diff options
author | trav90 <travawine@palemoon.org> | 2018-10-18 06:04:57 -0500 |
---|---|---|
committer | trav90 <travawine@palemoon.org> | 2018-10-18 06:04:57 -0500 |
commit | 7369c7d7a5eed32963d8af37658286617919f91c (patch) | |
tree | 5397ce7ee9bca1641118fdc3187bd9e2b24fdc9c /third_party/aom/av1/encoder/bgsprite.c | |
parent | 77887af9c4ad1420bbdb33984af4f74b55ca59db (diff) | |
download | UXP-7369c7d7a5eed32963d8af37658286617919f91c.tar UXP-7369c7d7a5eed32963d8af37658286617919f91c.tar.gz UXP-7369c7d7a5eed32963d8af37658286617919f91c.tar.lz UXP-7369c7d7a5eed32963d8af37658286617919f91c.tar.xz UXP-7369c7d7a5eed32963d8af37658286617919f91c.zip |
Update aom to commit id f5bdeac22930ff4c6b219be49c843db35970b918
Diffstat (limited to 'third_party/aom/av1/encoder/bgsprite.c')
-rw-r--r-- | third_party/aom/av1/encoder/bgsprite.c | 748 |
1 files changed, 748 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/bgsprite.c b/third_party/aom/av1/encoder/bgsprite.c new file mode 100644 index 000000000..64deade06 --- /dev/null +++ b/third_party/aom/av1/encoder/bgsprite.c @@ -0,0 +1,748 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#define _POSIX_C_SOURCE 200112L // rand_r() +#include <assert.h> +#include <float.h> +#include <limits.h> +#include <math.h> +#include <stdlib.h> +#include <time.h> + +#include "av1/encoder/bgsprite.h" + +#include "aom_mem/aom_mem.h" +#include "./aom_scale_rtcd.h" +#include "av1/common/mv.h" +#include "av1/common/warped_motion.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/global_motion.h" +#include "av1/encoder/mathutils.h" +#include "av1/encoder/temporal_filter.h" + +/* Blending Modes: + * 0 = Median + * 1 = Mean + */ +#define BGSPRITE_BLENDING_MODE 1 + +/* Interpolation for panorama alignment sampling: + * 0 = Nearest neighbor + * 1 = Bilinear + */ +#define BGSPRITE_INTERPOLATION 0 + +#define TRANSFORM_MAT_DIM 3 + +typedef struct { +#if CONFIG_HIGHBITDEPTH + uint16_t y; + uint16_t u; + uint16_t v; +#else + uint8_t y; + uint8_t u; + uint8_t v; +#endif // CONFIG_HIGHBITDEPTH +} YuvPixel; + +// Maps to convert from matrix form to param vector form. +static const int params_to_matrix_map[] = { 2, 3, 0, 4, 5, 1, 6, 7 }; +static const int matrix_to_params_map[] = { 2, 5, 0, 1, 3, 4, 6, 7 }; + +// Convert the parameter array to a 3x3 matrix form. +static void params_to_matrix(const double *const params, double *target) { + for (int i = 0; i < MAX_PARAMDIM - 1; i++) { + assert(params_to_matrix_map[i] < MAX_PARAMDIM - 1); + target[i] = params[params_to_matrix_map[i]]; + } + target[8] = 1; +} + +// Convert a 3x3 matrix to a parameter array form. +static void matrix_to_params(const double *const matrix, double *target) { + for (int i = 0; i < MAX_PARAMDIM - 1; i++) { + assert(matrix_to_params_map[i] < MAX_PARAMDIM - 1); + target[i] = matrix[matrix_to_params_map[i]]; + } +} + +// Do matrix multiplication on params. +static void multiply_params(double *const m1, double *const m2, + double *target) { + double m1_matrix[MAX_PARAMDIM]; + double m2_matrix[MAX_PARAMDIM]; + double result[MAX_PARAMDIM]; + + params_to_matrix(m1, m1_matrix); + params_to_matrix(m2, m2_matrix); + multiply_mat(m2_matrix, m1_matrix, result, TRANSFORM_MAT_DIM, + TRANSFORM_MAT_DIM, TRANSFORM_MAT_DIM); + matrix_to_params(result, target); +} + +// Finds x and y limits of a single transformed image. +// Width and height are the size of the input video. +static void find_frame_limit(int width, int height, + const double *const transform, int *x_min, + int *x_max, int *y_min, int *y_max) { + double transform_matrix[MAX_PARAMDIM]; + double xy_matrix[3] = { 0, 0, 1 }; + double uv_matrix[3] = { 0 }; +// Macro used to update frame limits based on transformed coordinates. +#define UPDATELIMITS(u, v, x_min, x_max, y_min, y_max) \ + { \ + if ((int)ceil(u) > *x_max) { \ + *x_max = (int)ceil(u); \ + } \ + if ((int)floor(u) < *x_min) { \ + *x_min = (int)floor(u); \ + } \ + if ((int)ceil(v) > *y_max) { \ + *y_max = (int)ceil(v); \ + } \ + if ((int)floor(v) < *y_min) { \ + *y_min = (int)floor(v); \ + } \ + } + + params_to_matrix(transform, transform_matrix); + xy_matrix[0] = 0; + xy_matrix[1] = 0; + multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, + TRANSFORM_MAT_DIM, 1); + *x_max = (int)ceil(uv_matrix[0]); + *x_min = (int)floor(uv_matrix[0]); + *y_max = (int)ceil(uv_matrix[1]); + *y_min = (int)floor(uv_matrix[1]); + + xy_matrix[0] = width; + xy_matrix[1] = 0; + multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, + TRANSFORM_MAT_DIM, 1); + UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max); + + xy_matrix[0] = width; + xy_matrix[1] = height; + multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, + TRANSFORM_MAT_DIM, 1); + UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max); + + xy_matrix[0] = 0; + xy_matrix[1] = height; + multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, + TRANSFORM_MAT_DIM, 1); + UPDATELIMITS(uv_matrix[0], uv_matrix[1], x_min, x_max, y_min, y_max); + +#undef UPDATELIMITS +} + +// Finds x and y limits for arrays. Also finds the overall max and minimums +static void find_limits(int width, int height, const double **const params, + int num_frames, int *x_min, int *x_max, int *y_min, + int *y_max, int *pano_x_min, int *pano_x_max, + int *pano_y_min, int *pano_y_max) { + *pano_x_max = INT_MIN; + *pano_x_min = INT_MAX; + *pano_y_max = INT_MIN; + *pano_y_min = INT_MAX; + for (int i = 0; i < num_frames; ++i) { + find_frame_limit(width, height, (const double *const)params[i], &x_min[i], + &x_max[i], &y_min[i], &y_max[i]); + if (x_max[i] > *pano_x_max) { + *pano_x_max = x_max[i]; + } + if (x_min[i] < *pano_x_min) { + *pano_x_min = x_min[i]; + } + if (y_max[i] > *pano_y_max) { + *pano_y_max = y_max[i]; + } + if (y_min[i] < *pano_y_min) { + *pano_y_min = y_min[i]; + } + } +} + +// Inverts a 3x3 matrix that is in the parameter form. +static void invert_params(const double *const params, double *target) { + double temp[MAX_PARAMDIM] = { 0 }; + params_to_matrix(params, temp); + + // Find determinant of matrix (expansion by minors). + const double det = temp[0] * ((temp[4] * temp[8]) - (temp[5] * temp[7])) - + temp[1] * ((temp[3] * temp[8]) - (temp[5] * temp[6])) + + temp[2] * ((temp[3] * temp[7]) - (temp[4] * temp[6])); + assert(det != 0); + + // inverse is transpose of cofactor * 1/det. + double inverse[MAX_PARAMDIM] = { 0 }; + inverse[0] = (temp[4] * temp[8] - temp[7] * temp[5]) / det; + inverse[1] = (temp[2] * temp[7] - temp[1] * temp[8]) / det; + inverse[2] = (temp[1] * temp[5] - temp[2] * temp[4]) / det; + inverse[3] = (temp[5] * temp[6] - temp[3] * temp[8]) / det; + inverse[4] = (temp[0] * temp[8] - temp[2] * temp[6]) / det; + inverse[5] = (temp[3] * temp[2] - temp[0] * temp[5]) / det; + inverse[6] = (temp[3] * temp[7] - temp[6] * temp[4]) / det; + inverse[7] = (temp[6] * temp[1] - temp[0] * temp[7]) / det; + inverse[8] = (temp[0] * temp[4] - temp[3] * temp[1]) / det; + + matrix_to_params(inverse, target); +} + +#if BGSPRITE_BLENDING_MODE == 0 +// swaps two YuvPixels. +static void swap_yuv(YuvPixel *a, YuvPixel *b) { + const YuvPixel temp = *b; + *b = *a; + *a = temp; +} + +// Partitions array to find pivot index in qselect. +static int partition(YuvPixel arr[], int left, int right, int pivot_idx) { + YuvPixel pivot = arr[pivot_idx]; + + // Move pivot to the end. + swap_yuv(&arr[pivot_idx], &arr[right]); + + int p_idx = left; + for (int i = left; i < right; ++i) { + if (arr[i].y <= pivot.y) { + swap_yuv(&arr[i], &arr[p_idx]); + p_idx++; + } + } + + swap_yuv(&arr[p_idx], &arr[right]); + + return p_idx; +} + +// Returns the kth element in array, partially sorted in place (quickselect). +static YuvPixel qselect(YuvPixel arr[], int left, int right, int k) { + if (left >= right) { + return arr[left]; + } + unsigned int seed = (int)time(NULL); + int pivot_idx = left + rand_r(&seed) % (right - left + 1); + pivot_idx = partition(arr, left, right, pivot_idx); + + if (k == pivot_idx) { + return arr[k]; + } else if (k < pivot_idx) { + return qselect(arr, left, pivot_idx - 1, k); + } else { + return qselect(arr, pivot_idx + 1, right, k); + } +} +#endif // BGSPRITE_BLENDING_MODE == 0 + +// Stitches images together to create ARF and stores it in 'panorama'. +static void stitch_images(YV12_BUFFER_CONFIG **const frames, + const int num_frames, const int center_idx, + const double **const params, const int *const x_min, + const int *const x_max, const int *const y_min, + const int *const y_max, int pano_x_min, + int pano_x_max, int pano_y_min, int pano_y_max, + YV12_BUFFER_CONFIG *panorama) { + const int width = pano_x_max - pano_x_min + 1; + const int height = pano_y_max - pano_y_min + 1; + + // Create temp_pano[y][x][num_frames] stack of pixel values + YuvPixel ***temp_pano = aom_malloc(height * sizeof(*temp_pano)); + for (int i = 0; i < height; ++i) { + temp_pano[i] = aom_malloc(width * sizeof(**temp_pano)); + for (int j = 0; j < width; ++j) { + temp_pano[i][j] = aom_malloc(num_frames * sizeof(***temp_pano)); + } + } + // Create count[y][x] to count how many values in stack for median filtering + int **count = aom_malloc(height * sizeof(*count)); + for (int i = 0; i < height; ++i) { + count[i] = aom_calloc(width, sizeof(**count)); // counts initialized to 0 + } + + // Re-sample images onto panorama (pre-median filtering). + const int x_offset = -pano_x_min; + const int y_offset = -pano_y_min; + const int frame_width = frames[0]->y_width; + const int frame_height = frames[0]->y_height; + for (int i = 0; i < num_frames; ++i) { + // Find transforms from panorama coordinate system back to single image + // coordinate system for sampling. + int transformed_width = x_max[i] - x_min[i] + 1; + int transformed_height = y_max[i] - y_min[i] + 1; + + double transform_matrix[MAX_PARAMDIM]; + double transform_params[MAX_PARAMDIM - 1]; + invert_params(params[i], transform_params); + params_to_matrix(transform_params, transform_matrix); + +#if CONFIG_HIGHBITDEPTH + const uint16_t *y_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->y_buffer); + const uint16_t *u_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->u_buffer); + const uint16_t *v_buffer16 = CONVERT_TO_SHORTPTR(frames[i]->v_buffer); +#endif // CONFIG_HIGHBITDEPTH + + for (int y = 0; y < transformed_height; ++y) { + for (int x = 0; x < transformed_width; ++x) { + // Do transform. + double xy_matrix[3] = { x + x_min[i], y + y_min[i], 1 }; + double uv_matrix[3] = { 0 }; + multiply_mat(transform_matrix, xy_matrix, uv_matrix, TRANSFORM_MAT_DIM, + TRANSFORM_MAT_DIM, 1); + + // Coordinates used for nearest neighbor interpolation. + int image_x = (int)round(uv_matrix[0]); + int image_y = (int)round(uv_matrix[1]); + + // Temporary values for bilinear interpolation + double interpolated_yvalue = 0.0; + double interpolated_uvalue = 0.0; + double interpolated_vvalue = 0.0; + double interpolated_fraction = 0.0; + int interpolation_count = 0; + +#if BGSPRITE_INTERPOLATION == 1 + // Coordintes used for bilinear interpolation. + double x_base; + double y_base; + double x_decimal = modf(uv_matrix[0], &x_base); + double y_decimal = modf(uv_matrix[1], &y_base); + + if ((x_decimal > 0.2 && x_decimal < 0.8) || + (y_decimal > 0.2 && y_decimal < 0.8)) { + for (int u = 0; u < 2; ++u) { + for (int v = 0; v < 2; ++v) { + int interp_x = (int)x_base + u; + int interp_y = (int)y_base + v; + if (interp_x >= 0 && interp_x < frame_width && interp_y >= 0 && + interp_y < frame_height) { + interpolation_count++; + + interpolated_fraction += + fabs(u - x_decimal) * fabs(v - y_decimal); + int ychannel_idx = interp_y * frames[i]->y_stride + interp_x; + int uvchannel_idx = (interp_y >> frames[i]->subsampling_y) * + frames[i]->uv_stride + + (interp_x >> frames[i]->subsampling_x); +#if CONFIG_HIGHBITDEPTH + if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) { + interpolated_yvalue += (1 - fabs(u - x_decimal)) * + (1 - fabs(v - y_decimal)) * + y_buffer16[ychannel_idx]; + interpolated_uvalue += (1 - fabs(u - x_decimal)) * + (1 - fabs(v - y_decimal)) * + u_buffer16[uvchannel_idx]; + interpolated_vvalue += (1 - fabs(u - x_decimal)) * + (1 - fabs(v - y_decimal)) * + v_buffer16[uvchannel_idx]; + } else { +#endif // CONFIG_HIGHBITDEPTH + interpolated_yvalue += (1 - fabs(u - x_decimal)) * + (1 - fabs(v - y_decimal)) * + frames[i]->y_buffer[ychannel_idx]; + interpolated_uvalue += (1 - fabs(u - x_decimal)) * + (1 - fabs(v - y_decimal)) * + frames[i]->u_buffer[uvchannel_idx]; + interpolated_vvalue += (1 - fabs(u - x_decimal)) * + (1 - fabs(v - y_decimal)) * + frames[i]->v_buffer[uvchannel_idx]; +#if CONFIG_HIGHBITDEPTH + } +#endif // CONFIG_HIGHBITDEPTH + } + } + } + } +#endif // BGSPRITE_INTERPOLATION == 1 + + if (BGSPRITE_INTERPOLATION && interpolation_count > 2) { + if (interpolation_count != 4) { + interpolated_yvalue /= interpolated_fraction; + interpolated_uvalue /= interpolated_fraction; + interpolated_vvalue /= interpolated_fraction; + } + int pano_x = x + x_min[i] + x_offset; + int pano_y = y + y_min[i] + y_offset; + +#if CONFIG_HIGHBITDEPTH + if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) { + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].y = + (uint16_t)interpolated_yvalue; + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].u = + (uint16_t)interpolated_uvalue; + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].v = + (uint16_t)interpolated_vvalue; + } else { +#endif // CONFIG_HIGHBITDEPTH + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].y = + (uint8_t)interpolated_yvalue; + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].u = + (uint8_t)interpolated_uvalue; + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].v = + (uint8_t)interpolated_vvalue; +#if CONFIG_HIGHBITDEPTH + } +#endif // CONFIG_HIGHBITDEPTH + ++count[pano_y][pano_x]; + } else if (image_x >= 0 && image_x < frame_width && image_y >= 0 && + image_y < frame_height) { + // Place in panorama stack. + int pano_x = x + x_min[i] + x_offset; + int pano_y = y + y_min[i] + y_offset; + + int ychannel_idx = image_y * frames[i]->y_stride + image_x; + int uvchannel_idx = + (image_y >> frames[i]->subsampling_y) * frames[i]->uv_stride + + (image_x >> frames[i]->subsampling_x); +#if CONFIG_HIGHBITDEPTH + if (frames[i]->flags & YV12_FLAG_HIGHBITDEPTH) { + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].y = + y_buffer16[ychannel_idx]; + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].u = + u_buffer16[uvchannel_idx]; + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].v = + v_buffer16[uvchannel_idx]; + } else { +#endif // CONFIG_HIGHBITDEPTH + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].y = + frames[i]->y_buffer[ychannel_idx]; + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].u = + frames[i]->u_buffer[uvchannel_idx]; + temp_pano[pano_y][pano_x][count[pano_y][pano_x]].v = + frames[i]->v_buffer[uvchannel_idx]; +#if CONFIG_HIGHBITDEPTH + } +#endif // CONFIG_HIGHBITDEPTH + ++count[pano_y][pano_x]; + } + } + } + } + +#if BGSPRITE_BLENDING_MODE == 1 + // Apply mean filtering and store result in temp_pano[y][x][0]. + for (int y = 0; y < height; ++y) { + for (int x = 0; x < width; ++x) { + if (count[y][x] == 0) { + // Just make the pixel black. + // TODO(toddnguyen): Color the pixel with nearest neighbor + } else { + // Find + uint32_t y_sum = 0; + uint32_t u_sum = 0; + uint32_t v_sum = 0; + for (int i = 0; i < count[y][x]; ++i) { + y_sum += temp_pano[y][x][i].y; + u_sum += temp_pano[y][x][i].u; + v_sum += temp_pano[y][x][i].v; + } + + const uint32_t unsigned_count = (uint32_t)count[y][x]; + +#if CONFIG_HIGHBITDEPTH + if (panorama->flags & YV12_FLAG_HIGHBITDEPTH) { + temp_pano[y][x][0].y = (uint16_t)OD_DIVU(y_sum, unsigned_count); + temp_pano[y][x][0].u = (uint16_t)OD_DIVU(u_sum, unsigned_count); + temp_pano[y][x][0].v = (uint16_t)OD_DIVU(v_sum, unsigned_count); + } else { +#endif // CONFIG_HIGHBITDEPTH + temp_pano[y][x][0].y = (uint8_t)OD_DIVU(y_sum, unsigned_count); + temp_pano[y][x][0].u = (uint8_t)OD_DIVU(u_sum, unsigned_count); + temp_pano[y][x][0].v = (uint8_t)OD_DIVU(v_sum, unsigned_count); +#if CONFIG_HIGHBITDEPTH + } +#endif // CONFIG_HIGHBITDEPTH + } + } + } +#else + // Apply median filtering using quickselect. + for (int y = 0; y < height; ++y) { + for (int x = 0; x < width; ++x) { + if (count[y][x] == 0) { + // Just make the pixel black. + // TODO(toddnguyen): Color the pixel with nearest neighbor + } else { + // Find + const int median_idx = (int)floor(count[y][x] / 2); + YuvPixel median = + qselect(temp_pano[y][x], 0, count[y][x] - 1, median_idx); + + // Make the median value the 0th index for UV subsampling later + temp_pano[y][x][0] = median; + assert(median.y == temp_pano[y][x][0].y && + median.u == temp_pano[y][x][0].u && + median.v == temp_pano[y][x][0].v); + } + } + } +#endif // BGSPRITE_BLENDING_MODE == 1 + + // NOTE(toddnguyen): Right now the ARF in the cpi struct is fixed size at + // the same size as the frames. For now, we crop the generated panorama. + // assert(panorama->y_width < width && panorama->y_height < height); + const int crop_x_offset = x_min[center_idx] + x_offset; + const int crop_y_offset = y_min[center_idx] + y_offset; + +#if CONFIG_HIGHBITDEPTH + if (panorama->flags & YV12_FLAG_HIGHBITDEPTH) { + // Use median Y value. + uint16_t *pano_y_buffer16 = CONVERT_TO_SHORTPTR(panorama->y_buffer); + for (int y = 0; y < panorama->y_height; ++y) { + for (int x = 0; x < panorama->y_width; ++x) { + const int ychannel_idx = y * panorama->y_stride + x; + if (count[y + crop_y_offset][x + crop_x_offset] > 0) { + pano_y_buffer16[ychannel_idx] = + temp_pano[y + crop_y_offset][x + crop_x_offset][0].y; + } else { + pano_y_buffer16[ychannel_idx] = 0; + } + } + } + + // UV subsampling with median UV values + uint16_t *pano_u_buffer16 = CONVERT_TO_SHORTPTR(panorama->u_buffer); + uint16_t *pano_v_buffer16 = CONVERT_TO_SHORTPTR(panorama->v_buffer); + + for (int y = 0; y < panorama->uv_height; ++y) { + for (int x = 0; x < panorama->uv_width; ++x) { + uint32_t avg_count = 0; + uint32_t u_sum = 0; + uint32_t v_sum = 0; + + // Look at surrounding pixels for subsampling + for (int s_x = 0; s_x < panorama->subsampling_x + 1; ++s_x) { + for (int s_y = 0; s_y < panorama->subsampling_y + 1; ++s_y) { + int y_sample = crop_y_offset + (y << panorama->subsampling_y) + s_y; + int x_sample = crop_x_offset + (x << panorama->subsampling_x) + s_x; + if (y_sample > 0 && y_sample < height && x_sample > 0 && + x_sample < width && count[y_sample][x_sample] > 0) { + u_sum += temp_pano[y_sample][x_sample][0].u; + v_sum += temp_pano[y_sample][x_sample][0].v; + avg_count++; + } + } + } + + const int uvchannel_idx = y * panorama->uv_stride + x; + if (avg_count != 0) { + pano_u_buffer16[uvchannel_idx] = (uint16_t)OD_DIVU(u_sum, avg_count); + pano_v_buffer16[uvchannel_idx] = (uint16_t)OD_DIVU(v_sum, avg_count); + } else { + pano_u_buffer16[uvchannel_idx] = 0; + pano_v_buffer16[uvchannel_idx] = 0; + } + } + } + } else { +#endif // CONFIG_HIGHBITDEPTH + // Use median Y value. + for (int y = 0; y < panorama->y_height; ++y) { + for (int x = 0; x < panorama->y_width; ++x) { + const int ychannel_idx = y * panorama->y_stride + x; + if (count[y + crop_y_offset][x + crop_x_offset] > 0) { + panorama->y_buffer[ychannel_idx] = + temp_pano[y + crop_y_offset][x + crop_x_offset][0].y; + } else { + panorama->y_buffer[ychannel_idx] = 0; + } + } + } + + // UV subsampling with median UV values + for (int y = 0; y < panorama->uv_height; ++y) { + for (int x = 0; x < panorama->uv_width; ++x) { + uint16_t avg_count = 0; + uint16_t u_sum = 0; + uint16_t v_sum = 0; + + // Look at surrounding pixels for subsampling + for (int s_x = 0; s_x < panorama->subsampling_x + 1; ++s_x) { + for (int s_y = 0; s_y < panorama->subsampling_y + 1; ++s_y) { + int y_sample = crop_y_offset + (y << panorama->subsampling_y) + s_y; + int x_sample = crop_x_offset + (x << panorama->subsampling_x) + s_x; + if (y_sample > 0 && y_sample < height && x_sample > 0 && + x_sample < width && count[y_sample][x_sample] > 0) { + u_sum += temp_pano[y_sample][x_sample][0].u; + v_sum += temp_pano[y_sample][x_sample][0].v; + avg_count++; + } + } + } + + const int uvchannel_idx = y * panorama->uv_stride + x; + if (avg_count != 0) { + panorama->u_buffer[uvchannel_idx] = + (uint8_t)OD_DIVU(u_sum, avg_count); + panorama->v_buffer[uvchannel_idx] = + (uint8_t)OD_DIVU(v_sum, avg_count); + } else { + panorama->u_buffer[uvchannel_idx] = 0; + panorama->v_buffer[uvchannel_idx] = 0; + } + } + } +#if CONFIG_HIGHBITDEPTH + } +#endif // CONFIG_HIGHBITDEPTH + + for (int i = 0; i < height; ++i) { + for (int j = 0; j < width; ++j) { + aom_free(temp_pano[i][j]); + } + aom_free(temp_pano[i]); + aom_free(count[i]); + } + aom_free(count); + aom_free(temp_pano); +} + +int av1_background_sprite(AV1_COMP *cpi, int distance) { + YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL }; + static const double identity_params[MAX_PARAMDIM - 1] = { + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 + }; + + const int frames_after_arf = + av1_lookahead_depth(cpi->lookahead) - distance - 1; + int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1; + int frames_bwd; + + // Define the forward and backwards filter limits for this arnr group. + if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; + if (frames_fwd > distance) frames_fwd = distance; + frames_bwd = frames_fwd; + +#if CONFIG_EXT_REFS + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) { + cpi->alt_ref_buffer = av1_lookahead_peek(cpi->lookahead, distance)->img; + cpi->is_arf_filter_off[gf_group->arf_update_idx[gf_group->index]] = 1; + frames_fwd = 0; + frames_bwd = 0; + } else { + cpi->is_arf_filter_off[gf_group->arf_update_idx[gf_group->index]] = 0; + } +#endif // CONFIG_EXT_REFS + + const int start_frame = distance + frames_fwd; + const int frames_to_stitch = frames_bwd + 1 + frames_fwd; + + // Get frames to be included in background sprite. + for (int frame = 0; frame < frames_to_stitch; ++frame) { + const int which_buffer = start_frame - frame; + struct lookahead_entry *buf = + av1_lookahead_peek(cpi->lookahead, which_buffer); + frames[frames_to_stitch - 1 - frame] = &buf->img; + } + + YV12_BUFFER_CONFIG temp_bg; + memset(&temp_bg, 0, sizeof(temp_bg)); + aom_alloc_frame_buffer(&temp_bg, frames[0]->y_width, frames[0]->y_height, + frames[0]->subsampling_x, frames[0]->subsampling_y, +#if CONFIG_HIGHBITDEPTH + frames[0]->flags & YV12_FLAG_HIGHBITDEPTH, +#endif + frames[0]->border, 0); + aom_yv12_copy_frame(frames[0], &temp_bg); + temp_bg.bit_depth = frames[0]->bit_depth; + + // Allocate empty arrays for parameters between frames. + double **params = aom_malloc(frames_to_stitch * sizeof(*params)); + for (int i = 0; i < frames_to_stitch; ++i) { + params[i] = aom_malloc(sizeof(identity_params)); + memcpy(params[i], identity_params, sizeof(identity_params)); + } + + // Use global motion to find affine transformations between frames. + // params[i] will have the transform from frame[i] to frame[i-1]. + // params[0] will have the identity matrix because it has no previous frame. + TransformationType model = AFFINE; + int inliers_by_motion[RANSAC_NUM_MOTIONS]; + for (int frame = 0; frame < frames_to_stitch - 1; ++frame) { + const int global_motion_ret = compute_global_motion_feature_based( + model, frames[frame + 1], frames[frame], +#if CONFIG_HIGHBITDEPTH + cpi->common.bit_depth, +#endif // CONFIG_HIGHBITDEPTH + inliers_by_motion, params[frame + 1], RANSAC_NUM_MOTIONS); + + // Quit if global motion had an error. + if (global_motion_ret == 0) { + for (int i = 0; i < frames_to_stitch; ++i) { + aom_free(params[i]); + } + aom_free(params); + return 1; + } + } + + // Compound the transformation parameters. + for (int i = 1; i < frames_to_stitch; ++i) { + multiply_params(params[i - 1], params[i], params[i]); + } + + // Compute frame limits for final stitched images. + int pano_x_max = INT_MIN; + int pano_x_min = INT_MAX; + int pano_y_max = INT_MIN; + int pano_y_min = INT_MAX; + int *x_max = aom_malloc(frames_to_stitch * sizeof(*x_max)); + int *x_min = aom_malloc(frames_to_stitch * sizeof(*x_min)); + int *y_max = aom_malloc(frames_to_stitch * sizeof(*y_max)); + int *y_min = aom_malloc(frames_to_stitch * sizeof(*y_min)); + + find_limits(cpi->initial_width, cpi->initial_height, + (const double **const)params, frames_to_stitch, x_min, x_max, + y_min, y_max, &pano_x_min, &pano_x_max, &pano_y_min, &pano_y_max); + + // Center panorama on the ARF. + const int center_idx = frames_bwd; + assert(center_idx >= 0 && center_idx < frames_to_stitch); + + // Recompute transformations to adjust to center image. + // Invert center image's transform. + double inverse[MAX_PARAMDIM - 1] = { 0 }; + invert_params(params[center_idx], inverse); + + // Multiply the inverse to all transformation parameters. + for (int i = 0; i < frames_to_stitch; ++i) { + multiply_params(inverse, params[i], params[i]); + } + + // Recompute frame limits for new adjusted center. + find_limits(cpi->initial_width, cpi->initial_height, + (const double **const)params, frames_to_stitch, x_min, x_max, + y_min, y_max, &pano_x_min, &pano_x_max, &pano_y_min, &pano_y_max); + + // Stitch Images. + stitch_images(frames, frames_to_stitch, center_idx, + (const double **const)params, x_min, x_max, y_min, y_max, + pano_x_min, pano_x_max, pano_y_min, pano_y_max, &temp_bg); + + // Apply temporal filter. + av1_temporal_filter(cpi, &temp_bg, distance); + + // Free memory. + aom_free_frame_buffer(&temp_bg); + for (int i = 0; i < frames_to_stitch; ++i) { + aom_free(params[i]); + } + aom_free(params); + aom_free(x_max); + aom_free(x_min); + aom_free(y_max); + aom_free(y_min); + + return 0; +} |