diff options
author | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:15 -0500 |
---|---|---|
committer | trav90 <travawine@palemoon.org> | 2018-10-19 21:52:20 -0500 |
commit | bbcc64772580c8a979288791afa02d30bc476d2e (patch) | |
tree | 437ce94c3fdd7497508e5b55de06c6d011678597 /third_party/aom/av1/common/restoration.c | |
parent | 14805f6ddbfb173c327768fff9f81f40ce5e81b0 (diff) | |
download | UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.gz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.lz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.tar.xz UXP-bbcc64772580c8a979288791afa02d30bc476d2e.zip |
Update aom to v1.0.0
Update aom to commit id d14c5bb4f336ef1842046089849dee4a301fbbf0.
Diffstat (limited to 'third_party/aom/av1/common/restoration.c')
-rw-r--r-- | third_party/aom/av1/common/restoration.c | 2684 |
1 files changed, 1181 insertions, 1503 deletions
diff --git a/third_party/aom/av1/common/restoration.c b/third_party/aom/av1/common/restoration.c index 00441f072..58a5275ca 100644 --- a/third_party/aom/av1/common/restoration.c +++ b/third_party/aom/av1/common/restoration.c @@ -12,100 +12,130 @@ #include <math.h> -#include "./aom_config.h" -#include "./aom_dsp_rtcd.h" -#include "./aom_scale_rtcd.h" +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" + +#include "aom_mem/aom_mem.h" #include "av1/common/onyxc_int.h" +#include "av1/common/resize.h" #include "av1/common/restoration.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" +// The 's' values are calculated based on original 'r' and 'e' values in the +// spec using GenSgrprojVtable(). +// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid). const sgr_params_type sgr_params[SGRPROJ_PARAMS] = { -#if USE_HIGHPASS_IN_SGRPROJ - // corner, edge, r2, eps2 - { -1, 2, 1, 1 }, { -1, 2, 1, 2 }, { -1, 2, 1, 3 }, { -1, 2, 1, 4 }, - { -1, 2, 1, 5 }, { -2, 3, 1, 2 }, { -2, 3, 1, 3 }, { -2, 3, 1, 4 }, - { -2, 3, 1, 5 }, { -2, 3, 1, 6 }, { -3, 4, 1, 3 }, { -3, 4, 1, 4 }, - { -3, 4, 1, 5 }, { -3, 4, 1, 6 }, { -3, 4, 1, 7 }, { -3, 4, 1, 8 } -#else -// r1, eps1, r2, eps2 -#if MAX_RADIUS == 2 - { 2, 12, 1, 4 }, { 2, 15, 1, 6 }, { 2, 18, 1, 8 }, { 2, 20, 1, 9 }, - { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 }, - { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 2, 30, 1, 2 }, - { 2, 50, 1, 12 }, { 2, 60, 1, 13 }, { 2, 70, 1, 14 }, { 2, 80, 1, 15 }, -#else - { 2, 12, 1, 4 }, { 2, 15, 1, 6 }, { 2, 18, 1, 8 }, { 2, 20, 1, 9 }, - { 2, 22, 1, 10 }, { 2, 25, 1, 11 }, { 2, 35, 1, 12 }, { 2, 45, 1, 13 }, - { 2, 55, 1, 14 }, { 2, 65, 1, 15 }, { 2, 75, 1, 16 }, { 3, 30, 1, 10 }, - { 3, 50, 1, 12 }, { 3, 50, 2, 25 }, { 3, 60, 2, 35 }, { 3, 70, 2, 45 }, -#endif // MAX_RADIUS == 2 -#endif + { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } }, + { { 2, 1 }, { 93, 1618 } }, { { 2, 1 }, { 80, 1438 } }, + { { 2, 1 }, { 70, 1295 } }, { { 2, 1 }, { 58, 1177 } }, + { { 2, 1 }, { 47, 1079 } }, { { 2, 1 }, { 37, 996 } }, + { { 2, 1 }, { 30, 925 } }, { { 2, 1 }, { 25, 863 } }, + { { 0, 1 }, { -1, 2589 } }, { { 0, 1 }, { -1, 1618 } }, + { { 0, 1 }, { -1, 1177 } }, { { 0, 1 }, { -1, 925 } }, + { { 2, 0 }, { 56, -1 } }, { { 2, 0 }, { 22, -1 } }, }; -typedef void (*restore_func_type)(uint8_t *data8, int width, int height, - int stride, RestorationInternal *rst, - uint8_t *dst8, int dst_stride); -#if CONFIG_HIGHBITDEPTH -typedef void (*restore_func_highbd_type)(uint8_t *data8, int width, int height, - int stride, RestorationInternal *rst, - int bit_depth, uint8_t *dst8, - int dst_stride); -#endif // CONFIG_HIGHBITDEPTH - -int av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rst_info, - int width, int height) { - const int ntiles = av1_get_rest_ntiles( - width, height, rst_info->restoration_tilesize, NULL, NULL, NULL, NULL); - aom_free(rst_info->restoration_type); - CHECK_MEM_ERROR(cm, rst_info->restoration_type, - (RestorationType *)aom_malloc( - sizeof(*rst_info->restoration_type) * ntiles)); - aom_free(rst_info->wiener_info); - CHECK_MEM_ERROR( - cm, rst_info->wiener_info, - (WienerInfo *)aom_memalign(16, sizeof(*rst_info->wiener_info) * ntiles)); - memset(rst_info->wiener_info, 0, sizeof(*rst_info->wiener_info) * ntiles); - aom_free(rst_info->sgrproj_info); - CHECK_MEM_ERROR( - cm, rst_info->sgrproj_info, - (SgrprojInfo *)aom_malloc(sizeof(*rst_info->sgrproj_info) * ntiles)); - return ntiles; +AV1PixelRect av1_whole_frame_rect(const AV1_COMMON *cm, int is_uv) { + AV1PixelRect rect; + + int ss_x = is_uv && cm->subsampling_x; + int ss_y = is_uv && cm->subsampling_y; + + rect.top = 0; + rect.bottom = ROUND_POWER_OF_TWO(cm->height, ss_y); + rect.left = 0; + rect.right = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x); + return rect; +} + +// Count horizontal or vertical units per tile (use a width or height for +// tile_size, respectively). We basically want to divide the tile size by the +// size of a restoration unit. Rather than rounding up unconditionally as you +// might expect, we round to nearest, which models the way a right or bottom +// restoration unit can extend to up to 150% its normal width or height. The +// max with 1 is to deal with tiles that are smaller than half of a restoration +// unit. +int av1_lr_count_units_in_tile(int unit_size, int tile_size) { + return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1); +} + +void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi, + int is_uv) { + // We need to allocate enough space for restoration units to cover the + // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the + // top-left and we can use av1_get_tile_rect(). With CONFIG_MAX_TILE, we have + // to do the computation ourselves, iterating over the tiles and keeping + // track of the largest width and height, then upscaling. + const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); + const int max_tile_w = tile_rect.right - tile_rect.left; + const int max_tile_h = tile_rect.bottom - tile_rect.top; + + // To calculate hpertile and vpertile (horizontal and vertical units per + // tile), we basically want to divide the largest tile width or height by the + // size of a restoration unit. Rather than rounding up unconditionally as you + // might expect, we round to nearest, which models the way a right or bottom + // restoration unit can extend to up to 150% its normal width or height. The + // max with 1 is to deal with tiles that are smaller than half of a + // restoration unit. + const int unit_size = rsi->restoration_unit_size; + const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w); + const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h); + + rsi->units_per_tile = hpertile * vpertile; + rsi->horz_units_per_tile = hpertile; + rsi->vert_units_per_tile = vpertile; + + const int ntiles = 1; + const int nunits = ntiles * rsi->units_per_tile; + + aom_free(rsi->unit_info); + CHECK_MEM_ERROR(cm, rsi->unit_info, + (RestorationUnitInfo *)aom_memalign( + 16, sizeof(*rsi->unit_info) * nunits)); } void av1_free_restoration_struct(RestorationInfo *rst_info) { - aom_free(rst_info->restoration_type); - rst_info->restoration_type = NULL; - aom_free(rst_info->wiener_info); - rst_info->wiener_info = NULL; - aom_free(rst_info->sgrproj_info); - rst_info->sgrproj_info = NULL; + aom_free(rst_info->unit_info); + rst_info->unit_info = NULL; } -// TODO(debargha): This table can be substantially reduced since only a few -// values are actually used. -int sgrproj_mtable[MAX_EPS][MAX_NELEM]; +#if 0 +// Pair of values for each sgrproj parameter: +// Index 0 corresponds to r[0], e[0] +// Index 1 corresponds to r[1], e[1] +int sgrproj_mtable[SGRPROJ_PARAMS][2]; static void GenSgrprojVtable() { - int e, n; - for (e = 1; e <= MAX_EPS; ++e) - for (n = 1; n <= MAX_NELEM; ++n) { - const int n2e = n * n * e; - sgrproj_mtable[e - 1][n - 1] = - (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e); + for (int i = 0; i < SGRPROJ_PARAMS; ++i) { + const sgr_params_type *const params = &sgr_params[i]; + for (int j = 0; j < 2; ++j) { + const int e = params->e[j]; + const int r = params->r[j]; + if (r == 0) { // filter is disabled + sgrproj_mtable[i][j] = -1; // mark invalid + } else { // filter is enabled + const int n = (2 * r + 1) * (2 * r + 1); + const int n2e = n * n * e; + assert(n2e != 0); + sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e); + } } + } } +#endif -void av1_loop_restoration_precal() { GenSgrprojVtable(); } - -static void loop_restoration_init(RestorationInternal *rst, int kf) { - rst->keyframe = kf; +void av1_loop_restoration_precal() { +#if 0 + GenSgrprojVtable(); +#endif } -void extend_frame(uint8_t *data, int width, int height, int stride, - int border_horz, int border_vert) { +static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride, + int border_horz, int border_vert) { uint8_t *data_p; int i; for (i = 0; i < height; ++i) { @@ -123,261 +153,297 @@ void extend_frame(uint8_t *data, int width, int height, int stride, } } -#if CONFIG_STRIPED_LOOP_RESTORATION - -// This function setup a processing stripe by replacing the vertical -// stripe boundary (2 lines above and 2 lines below) by data coming -// from the above/below buffers. Before doing so the original -// frame data is saved into a temporary buffer, such that it -// can be restored by the restore_processing_stripe_boundary -// function after the filtering of the processing stripe. -// Returns the height of the processing stripe -static int setup_processing_stripe_boundary(int y0, int v_end, int h_start, - int h_end, uint8_t *data, - int stride, - RestorationInternal *rst, - int use_highbd) { - int y, y_stripe_topmost, stripe_index, i; - int tile_offset = RESTORATION_TILE_OFFSET >> rst->subsampling_y; - int stripe_height = rst->rsi->procunit_height; - int comp = rst->component; - uint8_t *boundary_above_buf = rst->stripe_boundary_above[comp]; - uint8_t *boundary_below_buf = rst->stripe_boundary_below[comp]; - int boundary_stride = rst->stripe_boundary_stride[comp]; - int x0 = h_start - RESTORATION_EXTRA_HORZ; - int x1 = h_end + RESTORATION_EXTRA_HORZ; - - stripe_index = (y0 + tile_offset) / stripe_height; - y_stripe_topmost = stripe_index * stripe_height - tile_offset; - boundary_above_buf += - ((stripe_index - 1) * 2 * boundary_stride + RESTORATION_EXTRA_HORZ) - << use_highbd; - boundary_below_buf += - (stripe_index * 2 * boundary_stride + RESTORATION_EXTRA_HORZ) - << use_highbd; - - // setup the 2 lines above the stripe - for (i = 0; i < 2; i++) { - y = y_stripe_topmost - 2 + i; - if (y >= 0 && y < y0 && y >= y0 - 2) { - uint8_t *p = data + ((y * stride + x0) << use_highbd); - uint8_t *new_data = - boundary_above_buf + ((i * boundary_stride + x0) << use_highbd); - // printf("above %3d %3d: %08x %08x : %08x %08x\n", y, x0, - // ((uint32_t*)p)[0], ((uint32_t*)p)[1], ((uint32_t*)new_data)[0], - // ((uint32_t*)new_data)[1]); - // Save old pixels - memcpy(rst->tmp_save_above[i], p, (x1 - x0) << use_highbd); - // Replace width pixels from boundary_above_buf - memcpy(p, new_data, (x1 - x0) << use_highbd); - } +static void extend_frame_highbd(uint16_t *data, int width, int height, + int stride, int border_horz, int border_vert) { + uint16_t *data_p; + int i, j; + for (i = 0; i < height; ++i) { + data_p = data + i * stride; + for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0]; + for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1]; } - // setup the 2 lines below the stripe - for (i = 0; i < 2; i++) { - y = y_stripe_topmost + stripe_height + i; - if (y < v_end + 2) { - uint8_t *p = data + ((y * stride + x0) << use_highbd); - uint8_t *new_data = - boundary_below_buf + ((i * boundary_stride + x0) << use_highbd); - // printf("below %3d %3d: %08x %08x : %08x %08x\n", y, x0, - // ((uint32_t*)p)[0], ((uint32_t*)p)[1], ((uint32_t*)new_data)[0], - // ((uint32_t*)new_data)[1]); - // Save old pixels - memcpy(rst->tmp_save_below[i], p, (x1 - x0) << use_highbd); - // Replace width pixels from boundary_below_buf - memcpy(p, new_data, (x1 - x0) << use_highbd); - } + data_p = data - border_horz; + for (i = -border_vert; i < 0; ++i) { + memcpy(data_p + i * stride, data_p, + (width + 2 * border_horz) * sizeof(uint16_t)); + } + for (i = height; i < height + border_vert; ++i) { + memcpy(data_p + i * stride, data_p + (height - 1) * stride, + (width + 2 * border_horz) * sizeof(uint16_t)); } - // Return actual stripe height - return AOMMIN(v_end, y_stripe_topmost + stripe_height) - y0; } -// This function restores the boundary lines modified by -// setup_processing_stripe_boundary. -static void restore_processing_stripe_boundary(int y0, int v_end, int h_start, - int h_end, uint8_t *data, - int stride, - RestorationInternal *rst, - int use_highbd) { - int y, y_stripe_topmost, i, stripe_index; - int tile_offset = 8 >> rst->subsampling_y; - int stripe_height = rst->rsi->procunit_height; - int x0 = h_start - RESTORATION_EXTRA_HORZ; - int x1 = h_end + RESTORATION_EXTRA_HORZ; - - stripe_index = (y0 + tile_offset) / stripe_height; - y_stripe_topmost = stripe_index * stripe_height - tile_offset; - - // restore the 2 lines above the stripe - for (i = 0; i < 2; i++) { - y = y_stripe_topmost - 2 + i; - if (y >= 0 && y < y0 && y >= y0 - 2) { - uint8_t *p = data + ((y * stride + x0) << use_highbd); - memcpy(p, rst->tmp_save_above[i], (x1 - x0) << use_highbd); - } - } - // restore the 2 lines below the stripe - for (i = 0; i < 2; i++) { - y = y_stripe_topmost + stripe_height + i; - if (y < v_end + 2) { - uint8_t *p = data + ((y * stride + x0) << use_highbd); - memcpy(p, rst->tmp_save_below[i], (x1 - x0) << use_highbd); - } - } +void extend_frame(uint8_t *data, int width, int height, int stride, + int border_horz, int border_vert, int highbd) { + if (highbd) + extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride, + border_horz, border_vert); + else + extend_frame_lowbd(data, width, height, stride, border_horz, border_vert); } -#endif +static void copy_tile_lowbd(int width, int height, const uint8_t *src, + int src_stride, uint8_t *dst, int dst_stride) { + for (int i = 0; i < height; ++i) + memcpy(dst + i * dst_stride, src + i * src_stride, width); +} -static void loop_copy_tile(uint8_t *data, int tile_idx, int width, int height, - int stride, RestorationInternal *rst, uint8_t *dst, - int dst_stride) { - const int tile_width = rst->tile_width; - const int tile_height = rst->tile_height; - RestorationTileLimits limits = - av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, -#if CONFIG_STRIPED_LOOP_RESTORATION - tile_height, width, height, rst->subsampling_y); -#else - tile_height, width, height); -#endif - for (int i = limits.v_start; i < limits.v_end; ++i) - memcpy(dst + i * dst_stride + limits.h_start, - data + i * stride + limits.h_start, limits.h_end - limits.h_start); +static void copy_tile_highbd(int width, int height, const uint16_t *src, + int src_stride, uint16_t *dst, int dst_stride) { + for (int i = 0; i < height; ++i) + memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst)); } -static void stepdown_wiener_kernel(const InterpKernel orig, InterpKernel vert, - int boundary_dist, int istop) { - memcpy(vert, orig, sizeof(InterpKernel)); - switch (boundary_dist) { - case 0: - vert[WIENER_HALFWIN] += vert[2] + vert[1] + vert[0]; - vert[2] = vert[1] = vert[0] = 0; - break; - case 1: - vert[2] += vert[1] + vert[0]; - vert[1] = vert[0] = 0; - break; - case 2: - vert[1] += vert[0]; - vert[0] = 0; - break; - default: break; - } - if (!istop) { - int tmp; - tmp = vert[0]; - vert[0] = vert[WIENER_WIN - 1]; - vert[WIENER_WIN - 1] = tmp; - tmp = vert[1]; - vert[1] = vert[WIENER_WIN - 2]; - vert[WIENER_WIN - 2] = tmp; - tmp = vert[2]; - vert[2] = vert[WIENER_WIN - 3]; - vert[WIENER_WIN - 3] = tmp; - } +static void copy_tile(int width, int height, const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, int highbd) { + if (highbd) + copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride, + CONVERT_TO_SHORTPTR(dst), dst_stride); + else + copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride); } -static void loop_wiener_filter_tile(uint8_t *data, int tile_idx, int width, - int height, int stride, - RestorationInternal *rst, uint8_t *dst, - int dst_stride) { - const int procunit_width = rst->rsi->procunit_width; -#if CONFIG_STRIPED_LOOP_RESTORATION - int procunit_height; -#else - const int procunit_height = rst->rsi->procunit_height; -#endif - const int tile_width = rst->tile_width; - const int tile_height = rst->tile_height; - if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { - loop_copy_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); - return; +#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d)) + +// With striped loop restoration, the filtering for each 64-pixel stripe gets +// most of its input from the output of CDEF (stored in data8), but we need to +// fill out a border of 3 pixels above/below the stripe according to the +// following +// rules: +// +// * At a frame boundary, we copy the outermost row of CDEF pixels three times. +// This extension is done by a call to extend_frame() at the start of the loop +// restoration process, so the value of copy_above/copy_below doesn't strictly +// matter. +// However, by setting *copy_above = *copy_below = 1 whenever loop filtering +// across tiles is disabled, we can allow +// {setup,restore}_processing_stripe_boundary to assume that the top/bottom +// data has always been copied, simplifying the behaviour at the left and +// right edges of tiles. +// +// * If we're at a tile boundary and loop filtering across tiles is enabled, +// then there is a logical stripe which is 64 pixels high, but which is split +// into an 8px high and a 56px high stripe so that the processing (and +// coefficient set usage) can be aligned to tiles. +// In this case, we use the 3 rows of CDEF output across the boundary for +// context; this corresponds to leaving the frame buffer as-is. +// +// * If we're at a tile boundary and loop filtering across tiles is disabled, +// then we take the outermost row of CDEF pixels *within the current tile* +// and copy it three times. Thus we behave exactly as if the tile were a full +// frame. +// +// * Otherwise, we're at a stripe boundary within a tile. In that case, we +// take 2 rows of deblocked pixels and extend them to 3 rows of context. +// +// The distinction between the latter two cases is handled by the +// av1_loop_restoration_save_boundary_lines() function, so here we just need +// to decide if we're overwriting the above/below boundary pixels or not. +static void get_stripe_boundary_info(const RestorationTileLimits *limits, + const AV1PixelRect *tile_rect, int ss_y, + int *copy_above, int *copy_below) { + *copy_above = 1; + *copy_below = 1; + + const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; + const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y; + + const int first_stripe_in_tile = (limits->v_start == tile_rect->top); + const int this_stripe_height = + full_stripe_height - (first_stripe_in_tile ? runit_offset : 0); + const int last_stripe_in_tile = + (limits->v_start + this_stripe_height >= tile_rect->bottom); + + if (first_stripe_in_tile) *copy_above = 0; + if (last_stripe_in_tile) *copy_below = 0; +} + +// Overwrite the border pixels around a processing stripe so that the conditions +// listed above get_stripe_boundary_info() are preserved. +// We save the pixels which get overwritten into a temporary buffer, so that +// they can be restored by restore_processing_stripe_boundary() after we've +// processed the stripe. +// +// limits gives the rectangular limits of the remaining stripes for the current +// restoration unit. rsb is the stored stripe boundaries (taken from either +// deblock or CDEF output as necessary). +// +// tile_rect is the limits of the current tile and tile_stripe0 is the index of +// the first stripe in this tile (needed to convert the tile-relative stripe +// index we get from limits into something we can look up in rsb). +static void setup_processing_stripe_boundary( + const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb, + int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride, + RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) { + // Offsets within the line buffers. The buffer logically starts at column + // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ) + // has column x0 in the buffer. + const int buf_stride = rsb->stripe_boundary_stride; + const int buf_x0_off = limits->h_start; + const int line_width = + (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ; + const int line_size = line_width << use_highbd; + + const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ; + + // Replace RESTORATION_BORDER pixels above the top of the stripe + // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above + // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by + // duplicating the topmost of the 2 lines (see the AOMMAX call when + // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1). + // + // Special case: If we're at the top of a tile, which isn't on the topmost + // tile row, and we're allowed to loop filter across tiles, then we have a + // logical 64-pixel-high stripe which has been split into an 8-pixel high + // stripe and a 56-pixel high stripe (the current one). So, in this case, + // we want to leave the boundary alone! + if (!opt) { + if (copy_above) { + uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride; + + for (int i = -RESTORATION_BORDER; i < 0; ++i) { + const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0); + const int buf_off = buf_x0_off + buf_row * buf_stride; + const uint8_t *buf = + rsb->stripe_boundary_above + (buf_off << use_highbd); + uint8_t *dst8 = data8_tl + i * data_stride; + // Save old pixels, then replace with data from stripe_boundary_above + memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER], + REAL_PTR(use_highbd, dst8), line_size); + memcpy(REAL_PTR(use_highbd, dst8), buf, line_size); + } + } + + // Replace RESTORATION_BORDER pixels below the bottom of the stripe. + // The second buffer row is repeated, so src_row gets the values 0, 1, 1 + // for i = 0, 1, 2. + if (copy_below) { + const int stripe_end = limits->v_start + h; + uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride; + + for (int i = 0; i < RESTORATION_BORDER; ++i) { + const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1); + const int buf_off = buf_x0_off + buf_row * buf_stride; + const uint8_t *src = + rsb->stripe_boundary_below + (buf_off << use_highbd); + + uint8_t *dst8 = data8_bl + i * data_stride; + // Save old pixels, then replace with data from stripe_boundary_below + memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size); + memcpy(REAL_PTR(use_highbd, dst8), src, line_size); + } + } + } else { + if (copy_above) { + uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride; + + // Only save and overwrite i=-RESTORATION_BORDER line. + uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride; + // Save old pixels, then replace with data from stripe_boundary_above + memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size); + memcpy(REAL_PTR(use_highbd, dst8), + REAL_PTR(use_highbd, + data8_tl + (-RESTORATION_BORDER + 1) * data_stride), + line_size); + } + + if (copy_below) { + const int stripe_end = limits->v_start + h; + uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride; + + // Only save and overwrite i=2 line. + uint8_t *dst8 = data8_bl + 2 * data_stride; + // Save old pixels, then replace with data from stripe_boundary_below + memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size); + memcpy(REAL_PTR(use_highbd, dst8), + REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size); + } } - InterpKernel vertical_topbot; - RestorationTileLimits limits = - av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, -#if CONFIG_STRIPED_LOOP_RESTORATION - tile_height, width, height, rst->subsampling_y); -#else - tile_height, width, height); -#endif +} - // Convolve the whole tile (done in blocks here to match the requirements - // of the vectorized convolve functions, but the result is equivalent) - for (int i = limits.v_start; i < limits.v_end; i += procunit_height) { -#if CONFIG_STRIPED_LOOP_RESTORATION - int h = setup_processing_stripe_boundary( - i, limits.v_end, limits.h_start, limits.h_end, data, stride, rst, 0); - h = ALIGN_POWER_OF_TWO(h, 1); - procunit_height = h; -#else - int h = AOMMIN(procunit_height, (limits.v_end - i + 15) & ~15); -#endif - for (int j = limits.h_start; j < limits.h_end; j += procunit_width) { - int w = AOMMIN(procunit_width, (limits.h_end - j + 15) & ~15); - const uint8_t *data_p = data + i * stride + j; - uint8_t *dst_p = dst + i * dst_stride + j; - // Note h is at least 16 - for (int b = 0; b < WIENER_HALFWIN - WIENER_BORDER_VERT; ++b) { - stepdown_wiener_kernel(rst->rsi->wiener_info[tile_idx].vfilter, - vertical_topbot, WIENER_BORDER_VERT + b, 1); -#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION - aom_convolve8_add_src_hip(data_p, stride, dst_p, dst_stride, - rst->rsi->wiener_info[tile_idx].hfilter, 16, - vertical_topbot, 16, w, 1); -#else - aom_convolve8_add_src(data_p, stride, dst_p, dst_stride, - rst->rsi->wiener_info[tile_idx].hfilter, 16, - vertical_topbot, 16, w, 1); -#endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION - data_p += stride; - dst_p += dst_stride; +// This function restores the boundary lines modified by +// setup_processing_stripe_boundary. +// +// Note: We need to be careful when handling the corners of the processing +// unit, because (eg.) the top-left corner is considered to be part of +// both the left and top borders. This means that, depending on the +// loop_filter_across_tiles_enabled flag, the corner pixels might get +// overwritten twice, once as part of the "top" border and once as part +// of the "left" border (or similar for other corners). +// +// Everything works out fine as long as we make sure to reverse the order +// when restoring, ie. we need to restore the left/right borders followed +// by the top/bottom borders. +static void restore_processing_stripe_boundary( + const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs, + int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above, + int copy_below, int opt) { + const int line_width = + (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ; + const int line_size = line_width << use_highbd; + + const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ; + + if (!opt) { + if (copy_above) { + uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride; + for (int i = -RESTORATION_BORDER; i < 0; ++i) { + uint8_t *dst8 = data8_tl + i * data_stride; + memcpy(REAL_PTR(use_highbd, dst8), + rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size); } -#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION - aom_convolve8_add_src_hip(data_p, stride, dst_p, dst_stride, - rst->rsi->wiener_info[tile_idx].hfilter, 16, - rst->rsi->wiener_info[tile_idx].vfilter, 16, w, - h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); -#else - aom_convolve8_add_src(data_p, stride, dst_p, dst_stride, - rst->rsi->wiener_info[tile_idx].hfilter, 16, - rst->rsi->wiener_info[tile_idx].vfilter, 16, w, - h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); -#endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION - data_p += stride * (h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); - dst_p += dst_stride * (h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); - for (int b = WIENER_HALFWIN - WIENER_BORDER_VERT - 1; b >= 0; --b) { - stepdown_wiener_kernel(rst->rsi->wiener_info[tile_idx].vfilter, - vertical_topbot, WIENER_BORDER_VERT + b, 0); -#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION - aom_convolve8_add_src_hip(data_p, stride, dst_p, dst_stride, - rst->rsi->wiener_info[tile_idx].hfilter, 16, - vertical_topbot, 16, w, 1); -#else - aom_convolve8_add_src(data_p, stride, dst_p, dst_stride, - rst->rsi->wiener_info[tile_idx].hfilter, 16, - vertical_topbot, 16, w, 1); -#endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION - data_p += stride; - dst_p += dst_stride; + } + + if (copy_below) { + const int stripe_bottom = limits->v_start + h; + uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride; + + for (int i = 0; i < RESTORATION_BORDER; ++i) { + if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break; + + uint8_t *dst8 = data8_bl + i * data_stride; + memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size); + } + } + } else { + if (copy_above) { + uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride; + + // Only restore i=-RESTORATION_BORDER line. + uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride; + memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size); + } + + if (copy_below) { + const int stripe_bottom = limits->v_start + h; + uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride; + + // Only restore i=2 line. + if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) { + uint8_t *dst8 = data8_bl + 2 * data_stride; + memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size); } } -#if CONFIG_STRIPED_LOOP_RESTORATION - restore_processing_stripe_boundary(i, limits.v_end, limits.h_start, - limits.h_end, data, stride, rst, 0); -#endif } } -static void loop_wiener_filter(uint8_t *data, int width, int height, int stride, - RestorationInternal *rst, uint8_t *dst, - int dst_stride) { - int tile_idx; - extend_frame(data, width, height, stride, WIENER_BORDER_HORZ, - WIENER_BORDER_VERT); - for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { - loop_wiener_filter_tile(data, tile_idx, width, height, stride, rst, dst, - dst_stride); +static void wiener_filter_stripe(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, const uint8_t *src, + int src_stride, uint8_t *dst, int dst_stride, + int32_t *tmpbuf, int bit_depth) { + (void)tmpbuf; + (void)bit_depth; + assert(bit_depth == 8); + const ConvolveParams conv_params = get_conv_params_wiener(8); + + for (int j = 0; j < stripe_width; j += procunit_width) { + int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15); + const uint8_t *src_p = src + j; + uint8_t *dst_p = dst + j; + av1_wiener_convolve_add_src( + src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16, + rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params); } } @@ -391,6 +457,8 @@ static void loop_wiener_filter(uint8_t *data, int width, int height, int stride, static void boxsum1(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c; + assert(width > 2 * SGRPROJ_BORDER_HORZ); + assert(height > 2 * SGRPROJ_BORDER_VERT); // Vertical sum over 3-pixel regions, from src into dst. if (!sqr) { @@ -456,6 +524,8 @@ static void boxsum1(int32_t *src, int width, int height, int src_stride, static void boxsum2(int32_t *src, int width, int height, int src_stride, int sqr, int32_t *dst, int dst_stride) { int i, j, a, b, c, d, e; + assert(width > 2 * SGRPROJ_BORDER_HORZ); + assert(height > 2 * SGRPROJ_BORDER_VERT); // Vertical sum over 5-pixel regions, from src into dst. if (!sqr) { @@ -540,202 +610,33 @@ static void boxsum2(int32_t *src, int width, int height, int src_stride, } } -static void boxsum3(int32_t *src, int width, int height, int src_stride, - int sqr, int32_t *dst, int dst_stride) { - int i, j, a, b, c, d, e, f, g; - - // Vertical sum over 7-pixel regions, from src into dst. - if (!sqr) { - for (j = 0; j < width; ++j) { - a = src[j]; - b = src[1 * src_stride + j]; - c = src[2 * src_stride + j]; - d = src[3 * src_stride + j]; - e = src[4 * src_stride + j]; - f = src[5 * src_stride + j]; - g = src[6 * src_stride + j]; - - dst[j] = a + b + c + d; - dst[dst_stride + j] = a + b + c + d + e; - dst[2 * dst_stride + j] = a + b + c + d + e + f; - for (i = 3; i < height - 4; ++i) { - dst[i * dst_stride + j] = a + b + c + d + e + f + g; - a = b; - b = c; - c = d; - d = e; - e = f; - f = g; - g = src[(i + 4) * src_stride + j]; - } - dst[i * dst_stride + j] = a + b + c + d + e + f + g; - dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g; - dst[(i + 2) * dst_stride + j] = c + d + e + f + g; - dst[(i + 3) * dst_stride + j] = d + e + f + g; - } - } else { - for (j = 0; j < width; ++j) { - a = src[j] * src[j]; - b = src[1 * src_stride + j] * src[1 * src_stride + j]; - c = src[2 * src_stride + j] * src[2 * src_stride + j]; - d = src[3 * src_stride + j] * src[3 * src_stride + j]; - e = src[4 * src_stride + j] * src[4 * src_stride + j]; - f = src[5 * src_stride + j] * src[5 * src_stride + j]; - g = src[6 * src_stride + j] * src[6 * src_stride + j]; - - dst[j] = a + b + c + d; - dst[dst_stride + j] = a + b + c + d + e; - dst[2 * dst_stride + j] = a + b + c + d + e + f; - for (i = 3; i < height - 4; ++i) { - dst[i * dst_stride + j] = a + b + c + d + e + f + g; - a = b; - b = c; - c = d; - d = e; - e = f; - f = g; - g = src[(i + 4) * src_stride + j] * src[(i + 4) * src_stride + j]; - } - dst[i * dst_stride + j] = a + b + c + d + e + f + g; - dst[(i + 1) * dst_stride + j] = b + c + d + e + f + g; - dst[(i + 2) * dst_stride + j] = c + d + e + f + g; - dst[(i + 3) * dst_stride + j] = d + e + f + g; - } - } - - // Horizontal sum over 7-pixel regions of dst - for (i = 0; i < height; ++i) { - a = dst[i * dst_stride]; - b = dst[i * dst_stride + 1]; - c = dst[i * dst_stride + 2]; - d = dst[i * dst_stride + 3]; - e = dst[i * dst_stride + 4]; - f = dst[i * dst_stride + 5]; - g = dst[i * dst_stride + 6]; - - dst[i * dst_stride] = a + b + c + d; - dst[i * dst_stride + 1] = a + b + c + d + e; - dst[i * dst_stride + 2] = a + b + c + d + e + f; - for (j = 3; j < width - 4; ++j) { - dst[i * dst_stride + j] = a + b + c + d + e + f + g; - a = b; - b = c; - c = d; - d = e; - e = f; - f = g; - g = dst[i * dst_stride + (j + 4)]; - } - dst[i * dst_stride + j] = a + b + c + d + e + f + g; - dst[i * dst_stride + (j + 1)] = b + c + d + e + f + g; - dst[i * dst_stride + (j + 2)] = c + d + e + f + g; - dst[i * dst_stride + (j + 3)] = d + e + f + g; - } -} - -// Generic version for any r. To be removed after experiments are done. -static void boxsumr(int32_t *src, int width, int height, int src_stride, int r, - int sqr, int32_t *dst, int dst_stride) { - int32_t *tmp = aom_malloc(width * height * sizeof(*tmp)); - int tmp_stride = width; - int i, j; - if (sqr) { - for (j = 0; j < width; ++j) tmp[j] = src[j] * src[j]; - for (j = 0; j < width; ++j) - for (i = 1; i < height; ++i) - tmp[i * tmp_stride + j] = - tmp[(i - 1) * tmp_stride + j] + - src[i * src_stride + j] * src[i * src_stride + j]; - } else { - memcpy(tmp, src, sizeof(*tmp) * width); - for (j = 0; j < width; ++j) - for (i = 1; i < height; ++i) - tmp[i * tmp_stride + j] = - tmp[(i - 1) * tmp_stride + j] + src[i * src_stride + j]; - } - for (i = 0; i <= r; ++i) - memcpy(&dst[i * dst_stride], &tmp[(i + r) * tmp_stride], - sizeof(*tmp) * width); - for (i = r + 1; i < height - r; ++i) - for (j = 0; j < width; ++j) - dst[i * dst_stride + j] = - tmp[(i + r) * tmp_stride + j] - tmp[(i - r - 1) * tmp_stride + j]; - for (i = height - r; i < height; ++i) - for (j = 0; j < width; ++j) - dst[i * dst_stride + j] = tmp[(height - 1) * tmp_stride + j] - - tmp[(i - r - 1) * tmp_stride + j]; - - for (i = 0; i < height; ++i) tmp[i * tmp_stride] = dst[i * dst_stride]; - for (i = 0; i < height; ++i) - for (j = 1; j < width; ++j) - tmp[i * tmp_stride + j] = - tmp[i * tmp_stride + j - 1] + dst[i * src_stride + j]; - - for (j = 0; j <= r; ++j) - for (i = 0; i < height; ++i) - dst[i * dst_stride + j] = tmp[i * tmp_stride + j + r]; - for (j = r + 1; j < width - r; ++j) - for (i = 0; i < height; ++i) - dst[i * dst_stride + j] = - tmp[i * tmp_stride + j + r] - tmp[i * tmp_stride + j - r - 1]; - for (j = width - r; j < width; ++j) - for (i = 0; i < height; ++i) - dst[i * dst_stride + j] = - tmp[i * tmp_stride + width - 1] - tmp[i * tmp_stride + j - r - 1]; - aom_free(tmp); -} - static void boxsum(int32_t *src, int width, int height, int src_stride, int r, int sqr, int32_t *dst, int dst_stride) { if (r == 1) boxsum1(src, width, height, src_stride, sqr, dst, dst_stride); else if (r == 2) boxsum2(src, width, height, src_stride, sqr, dst, dst_stride); - else if (r == 3) - boxsum3(src, width, height, src_stride, sqr, dst, dst_stride); else - boxsumr(src, width, height, src_stride, r, sqr, dst, dst_stride); + assert(0 && "Invalid value of r in self-guided filter"); } -static void boxnum(int width, int height, int r, int8_t *num, int num_stride) { - int i, j; - for (i = 0; i <= r; ++i) { - for (j = 0; j <= r; ++j) { - num[i * num_stride + j] = (r + 1 + i) * (r + 1 + j); - num[i * num_stride + (width - 1 - j)] = num[i * num_stride + j]; - num[(height - 1 - i) * num_stride + j] = num[i * num_stride + j]; - num[(height - 1 - i) * num_stride + (width - 1 - j)] = - num[i * num_stride + j]; - } - } - for (j = 0; j <= r; ++j) { - const int val = (2 * r + 1) * (r + 1 + j); - for (i = r + 1; i < height - r; ++i) { - num[i * num_stride + j] = val; - num[i * num_stride + (width - 1 - j)] = val; - } - } - for (i = 0; i <= r; ++i) { - const int val = (2 * r + 1) * (r + 1 + i); - for (j = r + 1; j < width - r; ++j) { - num[i * num_stride + j] = val; - num[(height - 1 - i) * num_stride + j] = val; - } - } - for (i = r + 1; i < height - r; ++i) { - for (j = r + 1; j < width - r; ++j) { - num[i * num_stride + j] = (2 * r + 1) * (2 * r + 1); - } +void decode_xq(const int *xqd, int *xq, const sgr_params_type *params) { + if (params->r[0] == 0) { + xq[0] = 0; + xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1]; + } else if (params->r[1] == 0) { + xq[0] = xqd[0]; + xq[1] = 0; + } else { + xq[0] = xqd[0]; + xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1]; } } -void decode_xq(int *xqd, int *xq) { - xq[0] = xqd[0]; - xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1]; -} - const int32_t x_by_xplus1[256] = { - 0, 128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239, + // Special case: Map 0 -> 1 (corresponding to a value of 1/256) + // instead of 0. See comments in selfguided_restoration_internal() for why + 1, 128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239, 240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247, 248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250, 250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252, @@ -758,19 +659,15 @@ const int32_t x_by_xplus1[256] = { const int32_t one_by_x[MAX_NELEM] = { 4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315, 293, 273, 256, 241, 228, 216, 205, 195, 186, 178, 171, 164, -#if MAX_RADIUS > 2 - 158, 152, 146, 141, 137, 132, 128, 124, 120, 117, 114, 111, 108, - 105, 102, 100, 98, 95, 93, 91, 89, 87, 85, 84 -#endif // MAX_RADIUS > 2 }; -static void av1_selfguided_restoration_internal(int32_t *dgd, int width, - int height, int dgd_stride, - int32_t *dst, int dst_stride, - int bit_depth, int r, int eps) { +static void selfguided_restoration_fast_internal( + int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst, + int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) { + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + const int r = params->r[radius_idx]; const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; - const int num_stride = width_ext; // Adjusting the stride of A and B here appears to avoid bad cache effects, // leading to a significant speed improvement. // We also align the stride to a multiple of 16 bytes, for consistency @@ -780,25 +677,24 @@ static void av1_selfguided_restoration_internal(int32_t *dgd, int width, int32_t B_[RESTORATION_PROC_UNIT_PELS]; int32_t *A = A_; int32_t *B = B_; - int8_t num_[RESTORATION_PROC_UNIT_PELS]; - int8_t *num = num_ + SGRPROJ_BORDER_VERT * num_stride + SGRPROJ_BORDER_HORZ; int i, j; - // Don't filter tiles with dimensions < 5 on any axis - if ((width < 5) || (height < 5)) return; + assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r"); + assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 && + "Need SGRPROJ_BORDER_* >= r+1"); boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, width_ext, height_ext, dgd_stride, r, 0, B, buf_stride); boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, width_ext, height_ext, dgd_stride, r, 1, A, buf_stride); - boxnum(width_ext, height_ext, r, num_, num_stride); - assert(r <= 3); A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; - for (i = 0; i < height; ++i) { - for (j = 0; j < width; ++j) { + // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie, + // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[]. + for (i = -1; i < height + 1; i += 2) { + for (j = -1; j < width + 1; ++j) { const int k = i * buf_stride + j; - const int n = num[i * num_stride + j]; + const int n = (2 * r + 1) * (2 * r + 1); // a < 2^16 * n < 2^22 regardless of bit depth uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8)); @@ -807,139 +703,192 @@ static void av1_selfguided_restoration_internal(int32_t *dgd, int width, // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28, // and p itself satisfies p < 2^14 * n^2 < 2^26. + // This bound on p is due to: + // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances + // // Note: Sometimes, in high bit depth, we can end up with a*n < b*b. // This is an artefact of rounding, and can only happen if all pixels // are (almost) identical, so in this case we saturate to p=0. uint32_t p = (a * n < b * b) ? 0 : a * n - b * b; - uint32_t s = sgrproj_mtable[eps - 1][n - 1]; + + const uint32_t s = params->s[radius_idx]; // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32 // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12 // (this holds even after accounting for the rounding in s) const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS); - A[k] = x_by_xplus1[AOMMIN(z, 255)]; // < 2^8 - - // SGRPROJ_SGR - A[k] < 2^8, B[k] < 2^(bit_depth) * n, + // Note: We have to be quite careful about the value of A[k]. + // This is used as a blend factor between individual pixel values and the + // local mean. So it logically has a range of [0, 256], including both + // endpoints. + // + // This is a pain for hardware, as we'd like something which can be stored + // in exactly 8 bits. + // Further, in the calculation of B[k] below, if z == 0 and r == 2, + // then A[k] "should be" 0. But then we can end up setting B[k] to a value + // slightly above 2^(8 + bit depth), due to rounding in the value of + // one_by_x[25-1]. + // + // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0. + // This fixes the above issues (256 - A[k] fits in a uint8, and we can't + // overflow), without significantly affecting the final result: z == 0 + // implies that the image is essentially "flat", so the local mean and + // individual pixel values are very similar. + // + // Note that saturating on the other side, ie. requring A[k] <= 255, + // would be a bad idea, as that corresponds to the case where the image + // is very variable, when we want to preserve the local pixel value as + // much as possible. + A[k] = x_by_xplus1[AOMMIN(z, 255)]; // in range [1, 256] + + // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n, // one_by_x[n - 1] = round(2^12 / n) // => the product here is < 2^(20 + bit_depth) <= 2^32, // and B[k] is set to a value < 2^(8 + bit depth) + // This holds even with the rounding in one_by_x and in the overall + // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8. B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) * (uint32_t)B[k] * (uint32_t)one_by_x[n - 1], SGRPROJ_RECIP_BITS); } } - i = 0; - j = 0; - { - const int k = i * buf_stride + j; - const int l = i * dgd_stride + j; - const int m = i * dst_stride + j; - const int nb = 3; - const int32_t a = - 3 * A[k] + 2 * A[k + 1] + 2 * A[k + buf_stride] + A[k + buf_stride + 1]; - const int32_t b = - 3 * B[k] + 2 * B[k + 1] + 2 * B[k + buf_stride] + B[k + buf_stride + 1]; - const int32_t v = a * dgd[l] + b; - dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); - } - i = 0; - j = width - 1; - { - const int k = i * buf_stride + j; - const int l = i * dgd_stride + j; - const int m = i * dst_stride + j; - const int nb = 3; - const int32_t a = - 3 * A[k] + 2 * A[k - 1] + 2 * A[k + buf_stride] + A[k + buf_stride - 1]; - const int32_t b = - 3 * B[k] + 2 * B[k - 1] + 2 * B[k + buf_stride] + B[k + buf_stride - 1]; - const int32_t v = a * dgd[l] + b; - dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); - } - i = height - 1; - j = 0; - { - const int k = i * buf_stride + j; - const int l = i * dgd_stride + j; - const int m = i * dst_stride + j; - const int nb = 3; - const int32_t a = - 3 * A[k] + 2 * A[k + 1] + 2 * A[k - buf_stride] + A[k - buf_stride + 1]; - const int32_t b = - 3 * B[k] + 2 * B[k + 1] + 2 * B[k - buf_stride] + B[k - buf_stride + 1]; - const int32_t v = a * dgd[l] + b; - dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); - } - i = height - 1; - j = width - 1; - { - const int k = i * buf_stride + j; - const int l = i * dgd_stride + j; - const int m = i * dst_stride + j; - const int nb = 3; - const int32_t a = - 3 * A[k] + 2 * A[k - 1] + 2 * A[k - buf_stride] + A[k - buf_stride - 1]; - const int32_t b = - 3 * B[k] + 2 * B[k - 1] + 2 * B[k - buf_stride] + B[k - buf_stride - 1]; - const int32_t v = a * dgd[l] + b; - dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); - } - i = 0; - for (j = 1; j < width - 1; ++j) { - const int k = i * buf_stride + j; - const int l = i * dgd_stride + j; - const int m = i * dst_stride + j; - const int nb = 3; - const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k + buf_stride] + - A[k + buf_stride - 1] + A[k + buf_stride + 1]; - const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k + buf_stride] + - B[k + buf_stride - 1] + B[k + buf_stride + 1]; - const int32_t v = a * dgd[l] + b; - dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); - } - i = height - 1; - for (j = 1; j < width - 1; ++j) { - const int k = i * buf_stride + j; - const int l = i * dgd_stride + j; - const int m = i * dst_stride + j; - const int nb = 3; - const int32_t a = A[k] + 2 * (A[k - 1] + A[k + 1]) + A[k - buf_stride] + - A[k - buf_stride - 1] + A[k - buf_stride + 1]; - const int32_t b = B[k] + 2 * (B[k - 1] + B[k + 1]) + B[k - buf_stride] + - B[k - buf_stride - 1] + B[k - buf_stride + 1]; - const int32_t v = a * dgd[l] + b; - dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); - } - j = 0; - for (i = 1; i < height - 1; ++i) { - const int k = i * buf_stride + j; - const int l = i * dgd_stride + j; - const int m = i * dst_stride + j; - const int nb = 3; - const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) + - A[k + 1] + A[k - buf_stride + 1] + A[k + buf_stride + 1]; - const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) + - B[k + 1] + B[k - buf_stride + 1] + B[k + buf_stride + 1]; - const int32_t v = a * dgd[l] + b; - dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); + // Use the A[] and B[] arrays to calculate the filtered image + assert(r == 2); + for (i = 0; i < height; ++i) { + if (!(i & 1)) { // even row + for (j = 0; j < width; ++j) { + const int k = i * buf_stride + j; + const int l = i * dgd_stride + j; + const int m = i * dst_stride + j; + const int nb = 5; + const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 + + (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] + + A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) * + 5; + const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 + + (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] + + B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) * + 5; + const int32_t v = a * dgd[l] + b; + dst[m] = + ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); + } + } else { // odd row + for (j = 0; j < width; ++j) { + const int k = i * buf_stride + j; + const int l = i * dgd_stride + j; + const int m = i * dst_stride + j; + const int nb = 4; + const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5; + const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5; + const int32_t v = a * dgd[l] + b; + dst[m] = + ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); + } + } } - j = width - 1; - for (i = 1; i < height - 1; ++i) { - const int k = i * buf_stride + j; - const int l = i * dgd_stride + j; - const int m = i * dst_stride + j; - const int nb = 3; - const int32_t a = A[k] + 2 * (A[k - buf_stride] + A[k + buf_stride]) + - A[k - 1] + A[k - buf_stride - 1] + A[k + buf_stride - 1]; - const int32_t b = B[k] + 2 * (B[k - buf_stride] + B[k + buf_stride]) + - B[k - 1] + B[k - buf_stride - 1] + B[k + buf_stride - 1]; - const int32_t v = a * dgd[l] + b; - dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); +} + +static void selfguided_restoration_internal(int32_t *dgd, int width, int height, + int dgd_stride, int32_t *dst, + int dst_stride, int bit_depth, + int sgr_params_idx, + int radius_idx) { + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + const int r = params->r[radius_idx]; + const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; + const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; + // Adjusting the stride of A and B here appears to avoid bad cache effects, + // leading to a significant speed improvement. + // We also align the stride to a multiple of 16 bytes, for consistency + // with the SIMD version of this function. + int buf_stride = ((width_ext + 3) & ~3) + 16; + int32_t A_[RESTORATION_PROC_UNIT_PELS]; + int32_t B_[RESTORATION_PROC_UNIT_PELS]; + int32_t *A = A_; + int32_t *B = B_; + int i, j; + + assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r"); + assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 && + "Need SGRPROJ_BORDER_* >= r+1"); + + boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, + width_ext, height_ext, dgd_stride, r, 0, B, buf_stride); + boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, + width_ext, height_ext, dgd_stride, r, 1, A, buf_stride); + A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie, + // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[]. + for (i = -1; i < height + 1; ++i) { + for (j = -1; j < width + 1; ++j) { + const int k = i * buf_stride + j; + const int n = (2 * r + 1) * (2 * r + 1); + + // a < 2^16 * n < 2^22 regardless of bit depth + uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8)); + // b < 2^8 * n < 2^14 regardless of bit depth + uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8); + + // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28, + // and p itself satisfies p < 2^14 * n^2 < 2^26. + // This bound on p is due to: + // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances + // + // Note: Sometimes, in high bit depth, we can end up with a*n < b*b. + // This is an artefact of rounding, and can only happen if all pixels + // are (almost) identical, so in this case we saturate to p=0. + uint32_t p = (a * n < b * b) ? 0 : a * n - b * b; + + const uint32_t s = params->s[radius_idx]; + + // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32 + // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12 + // (this holds even after accounting for the rounding in s) + const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS); + + // Note: We have to be quite careful about the value of A[k]. + // This is used as a blend factor between individual pixel values and the + // local mean. So it logically has a range of [0, 256], including both + // endpoints. + // + // This is a pain for hardware, as we'd like something which can be stored + // in exactly 8 bits. + // Further, in the calculation of B[k] below, if z == 0 and r == 2, + // then A[k] "should be" 0. But then we can end up setting B[k] to a value + // slightly above 2^(8 + bit depth), due to rounding in the value of + // one_by_x[25-1]. + // + // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0. + // This fixes the above issues (256 - A[k] fits in a uint8, and we can't + // overflow), without significantly affecting the final result: z == 0 + // implies that the image is essentially "flat", so the local mean and + // individual pixel values are very similar. + // + // Note that saturating on the other side, ie. requring A[k] <= 255, + // would be a bad idea, as that corresponds to the case where the image + // is very variable, when we want to preserve the local pixel value as + // much as possible. + A[k] = x_by_xplus1[AOMMIN(z, 255)]; // in range [1, 256] + + // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n, + // one_by_x[n - 1] = round(2^12 / n) + // => the product here is < 2^(20 + bit_depth) <= 2^32, + // and B[k] is set to a value < 2^(8 + bit depth) + // This holds even with the rounding in one_by_x and in the overall + // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8. + B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) * + (uint32_t)B[k] * + (uint32_t)one_by_x[n - 1], + SGRPROJ_RECIP_BITS); + } } - for (i = 1; i < height - 1; ++i) { - for (j = 1; j < width - 1; ++j) { + // Use the A[] and B[] arrays to calculate the filtered image + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { const int k = i * buf_stride + j; const int l = i * dgd_stride + j; const int m = i * dst_stride + j; @@ -962,968 +911,697 @@ static void av1_selfguided_restoration_internal(int32_t *dgd, int width, } } -void av1_selfguided_restoration_c(uint8_t *dgd, int width, int height, - int stride, int32_t *dst, int dst_stride, - int r, int eps) { +void av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height, + int dgd_stride, int32_t *flt0, int32_t *flt1, + int flt_stride, int sgr_params_idx, + int bit_depth, int highbd) { int32_t dgd32_[RESTORATION_PROC_UNIT_PELS]; const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ; int32_t *dgd32 = dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ; - int i, j; - for (i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { - for (j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { - dgd32[i * dgd32_stride + j] = dgd[i * stride + j]; - } - } - av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, dst, - dst_stride, 8, r, eps); -} -void av1_highpass_filter_c(uint8_t *dgd, int width, int height, int stride, - int32_t *dst, int dst_stride, int corner, int edge) { - int i, j; - const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge); - - i = 0; - j = 0; - { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) + - corner * (dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]); - } - i = 0; - j = width - 1; - { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) + - corner * (dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]); - } - i = height - 1; - j = 0; - { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) + - corner * (dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]); - } - i = height - 1; - j = width - 1; - { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) + - corner * (dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]); - } - i = 0; - for (j = 1; j < width - 1; ++j) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = center * dgd[k] + - edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) + - corner * (dgd[k + stride - 1] + dgd[k + stride + 1] + dgd[k - 1] + - dgd[k + 1]); - } - i = height - 1; - for (j = 1; j < width - 1; ++j) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = center * dgd[k] + - edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) + - corner * (dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k - 1] + - dgd[k + 1]); - } - j = 0; - for (i = 1; i < height - 1; ++i) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = center * dgd[k] + - edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) + - corner * (dgd[k + stride + 1] + dgd[k - stride + 1] + - dgd[k - stride] + dgd[k + stride]); - } - j = width - 1; - for (i = 1; i < height - 1; ++i) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = center * dgd[k] + - edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) + - corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + - dgd[k - stride] + dgd[k + stride]); - } - for (i = 1; i < height - 1; ++i) { - for (j = 1; j < width - 1; ++j) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + - edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) + - corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + - dgd[k - stride + 1] + dgd[k + stride + 1]); + if (highbd) { + const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8); + for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { + for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { + dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j]; + } + } + } else { + for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { + for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { + dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j]; + } } } + + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + // If params->r == 0 we skip the corresponding filter. We only allow one of + // the radii to be 0, as having both equal to 0 would be equivalent to + // skipping SGR entirely. + assert(!(params->r[0] == 0 && params->r[1] == 0)); + + if (params->r[0] > 0) + selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride, + flt0, flt_stride, bit_depth, + sgr_params_idx, 0); + if (params->r[1] > 0) + selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1, + flt_stride, bit_depth, sgr_params_idx, 1); } -void apply_selfguided_restoration_c(uint8_t *dat, int width, int height, - int stride, int eps, int *xqd, uint8_t *dst, - int dst_stride, int32_t *tmpbuf) { +void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height, + int stride, int eps, const int *xqd, + uint8_t *dst8, int dst_stride, + int32_t *tmpbuf, int bit_depth, + int highbd) { + int32_t *flt0 = tmpbuf; + int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; + assert(width * height <= RESTORATION_UNITPELS_MAX); + + av1_selfguided_restoration_c(dat8, width, height, stride, flt0, flt1, width, + eps, bit_depth, highbd); + const sgr_params_type *const params = &sgr_params[eps]; int xq[2]; - int32_t *flt1 = tmpbuf; - int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; - int i, j; - assert(width * height <= RESTORATION_TILEPELS_MAX); -#if USE_HIGHPASS_IN_SGRPROJ - av1_highpass_filter_c(dat, width, height, stride, flt1, width, - sgr_params[eps].corner, sgr_params[eps].edge); -#else - av1_selfguided_restoration_c(dat, width, height, stride, flt1, width, - sgr_params[eps].r1, sgr_params[eps].e1); -#endif // USE_HIGHPASS_IN_SGRPROJ - av1_selfguided_restoration_c(dat, width, height, stride, flt2, width, - sgr_params[eps].r2, sgr_params[eps].e2); - decode_xq(xqd, xq); - for (i = 0; i < height; ++i) { - for (j = 0; j < width; ++j) { + decode_xq(xqd, xq, params); + for (int i = 0; i < height; ++i) { + for (int j = 0; j < width; ++j) { const int k = i * width + j; - const int l = i * stride + j; - const int m = i * dst_stride + j; - const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS); - const int32_t f1 = (int32_t)flt1[k] - u; - const int32_t f2 = (int32_t)flt2[k] - u; - const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); + uint8_t *dst8ij = dst8 + i * dst_stride + j; + const uint8_t *dat8ij = dat8 + i * stride + j; + + const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij; + const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS; + int32_t v = u << SGRPROJ_PRJ_BITS; + // If params->r == 0 then we skipped the filtering in + // av1_selfguided_restoration_c, i.e. flt[k] == u + if (params->r[0] > 0) v += xq[0] * (flt0[k] - u); + if (params->r[1] > 0) v += xq[1] * (flt1[k] - u); const int16_t w = (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); - dst[m] = clip_pixel(w); - } - } -} -static void loop_sgrproj_filter_tile(uint8_t *data, int tile_idx, int width, - int height, int stride, - RestorationInternal *rst, uint8_t *dst, - int dst_stride) { - const int procunit_width = rst->rsi->procunit_width; -#if CONFIG_STRIPED_LOOP_RESTORATION - int procunit_height; -#else - const int procunit_height = rst->rsi->procunit_height; -#endif - const int tile_width = rst->tile_width; - const int tile_height = rst->tile_height; - if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { - loop_copy_tile(data, tile_idx, width, height, stride, rst, dst, dst_stride); - return; - } - RestorationTileLimits limits = - av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, -#if CONFIG_STRIPED_LOOP_RESTORATION - tile_height, width, height, rst->subsampling_y); -#else - tile_height, width, height); -#endif - for (int i = limits.v_start; i < limits.v_end; i += procunit_height) { -#if CONFIG_STRIPED_LOOP_RESTORATION - int h = setup_processing_stripe_boundary( - i, limits.v_end, limits.h_start, limits.h_end, data, stride, rst, 0); - procunit_height = h; -#else - int h = AOMMIN(procunit_height, limits.v_end - i); -#endif - for (int j = limits.h_start; j < limits.h_end; j += procunit_width) { - int w = AOMMIN(procunit_width, limits.h_end - j); - uint8_t *data_p = data + i * stride + j; - uint8_t *dst_p = dst + i * dst_stride + j; - apply_selfguided_restoration( - data_p, w, h, stride, rst->rsi->sgrproj_info[tile_idx].ep, - rst->rsi->sgrproj_info[tile_idx].xqd, dst_p, dst_stride, rst->tmpbuf); + const uint16_t out = clip_pixel_highbd(w, bit_depth); + if (highbd) + *CONVERT_TO_SHORTPTR(dst8ij) = out; + else + *dst8ij = (uint8_t)out; } -#if CONFIG_STRIPED_LOOP_RESTORATION - restore_processing_stripe_boundary(i, limits.v_end, limits.h_start, - limits.h_end, data, stride, rst, 0); -#endif } } -static void loop_sgrproj_filter(uint8_t *data, int width, int height, - int stride, RestorationInternal *rst, - uint8_t *dst, int dst_stride) { - int tile_idx; - extend_frame(data, width, height, stride, SGRPROJ_BORDER_HORZ, - SGRPROJ_BORDER_VERT); - for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { - loop_sgrproj_filter_tile(data, tile_idx, width, height, stride, rst, dst, - dst_stride); +static void sgrproj_filter_stripe(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, const uint8_t *src, + int src_stride, uint8_t *dst, int dst_stride, + int32_t *tmpbuf, int bit_depth) { + (void)bit_depth; + assert(bit_depth == 8); + + for (int j = 0; j < stripe_width; j += procunit_width) { + int w = AOMMIN(procunit_width, stripe_width - j); + apply_selfguided_restoration(src + j, w, stripe_height, src_stride, + rui->sgrproj_info.ep, rui->sgrproj_info.xqd, + dst + j, dst_stride, tmpbuf, bit_depth, 0); } } -static void loop_switchable_filter(uint8_t *data, int width, int height, - int stride, RestorationInternal *rst, - uint8_t *dst, int dst_stride) { - int tile_idx; - extend_frame(data, width, height, stride, RESTORATION_BORDER_HORZ, - RESTORATION_BORDER_VERT); - for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { - if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { - loop_copy_tile(data, tile_idx, width, height, stride, rst, dst, - dst_stride); - } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_WIENER) { - loop_wiener_filter_tile(data, tile_idx, width, height, stride, rst, dst, - dst_stride); - } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) { - loop_sgrproj_filter_tile(data, tile_idx, width, height, stride, rst, dst, - dst_stride); - } +static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, const uint8_t *src8, + int src_stride, uint8_t *dst8, + int dst_stride, int32_t *tmpbuf, + int bit_depth) { + (void)tmpbuf; + const ConvolveParams conv_params = get_conv_params_wiener(bit_depth); + + for (int j = 0; j < stripe_width; j += procunit_width) { + int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15); + const uint8_t *src8_p = src8 + j; + uint8_t *dst8_p = dst8 + j; + av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride, + rui->wiener_info.hfilter, 16, + rui->wiener_info.vfilter, 16, w, + stripe_height, &conv_params, bit_depth); } } -#if CONFIG_HIGHBITDEPTH -void extend_frame_highbd(uint16_t *data, int width, int height, int stride, - int border_horz, int border_vert) { - uint16_t *data_p; - int i, j; - for (i = 0; i < height; ++i) { - data_p = data + i * stride; - for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0]; - for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1]; - } - data_p = data - border_horz; - for (i = -border_vert; i < 0; ++i) { - memcpy(data_p + i * stride, data_p, - (width + 2 * border_horz) * sizeof(uint16_t)); - } - for (i = height; i < height + border_vert; ++i) { - memcpy(data_p + i * stride, data_p + (height - 1) * stride, - (width + 2 * border_horz) * sizeof(uint16_t)); +static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, + const uint8_t *src8, int src_stride, + uint8_t *dst8, int dst_stride, + int32_t *tmpbuf, int bit_depth) { + for (int j = 0; j < stripe_width; j += procunit_width) { + int w = AOMMIN(procunit_width, stripe_width - j); + apply_selfguided_restoration(src8 + j, w, stripe_height, src_stride, + rui->sgrproj_info.ep, rui->sgrproj_info.xqd, + dst8 + j, dst_stride, tmpbuf, bit_depth, 1); } } -static void loop_copy_tile_highbd(uint16_t *data, int tile_idx, int width, - int height, int stride, - RestorationInternal *rst, uint16_t *dst, - int dst_stride) { - const int tile_width = rst->tile_width; - const int tile_height = rst->tile_height; - RestorationTileLimits limits = - av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, -#if CONFIG_STRIPED_LOOP_RESTORATION - tile_height, width, height, rst->subsampling_y); -#else - tile_height, width, height); -#endif - for (int i = limits.v_start; i < limits.v_end; ++i) - memcpy(dst + i * dst_stride + limits.h_start, - data + i * stride + limits.h_start, - (limits.h_end - limits.h_start) * sizeof(*dst)); -} +typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, const uint8_t *src, + int src_stride, uint8_t *dst, int dst_stride, + int32_t *tmpbuf, int bit_depth); -static void loop_wiener_filter_tile_highbd(uint16_t *data, int tile_idx, - int width, int height, int stride, - RestorationInternal *rst, - int bit_depth, uint16_t *dst, - int dst_stride) { - const int procunit_width = rst->rsi->procunit_width; -#if CONFIG_STRIPED_LOOP_RESTORATION - int procunit_height; -#else - const int procunit_height = rst->rsi->procunit_height; -#endif - const int tile_width = rst->tile_width; - const int tile_height = rst->tile_height; +#define NUM_STRIPE_FILTERS 4 + +static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = { + wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd, + sgrproj_filter_stripe_highbd +}; - if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { - loop_copy_tile_highbd(data, tile_idx, width, height, stride, rst, dst, - dst_stride); +// Filter one restoration unit +void av1_loop_restoration_filter_unit( + const RestorationTileLimits *limits, const RestorationUnitInfo *rui, + const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs, + const AV1PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y, + int highbd, int bit_depth, uint8_t *data8, int stride, uint8_t *dst8, + int dst_stride, int32_t *tmpbuf, int optimized_lr) { + RestorationType unit_rtype = rui->restoration_type; + + int unit_h = limits->v_end - limits->v_start; + int unit_w = limits->h_end - limits->h_start; + uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start; + uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start; + + if (unit_rtype == RESTORE_NONE) { + copy_tile(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride, highbd); return; } - RestorationTileLimits limits = - av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, -#if CONFIG_STRIPED_LOOP_RESTORATION - tile_height, width, height, rst->subsampling_y); -#else - tile_height, width, height); -#endif - InterpKernel vertical_topbot; - - // Convolve the whole tile (done in blocks here to match the requirements - // of the vectorized convolve functions, but the result is equivalent) - for (int i = limits.v_start; i < limits.v_end; i += procunit_height) { -#if CONFIG_STRIPED_LOOP_RESTORATION - int h = setup_processing_stripe_boundary(i, limits.v_end, limits.h_start, - limits.h_end, (uint8_t *)data, - stride, rst, 1); - h = ALIGN_POWER_OF_TWO(h, 1); - procunit_height = h; -#else - int h = AOMMIN(procunit_height, (limits.v_end - i + 15) & ~15); -#endif - for (int j = limits.h_start; j < limits.h_end; j += procunit_width) { - int w = AOMMIN(procunit_width, (limits.h_end - j + 15) & ~15); - const uint16_t *data_p = data + i * stride + j; - uint16_t *dst_p = dst + i * dst_stride + j; - // Note h is at least 16 - for (int b = 0; b < WIENER_HALFWIN - WIENER_BORDER_VERT; ++b) { - stepdown_wiener_kernel(rst->rsi->wiener_info[tile_idx].vfilter, - vertical_topbot, WIENER_BORDER_VERT + b, 1); -#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION - aom_highbd_convolve8_add_src_hip( - CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), - dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, - vertical_topbot, 16, w, 1, bit_depth); -#else - aom_highbd_convolve8_add_src(CONVERT_TO_BYTEPTR(data_p), stride, - CONVERT_TO_BYTEPTR(dst_p), dst_stride, - rst->rsi->wiener_info[tile_idx].hfilter, - 16, vertical_topbot, 16, w, 1, bit_depth); -#endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION - data_p += stride; - dst_p += dst_stride; - } -#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION - aom_highbd_convolve8_add_src_hip( - CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), - dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, - rst->rsi->wiener_info[tile_idx].vfilter, 16, w, - h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2, bit_depth); -#else - aom_highbd_convolve8_add_src( - CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), - dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, - rst->rsi->wiener_info[tile_idx].vfilter, 16, w, - h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2, bit_depth); -#endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION - data_p += stride * (h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); - dst_p += dst_stride * (h - (WIENER_HALFWIN - WIENER_BORDER_VERT) * 2); - for (int b = WIENER_HALFWIN - WIENER_BORDER_VERT - 1; b >= 0; --b) { - stepdown_wiener_kernel(rst->rsi->wiener_info[tile_idx].vfilter, - vertical_topbot, WIENER_BORDER_VERT + b, 0); -#if USE_WIENER_HIGH_INTERMEDIATE_PRECISION - aom_highbd_convolve8_add_src_hip( - CONVERT_TO_BYTEPTR(data_p), stride, CONVERT_TO_BYTEPTR(dst_p), - dst_stride, rst->rsi->wiener_info[tile_idx].hfilter, 16, - vertical_topbot, 16, w, 1, bit_depth); -#else - aom_highbd_convolve8_add_src(CONVERT_TO_BYTEPTR(data_p), stride, - CONVERT_TO_BYTEPTR(dst_p), dst_stride, - rst->rsi->wiener_info[tile_idx].hfilter, - 16, vertical_topbot, 16, w, 1, bit_depth); -#endif // USE_WIENER_HIGH_INTERMEDIATE_PRECISION - data_p += stride; - dst_p += dst_stride; - } - } -#if CONFIG_STRIPED_LOOP_RESTORATION - restore_processing_stripe_boundary(i, limits.v_end, limits.h_start, - limits.h_end, (uint8_t *)data, stride, - rst, 1); -#endif + + const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ); + assert(filter_idx < NUM_STRIPE_FILTERS); + const stripe_filter_fun stripe_filter = stripe_filters[filter_idx]; + + const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; + + // Convolve the whole tile one stripe at a time + RestorationTileLimits remaining_stripes = *limits; + int i = 0; + while (i < unit_h) { + int copy_above, copy_below; + remaining_stripes.v_start = limits->v_start + i; + + get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, ©_above, + ©_below); + + const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; + const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y; + + // Work out where this stripe's boundaries are within + // rsb->stripe_boundary_{above,below} + const int tile_stripe = + (remaining_stripes.v_start - tile_rect->top + runit_offset) / + full_stripe_height; + const int frame_stripe = tile_stripe0 + tile_stripe; + const int rsb_row = RESTORATION_CTX_VERT * frame_stripe; + + // Calculate this stripe's height, based on two rules: + // * The topmost stripe in each tile is 8 luma pixels shorter than usual. + // * We can't extend past the end of the current restoration unit + const int nominal_stripe_height = + full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0); + const int h = AOMMIN(nominal_stripe_height, + remaining_stripes.v_end - remaining_stripes.v_start); + + setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd, + h, data8, stride, rlbs, copy_above, + copy_below, optimized_lr); + + stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride, + dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth); + + restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h, + data8, stride, copy_above, copy_below, + optimized_lr); + + i += h; } } -static void loop_wiener_filter_highbd(uint8_t *data8, int width, int height, - int stride, RestorationInternal *rst, - int bit_depth, uint8_t *dst8, - int dst_stride) { - uint16_t *data = CONVERT_TO_SHORTPTR(data8); - uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); - int tile_idx; - extend_frame_highbd(data, width, height, stride, WIENER_BORDER_HORZ, - WIENER_BORDER_VERT); - for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { - loop_wiener_filter_tile_highbd(data, tile_idx, width, height, stride, rst, - bit_depth, dst, dst_stride); - } +static void filter_frame_on_tile(int tile_row, int tile_col, void *priv, + AV1_COMMON *cm) { + (void)tile_col; + FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv; + ctxt->tile_stripe0 = (tile_row == 0) ? 0 : cm->rst_end_stripe[tile_row - 1]; } -void av1_selfguided_restoration_highbd_c(uint16_t *dgd, int width, int height, - int stride, int32_t *dst, - int dst_stride, int bit_depth, int r, - int eps) { - int32_t dgd32_[RESTORATION_PROC_UNIT_PELS]; - const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ; - int32_t *dgd32 = - dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ; - int i, j; - for (i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { - for (j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { - dgd32[i * dgd32_stride + j] = dgd[i * stride + j]; - } - } - av1_selfguided_restoration_internal(dgd32, width, height, dgd32_stride, dst, - dst_stride, bit_depth, r, eps); +static void filter_frame_on_unit(const RestorationTileLimits *limits, + const AV1PixelRect *tile_rect, + int rest_unit_idx, void *priv, int32_t *tmpbuf, + RestorationLineBuffers *rlbs) { + FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv; + const RestorationInfo *rsi = ctxt->rsi; + + av1_loop_restoration_filter_unit( + limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, tile_rect, + ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->highbd, ctxt->bit_depth, + ctxt->data8, ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf, + rsi->optimized_lr); } -void av1_highpass_filter_highbd_c(uint16_t *dgd, int width, int height, - int stride, int32_t *dst, int dst_stride, - int corner, int edge) { - int i, j; - const int center = (1 << SGRPROJ_RST_BITS) - 4 * (corner + edge); - - i = 0; - j = 0; - { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + edge * (dgd[k + 1] + dgd[k + stride] + dgd[k] * 2) + - corner * (dgd[k + stride + 1] + dgd[k + 1] + dgd[k + stride] + dgd[k]); - } - i = 0; - j = width - 1; - { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + edge * (dgd[k - 1] + dgd[k + stride] + dgd[k] * 2) + - corner * (dgd[k + stride - 1] + dgd[k - 1] + dgd[k + stride] + dgd[k]); - } - i = height - 1; - j = 0; - { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + edge * (dgd[k + 1] + dgd[k - stride] + dgd[k] * 2) + - corner * (dgd[k - stride + 1] + dgd[k + 1] + dgd[k - stride] + dgd[k]); - } - i = height - 1; - j = width - 1; - { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + edge * (dgd[k - 1] + dgd[k - stride] + dgd[k] * 2) + - corner * (dgd[k - stride - 1] + dgd[k - 1] + dgd[k - stride] + dgd[k]); - } - i = 0; - for (j = 1; j < width - 1; ++j) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = center * dgd[k] + - edge * (dgd[k - 1] + dgd[k + stride] + dgd[k + 1] + dgd[k]) + - corner * (dgd[k + stride - 1] + dgd[k + stride + 1] + dgd[k - 1] + - dgd[k + 1]); - } - i = height - 1; - for (j = 1; j < width - 1; ++j) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = center * dgd[k] + - edge * (dgd[k - 1] + dgd[k - stride] + dgd[k + 1] + dgd[k]) + - corner * (dgd[k - stride - 1] + dgd[k - stride + 1] + dgd[k - 1] + - dgd[k + 1]); - } - j = 0; - for (i = 1; i < height - 1; ++i) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = center * dgd[k] + - edge * (dgd[k - stride] + dgd[k + 1] + dgd[k + stride] + dgd[k]) + - corner * (dgd[k + stride + 1] + dgd[k - stride + 1] + - dgd[k - stride] + dgd[k + stride]); - } - j = width - 1; - for (i = 1; i < height - 1; ++i) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = center * dgd[k] + - edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k]) + - corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + - dgd[k - stride] + dgd[k + stride]); - } - for (i = 1; i < height - 1; ++i) { - for (j = 1; j < width - 1; ++j) { - const int k = i * stride + j; - const int l = i * dst_stride + j; - dst[l] = - center * dgd[k] + - edge * (dgd[k - stride] + dgd[k - 1] + dgd[k + stride] + dgd[k + 1]) + - corner * (dgd[k + stride - 1] + dgd[k - stride - 1] + - dgd[k - stride + 1] + dgd[k + stride + 1]); +void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt, + YV12_BUFFER_CONFIG *frame, + AV1_COMMON *cm, int optimized_lr, + int num_planes) { + const int bit_depth = cm->bit_depth; + const int highbd = cm->use_highbitdepth; + lr_ctxt->dst = &cm->rst_frame; + + const int frame_width = frame->crop_widths[0]; + const int frame_height = frame->crop_heights[0]; + if (aom_realloc_frame_buffer(lr_ctxt->dst, frame_width, frame_height, + cm->subsampling_x, cm->subsampling_y, + cm->use_highbitdepth, AOM_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL) < 0) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate restoration dst buffer"); + + lr_ctxt->on_rest_unit = filter_frame_on_unit; + lr_ctxt->frame = frame; + for (int plane = 0; plane < num_planes; ++plane) { + RestorationInfo *rsi = &cm->rst_info[plane]; + RestorationType rtype = rsi->frame_restoration_type; + rsi->optimized_lr = optimized_lr; + + if (rtype == RESTORE_NONE) { + continue; } + + const int is_uv = plane > 0; + const int plane_width = frame->crop_widths[is_uv]; + const int plane_height = frame->crop_heights[is_uv]; + FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane]; + + extend_frame(frame->buffers[plane], plane_width, plane_height, + frame->strides[is_uv], RESTORATION_BORDER, RESTORATION_BORDER, + highbd); + + lr_plane_ctxt->rsi = rsi; + lr_plane_ctxt->ss_x = is_uv && cm->subsampling_x; + lr_plane_ctxt->ss_y = is_uv && cm->subsampling_y; + lr_plane_ctxt->highbd = highbd; + lr_plane_ctxt->bit_depth = bit_depth; + lr_plane_ctxt->data8 = frame->buffers[plane]; + lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane]; + lr_plane_ctxt->data_stride = frame->strides[is_uv]; + lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv]; + lr_plane_ctxt->tile_rect = av1_whole_frame_rect(cm, is_uv); + filter_frame_on_tile(LR_TILE_ROW, LR_TILE_COL, lr_plane_ctxt, cm); } } -void apply_selfguided_restoration_highbd_c(uint16_t *dat, int width, int height, - int stride, int bit_depth, int eps, - int *xqd, uint16_t *dst, - int dst_stride, int32_t *tmpbuf) { - int xq[2]; - int32_t *flt1 = tmpbuf; - int32_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX; - int i, j; - assert(width * height <= RESTORATION_TILEPELS_MAX); -#if USE_HIGHPASS_IN_SGRPROJ - av1_highpass_filter_highbd_c(dat, width, height, stride, flt1, width, - sgr_params[eps].corner, sgr_params[eps].edge); -#else - av1_selfguided_restoration_highbd_c(dat, width, height, stride, flt1, width, - bit_depth, sgr_params[eps].r1, - sgr_params[eps].e1); -#endif // USE_HIGHPASS_IN_SGRPROJ - av1_selfguided_restoration_highbd_c(dat, width, height, stride, flt2, width, - bit_depth, sgr_params[eps].r2, - sgr_params[eps].e2); - decode_xq(xqd, xq); - for (i = 0; i < height; ++i) { - for (j = 0; j < width; ++j) { - const int k = i * width + j; - const int l = i * stride + j; - const int m = i * dst_stride + j; - const int32_t u = ((int32_t)dat[l] << SGRPROJ_RST_BITS); - const int32_t f1 = (int32_t)flt1[k] - u; - const int32_t f2 = (int32_t)flt2[k] - u; - const int32_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS); - const int16_t w = - (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); - dst[m] = (uint16_t)clip_pixel_highbd(w, bit_depth); - } +void av1_loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt, + AV1_COMMON *cm, int num_planes) { + typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, + YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, + int vstart, int vend); + static const copy_fun copy_funs[3] = { + aom_yv12_partial_copy_y, aom_yv12_partial_copy_u, aom_yv12_partial_copy_v + }; + + for (int plane = 0; plane < num_planes; ++plane) { + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; + AV1PixelRect tile_rect = loop_rest_ctxt->ctxt[plane].tile_rect; + copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, tile_rect.left, + tile_rect.right, tile_rect.top, tile_rect.bottom); } } -static void loop_sgrproj_filter_tile_highbd(uint16_t *data, int tile_idx, - int width, int height, int stride, - RestorationInternal *rst, - int bit_depth, uint16_t *dst, - int dst_stride) { - const int procunit_width = rst->rsi->procunit_width; -#if CONFIG_STRIPED_LOOP_RESTORATION - int procunit_height; -#else - const int procunit_height = rst->rsi->procunit_height; -#endif - const int tile_width = rst->tile_width; - const int tile_height = rst->tile_height; +static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm, + int num_planes) { + FilterFrameCtxt *ctxt = lr_ctxt->ctxt; - if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { - loop_copy_tile_highbd(data, tile_idx, width, height, stride, rst, dst, - dst_stride); - return; - } - RestorationTileLimits limits = - av1_get_rest_tile_limits(tile_idx, rst->nhtiles, rst->nvtiles, tile_width, -#if CONFIG_STRIPED_LOOP_RESTORATION - tile_height, width, height, rst->subsampling_y); -#else - tile_height, width, height); -#endif - for (int i = limits.v_start; i < limits.v_end; i += procunit_height) { -#if CONFIG_STRIPED_LOOP_RESTORATION - int h = setup_processing_stripe_boundary(i, limits.v_end, limits.h_start, - limits.h_end, (uint8_t *)data, - stride, rst, 1); - procunit_height = h; -#else - int h = AOMMIN(procunit_height, limits.v_end - i); -#endif - for (int j = limits.h_start; j < limits.h_end; j += procunit_width) { - int w = AOMMIN(procunit_width, limits.h_end - j); - uint16_t *data_p = data + i * stride + j; - uint16_t *dst_p = dst + i * dst_stride + j; - apply_selfguided_restoration_highbd( - data_p, w, h, stride, bit_depth, rst->rsi->sgrproj_info[tile_idx].ep, - rst->rsi->sgrproj_info[tile_idx].xqd, dst_p, dst_stride, rst->tmpbuf); + for (int plane = 0; plane < num_planes; ++plane) { + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) { + continue; } -#if CONFIG_STRIPED_LOOP_RESTORATION - restore_processing_stripe_boundary(i, limits.v_end, limits.h_start, - limits.h_end, (uint8_t *)data, stride, - rst, 1); -#endif - } -} -static void loop_sgrproj_filter_highbd(uint8_t *data8, int width, int height, - int stride, RestorationInternal *rst, - int bit_depth, uint8_t *dst8, - int dst_stride) { - int tile_idx; - uint16_t *data = CONVERT_TO_SHORTPTR(data8); - uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); - extend_frame_highbd(data, width, height, stride, SGRPROJ_BORDER_HORZ, - SGRPROJ_BORDER_VERT); - for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { - loop_sgrproj_filter_tile_highbd(data, tile_idx, width, height, stride, rst, - bit_depth, dst, dst_stride); + av1_foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit, + &ctxt[plane], &ctxt[plane].tile_rect, + cm->rst_tmpbuf, cm->rlbs); } } -static void loop_switchable_filter_highbd(uint8_t *data8, int width, int height, - int stride, RestorationInternal *rst, - int bit_depth, uint8_t *dst8, - int dst_stride) { - uint16_t *data = CONVERT_TO_SHORTPTR(data8); - uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); - int tile_idx; - extend_frame_highbd(data, width, height, stride, RESTORATION_BORDER_HORZ, - RESTORATION_BORDER_VERT); - for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) { - if (rst->rsi->restoration_type[tile_idx] == RESTORE_NONE) { - loop_copy_tile_highbd(data, tile_idx, width, height, stride, rst, dst, - dst_stride); - } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_WIENER) { - loop_wiener_filter_tile_highbd(data, tile_idx, width, height, stride, rst, - bit_depth, dst, dst_stride); - } else if (rst->rsi->restoration_type[tile_idx] == RESTORE_SGRPROJ) { - loop_sgrproj_filter_tile_highbd(data, tile_idx, width, height, stride, - rst, bit_depth, dst, dst_stride); - } - } +void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame, + AV1_COMMON *cm, int optimized_lr, + void *lr_ctxt) { + assert(!cm->all_lossless); + const int num_planes = av1_num_planes(cm); + + AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; + + av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, + optimized_lr, num_planes); + + foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes); + + av1_loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes); } -#endif // CONFIG_HIGHBITDEPTH - -static void loop_restoration_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, - int start_mi_row, int end_mi_row, - int components_pattern, RestorationInfo *rsi, - YV12_BUFFER_CONFIG *dst) { - const int ywidth = frame->y_crop_width; - const int yheight = frame->y_crop_height; - const int uvwidth = frame->uv_crop_width; - const int uvheight = frame->uv_crop_height; - const int ystride = frame->y_stride; - const int uvstride = frame->uv_stride; - const int ystart = start_mi_row << MI_SIZE_LOG2; - const int uvstart = ystart >> cm->subsampling_y; - int yend = end_mi_row << MI_SIZE_LOG2; - int uvend = yend >> cm->subsampling_y; - restore_func_type restore_funcs[RESTORE_TYPES] = { - NULL, loop_wiener_filter, loop_sgrproj_filter, loop_switchable_filter - }; -#if CONFIG_HIGHBITDEPTH - restore_func_highbd_type restore_funcs_highbd[RESTORE_TYPES] = { - NULL, loop_wiener_filter_highbd, loop_sgrproj_filter_highbd, - loop_switchable_filter_highbd - }; -#endif // CONFIG_HIGHBITDEPTH - restore_func_type restore_func; -#if CONFIG_HIGHBITDEPTH - restore_func_highbd_type restore_func_highbd; -#endif // CONFIG_HIGHBITDEPTH - YV12_BUFFER_CONFIG dst_; - - yend = AOMMIN(yend, yheight); - uvend = AOMMIN(uvend, uvheight); - if (components_pattern == (1 << AOM_PLANE_Y)) { - // Only y - if (rsi[0].frame_restoration_type == RESTORE_NONE) { - if (dst) aom_yv12_copy_y(frame, dst); - return; - } - } else if (components_pattern == (1 << AOM_PLANE_U)) { - // Only U - if (rsi[1].frame_restoration_type == RESTORE_NONE) { - if (dst) aom_yv12_copy_u(frame, dst); - return; - } - } else if (components_pattern == (1 << AOM_PLANE_V)) { - // Only V - if (rsi[2].frame_restoration_type == RESTORE_NONE) { - if (dst) aom_yv12_copy_v(frame, dst); - return; - } - } else if (components_pattern == - ((1 << AOM_PLANE_Y) | (1 << AOM_PLANE_U) | (1 << AOM_PLANE_V))) { - // All components - if (rsi[0].frame_restoration_type == RESTORE_NONE && - rsi[1].frame_restoration_type == RESTORE_NONE && - rsi[2].frame_restoration_type == RESTORE_NONE) { - if (dst) aom_yv12_copy_frame(frame, dst); - return; - } - } - if (!dst) { - dst = &dst_; - memset(dst, 0, sizeof(YV12_BUFFER_CONFIG)); - if (aom_realloc_frame_buffer( - dst, ywidth, yheight, cm->subsampling_x, cm->subsampling_y, -#if CONFIG_HIGHBITDEPTH - cm->use_highbitdepth, -#endif - AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL) < 0) - aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, - "Failed to allocate restoration dst buffer"); - } +void av1_foreach_rest_unit_in_row( + RestorationTileLimits *limits, const AV1PixelRect *tile_rect, + rest_unit_visitor_t on_rest_unit, int row_number, int unit_size, + int unit_idx0, int hunits_per_tile, int vunits_per_tile, int plane, + void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs, + sync_read_fn_t on_sync_read, sync_write_fn_t on_sync_write, + struct AV1LrSyncData *const lr_sync) { + const int tile_w = tile_rect->right - tile_rect->left; + const int ext_size = unit_size * 3 / 2; + int x0 = 0, j = 0; + while (x0 < tile_w) { + int remaining_w = tile_w - x0; + int w = (remaining_w < ext_size) ? remaining_w : unit_size; - if ((components_pattern >> AOM_PLANE_Y) & 1) { - if (rsi[0].frame_restoration_type != RESTORE_NONE) { - cm->rst_internal.ntiles = av1_get_rest_ntiles( - ywidth, yheight, cm->rst_info[AOM_PLANE_Y].restoration_tilesize, - &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, - &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); - cm->rst_internal.rsi = &rsi[0]; -#if CONFIG_STRIPED_LOOP_RESTORATION - cm->rst_internal.component = AOM_PLANE_Y; - cm->rst_internal.subsampling_y = 0; -#endif - restore_func = - restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; -#if CONFIG_HIGHBITDEPTH - restore_func_highbd = - restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; - if (cm->use_highbitdepth) - restore_func_highbd( - frame->y_buffer + ystart * ystride, ywidth, yend - ystart, ystride, - &cm->rst_internal, cm->bit_depth, - dst->y_buffer + ystart * dst->y_stride, dst->y_stride); - else -#endif // CONFIG_HIGHBITDEPTH - restore_func(frame->y_buffer + ystart * ystride, ywidth, yend - ystart, - ystride, &cm->rst_internal, - dst->y_buffer + ystart * dst->y_stride, dst->y_stride); - } else { - aom_yv12_copy_y(frame, dst); - } - } + limits->h_start = tile_rect->left + x0; + limits->h_end = tile_rect->left + x0 + w; + assert(limits->h_end <= tile_rect->right); - if ((components_pattern >> AOM_PLANE_U) & 1) { - if (rsi[AOM_PLANE_U].frame_restoration_type != RESTORE_NONE) { - cm->rst_internal.ntiles = av1_get_rest_ntiles( - uvwidth, uvheight, cm->rst_info[AOM_PLANE_U].restoration_tilesize, - &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, - &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); - cm->rst_internal.rsi = &rsi[AOM_PLANE_U]; -#if CONFIG_STRIPED_LOOP_RESTORATION - cm->rst_internal.component = AOM_PLANE_U; - cm->rst_internal.subsampling_y = cm->subsampling_y; -#endif - restore_func = - restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; -#if CONFIG_HIGHBITDEPTH - restore_func_highbd = - restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; - if (cm->use_highbitdepth) - restore_func_highbd( - frame->u_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, - uvstride, &cm->rst_internal, cm->bit_depth, - dst->u_buffer + uvstart * dst->uv_stride, dst->uv_stride); - else -#endif // CONFIG_HIGHBITDEPTH - restore_func(frame->u_buffer + uvstart * uvstride, uvwidth, - uvend - uvstart, uvstride, &cm->rst_internal, - dst->u_buffer + uvstart * dst->uv_stride, dst->uv_stride); - } else { - aom_yv12_copy_u(frame, dst); - } - } + const int unit_idx = unit_idx0 + row_number * hunits_per_tile + j; - if ((components_pattern >> AOM_PLANE_V) & 1) { - if (rsi[AOM_PLANE_V].frame_restoration_type != RESTORE_NONE) { - cm->rst_internal.ntiles = av1_get_rest_ntiles( - uvwidth, uvheight, cm->rst_info[AOM_PLANE_V].restoration_tilesize, - &cm->rst_internal.tile_width, &cm->rst_internal.tile_height, - &cm->rst_internal.nhtiles, &cm->rst_internal.nvtiles); - cm->rst_internal.rsi = &rsi[AOM_PLANE_V]; -#if CONFIG_STRIPED_LOOP_RESTORATION - cm->rst_internal.component = AOM_PLANE_V; - cm->rst_internal.subsampling_y = cm->subsampling_y; -#endif - restore_func = - restore_funcs[cm->rst_internal.rsi->frame_restoration_type]; -#if CONFIG_HIGHBITDEPTH - restore_func_highbd = - restore_funcs_highbd[cm->rst_internal.rsi->frame_restoration_type]; - if (cm->use_highbitdepth) - restore_func_highbd( - frame->v_buffer + uvstart * uvstride, uvwidth, uvend - uvstart, - uvstride, &cm->rst_internal, cm->bit_depth, - dst->v_buffer + uvstart * dst->uv_stride, dst->uv_stride); - else -#endif // CONFIG_HIGHBITDEPTH - restore_func(frame->v_buffer + uvstart * uvstride, uvwidth, - uvend - uvstart, uvstride, &cm->rst_internal, - dst->v_buffer + uvstart * dst->uv_stride, dst->uv_stride); - } else { - aom_yv12_copy_v(frame, dst); - } - } + // No sync for even numbered rows + // For odd numbered rows, Loop Restoration of current block requires the LR + // of top-right and bottom-right blocks to be completed + + // top-right sync + on_sync_read(lr_sync, row_number, j, plane); + if ((row_number + 1) < vunits_per_tile) + // bottom-right sync + on_sync_read(lr_sync, row_number + 2, j, plane); + + on_rest_unit(limits, tile_rect, unit_idx, priv, tmpbuf, rlbs); + + on_sync_write(lr_sync, row_number, j, hunits_per_tile, plane); - if (dst == &dst_) { - if ((components_pattern >> AOM_PLANE_Y) & 1) aom_yv12_copy_y(dst, frame); - if ((components_pattern >> AOM_PLANE_U) & 1) aom_yv12_copy_u(dst, frame); - if ((components_pattern >> AOM_PLANE_V) & 1) aom_yv12_copy_v(dst, frame); - aom_free_frame_buffer(dst); + x0 += w; + ++j; } } -void av1_loop_restoration_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, - RestorationInfo *rsi, int components_pattern, - int partial_frame, YV12_BUFFER_CONFIG *dst) { - int start_mi_row, end_mi_row, mi_rows_to_filter; - start_mi_row = 0; -#if CONFIG_FRAME_SUPERRES - mi_rows_to_filter = - ALIGN_POWER_OF_TWO(cm->superres_upscaled_height, 3) >> MI_SIZE_LOG2; -#else - mi_rows_to_filter = cm->mi_rows; -#endif // CONFIG_FRAME_SUPERRES - if (partial_frame && mi_rows_to_filter > 8) { - start_mi_row = mi_rows_to_filter >> 1; - start_mi_row &= 0xfffffff8; - mi_rows_to_filter = AOMMAX(mi_rows_to_filter / 8, 8); +void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) { + (void)lr_sync; + (void)r; + (void)c; + (void)plane; +} + +void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c, + const int sb_cols, int plane) { + (void)lr_sync; + (void)r; + (void)c; + (void)sb_cols; + (void)plane; +} + +static void foreach_rest_unit_in_tile( + const AV1PixelRect *tile_rect, int tile_row, int tile_col, int tile_cols, + int hunits_per_tile, int vunits_per_tile, int units_per_tile, int unit_size, + int ss_y, int plane, rest_unit_visitor_t on_rest_unit, void *priv, + int32_t *tmpbuf, RestorationLineBuffers *rlbs) { + const int tile_h = tile_rect->bottom - tile_rect->top; + const int ext_size = unit_size * 3 / 2; + + const int tile_idx = tile_col + tile_row * tile_cols; + const int unit_idx0 = tile_idx * units_per_tile; + + int y0 = 0, i = 0; + while (y0 < tile_h) { + int remaining_h = tile_h - y0; + int h = (remaining_h < ext_size) ? remaining_h : unit_size; + + RestorationTileLimits limits; + limits.v_start = tile_rect->top + y0; + limits.v_end = tile_rect->top + y0 + h; + assert(limits.v_end <= tile_rect->bottom); + // Offset the tile upwards to align with the restoration processing stripe + const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; + limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset); + if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset; + + av1_foreach_rest_unit_in_row( + &limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0, + hunits_per_tile, vunits_per_tile, plane, priv, tmpbuf, rlbs, + av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL); + + y0 += h; + ++i; } - end_mi_row = start_mi_row + mi_rows_to_filter; - loop_restoration_init(&cm->rst_internal, cm->frame_type == KEY_FRAME); - loop_restoration_rows(frame, cm, start_mi_row, end_mi_row, components_pattern, - rsi, dst); +} + +void av1_foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane, + rest_unit_visitor_t on_rest_unit, + void *priv, AV1PixelRect *tile_rect, + int32_t *tmpbuf, + RestorationLineBuffers *rlbs) { + const int is_uv = plane > 0; + const int ss_y = is_uv && cm->subsampling_y; + + const RestorationInfo *rsi = &cm->rst_info[plane]; + + foreach_rest_unit_in_tile(tile_rect, LR_TILE_ROW, LR_TILE_COL, LR_TILE_COLS, + rsi->horz_units_per_tile, rsi->vert_units_per_tile, + rsi->units_per_tile, rsi->restoration_unit_size, + ss_y, plane, on_rest_unit, priv, tmpbuf, rlbs); } int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rcol0, int *rcol1, int *rrow0, - int *rrow1, int *nhtiles) { - assert(rcol0 && rcol1 && rrow0 && rrow1 && nhtiles); - - if (bsize != cm->sb_size) return 0; - -#if CONFIG_FRAME_SUPERRES - const int frame_w = cm->superres_upscaled_width; - const int frame_h = cm->superres_upscaled_height; - const int mi_to_px = MI_SIZE * SCALE_NUMERATOR; - const int denom = cm->superres_scale_denominator; -#else - const int frame_w = cm->width; - const int frame_h = cm->height; - const int mi_to_px = MI_SIZE; - const int denom = 1; -#endif // CONFIG_FRAME_SUPERRES - - const int ss_x = plane > 0 && cm->subsampling_x != 0; - const int ss_y = plane > 0 && cm->subsampling_y != 0; - - const int ss_frame_w = (frame_w + ss_x) >> ss_x; - const int ss_frame_h = (frame_h + ss_y) >> ss_y; - - int rtile_w, rtile_h, nvtiles; - av1_get_rest_ntiles(ss_frame_w, ss_frame_h, - cm->rst_info[plane].restoration_tilesize, &rtile_w, - &rtile_h, nhtiles, &nvtiles); - - const int rnd_w = rtile_w * denom - 1; - const int rnd_h = rtile_h * denom - 1; - - // rcol0/rrow0 should be the first column/row of rtiles that doesn't start - // left/below of mi_col/mi_row. For this calculation, we need to round up the - // division (if the sb starts at rtile column 10.1, the first matching rtile - // has column index 11) - *rcol0 = (mi_col * mi_to_px + rnd_w) / (rtile_w * denom); - *rrow0 = (mi_row * mi_to_px + rnd_h) / (rtile_h * denom); - - // rcol1/rrow1 is the equivalent calculation, but for the superblock - // below-right. There are some slightly strange boundary effects. First, we - // need to clamp to nhtiles/nvtiles for the case where it appears there are, - // say, 2.4 restoration tiles horizontally. There we need a maximum mi_row1 - // of 2 because tile 1 gets extended. - // - // Second, if mi_col1 >= cm->mi_cols then we must manually set *rcol1 to - // nhtiles. This is needed whenever the frame's width rounded up to the next - // toplevel superblock is smaller than nhtiles * rtile_w. The same logic is - // needed for rows. - const int mi_row1 = mi_row + mi_size_high[bsize]; - const int mi_col1 = mi_col + mi_size_wide[bsize]; - - if (mi_col1 >= cm->mi_cols) - *rcol1 = *nhtiles; - else - *rcol1 = AOMMIN(*nhtiles, (mi_col1 * mi_to_px + rnd_w) / (rtile_w * denom)); + int *rrow1, int *tile_tl_idx) { + assert(rcol0 && rcol1 && rrow0 && rrow1); - if (mi_row1 >= cm->mi_rows) - *rrow1 = nvtiles; - else - *rrow1 = AOMMIN(nvtiles, (mi_row1 * mi_to_px + rnd_h) / (rtile_h * denom)); + if (bsize != cm->seq_params.sb_size) return 0; + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) return 0; + + assert(!cm->all_lossless); + + const int is_uv = plane > 0; + + const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); + const int tile_w = tile_rect.right - tile_rect.left; + const int tile_h = tile_rect.bottom - tile_rect.top; + + const int mi_top = 0; + const int mi_left = 0; + + // Compute the mi-unit corners of the superblock relative to the top-left of + // the tile + const int mi_rel_row0 = mi_row - mi_top; + const int mi_rel_col0 = mi_col - mi_left; + const int mi_rel_row1 = mi_rel_row0 + mi_size_high[bsize]; + const int mi_rel_col1 = mi_rel_col0 + mi_size_wide[bsize]; + + const RestorationInfo *rsi = &cm->rst_info[plane]; + const int size = rsi->restoration_unit_size; + + // Calculate the number of restoration units in this tile (which might be + // strictly less than rsi->horz_units_per_tile and rsi->vert_units_per_tile) + const int horz_units = av1_lr_count_units_in_tile(size, tile_w); + const int vert_units = av1_lr_count_units_in_tile(size, tile_h); + + // The size of an MI-unit on this plane of the image + const int ss_x = is_uv && cm->subsampling_x; + const int ss_y = is_uv && cm->subsampling_y; + const int mi_size_x = MI_SIZE >> ss_x; + const int mi_size_y = MI_SIZE >> ss_y; + + // Write m for the relative mi column or row, D for the superres denominator + // and N for the superres numerator. If u is the upscaled pixel offset then + // we can write the downscaled pixel offset in two ways as: + // + // MI_SIZE * m = N / D u + // + // from which we get u = D * MI_SIZE * m / N + const int mi_to_num_x = av1_superres_scaled(cm) + ? mi_size_x * cm->superres_scale_denominator + : mi_size_x; + const int mi_to_num_y = mi_size_y; + const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size; + const int denom_y = size; + + const int rnd_x = denom_x - 1; + const int rnd_y = denom_y - 1; + + // rcol0/rrow0 should be the first column/row of restoration units (relative + // to the top-left of the tile) that doesn't start left/below of + // mi_col/mi_row. For this calculation, we need to round up the division (if + // the sb starts at runit column 10.1, the first matching runit has column + // index 11) + *rcol0 = (mi_rel_col0 * mi_to_num_x + rnd_x) / denom_x; + *rrow0 = (mi_rel_row0 * mi_to_num_y + rnd_y) / denom_y; + + // rel_col1/rel_row1 is the equivalent calculation, but for the superblock + // below-right. If we're at the bottom or right of the tile, this restoration + // unit might not exist, in which case we'll clamp accordingly. + *rcol1 = AOMMIN((mi_rel_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units); + *rrow1 = AOMMIN((mi_rel_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units); + + const int tile_idx = 0; + *tile_tl_idx = tile_idx * rsi->units_per_tile; return *rcol0 < *rcol1 && *rrow0 < *rrow1; } -#if CONFIG_STRIPED_LOOP_RESTORATION - // Extend to left and right -static void extend_line(uint8_t *buf, int width, int extend, - int use_highbitdepth) { - int i; - if (use_highbitdepth) { - uint16_t val, *buf16 = (uint16_t *)buf; - val = buf16[0]; - for (i = 0; i < extend; i++) buf16[-1 - i] = val; - val = buf16[width - 1]; - for (i = 0; i < extend; i++) buf16[width + i] = val; +static void extend_lines(uint8_t *buf, int width, int height, int stride, + int extend, int use_highbitdepth) { + for (int i = 0; i < height; ++i) { + if (use_highbitdepth) { + uint16_t *buf16 = (uint16_t *)buf; + aom_memset16(buf16 - extend, buf16[0], extend); + aom_memset16(buf16 + width, buf16[width - 1], extend); + } else { + memset(buf - extend, buf[0], extend); + memset(buf + width, buf[width - 1], extend); + } + buf += stride; + } +} + +static void save_deblock_boundary_lines( + const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row, + int stripe, int use_highbd, int is_above, + RestorationStripeBoundaries *boundaries) { + const int is_uv = plane > 0; + const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]); + const int src_stride = frame->strides[is_uv] << use_highbd; + const uint8_t *src_rows = src_buf + row * src_stride; + + uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above + : boundaries->stripe_boundary_below; + uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd); + const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd; + uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride; + + // There is a rare case in which a processing stripe can end 1px above the + // crop border. In this case, we do want to use deblocked pixels from below + // the stripe (hence why we ended up in this function), but instead of + // fetching 2 "below" rows we need to fetch one and duplicate it. + // This is equivalent to clamping the sample locations against the crop border + const int lines_to_save = + AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row); + assert(lines_to_save == 1 || lines_to_save == 2); + + int upscaled_width; + int line_bytes; + if (av1_superres_scaled(cm)) { + const int ss_x = is_uv && cm->subsampling_x; + upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x; + line_bytes = upscaled_width << use_highbd; + if (use_highbd) + av1_upscale_normative_rows( + cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv], + CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride, + plane, lines_to_save); + else + av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows, + boundaries->stripe_boundary_stride, plane, + lines_to_save); } else { - uint8_t val; - val = buf[0]; - for (i = 0; i < extend; i++) buf[-1 - i] = val; - val = buf[width - 1]; - for (i = 0; i < extend; i++) buf[width + i] = val; + upscaled_width = frame->crop_widths[is_uv]; + line_bytes = upscaled_width << use_highbd; + for (int i = 0; i < lines_to_save; i++) { + memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride, + line_bytes); + } } + // If we only saved one line, then copy it into the second line buffer + if (lines_to_save == 1) + memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes); + + extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride, + RESTORATION_EXTRA_HORZ, use_highbd); +} + +static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame, + const AV1_COMMON *cm, int plane, int row, + int stripe, int use_highbd, int is_above, + RestorationStripeBoundaries *boundaries) { + const int is_uv = plane > 0; + const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]); + const int src_stride = frame->strides[is_uv] << use_highbd; + const uint8_t *src_rows = src_buf + row * src_stride; + + uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above + : boundaries->stripe_boundary_below; + uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd); + const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd; + uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride; + const int src_width = frame->crop_widths[is_uv]; + + // At the point where this function is called, we've already applied + // superres. So we don't need to extend the lines here, we can just + // pull directly from the topmost row of the upscaled frame. + const int ss_x = is_uv && cm->subsampling_x; + const int upscaled_width = av1_superres_scaled(cm) + ? (cm->superres_upscaled_width + ss_x) >> ss_x + : src_width; + const int line_bytes = upscaled_width << use_highbd; + for (int i = 0; i < RESTORATION_CTX_VERT; i++) { + // Copy the line at 'row' into both context lines. This is because + // we want to (effectively) extend the outermost row of CDEF data + // from this tile to produce a border, rather than using deblocked + // pixels from the tile above/below. + memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes); + } + extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride, + RESTORATION_EXTRA_HORZ, use_highbd); } -// For each 64 pixel high stripe, save 4 scan lines to be used as boundary in -// the loop restoration process. The lines are saved in -// rst_internal.stripe_boundary_lines -void av1_loop_restoration_save_boundary_lines(YV12_BUFFER_CONFIG *frame, - AV1_COMMON *cm) { - int p, boundary_stride; - int src_width, src_height, src_stride, stripe_height, stripe_offset, stripe_y, - yy; - uint8_t *src_buf, *boundary_below_buf, *boundary_above_buf; - int use_highbitdepth = 0; - for (p = 0; p < MAX_MB_PLANE; ++p) { - if (p == 0) { - src_buf = frame->y_buffer; - src_width = frame->y_crop_width; - src_height = frame->y_crop_height; - src_stride = frame->y_stride; - stripe_height = 64; - stripe_offset = 56 - 2; // offset of first line to copy +static void save_tile_row_boundary_lines(const YV12_BUFFER_CONFIG *frame, + int use_highbd, int plane, + AV1_COMMON *cm, int after_cdef) { + const int is_uv = plane > 0; + const int ss_y = is_uv && cm->subsampling_y; + const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; + const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y; + + // Get the tile rectangle, with height rounded up to the next multiple of 8 + // luma pixels (only relevant for the bottom tile of the frame) + const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); + const int stripe0 = 0; + + RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries; + + const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y); + + int tile_stripe; + for (tile_stripe = 0;; ++tile_stripe) { + const int rel_y0 = AOMMAX(0, tile_stripe * stripe_height - stripe_off); + const int y0 = tile_rect.top + rel_y0; + if (y0 >= tile_rect.bottom) break; + + const int rel_y1 = (tile_stripe + 1) * stripe_height - stripe_off; + const int y1 = AOMMIN(tile_rect.top + rel_y1, tile_rect.bottom); + + const int frame_stripe = stripe0 + tile_stripe; + + // In this case, we should only use CDEF pixels at the top + // and bottom of the frame as a whole; internal tile boundaries + // can use deblocked pixels from adjacent tiles for context. + const int use_deblock_above = (frame_stripe > 0); + const int use_deblock_below = (y1 < plane_height); + + if (!after_cdef) { + // Save deblocked context where needed. + if (use_deblock_above) { + save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT, + frame_stripe, use_highbd, 1, boundaries); + } + if (use_deblock_below) { + save_deblock_boundary_lines(frame, cm, plane, y1, frame_stripe, + use_highbd, 0, boundaries); + } } else { - src_buf = p == 1 ? frame->u_buffer : frame->v_buffer; - src_width = frame->uv_crop_width; - src_height = frame->uv_crop_height; - src_stride = frame->uv_stride; - stripe_height = 64 >> cm->subsampling_y; - stripe_offset = (56 >> cm->subsampling_y) - 2; - } - boundary_above_buf = cm->rst_internal.stripe_boundary_above[p]; - boundary_below_buf = cm->rst_internal.stripe_boundary_below[p]; - boundary_stride = cm->rst_internal.stripe_boundary_stride[p]; -#if CONFIG_HIGHBITDEPTH - use_highbitdepth = cm->use_highbitdepth; - if (use_highbitdepth) { - src_buf = (uint8_t *)CONVERT_TO_SHORTPTR(src_buf); - } -#endif - src_buf += (stripe_offset * src_stride) << use_highbitdepth; - boundary_above_buf += RESTORATION_EXTRA_HORZ << use_highbitdepth; - boundary_below_buf += RESTORATION_EXTRA_HORZ << use_highbitdepth; - // Loop over stripes - for (stripe_y = stripe_offset; stripe_y < src_height; - stripe_y += stripe_height) { - // Save 2 lines above the LR stripe (offset -9, -10) - for (yy = 0; yy < 2; yy++) { - if (stripe_y + yy < src_height) { - memcpy(boundary_above_buf, src_buf, src_width << use_highbitdepth); - extend_line(boundary_above_buf, src_width, RESTORATION_EXTRA_HORZ, - use_highbitdepth); - src_buf += src_stride << use_highbitdepth; - boundary_above_buf += boundary_stride << use_highbitdepth; - } + // Save CDEF context where needed. Note that we need to save the CDEF + // context for a particular boundary iff we *didn't* save deblocked + // context for that boundary. + // + // In addition, we need to save copies of the outermost line within + // the tile, rather than using data from outside the tile. + if (!use_deblock_above) { + save_cdef_boundary_lines(frame, cm, plane, y0, frame_stripe, use_highbd, + 1, boundaries); } - // Save 2 lines below the LR stripe (offset 56,57) - for (yy = 2; yy < 4; yy++) { - if (stripe_y + yy < src_height) { - memcpy(boundary_below_buf, src_buf, src_width << use_highbitdepth); - extend_line(boundary_below_buf, src_width, RESTORATION_EXTRA_HORZ, - use_highbitdepth); - src_buf += src_stride << use_highbitdepth; - boundary_below_buf += boundary_stride << use_highbitdepth; - } + if (!use_deblock_below) { + save_cdef_boundary_lines(frame, cm, plane, y1 - 1, frame_stripe, + use_highbd, 0, boundaries); } - // jump to next stripe - src_buf += ((stripe_height - 4) * src_stride) << use_highbitdepth; } } } -#endif // CONFIG_STRIPED_LOOP_RESTORATION +// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan +// lines to be used as boundary in the loop restoration process. The +// lines are saved in rst_internal.stripe_boundary_lines +void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame, + AV1_COMMON *cm, int after_cdef) { + const int num_planes = av1_num_planes(cm); + const int use_highbd = cm->use_highbitdepth; + for (int p = 0; p < num_planes; ++p) { + save_tile_row_boundary_lines(frame, use_highbd, p, cm, after_cdef); + } +} |