summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/encodemb.c
diff options
context:
space:
mode:
authortrav90 <travawine@palemoon.org>2018-10-15 21:45:30 -0500
committertrav90 <travawine@palemoon.org>2018-10-15 21:45:30 -0500
commit68569dee1416593955c1570d638b3d9250b33012 (patch)
treed960f017cd7eba3f125b7e8a813789ee2e076310 /third_party/aom/av1/encoder/encodemb.c
parent07c17b6b98ed32fcecff15c083ab0fd878de3cf0 (diff)
downloadUXP-68569dee1416593955c1570d638b3d9250b33012.tar
UXP-68569dee1416593955c1570d638b3d9250b33012.tar.gz
UXP-68569dee1416593955c1570d638b3d9250b33012.tar.lz
UXP-68569dee1416593955c1570d638b3d9250b33012.tar.xz
UXP-68569dee1416593955c1570d638b3d9250b33012.zip
Import aom library
This is the reference implementation for the Alliance for Open Media's av1 video code. The commit used was 4d668d7feb1f8abd809d1bca0418570a7f142a36.
Diffstat (limited to 'third_party/aom/av1/encoder/encodemb.c')
-rw-r--r--third_party/aom/av1/encoder/encodemb.c1671
1 files changed, 1671 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/encodemb.c b/third_party/aom/av1/encoder/encodemb.c
new file mode 100644
index 000000000..c450244b1
--- /dev/null
+++ b/third_party/aom/av1/encoder/encodemb.c
@@ -0,0 +1,1671 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include "./av1_rtcd.h"
+#include "./aom_config.h"
+#include "./aom_dsp_rtcd.h"
+
+#include "aom_dsp/bitwriter.h"
+#include "aom_dsp/quantize.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/mem.h"
+
+#include "av1/common/idct.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/scan.h"
+
+#include "av1/encoder/av1_quantize.h"
+#include "av1/encoder/encodemb.h"
+#if CONFIG_LV_MAP
+#include "av1/encoder/encodetxb.h"
+#endif
+#include "av1/encoder/hybrid_fwd_txfm.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/tokenize.h"
+
+#if CONFIG_PVQ
+#include "av1/encoder/encint.h"
+#include "av1/common/partition.h"
+#include "av1/encoder/pvq_encoder.h"
+#endif
+
+#if CONFIG_CFL
+#include "av1/common/cfl.h"
+#endif
+
+// Check if one needs to use c version subtraction.
+static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; }
+
+static void subtract_block(const MACROBLOCKD *xd, int rows, int cols,
+ int16_t *diff, ptrdiff_t diff_stride,
+ const uint8_t *src8, ptrdiff_t src_stride,
+ const uint8_t *pred8, ptrdiff_t pred_stride) {
+#if !CONFIG_HIGHBITDEPTH
+ (void)xd;
+#endif
+
+ if (check_subtract_block_size(rows, cols)) {
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8,
+ src_stride, pred8, pred_stride, xd->bd);
+ return;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+ aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8,
+ pred_stride);
+
+ return;
+ }
+
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
+ pred8, pred_stride, xd->bd);
+ return;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+ aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
+ pred_stride);
+}
+
+void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
+ int blk_col, int blk_row, TX_SIZE tx_size) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
+ const int diff_stride = block_size_wide[plane_bsize];
+ const int src_stride = p->src.stride;
+ const int dst_stride = pd->dst.stride;
+ const int tx1d_width = tx_size_wide[tx_size];
+ const int tx1d_height = tx_size_high[tx_size];
+ uint8_t *dst =
+ &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
+ uint8_t *src =
+ &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
+ int16_t *src_diff =
+ &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
+ subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src,
+ src_stride, dst, dst_stride);
+}
+
+void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+ struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+ const int bw = block_size_wide[plane_bsize];
+ const int bh = block_size_high[plane_bsize];
+ const MACROBLOCKD *xd = &x->e_mbd;
+
+ subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride);
+}
+
+// These numbers are empirically obtained.
+static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
+#if CONFIG_EC_ADAPT
+ { 10, 7 }, { 8, 5 },
+#else
+ { 10, 6 }, { 8, 5 },
+#endif
+};
+
+#define UPDATE_RD_COST() \
+ { \
+ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \
+ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \
+ }
+
+static INLINE int64_t
+get_token_bit_costs(unsigned int token_costs[2][COEFF_CONTEXTS][ENTROPY_TOKENS],
+ int skip_eob, int ctx, int token) {
+#if CONFIG_NEW_TOKENSET
+ (void)skip_eob;
+ return token_costs[token == ZERO_TOKEN || token == EOB_TOKEN][ctx][token];
+#else
+ return token_costs[skip_eob][ctx][token];
+#endif
+}
+
+#define USE_GREEDY_OPTIMIZE_B 0
+
+#if USE_GREEDY_OPTIMIZE_B
+
+typedef struct av1_token_state {
+ int16_t token;
+ tran_low_t qc;
+ tran_low_t dqc;
+} av1_token_state;
+
+int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block,
+ TX_SIZE tx_size, int ctx) {
+#if !CONFIG_PVQ
+ MACROBLOCKD *const xd = &mb->e_mbd;
+ struct macroblock_plane *const p = &mb->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int ref = is_inter_block(&xd->mi[0]->mbmi);
+ av1_token_state tokens[MAX_TX_SQUARE + 1][2];
+ uint8_t token_cache[MAX_TX_SQUARE];
+ const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ const int eob = p->eobs[block];
+ const PLANE_TYPE plane_type = pd->plane_type;
+ const int16_t *const dequant_ptr = pd->dequant;
+ const uint8_t *const band_translate = get_band_translate(tx_size);
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
+ const SCAN_ORDER *const scan_order =
+ get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
+ const int16_t *const scan = scan_order->scan;
+ const int16_t *const nb = scan_order->neighbors;
+ int dqv;
+ const int shift = av1_get_tx_scale(tx_size);
+#if CONFIG_AOM_QM
+ int seg_id = xd->mi[0]->mbmi.segment_id;
+ const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
+#endif
+#if CONFIG_NEW_QUANT
+ int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
+ const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
+#elif !CONFIG_AOM_QM
+ const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift };
+#endif // CONFIG_NEW_QUANT
+ int sz = 0;
+ const int64_t rddiv = mb->rddiv;
+ int64_t rd_cost0, rd_cost1;
+ int16_t t0, t1;
+ int i, final_eob;
+#if CONFIG_HIGHBITDEPTH
+ const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
+#else
+ const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, 8);
+#endif
+ unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
+ mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
+ const int default_eob = tx_size_2d[tx_size];
+
+ assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
+
+ assert((!plane_type && !plane) || (plane_type && plane));
+ assert(eob <= default_eob);
+
+ int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
+/* CpuSpeedTest uses "--min-q=0 --max-q=0" and expects 100dB psnr
+* This creates conflict with search for a better EOB position
+* The line below is to make sure EOB search is disabled at this corner case.
+*/
+#if !CONFIG_NEW_QUANT && !CONFIG_AOM_QM
+ if (dq_step[1] <= 4) {
+ rdmult = 1;
+ }
+#endif
+
+ int64_t rate0, rate1;
+ for (i = 0; i < eob; i++) {
+ const int rc = scan[i];
+ int x = qcoeff[rc];
+ t0 = av1_get_token(x);
+
+ tokens[i][0].qc = x;
+ tokens[i][0].token = t0;
+ tokens[i][0].dqc = dqcoeff[rc];
+
+ token_cache[rc] = av1_pt_energy_class[t0];
+ }
+ tokens[eob][0].token = EOB_TOKEN;
+ tokens[eob][0].qc = 0;
+ tokens[eob][0].dqc = 0;
+ tokens[eob][1] = tokens[eob][0];
+
+ unsigned int(*token_costs_ptr)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
+ token_costs;
+
+ final_eob = 0;
+
+ int64_t eob_cost0, eob_cost1;
+
+ const int ctx0 = ctx;
+ /* Record the r-d cost */
+ int64_t accu_rate = 0;
+ int64_t accu_error = 0;
+
+ rate0 = get_token_bit_costs(*(token_costs_ptr + band_translate[0]), 0, ctx0,
+ EOB_TOKEN);
+ int64_t best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error);
+
+ // int64_t best_block_rd_cost_all0 = best_block_rd_cost;
+
+ int x_prev = 1;
+
+ for (i = 0; i < eob; i++) {
+ const int rc = scan[i];
+ int x = qcoeff[rc];
+ sz = -(x < 0);
+
+ int band_cur = band_translate[i];
+ int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i);
+ int token_tree_sel_cur = (x_prev == 0);
+
+ if (x == 0) {
+ // no need to search when x == 0
+ rate0 =
+ get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur,
+ ctx_cur, tokens[i][0].token);
+ accu_rate += rate0;
+ x_prev = 0;
+ // accu_error does not change when x==0
+ } else {
+ /* Computing distortion
+ */
+ // compute the distortion for the first candidate
+ // and the distortion for quantizing to 0.
+ int dx0 = (-coeff[rc]) * (1 << shift);
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx0 >>= xd->bd - 8;
+ }
+#endif
+ int64_t d0 = (int64_t)dx0 * dx0;
+
+ int x_a = x - 2 * sz - 1;
+ int64_t d2, d2_a;
+
+ int dx;
+
+#if CONFIG_AOM_QM
+ int iwt = iqmatrix[rc];
+ dqv = dequant_ptr[rc != 0];
+ dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
+#else
+ dqv = dequant_ptr[rc != 0];
+#endif
+
+ dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx >>= xd->bd - 8;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+ d2 = (int64_t)dx * dx;
+
+ /* compute the distortion for the second candidate
+ * x_a = x - 2 * sz + 1;
+ */
+ if (x_a != 0) {
+#if CONFIG_NEW_QUANT
+ dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
+ (coeff[rc] << shift);
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx >>= xd->bd - 8;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+#else // CONFIG_NEW_QUANT
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
+ } else {
+ dx -= (dqv + sz) ^ sz;
+ }
+#else
+ dx -= (dqv + sz) ^ sz;
+#endif // CONFIG_HIGHBITDEPTH
+#endif // CONFIG_NEW_QUANT
+ d2_a = (int64_t)dx * dx;
+ } else {
+ d2_a = d0;
+ }
+ /* Computing rates and r-d cost
+ */
+
+ int best_x, best_eob_x;
+ int64_t base_bits, next_bits0, next_bits1;
+ int64_t next_eob_bits0, next_eob_bits1;
+
+ // rate cost of x
+ base_bits = av1_get_token_cost(x, &t0, cat6_bits);
+ rate0 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur),
+ token_tree_sel_cur, ctx_cur, t0);
+
+ base_bits = av1_get_token_cost(x_a, &t1, cat6_bits);
+ rate1 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur),
+ token_tree_sel_cur, ctx_cur, t1);
+
+ next_bits0 = 0;
+ next_bits1 = 0;
+ next_eob_bits0 = 0;
+ next_eob_bits1 = 0;
+
+ if (i < default_eob - 1) {
+ int ctx_next, token_tree_sel_next;
+ int band_next = band_translate[i + 1];
+
+ token_cache[rc] = av1_pt_energy_class[t0];
+ ctx_next = get_coef_context(nb, token_cache, i + 1);
+ token_tree_sel_next = (x == 0);
+
+ next_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next),
+ token_tree_sel_next, ctx_next,
+ tokens[i + 1][0].token);
+ next_eob_bits0 =
+ get_token_bit_costs(*(token_costs_ptr + band_next),
+ token_tree_sel_next, ctx_next, EOB_TOKEN);
+
+ token_cache[rc] = av1_pt_energy_class[t1];
+ ctx_next = get_coef_context(nb, token_cache, i + 1);
+ token_tree_sel_next = (x_a == 0);
+
+ next_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next),
+ token_tree_sel_next, ctx_next,
+ tokens[i + 1][0].token);
+
+ if (x_a != 0) {
+ next_eob_bits1 =
+ get_token_bit_costs(*(token_costs_ptr + band_next),
+ token_tree_sel_next, ctx_next, EOB_TOKEN);
+ }
+ }
+
+ rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), d2);
+ rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), d2_a);
+
+ best_x = (rd_cost1 < rd_cost0);
+
+ eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0),
+ (accu_error + d2 - d0));
+ eob_cost1 = eob_cost0;
+ if (x_a != 0) {
+ eob_cost1 = RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1),
+ (accu_error + d2_a - d0));
+ best_eob_x = (eob_cost1 < eob_cost0);
+ } else {
+ best_eob_x = 0;
+ }
+
+ int dqc, dqc_a = 0;
+
+ dqc = dqcoeff[rc];
+ if (best_x + best_eob_x) {
+ if (x_a != 0) {
+#if CONFIG_NEW_QUANT
+ dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv,
+ dequant_val[band_translate[i]]);
+ dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a;
+ if (sz) dqc_a = -dqc_a;
+#else
+// The 32x32 transform coefficient uses half quantization step size.
+// Account for the rounding difference in the dequantized coefficeint
+// value when the quantization index is dropped from an even number
+// to an odd number.
+
+#if CONFIG_AOM_QM
+ tran_low_t offset = dqv >> shift;
+#else
+ tran_low_t offset = dq_step[rc != 0];
+#endif
+ if (shift & x_a) offset += (dqv & 0x01);
+
+ if (sz == 0)
+ dqc_a = dqcoeff[rc] - offset;
+ else
+ dqc_a = dqcoeff[rc] + offset;
+#endif // CONFIG_NEW_QUANT
+ } else {
+ dqc_a = 0;
+ } // if (x_a != 0)
+ }
+
+ // record the better quantized value
+ if (best_x) {
+ qcoeff[rc] = x_a;
+ dqcoeff[rc] = dqc_a;
+
+ accu_rate += rate1;
+ accu_error += d2_a - d0;
+ assert(d2_a <= d0);
+
+ token_cache[rc] = av1_pt_energy_class[t1];
+ } else {
+ accu_rate += rate0;
+ accu_error += d2 - d0;
+ assert(d2 <= d0);
+
+ token_cache[rc] = av1_pt_energy_class[t0];
+ }
+
+ x_prev = qcoeff[rc];
+
+ // determine whether to move the eob position to i+1
+ int64_t best_eob_cost_i = eob_cost0;
+
+ tokens[i][1].token = t0;
+ tokens[i][1].qc = x;
+ tokens[i][1].dqc = dqc;
+
+ if ((x_a != 0) && (best_eob_x)) {
+ best_eob_cost_i = eob_cost1;
+
+ tokens[i][1].token = t1;
+ tokens[i][1].qc = x_a;
+ tokens[i][1].dqc = dqc_a;
+ }
+
+ if (best_eob_cost_i < best_block_rd_cost) {
+ best_block_rd_cost = best_eob_cost_i;
+ final_eob = i + 1;
+ }
+ } // if (x==0)
+ } // for (i)
+
+ assert(final_eob <= eob);
+ if (final_eob > 0) {
+ assert(tokens[final_eob - 1][1].qc != 0);
+ i = final_eob - 1;
+ int rc = scan[i];
+ qcoeff[rc] = tokens[i][1].qc;
+ dqcoeff[rc] = tokens[i][1].dqc;
+ }
+
+ for (i = final_eob; i < eob; i++) {
+ int rc = scan[i];
+ qcoeff[rc] = 0;
+ dqcoeff[rc] = 0;
+ }
+
+ mb->plane[plane].eobs[block] = final_eob;
+ return final_eob;
+
+#else // !CONFIG_PVQ
+ (void)cm;
+ (void)tx_size;
+ (void)ctx;
+ struct macroblock_plane *const p = &mb->plane[plane];
+ return p->eobs[block];
+#endif // !CONFIG_PVQ
+}
+
+#else // USE_GREEDY_OPTIMIZE_B
+
+typedef struct av1_token_state {
+ int64_t error;
+ int rate;
+ int16_t next;
+ int16_t token;
+ tran_low_t qc;
+ tran_low_t dqc;
+ uint8_t best_index;
+} av1_token_state;
+
+int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block,
+ TX_SIZE tx_size, int ctx) {
+#if !CONFIG_PVQ
+ MACROBLOCKD *const xd = &mb->e_mbd;
+ struct macroblock_plane *const p = &mb->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int ref = is_inter_block(&xd->mi[0]->mbmi);
+ av1_token_state tokens[MAX_TX_SQUARE + 1][2];
+ uint8_t token_cache[MAX_TX_SQUARE];
+ const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ const int eob = p->eobs[block];
+ const PLANE_TYPE plane_type = pd->plane_type;
+ const int default_eob = tx_size_2d[tx_size];
+ const int16_t *const dequant_ptr = pd->dequant;
+ const uint8_t *const band_translate = get_band_translate(tx_size);
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
+ const SCAN_ORDER *const scan_order =
+ get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
+ const int16_t *const scan = scan_order->scan;
+ const int16_t *const nb = scan_order->neighbors;
+ int dqv;
+ const int shift = av1_get_tx_scale(tx_size);
+#if CONFIG_AOM_QM
+ int seg_id = xd->mi[0]->mbmi.segment_id;
+ const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
+#endif
+#if CONFIG_NEW_QUANT
+ int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
+ const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
+#elif !CONFIG_AOM_QM
+ const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift };
+#endif // CONFIG_NEW_QUANT
+ int next = eob, sz = 0;
+ const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
+ const int64_t rddiv = mb->rddiv;
+ int64_t rd_cost0, rd_cost1;
+ int rate0, rate1;
+ int64_t error0, error1;
+ int16_t t0, t1;
+ int best, band = (eob < default_eob) ? band_translate[eob]
+ : band_translate[eob - 1];
+ int pt, i, final_eob;
+#if CONFIG_HIGHBITDEPTH
+ const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
+#else
+ const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, 8);
+#endif
+ unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
+ mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
+ const uint16_t *band_counts = &band_count_table[tx_size][band];
+ uint16_t band_left = eob - band_cum_count_table[tx_size][band] + 1;
+ int shortcut = 0;
+ int next_shortcut = 0;
+
+#if CONFIG_EXT_DELTA_Q
+ const int qindex = cm->seg.enabled
+ ? av1_get_qindex(&cm->seg, xd->mi[0]->mbmi.segment_id,
+ cm->base_qindex)
+ : cm->base_qindex;
+ if (qindex == 0) {
+ assert((qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
+ }
+#else
+ assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
+#endif
+
+ token_costs += band;
+
+ assert((!plane_type && !plane) || (plane_type && plane));
+ assert(eob <= default_eob);
+
+ /* Now set up a Viterbi trellis to evaluate alternative roundings. */
+ /* Initialize the sentinel node of the trellis. */
+ tokens[eob][0].rate = 0;
+ tokens[eob][0].error = 0;
+ tokens[eob][0].next = default_eob;
+ tokens[eob][0].token = EOB_TOKEN;
+ tokens[eob][0].qc = 0;
+ tokens[eob][1] = tokens[eob][0];
+
+ for (i = 0; i < eob; i++) {
+ const int rc = scan[i];
+ tokens[i][0].rate = av1_get_token_cost(qcoeff[rc], &t0, cat6_bits);
+ tokens[i][0].token = t0;
+ token_cache[rc] = av1_pt_energy_class[t0];
+ }
+
+ for (i = eob; i-- > 0;) {
+ int base_bits, dx;
+ int64_t d2;
+ const int rc = scan[i];
+ int x = qcoeff[rc];
+#if CONFIG_AOM_QM
+ int iwt = iqmatrix[rc];
+ dqv = dequant_ptr[rc != 0];
+ dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
+#else
+ dqv = dequant_ptr[rc != 0];
+#endif
+ next_shortcut = shortcut;
+
+ /* Only add a trellis state for non-zero coefficients. */
+ if (UNLIKELY(x)) {
+ error0 = tokens[next][0].error;
+ error1 = tokens[next][1].error;
+ /* Evaluate the first possibility for this state. */
+ rate0 = tokens[next][0].rate;
+ rate1 = tokens[next][1].rate;
+
+ if (next_shortcut) {
+ /* Consider both possible successor states. */
+ if (next < default_eob) {
+ pt = get_coef_context(nb, token_cache, i + 1);
+ rate0 +=
+ get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token);
+ rate1 +=
+ get_token_bit_costs(*token_costs, 0, pt, tokens[next][1].token);
+ }
+ UPDATE_RD_COST();
+ /* And pick the best. */
+ best = rd_cost1 < rd_cost0;
+ } else {
+ if (next < default_eob) {
+ pt = get_coef_context(nb, token_cache, i + 1);
+ rate0 +=
+ get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token);
+ }
+ best = 0;
+ }
+
+ dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx >>= xd->bd - 8;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+ d2 = (int64_t)dx * dx;
+ tokens[i][0].rate += (best ? rate1 : rate0);
+ tokens[i][0].error = d2 + (best ? error1 : error0);
+ tokens[i][0].next = next;
+ tokens[i][0].qc = x;
+ tokens[i][0].dqc = dqcoeff[rc];
+ tokens[i][0].best_index = best;
+
+ /* Evaluate the second possibility for this state. */
+ rate0 = tokens[next][0].rate;
+ rate1 = tokens[next][1].rate;
+
+ // The threshold of 3 is empirically obtained.
+ if (UNLIKELY(abs(x) > 3)) {
+ shortcut = 0;
+ } else {
+#if CONFIG_NEW_QUANT
+ shortcut = ((av1_dequant_abscoeff_nuq(abs(x), dqv,
+ dequant_val[band_translate[i]]) >
+ (abs(coeff[rc]) << shift)) &&
+ (av1_dequant_abscoeff_nuq(abs(x) - 1, dqv,
+ dequant_val[band_translate[i]]) <
+ (abs(coeff[rc]) << shift)));
+#else // CONFIG_NEW_QUANT
+#if CONFIG_AOM_QM
+ if ((abs(x) * dequant_ptr[rc != 0] * iwt >
+ ((abs(coeff[rc]) << shift) << AOM_QM_BITS)) &&
+ (abs(x) * dequant_ptr[rc != 0] * iwt <
+ (((abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])
+ << AOM_QM_BITS)))
+#else
+ if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) &&
+ (abs(x) * dequant_ptr[rc != 0] <
+ (abs(coeff[rc]) << shift) + dequant_ptr[rc != 0]))
+#endif // CONFIG_AOM_QM
+ shortcut = 1;
+ else
+ shortcut = 0;
+#endif // CONFIG_NEW_QUANT
+ }
+
+ if (shortcut) {
+ sz = -(x < 0);
+ x -= 2 * sz + 1;
+ } else {
+ tokens[i][1] = tokens[i][0];
+ next = i;
+
+ if (UNLIKELY(!(--band_left))) {
+ --band_counts;
+ band_left = *band_counts;
+ --token_costs;
+ }
+ continue;
+ }
+
+ /* Consider both possible successor states. */
+ if (!x) {
+ /* If we reduced this coefficient to zero, check to see if
+ * we need to move the EOB back here.
+ */
+ t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
+ t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
+ base_bits = 0;
+ } else {
+ base_bits = av1_get_token_cost(x, &t0, cat6_bits);
+ t1 = t0;
+ }
+
+ if (next_shortcut) {
+ if (LIKELY(next < default_eob)) {
+ if (t0 != EOB_TOKEN) {
+ token_cache[rc] = av1_pt_energy_class[t0];
+ pt = get_coef_context(nb, token_cache, i + 1);
+ rate0 += get_token_bit_costs(*token_costs, !x, pt,
+ tokens[next][0].token);
+ }
+ if (t1 != EOB_TOKEN) {
+ token_cache[rc] = av1_pt_energy_class[t1];
+ pt = get_coef_context(nb, token_cache, i + 1);
+ rate1 += get_token_bit_costs(*token_costs, !x, pt,
+ tokens[next][1].token);
+ }
+ }
+
+ UPDATE_RD_COST();
+ /* And pick the best. */
+ best = rd_cost1 < rd_cost0;
+ } else {
+ // The two states in next stage are identical.
+ if (next < default_eob && t0 != EOB_TOKEN) {
+ token_cache[rc] = av1_pt_energy_class[t0];
+ pt = get_coef_context(nb, token_cache, i + 1);
+ rate0 +=
+ get_token_bit_costs(*token_costs, !x, pt, tokens[next][0].token);
+ }
+ best = 0;
+ }
+
+#if CONFIG_NEW_QUANT
+ dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
+ (coeff[rc] << shift);
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx >>= xd->bd - 8;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+#else // CONFIG_NEW_QUANT
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
+ } else {
+ dx -= (dqv + sz) ^ sz;
+ }
+#else
+ dx -= (dqv + sz) ^ sz;
+#endif // CONFIG_HIGHBITDEPTH
+#endif // CONFIG_NEW_QUANT
+ d2 = (int64_t)dx * dx;
+
+ tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
+ tokens[i][1].error = d2 + (best ? error1 : error0);
+ tokens[i][1].next = next;
+ tokens[i][1].token = best ? t1 : t0;
+ tokens[i][1].qc = x;
+
+ if (x) {
+#if CONFIG_NEW_QUANT
+ tokens[i][1].dqc = av1_dequant_abscoeff_nuq(
+ abs(x), dqv, dequant_val[band_translate[i]]);
+ tokens[i][1].dqc = shift ? ROUND_POWER_OF_TWO(tokens[i][1].dqc, shift)
+ : tokens[i][1].dqc;
+ if (sz) tokens[i][1].dqc = -tokens[i][1].dqc;
+#else
+// The 32x32 transform coefficient uses half quantization step size.
+// Account for the rounding difference in the dequantized coefficeint
+// value when the quantization index is dropped from an even number
+// to an odd number.
+
+#if CONFIG_AOM_QM
+ tran_low_t offset = dqv >> shift;
+#else
+ tran_low_t offset = dq_step[rc != 0];
+#endif
+ if (shift & x) offset += (dqv & 0x01);
+
+ if (sz == 0)
+ tokens[i][1].dqc = dqcoeff[rc] - offset;
+ else
+ tokens[i][1].dqc = dqcoeff[rc] + offset;
+#endif // CONFIG_NEW_QUANT
+ } else {
+ tokens[i][1].dqc = 0;
+ }
+
+ tokens[i][1].best_index = best;
+ /* Finally, make this the new head of the trellis. */
+ next = i;
+ } else {
+ /* There's no choice to make for a zero coefficient, so we don't
+ * add a new trellis node, but we do need to update the costs.
+ */
+ t0 = tokens[next][0].token;
+ t1 = tokens[next][1].token;
+ pt = get_coef_context(nb, token_cache, i + 1);
+ /* Update the cost of each path if we're past the EOB token. */
+ if (t0 != EOB_TOKEN) {
+ tokens[next][0].rate += get_token_bit_costs(*token_costs, 1, pt, t0);
+ tokens[next][0].token = ZERO_TOKEN;
+ }
+ if (t1 != EOB_TOKEN) {
+ tokens[next][1].rate += get_token_bit_costs(*token_costs, 1, pt, t1);
+ tokens[next][1].token = ZERO_TOKEN;
+ }
+ tokens[i][0].best_index = tokens[i][1].best_index = 0;
+ shortcut = (tokens[next][0].rate != tokens[next][1].rate);
+ /* Don't update next, because we didn't add a new node. */
+ }
+
+ if (UNLIKELY(!(--band_left))) {
+ --band_counts;
+ band_left = *band_counts;
+ --token_costs;
+ }
+ }
+
+ /* Now pick the best path through the whole trellis. */
+ rate0 = tokens[next][0].rate;
+ rate1 = tokens[next][1].rate;
+ error0 = tokens[next][0].error;
+ error1 = tokens[next][1].error;
+ t0 = tokens[next][0].token;
+ t1 = tokens[next][1].token;
+ rate0 += get_token_bit_costs(*token_costs, 0, ctx, t0);
+ rate1 += get_token_bit_costs(*token_costs, 0, ctx, t1);
+ UPDATE_RD_COST();
+ best = rd_cost1 < rd_cost0;
+
+ final_eob = -1;
+
+ for (i = next; i < eob; i = next) {
+ const int x = tokens[i][best].qc;
+ const int rc = scan[i];
+ if (x) final_eob = i;
+ qcoeff[rc] = x;
+ dqcoeff[rc] = tokens[i][best].dqc;
+
+ next = tokens[i][best].next;
+ best = tokens[i][best].best_index;
+ }
+ final_eob++;
+
+ mb->plane[plane].eobs[block] = final_eob;
+ assert(final_eob <= default_eob);
+ return final_eob;
+#else // !CONFIG_PVQ
+ (void)cm;
+ (void)tx_size;
+ (void)ctx;
+ struct macroblock_plane *const p = &mb->plane[plane];
+ return p->eobs[block];
+#endif // !CONFIG_PVQ
+}
+
+#endif // USE_GREEDY_OPTIMIZE_B
+
+#if !CONFIG_PVQ
+#if CONFIG_HIGHBITDEPTH
+typedef enum QUANT_FUNC {
+ QUANT_FUNC_LOWBD = 0,
+ QUANT_FUNC_HIGHBD = 1,
+ QUANT_FUNC_TYPES = 2
+} QUANT_FUNC;
+
+static AV1_QUANT_FACADE
+ quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
+#if !CONFIG_NEW_QUANT
+ { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
+ { av1_quantize_b_facade, av1_highbd_quantize_b_facade },
+ { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
+#else // !CONFIG_NEW_QUANT
+ { av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade },
+ { av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade },
+ { av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade },
+#endif // !CONFIG_NEW_QUANT
+ { NULL, NULL }
+ };
+
+#else
+
+typedef enum QUANT_FUNC {
+ QUANT_FUNC_LOWBD = 0,
+ QUANT_FUNC_TYPES = 1
+} QUANT_FUNC;
+
+static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES]
+ [QUANT_FUNC_TYPES] = {
+#if !CONFIG_NEW_QUANT
+ { av1_quantize_fp_facade },
+ { av1_quantize_b_facade },
+ { av1_quantize_dc_facade },
+#else // !CONFIG_NEW_QUANT
+ { av1_quantize_fp_nuq_facade },
+ { av1_quantize_b_nuq_facade },
+ { av1_quantize_dc_nuq_facade },
+#endif // !CONFIG_NEW_QUANT
+ { NULL }
+ };
+#endif // CONFIG_HIGHBITDEPTH
+#endif // CONFIG_PVQ
+
+void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
+ int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, int ctx,
+ AV1_XFORM_QUANT xform_quant_idx) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+#if !(CONFIG_PVQ || CONFIG_DAALA_DIST)
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+#else
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+#endif
+ PLANE_TYPE plane_type = get_plane_type(plane);
+ TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
+ const int is_inter = is_inter_block(mbmi);
+ const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter);
+ tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint16_t *const eob = &p->eobs[block];
+ const int diff_stride = block_size_wide[plane_bsize];
+#if CONFIG_AOM_QM
+ int seg_id = mbmi->segment_id;
+ const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][!is_inter][tx_size];
+ const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!is_inter][tx_size];
+#endif
+
+ FWD_TXFM_PARAM fwd_txfm_param;
+
+#if CONFIG_PVQ || CONFIG_DAALA_DIST
+ uint8_t *dst;
+ int16_t *pred;
+ const int dst_stride = pd->dst.stride;
+ int tx_blk_size;
+ int i, j;
+#endif
+
+#if !CONFIG_PVQ
+ const int tx2d_size = tx_size_2d[tx_size];
+ QUANT_PARAM qparam;
+ const int16_t *src_diff;
+
+ src_diff =
+ &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
+ qparam.log_scale = av1_get_tx_scale(tx_size);
+#if CONFIG_NEW_QUANT
+ qparam.tx_size = tx_size;
+ qparam.dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
+#endif // CONFIG_NEW_QUANT
+#if CONFIG_AOM_QM
+ qparam.qmatrix = qmatrix;
+ qparam.iqmatrix = iqmatrix;
+#endif // CONFIG_AOM_QM
+#else
+ tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
+ int skip = 1;
+ PVQ_INFO *pvq_info = NULL;
+ uint8_t *src;
+ int16_t *src_int16;
+ const int src_stride = p->src.stride;
+
+ (void)ctx;
+ (void)scan_order;
+ (void)qcoeff;
+
+ if (x->pvq_coded) {
+ assert(block < MAX_PVQ_BLOCKS_IN_SB);
+ pvq_info = &x->pvq[block][plane];
+ }
+ src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
+ src_int16 =
+ &p->src_int16[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
+
+ // transform block size in pixels
+ tx_blk_size = tx_size_wide[tx_size];
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ for (j = 0; j < tx_blk_size; j++)
+ for (i = 0; i < tx_blk_size; i++)
+ src_int16[diff_stride * j + i] =
+ CONVERT_TO_SHORTPTR(src)[src_stride * j + i];
+ } else {
+#endif // CONFIG_HIGHBITDEPTH
+ for (j = 0; j < tx_blk_size; j++)
+ for (i = 0; i < tx_blk_size; i++)
+ src_int16[diff_stride * j + i] = src[src_stride * j + i];
+#if CONFIG_HIGHBITDEPTH
+ }
+#endif // CONFIG_HIGHBITDEPTH
+#endif
+
+#if CONFIG_PVQ || CONFIG_DAALA_DIST
+ dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
+ pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
+
+ // transform block size in pixels
+ tx_blk_size = tx_size_wide[tx_size];
+
+// copy uint8 orig and predicted block to int16 buffer
+// in order to use existing VP10 transform functions
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ for (j = 0; j < tx_blk_size; j++)
+ for (i = 0; i < tx_blk_size; i++)
+ pred[diff_stride * j + i] =
+ CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i];
+ } else {
+#endif // CONFIG_HIGHBITDEPTH
+ for (j = 0; j < tx_blk_size; j++)
+ for (i = 0; i < tx_blk_size; i++)
+ pred[diff_stride * j + i] = dst[dst_stride * j + i];
+#if CONFIG_HIGHBITDEPTH
+ }
+#endif // CONFIG_HIGHBITDEPTH
+#endif
+
+ (void)ctx;
+
+ fwd_txfm_param.tx_type = tx_type;
+ fwd_txfm_param.tx_size = tx_size;
+ fwd_txfm_param.lossless = xd->lossless[mbmi->segment_id];
+
+#if !CONFIG_PVQ
+#if CONFIG_HIGHBITDEPTH
+ fwd_txfm_param.bd = xd->bd;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
+ if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
+ if (LIKELY(!x->skip_block)) {
+ quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD](
+ coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
+ } else {
+ av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
+ }
+ }
+#if CONFIG_LV_MAP
+ p->txb_entropy_ctx[block] =
+ (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
+#endif // CONFIG_LV_MAP
+ return;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+ av1_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
+ if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
+ if (LIKELY(!x->skip_block)) {
+ quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD](
+ coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
+ } else {
+ av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
+ }
+ }
+#if CONFIG_LV_MAP
+ p->txb_entropy_ctx[block] =
+ (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
+#endif // CONFIG_LV_MAP
+#else // #if !CONFIG_PVQ
+ (void)xform_quant_idx;
+#if CONFIG_HIGHBITDEPTH
+ fwd_txfm_param.bd = xd->bd;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ av1_highbd_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
+ av1_highbd_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
+ } else {
+#endif
+ av1_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
+ av1_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
+#if CONFIG_HIGHBITDEPTH
+ }
+#endif
+
+ // PVQ for inter mode block
+ if (!x->skip_block) {
+ PVQ_SKIP_TYPE ac_dc_coded =
+ av1_pvq_encode_helper(x,
+ coeff, // target original vector
+ ref_coeff, // reference vector
+ dqcoeff, // de-quantized vector
+ eob, // End of Block marker
+ pd->dequant, // aom's quantizers
+ plane, // image plane
+ tx_size, // block size in log_2 - 2
+ tx_type,
+ &x->rate, // rate measured
+ x->pvq_speed,
+ pvq_info); // PVQ info for a block
+ skip = ac_dc_coded == PVQ_SKIP;
+ }
+ x->pvq_skip[plane] = skip;
+
+ if (!skip) mbmi->skip = 0;
+#endif // #if !CONFIG_PVQ
+}
+
+static void encode_block(int plane, int block, int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
+ struct encode_b_args *const args = arg;
+ AV1_COMMON *cm = args->cm;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int ctx;
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint8_t *dst;
+#if !CONFIG_PVQ
+ ENTROPY_CONTEXT *a, *l;
+#endif
+#if CONFIG_VAR_TX
+ int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
+#endif
+ dst = &pd->dst
+ .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
+
+#if !CONFIG_PVQ
+ a = &args->ta[blk_col];
+ l = &args->tl[blk_row];
+#if CONFIG_VAR_TX
+ ctx = get_entropy_context(tx_size, a, l);
+#else
+ ctx = combine_entropy_contexts(*a, *l);
+#endif
+#else
+ ctx = 0;
+#endif // CONFIG_PVQ
+
+#if CONFIG_VAR_TX
+ // Assert not magic number (uninitialized).
+ assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234);
+
+ if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) {
+#else
+ {
+#endif
+ av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
+ ctx, AV1_XFORM_QUANT_FP);
+ }
+#if CONFIG_VAR_TX
+ else {
+ p->eobs[block] = 0;
+ }
+#endif
+
+#if !CONFIG_PVQ
+ if (p->eobs[block] && !xd->lossless[xd->mi[0]->mbmi.segment_id])
+ av1_optimize_b(cm, x, plane, block, tx_size, ctx);
+
+ av1_set_txb_context(x, plane, block, tx_size, a, l);
+
+ if (p->eobs[block]) *(args->skip) = 0;
+
+ if (p->eobs[block] == 0) return;
+#else
+ (void)ctx;
+ if (!x->pvq_skip[plane]) *(args->skip) = 0;
+
+ if (x->pvq_skip[plane]) return;
+#endif
+ TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
+ av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst,
+ pd->dst.stride, p->eobs[block]);
+}
+
+#if CONFIG_VAR_TX
+static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ void *arg) {
+ struct encode_b_args *const args = arg;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int tx_row = blk_row >> (1 - pd->subsampling_y);
+ const int tx_col = blk_col >> (1 - pd->subsampling_x);
+ TX_SIZE plane_tx_size;
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ plane_tx_size =
+ plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
+ : mbmi->inter_tx_size[tx_row][tx_col];
+
+ if (tx_size == plane_tx_size) {
+ encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
+ } else {
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ // This is the square transform block partition entry point.
+ int bsl = tx_size_wide_unit[sub_txs];
+ int i;
+ assert(bsl > 0);
+ assert(tx_size < TX_SIZES_ALL);
+
+ for (i = 0; i < 4; ++i) {
+ const int offsetr = blk_row + ((i >> 1) * bsl);
+ const int offsetc = blk_col + ((i & 0x01) * bsl);
+ int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
+
+ if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
+
+ encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
+ arg);
+ block += step;
+ }
+ }
+}
+#endif
+
+typedef struct encode_block_pass1_args {
+ AV1_COMMON *cm;
+ MACROBLOCK *x;
+} encode_block_pass1_args;
+
+static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ void *arg) {
+ encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
+ AV1_COMMON *cm = args->cm;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint8_t *dst;
+ int ctx = 0;
+ dst = &pd->dst
+ .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
+
+ av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
+ ctx, AV1_XFORM_QUANT_B);
+#if !CONFIG_PVQ
+ if (p->eobs[block] > 0) {
+#else
+ if (!x->pvq_skip[plane]) {
+ {
+ int tx_blk_size;
+ int i, j;
+ // transform block size in pixels
+ tx_blk_size = tx_size_wide[tx_size];
+
+// Since av1 does not have separate function which does inverse transform
+// but av1_inv_txfm_add_*x*() also does addition of predicted image to
+// inverse transformed image,
+// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ for (j = 0; j < tx_blk_size; j++)
+ for (i = 0; i < tx_blk_size; i++)
+ CONVERT_TO_SHORTPTR(dst)[j * pd->dst.stride + i] = 0;
+ } else {
+#endif // CONFIG_HIGHBITDEPTH
+ for (j = 0; j < tx_blk_size; j++)
+ for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
+#if CONFIG_HIGHBITDEPTH
+ }
+#endif // CONFIG_HIGHBITDEPTH
+ }
+#endif // !CONFIG_PVQ
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
+ av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
+ xd->bd);
+ } else {
+ av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
+ xd->bd);
+ }
+ return;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+ if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
+ av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+ } else {
+ av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+ }
+ }
+}
+
+void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
+ encode_block_pass1_args args = { cm, x };
+ av1_subtract_plane(x, bsize, 0);
+ av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
+ encode_block_pass1, &args);
+}
+
+void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize,
+ const int mi_row, const int mi_col) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct optimize_ctx ctx;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
+ int plane;
+
+ mbmi->skip = 1;
+
+ if (x->skip) return;
+
+ for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+#if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
+ const int subsampling_x = xd->plane[plane].subsampling_x;
+ const int subsampling_y = xd->plane[plane].subsampling_y;
+
+ if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x,
+ subsampling_y))
+ continue;
+
+ bsize = scale_chroma_bsize(bsize, subsampling_x, subsampling_y);
+#else
+ (void)mi_row;
+ (void)mi_col;
+#endif
+
+#if CONFIG_VAR_TX
+ // TODO(jingning): Clean this up.
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+ const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
+ const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize);
+ const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
+ const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
+ const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
+ int idx, idy;
+ int block = 0;
+ int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
+ av1_get_entropy_contexts(bsize, 0, pd, ctx.ta[plane], ctx.tl[plane]);
+#else
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const TX_SIZE tx_size = get_tx_size(plane, xd);
+ av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
+#endif
+
+#if !CONFIG_PVQ
+ av1_subtract_plane(x, bsize, plane);
+#endif
+ arg.ta = ctx.ta[plane];
+ arg.tl = ctx.tl[plane];
+
+#if CONFIG_VAR_TX
+ for (idy = 0; idy < mi_height; idy += bh) {
+ for (idx = 0; idx < mi_width; idx += bw) {
+ encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size,
+ &arg);
+ block += step;
+ }
+ }
+#else
+ av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
+ &arg);
+#endif
+ }
+}
+
+#if CONFIG_SUPERTX
+void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct optimize_ctx ctx;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
+ int plane;
+
+ mbmi->skip = 1;
+ if (x->skip) return;
+
+ for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+#if CONFIG_VAR_TX
+ const TX_SIZE tx_size = TX_4X4;
+#else
+ const TX_SIZE tx_size = get_tx_size(plane, xd);
+#endif
+ av1_subtract_plane(x, bsize, plane);
+ av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
+ arg.ta = ctx.ta[plane];
+ arg.tl = ctx.tl[plane];
+ av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
+ &arg);
+ }
+}
+#endif // CONFIG_SUPERTX
+
+#if !CONFIG_PVQ
+void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
+ ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
+ (void)tx_size;
+ struct macroblock_plane *p = &x->plane[plane];
+
+#if !CONFIG_LV_MAP
+ *a = *l = p->eobs[block] > 0;
+#else // !CONFIG_LV_MAP
+ *a = *l = p->txb_entropy_ctx[block];
+#endif // !CONFIG_LV_MAP
+
+#if CONFIG_VAR_TX || CONFIG_LV_MAP
+ int i;
+ for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0];
+
+ for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0];
+#endif
+}
+#endif
+
+static void encode_block_intra_and_set_context(int plane, int block,
+ int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
+ av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
+ arg);
+#if !CONFIG_PVQ
+ struct encode_b_args *const args = arg;
+ MACROBLOCK *x = args->x;
+ ENTROPY_CONTEXT *a = &args->ta[blk_col];
+ ENTROPY_CONTEXT *l = &args->tl[blk_row];
+ av1_set_txb_context(x, plane, block, tx_size, a, l);
+#endif
+}
+
+void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ void *arg) {
+ struct encode_b_args *const args = arg;
+ AV1_COMMON *cm = args->cm;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ PLANE_TYPE plane_type = get_plane_type(plane);
+ const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
+ uint16_t *eob = &p->eobs[block];
+ const int dst_stride = pd->dst.stride;
+ uint8_t *dst =
+ &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
+ av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size);
+ av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
+
+ const ENTROPY_CONTEXT *a = &args->ta[blk_col];
+ const ENTROPY_CONTEXT *l = &args->tl[blk_row];
+ int ctx = combine_entropy_contexts(*a, *l);
+ if (args->enable_optimize_b) {
+ av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
+ ctx, AV1_XFORM_QUANT_FP);
+ if (p->eobs[block]) {
+ av1_optimize_b(cm, x, plane, block, tx_size, ctx);
+ }
+ } else {
+ av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
+ ctx, AV1_XFORM_QUANT_B);
+ }
+
+#if CONFIG_PVQ
+ // *(args->skip) == mbmi->skip
+ if (!x->pvq_skip[plane]) *(args->skip) = 0;
+
+ if (x->pvq_skip[plane]) return;
+#endif // CONFIG_PVQ
+ av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, dst_stride,
+ *eob);
+#if !CONFIG_PVQ
+ if (*eob) *(args->skip) = 0;
+#else
+// Note : *(args->skip) == mbmi->skip
+#endif
+#if CONFIG_CFL
+ if (plane == AOM_PLANE_Y && x->cfl_store_y) {
+ cfl_store(xd->cfl, dst, dst_stride, blk_row, blk_col, tx_size);
+ }
+#endif
+}
+
+void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int plane,
+ int enable_optimize_b, const int mi_row,
+ const int mi_col) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 };
+ ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 };
+
+ struct encode_b_args arg = {
+ cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b
+ };
+
+#if CONFIG_CB4X4
+ if (!is_chroma_reference(mi_row, mi_col, bsize,
+ xd->plane[plane].subsampling_x,
+ xd->plane[plane].subsampling_y))
+ return;
+#else
+ (void)mi_row;
+ (void)mi_col;
+#endif
+
+ if (enable_optimize_b) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const TX_SIZE tx_size = get_tx_size(plane, xd);
+ av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl);
+ }
+ av1_foreach_transformed_block_in_plane(
+ xd, bsize, plane, encode_block_intra_and_set_context, &arg);
+}
+
+#if CONFIG_PVQ
+PVQ_SKIP_TYPE av1_pvq_encode_helper(MACROBLOCK *x, tran_low_t *const coeff,
+ tran_low_t *ref_coeff,
+ tran_low_t *const dqcoeff, uint16_t *eob,
+ const int16_t *quant, int plane,
+ int tx_size, TX_TYPE tx_type, int *rate,
+ int speed, PVQ_INFO *pvq_info) {
+ const int tx_blk_size = tx_size_wide[tx_size];
+ daala_enc_ctx *daala_enc = &x->daala_enc;
+ PVQ_SKIP_TYPE ac_dc_coded;
+ int coeff_shift = 3 - av1_get_tx_scale(tx_size);
+ int hbd_downshift = 0;
+ int rounding_mask;
+ int pvq_dc_quant;
+ int use_activity_masking = daala_enc->use_activity_masking;
+ int tell;
+ int has_dc_skip = 1;
+ int i;
+ int off = od_qm_offset(tx_size, plane ? 1 : 0);
+
+ DECLARE_ALIGNED(16, tran_low_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
+ DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
+ DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
+
+ DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
+ DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
+ DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
+
+#if CONFIG_HIGHBITDEPTH
+ hbd_downshift = x->e_mbd.bd - 8;
+#endif
+
+ assert(OD_COEFF_SHIFT >= 4);
+ // DC quantizer for PVQ
+ if (use_activity_masking)
+ pvq_dc_quant =
+ OD_MAXI(1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) *
+ daala_enc->state
+ .pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >>
+ 4);
+ else
+ pvq_dc_quant =
+ OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift);
+
+ *eob = 0;
+
+#if CONFIG_DAALA_EC
+ tell = od_ec_enc_tell_frac(&daala_enc->w.ec);
+#else
+#error "CONFIG_PVQ currently requires CONFIG_DAALA_EC."
+#endif
+
+ // Change coefficient ordering for pvq encoding.
+ od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff,
+ tx_blk_size);
+ od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff,
+ tx_blk_size);
+
+ // copy int16 inputs to int32
+ for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
+ ref_int32[i] =
+ AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
+ hbd_downshift;
+ in_int32[i] = AOM_SIGNED_SHL(coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
+ hbd_downshift;
+ }
+
+ if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */
+ out_int32[0] = 0;
+ } else {
+ out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant);
+ }
+
+ ac_dc_coded =
+ od_pvq_encode(daala_enc, ref_int32, in_int32, out_int32,
+ OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >>
+ hbd_downshift), // scale/quantizer
+ OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >>
+ hbd_downshift), // scale/quantizer
+ plane,
+ tx_size, OD_PVQ_BETA[use_activity_masking][plane][tx_size],
+ 0, // is_keyframe,
+ daala_enc->state.qm + off, daala_enc->state.qm_inv + off,
+ speed, // speed
+ pvq_info);
+
+ // Encode residue of DC coeff, if required.
+ if (!has_dc_skip || out_int32[0]) {
+ generic_encode(&daala_enc->w, &daala_enc->state.adapt->model_dc[plane],
+ abs(out_int32[0]) - has_dc_skip,
+ &daala_enc->state.adapt->ex_dc[plane][tx_size][0], 2);
+ }
+ if (out_int32[0]) {
+ aom_write_bit(&daala_enc->w, out_int32[0] < 0);
+ }
+
+ // need to save quantized residue of DC coeff
+ // so that final pvq bitstream writing can know whether DC is coded.
+ if (pvq_info) pvq_info->dq_dc_residue = out_int32[0];
+
+ out_int32[0] = out_int32[0] * pvq_dc_quant;
+ out_int32[0] += ref_int32[0];
+
+ // copy int32 result back to int16
+ assert(OD_COEFF_SHIFT > coeff_shift);
+ rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1;
+ for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
+ out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift);
+ dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >>
+ (OD_COEFF_SHIFT - coeff_shift);
+ }
+
+ // Back to original coefficient order
+ od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq,
+ tx_blk_size);
+
+ *eob = tx_blk_size * tx_blk_size;
+
+#if CONFIG_DAALA_EC
+ *rate = (od_ec_enc_tell_frac(&daala_enc->w.ec) - tell)
+ << (AV1_PROB_COST_SHIFT - OD_BITRES);
+#else
+#error "CONFIG_PVQ currently requires CONFIG_DAALA_EC."
+#endif
+ assert(*rate >= 0);
+
+ return ac_dc_coded;
+}
+
+void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *k,
+ od_coeff *y, int nb_bands, const int *off,
+ int *size, int skip_rest, int skip_dir,
+ int bs) { // block size in log_2 -2
+ int i;
+ const int tx_blk_size = tx_size_wide[bs];
+
+ for (i = 0; i < nb_bands; i++) {
+ pvq_info->qg[i] = qg[i];
+ pvq_info->theta[i] = theta[i];
+ pvq_info->k[i] = k[i];
+ pvq_info->off[i] = off[i];
+ pvq_info->size[i] = size[i];
+ }
+
+ memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff));
+
+ pvq_info->nb_bands = nb_bands;
+ pvq_info->skip_rest = skip_rest;
+ pvq_info->skip_dir = skip_dir;
+ pvq_info->bs = bs;
+}
+#endif