diff options
author | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:15 -0500 |
---|---|---|
committer | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:20 -0500 |
commit | bbcc64772580c8a979288791afa02d30bc476d2e (patch) | |
tree | 437ce94c3fdd7497508e5b55de06c6d011678597 /third_party/aom/av1/common/scale.c | |
parent | 14805f6ddbfb173c327768fff9f81f40ce5e81b0 (diff) | |
download | UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.gz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.lz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.xz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.zip |
Update aom to v1.0.0
Update aom to commit id d14c5bb4f336ef1842046089849dee4a301fbbf0.
Diffstat (limited to 'third_party/aom/av1/common/scale.c')
-rw-r--r-- | third_party/aom/av1/common/scale.c | 152 |
1 files changed, 46 insertions, 106 deletions
diff --git a/third_party/aom/av1/common/scale.c b/third_party/aom/av1/common/scale.c index d5ccdfec0..c525fe229 100644 --- a/third_party/aom/av1/common/scale.c +++ b/third_party/aom/av1/common/scale.c @@ -9,7 +9,9 @@ * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ -#include "./aom_dsp_rtcd.h" +#include "config/aom_dsp_rtcd.h" +#include "config/av1_rtcd.h" + #include "av1/common/filter.h" #include "av1/common/scale.h" #include "aom_dsp/aom_filter.h" @@ -46,12 +48,9 @@ static int get_fixed_point_scale_factor(int other_size, int this_size) { return ((other_size << REF_SCALE_SHIFT) + this_size / 2) / this_size; } -static int get_coarse_point_scale_factor(int other_size, int this_size) { - // Calculate scaling factor once for each reference frame - // and use fixed point scaling factors in decoding and encoding routines. - // Hardware implementations can calculate scale factor in device driver - // and use multiplication and shifting on hardware instead of division. - return ((other_size << SCALE_SUBPEL_BITS) + this_size / 2) / this_size; +// Given the fixed point scale, calculate coarse point scale. +static int fixed_point_scale_to_coarse_point_scale(int scale_fp) { + return ROUND_POWER_OF_TWO(scale_fp, REF_SCALE_SHIFT - SCALE_SUBPEL_BITS); } // Note: x and y are integer precision, mvq4 is q4 precision. @@ -64,14 +63,8 @@ MV32 av1_scale_mv(const MV *mvq4, int x, int y, return res; } -#if CONFIG_HIGHBITDEPTH -void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, - int other_h, int this_w, int this_h, - int use_highbd) { -#else void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, int other_h, int this_w, int this_h) { -#endif if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) { sf->x_scale_fp = REF_INVALID_SCALE; sf->y_scale_fp = REF_INVALID_SCALE; @@ -81,8 +74,8 @@ void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); - sf->x_step_q4 = get_coarse_point_scale_factor(other_w, this_w); - sf->y_step_q4 = get_coarse_point_scale_factor(other_h, this_h); + sf->x_step_q4 = fixed_point_scale_to_coarse_point_scale(sf->x_scale_fp); + sf->y_step_q4 = fixed_point_scale_to_coarse_point_scale(sf->y_scale_fp); if (av1_is_scaled(sf)) { sf->scale_value_x = scaled_x; @@ -92,95 +85,42 @@ void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, sf->scale_value_y = unscaled_value; } - // TODO(agrange): Investigate the best choice of functions to use here - // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what - // to do at full-pel offsets. The current selection, where the filter is - // applied in one direction only, and not at all for 0,0, seems to give the - // best quality, but it may be worth trying an additional mode that does - // do the filtering on full-pel. - if (sf->x_step_q4 == SCALE_SUBPEL_SHIFTS) { - if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) { - // No scaling in either direction. - sf->predict[0][0][0] = aom_convolve_copy; - sf->predict[0][0][1] = aom_convolve_avg; - sf->predict[0][1][0] = aom_convolve8_vert; - sf->predict[0][1][1] = aom_convolve8_avg_vert; - sf->predict[1][0][0] = aom_convolve8_horiz; - sf->predict[1][0][1] = aom_convolve8_avg_horiz; - } else { - // No scaling in x direction. Must always scale in the y direction. - sf->predict[0][0][0] = aom_convolve8_vert; - sf->predict[0][0][1] = aom_convolve8_avg_vert; - sf->predict[0][1][0] = aom_convolve8_vert; - sf->predict[0][1][1] = aom_convolve8_avg_vert; - sf->predict[1][0][0] = aom_convolve8; - sf->predict[1][0][1] = aom_convolve8_avg; - } - } else { - if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) { - // No scaling in the y direction. Must always scale in the x direction. - sf->predict[0][0][0] = aom_convolve8_horiz; - sf->predict[0][0][1] = aom_convolve8_avg_horiz; - sf->predict[0][1][0] = aom_convolve8; - sf->predict[0][1][1] = aom_convolve8_avg; - sf->predict[1][0][0] = aom_convolve8_horiz; - sf->predict[1][0][1] = aom_convolve8_avg_horiz; - } else { - // Must always scale in both directions. - sf->predict[0][0][0] = aom_convolve8; - sf->predict[0][0][1] = aom_convolve8_avg; - sf->predict[0][1][0] = aom_convolve8; - sf->predict[0][1][1] = aom_convolve8_avg; - sf->predict[1][0][0] = aom_convolve8; - sf->predict[1][0][1] = aom_convolve8_avg; - } - } - // 2D subpel motion always gets filtered in both directions - sf->predict[1][1][0] = aom_convolve8; - sf->predict[1][1][1] = aom_convolve8_avg; - -#if CONFIG_HIGHBITDEPTH - if (use_highbd) { - if (sf->x_step_q4 == SCALE_SUBPEL_SHIFTS) { - if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) { - // No scaling in either direction. - sf->highbd_predict[0][0][0] = aom_highbd_convolve_copy; - sf->highbd_predict[0][0][1] = aom_highbd_convolve_avg; - sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert; - sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert; - sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz; - sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz; - } else { - // No scaling in x direction. Must always scale in the y direction. - sf->highbd_predict[0][0][0] = aom_highbd_convolve8_vert; - sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_vert; - sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert; - sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert; - sf->highbd_predict[1][0][0] = aom_highbd_convolve8; - sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg; - } - } else { - if (sf->y_step_q4 == SCALE_SUBPEL_SHIFTS) { - // No scaling in the y direction. Must always scale in the x direction. - sf->highbd_predict[0][0][0] = aom_highbd_convolve8_horiz; - sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_horiz; - sf->highbd_predict[0][1][0] = aom_highbd_convolve8; - sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg; - sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz; - sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz; - } else { - // Must always scale in both directions. - sf->highbd_predict[0][0][0] = aom_highbd_convolve8; - sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg; - sf->highbd_predict[0][1][0] = aom_highbd_convolve8; - sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg; - sf->highbd_predict[1][0][0] = aom_highbd_convolve8; - sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg; - } - } - // 2D subpel motion always gets filtered in both directions. - sf->highbd_predict[1][1][0] = aom_highbd_convolve8; - sf->highbd_predict[1][1][1] = aom_highbd_convolve8_avg; - } -#endif // CONFIG_HIGHBITDEPTH + // AV1 convolve functions + // Special case convolve functions should produce the same result as + // av1_convolve_2d. + // subpel_x_q4 == 0 && subpel_y_q4 == 0 + sf->convolve[0][0][0] = av1_convolve_2d_copy_sr; + // subpel_x_q4 == 0 + sf->convolve[0][1][0] = av1_convolve_y_sr; + // subpel_y_q4 == 0 + sf->convolve[1][0][0] = av1_convolve_x_sr; + // subpel_x_q4 != 0 && subpel_y_q4 != 0 + sf->convolve[1][1][0] = av1_convolve_2d_sr; + // subpel_x_q4 == 0 && subpel_y_q4 == 0 + sf->convolve[0][0][1] = av1_jnt_convolve_2d_copy; + // subpel_x_q4 == 0 + sf->convolve[0][1][1] = av1_jnt_convolve_y; + // subpel_y_q4 == 0 + sf->convolve[1][0][1] = av1_jnt_convolve_x; + // subpel_x_q4 != 0 && subpel_y_q4 != 0 + sf->convolve[1][1][1] = av1_jnt_convolve_2d; + // AV1 High BD convolve functions + // Special case convolve functions should produce the same result as + // av1_highbd_convolve_2d. + // subpel_x_q4 == 0 && subpel_y_q4 == 0 + sf->highbd_convolve[0][0][0] = av1_highbd_convolve_2d_copy_sr; + // subpel_x_q4 == 0 + sf->highbd_convolve[0][1][0] = av1_highbd_convolve_y_sr; + // subpel_y_q4 == 0 + sf->highbd_convolve[1][0][0] = av1_highbd_convolve_x_sr; + // subpel_x_q4 != 0 && subpel_y_q4 != 0 + sf->highbd_convolve[1][1][0] = av1_highbd_convolve_2d_sr; + // subpel_x_q4 == 0 && subpel_y_q4 == 0 + sf->highbd_convolve[0][0][1] = av1_highbd_jnt_convolve_2d_copy; + // subpel_x_q4 == 0 + sf->highbd_convolve[0][1][1] = av1_highbd_jnt_convolve_y; + // subpel_y_q4 == 0 + sf->highbd_convolve[1][0][1] = av1_highbd_jnt_convolve_x; + // subpel_x_q4 != 0 && subpel_y_q4 != 0 + sf->highbd_convolve[1][1][1] = av1_highbd_jnt_convolve_2d; } |