summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/arm/cfl_neon.c
diff options
context:
space:
mode:
authorMoonchild <mcwerewolf@gmail.com>2018-10-24 05:58:24 +0200
committerGitHub <noreply@github.com>2018-10-24 05:58:24 +0200
commitd1a35c3fa6a59f622becc328bf00eff98732dc53 (patch)
tree6792772d3cb4e22e4bac907376ba17d3030bd008 /third_party/aom/av1/common/arm/cfl_neon.c
parent81acc4099a515cc1b74ec2b0669aa85fe078aabc (diff)
parent192199b03fa2e56d2728b0de1dbe4bedfc1edc50 (diff)
downloadUXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.tar
UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.tar.gz
UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.tar.lz
UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.tar.xz
UXP-d1a35c3fa6a59f622becc328bf00eff98732dc53.zip
Merge pull request #850 from trav90/add-av1-support
Add initial support for AV1 video.
Diffstat (limited to 'third_party/aom/av1/common/arm/cfl_neon.c')
-rw-r--r--third_party/aom/av1/common/arm/cfl_neon.c584
1 files changed, 584 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/arm/cfl_neon.c b/third_party/aom/av1/common/arm/cfl_neon.c
new file mode 100644
index 000000000..39025b5e5
--- /dev/null
+++ b/third_party/aom/av1/common/arm/cfl_neon.c
@@ -0,0 +1,584 @@
+/*
+ * Copyright (c) 2017, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+#include <arm_neon.h>
+
+#include "config/av1_rtcd.h"
+
+#include "av1/common/cfl.h"
+
+static INLINE void vldsubstq_s16(int16_t *dst, const uint16_t *src, int offset,
+ int16x8_t sub) {
+ vst1q_s16(dst + offset,
+ vsubq_s16(vreinterpretq_s16_u16(vld1q_u16(src + offset)), sub));
+}
+
+static INLINE uint16x8_t vldaddq_u16(const uint16_t *buf, size_t offset) {
+ return vaddq_u16(vld1q_u16(buf), vld1q_u16(buf + offset));
+}
+
+// Load half of a vector and duplicated in other half
+static INLINE uint8x8_t vldh_dup_u8(const uint8_t *ptr) {
+ return vreinterpret_u8_u32(vld1_dup_u32((const uint32_t *)ptr));
+}
+
+// Store half of a vector.
+static INLINE void vsth_u16(uint16_t *ptr, uint16x4_t val) {
+ *((uint32_t *)ptr) = vreinterpret_u32_u16(val)[0];
+}
+
+// Store half of a vector.
+static INLINE void vsth_u8(uint8_t *ptr, uint8x8_t val) {
+ *((uint32_t *)ptr) = vreinterpret_u32_u8(val)[0];
+}
+
+static void cfl_luma_subsampling_420_lbd_neon(const uint8_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE;
+ const int luma_stride = input_stride << 1;
+ do {
+ if (width == 4) {
+ const uint16x4_t top = vpaddl_u8(vldh_dup_u8(input));
+ const uint16x4_t sum = vpadal_u8(top, vldh_dup_u8(input + input_stride));
+ vsth_u16(pred_buf_q3, vshl_n_u16(sum, 1));
+ } else if (width == 8) {
+ const uint16x4_t top = vpaddl_u8(vld1_u8(input));
+ const uint16x4_t sum = vpadal_u8(top, vld1_u8(input + input_stride));
+ vst1_u16(pred_buf_q3, vshl_n_u16(sum, 1));
+ } else if (width == 16) {
+ const uint16x8_t top = vpaddlq_u8(vld1q_u8(input));
+ const uint16x8_t sum = vpadalq_u8(top, vld1q_u8(input + input_stride));
+ vst1q_u16(pred_buf_q3, vshlq_n_u16(sum, 1));
+ } else {
+ const uint8x8x4_t top = vld4_u8(input);
+ const uint8x8x4_t bot = vld4_u8(input + input_stride);
+ // equivalent to a vpaddlq_u8 (because vld4q interleaves)
+ const uint16x8_t top_0 = vaddl_u8(top.val[0], top.val[1]);
+ // equivalent to a vpaddlq_u8 (because vld4q interleaves)
+ const uint16x8_t bot_0 = vaddl_u8(bot.val[0], bot.val[1]);
+ // equivalent to a vpaddlq_u8 (because vld4q interleaves)
+ const uint16x8_t top_1 = vaddl_u8(top.val[2], top.val[3]);
+ // equivalent to a vpaddlq_u8 (because vld4q interleaves)
+ const uint16x8_t bot_1 = vaddl_u8(bot.val[2], bot.val[3]);
+ uint16x8x2_t sum;
+ sum.val[0] = vshlq_n_u16(vaddq_u16(top_0, bot_0), 1);
+ sum.val[1] = vshlq_n_u16(vaddq_u16(top_1, bot_1), 1);
+ vst2q_u16(pred_buf_q3, sum);
+ }
+ input += luma_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+}
+
+static void cfl_luma_subsampling_422_lbd_neon(const uint8_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE;
+ do {
+ if (width == 4) {
+ const uint16x4_t top = vpaddl_u8(vldh_dup_u8(input));
+ vsth_u16(pred_buf_q3, vshl_n_u16(top, 2));
+ } else if (width == 8) {
+ const uint16x4_t top = vpaddl_u8(vld1_u8(input));
+ vst1_u16(pred_buf_q3, vshl_n_u16(top, 2));
+ } else if (width == 16) {
+ const uint16x8_t top = vpaddlq_u8(vld1q_u8(input));
+ vst1q_u16(pred_buf_q3, vshlq_n_u16(top, 2));
+ } else {
+ const uint8x8x4_t top = vld4_u8(input);
+ uint16x8x2_t sum;
+ // vaddl_u8 is equivalent to a vpaddlq_u8 (because vld4q interleaves)
+ sum.val[0] = vshlq_n_u16(vaddl_u8(top.val[0], top.val[1]), 2);
+ sum.val[1] = vshlq_n_u16(vaddl_u8(top.val[2], top.val[3]), 2);
+ vst2q_u16(pred_buf_q3, sum);
+ }
+ input += input_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+}
+
+static void cfl_luma_subsampling_444_lbd_neon(const uint8_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE;
+ do {
+ if (width == 4) {
+ const uint16x8_t top = vshll_n_u8(vldh_dup_u8(input), 3);
+ vst1_u16(pred_buf_q3, vget_low_u16(top));
+ } else if (width == 8) {
+ const uint16x8_t top = vshll_n_u8(vld1_u8(input), 3);
+ vst1q_u16(pred_buf_q3, top);
+ } else {
+ const uint8x16_t top = vld1q_u8(input);
+ vst1q_u16(pred_buf_q3, vshll_n_u8(vget_low_u8(top), 3));
+ vst1q_u16(pred_buf_q3 + 8, vshll_n_u8(vget_high_u8(top), 3));
+ if (width == 32) {
+ const uint8x16_t next_top = vld1q_u8(input + 16);
+ vst1q_u16(pred_buf_q3 + 16, vshll_n_u8(vget_low_u8(next_top), 3));
+ vst1q_u16(pred_buf_q3 + 24, vshll_n_u8(vget_high_u8(next_top), 3));
+ }
+ }
+ input += input_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+}
+
+#ifndef __aarch64__
+uint16x8_t vpaddq_u16(uint16x8_t a, uint16x8_t b) {
+ return vcombine_u16(vpadd_u16(vget_low_u16(a), vget_high_u16(a)),
+ vpadd_u16(vget_low_u16(b), vget_high_u16(b)));
+}
+#endif
+
+static void cfl_luma_subsampling_420_hbd_neon(const uint16_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE;
+ const int luma_stride = input_stride << 1;
+ do {
+ if (width == 4) {
+ const uint16x4_t top = vld1_u16(input);
+ const uint16x4_t bot = vld1_u16(input + input_stride);
+ const uint16x4_t sum = vadd_u16(top, bot);
+ const uint16x4_t hsum = vpadd_u16(sum, sum);
+ vsth_u16(pred_buf_q3, vshl_n_u16(hsum, 1));
+ } else if (width < 32) {
+ const uint16x8_t top = vld1q_u16(input);
+ const uint16x8_t bot = vld1q_u16(input + input_stride);
+ const uint16x8_t sum = vaddq_u16(top, bot);
+ if (width == 8) {
+ const uint16x4_t hsum = vget_low_u16(vpaddq_u16(sum, sum));
+ vst1_u16(pred_buf_q3, vshl_n_u16(hsum, 1));
+ } else {
+ const uint16x8_t top_1 = vld1q_u16(input + 8);
+ const uint16x8_t bot_1 = vld1q_u16(input + 8 + input_stride);
+ const uint16x8_t sum_1 = vaddq_u16(top_1, bot_1);
+ const uint16x8_t hsum = vpaddq_u16(sum, sum_1);
+ vst1q_u16(pred_buf_q3, vshlq_n_u16(hsum, 1));
+ }
+ } else {
+ const uint16x8x4_t top = vld4q_u16(input);
+ const uint16x8x4_t bot = vld4q_u16(input + input_stride);
+ // equivalent to a vpaddq_u16 (because vld4q interleaves)
+ const uint16x8_t top_0 = vaddq_u16(top.val[0], top.val[1]);
+ // equivalent to a vpaddq_u16 (because vld4q interleaves)
+ const uint16x8_t bot_0 = vaddq_u16(bot.val[0], bot.val[1]);
+ // equivalent to a vpaddq_u16 (because vld4q interleaves)
+ const uint16x8_t top_1 = vaddq_u16(top.val[2], top.val[3]);
+ // equivalent to a vpaddq_u16 (because vld4q interleaves)
+ const uint16x8_t bot_1 = vaddq_u16(bot.val[2], bot.val[3]);
+ uint16x8x2_t sum;
+ sum.val[0] = vshlq_n_u16(vaddq_u16(top_0, bot_0), 1);
+ sum.val[1] = vshlq_n_u16(vaddq_u16(top_1, bot_1), 1);
+ vst2q_u16(pred_buf_q3, sum);
+ }
+ input += luma_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+}
+
+static void cfl_luma_subsampling_422_hbd_neon(const uint16_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE;
+ do {
+ if (width == 4) {
+ const uint16x4_t top = vld1_u16(input);
+ const uint16x4_t hsum = vpadd_u16(top, top);
+ vsth_u16(pred_buf_q3, vshl_n_u16(hsum, 2));
+ } else if (width == 8) {
+ const uint16x4x2_t top = vld2_u16(input);
+ // equivalent to a vpadd_u16 (because vld2 interleaves)
+ const uint16x4_t hsum = vadd_u16(top.val[0], top.val[1]);
+ vst1_u16(pred_buf_q3, vshl_n_u16(hsum, 2));
+ } else if (width == 16) {
+ const uint16x8x2_t top = vld2q_u16(input);
+ // equivalent to a vpaddq_u16 (because vld2q interleaves)
+ const uint16x8_t hsum = vaddq_u16(top.val[0], top.val[1]);
+ vst1q_u16(pred_buf_q3, vshlq_n_u16(hsum, 2));
+ } else {
+ const uint16x8x4_t top = vld4q_u16(input);
+ // equivalent to a vpaddq_u16 (because vld4q interleaves)
+ const uint16x8_t hsum_0 = vaddq_u16(top.val[0], top.val[1]);
+ // equivalent to a vpaddq_u16 (because vld4q interleaves)
+ const uint16x8_t hsum_1 = vaddq_u16(top.val[2], top.val[3]);
+ uint16x8x2_t result = { { vshlq_n_u16(hsum_0, 2),
+ vshlq_n_u16(hsum_1, 2) } };
+ vst2q_u16(pred_buf_q3, result);
+ }
+ input += input_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+}
+
+static void cfl_luma_subsampling_444_hbd_neon(const uint16_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE;
+ do {
+ if (width == 4) {
+ const uint16x4_t top = vld1_u16(input);
+ vst1_u16(pred_buf_q3, vshl_n_u16(top, 3));
+ } else if (width == 8) {
+ const uint16x8_t top = vld1q_u16(input);
+ vst1q_u16(pred_buf_q3, vshlq_n_u16(top, 3));
+ } else if (width == 16) {
+ uint16x8x2_t top = vld2q_u16(input);
+ top.val[0] = vshlq_n_u16(top.val[0], 3);
+ top.val[1] = vshlq_n_u16(top.val[1], 3);
+ vst2q_u16(pred_buf_q3, top);
+ } else {
+ uint16x8x4_t top = vld4q_u16(input);
+ top.val[0] = vshlq_n_u16(top.val[0], 3);
+ top.val[1] = vshlq_n_u16(top.val[1], 3);
+ top.val[2] = vshlq_n_u16(top.val[2], 3);
+ top.val[3] = vshlq_n_u16(top.val[3], 3);
+ vst4q_u16(pred_buf_q3, top);
+ }
+ input += input_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+}
+
+CFL_GET_SUBSAMPLE_FUNCTION(neon)
+
+static INLINE void subtract_average_neon(const uint16_t *src, int16_t *dst,
+ int width, int height,
+ int round_offset,
+ const int num_pel_log2) {
+ const uint16_t *const end = src + height * CFL_BUF_LINE;
+
+ // Round offset is not needed, because NEON will handle the rounding.
+ (void)round_offset;
+
+ // To optimize the use of the CPU pipeline, we process 4 rows per iteration
+ const int step = 4 * CFL_BUF_LINE;
+
+ // At this stage, the prediction buffer contains scaled reconstructed luma
+ // pixels, which are positive integer and only require 15 bits. By using
+ // unsigned integer for the sum, we can do one addition operation inside 16
+ // bits (8 lanes) before having to convert to 32 bits (4 lanes).
+ const uint16_t *sum_buf = src;
+ uint32x4_t sum_32x4 = { 0, 0, 0, 0 };
+ do {
+ // For all widths, we load, add and combine the data so it fits in 4 lanes.
+ if (width == 4) {
+ const uint16x4_t a0 =
+ vadd_u16(vld1_u16(sum_buf), vld1_u16(sum_buf + CFL_BUF_LINE));
+ const uint16x4_t a1 = vadd_u16(vld1_u16(sum_buf + 2 * CFL_BUF_LINE),
+ vld1_u16(sum_buf + 3 * CFL_BUF_LINE));
+ sum_32x4 = vaddq_u32(sum_32x4, vaddl_u16(a0, a1));
+ } else if (width == 8) {
+ const uint16x8_t a0 = vldaddq_u16(sum_buf, CFL_BUF_LINE);
+ const uint16x8_t a1 =
+ vldaddq_u16(sum_buf + 2 * CFL_BUF_LINE, CFL_BUF_LINE);
+ sum_32x4 = vpadalq_u16(sum_32x4, a0);
+ sum_32x4 = vpadalq_u16(sum_32x4, a1);
+ } else {
+ const uint16x8_t row0 = vldaddq_u16(sum_buf, 8);
+ const uint16x8_t row1 = vldaddq_u16(sum_buf + CFL_BUF_LINE, 8);
+ const uint16x8_t row2 = vldaddq_u16(sum_buf + 2 * CFL_BUF_LINE, 8);
+ const uint16x8_t row3 = vldaddq_u16(sum_buf + 3 * CFL_BUF_LINE, 8);
+ sum_32x4 = vpadalq_u16(sum_32x4, row0);
+ sum_32x4 = vpadalq_u16(sum_32x4, row1);
+ sum_32x4 = vpadalq_u16(sum_32x4, row2);
+ sum_32x4 = vpadalq_u16(sum_32x4, row3);
+
+ if (width == 32) {
+ const uint16x8_t row0_1 = vldaddq_u16(sum_buf + 16, 8);
+ const uint16x8_t row1_1 = vldaddq_u16(sum_buf + CFL_BUF_LINE + 16, 8);
+ const uint16x8_t row2_1 =
+ vldaddq_u16(sum_buf + 2 * CFL_BUF_LINE + 16, 8);
+ const uint16x8_t row3_1 =
+ vldaddq_u16(sum_buf + 3 * CFL_BUF_LINE + 16, 8);
+
+ sum_32x4 = vpadalq_u16(sum_32x4, row0_1);
+ sum_32x4 = vpadalq_u16(sum_32x4, row1_1);
+ sum_32x4 = vpadalq_u16(sum_32x4, row2_1);
+ sum_32x4 = vpadalq_u16(sum_32x4, row3_1);
+ }
+ }
+ sum_buf += step;
+ } while (sum_buf < end);
+
+ // Permute and add in such a way that each lane contains the block sum.
+ // [A+C+B+D, B+D+A+C, C+A+D+B, D+B+C+A]
+#ifdef __aarch64__
+ sum_32x4 = vpaddq_u32(sum_32x4, sum_32x4);
+ sum_32x4 = vpaddq_u32(sum_32x4, sum_32x4);
+#else
+ uint32x4_t flip =
+ vcombine_u32(vget_high_u32(sum_32x4), vget_low_u32(sum_32x4));
+ sum_32x4 = vaddq_u32(sum_32x4, flip);
+ sum_32x4 = vaddq_u32(sum_32x4, vrev64q_u32(sum_32x4));
+#endif
+
+ // Computing the average could be done using scalars, but getting off the NEON
+ // engine introduces latency, so we use vqrshrn.
+ int16x4_t avg_16x4;
+ // Constant propagation makes for some ugly code.
+ switch (num_pel_log2) {
+ case 4: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 4)); break;
+ case 5: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 5)); break;
+ case 6: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 6)); break;
+ case 7: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 7)); break;
+ case 8: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 8)); break;
+ case 9: avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 9)); break;
+ case 10:
+ avg_16x4 = vreinterpret_s16_u16(vqrshrn_n_u32(sum_32x4, 10));
+ break;
+ default: assert(0);
+ }
+
+ if (width == 4) {
+ do {
+ vst1_s16(dst, vsub_s16(vreinterpret_s16_u16(vld1_u16(src)), avg_16x4));
+ src += CFL_BUF_LINE;
+ dst += CFL_BUF_LINE;
+ } while (src < end);
+ } else {
+ const int16x8_t avg_16x8 = vcombine_s16(avg_16x4, avg_16x4);
+ do {
+ vldsubstq_s16(dst, src, 0, avg_16x8);
+ vldsubstq_s16(dst, src, CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 2 * CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 3 * CFL_BUF_LINE, avg_16x8);
+
+ if (width > 8) {
+ vldsubstq_s16(dst, src, 8, avg_16x8);
+ vldsubstq_s16(dst, src, 8 + CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 8 + 2 * CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 8 + 3 * CFL_BUF_LINE, avg_16x8);
+ }
+ if (width == 32) {
+ vldsubstq_s16(dst, src, 16, avg_16x8);
+ vldsubstq_s16(dst, src, 16 + CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 16 + 2 * CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 16 + 3 * CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 24, avg_16x8);
+ vldsubstq_s16(dst, src, 24 + CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 24 + 2 * CFL_BUF_LINE, avg_16x8);
+ vldsubstq_s16(dst, src, 24 + 3 * CFL_BUF_LINE, avg_16x8);
+ }
+ src += step;
+ dst += step;
+ } while (src < end);
+ }
+}
+
+CFL_SUB_AVG_FN(neon)
+
+// Saturating negate 16-bit integers in a when the corresponding signed 16-bit
+// integer in b is negative.
+// Notes:
+// * Negating INT16_MIN results in INT16_MIN. However, this cannot occur in
+// practice, as scaled_luma is the multiplication of two absolute values.
+// * In the Intel equivalent, elements in a are zeroed out when the
+// corresponding elements in b are zero. Because vsign is used twice in a
+// row, with b in the first call becoming a in the second call, there's no
+// impact from not zeroing out.
+static int16x4_t vsign_s16(int16x4_t a, int16x4_t b) {
+ const int16x4_t mask = vshr_n_s16(b, 15);
+ return veor_s16(vadd_s16(a, mask), mask);
+}
+
+// Saturating negate 16-bit integers in a when the corresponding signed 16-bit
+// integer in b is negative.
+// Notes:
+// * Negating INT16_MIN results in INT16_MIN. However, this cannot occur in
+// practice, as scaled_luma is the multiplication of two absolute values.
+// * In the Intel equivalent, elements in a are zeroed out when the
+// corresponding elements in b are zero. Because vsignq is used twice in a
+// row, with b in the first call becoming a in the second call, there's no
+// impact from not zeroing out.
+static int16x8_t vsignq_s16(int16x8_t a, int16x8_t b) {
+ const int16x8_t mask = vshrq_n_s16(b, 15);
+ return veorq_s16(vaddq_s16(a, mask), mask);
+}
+
+static INLINE int16x4_t predict_w4(const int16_t *pred_buf_q3,
+ int16x4_t alpha_sign, int abs_alpha_q12,
+ int16x4_t dc) {
+ const int16x4_t ac_q3 = vld1_s16(pred_buf_q3);
+ const int16x4_t ac_sign = veor_s16(alpha_sign, ac_q3);
+ int16x4_t scaled_luma = vqrdmulh_n_s16(vabs_s16(ac_q3), abs_alpha_q12);
+ return vadd_s16(vsign_s16(scaled_luma, ac_sign), dc);
+}
+
+static INLINE int16x8_t predict_w8(const int16_t *pred_buf_q3,
+ int16x8_t alpha_sign, int abs_alpha_q12,
+ int16x8_t dc) {
+ const int16x8_t ac_q3 = vld1q_s16(pred_buf_q3);
+ const int16x8_t ac_sign = veorq_s16(alpha_sign, ac_q3);
+ int16x8_t scaled_luma = vqrdmulhq_n_s16(vabsq_s16(ac_q3), abs_alpha_q12);
+ return vaddq_s16(vsignq_s16(scaled_luma, ac_sign), dc);
+}
+
+static INLINE int16x8x2_t predict_w16(const int16_t *pred_buf_q3,
+ int16x8_t alpha_sign, int abs_alpha_q12,
+ int16x8_t dc) {
+ // vld2q_s16 interleaves, which is not useful for prediction. vst1q_s16_x2
+ // does not interleave, but is not currently available in the compilier used
+ // by the AOM build system.
+ const int16x8x2_t ac_q3 = vld2q_s16(pred_buf_q3);
+ const int16x8_t ac_sign_0 = veorq_s16(alpha_sign, ac_q3.val[0]);
+ const int16x8_t ac_sign_1 = veorq_s16(alpha_sign, ac_q3.val[1]);
+ const int16x8_t scaled_luma_0 =
+ vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[0]), abs_alpha_q12);
+ const int16x8_t scaled_luma_1 =
+ vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[1]), abs_alpha_q12);
+ int16x8x2_t result;
+ result.val[0] = vaddq_s16(vsignq_s16(scaled_luma_0, ac_sign_0), dc);
+ result.val[1] = vaddq_s16(vsignq_s16(scaled_luma_1, ac_sign_1), dc);
+ return result;
+}
+
+static INLINE int16x8x4_t predict_w32(const int16_t *pred_buf_q3,
+ int16x8_t alpha_sign, int abs_alpha_q12,
+ int16x8_t dc) {
+ // vld4q_s16 interleaves, which is not useful for prediction. vst1q_s16_x4
+ // does not interleave, but is not currently available in the compilier used
+ // by the AOM build system.
+ const int16x8x4_t ac_q3 = vld4q_s16(pred_buf_q3);
+ const int16x8_t ac_sign_0 = veorq_s16(alpha_sign, ac_q3.val[0]);
+ const int16x8_t ac_sign_1 = veorq_s16(alpha_sign, ac_q3.val[1]);
+ const int16x8_t ac_sign_2 = veorq_s16(alpha_sign, ac_q3.val[2]);
+ const int16x8_t ac_sign_3 = veorq_s16(alpha_sign, ac_q3.val[3]);
+ const int16x8_t scaled_luma_0 =
+ vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[0]), abs_alpha_q12);
+ const int16x8_t scaled_luma_1 =
+ vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[1]), abs_alpha_q12);
+ const int16x8_t scaled_luma_2 =
+ vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[2]), abs_alpha_q12);
+ const int16x8_t scaled_luma_3 =
+ vqrdmulhq_n_s16(vabsq_s16(ac_q3.val[3]), abs_alpha_q12);
+ int16x8x4_t result;
+ result.val[0] = vaddq_s16(vsignq_s16(scaled_luma_0, ac_sign_0), dc);
+ result.val[1] = vaddq_s16(vsignq_s16(scaled_luma_1, ac_sign_1), dc);
+ result.val[2] = vaddq_s16(vsignq_s16(scaled_luma_2, ac_sign_2), dc);
+ result.val[3] = vaddq_s16(vsignq_s16(scaled_luma_3, ac_sign_3), dc);
+ return result;
+}
+
+static INLINE void cfl_predict_lbd_neon(const int16_t *pred_buf_q3,
+ uint8_t *dst, int dst_stride,
+ int alpha_q3, int width, int height) {
+ const int16_t abs_alpha_q12 = abs(alpha_q3) << 9;
+ const int16_t *const end = pred_buf_q3 + height * CFL_BUF_LINE;
+ if (width == 4) {
+ const int16x4_t alpha_sign = vdup_n_s16(alpha_q3);
+ const int16x4_t dc = vdup_n_s16(*dst);
+ do {
+ const int16x4_t pred =
+ predict_w4(pred_buf_q3, alpha_sign, abs_alpha_q12, dc);
+ vsth_u8(dst, vqmovun_s16(vcombine_s16(pred, pred)));
+ dst += dst_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+ } else {
+ const int16x8_t alpha_sign = vdupq_n_s16(alpha_q3);
+ const int16x8_t dc = vdupq_n_s16(*dst);
+ do {
+ if (width == 8) {
+ vst1_u8(dst, vqmovun_s16(predict_w8(pred_buf_q3, alpha_sign,
+ abs_alpha_q12, dc)));
+ } else if (width == 16) {
+ const int16x8x2_t pred =
+ predict_w16(pred_buf_q3, alpha_sign, abs_alpha_q12, dc);
+ const uint8x8x2_t predun = { { vqmovun_s16(pred.val[0]),
+ vqmovun_s16(pred.val[1]) } };
+ vst2_u8(dst, predun);
+ } else {
+ const int16x8x4_t pred =
+ predict_w32(pred_buf_q3, alpha_sign, abs_alpha_q12, dc);
+ const uint8x8x4_t predun = {
+ { vqmovun_s16(pred.val[0]), vqmovun_s16(pred.val[1]),
+ vqmovun_s16(pred.val[2]), vqmovun_s16(pred.val[3]) }
+ };
+ vst4_u8(dst, predun);
+ }
+ dst += dst_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+ }
+}
+
+CFL_PREDICT_FN(neon, lbd)
+
+static INLINE uint16x4_t clamp_s16(int16x4_t a, int16x4_t max) {
+ return vreinterpret_u16_s16(vmax_s16(vmin_s16(a, max), vdup_n_s16(0)));
+}
+
+static INLINE uint16x8_t clampq_s16(int16x8_t a, int16x8_t max) {
+ return vreinterpretq_u16_s16(vmaxq_s16(vminq_s16(a, max), vdupq_n_s16(0)));
+}
+
+static INLINE uint16x8x2_t clamp2q_s16(int16x8x2_t a, int16x8_t max) {
+ uint16x8x2_t result;
+ result.val[0] = vreinterpretq_u16_s16(
+ vmaxq_s16(vminq_s16(a.val[0], max), vdupq_n_s16(0)));
+ result.val[1] = vreinterpretq_u16_s16(
+ vmaxq_s16(vminq_s16(a.val[1], max), vdupq_n_s16(0)));
+ return result;
+}
+
+static INLINE uint16x8x4_t clamp4q_s16(int16x8x4_t a, int16x8_t max) {
+ uint16x8x4_t result;
+ result.val[0] = vreinterpretq_u16_s16(
+ vmaxq_s16(vminq_s16(a.val[0], max), vdupq_n_s16(0)));
+ result.val[1] = vreinterpretq_u16_s16(
+ vmaxq_s16(vminq_s16(a.val[1], max), vdupq_n_s16(0)));
+ result.val[2] = vreinterpretq_u16_s16(
+ vmaxq_s16(vminq_s16(a.val[2], max), vdupq_n_s16(0)));
+ result.val[3] = vreinterpretq_u16_s16(
+ vmaxq_s16(vminq_s16(a.val[3], max), vdupq_n_s16(0)));
+ return result;
+}
+
+static INLINE void cfl_predict_hbd_neon(const int16_t *pred_buf_q3,
+ uint16_t *dst, int dst_stride,
+ int alpha_q3, int bd, int width,
+ int height) {
+ const int max = (1 << bd) - 1;
+ const int16_t abs_alpha_q12 = abs(alpha_q3) << 9;
+ const int16_t *const end = pred_buf_q3 + height * CFL_BUF_LINE;
+ if (width == 4) {
+ const int16x4_t alpha_sign = vdup_n_s16(alpha_q3);
+ const int16x4_t dc = vdup_n_s16(*dst);
+ const int16x4_t max_16x4 = vdup_n_s16(max);
+ do {
+ const int16x4_t scaled_luma =
+ predict_w4(pred_buf_q3, alpha_sign, abs_alpha_q12, dc);
+ vst1_u16(dst, clamp_s16(scaled_luma, max_16x4));
+ dst += dst_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+ } else {
+ const int16x8_t alpha_sign = vdupq_n_s16(alpha_q3);
+ const int16x8_t dc = vdupq_n_s16(*dst);
+ const int16x8_t max_16x8 = vdupq_n_s16(max);
+ do {
+ if (width == 8) {
+ const int16x8_t pred =
+ predict_w8(pred_buf_q3, alpha_sign, abs_alpha_q12, dc);
+ vst1q_u16(dst, clampq_s16(pred, max_16x8));
+ } else if (width == 16) {
+ const int16x8x2_t pred =
+ predict_w16(pred_buf_q3, alpha_sign, abs_alpha_q12, dc);
+ vst2q_u16(dst, clamp2q_s16(pred, max_16x8));
+ } else {
+ const int16x8x4_t pred =
+ predict_w32(pred_buf_q3, alpha_sign, abs_alpha_q12, dc);
+ vst4q_u16(dst, clamp4q_s16(pred, max_16x8));
+ }
+ dst += dst_stride;
+ } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
+ }
+}
+
+CFL_PREDICT_FN(neon, hbd)