summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/restoration.c
diff options
context:
space:
mode:
authorwolfbeast <mcwerewolf@gmail.com>2018-10-24 11:13:33 +0200
committerwolfbeast <mcwerewolf@gmail.com>2018-10-24 11:13:33 +0200
commit579881ffb4aa0b145c793825cd1b0628e7cd6cdc (patch)
tree65d59fc6b73f120ac1bc2214d4a8442421076b04 /third_party/aom/av1/common/restoration.c
parenta02c44648a3f7d6f3904eebba026ce5e6f781bef (diff)
parentf71c04d814416ebf52dd54109f2d04f1cbd397c0 (diff)
downloadUXP-579881ffb4aa0b145c793825cd1b0628e7cd6cdc.tar
UXP-579881ffb4aa0b145c793825cd1b0628e7cd6cdc.tar.gz
UXP-579881ffb4aa0b145c793825cd1b0628e7cd6cdc.tar.lz
UXP-579881ffb4aa0b145c793825cd1b0628e7cd6cdc.tar.xz
UXP-579881ffb4aa0b145c793825cd1b0628e7cd6cdc.zip
Merge branch 'master' into Sync-weave
Diffstat (limited to 'third_party/aom/av1/common/restoration.c')
-rw-r--r--third_party/aom/av1/common/restoration.c1556
1 files changed, 1556 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/restoration.c b/third_party/aom/av1/common/restoration.c
new file mode 100644
index 000000000..d276a915b
--- /dev/null
+++ b/third_party/aom/av1/common/restoration.c
@@ -0,0 +1,1556 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ *
+ */
+
+#include <math.h>
+
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+#include "config/aom_scale_rtcd.h"
+
+#include "aom_mem/aom_mem.h"
+#include "av1/common/onyxc_int.h"
+#include "av1/common/resize.h"
+#include "av1/common/restoration.h"
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_mem/aom_mem.h"
+
+#include "aom_ports/mem.h"
+
+// The 's' values are calculated based on original 'r' and 'e' values in the
+// spec using GenSgrprojVtable().
+// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
+const sgr_params_type sgr_params[SGRPROJ_PARAMS] = {
+ { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
+ { { 2, 1 }, { 93, 1618 } }, { { 2, 1 }, { 80, 1438 } },
+ { { 2, 1 }, { 70, 1295 } }, { { 2, 1 }, { 58, 1177 } },
+ { { 2, 1 }, { 47, 1079 } }, { { 2, 1 }, { 37, 996 } },
+ { { 2, 1 }, { 30, 925 } }, { { 2, 1 }, { 25, 863 } },
+ { { 0, 1 }, { -1, 2589 } }, { { 0, 1 }, { -1, 1618 } },
+ { { 0, 1 }, { -1, 1177 } }, { { 0, 1 }, { -1, 925 } },
+ { { 2, 0 }, { 56, -1 } }, { { 2, 0 }, { 22, -1 } },
+};
+
+AV1PixelRect av1_whole_frame_rect(const AV1_COMMON *cm, int is_uv) {
+ AV1PixelRect rect;
+
+ int ss_x = is_uv && cm->seq_params.subsampling_x;
+ int ss_y = is_uv && cm->seq_params.subsampling_y;
+
+ rect.top = 0;
+ rect.bottom = ROUND_POWER_OF_TWO(cm->height, ss_y);
+ rect.left = 0;
+ rect.right = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
+ return rect;
+}
+
+// Count horizontal or vertical units per tile (use a width or height for
+// tile_size, respectively). We basically want to divide the tile size by the
+// size of a restoration unit. Rather than rounding up unconditionally as you
+// might expect, we round to nearest, which models the way a right or bottom
+// restoration unit can extend to up to 150% its normal width or height. The
+// max with 1 is to deal with tiles that are smaller than half of a restoration
+// unit.
+int av1_lr_count_units_in_tile(int unit_size, int tile_size) {
+ return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
+}
+
+void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
+ int is_uv) {
+ // We need to allocate enough space for restoration units to cover the
+ // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
+ // top-left and we can use av1_get_tile_rect(). With CONFIG_MAX_TILE, we have
+ // to do the computation ourselves, iterating over the tiles and keeping
+ // track of the largest width and height, then upscaling.
+ const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
+ const int max_tile_w = tile_rect.right - tile_rect.left;
+ const int max_tile_h = tile_rect.bottom - tile_rect.top;
+
+ // To calculate hpertile and vpertile (horizontal and vertical units per
+ // tile), we basically want to divide the largest tile width or height by the
+ // size of a restoration unit. Rather than rounding up unconditionally as you
+ // might expect, we round to nearest, which models the way a right or bottom
+ // restoration unit can extend to up to 150% its normal width or height. The
+ // max with 1 is to deal with tiles that are smaller than half of a
+ // restoration unit.
+ const int unit_size = rsi->restoration_unit_size;
+ const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w);
+ const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h);
+
+ rsi->units_per_tile = hpertile * vpertile;
+ rsi->horz_units_per_tile = hpertile;
+ rsi->vert_units_per_tile = vpertile;
+
+ const int ntiles = 1;
+ const int nunits = ntiles * rsi->units_per_tile;
+
+ aom_free(rsi->unit_info);
+ CHECK_MEM_ERROR(cm, rsi->unit_info,
+ (RestorationUnitInfo *)aom_memalign(
+ 16, sizeof(*rsi->unit_info) * nunits));
+}
+
+void av1_free_restoration_struct(RestorationInfo *rst_info) {
+ aom_free(rst_info->unit_info);
+ rst_info->unit_info = NULL;
+}
+
+#if 0
+// Pair of values for each sgrproj parameter:
+// Index 0 corresponds to r[0], e[0]
+// Index 1 corresponds to r[1], e[1]
+int sgrproj_mtable[SGRPROJ_PARAMS][2];
+
+static void GenSgrprojVtable() {
+ for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
+ const sgr_params_type *const params = &sgr_params[i];
+ for (int j = 0; j < 2; ++j) {
+ const int e = params->e[j];
+ const int r = params->r[j];
+ if (r == 0) { // filter is disabled
+ sgrproj_mtable[i][j] = -1; // mark invalid
+ } else { // filter is enabled
+ const int n = (2 * r + 1) * (2 * r + 1);
+ const int n2e = n * n * e;
+ assert(n2e != 0);
+ sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
+ }
+ }
+ }
+}
+#endif
+
+void av1_loop_restoration_precal() {
+#if 0
+ GenSgrprojVtable();
+#endif
+}
+
+static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
+ int border_horz, int border_vert) {
+ uint8_t *data_p;
+ int i;
+ for (i = 0; i < height; ++i) {
+ data_p = data + i * stride;
+ memset(data_p - border_horz, data_p[0], border_horz);
+ memset(data_p + width, data_p[width - 1], border_horz);
+ }
+ data_p = data - border_horz;
+ for (i = -border_vert; i < 0; ++i) {
+ memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
+ }
+ for (i = height; i < height + border_vert; ++i) {
+ memcpy(data_p + i * stride, data_p + (height - 1) * stride,
+ width + 2 * border_horz);
+ }
+}
+
+static void extend_frame_highbd(uint16_t *data, int width, int height,
+ int stride, int border_horz, int border_vert) {
+ uint16_t *data_p;
+ int i, j;
+ for (i = 0; i < height; ++i) {
+ data_p = data + i * stride;
+ for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
+ for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
+ }
+ data_p = data - border_horz;
+ for (i = -border_vert; i < 0; ++i) {
+ memcpy(data_p + i * stride, data_p,
+ (width + 2 * border_horz) * sizeof(uint16_t));
+ }
+ for (i = height; i < height + border_vert; ++i) {
+ memcpy(data_p + i * stride, data_p + (height - 1) * stride,
+ (width + 2 * border_horz) * sizeof(uint16_t));
+ }
+}
+
+void extend_frame(uint8_t *data, int width, int height, int stride,
+ int border_horz, int border_vert, int highbd) {
+ if (highbd)
+ extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
+ border_horz, border_vert);
+ else
+ extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
+}
+
+static void copy_tile_lowbd(int width, int height, const uint8_t *src,
+ int src_stride, uint8_t *dst, int dst_stride) {
+ for (int i = 0; i < height; ++i)
+ memcpy(dst + i * dst_stride, src + i * src_stride, width);
+}
+
+static void copy_tile_highbd(int width, int height, const uint16_t *src,
+ int src_stride, uint16_t *dst, int dst_stride) {
+ for (int i = 0; i < height; ++i)
+ memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
+}
+
+static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
+ uint8_t *dst, int dst_stride, int highbd) {
+ if (highbd)
+ copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
+ CONVERT_TO_SHORTPTR(dst), dst_stride);
+ else
+ copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
+}
+
+#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
+
+// With striped loop restoration, the filtering for each 64-pixel stripe gets
+// most of its input from the output of CDEF (stored in data8), but we need to
+// fill out a border of 3 pixels above/below the stripe according to the
+// following
+// rules:
+//
+// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
+// This extension is done by a call to extend_frame() at the start of the loop
+// restoration process, so the value of copy_above/copy_below doesn't strictly
+// matter.
+// However, by setting *copy_above = *copy_below = 1 whenever loop filtering
+// across tiles is disabled, we can allow
+// {setup,restore}_processing_stripe_boundary to assume that the top/bottom
+// data has always been copied, simplifying the behaviour at the left and
+// right edges of tiles.
+//
+// * If we're at a tile boundary and loop filtering across tiles is enabled,
+// then there is a logical stripe which is 64 pixels high, but which is split
+// into an 8px high and a 56px high stripe so that the processing (and
+// coefficient set usage) can be aligned to tiles.
+// In this case, we use the 3 rows of CDEF output across the boundary for
+// context; this corresponds to leaving the frame buffer as-is.
+//
+// * If we're at a tile boundary and loop filtering across tiles is disabled,
+// then we take the outermost row of CDEF pixels *within the current tile*
+// and copy it three times. Thus we behave exactly as if the tile were a full
+// frame.
+//
+// * Otherwise, we're at a stripe boundary within a tile. In that case, we
+// take 2 rows of deblocked pixels and extend them to 3 rows of context.
+//
+// The distinction between the latter two cases is handled by the
+// av1_loop_restoration_save_boundary_lines() function, so here we just need
+// to decide if we're overwriting the above/below boundary pixels or not.
+static void get_stripe_boundary_info(const RestorationTileLimits *limits,
+ const AV1PixelRect *tile_rect, int ss_y,
+ int *copy_above, int *copy_below) {
+ *copy_above = 1;
+ *copy_below = 1;
+
+ const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
+ const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
+
+ const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
+ const int this_stripe_height =
+ full_stripe_height - (first_stripe_in_tile ? runit_offset : 0);
+ const int last_stripe_in_tile =
+ (limits->v_start + this_stripe_height >= tile_rect->bottom);
+
+ if (first_stripe_in_tile) *copy_above = 0;
+ if (last_stripe_in_tile) *copy_below = 0;
+}
+
+// Overwrite the border pixels around a processing stripe so that the conditions
+// listed above get_stripe_boundary_info() are preserved.
+// We save the pixels which get overwritten into a temporary buffer, so that
+// they can be restored by restore_processing_stripe_boundary() after we've
+// processed the stripe.
+//
+// limits gives the rectangular limits of the remaining stripes for the current
+// restoration unit. rsb is the stored stripe boundaries (taken from either
+// deblock or CDEF output as necessary).
+//
+// tile_rect is the limits of the current tile and tile_stripe0 is the index of
+// the first stripe in this tile (needed to convert the tile-relative stripe
+// index we get from limits into something we can look up in rsb).
+static void setup_processing_stripe_boundary(
+ const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
+ int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
+ RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
+ // Offsets within the line buffers. The buffer logically starts at column
+ // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
+ // has column x0 in the buffer.
+ const int buf_stride = rsb->stripe_boundary_stride;
+ const int buf_x0_off = limits->h_start;
+ const int line_width =
+ (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
+ const int line_size = line_width << use_highbd;
+
+ const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
+
+ // Replace RESTORATION_BORDER pixels above the top of the stripe
+ // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
+ // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
+ // duplicating the topmost of the 2 lines (see the AOMMAX call when
+ // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
+ //
+ // Special case: If we're at the top of a tile, which isn't on the topmost
+ // tile row, and we're allowed to loop filter across tiles, then we have a
+ // logical 64-pixel-high stripe which has been split into an 8-pixel high
+ // stripe and a 56-pixel high stripe (the current one). So, in this case,
+ // we want to leave the boundary alone!
+ if (!opt) {
+ if (copy_above) {
+ uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
+
+ for (int i = -RESTORATION_BORDER; i < 0; ++i) {
+ const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
+ const int buf_off = buf_x0_off + buf_row * buf_stride;
+ const uint8_t *buf =
+ rsb->stripe_boundary_above + (buf_off << use_highbd);
+ uint8_t *dst8 = data8_tl + i * data_stride;
+ // Save old pixels, then replace with data from stripe_boundary_above
+ memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
+ REAL_PTR(use_highbd, dst8), line_size);
+ memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
+ }
+ }
+
+ // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
+ // The second buffer row is repeated, so src_row gets the values 0, 1, 1
+ // for i = 0, 1, 2.
+ if (copy_below) {
+ const int stripe_end = limits->v_start + h;
+ uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
+
+ for (int i = 0; i < RESTORATION_BORDER; ++i) {
+ const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
+ const int buf_off = buf_x0_off + buf_row * buf_stride;
+ const uint8_t *src =
+ rsb->stripe_boundary_below + (buf_off << use_highbd);
+
+ uint8_t *dst8 = data8_bl + i * data_stride;
+ // Save old pixels, then replace with data from stripe_boundary_below
+ memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
+ memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
+ }
+ }
+ } else {
+ if (copy_above) {
+ uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
+
+ // Only save and overwrite i=-RESTORATION_BORDER line.
+ uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
+ // Save old pixels, then replace with data from stripe_boundary_above
+ memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
+ memcpy(REAL_PTR(use_highbd, dst8),
+ REAL_PTR(use_highbd,
+ data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
+ line_size);
+ }
+
+ if (copy_below) {
+ const int stripe_end = limits->v_start + h;
+ uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
+
+ // Only save and overwrite i=2 line.
+ uint8_t *dst8 = data8_bl + 2 * data_stride;
+ // Save old pixels, then replace with data from stripe_boundary_below
+ memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
+ memcpy(REAL_PTR(use_highbd, dst8),
+ REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
+ }
+ }
+}
+
+// This function restores the boundary lines modified by
+// setup_processing_stripe_boundary.
+//
+// Note: We need to be careful when handling the corners of the processing
+// unit, because (eg.) the top-left corner is considered to be part of
+// both the left and top borders. This means that, depending on the
+// loop_filter_across_tiles_enabled flag, the corner pixels might get
+// overwritten twice, once as part of the "top" border and once as part
+// of the "left" border (or similar for other corners).
+//
+// Everything works out fine as long as we make sure to reverse the order
+// when restoring, ie. we need to restore the left/right borders followed
+// by the top/bottom borders.
+static void restore_processing_stripe_boundary(
+ const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
+ int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
+ int copy_below, int opt) {
+ const int line_width =
+ (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
+ const int line_size = line_width << use_highbd;
+
+ const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
+
+ if (!opt) {
+ if (copy_above) {
+ uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
+ for (int i = -RESTORATION_BORDER; i < 0; ++i) {
+ uint8_t *dst8 = data8_tl + i * data_stride;
+ memcpy(REAL_PTR(use_highbd, dst8),
+ rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
+ }
+ }
+
+ if (copy_below) {
+ const int stripe_bottom = limits->v_start + h;
+ uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
+
+ for (int i = 0; i < RESTORATION_BORDER; ++i) {
+ if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
+
+ uint8_t *dst8 = data8_bl + i * data_stride;
+ memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
+ }
+ }
+ } else {
+ if (copy_above) {
+ uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
+
+ // Only restore i=-RESTORATION_BORDER line.
+ uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
+ memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
+ }
+
+ if (copy_below) {
+ const int stripe_bottom = limits->v_start + h;
+ uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
+
+ // Only restore i=2 line.
+ if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
+ uint8_t *dst8 = data8_bl + 2 * data_stride;
+ memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
+ }
+ }
+ }
+}
+
+static void wiener_filter_stripe(const RestorationUnitInfo *rui,
+ int stripe_width, int stripe_height,
+ int procunit_width, const uint8_t *src,
+ int src_stride, uint8_t *dst, int dst_stride,
+ int32_t *tmpbuf, int bit_depth) {
+ (void)tmpbuf;
+ (void)bit_depth;
+ assert(bit_depth == 8);
+ const ConvolveParams conv_params = get_conv_params_wiener(8);
+
+ for (int j = 0; j < stripe_width; j += procunit_width) {
+ int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
+ const uint8_t *src_p = src + j;
+ uint8_t *dst_p = dst + j;
+ av1_wiener_convolve_add_src(
+ src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
+ rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
+ }
+}
+
+/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
+ over the input. The window is of size (2r + 1)x(2r + 1), and we
+ specialize to r = 1, 2, 3. A default function is used for r > 3.
+
+ Each loop follows the same format: We keep a window's worth of input
+ in individual variables and select data out of that as appropriate.
+*/
+static void boxsum1(int32_t *src, int width, int height, int src_stride,
+ int sqr, int32_t *dst, int dst_stride) {
+ int i, j, a, b, c;
+ assert(width > 2 * SGRPROJ_BORDER_HORZ);
+ assert(height > 2 * SGRPROJ_BORDER_VERT);
+
+ // Vertical sum over 3-pixel regions, from src into dst.
+ if (!sqr) {
+ for (j = 0; j < width; ++j) {
+ a = src[j];
+ b = src[src_stride + j];
+ c = src[2 * src_stride + j];
+
+ dst[j] = a + b;
+ for (i = 1; i < height - 2; ++i) {
+ // Loop invariant: At the start of each iteration,
+ // a = src[(i - 1) * src_stride + j]
+ // b = src[(i ) * src_stride + j]
+ // c = src[(i + 1) * src_stride + j]
+ dst[i * dst_stride + j] = a + b + c;
+ a = b;
+ b = c;
+ c = src[(i + 2) * src_stride + j];
+ }
+ dst[i * dst_stride + j] = a + b + c;
+ dst[(i + 1) * dst_stride + j] = b + c;
+ }
+ } else {
+ for (j = 0; j < width; ++j) {
+ a = src[j] * src[j];
+ b = src[src_stride + j] * src[src_stride + j];
+ c = src[2 * src_stride + j] * src[2 * src_stride + j];
+
+ dst[j] = a + b;
+ for (i = 1; i < height - 2; ++i) {
+ dst[i * dst_stride + j] = a + b + c;
+ a = b;
+ b = c;
+ c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
+ }
+ dst[i * dst_stride + j] = a + b + c;
+ dst[(i + 1) * dst_stride + j] = b + c;
+ }
+ }
+
+ // Horizontal sum over 3-pixel regions of dst
+ for (i = 0; i < height; ++i) {
+ a = dst[i * dst_stride];
+ b = dst[i * dst_stride + 1];
+ c = dst[i * dst_stride + 2];
+
+ dst[i * dst_stride] = a + b;
+ for (j = 1; j < width - 2; ++j) {
+ // Loop invariant: At the start of each iteration,
+ // a = src[i * src_stride + (j - 1)]
+ // b = src[i * src_stride + (j )]
+ // c = src[i * src_stride + (j + 1)]
+ dst[i * dst_stride + j] = a + b + c;
+ a = b;
+ b = c;
+ c = dst[i * dst_stride + (j + 2)];
+ }
+ dst[i * dst_stride + j] = a + b + c;
+ dst[i * dst_stride + (j + 1)] = b + c;
+ }
+}
+
+static void boxsum2(int32_t *src, int width, int height, int src_stride,
+ int sqr, int32_t *dst, int dst_stride) {
+ int i, j, a, b, c, d, e;
+ assert(width > 2 * SGRPROJ_BORDER_HORZ);
+ assert(height > 2 * SGRPROJ_BORDER_VERT);
+
+ // Vertical sum over 5-pixel regions, from src into dst.
+ if (!sqr) {
+ for (j = 0; j < width; ++j) {
+ a = src[j];
+ b = src[src_stride + j];
+ c = src[2 * src_stride + j];
+ d = src[3 * src_stride + j];
+ e = src[4 * src_stride + j];
+
+ dst[j] = a + b + c;
+ dst[dst_stride + j] = a + b + c + d;
+ for (i = 2; i < height - 3; ++i) {
+ // Loop invariant: At the start of each iteration,
+ // a = src[(i - 2) * src_stride + j]
+ // b = src[(i - 1) * src_stride + j]
+ // c = src[(i ) * src_stride + j]
+ // d = src[(i + 1) * src_stride + j]
+ // e = src[(i + 2) * src_stride + j]
+ dst[i * dst_stride + j] = a + b + c + d + e;
+ a = b;
+ b = c;
+ c = d;
+ d = e;
+ e = src[(i + 3) * src_stride + j];
+ }
+ dst[i * dst_stride + j] = a + b + c + d + e;
+ dst[(i + 1) * dst_stride + j] = b + c + d + e;
+ dst[(i + 2) * dst_stride + j] = c + d + e;
+ }
+ } else {
+ for (j = 0; j < width; ++j) {
+ a = src[j] * src[j];
+ b = src[src_stride + j] * src[src_stride + j];
+ c = src[2 * src_stride + j] * src[2 * src_stride + j];
+ d = src[3 * src_stride + j] * src[3 * src_stride + j];
+ e = src[4 * src_stride + j] * src[4 * src_stride + j];
+
+ dst[j] = a + b + c;
+ dst[dst_stride + j] = a + b + c + d;
+ for (i = 2; i < height - 3; ++i) {
+ dst[i * dst_stride + j] = a + b + c + d + e;
+ a = b;
+ b = c;
+ c = d;
+ d = e;
+ e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
+ }
+ dst[i * dst_stride + j] = a + b + c + d + e;
+ dst[(i + 1) * dst_stride + j] = b + c + d + e;
+ dst[(i + 2) * dst_stride + j] = c + d + e;
+ }
+ }
+
+ // Horizontal sum over 5-pixel regions of dst
+ for (i = 0; i < height; ++i) {
+ a = dst[i * dst_stride];
+ b = dst[i * dst_stride + 1];
+ c = dst[i * dst_stride + 2];
+ d = dst[i * dst_stride + 3];
+ e = dst[i * dst_stride + 4];
+
+ dst[i * dst_stride] = a + b + c;
+ dst[i * dst_stride + 1] = a + b + c + d;
+ for (j = 2; j < width - 3; ++j) {
+ // Loop invariant: At the start of each iteration,
+ // a = src[i * src_stride + (j - 2)]
+ // b = src[i * src_stride + (j - 1)]
+ // c = src[i * src_stride + (j )]
+ // d = src[i * src_stride + (j + 1)]
+ // e = src[i * src_stride + (j + 2)]
+ dst[i * dst_stride + j] = a + b + c + d + e;
+ a = b;
+ b = c;
+ c = d;
+ d = e;
+ e = dst[i * dst_stride + (j + 3)];
+ }
+ dst[i * dst_stride + j] = a + b + c + d + e;
+ dst[i * dst_stride + (j + 1)] = b + c + d + e;
+ dst[i * dst_stride + (j + 2)] = c + d + e;
+ }
+}
+
+static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
+ int sqr, int32_t *dst, int dst_stride) {
+ if (r == 1)
+ boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
+ else if (r == 2)
+ boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
+ else
+ assert(0 && "Invalid value of r in self-guided filter");
+}
+
+void decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
+ if (params->r[0] == 0) {
+ xq[0] = 0;
+ xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
+ } else if (params->r[1] == 0) {
+ xq[0] = xqd[0];
+ xq[1] = 0;
+ } else {
+ xq[0] = xqd[0];
+ xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
+ }
+}
+
+const int32_t x_by_xplus1[256] = {
+ // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
+ // instead of 0. See comments in selfguided_restoration_internal() for why
+ 1, 128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
+ 240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
+ 248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
+ 250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
+ 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
+ 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
+ 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
+ 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
+ 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
+ 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
+ 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
+ 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 256,
+};
+
+const int32_t one_by_x[MAX_NELEM] = {
+ 4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
+ 293, 273, 256, 241, 228, 216, 205, 195, 186, 178, 171, 164,
+};
+
+static void calculate_intermediate_result(int32_t *dgd, int width, int height,
+ int dgd_stride, int bit_depth,
+ int sgr_params_idx, int radius_idx,
+ int pass, int32_t *A, int32_t *B) {
+ const sgr_params_type *const params = &sgr_params[sgr_params_idx];
+ const int r = params->r[radius_idx];
+ const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
+ const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
+ // Adjusting the stride of A and B here appears to avoid bad cache effects,
+ // leading to a significant speed improvement.
+ // We also align the stride to a multiple of 16 bytes, for consistency
+ // with the SIMD version of this function.
+ int buf_stride = ((width_ext + 3) & ~3) + 16;
+ const int step = pass == 0 ? 1 : 2;
+ int i, j;
+
+ assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
+ assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
+ "Need SGRPROJ_BORDER_* >= r+1");
+
+ boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
+ width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
+ boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
+ width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
+ A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
+ B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
+ // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
+ // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
+ for (i = -1; i < height + 1; i += step) {
+ for (j = -1; j < width + 1; ++j) {
+ const int k = i * buf_stride + j;
+ const int n = (2 * r + 1) * (2 * r + 1);
+
+ // a < 2^16 * n < 2^22 regardless of bit depth
+ uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
+ // b < 2^8 * n < 2^14 regardless of bit depth
+ uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
+
+ // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
+ // and p itself satisfies p < 2^14 * n^2 < 2^26.
+ // This bound on p is due to:
+ // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
+ //
+ // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
+ // This is an artefact of rounding, and can only happen if all pixels
+ // are (almost) identical, so in this case we saturate to p=0.
+ uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
+
+ const uint32_t s = params->s[radius_idx];
+
+ // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
+ // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
+ // (this holds even after accounting for the rounding in s)
+ const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
+
+ // Note: We have to be quite careful about the value of A[k].
+ // This is used as a blend factor between individual pixel values and the
+ // local mean. So it logically has a range of [0, 256], including both
+ // endpoints.
+ //
+ // This is a pain for hardware, as we'd like something which can be stored
+ // in exactly 8 bits.
+ // Further, in the calculation of B[k] below, if z == 0 and r == 2,
+ // then A[k] "should be" 0. But then we can end up setting B[k] to a value
+ // slightly above 2^(8 + bit depth), due to rounding in the value of
+ // one_by_x[25-1].
+ //
+ // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
+ // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
+ // overflow), without significantly affecting the final result: z == 0
+ // implies that the image is essentially "flat", so the local mean and
+ // individual pixel values are very similar.
+ //
+ // Note that saturating on the other side, ie. requring A[k] <= 255,
+ // would be a bad idea, as that corresponds to the case where the image
+ // is very variable, when we want to preserve the local pixel value as
+ // much as possible.
+ A[k] = x_by_xplus1[AOMMIN(z, 255)]; // in range [1, 256]
+
+ // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
+ // one_by_x[n - 1] = round(2^12 / n)
+ // => the product here is < 2^(20 + bit_depth) <= 2^32,
+ // and B[k] is set to a value < 2^(8 + bit depth)
+ // This holds even with the rounding in one_by_x and in the overall
+ // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
+ B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
+ (uint32_t)B[k] *
+ (uint32_t)one_by_x[n - 1],
+ SGRPROJ_RECIP_BITS);
+ }
+ }
+}
+
+static void selfguided_restoration_fast_internal(
+ int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
+ int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
+ const sgr_params_type *const params = &sgr_params[sgr_params_idx];
+ const int r = params->r[radius_idx];
+ const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
+ // Adjusting the stride of A and B here appears to avoid bad cache effects,
+ // leading to a significant speed improvement.
+ // We also align the stride to a multiple of 16 bytes, for consistency
+ // with the SIMD version of this function.
+ int buf_stride = ((width_ext + 3) & ~3) + 16;
+ int32_t A_[RESTORATION_PROC_UNIT_PELS];
+ int32_t B_[RESTORATION_PROC_UNIT_PELS];
+ int32_t *A = A_;
+ int32_t *B = B_;
+ int i, j;
+ calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
+ sgr_params_idx, radius_idx, 1, A, B);
+ A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
+ B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
+
+ // Use the A[] and B[] arrays to calculate the filtered image
+ (void)r;
+ assert(r == 2);
+ for (i = 0; i < height; ++i) {
+ if (!(i & 1)) { // even row
+ for (j = 0; j < width; ++j) {
+ const int k = i * buf_stride + j;
+ const int l = i * dgd_stride + j;
+ const int m = i * dst_stride + j;
+ const int nb = 5;
+ const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
+ (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
+ A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
+ 5;
+ const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
+ (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
+ B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
+ 5;
+ const int32_t v = a * dgd[l] + b;
+ dst[m] =
+ ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
+ }
+ } else { // odd row
+ for (j = 0; j < width; ++j) {
+ const int k = i * buf_stride + j;
+ const int l = i * dgd_stride + j;
+ const int m = i * dst_stride + j;
+ const int nb = 4;
+ const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
+ const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
+ const int32_t v = a * dgd[l] + b;
+ dst[m] =
+ ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
+ }
+ }
+ }
+}
+
+static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
+ int dgd_stride, int32_t *dst,
+ int dst_stride, int bit_depth,
+ int sgr_params_idx,
+ int radius_idx) {
+ const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
+ // Adjusting the stride of A and B here appears to avoid bad cache effects,
+ // leading to a significant speed improvement.
+ // We also align the stride to a multiple of 16 bytes, for consistency
+ // with the SIMD version of this function.
+ int buf_stride = ((width_ext + 3) & ~3) + 16;
+ int32_t A_[RESTORATION_PROC_UNIT_PELS];
+ int32_t B_[RESTORATION_PROC_UNIT_PELS];
+ int32_t *A = A_;
+ int32_t *B = B_;
+ int i, j;
+ calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
+ sgr_params_idx, radius_idx, 0, A, B);
+ A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
+ B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
+
+ // Use the A[] and B[] arrays to calculate the filtered image
+ for (i = 0; i < height; ++i) {
+ for (j = 0; j < width; ++j) {
+ const int k = i * buf_stride + j;
+ const int l = i * dgd_stride + j;
+ const int m = i * dst_stride + j;
+ const int nb = 5;
+ const int32_t a =
+ (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
+ 4 +
+ (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
+ A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
+ 3;
+ const int32_t b =
+ (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
+ 4 +
+ (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
+ B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
+ 3;
+ const int32_t v = a * dgd[l] + b;
+ dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
+ }
+ }
+}
+
+int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
+ int dgd_stride, int32_t *flt0, int32_t *flt1,
+ int flt_stride, int sgr_params_idx,
+ int bit_depth, int highbd) {
+ int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
+ const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
+ int32_t *dgd32 =
+ dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
+
+ if (highbd) {
+ const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
+ for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
+ for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
+ dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
+ }
+ }
+ } else {
+ for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
+ for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
+ dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
+ }
+ }
+ }
+
+ const sgr_params_type *const params = &sgr_params[sgr_params_idx];
+ // If params->r == 0 we skip the corresponding filter. We only allow one of
+ // the radii to be 0, as having both equal to 0 would be equivalent to
+ // skipping SGR entirely.
+ assert(!(params->r[0] == 0 && params->r[1] == 0));
+
+ if (params->r[0] > 0)
+ selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
+ flt0, flt_stride, bit_depth,
+ sgr_params_idx, 0);
+ if (params->r[1] > 0)
+ selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
+ flt_stride, bit_depth, sgr_params_idx, 1);
+ return 0;
+}
+
+void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height,
+ int stride, int eps, const int *xqd,
+ uint8_t *dst8, int dst_stride,
+ int32_t *tmpbuf, int bit_depth,
+ int highbd) {
+ int32_t *flt0 = tmpbuf;
+ int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
+ assert(width * height <= RESTORATION_UNITPELS_MAX);
+
+ const int ret = av1_selfguided_restoration_c(
+ dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
+ (void)ret;
+ assert(!ret);
+ const sgr_params_type *const params = &sgr_params[eps];
+ int xq[2];
+ decode_xq(xqd, xq, params);
+ for (int i = 0; i < height; ++i) {
+ for (int j = 0; j < width; ++j) {
+ const int k = i * width + j;
+ uint8_t *dst8ij = dst8 + i * dst_stride + j;
+ const uint8_t *dat8ij = dat8 + i * stride + j;
+
+ const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
+ const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
+ int32_t v = u << SGRPROJ_PRJ_BITS;
+ // If params->r == 0 then we skipped the filtering in
+ // av1_selfguided_restoration_c, i.e. flt[k] == u
+ if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
+ if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
+ const int16_t w =
+ (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
+
+ const uint16_t out = clip_pixel_highbd(w, bit_depth);
+ if (highbd)
+ *CONVERT_TO_SHORTPTR(dst8ij) = out;
+ else
+ *dst8ij = (uint8_t)out;
+ }
+ }
+}
+
+static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
+ int stripe_width, int stripe_height,
+ int procunit_width, const uint8_t *src,
+ int src_stride, uint8_t *dst, int dst_stride,
+ int32_t *tmpbuf, int bit_depth) {
+ (void)bit_depth;
+ assert(bit_depth == 8);
+
+ for (int j = 0; j < stripe_width; j += procunit_width) {
+ int w = AOMMIN(procunit_width, stripe_width - j);
+ apply_selfguided_restoration(src + j, w, stripe_height, src_stride,
+ rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
+ dst + j, dst_stride, tmpbuf, bit_depth, 0);
+ }
+}
+
+static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui,
+ int stripe_width, int stripe_height,
+ int procunit_width, const uint8_t *src8,
+ int src_stride, uint8_t *dst8,
+ int dst_stride, int32_t *tmpbuf,
+ int bit_depth) {
+ (void)tmpbuf;
+ const ConvolveParams conv_params = get_conv_params_wiener(bit_depth);
+
+ for (int j = 0; j < stripe_width; j += procunit_width) {
+ int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
+ const uint8_t *src8_p = src8 + j;
+ uint8_t *dst8_p = dst8 + j;
+ av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
+ rui->wiener_info.hfilter, 16,
+ rui->wiener_info.vfilter, 16, w,
+ stripe_height, &conv_params, bit_depth);
+ }
+}
+
+static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui,
+ int stripe_width, int stripe_height,
+ int procunit_width,
+ const uint8_t *src8, int src_stride,
+ uint8_t *dst8, int dst_stride,
+ int32_t *tmpbuf, int bit_depth) {
+ for (int j = 0; j < stripe_width; j += procunit_width) {
+ int w = AOMMIN(procunit_width, stripe_width - j);
+ apply_selfguided_restoration(src8 + j, w, stripe_height, src_stride,
+ rui->sgrproj_info.ep, rui->sgrproj_info.xqd,
+ dst8 + j, dst_stride, tmpbuf, bit_depth, 1);
+ }
+}
+
+typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
+ int stripe_width, int stripe_height,
+ int procunit_width, const uint8_t *src,
+ int src_stride, uint8_t *dst, int dst_stride,
+ int32_t *tmpbuf, int bit_depth);
+
+#define NUM_STRIPE_FILTERS 4
+
+static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
+ wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
+ sgrproj_filter_stripe_highbd
+};
+
+// Filter one restoration unit
+void av1_loop_restoration_filter_unit(
+ const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
+ const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
+ const AV1PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y,
+ int highbd, int bit_depth, uint8_t *data8, int stride, uint8_t *dst8,
+ int dst_stride, int32_t *tmpbuf, int optimized_lr) {
+ RestorationType unit_rtype = rui->restoration_type;
+
+ int unit_h = limits->v_end - limits->v_start;
+ int unit_w = limits->h_end - limits->h_start;
+ uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start;
+ uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start;
+
+ if (unit_rtype == RESTORE_NONE) {
+ copy_tile(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride, highbd);
+ return;
+ }
+
+ const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
+ assert(filter_idx < NUM_STRIPE_FILTERS);
+ const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
+
+ const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
+
+ // Convolve the whole tile one stripe at a time
+ RestorationTileLimits remaining_stripes = *limits;
+ int i = 0;
+ while (i < unit_h) {
+ int copy_above, copy_below;
+ remaining_stripes.v_start = limits->v_start + i;
+
+ get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, &copy_above,
+ &copy_below);
+
+ const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
+ const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
+
+ // Work out where this stripe's boundaries are within
+ // rsb->stripe_boundary_{above,below}
+ const int tile_stripe =
+ (remaining_stripes.v_start - tile_rect->top + runit_offset) /
+ full_stripe_height;
+ const int frame_stripe = tile_stripe0 + tile_stripe;
+ const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
+
+ // Calculate this stripe's height, based on two rules:
+ // * The topmost stripe in each tile is 8 luma pixels shorter than usual.
+ // * We can't extend past the end of the current restoration unit
+ const int nominal_stripe_height =
+ full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0);
+ const int h = AOMMIN(nominal_stripe_height,
+ remaining_stripes.v_end - remaining_stripes.v_start);
+
+ setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
+ h, data8, stride, rlbs, copy_above,
+ copy_below, optimized_lr);
+
+ stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
+ dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth);
+
+ restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
+ data8, stride, copy_above, copy_below,
+ optimized_lr);
+
+ i += h;
+ }
+}
+
+static void filter_frame_on_tile(int tile_row, int tile_col, void *priv,
+ AV1_COMMON *cm) {
+ (void)tile_col;
+ FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
+ ctxt->tile_stripe0 = (tile_row == 0) ? 0 : cm->rst_end_stripe[tile_row - 1];
+}
+
+static void filter_frame_on_unit(const RestorationTileLimits *limits,
+ const AV1PixelRect *tile_rect,
+ int rest_unit_idx, void *priv, int32_t *tmpbuf,
+ RestorationLineBuffers *rlbs) {
+ FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
+ const RestorationInfo *rsi = ctxt->rsi;
+
+ av1_loop_restoration_filter_unit(
+ limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, tile_rect,
+ ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->highbd, ctxt->bit_depth,
+ ctxt->data8, ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf,
+ rsi->optimized_lr);
+}
+
+void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
+ YV12_BUFFER_CONFIG *frame,
+ AV1_COMMON *cm, int optimized_lr,
+ int num_planes) {
+ const SequenceHeader *const seq_params = &cm->seq_params;
+ const int bit_depth = seq_params->bit_depth;
+ const int highbd = seq_params->use_highbitdepth;
+ lr_ctxt->dst = &cm->rst_frame;
+
+ const int frame_width = frame->crop_widths[0];
+ const int frame_height = frame->crop_heights[0];
+ if (aom_realloc_frame_buffer(
+ lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
+ seq_params->subsampling_y, highbd, AOM_BORDER_IN_PIXELS,
+ cm->byte_alignment, NULL, NULL, NULL) < 0)
+ aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
+ "Failed to allocate restoration dst buffer");
+
+ lr_ctxt->on_rest_unit = filter_frame_on_unit;
+ lr_ctxt->frame = frame;
+ for (int plane = 0; plane < num_planes; ++plane) {
+ RestorationInfo *rsi = &cm->rst_info[plane];
+ RestorationType rtype = rsi->frame_restoration_type;
+ rsi->optimized_lr = optimized_lr;
+
+ if (rtype == RESTORE_NONE) {
+ continue;
+ }
+
+ const int is_uv = plane > 0;
+ const int plane_width = frame->crop_widths[is_uv];
+ const int plane_height = frame->crop_heights[is_uv];
+ FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
+
+ extend_frame(frame->buffers[plane], plane_width, plane_height,
+ frame->strides[is_uv], RESTORATION_BORDER, RESTORATION_BORDER,
+ highbd);
+
+ lr_plane_ctxt->rsi = rsi;
+ lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
+ lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
+ lr_plane_ctxt->highbd = highbd;
+ lr_plane_ctxt->bit_depth = bit_depth;
+ lr_plane_ctxt->data8 = frame->buffers[plane];
+ lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
+ lr_plane_ctxt->data_stride = frame->strides[is_uv];
+ lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
+ lr_plane_ctxt->tile_rect = av1_whole_frame_rect(cm, is_uv);
+ filter_frame_on_tile(LR_TILE_ROW, LR_TILE_COL, lr_plane_ctxt, cm);
+ }
+}
+
+void av1_loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
+ AV1_COMMON *cm, int num_planes) {
+ typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
+ YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
+ int vstart, int vend);
+ static const copy_fun copy_funs[3] = {
+ aom_yv12_partial_copy_y, aom_yv12_partial_copy_u, aom_yv12_partial_copy_v
+ };
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
+ AV1PixelRect tile_rect = loop_rest_ctxt->ctxt[plane].tile_rect;
+ copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, tile_rect.left,
+ tile_rect.right, tile_rect.top, tile_rect.bottom);
+ }
+}
+
+static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
+ int num_planes) {
+ FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
+
+ for (int plane = 0; plane < num_planes; ++plane) {
+ if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
+ continue;
+ }
+
+ av1_foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit,
+ &ctxt[plane], &ctxt[plane].tile_rect,
+ cm->rst_tmpbuf, cm->rlbs);
+ }
+}
+
+void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
+ AV1_COMMON *cm, int optimized_lr,
+ void *lr_ctxt) {
+ assert(!cm->all_lossless);
+ const int num_planes = av1_num_planes(cm);
+
+ AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
+
+ av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
+ optimized_lr, num_planes);
+
+ foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
+
+ av1_loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
+}
+
+void av1_foreach_rest_unit_in_row(
+ RestorationTileLimits *limits, const AV1PixelRect *tile_rect,
+ rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
+ int unit_idx0, int hunits_per_tile, int vunits_per_tile, int plane,
+ void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs,
+ sync_read_fn_t on_sync_read, sync_write_fn_t on_sync_write,
+ struct AV1LrSyncData *const lr_sync) {
+ const int tile_w = tile_rect->right - tile_rect->left;
+ const int ext_size = unit_size * 3 / 2;
+ int x0 = 0, j = 0;
+ while (x0 < tile_w) {
+ int remaining_w = tile_w - x0;
+ int w = (remaining_w < ext_size) ? remaining_w : unit_size;
+
+ limits->h_start = tile_rect->left + x0;
+ limits->h_end = tile_rect->left + x0 + w;
+ assert(limits->h_end <= tile_rect->right);
+
+ const int unit_idx = unit_idx0 + row_number * hunits_per_tile + j;
+
+ // No sync for even numbered rows
+ // For odd numbered rows, Loop Restoration of current block requires the LR
+ // of top-right and bottom-right blocks to be completed
+
+ // top-right sync
+ on_sync_read(lr_sync, row_number, j, plane);
+ if ((row_number + 1) < vunits_per_tile)
+ // bottom-right sync
+ on_sync_read(lr_sync, row_number + 2, j, plane);
+
+ on_rest_unit(limits, tile_rect, unit_idx, priv, tmpbuf, rlbs);
+
+ on_sync_write(lr_sync, row_number, j, hunits_per_tile, plane);
+
+ x0 += w;
+ ++j;
+ }
+}
+
+void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
+ (void)lr_sync;
+ (void)r;
+ (void)c;
+ (void)plane;
+}
+
+void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
+ const int sb_cols, int plane) {
+ (void)lr_sync;
+ (void)r;
+ (void)c;
+ (void)sb_cols;
+ (void)plane;
+}
+
+static void foreach_rest_unit_in_tile(
+ const AV1PixelRect *tile_rect, int tile_row, int tile_col, int tile_cols,
+ int hunits_per_tile, int vunits_per_tile, int units_per_tile, int unit_size,
+ int ss_y, int plane, rest_unit_visitor_t on_rest_unit, void *priv,
+ int32_t *tmpbuf, RestorationLineBuffers *rlbs) {
+ const int tile_h = tile_rect->bottom - tile_rect->top;
+ const int ext_size = unit_size * 3 / 2;
+
+ const int tile_idx = tile_col + tile_row * tile_cols;
+ const int unit_idx0 = tile_idx * units_per_tile;
+
+ int y0 = 0, i = 0;
+ while (y0 < tile_h) {
+ int remaining_h = tile_h - y0;
+ int h = (remaining_h < ext_size) ? remaining_h : unit_size;
+
+ RestorationTileLimits limits;
+ limits.v_start = tile_rect->top + y0;
+ limits.v_end = tile_rect->top + y0 + h;
+ assert(limits.v_end <= tile_rect->bottom);
+ // Offset the tile upwards to align with the restoration processing stripe
+ const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
+ limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset);
+ if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset;
+
+ av1_foreach_rest_unit_in_row(
+ &limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0,
+ hunits_per_tile, vunits_per_tile, plane, priv, tmpbuf, rlbs,
+ av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL);
+
+ y0 += h;
+ ++i;
+ }
+}
+
+void av1_foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
+ rest_unit_visitor_t on_rest_unit,
+ void *priv, AV1PixelRect *tile_rect,
+ int32_t *tmpbuf,
+ RestorationLineBuffers *rlbs) {
+ const int is_uv = plane > 0;
+ const int ss_y = is_uv && cm->seq_params.subsampling_y;
+
+ const RestorationInfo *rsi = &cm->rst_info[plane];
+
+ foreach_rest_unit_in_tile(tile_rect, LR_TILE_ROW, LR_TILE_COL, LR_TILE_COLS,
+ rsi->horz_units_per_tile, rsi->vert_units_per_tile,
+ rsi->units_per_tile, rsi->restoration_unit_size,
+ ss_y, plane, on_rest_unit, priv, tmpbuf, rlbs);
+}
+
+int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ int *rcol0, int *rcol1, int *rrow0,
+ int *rrow1) {
+ assert(rcol0 && rcol1 && rrow0 && rrow1);
+
+ if (bsize != cm->seq_params.sb_size) return 0;
+ if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) return 0;
+
+ assert(!cm->all_lossless);
+
+ const int is_uv = plane > 0;
+
+ const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
+ const int tile_w = tile_rect.right - tile_rect.left;
+ const int tile_h = tile_rect.bottom - tile_rect.top;
+
+ const int mi_top = 0;
+ const int mi_left = 0;
+
+ // Compute the mi-unit corners of the superblock relative to the top-left of
+ // the tile
+ const int mi_rel_row0 = mi_row - mi_top;
+ const int mi_rel_col0 = mi_col - mi_left;
+ const int mi_rel_row1 = mi_rel_row0 + mi_size_high[bsize];
+ const int mi_rel_col1 = mi_rel_col0 + mi_size_wide[bsize];
+
+ const RestorationInfo *rsi = &cm->rst_info[plane];
+ const int size = rsi->restoration_unit_size;
+
+ // Calculate the number of restoration units in this tile (which might be
+ // strictly less than rsi->horz_units_per_tile and rsi->vert_units_per_tile)
+ const int horz_units = av1_lr_count_units_in_tile(size, tile_w);
+ const int vert_units = av1_lr_count_units_in_tile(size, tile_h);
+
+ // The size of an MI-unit on this plane of the image
+ const int ss_x = is_uv && cm->seq_params.subsampling_x;
+ const int ss_y = is_uv && cm->seq_params.subsampling_y;
+ const int mi_size_x = MI_SIZE >> ss_x;
+ const int mi_size_y = MI_SIZE >> ss_y;
+
+ // Write m for the relative mi column or row, D for the superres denominator
+ // and N for the superres numerator. If u is the upscaled pixel offset then
+ // we can write the downscaled pixel offset in two ways as:
+ //
+ // MI_SIZE * m = N / D u
+ //
+ // from which we get u = D * MI_SIZE * m / N
+ const int mi_to_num_x = av1_superres_scaled(cm)
+ ? mi_size_x * cm->superres_scale_denominator
+ : mi_size_x;
+ const int mi_to_num_y = mi_size_y;
+ const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
+ const int denom_y = size;
+
+ const int rnd_x = denom_x - 1;
+ const int rnd_y = denom_y - 1;
+
+ // rcol0/rrow0 should be the first column/row of restoration units (relative
+ // to the top-left of the tile) that doesn't start left/below of
+ // mi_col/mi_row. For this calculation, we need to round up the division (if
+ // the sb starts at runit column 10.1, the first matching runit has column
+ // index 11)
+ *rcol0 = (mi_rel_col0 * mi_to_num_x + rnd_x) / denom_x;
+ *rrow0 = (mi_rel_row0 * mi_to_num_y + rnd_y) / denom_y;
+
+ // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
+ // below-right. If we're at the bottom or right of the tile, this restoration
+ // unit might not exist, in which case we'll clamp accordingly.
+ *rcol1 = AOMMIN((mi_rel_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
+ *rrow1 = AOMMIN((mi_rel_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
+
+ return *rcol0 < *rcol1 && *rrow0 < *rrow1;
+}
+
+// Extend to left and right
+static void extend_lines(uint8_t *buf, int width, int height, int stride,
+ int extend, int use_highbitdepth) {
+ for (int i = 0; i < height; ++i) {
+ if (use_highbitdepth) {
+ uint16_t *buf16 = (uint16_t *)buf;
+ aom_memset16(buf16 - extend, buf16[0], extend);
+ aom_memset16(buf16 + width, buf16[width - 1], extend);
+ } else {
+ memset(buf - extend, buf[0], extend);
+ memset(buf + width, buf[width - 1], extend);
+ }
+ buf += stride;
+ }
+}
+
+static void save_deblock_boundary_lines(
+ const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
+ int stripe, int use_highbd, int is_above,
+ RestorationStripeBoundaries *boundaries) {
+ const int is_uv = plane > 0;
+ const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
+ const int src_stride = frame->strides[is_uv] << use_highbd;
+ const uint8_t *src_rows = src_buf + row * src_stride;
+
+ uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
+ : boundaries->stripe_boundary_below;
+ uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
+ const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
+ uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
+
+ // There is a rare case in which a processing stripe can end 1px above the
+ // crop border. In this case, we do want to use deblocked pixels from below
+ // the stripe (hence why we ended up in this function), but instead of
+ // fetching 2 "below" rows we need to fetch one and duplicate it.
+ // This is equivalent to clamping the sample locations against the crop border
+ const int lines_to_save =
+ AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
+ assert(lines_to_save == 1 || lines_to_save == 2);
+
+ int upscaled_width;
+ int line_bytes;
+ if (av1_superres_scaled(cm)) {
+ const int ss_x = is_uv && cm->seq_params.subsampling_x;
+ upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
+ line_bytes = upscaled_width << use_highbd;
+ if (use_highbd)
+ av1_upscale_normative_rows(
+ cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
+ CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
+ plane, lines_to_save);
+ else
+ av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
+ boundaries->stripe_boundary_stride, plane,
+ lines_to_save);
+ } else {
+ upscaled_width = frame->crop_widths[is_uv];
+ line_bytes = upscaled_width << use_highbd;
+ for (int i = 0; i < lines_to_save; i++) {
+ memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
+ line_bytes);
+ }
+ }
+ // If we only saved one line, then copy it into the second line buffer
+ if (lines_to_save == 1)
+ memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
+
+ extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
+ RESTORATION_EXTRA_HORZ, use_highbd);
+}
+
+static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
+ const AV1_COMMON *cm, int plane, int row,
+ int stripe, int use_highbd, int is_above,
+ RestorationStripeBoundaries *boundaries) {
+ const int is_uv = plane > 0;
+ const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
+ const int src_stride = frame->strides[is_uv] << use_highbd;
+ const uint8_t *src_rows = src_buf + row * src_stride;
+
+ uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
+ : boundaries->stripe_boundary_below;
+ uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
+ const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
+ uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
+ const int src_width = frame->crop_widths[is_uv];
+
+ // At the point where this function is called, we've already applied
+ // superres. So we don't need to extend the lines here, we can just
+ // pull directly from the topmost row of the upscaled frame.
+ const int ss_x = is_uv && cm->seq_params.subsampling_x;
+ const int upscaled_width = av1_superres_scaled(cm)
+ ? (cm->superres_upscaled_width + ss_x) >> ss_x
+ : src_width;
+ const int line_bytes = upscaled_width << use_highbd;
+ for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
+ // Copy the line at 'row' into both context lines. This is because
+ // we want to (effectively) extend the outermost row of CDEF data
+ // from this tile to produce a border, rather than using deblocked
+ // pixels from the tile above/below.
+ memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
+ }
+ extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
+ RESTORATION_EXTRA_HORZ, use_highbd);
+}
+
+static void save_tile_row_boundary_lines(const YV12_BUFFER_CONFIG *frame,
+ int use_highbd, int plane,
+ AV1_COMMON *cm, int after_cdef) {
+ const int is_uv = plane > 0;
+ const int ss_y = is_uv && cm->seq_params.subsampling_y;
+ const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
+ const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
+
+ // Get the tile rectangle, with height rounded up to the next multiple of 8
+ // luma pixels (only relevant for the bottom tile of the frame)
+ const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
+ const int stripe0 = 0;
+
+ RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
+
+ const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
+
+ int tile_stripe;
+ for (tile_stripe = 0;; ++tile_stripe) {
+ const int rel_y0 = AOMMAX(0, tile_stripe * stripe_height - stripe_off);
+ const int y0 = tile_rect.top + rel_y0;
+ if (y0 >= tile_rect.bottom) break;
+
+ const int rel_y1 = (tile_stripe + 1) * stripe_height - stripe_off;
+ const int y1 = AOMMIN(tile_rect.top + rel_y1, tile_rect.bottom);
+
+ const int frame_stripe = stripe0 + tile_stripe;
+
+ // In this case, we should only use CDEF pixels at the top
+ // and bottom of the frame as a whole; internal tile boundaries
+ // can use deblocked pixels from adjacent tiles for context.
+ const int use_deblock_above = (frame_stripe > 0);
+ const int use_deblock_below = (y1 < plane_height);
+
+ if (!after_cdef) {
+ // Save deblocked context where needed.
+ if (use_deblock_above) {
+ save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
+ frame_stripe, use_highbd, 1, boundaries);
+ }
+ if (use_deblock_below) {
+ save_deblock_boundary_lines(frame, cm, plane, y1, frame_stripe,
+ use_highbd, 0, boundaries);
+ }
+ } else {
+ // Save CDEF context where needed. Note that we need to save the CDEF
+ // context for a particular boundary iff we *didn't* save deblocked
+ // context for that boundary.
+ //
+ // In addition, we need to save copies of the outermost line within
+ // the tile, rather than using data from outside the tile.
+ if (!use_deblock_above) {
+ save_cdef_boundary_lines(frame, cm, plane, y0, frame_stripe, use_highbd,
+ 1, boundaries);
+ }
+ if (!use_deblock_below) {
+ save_cdef_boundary_lines(frame, cm, plane, y1 - 1, frame_stripe,
+ use_highbd, 0, boundaries);
+ }
+ }
+ }
+}
+
+// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
+// lines to be used as boundary in the loop restoration process. The
+// lines are saved in rst_internal.stripe_boundary_lines
+void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
+ AV1_COMMON *cm, int after_cdef) {
+ const int num_planes = av1_num_planes(cm);
+ const int use_highbd = cm->seq_params.use_highbitdepth;
+ for (int p = 0; p < num_planes; ++p) {
+ save_tile_row_boundary_lines(frame, use_highbd, p, cm, after_cdef);
+ }
+}