diff options
author | Moonchild <mcwerewolf@gmail.com> | 2018-10-24 05:58:24 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-10-24 05:58:24 +0200 |
commit | d1a35c3fa6a59f622becc328bf00eff98732dc53 (patch) | |
tree | 6792772d3cb4e22e4bac907376ba17d3030bd008 /third_party/aom/av1/common/reconinter.c | |
parent | 81acc4099a515cc1b74ec2b0669aa85fe078aabc (diff) | |
parent | 192199b03fa2e56d2728b0de1dbe4bedfc1edc50 (diff) | |
download | UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.tar UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.tar.gz UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.tar.lz UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.tar.xz UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.zip |
Merge pull request #850 from trav90/add-av1-support
Add initial support for AV1 video.
Diffstat (limited to 'third_party/aom/av1/common/reconinter.c')
-rw-r--r-- | third_party/aom/av1/common/reconinter.c | 1162 |
1 files changed, 1162 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/reconinter.c b/third_party/aom/av1/common/reconinter.c new file mode 100644 index 000000000..3203efce4 --- /dev/null +++ b/third_party/aom/av1/common/reconinter.c @@ -0,0 +1,1162 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <stdio.h> +#include <limits.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" + +#include "aom/aom_integer.h" +#include "aom_dsp/blend.h" + +#include "av1/common/blockd.h" +#include "av1/common/mvref_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/obmc.h" + +#define USE_PRECOMPUTED_WEDGE_MASK 1 +#define USE_PRECOMPUTED_WEDGE_SIGN 1 + +// This function will determine whether or not to create a warped +// prediction. +int av1_allow_warp(const MB_MODE_INFO *const mbmi, + const WarpTypesAllowed *const warp_types, + const WarpedMotionParams *const gm_params, + int build_for_obmc, int x_scale, int y_scale, + WarpedMotionParams *final_warp_params) { + if (x_scale != SCALE_SUBPEL_SHIFTS || y_scale != SCALE_SUBPEL_SHIFTS) + return 0; + + if (final_warp_params != NULL) *final_warp_params = default_warp_params; + + if (build_for_obmc) return 0; + + if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) { + if (final_warp_params != NULL) + memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params)); + return 1; + } else if (warp_types->global_warp_allowed && !gm_params->invalid) { + if (final_warp_params != NULL) + memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); + return 1; + } + + return 0; +} + +void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, const SubpelParams *subpel_params, + const struct scale_factors *sf, int w, int h, + ConvolveParams *conv_params, + InterpFilters interp_filters, + const WarpTypesAllowed *warp_types, int p_col, + int p_row, int plane, int ref, + const MB_MODE_INFO *mi, int build_for_obmc, + const MACROBLOCKD *xd, int can_use_previous) { + // Make sure the selected motion mode is valid for this configuration + assert_motion_mode_valid(mi->motion_mode, xd->global_motion, xd, mi, + can_use_previous); + assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); + + WarpedMotionParams final_warp_params; + const int do_warp = + (w >= 8 && h >= 8 && + av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], + build_for_obmc, subpel_params->xs, subpel_params->ys, + &final_warp_params)); + const int is_intrabc = mi->use_intrabc; + assert(IMPLIES(is_intrabc, !do_warp)); + + if (do_warp && xd->cur_frame_force_integer_mv == 0) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const struct buf_2d *const pre_buf = &pd->pre[ref]; + av1_warp_plane(&final_warp_params, + xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, + pre_buf->buf0, pre_buf->width, pre_buf->height, + pre_buf->stride, dst, p_col, p_row, w, h, dst_stride, + pd->subsampling_x, pd->subsampling_y, conv_params); + } else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_params, sf, + w, h, conv_params, interp_filters, is_intrabc, + xd->bd); + } else { + inter_predictor(src, src_stride, dst, dst_stride, subpel_params, sf, w, h, + conv_params, interp_filters, is_intrabc); + } +} + +#if USE_PRECOMPUTED_WEDGE_MASK +static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, + 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, +}; +static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, + 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, +}; +static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, + 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, + 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, +}; + +static void shift_copy(const uint8_t *src, uint8_t *dst, int shift, int width) { + if (shift >= 0) { + memcpy(dst + shift, src, width - shift); + memset(dst, src[0], shift); + } else { + shift = -shift; + memcpy(dst, src + shift, width - shift); + memset(dst + width - shift, src[width - 1], shift); + } +} +#endif // USE_PRECOMPUTED_WEDGE_MASK + +#if USE_PRECOMPUTED_WEDGE_SIGN +/* clang-format off */ +DECLARE_ALIGNED(16, static uint8_t, + wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = { + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, }, + { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used +}; +/* clang-format on */ +#else +DECLARE_ALIGNED(16, static uint8_t, + wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]); +#endif // USE_PRECOMPUTED_WEDGE_SIGN + +// [negative][direction] +DECLARE_ALIGNED( + 16, static uint8_t, + wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); + +// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound +// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. +DECLARE_ALIGNED(16, static uint8_t, + wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); + +static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; + +static const wedge_code_type wedge_codebook_16_hgtw[16] = { + { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, + { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, + { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, + { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, + { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, + { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, + { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, + { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, +}; + +static const wedge_code_type wedge_codebook_16_hltw[16] = { + { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, + { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, + { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, + { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, + { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, + { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, + { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, + { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, +}; + +static const wedge_code_type wedge_codebook_16_heqw[16] = { + { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, + { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, + { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, + { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, + { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, + { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, + { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, + { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, +}; + +const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL] = { + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], + wedge_masks[BLOCK_8X8] }, + { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], + wedge_masks[BLOCK_8X16] }, + { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], + wedge_masks[BLOCK_16X8] }, + { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], + wedge_masks[BLOCK_16X16] }, + { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], + wedge_masks[BLOCK_16X32] }, + { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], + wedge_masks[BLOCK_32X16] }, + { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], + wedge_masks[BLOCK_32X32] }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, + { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], + wedge_masks[BLOCK_8X32] }, + { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], + wedge_masks[BLOCK_32X8] }, + { 0, NULL, NULL, NULL }, + { 0, NULL, NULL, NULL }, +}; + +static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, + BLOCK_SIZE sb_type) { + const uint8_t *master; + const int bh = block_size_high[sb_type]; + const int bw = block_size_wide[sb_type]; + const wedge_code_type *a = + wedge_params_lookup[sb_type].codebook + wedge_index; + int woff, hoff; + const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index]; + + assert(wedge_index >= 0 && + wedge_index < (1 << get_wedge_bits_lookup(sb_type))); + woff = (a->x_offset * bw) >> 3; + hoff = (a->y_offset * bh) >> 3; + master = wedge_mask_obl[neg ^ wsignflip][a->direction] + + MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + + MASK_MASTER_SIZE / 2 - woff; + return master; +} + +const uint8_t *av1_get_compound_type_mask( + const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { + assert(is_masked_compound_type(comp_data->type)); + (void)sb_type; + switch (comp_data->type) { + case COMPOUND_WEDGE: + return av1_get_contiguous_soft_mask(comp_data->wedge_index, + comp_data->wedge_sign, sb_type); + case COMPOUND_DIFFWTD: return comp_data->seg_mask; + default: assert(0); return NULL; + } +} + +static void diffwtd_mask_d16(uint8_t *mask, int which_inverse, int mask_base, + const CONV_BUF_TYPE *src0, int src0_stride, + const CONV_BUF_TYPE *src1, int src1_stride, int h, + int w, ConvolveParams *conv_params, int bd) { + int round = + 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); + int i, j, m, diff; + for (i = 0; i < h; ++i) { + for (j = 0; j < w; ++j) { + diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); + diff = ROUND_POWER_OF_TWO(diff, round); + m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); + mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; + } + } +} + +void av1_build_compound_diffwtd_mask_d16_c( + uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, + int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, + ConvolveParams *conv_params, int bd) { + switch (mask_type) { + case DIFFWTD_38: + diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, + conv_params, bd); + break; + case DIFFWTD_38_INV: + diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, + conv_params, bd); + break; + default: assert(0); + } +} + +static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base, + const uint8_t *src0, int src0_stride, + const uint8_t *src1, int src1_stride, int h, int w) { + int i, j, m, diff; + for (i = 0; i < h; ++i) { + for (j = 0; j < w; ++j) { + diff = + abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]); + m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); + mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; + } + } +} + +void av1_build_compound_diffwtd_mask_c(uint8_t *mask, + DIFFWTD_MASK_TYPE mask_type, + const uint8_t *src0, int src0_stride, + const uint8_t *src1, int src1_stride, + int h, int w) { + switch (mask_type) { + case DIFFWTD_38: + diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w); + break; + case DIFFWTD_38_INV: + diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w); + break; + default: assert(0); + } +} + +static AOM_FORCE_INLINE void diffwtd_mask_highbd( + uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, + int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, + const unsigned int bd) { + assert(bd >= 8); + if (bd == 8) { + if (which_inverse) { + for (int i = 0; i < h; ++i) { + for (int j = 0; j < w; ++j) { + int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; + unsigned int m = negative_to_zero(mask_base + diff); + m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); + mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; + } + src0 += src0_stride; + src1 += src1_stride; + mask += w; + } + } else { + for (int i = 0; i < h; ++i) { + for (int j = 0; j < w; ++j) { + int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; + unsigned int m = negative_to_zero(mask_base + diff); + m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); + mask[j] = m; + } + src0 += src0_stride; + src1 += src1_stride; + mask += w; + } + } + } else { + const unsigned int bd_shift = bd - 8; + if (which_inverse) { + for (int i = 0; i < h; ++i) { + for (int j = 0; j < w; ++j) { + int diff = + (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; + unsigned int m = negative_to_zero(mask_base + diff); + m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); + mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; + } + src0 += src0_stride; + src1 += src1_stride; + mask += w; + } + } else { + for (int i = 0; i < h; ++i) { + for (int j = 0; j < w; ++j) { + int diff = + (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; + unsigned int m = negative_to_zero(mask_base + diff); + m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); + mask[j] = m; + } + src0 += src0_stride; + src1 += src1_stride; + mask += w; + } + } + } +} + +void av1_build_compound_diffwtd_mask_highbd_c( + uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0, + int src0_stride, const uint8_t *src1, int src1_stride, int h, int w, + int bd) { + switch (mask_type) { + case DIFFWTD_38: + diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, + CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); + break; + case DIFFWTD_38_INV: + diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, + CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); + break; + default: assert(0); + } +} + +static void init_wedge_master_masks() { + int i, j; + const int w = MASK_MASTER_SIZE; + const int h = MASK_MASTER_SIZE; + const int stride = MASK_MASTER_STRIDE; +// Note: index [0] stores the masters, and [1] its complement. +#if USE_PRECOMPUTED_WEDGE_MASK + // Generate prototype by shifting the masters + int shift = h / 4; + for (i = 0; i < h; i += 2) { + shift_copy(wedge_master_oblique_even, + &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift, + MASK_MASTER_SIZE); + shift--; + shift_copy(wedge_master_oblique_odd, + &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, + MASK_MASTER_SIZE); + memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride], + wedge_master_vertical, + MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); + memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride], + wedge_master_vertical, + MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); + } +#else + static const double smoother_param = 2.85; + const int a[2] = { 2, 1 }; + const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]); + for (i = 0; i < h; i++) { + for (j = 0; j < w; ++j) { + int x = (2 * j + 1 - w); + int y = (2 * i + 1 - h); + double d = (a[0] * x + a[1] * y) / asqrt; + const int msk = (int)rint((1.0 + tanh(d / smoother_param)) * 32); + wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j] = msk; + const int mskx = (int)rint((1.0 + tanh(x / smoother_param)) * 32); + wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j] = mskx; + } + } +#endif // USE_PRECOMPUTED_WEDGE_MASK + for (i = 0; i < h; ++i) { + for (j = 0; j < w; ++j) { + const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j]; + wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk; + wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = + wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = + (1 << WEDGE_WEIGHT_BITS) - msk; + wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] = + wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] = + (1 << WEDGE_WEIGHT_BITS) - msk; + wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = + wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; + const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j]; + wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx; + wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] = + wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] = + (1 << WEDGE_WEIGHT_BITS) - mskx; + } + } +} + +#if !USE_PRECOMPUTED_WEDGE_SIGN +// If the signs for the wedges for various blocksizes are +// inconsistent flip the sign flag. Do it only once for every +// wedge codebook. +static void init_wedge_signs() { + BLOCK_SIZE sb_type; + memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup)); + for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES_ALL; ++sb_type) { + const int bw = block_size_wide[sb_type]; + const int bh = block_size_high[sb_type]; + const wedge_params_type wedge_params = wedge_params_lookup[sb_type]; + const int wbits = wedge_params.bits; + const int wtypes = 1 << wbits; + int i, w; + if (wbits) { + for (w = 0; w < wtypes; ++w) { + // Get the mask master, i.e. index [0] + const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type); + int avg = 0; + for (i = 0; i < bw; ++i) avg += mask[i]; + for (i = 1; i < bh; ++i) avg += mask[i * MASK_MASTER_STRIDE]; + avg = (avg + (bw + bh - 1) / 2) / (bw + bh - 1); + // Default sign of this wedge is 1 if the average < 32, 0 otherwise. + // If default sign is 1: + // If sign requested is 0, we need to flip the sign and return + // the complement i.e. index [1] instead. If sign requested is 1 + // we need to flip the sign and return index [0] instead. + // If default sign is 0: + // If sign requested is 0, we need to return index [0] the master + // if sign requested is 1, we need to return the complement index [1] + // instead. + wedge_params.signflip[w] = (avg < 32); + } + } + } +} +#endif // !USE_PRECOMPUTED_WEDGE_SIGN + +static void init_wedge_masks() { + uint8_t *dst = wedge_mask_buf; + BLOCK_SIZE bsize; + memset(wedge_masks, 0, sizeof(wedge_masks)); + for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { + const uint8_t *mask; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const wedge_params_type *wedge_params = &wedge_params_lookup[bsize]; + const int wbits = wedge_params->bits; + const int wtypes = 1 << wbits; + int w; + if (wbits == 0) continue; + for (w = 0; w < wtypes; ++w) { + mask = get_wedge_mask_inplace(w, 0, bsize); + aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, + bh); + wedge_params->masks[0][w] = dst; + dst += bw * bh; + + mask = get_wedge_mask_inplace(w, 1, bsize); + aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, + bh); + wedge_params->masks[1][w] = dst; + dst += bw * bh; + } + assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); + } +} + +// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 +void av1_init_wedge_masks() { + init_wedge_master_masks(); +#if !USE_PRECOMPUTED_WEDGE_SIGN + init_wedge_signs(); +#endif // !USE_PRECOMPUTED_WEDGE_SIGN + init_wedge_masks(); +} + +static void build_masked_compound_no_round( + uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, + const CONV_BUF_TYPE *src1, int src1_stride, + const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, + int w, ConvolveParams *conv_params, MACROBLOCKD *xd) { + // Derive subsampling from h and w passed in. May be refactored to + // pass in subsampling factors directly. + const int subh = (2 << mi_size_high_log2[sb_type]) == h; + const int subw = (2 << mi_size_wide_log2[sb_type]) == w; + const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, + src1_stride, mask, block_size_wide[sb_type], + w, h, subw, subh, conv_params, xd->bd); + else + aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, + src1_stride, mask, block_size_wide[sb_type], w, + h, subw, subh, conv_params); +} + +void av1_make_masked_inter_predictor( + const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, + const SubpelParams *subpel_params, const struct scale_factors *sf, int w, + int h, ConvolveParams *conv_params, InterpFilters interp_filters, int plane, + const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref, + MACROBLOCKD *xd, int can_use_previous) { + MB_MODE_INFO *mi = xd->mi[0]; + (void)dst; + (void)dst_stride; + mi->interinter_comp.seg_mask = xd->seg_mask; + const INTERINTER_COMPOUND_DATA *comp_data = &mi->interinter_comp; + +// We're going to call av1_make_inter_predictor to generate a prediction into +// a temporary buffer, then will blend that temporary buffer with that from +// the other reference. +// +#define INTER_PRED_BYTES_PER_PIXEL 2 + + DECLARE_ALIGNED(32, uint8_t, + tmp_buf[INTER_PRED_BYTES_PER_PIXEL * MAX_SB_SQUARE]); +#undef INTER_PRED_BYTES_PER_PIXEL + + uint8_t *tmp_dst = get_buf_by_bd(xd, tmp_buf); + + const int tmp_buf_stride = MAX_SB_SIZE; + CONV_BUF_TYPE *org_dst = conv_params->dst; + int org_dst_stride = conv_params->dst_stride; + CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; + conv_params->dst = tmp_buf16; + conv_params->dst_stride = tmp_buf_stride; + assert(conv_params->do_average == 0); + + // This will generate a prediction in tmp_buf for the second reference + av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_params, + sf, w, h, conv_params, interp_filters, warp_types, + p_col, p_row, plane, ref, mi, 0, xd, + can_use_previous); + + if (!plane && comp_data->type == COMPOUND_DIFFWTD) { + av1_build_compound_diffwtd_mask_d16( + comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride, + tmp_buf16, tmp_buf_stride, h, w, conv_params, xd->bd); + } + build_masked_compound_no_round(dst, dst_stride, org_dst, org_dst_stride, + tmp_buf16, tmp_buf_stride, comp_data, + mi->sb_type, h, w, conv_params, xd); +} + +void av1_jnt_comp_weight_assign(const AV1_COMMON *cm, const MB_MODE_INFO *mbmi, + int order_idx, int *fwd_offset, int *bck_offset, + int *use_jnt_comp_avg, int is_compound) { + assert(fwd_offset != NULL && bck_offset != NULL); + if (!is_compound || mbmi->compound_idx) { + *use_jnt_comp_avg = 0; + return; + } + + *use_jnt_comp_avg = 1; + const int bck_idx = cm->frame_refs[mbmi->ref_frame[0] - LAST_FRAME].idx; + const int fwd_idx = cm->frame_refs[mbmi->ref_frame[1] - LAST_FRAME].idx; + const int cur_frame_index = cm->cur_frame->cur_frame_offset; + int bck_frame_index = 0, fwd_frame_index = 0; + + if (bck_idx >= 0) { + bck_frame_index = cm->buffer_pool->frame_bufs[bck_idx].cur_frame_offset; + } + + if (fwd_idx >= 0) { + fwd_frame_index = cm->buffer_pool->frame_bufs[fwd_idx].cur_frame_offset; + } + + int d0 = clamp(abs(get_relative_dist(cm, fwd_frame_index, cur_frame_index)), + 0, MAX_FRAME_DISTANCE); + int d1 = clamp(abs(get_relative_dist(cm, cur_frame_index, bck_frame_index)), + 0, MAX_FRAME_DISTANCE); + + const int order = d0 <= d1; + + if (d0 == 0 || d1 == 0) { + *fwd_offset = quant_dist_lookup_table[order_idx][3][order]; + *bck_offset = quant_dist_lookup_table[order_idx][3][1 - order]; + return; + } + + int i; + for (i = 0; i < 3; ++i) { + int c0 = quant_dist_weight[i][order]; + int c1 = quant_dist_weight[i][!order]; + int d0_c0 = d0 * c0; + int d1_c1 = d1 * c1; + if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break; + } + + *fwd_offset = quant_dist_lookup_table[order_idx][i][order]; + *bck_offset = quant_dist_lookup_table[order_idx][i][1 - order]; +} + +void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize, + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const int plane_start, const int plane_end) { + // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet + // the static analysis warnings. + for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { + struct macroblockd_plane *const pd = &planes[i]; + const int is_uv = i > 0; + setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv], + src->crop_heights[is_uv], src->strides[is_uv], mi_row, + mi_col, NULL, pd->subsampling_x, pd->subsampling_y); + } +} + +void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *sf, + const int num_planes) { + if (src != NULL) { + // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet + // the static analysis warnings. + for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { + struct macroblockd_plane *const pd = &xd->plane[i]; + const int is_uv = i > 0; + setup_pred_plane(&pd->pre[idx], xd->mi[0]->sb_type, src->buffers[i], + src->crop_widths[is_uv], src->crop_heights[is_uv], + src->strides[is_uv], mi_row, mi_col, sf, + pd->subsampling_x, pd->subsampling_y); + } + } +} + +// obmc_mask_N[overlap_position] +static const uint8_t obmc_mask_1[1] = { 64 }; + +static const uint8_t obmc_mask_2[2] = { 45, 64 }; + +static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 }; + +static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; + +static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, + 56, 58, 60, 61, 64, 64, 64, 64 }; + +static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, + 45, 47, 48, 50, 51, 52, 53, 55, + 56, 57, 58, 59, 60, 60, 61, 62, + 64, 64, 64, 64, 64, 64, 64, 64 }; + +static const uint8_t obmc_mask_64[64] = { + 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, + 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, + 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, + 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, +}; + +const uint8_t *av1_get_obmc_mask(int length) { + switch (length) { + case 1: return obmc_mask_1; + case 2: return obmc_mask_2; + case 4: return obmc_mask_4; + case 8: return obmc_mask_8; + case 16: return obmc_mask_16; + case 32: return obmc_mask_32; + case 64: return obmc_mask_64; + default: assert(0); return NULL; + } +} + +static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_rc, + uint8_t mi_hw, MB_MODE_INFO *mi, + void *fun_ctxt, const int num_planes) { + (void)xd; + (void)rel_mi_rc; + (void)mi_hw; + (void)mi; + ++*(int *)fun_ctxt; + (void)num_planes; +} + +void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col) { + MB_MODE_INFO *mbmi = xd->mi[0]; + + mbmi->overlappable_neighbors[0] = 0; + mbmi->overlappable_neighbors[1] = 0; + + if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return; + + foreach_overlappable_nb_above(cm, xd, mi_col, INT_MAX, increment_int_ptr, + &mbmi->overlappable_neighbors[0]); + foreach_overlappable_nb_left(cm, xd, mi_row, INT_MAX, increment_int_ptr, + &mbmi->overlappable_neighbors[1]); +} + +// HW does not support < 4x4 prediction. To limit the bandwidth requirement, if +// block-size of current plane is smaller than 8x8, always only blend with the +// left neighbor(s) (skip blending with the above side). +#define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable + +int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, + const struct macroblockd_plane *pd, int dir) { + assert(is_motion_variation_allowed_bsize(bsize)); + + const BLOCK_SIZE bsize_plane = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + switch (bsize_plane) { +#if DISABLE_CHROMA_U8X8_OBMC + case BLOCK_4X4: + case BLOCK_8X4: + case BLOCK_4X8: return 1; break; +#else + case BLOCK_4X4: + case BLOCK_8X4: + case BLOCK_4X8: return dir == 0; break; +#endif + default: return 0; + } +} + +void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { + mbmi->ref_frame[1] = NONE_FRAME; + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + + return; +} + +struct obmc_inter_pred_ctxt { + uint8_t **adjacent; + int *adjacent_stride; +}; + +static INLINE void build_obmc_inter_pred_above(MACROBLOCKD *xd, int rel_mi_col, + uint8_t above_mi_width, + MB_MODE_INFO *above_mi, + void *fun_ctxt, + const int num_planes) { + (void)above_mi; + struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; + const int overlap = + AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; + + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + const int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; + const int bh = overlap >> pd->subsampling_y; + const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x; + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; + + const int dst_stride = pd->dst.stride; + uint8_t *const dst = &pd->dst.buf[plane_col]; + const int tmp_stride = ctxt->adjacent_stride[plane]; + const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col]; + const uint8_t *const mask = av1_get_obmc_mask(bh); + + if (is_hbd) + aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, + tmp_stride, mask, bw, bh, xd->bd); + else + aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, + mask, bw, bh); + } +} + +static INLINE void build_obmc_inter_pred_left(MACROBLOCKD *xd, int rel_mi_row, + uint8_t left_mi_height, + MB_MODE_INFO *left_mi, + void *fun_ctxt, + const int num_planes) { + (void)left_mi; + struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const int overlap = + AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; + const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; + + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + const int bw = overlap >> pd->subsampling_x; + const int bh = (left_mi_height * MI_SIZE) >> pd->subsampling_y; + const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y; + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; + + const int dst_stride = pd->dst.stride; + uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride]; + const int tmp_stride = ctxt->adjacent_stride[plane]; + const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride]; + const uint8_t *const mask = av1_get_obmc_mask(bw); + + if (is_hbd) + aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, + tmp_stride, mask, bw, bh, xd->bd); + else + aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, + mask, bw, bh); + } +} + +// This function combines motion compensated predictions that are generated by +// top/left neighboring blocks' inter predictors with the regular inter +// prediction. We assume the original prediction (bmc) is stored in +// xd->plane[].dst.buf +void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, + uint8_t *above[MAX_MB_PLANE], + int above_stride[MAX_MB_PLANE], + uint8_t *left[MAX_MB_PLANE], + int left_stride[MAX_MB_PLANE]) { + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + + // handle above row + struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride }; + foreach_overlappable_nb_above(cm, xd, mi_col, + max_neighbor_obmc[mi_size_wide_log2[bsize]], + build_obmc_inter_pred_above, &ctxt_above); + + // handle left column + struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride }; + foreach_overlappable_nb_left(cm, xd, mi_row, + max_neighbor_obmc[mi_size_high_log2[bsize]], + build_obmc_inter_pred_left, &ctxt_left); +} + +void av1_setup_build_prediction_by_above_pred( + MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, + MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, + const int num_planes) { + const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type); + const int above_mi_col = ctxt->mi_col + rel_mi_col; + + av1_modify_neighbor_predictor_for_obmc(above_mbmi); + + for (int j = 0; j < num_planes; ++j) { + struct macroblockd_plane *const pd = &xd->plane[j]; + setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], + ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col, + NULL, pd->subsampling_x, pd->subsampling_y); + } + + const int num_refs = 1 + has_second_ref(above_mbmi); + + for (int ref = 0; ref < num_refs; ++ref) { + const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; + + const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME]; + + xd->block_refs[ref] = ref_buf; + if ((!av1_is_valid_scale(&ref_buf->sf))) + aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Reference frame has invalid dimensions"); + av1_setup_pre_planes(xd, ref, ref_buf->buf, ctxt->mi_row, above_mi_col, + &ref_buf->sf, num_planes); + } + + xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col); + xd->mb_to_right_edge = ctxt->mb_to_far_edge + + (xd->n4_w - rel_mi_col - above_mi_width) * MI_SIZE * 8; +} + +void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, + uint8_t left_mi_height, + MB_MODE_INFO *left_mbmi, + struct build_prediction_ctxt *ctxt, + const int num_planes) { + const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type); + const int left_mi_row = ctxt->mi_row + rel_mi_row; + + av1_modify_neighbor_predictor_for_obmc(left_mbmi); + + for (int j = 0; j < num_planes; ++j) { + struct macroblockd_plane *const pd = &xd->plane[j]; + setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], + ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0, + NULL, pd->subsampling_x, pd->subsampling_y); + } + + const int num_refs = 1 + has_second_ref(left_mbmi); + + for (int ref = 0; ref < num_refs; ++ref) { + const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; + + const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME]; + + xd->block_refs[ref] = ref_buf; + if ((!av1_is_valid_scale(&ref_buf->sf))) + aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, + "Reference frame has invalid dimensions"); + av1_setup_pre_planes(xd, ref, ref_buf->buf, left_mi_row, ctxt->mi_col, + &ref_buf->sf, num_planes); + } + + xd->mb_to_top_edge = 8 * MI_SIZE * (-left_mi_row); + xd->mb_to_bottom_edge = + ctxt->mb_to_far_edge + + (xd->n4_h - rel_mi_row - left_mi_height) * MI_SIZE * 8; +} + +/* clang-format off */ +static const uint8_t ii_weights1d[MAX_SB_SIZE] = { + 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, + 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, + 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, + 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, + 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 +}; +static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { + 32, 16, 16, 16, 8, 8, 8, 4, + 4, 4, 2, 2, 2, 1, 1, 1, + 8, 8, 4, 4, 2, 2 +}; +/* clang-format on */ + +static void build_smooth_interintra_mask(uint8_t *mask, int stride, + BLOCK_SIZE plane_bsize, + INTERINTRA_MODE mode) { + int i, j; + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + const int size_scale = ii_size_scales[plane_bsize]; + + switch (mode) { + case II_V_PRED: + for (i = 0; i < bh; ++i) { + memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); + mask += stride; + } + break; + + case II_H_PRED: + for (i = 0; i < bh; ++i) { + for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; + mask += stride; + } + break; + + case II_SMOOTH_PRED: + for (i = 0; i < bh; ++i) { + for (j = 0; j < bw; ++j) + mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; + mask += stride; + } + break; + + case II_DC_PRED: + default: + for (i = 0; i < bh; ++i) { + memset(mask, 32, bw * sizeof(mask[0])); + mask += stride; + } + break; + } +} + +static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra, + int wedge_index, int wedge_sign, + BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, + uint8_t *comppred, int compstride, + const uint8_t *interpred, int interstride, + const uint8_t *intrapred, int intrastride) { + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + + if (use_wedge_interintra) { + if (is_interintra_wedge_used(bsize)) { + const uint8_t *mask = + av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); + const int subw = 2 * mi_size_wide[bsize] == bw; + const int subh = 2 * mi_size_high[bsize] == bh; + aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, + interpred, interstride, mask, block_size_wide[bsize], + bw, bh, subw, subh); + } + return; + } + + uint8_t mask[MAX_SB_SQUARE]; + build_smooth_interintra_mask(mask, bw, plane_bsize, mode); + aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred, + interstride, mask, bw, bw, bh, 0, 0); +} + +static void combine_interintra_highbd( + INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, + int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, + uint8_t *comppred8, int compstride, const uint8_t *interpred8, + int interstride, const uint8_t *intrapred8, int intrastride, int bd) { + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + + if (use_wedge_interintra) { + if (is_interintra_wedge_used(bsize)) { + const uint8_t *mask = + av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); + const int subh = 2 * mi_size_high[bsize] == bh; + const int subw = 2 * mi_size_wide[bsize] == bw; + aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, + interpred8, interstride, mask, + block_size_wide[bsize], bw, bh, subw, subh, bd); + } + return; + } + + uint8_t mask[MAX_SB_SQUARE]; + build_smooth_interintra_mask(mask, bw, plane_bsize, mode); + aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, + interpred8, interstride, mask, bw, bw, bh, 0, 0, + bd); +} + +void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, + MACROBLOCKD *xd, + BLOCK_SIZE bsize, int plane, + BUFFER_SET *ctx, uint8_t *dst, + int dst_stride) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const int ssx = xd->plane[plane].subsampling_x; + const int ssy = xd->plane[plane].subsampling_y; + BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); + PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode]; + assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0); + assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0); + assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0); + assert(xd->mi[0]->use_intrabc == 0); + + av1_predict_intra_block(cm, xd, pd->width, pd->height, + max_txsize_rect_lookup[plane_bsize], mode, 0, 0, + FILTER_INTRA_MODES, ctx->plane[plane], + ctx->stride[plane], dst, dst_stride, 0, 0, plane); +} + +void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, + const uint8_t *inter_pred, int inter_stride, + const uint8_t *intra_pred, int intra_stride) { + const int ssx = xd->plane[plane].subsampling_x; + const int ssy = xd->plane[plane].subsampling_y; + const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + combine_interintra_highbd( + xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, + xd->mi[0]->interintra_wedge_index, xd->mi[0]->interintra_wedge_sign, + bsize, plane_bsize, xd->plane[plane].dst.buf, + xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, + intra_stride, xd->bd); + return; + } + combine_interintra( + xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, + xd->mi[0]->interintra_wedge_index, xd->mi[0]->interintra_wedge_sign, + bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, + inter_pred, inter_stride, intra_pred, intra_stride); +} + +// build interintra_predictors for one plane +void av1_build_interintra_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd, + uint8_t *pred, int stride, + BUFFER_SET *ctx, int plane, + BLOCK_SIZE bsize) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); + av1_build_intra_predictors_for_interintra( + cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(intrapredictor), + MAX_SB_SIZE); + av1_combine_interintra(xd, bsize, plane, pred, stride, + CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); + } else { + DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); + av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx, + intrapredictor, MAX_SB_SIZE); + av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor, + MAX_SB_SIZE); + } +} + +void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, + uint8_t *upred, uint8_t *vpred, + int ustride, int vstride, + BUFFER_SET *ctx, BLOCK_SIZE bsize) { + av1_build_interintra_predictors_sbp(cm, xd, upred, ustride, ctx, 1, bsize); + av1_build_interintra_predictors_sbp(cm, xd, vpred, vstride, ctx, 2, bsize); +} |