diff options
author | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:15 -0500 |
---|---|---|
committer | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:20 -0500 |
commit | bbcc64772580c8a979288791afa02d30bc476d2e (patch) | |
tree | 437ce94c3fdd7497508e5b55de06c6d011678597 /third_party/aom/av1/common/x86/selfguided_avx2.c | |
parent | 14805f6ddbfb173c327768fff9f81f40ce5e81b0 (diff) | |
download | UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.gz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.lz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.xz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.zip |
Update aom to v1.0.0
Update aom to commit id d14c5bb4f336ef1842046089849dee4a301fbbf0.
Diffstat (limited to 'third_party/aom/av1/common/x86/selfguided_avx2.c')
-rw-r--r-- | third_party/aom/av1/common/x86/selfguided_avx2.c | 719 |
1 files changed, 719 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/x86/selfguided_avx2.c b/third_party/aom/av1/common/x86/selfguided_avx2.c new file mode 100644 index 000000000..375def62e --- /dev/null +++ b/third_party/aom/av1/common/x86/selfguided_avx2.c @@ -0,0 +1,719 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <immintrin.h> + +#include "config/aom_config.h" +#include "config/av1_rtcd.h" + +#include "av1/common/restoration.h" +#include "aom_dsp/x86/synonyms.h" +#include "aom_dsp/x86/synonyms_avx2.h" + +// Load 8 bytes from the possibly-misaligned pointer p, extend each byte to +// 32-bit precision and return them in an AVX2 register. +static __m256i yy256_load_extend_8_32(const void *p) { + return _mm256_cvtepu8_epi32(xx_loadl_64(p)); +} + +// Load 8 halfwords from the possibly-misaligned pointer p, extend each +// halfword to 32-bit precision and return them in an AVX2 register. +static __m256i yy256_load_extend_16_32(const void *p) { + return _mm256_cvtepu16_epi32(xx_loadu_128(p)); +} + +// Compute the scan of an AVX2 register holding 8 32-bit integers. If the +// register holds x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ..., +// x0+x1+...+x7 +// +// Let [...] represent a 128-bit block, and let a, ..., h be 32-bit integers +// (assumed small enough to be able to add them without overflow). +// +// Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a. +// +// x = [h g f e][d c b a] +// x01 = [g f e 0][c b a 0] +// x02 = [g+h f+g e+f e][c+d b+c a+b a] +// x03 = [e+f e 0 0][a+b a 0 0] +// x04 = [e->h e->g e->f e][a->d a->c a->b a] +// s = a->d +// s01 = [a->d a->d a->d a->d] +// s02 = [a->d a->d a->d a->d][0 0 0 0] +// ret = [a->h a->g a->f a->e][a->d a->c a->b a] +static __m256i scan_32(__m256i x) { + const __m256i x01 = _mm256_slli_si256(x, 4); + const __m256i x02 = _mm256_add_epi32(x, x01); + const __m256i x03 = _mm256_slli_si256(x02, 8); + const __m256i x04 = _mm256_add_epi32(x02, x03); + const int32_t s = _mm256_extract_epi32(x04, 3); + const __m128i s01 = _mm_set1_epi32(s); + const __m256i s02 = _mm256_insertf128_si256(_mm256_setzero_si256(), s01, 1); + return _mm256_add_epi32(x04, s02); +} + +// Compute two integral images from src. B sums elements; A sums their +// squares. The images are offset by one pixel, so will have width and height +// equal to width + 1, height + 1 and the first row and column will be zero. +// +// A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple +// of 8. + +static void *memset_zero_avx(int32_t *dest, const __m256i *zero, size_t count) { + unsigned int i = 0; + for (i = 0; i < (count & 0xffffffe0); i += 32) { + _mm256_storeu_si256((__m256i *)(dest + i), *zero); + _mm256_storeu_si256((__m256i *)(dest + i + 8), *zero); + _mm256_storeu_si256((__m256i *)(dest + i + 16), *zero); + _mm256_storeu_si256((__m256i *)(dest + i + 24), *zero); + } + for (; i < (count & 0xfffffff8); i += 8) { + _mm256_storeu_si256((__m256i *)(dest + i), *zero); + } + for (; i < count; i++) { + dest[i] = 0; + } + return dest; +} + +static void integral_images(const uint8_t *src, int src_stride, int width, + int height, int32_t *A, int32_t *B, + int buf_stride) { + const __m256i zero = _mm256_setzero_si256(); + // Write out the zero top row + memset_zero_avx(A, &zero, (width + 8)); + memset_zero_avx(B, &zero, (width + 8)); + for (int i = 0; i < height; ++i) { + // Zero the left column. + A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; + + // ldiff is the difference H - D where H is the output sample immediately + // to the left and D is the output sample above it. These are scalars, + // replicated across the eight lanes. + __m256i ldiff1 = zero, ldiff2 = zero; + for (int j = 0; j < width; j += 8) { + const int ABj = 1 + j; + + const __m256i above1 = yy_load_256(B + ABj + i * buf_stride); + const __m256i above2 = yy_load_256(A + ABj + i * buf_stride); + + const __m256i x1 = yy256_load_extend_8_32(src + j + i * src_stride); + const __m256i x2 = _mm256_madd_epi16(x1, x1); + + const __m256i sc1 = scan_32(x1); + const __m256i sc2 = scan_32(x2); + + const __m256i row1 = + _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1); + const __m256i row2 = + _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2); + + yy_store_256(B + ABj + (i + 1) * buf_stride, row1); + yy_store_256(A + ABj + (i + 1) * buf_stride, row2); + + // Calculate the new H - D. + ldiff1 = _mm256_set1_epi32( + _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7)); + ldiff2 = _mm256_set1_epi32( + _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7)); + } + } +} + +// Compute two integral images from src. B sums elements; A sums their squares +// +// A and B should be aligned to 32 bytes. buf_stride should be a multiple of 8. +static void integral_images_highbd(const uint16_t *src, int src_stride, + int width, int height, int32_t *A, + int32_t *B, int buf_stride) { + const __m256i zero = _mm256_setzero_si256(); + // Write out the zero top row + memset_zero_avx(A, &zero, (width + 8)); + memset_zero_avx(B, &zero, (width + 8)); + + for (int i = 0; i < height; ++i) { + // Zero the left column. + A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; + + // ldiff is the difference H - D where H is the output sample immediately + // to the left and D is the output sample above it. These are scalars, + // replicated across the eight lanes. + __m256i ldiff1 = zero, ldiff2 = zero; + for (int j = 0; j < width; j += 8) { + const int ABj = 1 + j; + + const __m256i above1 = yy_load_256(B + ABj + i * buf_stride); + const __m256i above2 = yy_load_256(A + ABj + i * buf_stride); + + const __m256i x1 = yy256_load_extend_16_32(src + j + i * src_stride); + const __m256i x2 = _mm256_madd_epi16(x1, x1); + + const __m256i sc1 = scan_32(x1); + const __m256i sc2 = scan_32(x2); + + const __m256i row1 = + _mm256_add_epi32(_mm256_add_epi32(sc1, above1), ldiff1); + const __m256i row2 = + _mm256_add_epi32(_mm256_add_epi32(sc2, above2), ldiff2); + + yy_store_256(B + ABj + (i + 1) * buf_stride, row1); + yy_store_256(A + ABj + (i + 1) * buf_stride, row2); + + // Calculate the new H - D. + ldiff1 = _mm256_set1_epi32( + _mm256_extract_epi32(_mm256_sub_epi32(row1, above1), 7)); + ldiff2 = _mm256_set1_epi32( + _mm256_extract_epi32(_mm256_sub_epi32(row2, above2), 7)); + } + } +} + +// Compute 8 values of boxsum from the given integral image. ii should point +// at the middle of the box (for the first value). r is the box radius. +static INLINE __m256i boxsum_from_ii(const int32_t *ii, int stride, int r) { + const __m256i tl = yy_loadu_256(ii - (r + 1) - (r + 1) * stride); + const __m256i tr = yy_loadu_256(ii + (r + 0) - (r + 1) * stride); + const __m256i bl = yy_loadu_256(ii - (r + 1) + r * stride); + const __m256i br = yy_loadu_256(ii + (r + 0) + r * stride); + const __m256i u = _mm256_sub_epi32(tr, tl); + const __m256i v = _mm256_sub_epi32(br, bl); + return _mm256_sub_epi32(v, u); +} + +static __m256i round_for_shift(unsigned shift) { + return _mm256_set1_epi32((1 << shift) >> 1); +} + +static __m256i compute_p(__m256i sum1, __m256i sum2, int bit_depth, int n) { + __m256i an, bb; + if (bit_depth > 8) { + const __m256i rounding_a = round_for_shift(2 * (bit_depth - 8)); + const __m256i rounding_b = round_for_shift(bit_depth - 8); + const __m128i shift_a = _mm_cvtsi32_si128(2 * (bit_depth - 8)); + const __m128i shift_b = _mm_cvtsi32_si128(bit_depth - 8); + const __m256i a = + _mm256_srl_epi32(_mm256_add_epi32(sum2, rounding_a), shift_a); + const __m256i b = + _mm256_srl_epi32(_mm256_add_epi32(sum1, rounding_b), shift_b); + // b < 2^14, so we can use a 16-bit madd rather than a 32-bit + // mullo to square it + bb = _mm256_madd_epi16(b, b); + an = _mm256_max_epi32(_mm256_mullo_epi32(a, _mm256_set1_epi32(n)), bb); + } else { + bb = _mm256_madd_epi16(sum1, sum1); + an = _mm256_mullo_epi32(sum2, _mm256_set1_epi32(n)); + } + return _mm256_sub_epi32(an, bb); +} + +// Assumes that C, D are integral images for the original buffer which has been +// extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels +// on the sides. A, B, C, D point at logical position (0, 0). +static void calc_ab(int32_t *A, int32_t *B, const int32_t *C, const int32_t *D, + int width, int height, int buf_stride, int bit_depth, + int sgr_params_idx, int radius_idx) { + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + const int r = params->r[radius_idx]; + const int n = (2 * r + 1) * (2 * r + 1); + const __m256i s = _mm256_set1_epi32(params->s[radius_idx]); + // one_over_n[n-1] is 2^12/n, so easily fits in an int16 + const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]); + + const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS); + const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS); + + // Set up masks + const __m128i ones32 = _mm_set_epi32(0, 0, 0xffffffff, 0xffffffff); + __m256i mask[8]; + for (int idx = 0; idx < 8; idx++) { + const __m128i shift = _mm_cvtsi32_si128(8 * (8 - idx)); + mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift)); + } + + for (int i = -1; i < height + 1; ++i) { + for (int j = -1; j < width + 1; j += 8) { + const int32_t *Cij = C + i * buf_stride + j; + const int32_t *Dij = D + i * buf_stride + j; + + __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r); + __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r); + + // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain + // some uninitialised data in their upper words. We use a mask to + // ensure that these bits are set to 0. + int idx = AOMMIN(8, width + 1 - j); + assert(idx >= 1); + + if (idx < 8) { + sum1 = _mm256_and_si256(mask[idx], sum1); + sum2 = _mm256_and_si256(mask[idx], sum2); + } + + const __m256i p = compute_p(sum1, sum2, bit_depth, n); + + const __m256i z = _mm256_min_epi32( + _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z), + SGRPROJ_MTABLE_BITS), + _mm256_set1_epi32(255)); + + const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4); + + yy_storeu_256(A + i * buf_stride + j, a_res); + + const __m256i a_complement = + _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res); + + // sum1 might have lanes greater than 2^15, so we can't use madd to do + // multiplication involving sum1. However, a_complement and one_over_n + // are both less than 256, so we can multiply them first. + const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n); + const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1); + const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res), + SGRPROJ_RECIP_BITS); + + yy_storeu_256(B + i * buf_stride + j, b_res); + } + } +} + +// Calculate 8 values of the "cross sum" starting at buf. This is a 3x3 filter +// where the outer four corners have weight 3 and all other pixels have weight +// 4. +// +// Pixels are indexed as follows: +// xtl xt xtr +// xl x xr +// xbl xb xbr +// +// buf points to x +// +// fours = xl + xt + xr + xb + x +// threes = xtl + xtr + xbr + xbl +// cross_sum = 4 * fours + 3 * threes +// = 4 * (fours + threes) - threes +// = (fours + threes) << 2 - threes +static INLINE __m256i cross_sum(const int32_t *buf, int stride) { + const __m256i xtl = yy_loadu_256(buf - 1 - stride); + const __m256i xt = yy_loadu_256(buf - stride); + const __m256i xtr = yy_loadu_256(buf + 1 - stride); + const __m256i xl = yy_loadu_256(buf - 1); + const __m256i x = yy_loadu_256(buf); + const __m256i xr = yy_loadu_256(buf + 1); + const __m256i xbl = yy_loadu_256(buf - 1 + stride); + const __m256i xb = yy_loadu_256(buf + stride); + const __m256i xbr = yy_loadu_256(buf + 1 + stride); + + const __m256i fours = _mm256_add_epi32( + xl, _mm256_add_epi32(xt, _mm256_add_epi32(xr, _mm256_add_epi32(xb, x)))); + const __m256i threes = + _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); + + return _mm256_sub_epi32(_mm256_slli_epi32(_mm256_add_epi32(fours, threes), 2), + threes); +} + +// The final filter for self-guided restoration. Computes a weighted average +// across A, B with "cross sums" (see cross_sum implementation above). +static void final_filter(int32_t *dst, int dst_stride, const int32_t *A, + const int32_t *B, int buf_stride, const void *dgd8, + int dgd_stride, int width, int height, int highbd) { + const int nb = 5; + const __m256i rounding = + round_for_shift(SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); + const uint8_t *dgd_real = + highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; + + for (int i = 0; i < height; ++i) { + for (int j = 0; j < width; j += 8) { + const __m256i a = cross_sum(A + i * buf_stride + j, buf_stride); + const __m256i b = cross_sum(B + i * buf_stride + j, buf_stride); + + const __m128i raw = + xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); + const __m256i src = + highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); + + __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); + __m256i w = _mm256_srai_epi32(_mm256_add_epi32(v, rounding), + SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); + + yy_storeu_256(dst + i * dst_stride + j, w); + } + } +} + +// Assumes that C, D are integral images for the original buffer which has been +// extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels +// on the sides. A, B, C, D point at logical position (0, 0). +static void calc_ab_fast(int32_t *A, int32_t *B, const int32_t *C, + const int32_t *D, int width, int height, + int buf_stride, int bit_depth, int sgr_params_idx, + int radius_idx) { + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + const int r = params->r[radius_idx]; + const int n = (2 * r + 1) * (2 * r + 1); + const __m256i s = _mm256_set1_epi32(params->s[radius_idx]); + // one_over_n[n-1] is 2^12/n, so easily fits in an int16 + const __m256i one_over_n = _mm256_set1_epi32(one_by_x[n - 1]); + + const __m256i rnd_z = round_for_shift(SGRPROJ_MTABLE_BITS); + const __m256i rnd_res = round_for_shift(SGRPROJ_RECIP_BITS); + + // Set up masks + const __m128i ones32 = _mm_set_epi32(0, 0, 0xffffffff, 0xffffffff); + __m256i mask[8]; + for (int idx = 0; idx < 8; idx++) { + const __m128i shift = _mm_cvtsi32_si128(8 * (8 - idx)); + mask[idx] = _mm256_cvtepi8_epi32(_mm_srl_epi64(ones32, shift)); + } + + for (int i = -1; i < height + 1; i += 2) { + for (int j = -1; j < width + 1; j += 8) { + const int32_t *Cij = C + i * buf_stride + j; + const int32_t *Dij = D + i * buf_stride + j; + + __m256i sum1 = boxsum_from_ii(Dij, buf_stride, r); + __m256i sum2 = boxsum_from_ii(Cij, buf_stride, r); + + // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain + // some uninitialised data in their upper words. We use a mask to + // ensure that these bits are set to 0. + int idx = AOMMIN(8, width + 1 - j); + assert(idx >= 1); + + if (idx < 8) { + sum1 = _mm256_and_si256(mask[idx], sum1); + sum2 = _mm256_and_si256(mask[idx], sum2); + } + + const __m256i p = compute_p(sum1, sum2, bit_depth, n); + + const __m256i z = _mm256_min_epi32( + _mm256_srli_epi32(_mm256_add_epi32(_mm256_mullo_epi32(p, s), rnd_z), + SGRPROJ_MTABLE_BITS), + _mm256_set1_epi32(255)); + + const __m256i a_res = _mm256_i32gather_epi32(x_by_xplus1, z, 4); + + yy_storeu_256(A + i * buf_stride + j, a_res); + + const __m256i a_complement = + _mm256_sub_epi32(_mm256_set1_epi32(SGRPROJ_SGR), a_res); + + // sum1 might have lanes greater than 2^15, so we can't use madd to do + // multiplication involving sum1. However, a_complement and one_over_n + // are both less than 256, so we can multiply them first. + const __m256i a_comp_over_n = _mm256_madd_epi16(a_complement, one_over_n); + const __m256i b_int = _mm256_mullo_epi32(a_comp_over_n, sum1); + const __m256i b_res = _mm256_srli_epi32(_mm256_add_epi32(b_int, rnd_res), + SGRPROJ_RECIP_BITS); + + yy_storeu_256(B + i * buf_stride + j, b_res); + } + } +} + +// Calculate 8 values of the "cross sum" starting at buf. +// +// Pixels are indexed like this: +// xtl xt xtr +// - buf - +// xbl xb xbr +// +// Pixels are weighted like this: +// 5 6 5 +// 0 0 0 +// 5 6 5 +// +// fives = xtl + xtr + xbl + xbr +// sixes = xt + xb +// cross_sum = 6 * sixes + 5 * fives +// = 5 * (fives + sixes) - sixes +// = (fives + sixes) << 2 + (fives + sixes) + sixes +static INLINE __m256i cross_sum_fast_even_row(const int32_t *buf, int stride) { + const __m256i xtl = yy_loadu_256(buf - 1 - stride); + const __m256i xt = yy_loadu_256(buf - stride); + const __m256i xtr = yy_loadu_256(buf + 1 - stride); + const __m256i xbl = yy_loadu_256(buf - 1 + stride); + const __m256i xb = yy_loadu_256(buf + stride); + const __m256i xbr = yy_loadu_256(buf + 1 + stride); + + const __m256i fives = + _mm256_add_epi32(xtl, _mm256_add_epi32(xtr, _mm256_add_epi32(xbr, xbl))); + const __m256i sixes = _mm256_add_epi32(xt, xb); + const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes); + + return _mm256_add_epi32( + _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2), + fives_plus_sixes), + sixes); +} + +// Calculate 8 values of the "cross sum" starting at buf. +// +// Pixels are indexed like this: +// xl x xr +// +// Pixels are weighted like this: +// 5 6 5 +// +// buf points to x +// +// fives = xl + xr +// sixes = x +// cross_sum = 5 * fives + 6 * sixes +// = 4 * (fives + sixes) + (fives + sixes) + sixes +// = (fives + sixes) << 2 + (fives + sixes) + sixes +static INLINE __m256i cross_sum_fast_odd_row(const int32_t *buf) { + const __m256i xl = yy_loadu_256(buf - 1); + const __m256i x = yy_loadu_256(buf); + const __m256i xr = yy_loadu_256(buf + 1); + + const __m256i fives = _mm256_add_epi32(xl, xr); + const __m256i sixes = x; + + const __m256i fives_plus_sixes = _mm256_add_epi32(fives, sixes); + + return _mm256_add_epi32( + _mm256_add_epi32(_mm256_slli_epi32(fives_plus_sixes, 2), + fives_plus_sixes), + sixes); +} + +// The final filter for the self-guided restoration. Computes a +// weighted average across A, B with "cross sums" (see cross_sum_... +// implementations above). +static void final_filter_fast(int32_t *dst, int dst_stride, const int32_t *A, + const int32_t *B, int buf_stride, + const void *dgd8, int dgd_stride, int width, + int height, int highbd) { + const int nb0 = 5; + const int nb1 = 4; + + const __m256i rounding0 = + round_for_shift(SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); + const __m256i rounding1 = + round_for_shift(SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); + + const uint8_t *dgd_real = + highbd ? (const uint8_t *)CONVERT_TO_SHORTPTR(dgd8) : dgd8; + + for (int i = 0; i < height; ++i) { + if (!(i & 1)) { // even row + for (int j = 0; j < width; j += 8) { + const __m256i a = + cross_sum_fast_even_row(A + i * buf_stride + j, buf_stride); + const __m256i b = + cross_sum_fast_even_row(B + i * buf_stride + j, buf_stride); + + const __m128i raw = + xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); + const __m256i src = + highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); + + __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); + __m256i w = + _mm256_srai_epi32(_mm256_add_epi32(v, rounding0), + SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS); + + yy_storeu_256(dst + i * dst_stride + j, w); + } + } else { // odd row + for (int j = 0; j < width; j += 8) { + const __m256i a = cross_sum_fast_odd_row(A + i * buf_stride + j); + const __m256i b = cross_sum_fast_odd_row(B + i * buf_stride + j); + + const __m128i raw = + xx_loadu_128(dgd_real + ((i * dgd_stride + j) << highbd)); + const __m256i src = + highbd ? _mm256_cvtepu16_epi32(raw) : _mm256_cvtepu8_epi32(raw); + + __m256i v = _mm256_add_epi32(_mm256_madd_epi16(a, src), b); + __m256i w = + _mm256_srai_epi32(_mm256_add_epi32(v, rounding1), + SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS); + + yy_storeu_256(dst + i * dst_stride + j, w); + } + } + } +} + +void av1_selfguided_restoration_avx2(const uint8_t *dgd8, int width, int height, + int dgd_stride, int32_t *flt0, + int32_t *flt1, int flt_stride, + int sgr_params_idx, int bit_depth, + int highbd) { + // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl, + // Ctl and Dtl is 32-byte aligned. + const int buf_elts = ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3); + + DECLARE_ALIGNED(32, int32_t, + buf[4 * ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, 3)]); + + const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; + const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; + + // Adjusting the stride of A and B here appears to avoid bad cache effects, + // leading to a significant speed improvement. + // We also align the stride to a multiple of 32 bytes for efficiency. + int buf_stride = ALIGN_POWER_OF_TWO(width_ext + 16, 3); + + // The "tl" pointers point at the top-left of the initialised data for the + // array. + int32_t *Atl = buf + 0 * buf_elts + 7; + int32_t *Btl = buf + 1 * buf_elts + 7; + int32_t *Ctl = buf + 2 * buf_elts + 7; + int32_t *Dtl = buf + 3 * buf_elts + 7; + + // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note + // there's a zero row and column in A, B (integral images), so we move down + // and right one for them. + const int buf_diag_border = + SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT; + + int32_t *A0 = Atl + 1 + buf_stride; + int32_t *B0 = Btl + 1 + buf_stride; + int32_t *C0 = Ctl + 1 + buf_stride; + int32_t *D0 = Dtl + 1 + buf_stride; + + // Finally, A, B, C, D point at position (0, 0). + int32_t *A = A0 + buf_diag_border; + int32_t *B = B0 + buf_diag_border; + int32_t *C = C0 + buf_diag_border; + int32_t *D = D0 + buf_diag_border; + + const int dgd_diag_border = + SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT; + const uint8_t *dgd0 = dgd8 - dgd_diag_border; + + // Generate integral images from the input. C will contain sums of squares; D + // will contain just sums + if (highbd) + integral_images_highbd(CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext, + height_ext, Ctl, Dtl, buf_stride); + else + integral_images(dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl, + buf_stride); + + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + // Write to flt0 and flt1 + // If params->r == 0 we skip the corresponding filter. We only allow one of + // the radii to be 0, as having both equal to 0 would be equivalent to + // skipping SGR entirely. + assert(!(params->r[0] == 0 && params->r[1] == 0)); + assert(params->r[0] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); + assert(params->r[1] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); + + if (params->r[0] > 0) { + calc_ab_fast(A, B, C, D, width, height, buf_stride, bit_depth, + sgr_params_idx, 0); + final_filter_fast(flt0, flt_stride, A, B, buf_stride, dgd8, dgd_stride, + width, height, highbd); + } + + if (params->r[1] > 0) { + calc_ab(A, B, C, D, width, height, buf_stride, bit_depth, sgr_params_idx, + 1); + final_filter(flt1, flt_stride, A, B, buf_stride, dgd8, dgd_stride, width, + height, highbd); + } +} + +void apply_selfguided_restoration_avx2(const uint8_t *dat8, int width, + int height, int stride, int eps, + const int *xqd, uint8_t *dst8, + int dst_stride, int32_t *tmpbuf, + int bit_depth, int highbd) { + int32_t *flt0 = tmpbuf; + int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; + assert(width * height <= RESTORATION_UNITPELS_MAX); + av1_selfguided_restoration_avx2(dat8, width, height, stride, flt0, flt1, + width, eps, bit_depth, highbd); + const sgr_params_type *const params = &sgr_params[eps]; + int xq[2]; + decode_xq(xqd, xq, params); + + __m256i xq0 = _mm256_set1_epi32(xq[0]); + __m256i xq1 = _mm256_set1_epi32(xq[1]); + + for (int i = 0; i < height; ++i) { + // Calculate output in batches of 16 pixels + for (int j = 0; j < width; j += 16) { + const int k = i * width + j; + const int m = i * dst_stride + j; + + const uint8_t *dat8ij = dat8 + i * stride + j; + __m256i ep_0, ep_1; + __m128i src_0, src_1; + if (highbd) { + src_0 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij)); + src_1 = xx_loadu_128(CONVERT_TO_SHORTPTR(dat8ij + 8)); + ep_0 = _mm256_cvtepu16_epi32(src_0); + ep_1 = _mm256_cvtepu16_epi32(src_1); + } else { + src_0 = xx_loadu_128(dat8ij); + ep_0 = _mm256_cvtepu8_epi32(src_0); + ep_1 = _mm256_cvtepu8_epi32(_mm_srli_si128(src_0, 8)); + } + + const __m256i u_0 = _mm256_slli_epi32(ep_0, SGRPROJ_RST_BITS); + const __m256i u_1 = _mm256_slli_epi32(ep_1, SGRPROJ_RST_BITS); + + __m256i v_0 = _mm256_slli_epi32(u_0, SGRPROJ_PRJ_BITS); + __m256i v_1 = _mm256_slli_epi32(u_1, SGRPROJ_PRJ_BITS); + + if (params->r[0] > 0) { + const __m256i f1_0 = _mm256_sub_epi32(yy_loadu_256(&flt0[k]), u_0); + v_0 = _mm256_add_epi32(v_0, _mm256_mullo_epi32(xq0, f1_0)); + + const __m256i f1_1 = _mm256_sub_epi32(yy_loadu_256(&flt0[k + 8]), u_1); + v_1 = _mm256_add_epi32(v_1, _mm256_mullo_epi32(xq0, f1_1)); + } + + if (params->r[1] > 0) { + const __m256i f2_0 = _mm256_sub_epi32(yy_loadu_256(&flt1[k]), u_0); + v_0 = _mm256_add_epi32(v_0, _mm256_mullo_epi32(xq1, f2_0)); + + const __m256i f2_1 = _mm256_sub_epi32(yy_loadu_256(&flt1[k + 8]), u_1); + v_1 = _mm256_add_epi32(v_1, _mm256_mullo_epi32(xq1, f2_1)); + } + + const __m256i rounding = + round_for_shift(SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); + const __m256i w_0 = _mm256_srai_epi32( + _mm256_add_epi32(v_0, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); + const __m256i w_1 = _mm256_srai_epi32( + _mm256_add_epi32(v_1, rounding), SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); + + if (highbd) { + // Pack into 16 bits and clamp to [0, 2^bit_depth) + // Note that packing into 16 bits messes up the order of the bits, + // so we use a permute function to correct this + const __m256i tmp = _mm256_packus_epi32(w_0, w_1); + const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8); + const __m256i max = _mm256_set1_epi16((1 << bit_depth) - 1); + const __m256i res = _mm256_min_epi16(tmp2, max); + yy_storeu_256(CONVERT_TO_SHORTPTR(dst8 + m), res); + } else { + // Pack into 8 bits and clamp to [0, 256) + // Note that each pack messes up the order of the bits, + // so we use a permute function to correct this + const __m256i tmp = _mm256_packs_epi32(w_0, w_1); + const __m256i tmp2 = _mm256_permute4x64_epi64(tmp, 0xd8); + const __m256i res = + _mm256_packus_epi16(tmp2, tmp2 /* "don't care" value */); + const __m128i res2 = + _mm256_castsi256_si128(_mm256_permute4x64_epi64(res, 0xd8)); + xx_storeu_128(dst8 + m, res2); + } + } + } +} |