered the log_quantizer - target significantly. - We can either update the base quantizer to be consistent with the - target or let it track separately. - Theora behavior effectively keeps them consistent, as it regenerates - the effective base quantizer from the target each frame rather than - saving both. - For Daala, it's easier to allow them to track separately. - For now, allow them to track separately and see how it behaves.*/ - rc->base_quantizer = base_quantizer; - } - *bottom_idx = lossy_quantizer_min; - *top_idx = lossy_quantizer_max; - rc->target_quantizer = av1_qindex_from_ac( - OD_CLAMPI(lossy_quantizer_min, rc->target_quantizer, lossy_quantizer_max), - rc->bit_depth); - return rc->target_quantizer; -} - -int od_enc_rc_update_state(od_rc_state *rc, int64_t bits, int is_golden_frame, - int is_altref_frame, int frame_type, int droppable) { - int dropped; - dropped = 0; - /*Update rate control only if rate control is active.*/ - if (rc->target_bitrate > 0) { - int64_t log_scale; - int frame_subtype; - frame_subtype = frame_type; - /*Track non-golden and golden P frame drops separately.*/ - if (is_golden_frame && frame_type == OD_P_FRAME) - frame_subtype = OD_GOLDEN_P_FRAME; - else if (is_altref_frame && frame_type == OD_P_FRAME) - frame_subtype = OD_ALTREF_P_FRAME; - if (bits <= 0) { - /*We didn't code any blocks in this frame.*/ - log_scale = OD_Q57(-64); - bits = 0; - ++rc->prev_drop_count[frame_subtype]; - } else { - int64_t log_bits; - int64_t log_qexp; - /*Compute the estimated scale factor for this frame type.*/ - log_bits = od_blog64(bits); - log_qexp = od_blog64(rc->target_quantizer); - log_qexp = (log_qexp >> 6) * (rc->exp[frame_type]); - log_scale = OD_MINI(log_bits - rc->log_npixels + log_qexp, OD_Q57(16)); - } - - switch (rc->twopass_state) { - case 1: { - int golden, altref; - int64_t ipc; - rc->cur_metrics.frame_type = - od_frame_type(rc, rc->cur_frame, &golden, &altref, &ipc); - /*Pass 1 mode: save the metrics for this frame.*/ - rc->cur_metrics.log_scale = od_q57_to_q24(log_scale); - } break; - case 2: { - /*Pass 2 mode:*/ - int m_frame_type = rc->cur_metrics.frame_type; - rc->nframes[m_frame_type]--; - rc->scale_sum[m_frame_type] -= od_bexp64_q24(rc->cur_metrics.log_scale); - } break; - } - - if (bits > 0) { - od_iir_bessel2 *f; - /*If this is the first example of the given frame type we've - seen, we immediately replace the default scale factor guess - with the estimate we just computed using the first frame.*/ - if (rc->frame_count[frame_type] == 0) { - f = rc->scalefilter + frame_type; - f->y[1] = f->y[0] = f->x[1] = f->x[0] = od_q57_to_q24(log_scale); - rc->log_scale[frame_type] = log_scale; - } else { - /*Lengthen the time constant for the inter filters as we collect more - frame statistics, until we reach our target.*/ - if (frame_type != OD_I_FRAME && - rc->inter_p_delay < rc->inter_delay_target && - rc->frame_count[frame_type] >= rc->inter_p_delay) { - od_iir_bessel2_reinit(&rc->scalefilter[frame_type], - ++rc->inter_p_delay); - } - /*Update the low-pass scale filter for this frame type - regardless of whether or not we drop this frame.*/ - rc->log_scale[frame_type] = - od_iir_bessel2_update(rc->scalefilter + frame_type, - od_q57_to_q24(log_scale)) - << 33; - } - /*If this frame busts our budget, it must be dropped.*/ - if (droppable && rc->reservoir_fullness + rc->bits_per_frame < bits) { - ++rc->prev_drop_count[frame_subtype]; - bits = 0; - dropped = 1; - } else { - uint32_t drop_count; - /*Update a low-pass filter to estimate the "real" frame rate taking - drops into account. - This is only done if the frame is coded, as it needs the final - count of dropped frames.*/ - drop_count = rc->prev_drop_count[frame_subtype] + 1; - if (drop_count > 0x7F) { - drop_count = 0x7FFFFFFF; - } else { - drop_count <<= 24; - } - rc->log_drop_scale[frame_subtype] = - od_blog64(od_iir_bessel2_update(rc->vfrfilter + frame_subtype, - drop_count)) - - OD_Q57(24); - /*Zero the drop count for this frame. - It will be increased if we drop frames.*/ - rc->prev_drop_count[frame_subtype] = 0; - } - /*Increment the frame count for filter adaptation purposes.*/ - if (!rc->twopass_state) rc->frame_count[frame_type]++; - } - rc->reservoir_fullness += rc->bits_per_frame - bits; - /*If we're too quick filling the buffer and overflow is capped, - that rate is lost forever.*/ - if (rc->cap_overflow && rc->reservoir_fullness > rc->reservoir_max) { - rc->reservoir_fullness = rc->reservoir_max; - } - /*If we're too quick draining the buffer and underflow is capped, - don't try to make up that rate later.*/ - if (rc->cap_underflow && rc->reservoir_fullness < 0) { - rc->reservoir_fullness = 0; - } - /*Adjust the bias for the real bits we've used.*/ - rc->rate_bias -= bits; - } - return dropped; -} - -static INLINE void od_rc_buffer_val(od_rc_state *rc, int64_t val, int bytes) { - while (bytes-- > 0) { - rc->twopass_buffer[rc->twopass_buffer_bytes++] = (uint8_t)(val & 0xFF); - val >>= 8; - } -} - -static INLINE int64_t od_rc_unbuffer_val(od_rc_state *rc, int bytes) { - int64_t ret = 0; - int shift = 0; - while (bytes-- > 0) { - ret |= ((int64_t)rc->twopass_buffer[rc->twopass_buffer_bytes++]) << shift; - shift += 8; - } - return ret; -} - -int od_enc_rc_2pass_out(od_rc_state *rc, struct aom_codec_pkt_list *pkt_list, - int summary) { - int i; - struct aom_codec_cx_pkt pkt; - rc->twopass_buffer = rc->firstpass_buffer; - rc->twopass_buffer_bytes = 0; - if (!rc->twopass_state) { - rc->twopass_state = 1; - for (i = 0; i < OD_FRAME_NSUBTYPES; i++) { - rc->frame_count[i] = 0; - rc->exp[i] = 0; - rc->scale_sum[i] = 0; - } - } - if (summary) { - od_rc_buffer_val(rc, OD_RC_2PASS_MAGIC, 4); - od_rc_buffer_val(rc, OD_RC_2PASS_VERSION, 1); - for (i = 0; i < OD_FRAME_NSUBTYPES; i++) { - od_rc_buffer_val(rc, rc->frame_count[i], 4); - od_rc_buffer_val(rc, rc->exp[i], 4); - od_rc_buffer_val(rc, rc->scale_sum[i], 8); - } - } else { - int frame_type = rc->cur_metrics.frame_type; - rc->scale_sum[frame_type] += od_bexp64_q24(rc->cur_metrics.log_scale); - rc->frame_count[frame_type]++; - od_rc_buffer_val(rc, rc->cur_metrics.frame_type, 1); - od_rc_buffer_val(rc, rc->cur_metrics.log_scale, 4); - } - pkt.data.twopass_stats.buf = rc->firstpass_buffer; - pkt.data.twopass_stats.sz = rc->twopass_buffer_bytes; - pkt.kind = AOM_CODEC_STATS_PKT; - aom_codec_pkt_list_add(pkt_list, &pkt); - return 0; -} - -int od_enc_rc_2pass_in(od_rc_state *rc) { - /* Enable pass 2 mode if this is the first call. */ - if (rc->twopass_state == 0) { - uint32_t i, total_frames = 0; - - if (!rc->twopass_allframes_buf || - rc->twopass_allframes_buf_size < OD_RC_2PASS_MIN) - return -1; - - /* Find summary packet at the end */ - rc->twopass_buffer = rc->twopass_allframes_buf; - rc->twopass_buffer += - rc->twopass_allframes_buf_size - OD_RC_2PASS_SUMMARY_SZ; - rc->twopass_buffer_bytes = 0; - - if (od_rc_unbuffer_val(rc, 4) != OD_RC_2PASS_MAGIC) return -1; - if (od_rc_unbuffer_val(rc, 1) != OD_RC_2PASS_VERSION) return -1; - - for (i = 0; i < OD_FRAME_NSUBTYPES; i++) { - rc->frame_count[i] = od_rc_unbuffer_val(rc, 4); - rc->exp[i] = od_rc_unbuffer_val(rc, 4); - rc->scale_sum[i] = od_rc_unbuffer_val(rc, 8); - rc->nframes[i] = rc->frame_count[i]; - total_frames += rc->frame_count[i]; - } - - if (total_frames < 1) return -1; - - if (total_frames * OD_RC_2PASS_PACKET_SZ > rc->twopass_allframes_buf_size) - return -1; - - od_enc_rc_reset(rc); - - /* Everything looks ok */ - rc->twopass_buffer = rc->twopass_allframes_buf; - rc->twopass_state = 2; - rc->twopass_buffer_bytes = 0; - } - - rc->cur_metrics.frame_type = od_rc_unbuffer_val(rc, 1); - rc->cur_metrics.log_scale = od_rc_unbuffer_val(rc, 4); - - return 0; -} |