diff options
author | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:15 -0500 |
---|---|---|
committer | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:20 -0500 |
commit | bbcc64772580c8a979288791afa02d30bc476d2e (patch) | |
tree | 437ce94c3fdd7497508e5b55de06c6d011678597 /third_party/aom/av1/encoder/dct.c | |
parent | 14805f6ddbfb173c327768fff9f81f40ce5e81b0 (diff) | |
download | UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.gz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.lz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.xz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.zip |
Update aom to v1.0.0
Update aom to commit id d14c5bb4f336ef1842046089849dee4a301fbbf0.
Diffstat (limited to 'third_party/aom/av1/encoder/dct.c')
-rw-r--r-- | third_party/aom/av1/encoder/dct.c | 2797 |
1 files changed, 0 insertions, 2797 deletions
diff --git a/third_party/aom/av1/encoder/dct.c b/third_party/aom/av1/encoder/dct.c deleted file mode 100644 index a04d46b72..000000000 --- a/third_party/aom/av1/encoder/dct.c +++ /dev/null @@ -1,2797 +0,0 @@ -/* - * Copyright (c) 2016, Alliance for Open Media. All rights reserved - * - * This source code is subject to the terms of the BSD 2 Clause License and - * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License - * was not distributed with this source code in the LICENSE file, you can - * obtain it at www.aomedia.org/license/software. If the Alliance for Open - * Media Patent License 1.0 was not distributed with this source code in the - * PATENTS file, you can obtain it at www.aomedia.org/license/patent. - */ - -#include <assert.h> -#include <math.h> - -#include "./aom_config.h" -#include "./aom_dsp_rtcd.h" -#include "./av1_rtcd.h" -#include "aom_dsp/fwd_txfm.h" -#include "aom_ports/mem.h" -#include "av1/common/blockd.h" -#include "av1/common/av1_fwd_txfm1d.h" -#include "av1/common/av1_fwd_txfm1d_cfg.h" -#include "av1/common/idct.h" -#if CONFIG_DAALA_DCT4 || CONFIG_DAALA_DCT8 || CONFIG_DAALA_DCT16 || \ - CONFIG_DAALA_DCT32 || CONFIG_DAALA_DCT64 -#include "av1/common/daala_tx.h" -#endif - -static INLINE void range_check(const tran_low_t *input, const int size, - const int bit) { -#if 0 // CONFIG_COEFFICIENT_RANGE_CHECKING -// TODO(angiebird): the range_check is not used because the bit range -// in fdct# is not correct. Since we are going to merge in a new version -// of fdct# from nextgenv2, we won't fix the incorrect bit range now. - int i; - for (i = 0; i < size; ++i) { - assert(abs(input[i]) < (1 << bit)); - } -#else - (void)input; - (void)size; - (void)bit; -#endif -} - -static void fdct4(const tran_low_t *input, tran_low_t *output) { - tran_high_t temp; - tran_low_t step[4]; - - // stage 0 - range_check(input, 4, 14); - - // stage 1 - output[0] = input[0] + input[3]; - output[1] = input[1] + input[2]; - output[2] = input[1] - input[2]; - output[3] = input[0] - input[3]; - - range_check(output, 4, 15); - - // stage 2 - temp = output[0] * cospi_16_64 + output[1] * cospi_16_64; - step[0] = (tran_low_t)fdct_round_shift(temp); - temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64; - step[1] = (tran_low_t)fdct_round_shift(temp); - temp = output[2] * cospi_24_64 + output[3] * cospi_8_64; - step[2] = (tran_low_t)fdct_round_shift(temp); - temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64; - step[3] = (tran_low_t)fdct_round_shift(temp); - - range_check(step, 4, 16); - - // stage 3 - output[0] = step[0]; - output[1] = step[2]; - output[2] = step[1]; - output[3] = step[3]; - - range_check(output, 4, 16); -} - -static void fdct8(const tran_low_t *input, tran_low_t *output) { - tran_high_t temp; - tran_low_t step[8]; - - // stage 0 - range_check(input, 8, 13); - - // stage 1 - output[0] = input[0] + input[7]; - output[1] = input[1] + input[6]; - output[2] = input[2] + input[5]; - output[3] = input[3] + input[4]; - output[4] = input[3] - input[4]; - output[5] = input[2] - input[5]; - output[6] = input[1] - input[6]; - output[7] = input[0] - input[7]; - - range_check(output, 8, 14); - - // stage 2 - step[0] = output[0] + output[3]; - step[1] = output[1] + output[2]; - step[2] = output[1] - output[2]; - step[3] = output[0] - output[3]; - step[4] = output[4]; - temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64; - step[5] = (tran_low_t)fdct_round_shift(temp); - temp = output[6] * cospi_16_64 + output[5] * cospi_16_64; - step[6] = (tran_low_t)fdct_round_shift(temp); - step[7] = output[7]; - - range_check(step, 8, 15); - - // stage 3 - temp = step[0] * cospi_16_64 + step[1] * cospi_16_64; - output[0] = (tran_low_t)fdct_round_shift(temp); - temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64; - output[1] = (tran_low_t)fdct_round_shift(temp); - temp = step[2] * cospi_24_64 + step[3] * cospi_8_64; - output[2] = (tran_low_t)fdct_round_shift(temp); - temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64; - output[3] = (tran_low_t)fdct_round_shift(temp); - output[4] = step[4] + step[5]; - output[5] = step[4] - step[5]; - output[6] = step[7] - step[6]; - output[7] = step[7] + step[6]; - - range_check(output, 8, 16); - - // stage 4 - step[0] = output[0]; - step[1] = output[1]; - step[2] = output[2]; - step[3] = output[3]; - temp = output[4] * cospi_28_64 + output[7] * cospi_4_64; - step[4] = (tran_low_t)fdct_round_shift(temp); - temp = output[5] * cospi_12_64 + output[6] * cospi_20_64; - step[5] = (tran_low_t)fdct_round_shift(temp); - temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64; - step[6] = (tran_low_t)fdct_round_shift(temp); - temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64; - step[7] = (tran_low_t)fdct_round_shift(temp); - - range_check(step, 8, 16); - - // stage 5 - output[0] = step[0]; - output[1] = step[4]; - output[2] = step[2]; - output[3] = step[6]; - output[4] = step[1]; - output[5] = step[5]; - output[6] = step[3]; - output[7] = step[7]; - - range_check(output, 8, 16); -} - -static void fdct16(const tran_low_t *input, tran_low_t *output) { - tran_high_t temp; - tran_low_t step[16]; - - // stage 0 - range_check(input, 16, 13); - - // stage 1 - output[0] = input[0] + input[15]; - output[1] = input[1] + input[14]; - output[2] = input[2] + input[13]; - output[3] = input[3] + input[12]; - output[4] = input[4] + input[11]; - output[5] = input[5] + input[10]; - output[6] = input[6] + input[9]; - output[7] = input[7] + input[8]; - output[8] = input[7] - input[8]; - output[9] = input[6] - input[9]; - output[10] = input[5] - input[10]; - output[11] = input[4] - input[11]; - output[12] = input[3] - input[12]; - output[13] = input[2] - input[13]; - output[14] = input[1] - input[14]; - output[15] = input[0] - input[15]; - - range_check(output, 16, 14); - - // stage 2 - step[0] = output[0] + output[7]; - step[1] = output[1] + output[6]; - step[2] = output[2] + output[5]; - step[3] = output[3] + output[4]; - step[4] = output[3] - output[4]; - step[5] = output[2] - output[5]; - step[6] = output[1] - output[6]; - step[7] = output[0] - output[7]; - step[8] = output[8]; - step[9] = output[9]; - temp = output[10] * -cospi_16_64 + output[13] * cospi_16_64; - step[10] = (tran_low_t)fdct_round_shift(temp); - temp = output[11] * -cospi_16_64 + output[12] * cospi_16_64; - step[11] = (tran_low_t)fdct_round_shift(temp); - temp = output[12] * cospi_16_64 + output[11] * cospi_16_64; - step[12] = (tran_low_t)fdct_round_shift(temp); - temp = output[13] * cospi_16_64 + output[10] * cospi_16_64; - step[13] = (tran_low_t)fdct_round_shift(temp); - step[14] = output[14]; - step[15] = output[15]; - - range_check(step, 16, 15); - - // stage 3 - output[0] = step[0] + step[3]; - output[1] = step[1] + step[2]; - output[2] = step[1] - step[2]; - output[3] = step[0] - step[3]; - output[4] = step[4]; - temp = step[5] * -cospi_16_64 + step[6] * cospi_16_64; - output[5] = (tran_low_t)fdct_round_shift(temp); - temp = step[6] * cospi_16_64 + step[5] * cospi_16_64; - output[6] = (tran_low_t)fdct_round_shift(temp); - output[7] = step[7]; - output[8] = step[8] + step[11]; - output[9] = step[9] + step[10]; - output[10] = step[9] - step[10]; - output[11] = step[8] - step[11]; - output[12] = step[15] - step[12]; - output[13] = step[14] - step[13]; - output[14] = step[14] + step[13]; - output[15] = step[15] + step[12]; - - range_check(output, 16, 16); - - // stage 4 - temp = output[0] * cospi_16_64 + output[1] * cospi_16_64; - step[0] = (tran_low_t)fdct_round_shift(temp); - temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64; - step[1] = (tran_low_t)fdct_round_shift(temp); - temp = output[2] * cospi_24_64 + output[3] * cospi_8_64; - step[2] = (tran_low_t)fdct_round_shift(temp); - temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64; - step[3] = (tran_low_t)fdct_round_shift(temp); - step[4] = output[4] + output[5]; - step[5] = output[4] - output[5]; - step[6] = output[7] - output[6]; - step[7] = output[7] + output[6]; - step[8] = output[8]; - temp = output[9] * -cospi_8_64 + output[14] * cospi_24_64; - step[9] = (tran_low_t)fdct_round_shift(temp); - temp = output[10] * -cospi_24_64 + output[13] * -cospi_8_64; - step[10] = (tran_low_t)fdct_round_shift(temp); - step[11] = output[11]; - step[12] = output[12]; - temp = output[13] * cospi_24_64 + output[10] * -cospi_8_64; - step[13] = (tran_low_t)fdct_round_shift(temp); - temp = output[14] * cospi_8_64 + output[9] * cospi_24_64; - step[14] = (tran_low_t)fdct_round_shift(temp); - step[15] = output[15]; - - range_check(step, 16, 16); - - // stage 5 - output[0] = step[0]; - output[1] = step[1]; - output[2] = step[2]; - output[3] = step[3]; - temp = step[4] * cospi_28_64 + step[7] * cospi_4_64; - output[4] = (tran_low_t)fdct_round_shift(temp); - temp = step[5] * cospi_12_64 + step[6] * cospi_20_64; - output[5] = (tran_low_t)fdct_round_shift(temp); - temp = step[6] * cospi_12_64 + step[5] * -cospi_20_64; - output[6] = (tran_low_t)fdct_round_shift(temp); - temp = step[7] * cospi_28_64 + step[4] * -cospi_4_64; - output[7] = (tran_low_t)fdct_round_shift(temp); - output[8] = step[8] + step[9]; - output[9] = step[8] - step[9]; - output[10] = step[11] - step[10]; - output[11] = step[11] + step[10]; - output[12] = step[12] + step[13]; - output[13] = step[12] - step[13]; - output[14] = step[15] - step[14]; - output[15] = step[15] + step[14]; - - range_check(output, 16, 16); - - // stage 6 - step[0] = output[0]; - step[1] = output[1]; - step[2] = output[2]; - step[3] = output[3]; - step[4] = output[4]; - step[5] = output[5]; - step[6] = output[6]; - step[7] = output[7]; - temp = output[8] * cospi_30_64 + output[15] * cospi_2_64; - step[8] = (tran_low_t)fdct_round_shift(temp); - temp = output[9] * cospi_14_64 + output[14] * cospi_18_64; - step[9] = (tran_low_t)fdct_round_shift(temp); - temp = output[10] * cospi_22_64 + output[13] * cospi_10_64; - step[10] = (tran_low_t)fdct_round_shift(temp); - temp = output[11] * cospi_6_64 + output[12] * cospi_26_64; - step[11] = (tran_low_t)fdct_round_shift(temp); - temp = output[12] * cospi_6_64 + output[11] * -cospi_26_64; - step[12] = (tran_low_t)fdct_round_shift(temp); - temp = output[13] * cospi_22_64 + output[10] * -cospi_10_64; - step[13] = (tran_low_t)fdct_round_shift(temp); - temp = output[14] * cospi_14_64 + output[9] * -cospi_18_64; - step[14] = (tran_low_t)fdct_round_shift(temp); - temp = output[15] * cospi_30_64 + output[8] * -cospi_2_64; - step[15] = (tran_low_t)fdct_round_shift(temp); - - range_check(step, 16, 16); - - // stage 7 - output[0] = step[0]; - output[1] = step[8]; - output[2] = step[4]; - output[3] = step[12]; - output[4] = step[2]; - output[5] = step[10]; - output[6] = step[6]; - output[7] = step[14]; - output[8] = step[1]; - output[9] = step[9]; - output[10] = step[5]; - output[11] = step[13]; - output[12] = step[3]; - output[13] = step[11]; - output[14] = step[7]; - output[15] = step[15]; - - range_check(output, 16, 16); -} - -static void fdct32(const tran_low_t *input, tran_low_t *output) { - tran_high_t temp; - tran_low_t step[32]; - - // stage 0 - range_check(input, 32, 14); - - // stage 1 - output[0] = input[0] + input[31]; - output[1] = input[1] + input[30]; - output[2] = input[2] + input[29]; - output[3] = input[3] + input[28]; - output[4] = input[4] + input[27]; - output[5] = input[5] + input[26]; - output[6] = input[6] + input[25]; - output[7] = input[7] + input[24]; - output[8] = input[8] + input[23]; - output[9] = input[9] + input[22]; - output[10] = input[10] + input[21]; - output[11] = input[11] + input[20]; - output[12] = input[12] + input[19]; - output[13] = input[13] + input[18]; - output[14] = input[14] + input[17]; - output[15] = input[15] + input[16]; - output[16] = input[15] - input[16]; - output[17] = input[14] - input[17]; - output[18] = input[13] - input[18]; - output[19] = input[12] - input[19]; - output[20] = input[11] - input[20]; - output[21] = input[10] - input[21]; - output[22] = input[9] - input[22]; - output[23] = input[8] - input[23]; - output[24] = input[7] - input[24]; - output[25] = input[6] - input[25]; - output[26] = input[5] - input[26]; - output[27] = input[4] - input[27]; - output[28] = input[3] - input[28]; - output[29] = input[2] - input[29]; - output[30] = input[1] - input[30]; - output[31] = input[0] - input[31]; - - range_check(output, 32, 15); - - // stage 2 - step[0] = output[0] + output[15]; - step[1] = output[1] + output[14]; - step[2] = output[2] + output[13]; - step[3] = output[3] + output[12]; - step[4] = output[4] + output[11]; - step[5] = output[5] + output[10]; - step[6] = output[6] + output[9]; - step[7] = output[7] + output[8]; - step[8] = output[7] - output[8]; - step[9] = output[6] - output[9]; - step[10] = output[5] - output[10]; - step[11] = output[4] - output[11]; - step[12] = output[3] - output[12]; - step[13] = output[2] - output[13]; - step[14] = output[1] - output[14]; - step[15] = output[0] - output[15]; - step[16] = output[16]; - step[17] = output[17]; - step[18] = output[18]; - step[19] = output[19]; - temp = output[20] * -cospi_16_64 + output[27] * cospi_16_64; - step[20] = (tran_low_t)fdct_round_shift(temp); - temp = output[21] * -cospi_16_64 + output[26] * cospi_16_64; - step[21] = (tran_low_t)fdct_round_shift(temp); - temp = output[22] * -cospi_16_64 + output[25] * cospi_16_64; - step[22] = (tran_low_t)fdct_round_shift(temp); - temp = output[23] * -cospi_16_64 + output[24] * cospi_16_64; - step[23] = (tran_low_t)fdct_round_shift(temp); - temp = output[24] * cospi_16_64 + output[23] * cospi_16_64; - step[24] = (tran_low_t)fdct_round_shift(temp); - temp = output[25] * cospi_16_64 + output[22] * cospi_16_64; - step[25] = (tran_low_t)fdct_round_shift(temp); - temp = output[26] * cospi_16_64 + output[21] * cospi_16_64; - step[26] = (tran_low_t)fdct_round_shift(temp); - temp = output[27] * cospi_16_64 + output[20] * cospi_16_64; - step[27] = (tran_low_t)fdct_round_shift(temp); - step[28] = output[28]; - step[29] = output[29]; - step[30] = output[30]; - step[31] = output[31]; - - range_check(step, 32, 16); - - // stage 3 - output[0] = step[0] + step[7]; - output[1] = step[1] + step[6]; - output[2] = step[2] + step[5]; - output[3] = step[3] + step[4]; - output[4] = step[3] - step[4]; - output[5] = step[2] - step[5]; - output[6] = step[1] - step[6]; - output[7] = step[0] - step[7]; - output[8] = step[8]; - output[9] = step[9]; - temp = step[10] * -cospi_16_64 + step[13] * cospi_16_64; - output[10] = (tran_low_t)fdct_round_shift(temp); - temp = step[11] * -cospi_16_64 + step[12] * cospi_16_64; - output[11] = (tran_low_t)fdct_round_shift(temp); - temp = step[12] * cospi_16_64 + step[11] * cospi_16_64; - output[12] = (tran_low_t)fdct_round_shift(temp); - temp = step[13] * cospi_16_64 + step[10] * cospi_16_64; - output[13] = (tran_low_t)fdct_round_shift(temp); - output[14] = step[14]; - output[15] = step[15]; - output[16] = step[16] + step[23]; - output[17] = step[17] + step[22]; - output[18] = step[18] + step[21]; - output[19] = step[19] + step[20]; - output[20] = step[19] - step[20]; - output[21] = step[18] - step[21]; - output[22] = step[17] - step[22]; - output[23] = step[16] - step[23]; - output[24] = step[31] - step[24]; - output[25] = step[30] - step[25]; - output[26] = step[29] - step[26]; - output[27] = step[28] - step[27]; - output[28] = step[28] + step[27]; - output[29] = step[29] + step[26]; - output[30] = step[30] + step[25]; - output[31] = step[31] + step[24]; - - range_check(output, 32, 17); - - // stage 4 - step[0] = output[0] + output[3]; - step[1] = output[1] + output[2]; - step[2] = output[1] - output[2]; - step[3] = output[0] - output[3]; - step[4] = output[4]; - temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64; - step[5] = (tran_low_t)fdct_round_shift(temp); - temp = output[6] * cospi_16_64 + output[5] * cospi_16_64; - step[6] = (tran_low_t)fdct_round_shift(temp); - step[7] = output[7]; - step[8] = output[8] + output[11]; - step[9] = output[9] + output[10]; - step[10] = output[9] - output[10]; - step[11] = output[8] - output[11]; - step[12] = output[15] - output[12]; - step[13] = output[14] - output[13]; - step[14] = output[14] + output[13]; - step[15] = output[15] + output[12]; - step[16] = output[16]; - step[17] = output[17]; - temp = output[18] * -cospi_8_64 + output[29] * cospi_24_64; - step[18] = (tran_low_t)fdct_round_shift(temp); - temp = output[19] * -cospi_8_64 + output[28] * cospi_24_64; - step[19] = (tran_low_t)fdct_round_shift(temp); - temp = output[20] * -cospi_24_64 + output[27] * -cospi_8_64; - step[20] = (tran_low_t)fdct_round_shift(temp); - temp = output[21] * -cospi_24_64 + output[26] * -cospi_8_64; - step[21] = (tran_low_t)fdct_round_shift(temp); - step[22] = output[22]; - step[23] = output[23]; - step[24] = output[24]; - step[25] = output[25]; - temp = output[26] * cospi_24_64 + output[21] * -cospi_8_64; - step[26] = (tran_low_t)fdct_round_shift(temp); - temp = output[27] * cospi_24_64 + output[20] * -cospi_8_64; - step[27] = (tran_low_t)fdct_round_shift(temp); - temp = output[28] * cospi_8_64 + output[19] * cospi_24_64; - step[28] = (tran_low_t)fdct_round_shift(temp); - temp = output[29] * cospi_8_64 + output[18] * cospi_24_64; - step[29] = (tran_low_t)fdct_round_shift(temp); - step[30] = output[30]; - step[31] = output[31]; - - range_check(step, 32, 18); - - // stage 5 - temp = step[0] * cospi_16_64 + step[1] * cospi_16_64; - output[0] = (tran_low_t)fdct_round_shift(temp); - temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64; - output[1] = (tran_low_t)fdct_round_shift(temp); - temp = step[2] * cospi_24_64 + step[3] * cospi_8_64; - output[2] = (tran_low_t)fdct_round_shift(temp); - temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64; - output[3] = (tran_low_t)fdct_round_shift(temp); - output[4] = step[4] + step[5]; - output[5] = step[4] - step[5]; - output[6] = step[7] - step[6]; - output[7] = step[7] + step[6]; - output[8] = step[8]; - temp = step[9] * -cospi_8_64 + step[14] * cospi_24_64; - output[9] = (tran_low_t)fdct_round_shift(temp); - temp = step[10] * -cospi_24_64 + step[13] * -cospi_8_64; - output[10] = (tran_low_t)fdct_round_shift(temp); - output[11] = step[11]; - output[12] = step[12]; - temp = step[13] * cospi_24_64 + step[10] * -cospi_8_64; - output[13] = (tran_low_t)fdct_round_shift(temp); - temp = step[14] * cospi_8_64 + step[9] * cospi_24_64; - output[14] = (tran_low_t)fdct_round_shift(temp); - output[15] = step[15]; - output[16] = step[16] + step[19]; - output[17] = step[17] + step[18]; - output[18] = step[17] - step[18]; - output[19] = step[16] - step[19]; - output[20] = step[23] - step[20]; - output[21] = step[22] - step[21]; - output[22] = step[22] + step[21]; - output[23] = step[23] + step[20]; - output[24] = step[24] + step[27]; - output[25] = step[25] + step[26]; - output[26] = step[25] - step[26]; - output[27] = step[24] - step[27]; - output[28] = step[31] - step[28]; - output[29] = step[30] - step[29]; - output[30] = step[30] + step[29]; - output[31] = step[31] + step[28]; - - range_check(output, 32, 18); - - // stage 6 - step[0] = output[0]; - step[1] = output[1]; - step[2] = output[2]; - step[3] = output[3]; - temp = output[4] * cospi_28_64 + output[7] * cospi_4_64; - step[4] = (tran_low_t)fdct_round_shift(temp); - temp = output[5] * cospi_12_64 + output[6] * cospi_20_64; - step[5] = (tran_low_t)fdct_round_shift(temp); - temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64; - step[6] = (tran_low_t)fdct_round_shift(temp); - temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64; - step[7] = (tran_low_t)fdct_round_shift(temp); - step[8] = output[8] + output[9]; - step[9] = output[8] - output[9]; - step[10] = output[11] - output[10]; - step[11] = output[11] + output[10]; - step[12] = output[12] + output[13]; - step[13] = output[12] - output[13]; - step[14] = output[15] - output[14]; - step[15] = output[15] + output[14]; - step[16] = output[16]; - temp = output[17] * -cospi_4_64 + output[30] * cospi_28_64; - step[17] = (tran_low_t)fdct_round_shift(temp); - temp = output[18] * -cospi_28_64 + output[29] * -cospi_4_64; - step[18] = (tran_low_t)fdct_round_shift(temp); - step[19] = output[19]; - step[20] = output[20]; - temp = output[21] * -cospi_20_64 + output[26] * cospi_12_64; - step[21] = (tran_low_t)fdct_round_shift(temp); - temp = output[22] * -cospi_12_64 + output[25] * -cospi_20_64; - step[22] = (tran_low_t)fdct_round_shift(temp); - step[23] = output[23]; - step[24] = output[24]; - temp = output[25] * cospi_12_64 + output[22] * -cospi_20_64; - step[25] = (tran_low_t)fdct_round_shift(temp); - temp = output[26] * cospi_20_64 + output[21] * cospi_12_64; - step[26] = (tran_low_t)fdct_round_shift(temp); - step[27] = output[27]; - step[28] = output[28]; - temp = output[29] * cospi_28_64 + output[18] * -cospi_4_64; - step[29] = (tran_low_t)fdct_round_shift(temp); - temp = output[30] * cospi_4_64 + output[17] * cospi_28_64; - step[30] = (tran_low_t)fdct_round_shift(temp); - step[31] = output[31]; - - range_check(step, 32, 18); - - // stage 7 - output[0] = step[0]; - output[1] = step[1]; - output[2] = step[2]; - output[3] = step[3]; - output[4] = step[4]; - output[5] = step[5]; - output[6] = step[6]; - output[7] = step[7]; - temp = step[8] * cospi_30_64 + step[15] * cospi_2_64; - output[8] = (tran_low_t)fdct_round_shift(temp); - temp = step[9] * cospi_14_64 + step[14] * cospi_18_64; - output[9] = (tran_low_t)fdct_round_shift(temp); - temp = step[10] * cospi_22_64 + step[13] * cospi_10_64; - output[10] = (tran_low_t)fdct_round_shift(temp); - temp = step[11] * cospi_6_64 + step[12] * cospi_26_64; - output[11] = (tran_low_t)fdct_round_shift(temp); - temp = step[12] * cospi_6_64 + step[11] * -cospi_26_64; - output[12] = (tran_low_t)fdct_round_shift(temp); - temp = step[13] * cospi_22_64 + step[10] * -cospi_10_64; - output[13] = (tran_low_t)fdct_round_shift(temp); - temp = step[14] * cospi_14_64 + step[9] * -cospi_18_64; - output[14] = (tran_low_t)fdct_round_shift(temp); - temp = step[15] * cospi_30_64 + step[8] * -cospi_2_64; - output[15] = (tran_low_t)fdct_round_shift(temp); - output[16] = step[16] + step[17]; - output[17] = step[16] - step[17]; - output[18] = step[19] - step[18]; - output[19] = step[19] + step[18]; - output[20] = step[20] + step[21]; - output[21] = step[20] - step[21]; - output[22] = step[23] - step[22]; - output[23] = step[23] + step[22]; - output[24] = step[24] + step[25]; - output[25] = step[24] - step[25]; - output[26] = step[27] - step[26]; - output[27] = step[27] + step[26]; - output[28] = step[28] + step[29]; - output[29] = step[28] - step[29]; - output[30] = step[31] - step[30]; - output[31] = step[31] + step[30]; - - range_check(output, 32, 18); - - // stage 8 - step[0] = output[0]; - step[1] = output[1]; - step[2] = output[2]; - step[3] = output[3]; - step[4] = output[4]; - step[5] = output[5]; - step[6] = output[6]; - step[7] = output[7]; - step[8] = output[8]; - step[9] = output[9]; - step[10] = output[10]; - step[11] = output[11]; - step[12] = output[12]; - step[13] = output[13]; - step[14] = output[14]; - step[15] = output[15]; - temp = output[16] * cospi_31_64 + output[31] * cospi_1_64; - step[16] = (tran_low_t)fdct_round_shift(temp); - temp = output[17] * cospi_15_64 + output[30] * cospi_17_64; - step[17] = (tran_low_t)fdct_round_shift(temp); - temp = output[18] * cospi_23_64 + output[29] * cospi_9_64; - step[18] = (tran_low_t)fdct_round_shift(temp); - temp = output[19] * cospi_7_64 + output[28] * cospi_25_64; - step[19] = (tran_low_t)fdct_round_shift(temp); - temp = output[20] * cospi_27_64 + output[27] * cospi_5_64; - step[20] = (tran_low_t)fdct_round_shift(temp); - temp = output[21] * cospi_11_64 + output[26] * cospi_21_64; - step[21] = (tran_low_t)fdct_round_shift(temp); - temp = output[22] * cospi_19_64 + output[25] * cospi_13_64; - step[22] = (tran_low_t)fdct_round_shift(temp); - temp = output[23] * cospi_3_64 + output[24] * cospi_29_64; - step[23] = (tran_low_t)fdct_round_shift(temp); - temp = output[24] * cospi_3_64 + output[23] * -cospi_29_64; - step[24] = (tran_low_t)fdct_round_shift(temp); - temp = output[25] * cospi_19_64 + output[22] * -cospi_13_64; - step[25] = (tran_low_t)fdct_round_shift(temp); - temp = output[26] * cospi_11_64 + output[21] * -cospi_21_64; - step[26] = (tran_low_t)fdct_round_shift(temp); - temp = output[27] * cospi_27_64 + output[20] * -cospi_5_64; - step[27] = (tran_low_t)fdct_round_shift(temp); - temp = output[28] * cospi_7_64 + output[19] * -cospi_25_64; - step[28] = (tran_low_t)fdct_round_shift(temp); - temp = output[29] * cospi_23_64 + output[18] * -cospi_9_64; - step[29] = (tran_low_t)fdct_round_shift(temp); - temp = output[30] * cospi_15_64 + output[17] * -cospi_17_64; - step[30] = (tran_low_t)fdct_round_shift(temp); - temp = output[31] * cospi_31_64 + output[16] * -cospi_1_64; - step[31] = (tran_low_t)fdct_round_shift(temp); - - range_check(step, 32, 18); - - // stage 9 - output[0] = step[0]; - output[1] = step[16]; - output[2] = step[8]; - output[3] = step[24]; - output[4] = step[4]; - output[5] = step[20]; - output[6] = step[12]; - output[7] = step[28]; - output[8] = step[2]; - output[9] = step[18]; - output[10] = step[10]; - output[11] = step[26]; - output[12] = step[6]; - output[13] = step[22]; - output[14] = step[14]; - output[15] = step[30]; - output[16] = step[1]; - output[17] = step[17]; - output[18] = step[9]; - output[19] = step[25]; - output[20] = step[5]; - output[21] = step[21]; - output[22] = step[13]; - output[23] = step[29]; - output[24] = step[3]; - output[25] = step[19]; - output[26] = step[11]; - output[27] = step[27]; - output[28] = step[7]; - output[29] = step[23]; - output[30] = step[15]; - output[31] = step[31]; - - range_check(output, 32, 18); -} - -#ifndef AV1_DCT_GTEST -static void fadst4(const tran_low_t *input, tran_low_t *output) { - tran_high_t x0, x1, x2, x3; - tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; - - x0 = input[0]; - x1 = input[1]; - x2 = input[2]; - x3 = input[3]; - - if (!(x0 | x1 | x2 | x3)) { - output[0] = output[1] = output[2] = output[3] = 0; - return; - } - - s0 = sinpi_1_9 * x0; - s1 = sinpi_4_9 * x0; - s2 = sinpi_2_9 * x1; - s3 = sinpi_1_9 * x1; - s4 = sinpi_3_9 * x2; - s5 = sinpi_4_9 * x3; - s6 = sinpi_2_9 * x3; - s7 = x0 + x1 - x3; - - x0 = s0 + s2 + s5; - x1 = sinpi_3_9 * s7; - x2 = s1 - s3 + s6; - x3 = s4; - - s0 = x0 + x3; - s1 = x1; - s2 = x2 - x3; - s3 = x2 - x0 + x3; - - // 1-D transform scaling factor is sqrt(2). - output[0] = (tran_low_t)fdct_round_shift(s0); - output[1] = (tran_low_t)fdct_round_shift(s1); - output[2] = (tran_low_t)fdct_round_shift(s2); - output[3] = (tran_low_t)fdct_round_shift(s3); -} - -static void fadst8(const tran_low_t *input, tran_low_t *output) { - tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; - - tran_high_t x0 = input[7]; - tran_high_t x1 = input[0]; - tran_high_t x2 = input[5]; - tran_high_t x3 = input[2]; - tran_high_t x4 = input[3]; - tran_high_t x5 = input[4]; - tran_high_t x6 = input[1]; - tran_high_t x7 = input[6]; - - // stage 1 - s0 = cospi_2_64 * x0 + cospi_30_64 * x1; - s1 = cospi_30_64 * x0 - cospi_2_64 * x1; - s2 = cospi_10_64 * x2 + cospi_22_64 * x3; - s3 = cospi_22_64 * x2 - cospi_10_64 * x3; - s4 = cospi_18_64 * x4 + cospi_14_64 * x5; - s5 = cospi_14_64 * x4 - cospi_18_64 * x5; - s6 = cospi_26_64 * x6 + cospi_6_64 * x7; - s7 = cospi_6_64 * x6 - cospi_26_64 * x7; - - x0 = s0 + s4; - x1 = s1 + s5; - x2 = s2 + s6; - x3 = s3 + s7; - x4 = fdct_round_shift(s0 - s4); - x5 = fdct_round_shift(s1 - s5); - x6 = fdct_round_shift(s2 - s6); - x7 = fdct_round_shift(s3 - s7); - - // stage 2 - s0 = x0; - s1 = x1; - s2 = x2; - s3 = x3; - s4 = cospi_8_64 * x4 + cospi_24_64 * x5; - s5 = cospi_24_64 * x4 - cospi_8_64 * x5; - s6 = -cospi_24_64 * x6 + cospi_8_64 * x7; - s7 = cospi_8_64 * x6 + cospi_24_64 * x7; - - x0 = fdct_round_shift(s0 + s2); - x1 = fdct_round_shift(s1 + s3); - x2 = fdct_round_shift(s0 - s2); - x3 = fdct_round_shift(s1 - s3); - x4 = fdct_round_shift(s4 + s6); - x5 = fdct_round_shift(s5 + s7); - x6 = fdct_round_shift(s4 - s6); - x7 = fdct_round_shift(s5 - s7); - - // stage 3 - s2 = cospi_16_64 * (x2 + x3); - s3 = cospi_16_64 * (x2 - x3); - s6 = cospi_16_64 * (x6 + x7); - s7 = cospi_16_64 * (x6 - x7); - - x2 = fdct_round_shift(s2); - x3 = fdct_round_shift(s3); - x6 = fdct_round_shift(s6); - x7 = fdct_round_shift(s7); - - output[0] = (tran_low_t)x0; - output[1] = (tran_low_t)-x4; - output[2] = (tran_low_t)x6; - output[3] = (tran_low_t)-x2; - output[4] = (tran_low_t)x3; - output[5] = (tran_low_t)-x7; - output[6] = (tran_low_t)x5; - output[7] = (tran_low_t)-x1; -} - -static void fadst16(const tran_low_t *input, tran_low_t *output) { - tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; - tran_high_t s9, s10, s11, s12, s13, s14, s15; - - tran_high_t x0 = input[15]; - tran_high_t x1 = input[0]; - tran_high_t x2 = input[13]; - tran_high_t x3 = input[2]; - tran_high_t x4 = input[11]; - tran_high_t x5 = input[4]; - tran_high_t x6 = input[9]; - tran_high_t x7 = input[6]; - tran_high_t x8 = input[7]; - tran_high_t x9 = input[8]; - tran_high_t x10 = input[5]; - tran_high_t x11 = input[10]; - tran_high_t x12 = input[3]; - tran_high_t x13 = input[12]; - tran_high_t x14 = input[1]; - tran_high_t x15 = input[14]; - - // stage 1 - s0 = x0 * cospi_1_64 + x1 * cospi_31_64; - s1 = x0 * cospi_31_64 - x1 * cospi_1_64; - s2 = x2 * cospi_5_64 + x3 * cospi_27_64; - s3 = x2 * cospi_27_64 - x3 * cospi_5_64; - s4 = x4 * cospi_9_64 + x5 * cospi_23_64; - s5 = x4 * cospi_23_64 - x5 * cospi_9_64; - s6 = x6 * cospi_13_64 + x7 * cospi_19_64; - s7 = x6 * cospi_19_64 - x7 * cospi_13_64; - s8 = x8 * cospi_17_64 + x9 * cospi_15_64; - s9 = x8 * cospi_15_64 - x9 * cospi_17_64; - s10 = x10 * cospi_21_64 + x11 * cospi_11_64; - s11 = x10 * cospi_11_64 - x11 * cospi_21_64; - s12 = x12 * cospi_25_64 + x13 * cospi_7_64; - s13 = x12 * cospi_7_64 - x13 * cospi_25_64; - s14 = x14 * cospi_29_64 + x15 * cospi_3_64; - s15 = x14 * cospi_3_64 - x15 * cospi_29_64; - - x0 = s0 + s8; - x1 = s1 + s9; - x2 = s2 + s10; - x3 = s3 + s11; - x4 = s4 + s12; - x5 = s5 + s13; - x6 = s6 + s14; - x7 = s7 + s15; - - x8 = fdct_round_shift(s0 - s8); - x9 = fdct_round_shift(s1 - s9); - x10 = fdct_round_shift(s2 - s10); - x11 = fdct_round_shift(s3 - s11); - x12 = fdct_round_shift(s4 - s12); - x13 = fdct_round_shift(s5 - s13); - x14 = fdct_round_shift(s6 - s14); - x15 = fdct_round_shift(s7 - s15); - - // stage 2 - s0 = x0; - s1 = x1; - s2 = x2; - s3 = x3; - s4 = x4; - s5 = x5; - s6 = x6; - s7 = x7; - s8 = x8 * cospi_4_64 + x9 * cospi_28_64; - s9 = x8 * cospi_28_64 - x9 * cospi_4_64; - s10 = x10 * cospi_20_64 + x11 * cospi_12_64; - s11 = x10 * cospi_12_64 - x11 * cospi_20_64; - s12 = -x12 * cospi_28_64 + x13 * cospi_4_64; - s13 = x12 * cospi_4_64 + x13 * cospi_28_64; - s14 = -x14 * cospi_12_64 + x15 * cospi_20_64; - s15 = x14 * cospi_20_64 + x15 * cospi_12_64; - - x0 = s0 + s4; - x1 = s1 + s5; - x2 = s2 + s6; - x3 = s3 + s7; - x4 = fdct_round_shift(s0 - s4); - x5 = fdct_round_shift(s1 - s5); - x6 = fdct_round_shift(s2 - s6); - x7 = fdct_round_shift(s3 - s7); - - x8 = s8 + s12; - x9 = s9 + s13; - x10 = s10 + s14; - x11 = s11 + s15; - x12 = fdct_round_shift(s8 - s12); - x13 = fdct_round_shift(s9 - s13); - x14 = fdct_round_shift(s10 - s14); - x15 = fdct_round_shift(s11 - s15); - - // stage 3 - s0 = x0; - s1 = x1; - s2 = x2; - s3 = x3; - s4 = x4 * cospi_8_64 + x5 * cospi_24_64; - s5 = x4 * cospi_24_64 - x5 * cospi_8_64; - s6 = -x6 * cospi_24_64 + x7 * cospi_8_64; - s7 = x6 * cospi_8_64 + x7 * cospi_24_64; - s8 = x8; - s9 = x9; - s10 = x10; - s11 = x11; - s12 = x12 * cospi_8_64 + x13 * cospi_24_64; - s13 = x12 * cospi_24_64 - x13 * cospi_8_64; - s14 = -x14 * cospi_24_64 + x15 * cospi_8_64; - s15 = x14 * cospi_8_64 + x15 * cospi_24_64; - - x0 = fdct_round_shift(s0 + s2); - x1 = fdct_round_shift(s1 + s3); - x2 = fdct_round_shift(s0 - s2); - x3 = fdct_round_shift(s1 - s3); - - x4 = fdct_round_shift(s4 + s6); - x5 = fdct_round_shift(s5 + s7); - x6 = fdct_round_shift(s4 - s6); - x7 = fdct_round_shift(s5 - s7); - - x8 = fdct_round_shift(s8 + s10); - x9 = fdct_round_shift(s9 + s11); - x10 = fdct_round_shift(s8 - s10); - x11 = fdct_round_shift(s9 - s11); - - x12 = fdct_round_shift(s12 + s14); - x13 = fdct_round_shift(s13 + s15); - x14 = fdct_round_shift(s12 - s14); - x15 = fdct_round_shift(s13 - s15); - - // stage 4 - s2 = (-cospi_16_64) * (x2 + x3); - s3 = cospi_16_64 * (x2 - x3); - s6 = cospi_16_64 * (x6 + x7); - s7 = cospi_16_64 * (-x6 + x7); - s10 = cospi_16_64 * (x10 + x11); - s11 = cospi_16_64 * (-x10 + x11); - s14 = (-cospi_16_64) * (x14 + x15); - s15 = cospi_16_64 * (x14 - x15); - - x2 = fdct_round_shift(s2); - x3 = fdct_round_shift(s3); - x6 = fdct_round_shift(s6); - x7 = fdct_round_shift(s7); - x10 = fdct_round_shift(s10); - x11 = fdct_round_shift(s11); - x14 = fdct_round_shift(s14); - x15 = fdct_round_shift(s15); - - output[0] = (tran_low_t)x0; - output[1] = (tran_low_t)-x8; - output[2] = (tran_low_t)x12; - output[3] = (tran_low_t)-x4; - output[4] = (tran_low_t)x6; - output[5] = (tran_low_t)x14; - output[6] = (tran_low_t)x10; - output[7] = (tran_low_t)x2; - output[8] = (tran_low_t)x3; - output[9] = (tran_low_t)x11; - output[10] = (tran_low_t)x15; - output[11] = (tran_low_t)x7; - output[12] = (tran_low_t)x5; - output[13] = (tran_low_t)-x13; - output[14] = (tran_low_t)x9; - output[15] = (tran_low_t)-x1; -} - -// For use in lieu of ADST -static void fhalfright32(const tran_low_t *input, tran_low_t *output) { - int i; - tran_low_t inputhalf[16]; - for (i = 0; i < 16; ++i) { - output[16 + i] = input[i] * 4; - } - // Multiply input by sqrt(2) - for (i = 0; i < 16; ++i) { - inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 16] * Sqrt2); - } - fdct16(inputhalf, output); - // Note overall scaling factor is 4 times orthogonal -} - -#if CONFIG_MRC_TX -static void get_masked_residual32(const int16_t **input, int *input_stride, - const uint8_t *pred, int pred_stride, - int16_t *masked_input, - TxfmParam *txfm_param) { - int n_masked_vals = 0; - uint8_t *mrc_mask; - uint8_t mask_tmp[32 * 32]; - if ((txfm_param->is_inter && SIGNAL_MRC_MASK_INTER) || - (!txfm_param->is_inter && SIGNAL_MRC_MASK_INTRA)) { - mrc_mask = txfm_param->mask; - n_masked_vals = get_mrc_diff_mask(*input, *input_stride, mrc_mask, 32, 32, - 32, txfm_param->is_inter); - } else { - mrc_mask = mask_tmp; - n_masked_vals = get_mrc_pred_mask(pred, pred_stride, mrc_mask, 32, 32, 32, - txfm_param->is_inter); - } - - // Do not use MRC_DCT if mask is invalid. DCT_DCT will be used instead. - if (!is_valid_mrc_mask(n_masked_vals, 32, 32)) { - *txfm_param->valid_mask = 0; - return; - } - int32_t sum = 0; - int16_t avg; - // Get the masked average of the prediction - for (int i = 0; i < 32; ++i) { - for (int j = 0; j < 32; ++j) { - sum += mrc_mask[i * 32 + j] * (*input)[i * (*input_stride) + j]; - } - } - avg = sum / n_masked_vals; - // Replace all of the unmasked pixels in the prediction with the average - // of the masked pixels - for (int i = 0; i < 32; ++i) { - for (int j = 0; j < 32; ++j) - masked_input[i * 32 + j] = - (mrc_mask[i * 32 + j]) ? (*input)[i * (*input_stride) + j] : avg; - } - *input = masked_input; - *input_stride = 32; - *txfm_param->valid_mask = 1; -} -#endif // CONFIG_MRC_TX - -#if CONFIG_LGT || CONFIG_LGT_FROM_PRED -static void flgt4(const tran_low_t *input, tran_low_t *output, - const tran_high_t *lgtmtx) { - if (!lgtmtx) assert(0); -#if CONFIG_LGT_FROM_PRED - // For DCT/ADST, use butterfly implementations - if (lgtmtx[0] == DCT4) { - fdct4(input, output); - return; - } else if (lgtmtx[0] == ADST4) { - fadst4(input, output); - return; - } -#endif // CONFIG_LGT_FROM_PRED - - // evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,4 - tran_high_t s[4] = { 0 }; - for (int i = 0; i < 4; ++i) - for (int j = 0; j < 4; ++j) s[j] += lgtmtx[j * 4 + i] * input[i]; - - for (int i = 0; i < 4; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]); -} - -static void flgt8(const tran_low_t *input, tran_low_t *output, - const tran_high_t *lgtmtx) { - if (!lgtmtx) assert(0); -#if CONFIG_LGT_FROM_PRED - // For DCT/ADST, use butterfly implementations - if (lgtmtx[0] == DCT8) { - fdct8(input, output); - return; - } else if (lgtmtx[0] == ADST8) { - fadst8(input, output); - return; - } -#endif // CONFIG_LGT_FROM_PRED - - // evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,8 - tran_high_t s[8] = { 0 }; - for (int i = 0; i < 8; ++i) - for (int j = 0; j < 8; ++j) s[j] += lgtmtx[j * 8 + i] * input[i]; - - for (int i = 0; i < 8; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]); -} -#endif // CONFIG_LGT || CONFIG_LGT_FROM_PRED - -#if CONFIG_LGT_FROM_PRED -static void flgt16up(const tran_low_t *input, tran_low_t *output, - const tran_high_t *lgtmtx) { - if (lgtmtx[0] == DCT16) { - fdct16(input, output); - return; - } else if (lgtmtx[0] == ADST16) { - fadst16(input, output); - return; - } else if (lgtmtx[0] == DCT32) { - fdct32(input, output); - return; - } else if (lgtmtx[0] == ADST32) { - fhalfright32(input, output); - return; - } else { - assert(0); - } -} - -typedef void (*FlgtFunc)(const tran_low_t *input, tran_low_t *output, - const tran_high_t *lgtmtx); - -static FlgtFunc flgt_func[4] = { flgt4, flgt8, flgt16up, flgt16up }; - -typedef void (*GetLgtFunc)(const TxfmParam *txfm_param, int is_col, - const tran_high_t *lgtmtx[], int ntx); - -static GetLgtFunc get_lgt_func[4] = { get_lgt4_from_pred, get_lgt8_from_pred, - get_lgt16up_from_pred, - get_lgt16up_from_pred }; - -// this inline function corresponds to the up scaling before the first -// transform in the av1_fht* functions -static INLINE tran_low_t fwd_upscale_wrt_txsize(const tran_high_t val, - const TX_SIZE tx_size) { - switch (tx_size) { - case TX_4X4: return (tran_low_t)val << 4; - case TX_8X8: - case TX_4X16: - case TX_16X4: - case TX_8X32: - case TX_32X8: return (tran_low_t)val << 2; - case TX_4X8: - case TX_8X4: - case TX_8X16: - case TX_16X8: return (tran_low_t)fdct_round_shift(val * 4 * Sqrt2); - default: assert(0); break; - } - return 0; -} - -// This inline function corresponds to the bit shift after the second -// transform in the av1_fht* functions -static INLINE tran_low_t fwd_downscale_wrt_txsize(const tran_low_t val, - const TX_SIZE tx_size) { - switch (tx_size) { - case TX_4X4: return (val + 1) >> 2; - case TX_4X8: - case TX_8X4: - case TX_8X8: - case TX_4X16: - case TX_16X4: return (val + (val < 0)) >> 1; - case TX_8X16: - case TX_16X8: return val; - case TX_8X32: - case TX_32X8: return ROUND_POWER_OF_TWO_SIGNED(val, 2); - default: assert(0); break; - } - return 0; -} - -void flgt2d_from_pred_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_SIZE tx_size = txfm_param->tx_size; - const int w = tx_size_wide[tx_size]; - const int h = tx_size_high[tx_size]; - const int wlog2 = tx_size_wide_log2[tx_size]; - const int hlog2 = tx_size_high_log2[tx_size]; - assert(w <= 8 || h <= 8); - - int i, j; - tran_low_t out[256]; // max size: 8x32 and 32x8 - tran_low_t temp_in[32], temp_out[32]; - const tran_high_t *lgtmtx_col[1]; - const tran_high_t *lgtmtx_row[1]; - get_lgt_func[hlog2 - 2](txfm_param, 1, lgtmtx_col, w); - get_lgt_func[wlog2 - 2](txfm_param, 0, lgtmtx_row, h); - - // For forward transforms, to be consistent with av1_fht functions, we apply - // short transform first and long transform second. - if (w < h) { - // Row transforms - for (i = 0; i < h; ++i) { - for (j = 0; j < w; ++j) - temp_in[j] = fwd_upscale_wrt_txsize(input[i * stride + j], tx_size); - flgt_func[wlog2 - 2](temp_in, temp_out, lgtmtx_row[0]); - // right shift of 2 bits here in fht8x16 and fht16x8 - for (j = 0; j < w; ++j) - out[j * h + i] = (tx_size == TX_16X8 || tx_size == TX_8X16) - ? ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2) - : temp_out[j]; - } - // Column transforms - for (i = 0; i < w; ++i) { - for (j = 0; j < h; ++j) temp_in[j] = out[j + i * h]; - flgt_func[hlog2 - 2](temp_in, temp_out, lgtmtx_col[0]); - for (j = 0; j < h; ++j) - output[j * w + i] = fwd_downscale_wrt_txsize(temp_out[j], tx_size); - } - } else { - // Column transforms - for (i = 0; i < w; ++i) { - for (j = 0; j < h; ++j) - temp_in[j] = fwd_upscale_wrt_txsize(input[j * stride + i], tx_size); - flgt_func[hlog2 - 2](temp_in, temp_out, lgtmtx_col[0]); - // fht8x16 and fht16x8 have right shift of 2 bits here - for (j = 0; j < h; ++j) - out[j * w + i] = (tx_size == TX_16X8 || tx_size == TX_8X16) - ? ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2) - : temp_out[j]; - } - // Row transforms - for (i = 0; i < h; ++i) { - for (j = 0; j < w; ++j) temp_in[j] = out[j + i * w]; - flgt_func[wlog2 - 2](temp_in, temp_out, lgtmtx_row[0]); - for (j = 0; j < w; ++j) - output[j + i * w] = fwd_downscale_wrt_txsize(temp_out[j], tx_size); - } - } -} -#endif // CONFIG_LGT_FROM_PRED - -#if CONFIG_EXT_TX -// TODO(sarahparker) these functions will be removed once the highbitdepth -// codepath works properly for rectangular transforms. They have almost -// identical versions in av1_fwd_txfm1d.c, but those are currently only -// being used for square transforms. -static void fidtx4(const tran_low_t *input, tran_low_t *output) { - int i; - for (i = 0; i < 4; ++i) { - output[i] = (tran_low_t)fdct_round_shift(input[i] * Sqrt2); - } -} - -static void fidtx8(const tran_low_t *input, tran_low_t *output) { - int i; - for (i = 0; i < 8; ++i) { - output[i] = input[i] * 2; - } -} - -static void fidtx16(const tran_low_t *input, tran_low_t *output) { - int i; - for (i = 0; i < 16; ++i) { - output[i] = (tran_low_t)fdct_round_shift(input[i] * 2 * Sqrt2); - } -} - -static void fidtx32(const tran_low_t *input, tran_low_t *output) { - int i; - for (i = 0; i < 32; ++i) { - output[i] = input[i] * 4; - } -} - -static void copy_block(const int16_t *src, int src_stride, int l, int w, - int16_t *dest, int dest_stride) { - int i; - for (i = 0; i < l; ++i) { - memcpy(dest + dest_stride * i, src + src_stride * i, w * sizeof(int16_t)); - } -} - -static void fliplr(int16_t *dest, int stride, int l, int w) { - int i, j; - for (i = 0; i < l; ++i) { - for (j = 0; j < w / 2; ++j) { - const int16_t tmp = dest[i * stride + j]; - dest[i * stride + j] = dest[i * stride + w - 1 - j]; - dest[i * stride + w - 1 - j] = tmp; - } - } -} - -static void flipud(int16_t *dest, int stride, int l, int w) { - int i, j; - for (j = 0; j < w; ++j) { - for (i = 0; i < l / 2; ++i) { - const int16_t tmp = dest[i * stride + j]; - dest[i * stride + j] = dest[(l - 1 - i) * stride + j]; - dest[(l - 1 - i) * stride + j] = tmp; - } - } -} - -static void fliplrud(int16_t *dest, int stride, int l, int w) { - int i, j; - for (i = 0; i < l / 2; ++i) { - for (j = 0; j < w; ++j) { - const int16_t tmp = dest[i * stride + j]; - dest[i * stride + j] = dest[(l - 1 - i) * stride + w - 1 - j]; - dest[(l - 1 - i) * stride + w - 1 - j] = tmp; - } - } -} - -static void copy_fliplr(const int16_t *src, int src_stride, int l, int w, - int16_t *dest, int dest_stride) { - copy_block(src, src_stride, l, w, dest, dest_stride); - fliplr(dest, dest_stride, l, w); -} - -static void copy_flipud(const int16_t *src, int src_stride, int l, int w, - int16_t *dest, int dest_stride) { - copy_block(src, src_stride, l, w, dest, dest_stride); - flipud(dest, dest_stride, l, w); -} - -static void copy_fliplrud(const int16_t *src, int src_stride, int l, int w, - int16_t *dest, int dest_stride) { - copy_block(src, src_stride, l, w, dest, dest_stride); - fliplrud(dest, dest_stride, l, w); -} - -static void maybe_flip_input(const int16_t **src, int *src_stride, int l, int w, - int16_t *buff, TX_TYPE tx_type) { - switch (tx_type) { -#if CONFIG_MRC_TX - case MRC_DCT: -#endif // CONFIG_MRC_TX - case DCT_DCT: - case ADST_DCT: - case DCT_ADST: - case ADST_ADST: - case IDTX: - case V_DCT: - case H_DCT: - case V_ADST: - case H_ADST: break; - case FLIPADST_DCT: - case FLIPADST_ADST: - case V_FLIPADST: - copy_flipud(*src, *src_stride, l, w, buff, w); - *src = buff; - *src_stride = w; - break; - case DCT_FLIPADST: - case ADST_FLIPADST: - case H_FLIPADST: - copy_fliplr(*src, *src_stride, l, w, buff, w); - *src = buff; - *src_stride = w; - break; - case FLIPADST_FLIPADST: - copy_fliplrud(*src, *src_stride, l, w, buff, w); - *src = buff; - *src_stride = w; - break; - default: assert(0); break; - } -} -#endif // CONFIG_EXT_TX - -void av1_fht4x4_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif -#if !CONFIG_DAALA_DCT4 - if (tx_type == DCT_DCT) { - aom_fdct4x4_c(input, output, stride); - return; - } -#endif - { - static const transform_2d FHT[] = { -#if CONFIG_DAALA_DCT4 - { daala_fdct4, daala_fdct4 }, // DCT_DCT - { daala_fdst4, daala_fdct4 }, // ADST_DCT - { daala_fdct4, daala_fdst4 }, // DCT_ADST - { daala_fdst4, daala_fdst4 }, // ADST_ADST -#if CONFIG_EXT_TX - { daala_fdst4, daala_fdct4 }, // FLIPADST_DCT - { daala_fdct4, daala_fdst4 }, // DCT_FLIPADST - { daala_fdst4, daala_fdst4 }, // FLIPADST_FLIPADST - { daala_fdst4, daala_fdst4 }, // ADST_FLIPADST - { daala_fdst4, daala_fdst4 }, // FLIPADST_ADST - { daala_idtx4, daala_idtx4 }, // IDTX - { daala_fdct4, daala_idtx4 }, // V_DCT - { daala_idtx4, daala_fdct4 }, // H_DCT - { daala_fdst4, daala_idtx4 }, // V_ADST - { daala_idtx4, daala_fdst4 }, // H_ADST - { daala_fdst4, daala_idtx4 }, // V_FLIPADST - { daala_idtx4, daala_fdst4 }, // H_FLIPADST -#endif -#else - { fdct4, fdct4 }, // DCT_DCT - { fadst4, fdct4 }, // ADST_DCT - { fdct4, fadst4 }, // DCT_ADST - { fadst4, fadst4 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst4, fdct4 }, // FLIPADST_DCT - { fdct4, fadst4 }, // DCT_FLIPADST - { fadst4, fadst4 }, // FLIPADST_FLIPADST - { fadst4, fadst4 }, // ADST_FLIPADST - { fadst4, fadst4 }, // FLIPADST_ADST - { fidtx4, fidtx4 }, // IDTX - { fdct4, fidtx4 }, // V_DCT - { fidtx4, fdct4 }, // H_DCT - { fadst4, fidtx4 }, // V_ADST - { fidtx4, fadst4 }, // H_ADST - { fadst4, fidtx4 }, // V_FLIPADST - { fidtx4, fadst4 }, // H_FLIPADST -#endif -#endif - }; - const transform_2d ht = FHT[tx_type]; - tran_low_t out[4 * 4]; - int i, j; - tran_low_t temp_in[4], temp_out[4]; - -#if CONFIG_EXT_TX - int16_t flipped_input[4 * 4]; - maybe_flip_input(&input, &stride, 4, 4, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - // Choose LGT adaptive to the prediction. We may apply different LGTs for - // different rows/columns, indicated by the pointers to 2D arrays - const tran_high_t *lgtmtx_col[1]; - const tran_high_t *lgtmtx_row[1]; - int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); - int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); -#endif - - // Columns - for (i = 0; i < 4; ++i) { - /* A C99-safe upshift by 4 for both Daala and VPx TX. */ - for (j = 0; j < 4; ++j) temp_in[j] = input[j * stride + i] * 16; -#if !CONFIG_DAALA_DCT4 - if (i == 0 && temp_in[0]) temp_in[0] += 1; -#endif -#if CONFIG_LGT - if (use_lgt_col) - flgt4(temp_in, temp_out, lgtmtx_col[0]); - else -#endif - ht.cols(temp_in, temp_out); - for (j = 0; j < 4; ++j) out[j * 4 + i] = temp_out[j]; - } - - // Rows - for (i = 0; i < 4; ++i) { - for (j = 0; j < 4; ++j) temp_in[j] = out[j + i * 4]; -#if CONFIG_LGT - if (use_lgt_row) - flgt4(temp_in, temp_out, lgtmtx_row[0]); - else -#endif - ht.rows(temp_in, temp_out); -#if CONFIG_DAALA_DCT4 - /* Daala TX has orthonormal scaling; shift down by only 1 to achieve - the usual VPx coefficient left-shift of 3. */ - for (j = 0; j < 4; ++j) output[j + i * 4] = temp_out[j] >> 1; -#else - for (j = 0; j < 4; ++j) output[j + i * 4] = (temp_out[j] + 1) >> 2; -#endif - } - } -} - -void av1_fht4x8_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct8, fdct4 }, // DCT_DCT - { fadst8, fdct4 }, // ADST_DCT - { fdct8, fadst4 }, // DCT_ADST - { fadst8, fadst4 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst8, fdct4 }, // FLIPADST_DCT - { fdct8, fadst4 }, // DCT_FLIPADST - { fadst8, fadst4 }, // FLIPADST_FLIPADST - { fadst8, fadst4 }, // ADST_FLIPADST - { fadst8, fadst4 }, // FLIPADST_ADST - { fidtx8, fidtx4 }, // IDTX - { fdct8, fidtx4 }, // V_DCT - { fidtx8, fdct4 }, // H_DCT - { fadst8, fidtx4 }, // V_ADST - { fidtx8, fadst4 }, // H_ADST - { fadst8, fidtx4 }, // V_FLIPADST - { fidtx8, fadst4 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 4; - const int n2 = 8; - tran_low_t out[8 * 4]; - tran_low_t temp_in[8], temp_out[8]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[8 * 4]; - maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_col[1]; - const tran_high_t *lgtmtx_row[1]; - int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); - int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); -#endif - - // Rows - for (i = 0; i < n2; ++i) { - for (j = 0; j < n; ++j) - temp_in[j] = - (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); -#if CONFIG_LGT - if (use_lgt_row) - flgt4(temp_in, temp_out, lgtmtx_row[0]); - else -#endif - ht.rows(temp_in, temp_out); - for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j]; - } - - // Columns - for (i = 0; i < n; ++i) { - for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; -#if CONFIG_LGT - if (use_lgt_col) - flgt8(temp_in, temp_out, lgtmtx_col[0]); - else -#endif - ht.cols(temp_in, temp_out); - for (j = 0; j < n2; ++j) - output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1; - } - // Note: overall scale factor of transform is 8 times unitary -} - -void av1_fht8x4_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct4, fdct8 }, // DCT_DCT - { fadst4, fdct8 }, // ADST_DCT - { fdct4, fadst8 }, // DCT_ADST - { fadst4, fadst8 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst4, fdct8 }, // FLIPADST_DCT - { fdct4, fadst8 }, // DCT_FLIPADST - { fadst4, fadst8 }, // FLIPADST_FLIPADST - { fadst4, fadst8 }, // ADST_FLIPADST - { fadst4, fadst8 }, // FLIPADST_ADST - { fidtx4, fidtx8 }, // IDTX - { fdct4, fidtx8 }, // V_DCT - { fidtx4, fdct8 }, // H_DCT - { fadst4, fidtx8 }, // V_ADST - { fidtx4, fadst8 }, // H_ADST - { fadst4, fidtx8 }, // V_FLIPADST - { fidtx4, fadst8 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 4; - const int n2 = 8; - tran_low_t out[8 * 4]; - tran_low_t temp_in[8], temp_out[8]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[8 * 4]; - maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_col[1]; - const tran_high_t *lgtmtx_row[1]; - int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); - int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); -#endif - - // Columns - for (i = 0; i < n2; ++i) { - for (j = 0; j < n; ++j) - temp_in[j] = - (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); -#if CONFIG_LGT - if (use_lgt_col) - flgt4(temp_in, temp_out, lgtmtx_col[0]); - else -#endif - ht.cols(temp_in, temp_out); - for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j]; - } - - // Rows - for (i = 0; i < n; ++i) { - for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; -#if CONFIG_LGT - if (use_lgt_row) - flgt8(temp_in, temp_out, lgtmtx_row[0]); - else -#endif - ht.rows(temp_in, temp_out); - for (j = 0; j < n2; ++j) - output[j + i * n2] = (temp_out[j] + (temp_out[j] < 0)) >> 1; - } - // Note: overall scale factor of transform is 8 times unitary -} - -void av1_fht4x16_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct16, fdct4 }, // DCT_DCT - { fadst16, fdct4 }, // ADST_DCT - { fdct16, fadst4 }, // DCT_ADST - { fadst16, fadst4 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst16, fdct4 }, // FLIPADST_DCT - { fdct16, fadst4 }, // DCT_FLIPADST - { fadst16, fadst4 }, // FLIPADST_FLIPADST - { fadst16, fadst4 }, // ADST_FLIPADST - { fadst16, fadst4 }, // FLIPADST_ADST - { fidtx16, fidtx4 }, // IDTX - { fdct16, fidtx4 }, // V_DCT - { fidtx16, fdct4 }, // H_DCT - { fadst16, fidtx4 }, // V_ADST - { fidtx16, fadst4 }, // H_ADST - { fadst16, fidtx4 }, // V_FLIPADST - { fidtx16, fadst4 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 4; - const int n4 = 16; - tran_low_t out[16 * 4]; - tran_low_t temp_in[16], temp_out[16]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[16 * 4]; - maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_row[1]; - int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); -#endif - - // Rows - for (i = 0; i < n4; ++i) { - for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4; -#if CONFIG_LGT - if (use_lgt_row) - flgt4(temp_in, temp_out, lgtmtx_row[0]); - else -#endif - ht.rows(temp_in, temp_out); - for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; - } - - // Columns - for (i = 0; i < n; ++i) { - for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; - ht.cols(temp_in, temp_out); - for (j = 0; j < n4; ++j) - output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1; - } - // Note: overall scale factor of transform is 8 times unitary -} - -void av1_fht16x4_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct4, fdct16 }, // DCT_DCT - { fadst4, fdct16 }, // ADST_DCT - { fdct4, fadst16 }, // DCT_ADST - { fadst4, fadst16 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst4, fdct16 }, // FLIPADST_DCT - { fdct4, fadst16 }, // DCT_FLIPADST - { fadst4, fadst16 }, // FLIPADST_FLIPADST - { fadst4, fadst16 }, // ADST_FLIPADST - { fadst4, fadst16 }, // FLIPADST_ADST - { fidtx4, fidtx16 }, // IDTX - { fdct4, fidtx16 }, // V_DCT - { fidtx4, fdct16 }, // H_DCT - { fadst4, fidtx16 }, // V_ADST - { fidtx4, fadst16 }, // H_ADST - { fadst4, fidtx16 }, // V_FLIPADST - { fidtx4, fadst16 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 4; - const int n4 = 16; - tran_low_t out[16 * 4]; - tran_low_t temp_in[16], temp_out[16]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[16 * 4]; - maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_col[1]; - int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); -#endif - - // Columns - for (i = 0; i < n4; ++i) { - for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4; -#if CONFIG_LGT - if (use_lgt_col) - flgt4(temp_in, temp_out, lgtmtx_col[0]); - else -#endif - ht.cols(temp_in, temp_out); - for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; - } - - // Rows - for (i = 0; i < n; ++i) { - for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; - ht.rows(temp_in, temp_out); - for (j = 0; j < n4; ++j) - output[j + i * n4] = (temp_out[j] + (temp_out[j] < 0)) >> 1; - } - // Note: overall scale factor of transform is 8 times unitary -} - -void av1_fht8x16_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct16, fdct8 }, // DCT_DCT - { fadst16, fdct8 }, // ADST_DCT - { fdct16, fadst8 }, // DCT_ADST - { fadst16, fadst8 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst16, fdct8 }, // FLIPADST_DCT - { fdct16, fadst8 }, // DCT_FLIPADST - { fadst16, fadst8 }, // FLIPADST_FLIPADST - { fadst16, fadst8 }, // ADST_FLIPADST - { fadst16, fadst8 }, // FLIPADST_ADST - { fidtx16, fidtx8 }, // IDTX - { fdct16, fidtx8 }, // V_DCT - { fidtx16, fdct8 }, // H_DCT - { fadst16, fidtx8 }, // V_ADST - { fidtx16, fadst8 }, // H_ADST - { fadst16, fidtx8 }, // V_FLIPADST - { fidtx16, fadst8 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 8; - const int n2 = 16; - tran_low_t out[16 * 8]; - tran_low_t temp_in[16], temp_out[16]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[16 * 8]; - maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_row[1]; - int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); -#endif - - // Rows - for (i = 0; i < n2; ++i) { - for (j = 0; j < n; ++j) - temp_in[j] = - (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); -#if CONFIG_LGT - if (use_lgt_row) - flgt8(temp_in, temp_out, lgtmtx_row[0]); - else -#endif - ht.rows(temp_in, temp_out); - for (j = 0; j < n; ++j) - out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); - } - - // Columns - for (i = 0; i < n; ++i) { - for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; - ht.cols(temp_in, temp_out); - for (j = 0; j < n2; ++j) output[i + j * n] = temp_out[j]; - } - // Note: overall scale factor of transform is 8 times unitary -} - -void av1_fht16x8_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct8, fdct16 }, // DCT_DCT - { fadst8, fdct16 }, // ADST_DCT - { fdct8, fadst16 }, // DCT_ADST - { fadst8, fadst16 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst8, fdct16 }, // FLIPADST_DCT - { fdct8, fadst16 }, // DCT_FLIPADST - { fadst8, fadst16 }, // FLIPADST_FLIPADST - { fadst8, fadst16 }, // ADST_FLIPADST - { fadst8, fadst16 }, // FLIPADST_ADST - { fidtx8, fidtx16 }, // IDTX - { fdct8, fidtx16 }, // V_DCT - { fidtx8, fdct16 }, // H_DCT - { fadst8, fidtx16 }, // V_ADST - { fidtx8, fadst16 }, // H_ADST - { fadst8, fidtx16 }, // V_FLIPADST - { fidtx8, fadst16 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 8; - const int n2 = 16; - tran_low_t out[16 * 8]; - tran_low_t temp_in[16], temp_out[16]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[16 * 8]; - maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_col[1]; - int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); -#endif - - // Columns - for (i = 0; i < n2; ++i) { - for (j = 0; j < n; ++j) - temp_in[j] = - (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); -#if CONFIG_LGT - if (use_lgt_col) - flgt8(temp_in, temp_out, lgtmtx_col[0]); - else -#endif - ht.cols(temp_in, temp_out); - for (j = 0; j < n; ++j) - out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); - } - - // Rows - for (i = 0; i < n; ++i) { - for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; - ht.rows(temp_in, temp_out); - for (j = 0; j < n2; ++j) output[j + i * n2] = temp_out[j]; - } - // Note: overall scale factor of transform is 8 times unitary -} - -void av1_fht8x32_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct32, fdct8 }, // DCT_DCT - { fhalfright32, fdct8 }, // ADST_DCT - { fdct32, fadst8 }, // DCT_ADST - { fhalfright32, fadst8 }, // ADST_ADST -#if CONFIG_EXT_TX - { fhalfright32, fdct8 }, // FLIPADST_DCT - { fdct32, fadst8 }, // DCT_FLIPADST - { fhalfright32, fadst8 }, // FLIPADST_FLIPADST - { fhalfright32, fadst8 }, // ADST_FLIPADST - { fhalfright32, fadst8 }, // FLIPADST_ADST - { fidtx32, fidtx8 }, // IDTX - { fdct32, fidtx8 }, // V_DCT - { fidtx32, fdct8 }, // H_DCT - { fhalfright32, fidtx8 }, // V_ADST - { fidtx32, fadst8 }, // H_ADST - { fhalfright32, fidtx8 }, // V_FLIPADST - { fidtx32, fadst8 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 8; - const int n4 = 32; - tran_low_t out[32 * 8]; - tran_low_t temp_in[32], temp_out[32]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[32 * 8]; - maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_row[1]; - int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); -#endif - - // Rows - for (i = 0; i < n4; ++i) { - for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4; -#if CONFIG_LGT - if (use_lgt_row) - flgt8(temp_in, temp_out, lgtmtx_row[0]); - else -#endif - ht.rows(temp_in, temp_out); - for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; - } - - // Columns - for (i = 0; i < n; ++i) { - for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; - ht.cols(temp_in, temp_out); - for (j = 0; j < n4; ++j) - output[i + j * n] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); - } - // Note: overall scale factor of transform is 8 times unitary -} - -void av1_fht32x8_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct8, fdct32 }, // DCT_DCT - { fadst8, fdct32 }, // ADST_DCT - { fdct8, fhalfright32 }, // DCT_ADST - { fadst8, fhalfright32 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst8, fdct32 }, // FLIPADST_DCT - { fdct8, fhalfright32 }, // DCT_FLIPADST - { fadst8, fhalfright32 }, // FLIPADST_FLIPADST - { fadst8, fhalfright32 }, // ADST_FLIPADST - { fadst8, fhalfright32 }, // FLIPADST_ADST - { fidtx8, fidtx32 }, // IDTX - { fdct8, fidtx32 }, // V_DCT - { fidtx8, fdct32 }, // H_DCT - { fadst8, fidtx32 }, // V_ADST - { fidtx8, fhalfright32 }, // H_ADST - { fadst8, fidtx32 }, // V_FLIPADST - { fidtx8, fhalfright32 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 8; - const int n4 = 32; - tran_low_t out[32 * 8]; - tran_low_t temp_in[32], temp_out[32]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[32 * 8]; - maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_col[1]; - int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); -#endif - - // Columns - for (i = 0; i < n4; ++i) { - for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4; -#if CONFIG_LGT - if (use_lgt_col) - flgt8(temp_in, temp_out, lgtmtx_col[0]); - else -#endif - ht.cols(temp_in, temp_out); - for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; - } - - // Rows - for (i = 0; i < n; ++i) { - for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; - ht.rows(temp_in, temp_out); - for (j = 0; j < n4; ++j) - output[j + i * n4] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); - } - // Note: overall scale factor of transform is 8 times unitary -} - -void av1_fht16x32_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct32, fdct16 }, // DCT_DCT - { fhalfright32, fdct16 }, // ADST_DCT - { fdct32, fadst16 }, // DCT_ADST - { fhalfright32, fadst16 }, // ADST_ADST -#if CONFIG_EXT_TX - { fhalfright32, fdct16 }, // FLIPADST_DCT - { fdct32, fadst16 }, // DCT_FLIPADST - { fhalfright32, fadst16 }, // FLIPADST_FLIPADST - { fhalfright32, fadst16 }, // ADST_FLIPADST - { fhalfright32, fadst16 }, // FLIPADST_ADST - { fidtx32, fidtx16 }, // IDTX - { fdct32, fidtx16 }, // V_DCT - { fidtx32, fdct16 }, // H_DCT - { fhalfright32, fidtx16 }, // V_ADST - { fidtx32, fadst16 }, // H_ADST - { fhalfright32, fidtx16 }, // V_FLIPADST - { fidtx32, fadst16 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 16; - const int n2 = 32; - tran_low_t out[32 * 16]; - tran_low_t temp_in[32], temp_out[32]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[32 * 16]; - maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); -#endif - - // Rows - for (i = 0; i < n2; ++i) { - for (j = 0; j < n; ++j) - temp_in[j] = - (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); - ht.rows(temp_in, temp_out); - for (j = 0; j < n; ++j) - out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); - } - - // Columns - for (i = 0; i < n; ++i) { - for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; - ht.cols(temp_in, temp_out); - for (j = 0; j < n2; ++j) output[i + j * n] = temp_out[j]; - } - // Note: overall scale factor of transform is 4 times unitary -} - -void av1_fht32x16_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct16, fdct32 }, // DCT_DCT - { fadst16, fdct32 }, // ADST_DCT - { fdct16, fhalfright32 }, // DCT_ADST - { fadst16, fhalfright32 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst16, fdct32 }, // FLIPADST_DCT - { fdct16, fhalfright32 }, // DCT_FLIPADST - { fadst16, fhalfright32 }, // FLIPADST_FLIPADST - { fadst16, fhalfright32 }, // ADST_FLIPADST - { fadst16, fhalfright32 }, // FLIPADST_ADST - { fidtx16, fidtx32 }, // IDTX - { fdct16, fidtx32 }, // V_DCT - { fidtx16, fdct32 }, // H_DCT - { fadst16, fidtx32 }, // V_ADST - { fidtx16, fhalfright32 }, // H_ADST - { fadst16, fidtx32 }, // V_FLIPADST - { fidtx16, fhalfright32 }, // H_FLIPADST -#endif - }; - const transform_2d ht = FHT[tx_type]; - const int n = 16; - const int n2 = 32; - tran_low_t out[32 * 16]; - tran_low_t temp_in[32], temp_out[32]; - int i, j; -#if CONFIG_EXT_TX - int16_t flipped_input[32 * 16]; - maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); -#endif - - // Columns - for (i = 0; i < n2; ++i) { - for (j = 0; j < n; ++j) - temp_in[j] = - (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); - ht.cols(temp_in, temp_out); - for (j = 0; j < n; ++j) - out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); - } - - // Rows - for (i = 0; i < n; ++i) { - for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; - ht.rows(temp_in, temp_out); - for (j = 0; j < n2; ++j) output[j + i * n2] = temp_out[j]; - } - // Note: overall scale factor of transform is 4 times unitary -} - -void av1_fht8x8_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif -#if !CONFIG_DAALA_DCT8 - if (tx_type == DCT_DCT) { - aom_fdct8x8_c(input, output, stride); - return; - } -#endif - { - static const transform_2d FHT[] = { -#if CONFIG_DAALA_DCT8 - { daala_fdct8, daala_fdct8 }, // DCT_DCT - { daala_fdst8, daala_fdct8 }, // ADST_DCT - { daala_fdct8, daala_fdst8 }, // DCT_ADST - { daala_fdst8, daala_fdst8 }, // ADST_ADST -#if CONFIG_EXT_TX - { daala_fdst8, daala_fdct8 }, // FLIPADST_DCT - { daala_fdct8, daala_fdst8 }, // DCT_FLIPADST - { daala_fdst8, daala_fdst8 }, // FLIPADST_FLIPADST - { daala_fdst8, daala_fdst8 }, // ADST_FLIPADST - { daala_fdst8, daala_fdst8 }, // FLIPADST_ADST - { daala_idtx8, daala_idtx8 }, // IDTX - { daala_fdct8, daala_idtx8 }, // V_DCT - { daala_idtx8, daala_fdct8 }, // H_DCT - { daala_fdst8, daala_idtx8 }, // V_ADST - { daala_idtx8, daala_fdst8 }, // H_ADST - { daala_fdst8, daala_idtx8 }, // V_FLIPADST - { daala_idtx8, daala_fdst8 }, // H_FLIPADST -#endif -#else - { fdct8, fdct8 }, // DCT_DCT - { fadst8, fdct8 }, // ADST_DCT - { fdct8, fadst8 }, // DCT_ADST - { fadst8, fadst8 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst8, fdct8 }, // FLIPADST_DCT - { fdct8, fadst8 }, // DCT_FLIPADST - { fadst8, fadst8 }, // FLIPADST_FLIPADST - { fadst8, fadst8 }, // ADST_FLIPADST - { fadst8, fadst8 }, // FLIPADST_ADST - { fidtx8, fidtx8 }, // IDTX - { fdct8, fidtx8 }, // V_DCT - { fidtx8, fdct8 }, // H_DCT - { fadst8, fidtx8 }, // V_ADST - { fidtx8, fadst8 }, // H_ADST - { fadst8, fidtx8 }, // V_FLIPADST - { fidtx8, fadst8 }, // H_FLIPADST -#endif -#endif - }; - const transform_2d ht = FHT[tx_type]; - tran_low_t out[64]; - int i, j; - tran_low_t temp_in[8], temp_out[8]; - -#if CONFIG_EXT_TX - int16_t flipped_input[8 * 8]; - maybe_flip_input(&input, &stride, 8, 8, flipped_input, tx_type); -#endif - -#if CONFIG_LGT - const tran_high_t *lgtmtx_col[1]; - const tran_high_t *lgtmtx_row[1]; - int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); - int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); -#endif - - // Columns - for (i = 0; i < 8; ++i) { -#if CONFIG_DAALA_DCT8 - for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 16; -#else - for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 4; -#endif -#if CONFIG_LGT - if (use_lgt_col) - flgt8(temp_in, temp_out, lgtmtx_col[0]); - else -#endif - ht.cols(temp_in, temp_out); - for (j = 0; j < 8; ++j) out[j * 8 + i] = temp_out[j]; - } - - // Rows - for (i = 0; i < 8; ++i) { - for (j = 0; j < 8; ++j) temp_in[j] = out[j + i * 8]; -#if CONFIG_LGT - if (use_lgt_row) - flgt8(temp_in, temp_out, lgtmtx_row[0]); - else -#endif - ht.rows(temp_in, temp_out); -#if CONFIG_DAALA_DCT8 - for (j = 0; j < 8; ++j) - output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; -#else - for (j = 0; j < 8; ++j) - output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; -#endif - } - } -} - -/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per - pixel. */ -void av1_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) { - int i; - tran_high_t a1, b1, c1, d1, e1; - const int16_t *ip_pass0 = input; - const tran_low_t *ip = NULL; - tran_low_t *op = output; - - for (i = 0; i < 4; i++) { - a1 = ip_pass0[0 * stride]; - b1 = ip_pass0[1 * stride]; - c1 = ip_pass0[2 * stride]; - d1 = ip_pass0[3 * stride]; - - a1 += b1; - d1 = d1 - c1; - e1 = (a1 - d1) >> 1; - b1 = e1 - b1; - c1 = e1 - c1; - a1 -= c1; - d1 += b1; - op[0] = (tran_low_t)a1; - op[4] = (tran_low_t)c1; - op[8] = (tran_low_t)d1; - op[12] = (tran_low_t)b1; - - ip_pass0++; - op++; - } - ip = output; - op = output; - - for (i = 0; i < 4; i++) { - a1 = ip[0]; - b1 = ip[1]; - c1 = ip[2]; - d1 = ip[3]; - - a1 += b1; - d1 -= c1; - e1 = (a1 - d1) >> 1; - b1 = e1 - b1; - c1 = e1 - c1; - a1 -= c1; - d1 += b1; - op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR); - op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR); - op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR); - op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR); - - ip += 4; - op += 4; - } -} - -void av1_fht16x16_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { -#if CONFIG_DAALA_DCT16 - { daala_fdct16, daala_fdct16 }, // DCT_DCT - { daala_fdst16, daala_fdct16 }, // ADST_DCT - { daala_fdct16, daala_fdst16 }, // DCT_ADST - { daala_fdst16, daala_fdst16 }, // ADST_ADST -#if CONFIG_EXT_TX - { daala_fdst16, daala_fdct16 }, // FLIPADST_DCT - { daala_fdct16, daala_fdst16 }, // DCT_FLIPADST - { daala_fdst16, daala_fdst16 }, // FLIPADST_FLIPADST - { daala_fdst16, daala_fdst16 }, // ADST_FLIPADST - { daala_fdst16, daala_fdst16 }, // FLIPADST_ADST - { daala_idtx16, daala_idtx16 }, // IDTX - { daala_fdct16, daala_idtx16 }, // V_DCT - { daala_idtx16, daala_fdct16 }, // H_DCT - { daala_fdst16, daala_idtx16 }, // V_ADST - { daala_idtx16, daala_fdst16 }, // H_ADST - { daala_fdst16, daala_idtx16 }, // V_FLIPADST - { daala_idtx16, daala_fdst16 }, // H_FLIPADST -#endif -#else - { fdct16, fdct16 }, // DCT_DCT - { fadst16, fdct16 }, // ADST_DCT - { fdct16, fadst16 }, // DCT_ADST - { fadst16, fadst16 }, // ADST_ADST -#if CONFIG_EXT_TX - { fadst16, fdct16 }, // FLIPADST_DCT - { fdct16, fadst16 }, // DCT_FLIPADST - { fadst16, fadst16 }, // FLIPADST_FLIPADST - { fadst16, fadst16 }, // ADST_FLIPADST - { fadst16, fadst16 }, // FLIPADST_ADST - { fidtx16, fidtx16 }, // IDTX - { fdct16, fidtx16 }, // V_DCT - { fidtx16, fdct16 }, // H_DCT - { fadst16, fidtx16 }, // V_ADST - { fidtx16, fadst16 }, // H_ADST - { fadst16, fidtx16 }, // V_FLIPADST - { fidtx16, fadst16 }, // H_FLIPADST -#endif -#endif - }; - const transform_2d ht = FHT[tx_type]; - tran_low_t out[256]; - int i, j; - tran_low_t temp_in[16], temp_out[16]; - -#if CONFIG_EXT_TX - int16_t flipped_input[16 * 16]; - maybe_flip_input(&input, &stride, 16, 16, flipped_input, tx_type); -#endif - - // Columns - for (i = 0; i < 16; ++i) { - for (j = 0; j < 16; ++j) { -#if CONFIG_DAALA_DCT16 - temp_in[j] = input[j * stride + i] * 16; -#else - temp_in[j] = input[j * stride + i] * 4; -#endif - } - ht.cols(temp_in, temp_out); - for (j = 0; j < 16; ++j) { -#if CONFIG_DAALA_DCT16 - out[j * 16 + i] = temp_out[j]; -#else - out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; -#endif - } - } - - // Rows - for (i = 0; i < 16; ++i) { - for (j = 0; j < 16; ++j) temp_in[j] = out[j + i * 16]; - ht.rows(temp_in, temp_out); - for (j = 0; j < 16; ++j) { -#if CONFIG_DAALA_DCT16 - output[j + i * 16] = (temp_out[j] + (temp_out[j] < 0)) >> 1; -#else - output[j + i * 16] = temp_out[j]; -#endif - } - } -} - -void av1_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output, - int stride) { - av1_fwht4x4_c(input, output, stride); -} - -void av1_fht32x32_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { -#if CONFIG_DAALA_DCT32 - { daala_fdct32, daala_fdct32 }, // DCT_DCT -#if CONFIG_EXT_TX - { daala_fdst32, daala_fdct32 }, // ADST_DCT - { daala_fdct32, daala_fdst32 }, // DCT_ADST - { daala_fdst32, daala_fdst32 }, // ADST_ADST - { daala_fdst32, daala_fdct32 }, // FLIPADST_DCT - { daala_fdct32, daala_fdst32 }, // DCT_FLIPADST - { daala_fdst32, daala_fdst32 }, // FLIPADST_FLIPADST - { daala_fdst32, daala_fdst32 }, // ADST_FLIPADST - { daala_fdst32, daala_fdst32 }, // FLIPADST_ADST - { daala_idtx32, daala_idtx32 }, // IDTX - { daala_fdct32, daala_idtx32 }, // V_DCT - { daala_idtx32, daala_fdct32 }, // H_DCT - { daala_fdst32, daala_idtx32 }, // V_ADST - { daala_idtx32, daala_fdst32 }, // H_ADST - { daala_fdst32, daala_idtx32 }, // V_FLIPADST - { daala_idtx32, daala_fdst32 }, // H_FLIPADST -#endif -#else - { fdct32, fdct32 }, // DCT_DCT -#if CONFIG_EXT_TX - { fhalfright32, fdct32 }, // ADST_DCT - { fdct32, fhalfright32 }, // DCT_ADST - { fhalfright32, fhalfright32 }, // ADST_ADST - { fhalfright32, fdct32 }, // FLIPADST_DCT - { fdct32, fhalfright32 }, // DCT_FLIPADST - { fhalfright32, fhalfright32 }, // FLIPADST_FLIPADST - { fhalfright32, fhalfright32 }, // ADST_FLIPADST - { fhalfright32, fhalfright32 }, // FLIPADST_ADST - { fidtx32, fidtx32 }, // IDTX - { fdct32, fidtx32 }, // V_DCT - { fidtx32, fdct32 }, // H_DCT - { fhalfright32, fidtx32 }, // V_ADST - { fidtx32, fhalfright32 }, // H_ADST - { fhalfright32, fidtx32 }, // V_FLIPADST - { fidtx32, fhalfright32 }, // H_FLIPADST -#endif -#endif -#if CONFIG_MRC_TX - { fdct32, fdct32 }, // MRC_TX -#endif // CONFIG_MRC_TX - }; - const transform_2d ht = FHT[tx_type]; - tran_low_t out[1024]; - int i, j; - tran_low_t temp_in[32], temp_out[32]; - -#if CONFIG_EXT_TX - int16_t flipped_input[32 * 32]; - maybe_flip_input(&input, &stride, 32, 32, flipped_input, tx_type); -#endif - -#if CONFIG_MRC_TX - if (tx_type == MRC_DCT) { - int16_t masked_input[32 * 32]; - get_masked_residual32(&input, &stride, txfm_param->dst, txfm_param->stride, - masked_input, txfm_param); - } -#endif // CONFIG_MRC_TX - - // Columns - for (i = 0; i < 32; ++i) { - for (j = 0; j < 32; ++j) { -#if CONFIG_DAALA_DCT32 - temp_in[j] = input[j * stride + i] * 16; -#else - temp_in[j] = input[j * stride + i] * 4; -#endif - } - ht.cols(temp_in, temp_out); - for (j = 0; j < 32; ++j) { -#if CONFIG_DAALA_DCT32 - out[j * 32 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); -#else - out[j * 32 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); -#endif - } - } - - // Rows - for (i = 0; i < 32; ++i) { - for (j = 0; j < 32; ++j) temp_in[j] = out[j + i * 32]; - ht.rows(temp_in, temp_out); - for (j = 0; j < 32; ++j) { - output[j + i * 32] = temp_out[j]; - } - } -} - -#if CONFIG_TX64X64 -#if !CONFIG_DAALA_DCT64 -#if CONFIG_EXT_TX -static void fidtx64(const tran_low_t *input, tran_low_t *output) { - int i; - for (i = 0; i < 64; ++i) - output[i] = (tran_low_t)fdct_round_shift(input[i] * 4 * Sqrt2); -} - -// For use in lieu of ADST -static void fhalfright64(const tran_low_t *input, tran_low_t *output) { - int i; - tran_low_t inputhalf[32]; - for (i = 0; i < 32; ++i) { - output[32 + i] = (tran_low_t)fdct_round_shift(input[i] * 4 * Sqrt2); - } - // Multiply input by sqrt(2) - for (i = 0; i < 32; ++i) { - inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 32] * Sqrt2); - } - fdct32(inputhalf, output); - // Note overall scaling factor is 2 times unitary -} -#endif // CONFIG_EXT_TX - -static void fdct64_col(const tran_low_t *input, tran_low_t *output) { - int32_t in[64], out[64]; - int i; - for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i]; - av1_fdct64_new(in, out, fwd_cos_bit_col_dct_64, fwd_stage_range_col_dct_64); - for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i]; -} - -static void fdct64_row(const tran_low_t *input, tran_low_t *output) { - int32_t in[64], out[64]; - int i; - for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i]; - av1_fdct64_new(in, out, fwd_cos_bit_row_dct_64, fwd_stage_range_row_dct_64); - for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i]; -} -#endif - -void av1_fht64x64_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { -#if CONFIG_DAALA_DCT64 - { daala_fdct64, daala_fdct64 }, // DCT_DCT -#if CONFIG_EXT_TX - { daala_fdst64, daala_fdct64 }, // ADST_DCT - { daala_fdct64, daala_fdst64 }, // DCT_ADST - { daala_fdst64, daala_fdst64 }, // ADST_ADST - { daala_fdst64, daala_fdct64 }, // FLIPADST_DCT - { daala_fdct64, daala_fdst64 }, // DCT_FLIPADST - { daala_fdst64, daala_fdst64 }, // FLIPADST_FLIPADST - { daala_fdst64, daala_fdst64 }, // ADST_FLIPADST - { daala_fdst64, daala_fdst64 }, // FLIPADST_ADST - { daala_idtx64, daala_idtx64 }, // IDTX - { daala_fdct64, daala_idtx64 }, // V_DCT - { daala_idtx64, daala_fdct64 }, // H_DCT - { daala_fdst64, daala_idtx64 }, // V_ADST - { daala_idtx64, daala_fdst64 }, // H_ADST - { daala_fdst64, daala_idtx64 }, // V_FLIPADST - { daala_idtx64, daala_fdst64 }, // H_FLIPADST -#endif // CONFIG_EXT_TX -#else - { fdct64_col, fdct64_row }, // DCT_DCT -#if CONFIG_EXT_TX - { fhalfright64, fdct64_row }, // ADST_DCT - { fdct64_col, fhalfright64 }, // DCT_ADST - { fhalfright64, fhalfright64 }, // ADST_ADST - { fhalfright64, fdct64_row }, // FLIPADST_DCT - { fdct64_col, fhalfright64 }, // DCT_FLIPADST - { fhalfright64, fhalfright64 }, // FLIPADST_FLIPADST - { fhalfright64, fhalfright64 }, // ADST_FLIPADST - { fhalfright64, fhalfright64 }, // FLIPADST_ADST - { fidtx64, fidtx64 }, // IDTX - { fdct64_col, fidtx64 }, // V_DCT - { fidtx64, fdct64_row }, // H_DCT - { fhalfright64, fidtx64 }, // V_ADST - { fidtx64, fhalfright64 }, // H_ADST - { fhalfright64, fidtx64 }, // V_FLIPADST - { fidtx64, fhalfright64 }, // H_FLIPADST -#endif // CONFIG_EXT_TX -#endif // CONFIG_DAALA_DCT64 - }; - const transform_2d ht = FHT[tx_type]; - tran_low_t out[4096]; - int i, j; - tran_low_t temp_in[64], temp_out[64]; -#if CONFIG_EXT_TX - int16_t flipped_input[64 * 64]; - maybe_flip_input(&input, &stride, 64, 64, flipped_input, tx_type); -#endif - - // Columns - for (i = 0; i < 64; ++i) { -#if CONFIG_DAALA_DCT64 - for (j = 0; j < 64; ++j) temp_in[j] = input[j * stride + i] * 16; - ht.cols(temp_in, temp_out); - for (j = 0; j < 64; ++j) - out[j * 64 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 3; - -#else - for (j = 0; j < 64; ++j) temp_in[j] = input[j * stride + i]; - ht.cols(temp_in, temp_out); - for (j = 0; j < 64; ++j) - out[j * 64 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; -#endif - } - - // Rows - for (i = 0; i < 64; ++i) { - for (j = 0; j < 64; ++j) temp_in[j] = out[j + i * 64]; - ht.rows(temp_in, temp_out); - for (j = 0; j < 64; ++j) -#if CONFIG_DAALA_DCT64 - output[j + i * 64] = temp_out[j]; -#else - output[j + i * 64] = - (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); -#endif - } -} - -void av1_fht64x32_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct32, fdct64_row }, // DCT_DCT -#if CONFIG_EXT_TX - { fhalfright32, fdct64_row }, // ADST_DCT - { fdct32, fhalfright64 }, // DCT_ADST - { fhalfright32, fhalfright64 }, // ADST_ADST - { fhalfright32, fdct64_row }, // FLIPADST_DCT - { fdct32, fhalfright64 }, // DCT_FLIPADST - { fhalfright32, fhalfright64 }, // FLIPADST_FLIPADST - { fhalfright32, fhalfright64 }, // ADST_FLIPADST - { fhalfright32, fhalfright64 }, // FLIPADST_ADST - { fidtx32, fidtx64 }, // IDTX - { fdct32, fidtx64 }, // V_DCT - { fidtx32, fdct64_row }, // H_DCT - { fhalfright32, fidtx64 }, // V_ADST - { fidtx32, fhalfright64 }, // H_ADST - { fhalfright32, fidtx64 }, // V_FLIPADST - { fidtx32, fhalfright64 }, // H_FLIPADST -#endif // CONFIG_EXT_TX - }; - const transform_2d ht = FHT[tx_type]; - tran_low_t out[2048]; - int i, j; - tran_low_t temp_in[64], temp_out[64]; - const int n = 32; - const int n2 = 64; -#if CONFIG_EXT_TX - int16_t flipped_input[32 * 64]; - maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); -#endif - - // Columns - for (i = 0; i < n2; ++i) { - for (j = 0; j < n; ++j) - temp_in[j] = (tran_low_t)fdct_round_shift(input[j * stride + i] * Sqrt2); - ht.cols(temp_in, temp_out); - for (j = 0; j < n; ++j) - out[j * n2 + i] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); - } - - // Rows - for (i = 0; i < n; ++i) { - for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; - ht.rows(temp_in, temp_out); - for (j = 0; j < n2; ++j) - output[j + i * n2] = - (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); - } -} - -void av1_fht32x64_c(const int16_t *input, tran_low_t *output, int stride, - TxfmParam *txfm_param) { - const TX_TYPE tx_type = txfm_param->tx_type; -#if CONFIG_MRC_TX - assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); -#endif // CONFIG_MRC_TX -#if CONFIG_DCT_ONLY - assert(tx_type == DCT_DCT); -#endif - static const transform_2d FHT[] = { - { fdct64_row, fdct32 }, // DCT_DCT -#if CONFIG_EXT_TX - { fhalfright64, fdct32 }, // ADST_DCT - { fdct64_row, fhalfright32 }, // DCT_ADST - { fhalfright64, fhalfright32 }, // ADST_ADST - { fhalfright64, fdct32 }, // FLIPADST_DCT - { fdct64_row, fhalfright32 }, // DCT_FLIPADST - { fhalfright64, fhalfright32 }, // FLIPADST_FLIPADST - { fhalfright64, fhalfright32 }, // ADST_FLIPADST - { fhalfright64, fhalfright32 }, // FLIPADST_ADST - { fidtx64, fidtx32 }, // IDTX - { fdct64_row, fidtx32 }, // V_DCT - { fidtx64, fdct32 }, // H_DCT - { fhalfright64, fidtx32 }, // V_ADST - { fidtx64, fhalfright32 }, // H_ADST - { fhalfright64, fidtx32 }, // V_FLIPADST - { fidtx64, fhalfright32 }, // H_FLIPADST -#endif // CONFIG_EXT_TX - }; - const transform_2d ht = FHT[tx_type]; - tran_low_t out[32 * 64]; - int i, j; - tran_low_t temp_in[64], temp_out[64]; - const int n = 32; - const int n2 = 64; -#if CONFIG_EXT_TX - int16_t flipped_input[32 * 64]; - maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); -#endif - - // Rows - for (i = 0; i < n2; ++i) { - for (j = 0; j < n; ++j) - temp_in[j] = (tran_low_t)fdct_round_shift(input[i * stride + j] * Sqrt2); - ht.rows(temp_in, temp_out); - for (j = 0; j < n; ++j) - out[j * n2 + i] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); - } - - // Columns - for (i = 0; i < n; ++i) { - for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; - ht.cols(temp_in, temp_out); - for (j = 0; j < n2; ++j) - output[i + j * n] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); - } -} -#endif // CONFIG_TX64X64 - -#if CONFIG_EXT_TX -// Forward identity transform. -void av1_fwd_idtx_c(const int16_t *src_diff, tran_low_t *coeff, int stride, - int bsx, int bsy, TX_TYPE tx_type) { - int r, c; - const int pels = bsx * bsy; - const int shift = 3 - ((pels > 256) + (pels > 1024)); - if (tx_type == IDTX) { - for (r = 0; r < bsy; ++r) { - for (c = 0; c < bsx; ++c) coeff[c] = src_diff[c] * (1 << shift); - src_diff += stride; - coeff += bsx; - } - } -} -#endif // CONFIG_EXT_TX -#endif // !AV1_DCT_GTEST |