diff options
author | Matt A. Tobin <email@mattatobin.com> | 2020-04-07 23:30:51 -0400 |
---|---|---|
committer | wolfbeast <mcwerewolf@wolfbeast.com> | 2020-04-14 13:26:42 +0200 |
commit | 277f2116b6660e9bbe7f5d67524be57eceb49b8b (patch) | |
tree | 4595f7cc71418f71b9a97dfaeb03a30aa60f336a /third_party/aom/aom_dsp/noise_model.c | |
parent | d270404436f6e84ffa3b92af537ac721bf10d66e (diff) | |
download | UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.tar UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.tar.gz UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.tar.lz UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.tar.xz UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.zip |
Move aom source to a sub-directory under media/libaom
There is no damned reason to treat this differently than any other media lib given its license and there never was.
Diffstat (limited to 'third_party/aom/aom_dsp/noise_model.c')
-rw-r--r-- | third_party/aom/aom_dsp/noise_model.c | 1648 |
1 files changed, 0 insertions, 1648 deletions
diff --git a/third_party/aom/aom_dsp/noise_model.c b/third_party/aom/aom_dsp/noise_model.c deleted file mode 100644 index 2faee8506..000000000 --- a/third_party/aom/aom_dsp/noise_model.c +++ /dev/null @@ -1,1648 +0,0 @@ -/* - * Copyright (c) 2017, Alliance for Open Media. All rights reserved - * - * This source code is subject to the terms of the BSD 2 Clause License and - * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License - * was not distributed with this source code in the LICENSE file, you can - * obtain it at www.aomedia.org/license/software. If the Alliance for Open - * Media Patent License 1.0 was not distributed with this source code in the - * PATENTS file, you can obtain it at www.aomedia.org/license/patent. - */ - -#include <math.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> - -#include "aom_dsp/aom_dsp_common.h" -#include "aom_dsp/noise_model.h" -#include "aom_dsp/noise_util.h" -#include "aom_mem/aom_mem.h" -#include "av1/common/common.h" -#include "av1/encoder/mathutils.h" - -#define kLowPolyNumParams 3 - -static const int kMaxLag = 4; - -// Defines a function that can be used to obtain the mean of a block for the -// provided data type (uint8_t, or uint16_t) -#define GET_BLOCK_MEAN(INT_TYPE, suffix) \ - static double get_block_mean_##suffix(const INT_TYPE *data, int w, int h, \ - int stride, int x_o, int y_o, \ - int block_size) { \ - const int max_h = AOMMIN(h - y_o, block_size); \ - const int max_w = AOMMIN(w - x_o, block_size); \ - double block_mean = 0; \ - for (int y = 0; y < max_h; ++y) { \ - for (int x = 0; x < max_w; ++x) { \ - block_mean += data[(y_o + y) * stride + x_o + x]; \ - } \ - } \ - return block_mean / (max_w * max_h); \ - } - -GET_BLOCK_MEAN(uint8_t, lowbd); -GET_BLOCK_MEAN(uint16_t, highbd); - -static INLINE double get_block_mean(const uint8_t *data, int w, int h, - int stride, int x_o, int y_o, - int block_size, int use_highbd) { - if (use_highbd) - return get_block_mean_highbd((const uint16_t *)data, w, h, stride, x_o, y_o, - block_size); - return get_block_mean_lowbd(data, w, h, stride, x_o, y_o, block_size); -} - -// Defines a function that can be used to obtain the variance of a block -// for the provided data type (uint8_t, or uint16_t) -#define GET_NOISE_VAR(INT_TYPE, suffix) \ - static double get_noise_var_##suffix( \ - const INT_TYPE *data, const INT_TYPE *denoised, int stride, int w, \ - int h, int x_o, int y_o, int block_size_x, int block_size_y) { \ - const int max_h = AOMMIN(h - y_o, block_size_y); \ - const int max_w = AOMMIN(w - x_o, block_size_x); \ - double noise_var = 0; \ - double noise_mean = 0; \ - for (int y = 0; y < max_h; ++y) { \ - for (int x = 0; x < max_w; ++x) { \ - double noise = (double)data[(y_o + y) * stride + x_o + x] - \ - denoised[(y_o + y) * stride + x_o + x]; \ - noise_mean += noise; \ - noise_var += noise * noise; \ - } \ - } \ - noise_mean /= (max_w * max_h); \ - return noise_var / (max_w * max_h) - noise_mean * noise_mean; \ - } - -GET_NOISE_VAR(uint8_t, lowbd); -GET_NOISE_VAR(uint16_t, highbd); - -static INLINE double get_noise_var(const uint8_t *data, const uint8_t *denoised, - int w, int h, int stride, int x_o, int y_o, - int block_size_x, int block_size_y, - int use_highbd) { - if (use_highbd) - return get_noise_var_highbd((const uint16_t *)data, - (const uint16_t *)denoised, w, h, stride, x_o, - y_o, block_size_x, block_size_y); - return get_noise_var_lowbd(data, denoised, w, h, stride, x_o, y_o, - block_size_x, block_size_y); -} - -static void equation_system_clear(aom_equation_system_t *eqns) { - const int n = eqns->n; - memset(eqns->A, 0, sizeof(*eqns->A) * n * n); - memset(eqns->x, 0, sizeof(*eqns->x) * n); - memset(eqns->b, 0, sizeof(*eqns->b) * n); -} - -static void equation_system_copy(aom_equation_system_t *dst, - const aom_equation_system_t *src) { - const int n = dst->n; - memcpy(dst->A, src->A, sizeof(*dst->A) * n * n); - memcpy(dst->x, src->x, sizeof(*dst->x) * n); - memcpy(dst->b, src->b, sizeof(*dst->b) * n); -} - -static int equation_system_init(aom_equation_system_t *eqns, int n) { - eqns->A = (double *)aom_malloc(sizeof(*eqns->A) * n * n); - eqns->b = (double *)aom_malloc(sizeof(*eqns->b) * n); - eqns->x = (double *)aom_malloc(sizeof(*eqns->x) * n); - eqns->n = n; - if (!eqns->A || !eqns->b || !eqns->x) { - fprintf(stderr, "Failed to allocate system of equations of size %d\n", n); - aom_free(eqns->A); - aom_free(eqns->b); - aom_free(eqns->x); - memset(eqns, 0, sizeof(*eqns)); - return 0; - } - equation_system_clear(eqns); - return 1; -} - -static int equation_system_solve(aom_equation_system_t *eqns) { - const int n = eqns->n; - double *b = (double *)aom_malloc(sizeof(*b) * n); - double *A = (double *)aom_malloc(sizeof(*A) * n * n); - int ret = 0; - if (A == NULL || b == NULL) { - fprintf(stderr, "Unable to allocate temp values of size %dx%d\n", n, n); - aom_free(b); - aom_free(A); - return 0; - } - memcpy(A, eqns->A, sizeof(*eqns->A) * n * n); - memcpy(b, eqns->b, sizeof(*eqns->b) * n); - ret = linsolve(n, A, eqns->n, b, eqns->x); - aom_free(b); - aom_free(A); - - if (ret == 0) { - return 0; - } - return 1; -} - -static void equation_system_add(aom_equation_system_t *dest, - aom_equation_system_t *src) { - const int n = dest->n; - int i, j; - for (i = 0; i < n; ++i) { - for (j = 0; j < n; ++j) { - dest->A[i * n + j] += src->A[i * n + j]; - } - dest->b[i] += src->b[i]; - } -} - -static void equation_system_free(aom_equation_system_t *eqns) { - if (!eqns) return; - aom_free(eqns->A); - aom_free(eqns->b); - aom_free(eqns->x); - memset(eqns, 0, sizeof(*eqns)); -} - -static void noise_strength_solver_clear(aom_noise_strength_solver_t *solver) { - equation_system_clear(&solver->eqns); - solver->num_equations = 0; - solver->total = 0; -} - -static void noise_strength_solver_add(aom_noise_strength_solver_t *dest, - aom_noise_strength_solver_t *src) { - equation_system_add(&dest->eqns, &src->eqns); - dest->num_equations += src->num_equations; - dest->total += src->total; -} - -// Return the number of coefficients required for the given parameters -static int num_coeffs(const aom_noise_model_params_t params) { - const int n = 2 * params.lag + 1; - switch (params.shape) { - case AOM_NOISE_SHAPE_DIAMOND: return params.lag * (params.lag + 1); - case AOM_NOISE_SHAPE_SQUARE: return (n * n) / 2; - } - return 0; -} - -static int noise_state_init(aom_noise_state_t *state, int n, int bit_depth) { - const int kNumBins = 20; - if (!equation_system_init(&state->eqns, n)) { - fprintf(stderr, "Failed initialization noise state with size %d\n", n); - return 0; - } - state->ar_gain = 1.0; - state->num_observations = 0; - return aom_noise_strength_solver_init(&state->strength_solver, kNumBins, - bit_depth); -} - -static void set_chroma_coefficient_fallback_soln(aom_equation_system_t *eqns) { - const double kTolerance = 1e-6; - const int last = eqns->n - 1; - // Set all of the AR coefficients to zero, but try to solve for correlation - // with the luma channel - memset(eqns->x, 0, sizeof(*eqns->x) * eqns->n); - if (fabs(eqns->A[last * eqns->n + last]) > kTolerance) { - eqns->x[last] = eqns->b[last] / eqns->A[last * eqns->n + last]; - } -} - -int aom_noise_strength_lut_init(aom_noise_strength_lut_t *lut, int num_points) { - if (!lut) return 0; - lut->points = (double(*)[2])aom_malloc(num_points * sizeof(*lut->points)); - if (!lut->points) return 0; - lut->num_points = num_points; - memset(lut->points, 0, sizeof(*lut->points) * num_points); - return 1; -} - -void aom_noise_strength_lut_free(aom_noise_strength_lut_t *lut) { - if (!lut) return; - aom_free(lut->points); - memset(lut, 0, sizeof(*lut)); -} - -double aom_noise_strength_lut_eval(const aom_noise_strength_lut_t *lut, - double x) { - int i = 0; - // Constant extrapolation for x < x_0. - if (x < lut->points[0][0]) return lut->points[0][1]; - for (i = 0; i < lut->num_points - 1; ++i) { - if (x >= lut->points[i][0] && x <= lut->points[i + 1][0]) { - const double a = - (x - lut->points[i][0]) / (lut->points[i + 1][0] - lut->points[i][0]); - return lut->points[i + 1][1] * a + lut->points[i][1] * (1.0 - a); - } - } - // Constant extrapolation for x > x_{n-1} - return lut->points[lut->num_points - 1][1]; -} - -static double noise_strength_solver_get_bin_index( - const aom_noise_strength_solver_t *solver, double value) { - const double val = - fclamp(value, solver->min_intensity, solver->max_intensity); - const double range = solver->max_intensity - solver->min_intensity; - return (solver->num_bins - 1) * (val - solver->min_intensity) / range; -} - -static double noise_strength_solver_get_value( - const aom_noise_strength_solver_t *solver, double x) { - const double bin = noise_strength_solver_get_bin_index(solver, x); - const int bin_i0 = (int)floor(bin); - const int bin_i1 = AOMMIN(solver->num_bins - 1, bin_i0 + 1); - const double a = bin - bin_i0; - return (1.0 - a) * solver->eqns.x[bin_i0] + a * solver->eqns.x[bin_i1]; -} - -void aom_noise_strength_solver_add_measurement( - aom_noise_strength_solver_t *solver, double block_mean, double noise_std) { - const double bin = noise_strength_solver_get_bin_index(solver, block_mean); - const int bin_i0 = (int)floor(bin); - const int bin_i1 = AOMMIN(solver->num_bins - 1, bin_i0 + 1); - const double a = bin - bin_i0; - const int n = solver->num_bins; - solver->eqns.A[bin_i0 * n + bin_i0] += (1.0 - a) * (1.0 - a); - solver->eqns.A[bin_i1 * n + bin_i0] += a * (1.0 - a); - solver->eqns.A[bin_i1 * n + bin_i1] += a * a; - solver->eqns.A[bin_i0 * n + bin_i1] += a * (1.0 - a); - solver->eqns.b[bin_i0] += (1.0 - a) * noise_std; - solver->eqns.b[bin_i1] += a * noise_std; - solver->total += noise_std; - solver->num_equations++; -} - -int aom_noise_strength_solver_solve(aom_noise_strength_solver_t *solver) { - // Add regularization proportional to the number of constraints - const int n = solver->num_bins; - const double kAlpha = 2.0 * (double)(solver->num_equations) / n; - int result = 0; - double mean = 0; - - // Do this in a non-destructive manner so it is not confusing to the caller - double *old_A = solver->eqns.A; - double *A = (double *)aom_malloc(sizeof(*A) * n * n); - if (!A) { - fprintf(stderr, "Unable to allocate copy of A\n"); - return 0; - } - memcpy(A, old_A, sizeof(*A) * n * n); - - for (int i = 0; i < n; ++i) { - const int i_lo = AOMMAX(0, i - 1); - const int i_hi = AOMMIN(n - 1, i + 1); - A[i * n + i_lo] -= kAlpha; - A[i * n + i] += 2 * kAlpha; - A[i * n + i_hi] -= kAlpha; - } - - // Small regularization to give average noise strength - mean = solver->total / solver->num_equations; - for (int i = 0; i < n; ++i) { - A[i * n + i] += 1.0 / 8192.; - solver->eqns.b[i] += mean / 8192.; - } - solver->eqns.A = A; - result = equation_system_solve(&solver->eqns); - solver->eqns.A = old_A; - - aom_free(A); - return result; -} - -int aom_noise_strength_solver_init(aom_noise_strength_solver_t *solver, - int num_bins, int bit_depth) { - if (!solver) return 0; - memset(solver, 0, sizeof(*solver)); - solver->num_bins = num_bins; - solver->min_intensity = 0; - solver->max_intensity = (1 << bit_depth) - 1; - solver->total = 0; - solver->num_equations = 0; - return equation_system_init(&solver->eqns, num_bins); -} - -void aom_noise_strength_solver_free(aom_noise_strength_solver_t *solver) { - if (!solver) return; - equation_system_free(&solver->eqns); -} - -double aom_noise_strength_solver_get_center( - const aom_noise_strength_solver_t *solver, int i) { - const double range = solver->max_intensity - solver->min_intensity; - const int n = solver->num_bins; - return ((double)i) / (n - 1) * range + solver->min_intensity; -} - -// Computes the residual if a point were to be removed from the lut. This is -// calculated as the area between the output of the solver and the line segment -// that would be formed between [x_{i - 1}, x_{i + 1}). -static void update_piecewise_linear_residual( - const aom_noise_strength_solver_t *solver, - const aom_noise_strength_lut_t *lut, double *residual, int start, int end) { - const double dx = 255. / solver->num_bins; - for (int i = AOMMAX(start, 1); i < AOMMIN(end, lut->num_points - 1); ++i) { - const int lower = AOMMAX(0, (int)floor(noise_strength_solver_get_bin_index( - solver, lut->points[i - 1][0]))); - const int upper = AOMMIN(solver->num_bins - 1, - (int)ceil(noise_strength_solver_get_bin_index( - solver, lut->points[i + 1][0]))); - double r = 0; - for (int j = lower; j <= upper; ++j) { - const double x = aom_noise_strength_solver_get_center(solver, j); - if (x < lut->points[i - 1][0]) continue; - if (x >= lut->points[i + 1][0]) continue; - const double y = solver->eqns.x[j]; - const double a = (x - lut->points[i - 1][0]) / - (lut->points[i + 1][0] - lut->points[i - 1][0]); - const double estimate_y = - lut->points[i - 1][1] * (1.0 - a) + lut->points[i + 1][1] * a; - r += fabs(y - estimate_y); - } - residual[i] = r * dx; - } -} - -int aom_noise_strength_solver_fit_piecewise( - const aom_noise_strength_solver_t *solver, int max_output_points, - aom_noise_strength_lut_t *lut) { - // The tolerance is normalized to be give consistent results between - // different bit-depths. - const double kTolerance = solver->max_intensity * 0.00625 / 255.0; - if (!aom_noise_strength_lut_init(lut, solver->num_bins)) { - fprintf(stderr, "Failed to init lut\n"); - return 0; - } - for (int i = 0; i < solver->num_bins; ++i) { - lut->points[i][0] = aom_noise_strength_solver_get_center(solver, i); - lut->points[i][1] = solver->eqns.x[i]; - } - if (max_output_points < 0) { - max_output_points = solver->num_bins; - } - - double *residual = aom_malloc(solver->num_bins * sizeof(*residual)); - memset(residual, 0, sizeof(*residual) * solver->num_bins); - - update_piecewise_linear_residual(solver, lut, residual, 0, solver->num_bins); - - // Greedily remove points if there are too many or if it doesn't hurt local - // approximation (never remove the end points) - while (lut->num_points > 2) { - int min_index = 1; - for (int j = 1; j < lut->num_points - 1; ++j) { - if (residual[j] < residual[min_index]) { - min_index = j; - } - } - const double dx = - lut->points[min_index + 1][0] - lut->points[min_index - 1][0]; - const double avg_residual = residual[min_index] / dx; - if (lut->num_points <= max_output_points && avg_residual > kTolerance) { - break; - } - - const int num_remaining = lut->num_points - min_index - 1; - memmove(lut->points + min_index, lut->points + min_index + 1, - sizeof(lut->points[0]) * num_remaining); - lut->num_points--; - - update_piecewise_linear_residual(solver, lut, residual, min_index - 1, - min_index + 1); - } - aom_free(residual); - return 1; -} - -int aom_flat_block_finder_init(aom_flat_block_finder_t *block_finder, - int block_size, int bit_depth, int use_highbd) { - const int n = block_size * block_size; - aom_equation_system_t eqns; - double *AtA_inv = 0; - double *A = 0; - int x = 0, y = 0, i = 0, j = 0; - if (!equation_system_init(&eqns, kLowPolyNumParams)) { - fprintf(stderr, "Failed to init equation system for block_size=%d\n", - block_size); - return 0; - } - - AtA_inv = (double *)aom_malloc(kLowPolyNumParams * kLowPolyNumParams * - sizeof(*AtA_inv)); - A = (double *)aom_malloc(kLowPolyNumParams * n * sizeof(*A)); - if (AtA_inv == NULL || A == NULL) { - fprintf(stderr, "Failed to alloc A or AtA_inv for block_size=%d\n", - block_size); - aom_free(AtA_inv); - aom_free(A); - equation_system_free(&eqns); - return 0; - } - - block_finder->A = A; - block_finder->AtA_inv = AtA_inv; - block_finder->block_size = block_size; - block_finder->normalization = (1 << bit_depth) - 1; - block_finder->use_highbd = use_highbd; - - for (y = 0; y < block_size; ++y) { - const double yd = ((double)y - block_size / 2.) / (block_size / 2.); - for (x = 0; x < block_size; ++x) { - const double xd = ((double)x - block_size / 2.) / (block_size / 2.); - const double coords[3] = { yd, xd, 1 }; - const int row = y * block_size + x; - A[kLowPolyNumParams * row + 0] = yd; - A[kLowPolyNumParams * row + 1] = xd; - A[kLowPolyNumParams * row + 2] = 1; - - for (i = 0; i < kLowPolyNumParams; ++i) { - for (j = 0; j < kLowPolyNumParams; ++j) { - eqns.A[kLowPolyNumParams * i + j] += coords[i] * coords[j]; - } - } - } - } - - // Lazy inverse using existing equation solver. - for (i = 0; i < kLowPolyNumParams; ++i) { - memset(eqns.b, 0, sizeof(*eqns.b) * kLowPolyNumParams); - eqns.b[i] = 1; - equation_system_solve(&eqns); - - for (j = 0; j < kLowPolyNumParams; ++j) { - AtA_inv[j * kLowPolyNumParams + i] = eqns.x[j]; - } - } - equation_system_free(&eqns); - return 1; -} - -void aom_flat_block_finder_free(aom_flat_block_finder_t *block_finder) { - if (!block_finder) return; - aom_free(block_finder->A); - aom_free(block_finder->AtA_inv); - memset(block_finder, 0, sizeof(*block_finder)); -} - -void aom_flat_block_finder_extract_block( - const aom_flat_block_finder_t *block_finder, const uint8_t *const data, - int w, int h, int stride, int offsx, int offsy, double *plane, - double *block) { - const int block_size = block_finder->block_size; - const int n = block_size * block_size; - const double *A = block_finder->A; - const double *AtA_inv = block_finder->AtA_inv; - double plane_coords[kLowPolyNumParams]; - double AtA_inv_b[kLowPolyNumParams]; - int xi, yi, i; - - if (block_finder->use_highbd) { - const uint16_t *const data16 = (const uint16_t *const)data; - for (yi = 0; yi < block_size; ++yi) { - const int y = clamp(offsy + yi, 0, h - 1); - for (xi = 0; xi < block_size; ++xi) { - const int x = clamp(offsx + xi, 0, w - 1); - block[yi * block_size + xi] = - ((double)data16[y * stride + x]) / block_finder->normalization; - } - } - } else { - for (yi = 0; yi < block_size; ++yi) { - const int y = clamp(offsy + yi, 0, h - 1); - for (xi = 0; xi < block_size; ++xi) { - const int x = clamp(offsx + xi, 0, w - 1); - block[yi * block_size + xi] = - ((double)data[y * stride + x]) / block_finder->normalization; - } - } - } - multiply_mat(block, A, AtA_inv_b, 1, n, kLowPolyNumParams); - multiply_mat(AtA_inv, AtA_inv_b, plane_coords, kLowPolyNumParams, - kLowPolyNumParams, 1); - multiply_mat(A, plane_coords, plane, n, kLowPolyNumParams, 1); - - for (i = 0; i < n; ++i) { - block[i] -= plane[i]; - } -} - -typedef struct { - int index; - float score; -} index_and_score_t; - -static int compare_scores(const void *a, const void *b) { - const float diff = - ((index_and_score_t *)a)->score - ((index_and_score_t *)b)->score; - if (diff < 0) - return -1; - else if (diff > 0) - return 1; - return 0; -} - -int aom_flat_block_finder_run(const aom_flat_block_finder_t *block_finder, - const uint8_t *const data, int w, int h, - int stride, uint8_t *flat_blocks) { - // The gradient-based features used in this code are based on: - // A. Kokaram, D. Kelly, H. Denman and A. Crawford, "Measuring noise - // correlation for improved video denoising," 2012 19th, ICIP. - // The thresholds are more lenient to allow for correct grain modeling - // if extreme cases. - const int block_size = block_finder->block_size; - const int n = block_size * block_size; - const double kTraceThreshold = 0.15 / (32 * 32); - const double kRatioThreshold = 1.25; - const double kNormThreshold = 0.08 / (32 * 32); - const double kVarThreshold = 0.005 / (double)n; - const int num_blocks_w = (w + block_size - 1) / block_size; - const int num_blocks_h = (h + block_size - 1) / block_size; - int num_flat = 0; - int bx = 0, by = 0; - double *plane = (double *)aom_malloc(n * sizeof(*plane)); - double *block = (double *)aom_malloc(n * sizeof(*block)); - index_and_score_t *scores = (index_and_score_t *)aom_malloc( - num_blocks_w * num_blocks_h * sizeof(*scores)); - if (plane == NULL || block == NULL || scores == NULL) { - fprintf(stderr, "Failed to allocate memory for block of size %d\n", n); - aom_free(plane); - aom_free(block); - aom_free(scores); - return -1; - } - -#ifdef NOISE_MODEL_LOG_SCORE - fprintf(stderr, "score = ["); -#endif - for (by = 0; by < num_blocks_h; ++by) { - for (bx = 0; bx < num_blocks_w; ++bx) { - // Compute gradient covariance matrix. - double Gxx = 0, Gxy = 0, Gyy = 0; - double var = 0; - double mean = 0; - int xi, yi; - aom_flat_block_finder_extract_block(block_finder, data, w, h, stride, - bx * block_size, by * block_size, - plane, block); - - for (yi = 1; yi < block_size - 1; ++yi) { - for (xi = 1; xi < block_size - 1; ++xi) { - const double gx = (block[yi * block_size + xi + 1] - - block[yi * block_size + xi - 1]) / - 2; - const double gy = (block[yi * block_size + xi + block_size] - - block[yi * block_size + xi - block_size]) / - 2; - Gxx += gx * gx; - Gxy += gx * gy; - Gyy += gy * gy; - - mean += block[yi * block_size + xi]; - var += block[yi * block_size + xi] * block[yi * block_size + xi]; - } - } - mean /= (block_size - 2) * (block_size - 2); - - // Normalize gradients by block_size. - Gxx /= ((block_size - 2) * (block_size - 2)); - Gxy /= ((block_size - 2) * (block_size - 2)); - Gyy /= ((block_size - 2) * (block_size - 2)); - var = var / ((block_size - 2) * (block_size - 2)) - mean * mean; - - { - const double trace = Gxx + Gyy; - const double det = Gxx * Gyy - Gxy * Gxy; - const double e1 = (trace + sqrt(trace * trace - 4 * det)) / 2.; - const double e2 = (trace - sqrt(trace * trace - 4 * det)) / 2.; - const double norm = e1; // Spectral norm - const double ratio = (e1 / AOMMAX(e2, 1e-6)); - const int is_flat = (trace < kTraceThreshold) && - (ratio < kRatioThreshold) && - (norm < kNormThreshold) && (var > kVarThreshold); - // The following weights are used to combine the above features to give - // a sigmoid score for flatness. If the input was normalized to [0,100] - // the magnitude of these values would be close to 1 (e.g., weights - // corresponding to variance would be a factor of 10000x smaller). - // The weights are given in the following order: - // [{var}, {ratio}, {trace}, {norm}, offset] - // with one of the most discriminative being simply the variance. - const double weights[5] = { -6682, -0.2056, 13087, -12434, 2.5694 }; - const float score = - (float)(1.0 / (1 + exp(-(weights[0] * var + weights[1] * ratio + - weights[2] * trace + weights[3] * norm + - weights[4])))); - flat_blocks[by * num_blocks_w + bx] = is_flat ? 255 : 0; - scores[by * num_blocks_w + bx].score = var > kVarThreshold ? score : 0; - scores[by * num_blocks_w + bx].index = by * num_blocks_w + bx; -#ifdef NOISE_MODEL_LOG_SCORE - fprintf(stderr, "%g %g %g %g %g %d ", score, var, ratio, trace, norm, - is_flat); -#endif - num_flat += is_flat; - } - } -#ifdef NOISE_MODEL_LOG_SCORE - fprintf(stderr, "\n"); -#endif - } -#ifdef NOISE_MODEL_LOG_SCORE - fprintf(stderr, "];\n"); -#endif - // Find the top-scored blocks (most likely to be flat) and set the flat blocks - // be the union of the thresholded results and the top 10th percentile of the - // scored results. - qsort(scores, num_blocks_w * num_blocks_h, sizeof(*scores), &compare_scores); - const int top_nth_percentile = num_blocks_w * num_blocks_h * 90 / 100; - const float score_threshold = scores[top_nth_percentile].score; - for (int i = 0; i < num_blocks_w * num_blocks_h; ++i) { - if (scores[i].score >= score_threshold) { - num_flat += flat_blocks[scores[i].index] == 0; - flat_blocks[scores[i].index] |= 1; - } - } - aom_free(block); - aom_free(plane); - aom_free(scores); - return num_flat; -} - -int aom_noise_model_init(aom_noise_model_t *model, - const aom_noise_model_params_t params) { - const int n = num_coeffs(params); - const int lag = params.lag; - const int bit_depth = params.bit_depth; - int x = 0, y = 0, i = 0, c = 0; - - memset(model, 0, sizeof(*model)); - if (params.lag < 1) { - fprintf(stderr, "Invalid noise param: lag = %d must be >= 1\n", params.lag); - return 0; - } - if (params.lag > kMaxLag) { - fprintf(stderr, "Invalid noise param: lag = %d must be <= %d\n", params.lag, - kMaxLag); - return 0; - } - - memcpy(&model->params, ¶ms, sizeof(params)); - for (c = 0; c < 3; ++c) { - if (!noise_state_init(&model->combined_state[c], n + (c > 0), bit_depth)) { - fprintf(stderr, "Failed to allocate noise state for channel %d\n", c); - aom_noise_model_free(model); - return 0; - } - if (!noise_state_init(&model->latest_state[c], n + (c > 0), bit_depth)) { - fprintf(stderr, "Failed to allocate noise state for channel %d\n", c); - aom_noise_model_free(model); - return 0; - } - } - model->n = n; - model->coords = (int(*)[2])aom_malloc(sizeof(*model->coords) * n); - - for (y = -lag; y <= 0; ++y) { - const int max_x = y == 0 ? -1 : lag; - for (x = -lag; x <= max_x; ++x) { - switch (params.shape) { - case AOM_NOISE_SHAPE_DIAMOND: - if (abs(x) <= y + lag) { - model->coords[i][0] = x; - model->coords[i][1] = y; - ++i; - } - break; - case AOM_NOISE_SHAPE_SQUARE: - model->coords[i][0] = x; - model->coords[i][1] = y; - ++i; - break; - default: - fprintf(stderr, "Invalid shape\n"); - aom_noise_model_free(model); - return 0; - } - } - } - assert(i == n); - return 1; -} - -void aom_noise_model_free(aom_noise_model_t *model) { - int c = 0; - if (!model) return; - - aom_free(model->coords); - for (c = 0; c < 3; ++c) { - equation_system_free(&model->latest_state[c].eqns); - equation_system_free(&model->combined_state[c].eqns); - - equation_system_free(&model->latest_state[c].strength_solver.eqns); - equation_system_free(&model->combined_state[c].strength_solver.eqns); - } - memset(model, 0, sizeof(*model)); -} - -// Extracts the neighborhood defined by coords around point (x, y) from -// the difference between the data and denoised images. Also extracts the -// entry (possibly downsampled) for (x, y) in the alt_data (e.g., luma). -#define EXTRACT_AR_ROW(INT_TYPE, suffix) \ - static double extract_ar_row_##suffix( \ - int(*coords)[2], int num_coords, const INT_TYPE *const data, \ - const INT_TYPE *const denoised, int stride, int sub_log2[2], \ - const INT_TYPE *const alt_data, const INT_TYPE *const alt_denoised, \ - int alt_stride, int x, int y, double *buffer) { \ - for (int i = 0; i < num_coords; ++i) { \ - const int x_i = x + coords[i][0], y_i = y + coords[i][1]; \ - buffer[i] = \ - (double)data[y_i * stride + x_i] - denoised[y_i * stride + x_i]; \ - } \ - const double val = \ - (double)data[y * stride + x] - denoised[y * stride + x]; \ - \ - if (alt_data && alt_denoised) { \ - double avg_data = 0, avg_denoised = 0; \ - int num_samples = 0; \ - for (int dy_i = 0; dy_i < (1 << sub_log2[1]); dy_i++) { \ - const int y_up = (y << sub_log2[1]) + dy_i; \ - for (int dx_i = 0; dx_i < (1 << sub_log2[0]); dx_i++) { \ - const int x_up = (x << sub_log2[0]) + dx_i; \ - avg_data += alt_data[y_up * alt_stride + x_up]; \ - avg_denoised += alt_denoised[y_up * alt_stride + x_up]; \ - num_samples++; \ - } \ - } \ - buffer[num_coords] = (avg_data - avg_denoised) / num_samples; \ - } \ - return val; \ - } - -EXTRACT_AR_ROW(uint8_t, lowbd); -EXTRACT_AR_ROW(uint16_t, highbd); - -static int add_block_observations( - aom_noise_model_t *noise_model, int c, const uint8_t *const data, - const uint8_t *const denoised, int w, int h, int stride, int sub_log2[2], - const uint8_t *const alt_data, const uint8_t *const alt_denoised, - int alt_stride, const uint8_t *const flat_blocks, int block_size, - int num_blocks_w, int num_blocks_h) { - const int lag = noise_model->params.lag; - const int num_coords = noise_model->n; - const double normalization = (1 << noise_model->params.bit_depth) - 1; - double *A = noise_model->latest_state[c].eqns.A; - double *b = noise_model->latest_state[c].eqns.b; - double *buffer = (double *)aom_malloc(sizeof(*buffer) * (num_coords + 1)); - const int n = noise_model->latest_state[c].eqns.n; - - if (!buffer) { - fprintf(stderr, "Unable to allocate buffer of size %d\n", num_coords + 1); - return 0; - } - for (int by = 0; by < num_blocks_h; ++by) { - const int y_o = by * (block_size >> sub_log2[1]); - for (int bx = 0; bx < num_blocks_w; ++bx) { - const int x_o = bx * (block_size >> sub_log2[0]); - if (!flat_blocks[by * num_blocks_w + bx]) { - continue; - } - int y_start = - (by > 0 && flat_blocks[(by - 1) * num_blocks_w + bx]) ? 0 : lag; - int x_start = - (bx > 0 && flat_blocks[by * num_blocks_w + bx - 1]) ? 0 : lag; - int y_end = AOMMIN((h >> sub_log2[1]) - by * (block_size >> sub_log2[1]), - block_size >> sub_log2[1]); - int x_end = AOMMIN( - (w >> sub_log2[0]) - bx * (block_size >> sub_log2[0]) - lag, - (bx + 1 < num_blocks_w && flat_blocks[by * num_blocks_w + bx + 1]) - ? (block_size >> sub_log2[0]) - : ((block_size >> sub_log2[0]) - lag)); - for (int y = y_start; y < y_end; ++y) { - for (int x = x_start; x < x_end; ++x) { - const double val = - noise_model->params.use_highbd - ? extract_ar_row_highbd(noise_model->coords, num_coords, - (const uint16_t *const)data, - (const uint16_t *const)denoised, - stride, sub_log2, - (const uint16_t *const)alt_data, - (const uint16_t *const)alt_denoised, - alt_stride, x + x_o, y + y_o, buffer) - : extract_ar_row_lowbd(noise_model->coords, num_coords, data, - denoised, stride, sub_log2, alt_data, - alt_denoised, alt_stride, x + x_o, - y + y_o, buffer); - for (int i = 0; i < n; ++i) { - for (int j = 0; j < n; ++j) { - A[i * n + j] += - (buffer[i] * buffer[j]) / (normalization * normalization); - } - b[i] += (buffer[i] * val) / (normalization * normalization); - } - noise_model->latest_state[c].num_observations++; - } - } - } - } - aom_free(buffer); - return 1; -} - -static void add_noise_std_observations( - aom_noise_model_t *noise_model, int c, const double *coeffs, - const uint8_t *const data, const uint8_t *const denoised, int w, int h, - int stride, int sub_log2[2], const uint8_t *const alt_data, int alt_stride, - const uint8_t *const flat_blocks, int block_size, int num_blocks_w, - int num_blocks_h) { - const int num_coords = noise_model->n; - aom_noise_strength_solver_t *noise_strength_solver = - &noise_model->latest_state[c].strength_solver; - - const aom_noise_strength_solver_t *noise_strength_luma = - &noise_model->latest_state[0].strength_solver; - const double luma_gain = noise_model->latest_state[0].ar_gain; - const double noise_gain = noise_model->latest_state[c].ar_gain; - for (int by = 0; by < num_blocks_h; ++by) { - const int y_o = by * (block_size >> sub_log2[1]); - for (int bx = 0; bx < num_blocks_w; ++bx) { - const int x_o = bx * (block_size >> sub_log2[0]); - if (!flat_blocks[by * num_blocks_w + bx]) { - continue; - } - const int num_samples_h = - AOMMIN((h >> sub_log2[1]) - by * (block_size >> sub_log2[1]), - block_size >> sub_log2[1]); - const int num_samples_w = - AOMMIN((w >> sub_log2[0]) - bx * (block_size >> sub_log2[0]), - (block_size >> sub_log2[0])); - // Make sure that we have a reasonable amount of samples to consider the - // block - if (num_samples_w * num_samples_h > block_size) { - const double block_mean = get_block_mean( - alt_data ? alt_data : data, w, h, alt_data ? alt_stride : stride, - x_o << sub_log2[0], y_o << sub_log2[1], block_size, - noise_model->params.use_highbd); - const double noise_var = get_noise_var( - data, denoised, stride, w >> sub_log2[0], h >> sub_log2[1], x_o, - y_o, block_size >> sub_log2[0], block_size >> sub_log2[1], - noise_model->params.use_highbd); - // We want to remove the part of the noise that came from being - // correlated with luma. Note that the noise solver for luma must - // have already been run. - const double luma_strength = - c > 0 ? luma_gain * noise_strength_solver_get_value( - noise_strength_luma, block_mean) - : 0; - const double corr = c > 0 ? coeffs[num_coords] : 0; - // Chroma noise: - // N(0, noise_var) = N(0, uncorr_var) + corr * N(0, luma_strength^2) - // The uncorrelated component: - // uncorr_var = noise_var - (corr * luma_strength)^2 - // But don't allow fully correlated noise (hence the max), since the - // synthesis cannot model it. - const double uncorr_std = sqrt( - AOMMAX(noise_var / 16, noise_var - pow(corr * luma_strength, 2))); - // After we've removed correlation with luma, undo the gain that will - // come from running the IIR filter. - const double adjusted_strength = uncorr_std / noise_gain; - aom_noise_strength_solver_add_measurement( - noise_strength_solver, block_mean, adjusted_strength); - } - } - } -} - -// Return true if the noise estimate appears to be different from the combined -// (multi-frame) estimate. The difference is measured by checking whether the -// AR coefficients have diverged (using a threshold on normalized cross -// correlation), or whether the noise strength has changed. -static int is_noise_model_different(aom_noise_model_t *const noise_model) { - // These thresholds are kind of arbitrary and will likely need further tuning - // (or exported as parameters). The threshold on noise strength is a weighted - // difference between the noise strength histograms - const double kCoeffThreshold = 0.9; - const double kStrengthThreshold = - 0.005 * (1 << (noise_model->params.bit_depth - 8)); - for (int c = 0; c < 1; ++c) { - const double corr = - aom_normalized_cross_correlation(noise_model->latest_state[c].eqns.x, - noise_model->combined_state[c].eqns.x, - noise_model->combined_state[c].eqns.n); - if (corr < kCoeffThreshold) return 1; - - const double dx = - 1.0 / noise_model->latest_state[c].strength_solver.num_bins; - - const aom_equation_system_t *latest_eqns = - &noise_model->latest_state[c].strength_solver.eqns; - const aom_equation_system_t *combined_eqns = - &noise_model->combined_state[c].strength_solver.eqns; - double diff = 0; - double total_weight = 0; - for (int j = 0; j < latest_eqns->n; ++j) { - double weight = 0; - for (int i = 0; i < latest_eqns->n; ++i) { - weight += latest_eqns->A[i * latest_eqns->n + j]; - } - weight = sqrt(weight); - diff += weight * fabs(latest_eqns->x[j] - combined_eqns->x[j]); - total_weight += weight; - } - if (diff * dx / total_weight > kStrengthThreshold) return 1; - } - return 0; -} - -static int ar_equation_system_solve(aom_noise_state_t *state, int is_chroma) { - const int ret = equation_system_solve(&state->eqns); - state->ar_gain = 1.0; - if (!ret) return ret; - - // Update the AR gain from the equation system as it will be used to fit - // the noise strength as a function of intensity. In the Yule-Walker - // equations, the diagonal should be the variance of the correlated noise. - // In the case of the least squares estimate, there will be some variability - // in the diagonal. So use the mean of the diagonal as the estimate of - // overall variance (this works for least squares or Yule-Walker formulation). - double var = 0; - const int n = state->eqns.n; - for (int i = 0; i < (state->eqns.n - is_chroma); ++i) { - var += state->eqns.A[i * n + i] / state->num_observations; - } - var /= (n - is_chroma); - - // Keep track of E(Y^2) = <b, x> + E(X^2) - // In the case that we are using chroma and have an estimate of correlation - // with luma we adjust that estimate slightly to remove the correlated bits by - // subtracting out the last column of a scaled by our correlation estimate - // from b. E(y^2) = <b - A(:, end)*x(end), x> - double sum_covar = 0; - for (int i = 0; i < state->eqns.n - is_chroma; ++i) { - double bi = state->eqns.b[i]; - if (is_chroma) { - bi -= state->eqns.A[i * n + (n - 1)] * state->eqns.x[n - 1]; - } - sum_covar += (bi * state->eqns.x[i]) / state->num_observations; - } - // Now, get an estimate of the variance of uncorrelated noise signal and use - // it to determine the gain of the AR filter. - const double noise_var = AOMMAX(var - sum_covar, 1e-6); - state->ar_gain = AOMMAX(1, sqrt(AOMMAX(var / noise_var, 1e-6))); - return ret; -} - -aom_noise_status_t aom_noise_model_update( - aom_noise_model_t *const noise_model, const uint8_t *const data[3], - const uint8_t *const denoised[3], int w, int h, int stride[3], - int chroma_sub_log2[2], const uint8_t *const flat_blocks, int block_size) { - const int num_blocks_w = (w + block_size - 1) / block_size; - const int num_blocks_h = (h + block_size - 1) / block_size; - int y_model_different = 0; - int num_blocks = 0; - int i = 0, channel = 0; - - if (block_size <= 1) { - fprintf(stderr, "block_size = %d must be > 1\n", block_size); - return AOM_NOISE_STATUS_INVALID_ARGUMENT; - } - - if (block_size < noise_model->params.lag * 2 + 1) { - fprintf(stderr, "block_size = %d must be >= %d\n", block_size, - noise_model->params.lag * 2 + 1); - return AOM_NOISE_STATUS_INVALID_ARGUMENT; - } - - // Clear the latest equation system - for (i = 0; i < 3; ++i) { - equation_system_clear(&noise_model->latest_state[i].eqns); - noise_model->latest_state[i].num_observations = 0; - noise_strength_solver_clear(&noise_model->latest_state[i].strength_solver); - } - - // Check that we have enough flat blocks - for (i = 0; i < num_blocks_h * num_blocks_w; ++i) { - if (flat_blocks[i]) { - num_blocks++; - } - } - - if (num_blocks <= 1) { - fprintf(stderr, "Not enough flat blocks to update noise estimate\n"); - return AOM_NOISE_STATUS_INSUFFICIENT_FLAT_BLOCKS; - } - - for (channel = 0; channel < 3; ++channel) { - int no_subsampling[2] = { 0, 0 }; - const uint8_t *alt_data = channel > 0 ? data[0] : 0; - const uint8_t *alt_denoised = channel > 0 ? denoised[0] : 0; - int *sub = channel > 0 ? chroma_sub_log2 : no_subsampling; - const int is_chroma = channel != 0; - if (!data[channel] || !denoised[channel]) break; - if (!add_block_observations(noise_model, channel, data[channel], - denoised[channel], w, h, stride[channel], sub, - alt_data, alt_denoised, stride[0], flat_blocks, - block_size, num_blocks_w, num_blocks_h)) { - fprintf(stderr, "Adding block observation failed\n"); - return AOM_NOISE_STATUS_INTERNAL_ERROR; - } - - if (!ar_equation_system_solve(&noise_model->latest_state[channel], - is_chroma)) { - if (is_chroma) { - set_chroma_coefficient_fallback_soln( - &noise_model->latest_state[channel].eqns); - } else { - fprintf(stderr, "Solving latest noise equation system failed %d!\n", - channel); - return AOM_NOISE_STATUS_INTERNAL_ERROR; - } - } - - add_noise_std_observations( - noise_model, channel, noise_model->latest_state[channel].eqns.x, - data[channel], denoised[channel], w, h, stride[channel], sub, alt_data, - stride[0], flat_blocks, block_size, num_blocks_w, num_blocks_h); - - if (!aom_noise_strength_solver_solve( - &noise_model->latest_state[channel].strength_solver)) { - fprintf(stderr, "Solving latest noise strength failed!\n"); - return AOM_NOISE_STATUS_INTERNAL_ERROR; - } - - // Check noise characteristics and return if error. - if (channel == 0 && - noise_model->combined_state[channel].strength_solver.num_equations > - 0 && - is_noise_model_different(noise_model)) { - y_model_different = 1; - } - - // Don't update the combined stats if the y model is different. - if (y_model_different) continue; - - noise_model->combined_state[channel].num_observations += - noise_model->latest_state[channel].num_observations; - equation_system_add(&noise_model->combined_state[channel].eqns, - &noise_model->latest_state[channel].eqns); - if (!ar_equation_system_solve(&noise_model->combined_state[channel], - is_chroma)) { - if (is_chroma) { - set_chroma_coefficient_fallback_soln( - &noise_model->combined_state[channel].eqns); - } else { - fprintf(stderr, "Solving combined noise equation system failed %d!\n", - channel); - return AOM_NOISE_STATUS_INTERNAL_ERROR; - } - } - - noise_strength_solver_add( - &noise_model->combined_state[channel].strength_solver, - &noise_model->latest_state[channel].strength_solver); - - if (!aom_noise_strength_solver_solve( - &noise_model->combined_state[channel].strength_solver)) { - fprintf(stderr, "Solving combined noise strength failed!\n"); - return AOM_NOISE_STATUS_INTERNAL_ERROR; - } - } - - return y_model_different ? AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE - : AOM_NOISE_STATUS_OK; -} - -void aom_noise_model_save_latest(aom_noise_model_t *noise_model) { - for (int c = 0; c < 3; c++) { - equation_system_copy(&noise_model->combined_state[c].eqns, - &noise_model->latest_state[c].eqns); - equation_system_copy(&noise_model->combined_state[c].strength_solver.eqns, - &noise_model->latest_state[c].strength_solver.eqns); - noise_model->combined_state[c].strength_solver.num_equations = - noise_model->latest_state[c].strength_solver.num_equations; - noise_model->combined_state[c].num_observations = - noise_model->latest_state[c].num_observations; - noise_model->combined_state[c].ar_gain = - noise_model->latest_state[c].ar_gain; - } -} - -int aom_noise_model_get_grain_parameters(aom_noise_model_t *const noise_model, - aom_film_grain_t *film_grain) { - if (noise_model->params.lag > 3) { - fprintf(stderr, "params.lag = %d > 3\n", noise_model->params.lag); - return 0; - } - uint16_t random_seed = film_grain->random_seed; - memset(film_grain, 0, sizeof(*film_grain)); - film_grain->random_seed = random_seed; - - film_grain->apply_grain = 1; - film_grain->update_parameters = 1; - - film_grain->ar_coeff_lag = noise_model->params.lag; - - // Convert the scaling functions to 8 bit values - aom_noise_strength_lut_t scaling_points[3]; - aom_noise_strength_solver_fit_piecewise( - &noise_model->combined_state[0].strength_solver, 14, scaling_points + 0); - aom_noise_strength_solver_fit_piecewise( - &noise_model->combined_state[1].strength_solver, 10, scaling_points + 1); - aom_noise_strength_solver_fit_piecewise( - &noise_model->combined_state[2].strength_solver, 10, scaling_points + 2); - - // Both the domain and the range of the scaling functions in the film_grain - // are normalized to 8-bit (e.g., they are implicitly scaled during grain - // synthesis). - const double strength_divisor = 1 << (noise_model->params.bit_depth - 8); - double max_scaling_value = 1e-4; - for (int c = 0; c < 3; ++c) { - for (int i = 0; i < scaling_points[c].num_points; ++i) { - scaling_points[c].points[i][0] = - AOMMIN(255, scaling_points[c].points[i][0] / strength_divisor); - scaling_points[c].points[i][1] = - AOMMIN(255, scaling_points[c].points[i][1] / strength_divisor); - max_scaling_value = - AOMMAX(scaling_points[c].points[i][1], max_scaling_value); - } - } - - // Scaling_shift values are in the range [8,11] - const int max_scaling_value_log2 = - clamp((int)floor(log2(max_scaling_value) + 1), 2, 5); - film_grain->scaling_shift = 5 + (8 - max_scaling_value_log2); - - const double scale_factor = 1 << (8 - max_scaling_value_log2); - film_grain->num_y_points = scaling_points[0].num_points; - film_grain->num_cb_points = scaling_points[1].num_points; - film_grain->num_cr_points = scaling_points[2].num_points; - - int(*film_grain_scaling[3])[2] = { - film_grain->scaling_points_y, - film_grain->scaling_points_cb, - film_grain->scaling_points_cr, - }; - for (int c = 0; c < 3; c++) { - for (int i = 0; i < scaling_points[c].num_points; ++i) { - film_grain_scaling[c][i][0] = (int)(scaling_points[c].points[i][0] + 0.5); - film_grain_scaling[c][i][1] = clamp( - (int)(scale_factor * scaling_points[c].points[i][1] + 0.5), 0, 255); - } - } - aom_noise_strength_lut_free(scaling_points + 0); - aom_noise_strength_lut_free(scaling_points + 1); - aom_noise_strength_lut_free(scaling_points + 2); - - // Convert the ar_coeffs into 8-bit values - const int n_coeff = noise_model->combined_state[0].eqns.n; - double max_coeff = 1e-4, min_coeff = -1e-4; - double y_corr[2] = { 0, 0 }; - double avg_luma_strength = 0; - for (int c = 0; c < 3; c++) { - aom_equation_system_t *eqns = &noise_model->combined_state[c].eqns; - for (int i = 0; i < n_coeff; ++i) { - max_coeff = AOMMAX(max_coeff, eqns->x[i]); - min_coeff = AOMMIN(min_coeff, eqns->x[i]); - } - // Since the correlation between luma/chroma was computed in an already - // scaled space, we adjust it in the un-scaled space. - aom_noise_strength_solver_t *solver = - &noise_model->combined_state[c].strength_solver; - // Compute a weighted average of the strength for the channel. - double average_strength = 0, total_weight = 0; - for (int i = 0; i < solver->eqns.n; ++i) { - double w = 0; - for (int j = 0; j < solver->eqns.n; ++j) { - w += solver->eqns.A[i * solver->eqns.n + j]; - } - w = sqrt(w); - average_strength += solver->eqns.x[i] * w; - total_weight += w; - } - if (total_weight == 0) - average_strength = 1; - else - average_strength /= total_weight; - if (c == 0) { - avg_luma_strength = average_strength; - } else { - y_corr[c - 1] = avg_luma_strength * eqns->x[n_coeff] / average_strength; - max_coeff = AOMMAX(max_coeff, y_corr[c - 1]); - min_coeff = AOMMIN(min_coeff, y_corr[c - 1]); - } - } - // Shift value: AR coeffs range (values 6-9) - // 6: [-2, 2), 7: [-1, 1), 8: [-0.5, 0.5), 9: [-0.25, 0.25) - film_grain->ar_coeff_shift = - clamp(7 - (int)AOMMAX(1 + floor(log2(max_coeff)), ceil(log2(-min_coeff))), - 6, 9); - double scale_ar_coeff = 1 << film_grain->ar_coeff_shift; - int *ar_coeffs[3] = { - film_grain->ar_coeffs_y, - film_grain->ar_coeffs_cb, - film_grain->ar_coeffs_cr, - }; - for (int c = 0; c < 3; ++c) { - aom_equation_system_t *eqns = &noise_model->combined_state[c].eqns; - for (int i = 0; i < n_coeff; ++i) { - ar_coeffs[c][i] = - clamp((int)round(scale_ar_coeff * eqns->x[i]), -128, 127); - } - if (c > 0) { - ar_coeffs[c][n_coeff] = - clamp((int)round(scale_ar_coeff * y_corr[c - 1]), -128, 127); - } - } - - // At the moment, the noise modeling code assumes that the chroma scaling - // functions are a function of luma. - film_grain->cb_mult = 128; // 8 bits - film_grain->cb_luma_mult = 192; // 8 bits - film_grain->cb_offset = 256; // 9 bits - - film_grain->cr_mult = 128; // 8 bits - film_grain->cr_luma_mult = 192; // 8 bits - film_grain->cr_offset = 256; // 9 bits - - film_grain->chroma_scaling_from_luma = 0; - film_grain->grain_scale_shift = 0; - film_grain->overlap_flag = 1; - return 1; -} - -static void pointwise_multiply(const float *a, float *b, int n) { - for (int i = 0; i < n; ++i) { - b[i] *= a[i]; - } -} - -static float *get_half_cos_window(int block_size) { - float *window_function = - (float *)aom_malloc(block_size * block_size * sizeof(*window_function)); - for (int y = 0; y < block_size; ++y) { - const double cos_yd = cos((.5 + y) * PI / block_size - PI / 2); - for (int x = 0; x < block_size; ++x) { - const double cos_xd = cos((.5 + x) * PI / block_size - PI / 2); - window_function[y * block_size + x] = (float)(cos_yd * cos_xd); - } - } - return window_function; -} - -#define DITHER_AND_QUANTIZE(INT_TYPE, suffix) \ - static void dither_and_quantize_##suffix( \ - float *result, int result_stride, INT_TYPE *denoised, int w, int h, \ - int stride, int chroma_sub_w, int chroma_sub_h, int block_size, \ - float block_normalization) { \ - for (int y = 0; y < (h >> chroma_sub_h); ++y) { \ - for (int x = 0; x < (w >> chroma_sub_w); ++x) { \ - const int result_idx = \ - (y + (block_size >> chroma_sub_h)) * result_stride + x + \ - (block_size >> chroma_sub_w); \ - INT_TYPE new_val = (INT_TYPE)AOMMIN( \ - AOMMAX(result[result_idx] * block_normalization + 0.5f, 0), \ - block_normalization); \ - const float err = \ - -(((float)new_val) / block_normalization - result[result_idx]); \ - denoised[y * stride + x] = new_val; \ - if (x + 1 < (w >> chroma_sub_w)) { \ - result[result_idx + 1] += err * 7.0f / 16.0f; \ - } \ - if (y + 1 < (h >> chroma_sub_h)) { \ - if (x > 0) { \ - result[result_idx + result_stride - 1] += err * 3.0f / 16.0f; \ - } \ - result[result_idx + result_stride] += err * 5.0f / 16.0f; \ - if (x + 1 < (w >> chroma_sub_w)) { \ - result[result_idx + result_stride + 1] += err * 1.0f / 16.0f; \ - } \ - } \ - } \ - } \ - } - -DITHER_AND_QUANTIZE(uint8_t, lowbd); -DITHER_AND_QUANTIZE(uint16_t, highbd); - -int aom_wiener_denoise_2d(const uint8_t *const data[3], uint8_t *denoised[3], - int w, int h, int stride[3], int chroma_sub[2], - float *noise_psd[3], int block_size, int bit_depth, - int use_highbd) { - float *plane = NULL, *block = NULL, *window_full = NULL, - *window_chroma = NULL; - double *block_d = NULL, *plane_d = NULL; - struct aom_noise_tx_t *tx_full = NULL; - struct aom_noise_tx_t *tx_chroma = NULL; - const int num_blocks_w = (w + block_size - 1) / block_size; - const int num_blocks_h = (h + block_size - 1) / block_size; - const int result_stride = (num_blocks_w + 2) * block_size; - const int result_height = (num_blocks_h + 2) * block_size; - float *result = NULL; - int init_success = 1; - aom_flat_block_finder_t block_finder_full; - aom_flat_block_finder_t block_finder_chroma; - const float kBlockNormalization = (float)((1 << bit_depth) - 1); - if (chroma_sub[0] != chroma_sub[1]) { - fprintf(stderr, - "aom_wiener_denoise_2d doesn't handle different chroma " - "subsampling"); - return 0; - } - init_success &= aom_flat_block_finder_init(&block_finder_full, block_size, - bit_depth, use_highbd); - result = (float *)aom_malloc((num_blocks_h + 2) * block_size * result_stride * - sizeof(*result)); - plane = (float *)aom_malloc(block_size * block_size * sizeof(*plane)); - block = - (float *)aom_memalign(32, 2 * block_size * block_size * sizeof(*block)); - block_d = (double *)aom_malloc(block_size * block_size * sizeof(*block_d)); - plane_d = (double *)aom_malloc(block_size * block_size * sizeof(*plane_d)); - window_full = get_half_cos_window(block_size); - tx_full = aom_noise_tx_malloc(block_size); - - if (chroma_sub[0] != 0) { - init_success &= aom_flat_block_finder_init(&block_finder_chroma, - block_size >> chroma_sub[0], - bit_depth, use_highbd); - window_chroma = get_half_cos_window(block_size >> chroma_sub[0]); - tx_chroma = aom_noise_tx_malloc(block_size >> chroma_sub[0]); - } else { - window_chroma = window_full; - tx_chroma = tx_full; - } - - init_success &= (tx_full != NULL) && (tx_chroma != NULL) && (plane != NULL) && - (plane_d != NULL) && (block != NULL) && (block_d != NULL) && - (window_full != NULL) && (window_chroma != NULL) && - (result != NULL); - for (int c = init_success ? 0 : 3; c < 3; ++c) { - float *window_function = c == 0 ? window_full : window_chroma; - aom_flat_block_finder_t *block_finder = &block_finder_full; - const int chroma_sub_h = c > 0 ? chroma_sub[1] : 0; - const int chroma_sub_w = c > 0 ? chroma_sub[0] : 0; - struct aom_noise_tx_t *tx = - (c > 0 && chroma_sub[0] > 0) ? tx_chroma : tx_full; - if (!data[c] || !denoised[c]) continue; - if (c > 0 && chroma_sub[0] != 0) { - block_finder = &block_finder_chroma; - } - memset(result, 0, sizeof(*result) * result_stride * result_height); - // Do overlapped block processing (half overlapped). The block rows can - // easily be done in parallel - for (int offsy = 0; offsy < (block_size >> chroma_sub_h); - offsy += (block_size >> chroma_sub_h) / 2) { - for (int offsx = 0; offsx < (block_size >> chroma_sub_w); - offsx += (block_size >> chroma_sub_w) / 2) { - // Pad the boundary when processing each block-set. - for (int by = -1; by < num_blocks_h; ++by) { - for (int bx = -1; bx < num_blocks_w; ++bx) { - const int pixels_per_block = - (block_size >> chroma_sub_w) * (block_size >> chroma_sub_h); - aom_flat_block_finder_extract_block( - block_finder, data[c], w >> chroma_sub_w, h >> chroma_sub_h, - stride[c], bx * (block_size >> chroma_sub_w) + offsx, - by * (block_size >> chroma_sub_h) + offsy, plane_d, block_d); - for (int j = 0; j < pixels_per_block; ++j) { - block[j] = (float)block_d[j]; - plane[j] = (float)plane_d[j]; - } - pointwise_multiply(window_function, block, pixels_per_block); - aom_noise_tx_forward(tx, block); - aom_noise_tx_filter(tx, noise_psd[c]); - aom_noise_tx_inverse(tx, block); - - // Apply window function to the plane approximation (we will apply - // it to the sum of plane + block when composing the results). - pointwise_multiply(window_function, plane, pixels_per_block); - - for (int y = 0; y < (block_size >> chroma_sub_h); ++y) { - const int y_result = - y + (by + 1) * (block_size >> chroma_sub_h) + offsy; - for (int x = 0; x < (block_size >> chroma_sub_w); ++x) { - const int x_result = - x + (bx + 1) * (block_size >> chroma_sub_w) + offsx; - result[y_result * result_stride + x_result] += - (block[y * (block_size >> chroma_sub_w) + x] + - plane[y * (block_size >> chroma_sub_w) + x]) * - window_function[y * (block_size >> chroma_sub_w) + x]; - } - } - } - } - } - } - if (use_highbd) { - dither_and_quantize_highbd(result, result_stride, (uint16_t *)denoised[c], - w, h, stride[c], chroma_sub_w, chroma_sub_h, - block_size, kBlockNormalization); - } else { - dither_and_quantize_lowbd(result, result_stride, denoised[c], w, h, - stride[c], chroma_sub_w, chroma_sub_h, - block_size, kBlockNormalization); - } - } - aom_free(result); - aom_free(plane); - aom_free(block); - aom_free(plane_d); - aom_free(block_d); - aom_free(window_full); - - aom_noise_tx_free(tx_full); - - aom_flat_block_finder_free(&block_finder_full); - if (chroma_sub[0] != 0) { - aom_flat_block_finder_free(&block_finder_chroma); - aom_free(window_chroma); - aom_noise_tx_free(tx_chroma); - } - return init_success; -} - -struct aom_denoise_and_model_t { - int block_size; - int bit_depth; - float noise_level; - - // Size of current denoised buffer and flat_block buffer - int width; - int height; - int y_stride; - int uv_stride; - int num_blocks_w; - int num_blocks_h; - - // Buffers for image and noise_psd allocated on the fly - float *noise_psd[3]; - uint8_t *denoised[3]; - uint8_t *flat_blocks; - - aom_flat_block_finder_t flat_block_finder; - aom_noise_model_t noise_model; -}; - -struct aom_denoise_and_model_t *aom_denoise_and_model_alloc(int bit_depth, - int block_size, - float noise_level) { - struct aom_denoise_and_model_t *ctx = - (struct aom_denoise_and_model_t *)aom_malloc( - sizeof(struct aom_denoise_and_model_t)); - if (!ctx) { - fprintf(stderr, "Unable to allocate denoise_and_model struct\n"); - return NULL; - } - memset(ctx, 0, sizeof(*ctx)); - - ctx->block_size = block_size; - ctx->noise_level = noise_level; - ctx->bit_depth = bit_depth; - - ctx->noise_psd[0] = - aom_malloc(sizeof(*ctx->noise_psd[0]) * block_size * block_size); - ctx->noise_psd[1] = - aom_malloc(sizeof(*ctx->noise_psd[1]) * block_size * block_size); - ctx->noise_psd[2] = - aom_malloc(sizeof(*ctx->noise_psd[2]) * block_size * block_size); - if (!ctx->noise_psd[0] || !ctx->noise_psd[1] || !ctx->noise_psd[2]) { - fprintf(stderr, "Unable to allocate noise PSD buffers\n"); - aom_denoise_and_model_free(ctx); - return NULL; - } - return ctx; -} - -void aom_denoise_and_model_free(struct aom_denoise_and_model_t *ctx) { - aom_free(ctx->flat_blocks); - for (int i = 0; i < 3; ++i) { - aom_free(ctx->denoised[i]); - aom_free(ctx->noise_psd[i]); - } - aom_noise_model_free(&ctx->noise_model); - aom_flat_block_finder_free(&ctx->flat_block_finder); - aom_free(ctx); -} - -static int denoise_and_model_realloc_if_necessary( - struct aom_denoise_and_model_t *ctx, YV12_BUFFER_CONFIG *sd) { - if (ctx->width == sd->y_width && ctx->height == sd->y_height && - ctx->y_stride == sd->y_stride && ctx->uv_stride == sd->uv_stride) - return 1; - const int use_highbd = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0; - const int block_size = ctx->block_size; - - ctx->width = sd->y_width; - ctx->height = sd->y_height; - ctx->y_stride = sd->y_stride; - ctx->uv_stride = sd->uv_stride; - - for (int i = 0; i < 3; ++i) { - aom_free(ctx->denoised[i]); - ctx->denoised[i] = NULL; - } - aom_free(ctx->flat_blocks); - ctx->flat_blocks = NULL; - - ctx->denoised[0] = aom_malloc((sd->y_stride * sd->y_height) << use_highbd); - ctx->denoised[1] = aom_malloc((sd->uv_stride * sd->uv_height) << use_highbd); - ctx->denoised[2] = aom_malloc((sd->uv_stride * sd->uv_height) << use_highbd); - if (!ctx->denoised[0] || !ctx->denoised[1] || !ctx->denoised[2]) { - fprintf(stderr, "Unable to allocate denoise buffers\n"); - return 0; - } - ctx->num_blocks_w = (sd->y_width + ctx->block_size - 1) / ctx->block_size; - ctx->num_blocks_h = (sd->y_height + ctx->block_size - 1) / ctx->block_size; - ctx->flat_blocks = aom_malloc(ctx->num_blocks_w * ctx->num_blocks_h); - - aom_flat_block_finder_free(&ctx->flat_block_finder); - if (!aom_flat_block_finder_init(&ctx->flat_block_finder, ctx->block_size, - ctx->bit_depth, use_highbd)) { - fprintf(stderr, "Unable to init flat block finder\n"); - return 0; - } - - const aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 3, - ctx->bit_depth, use_highbd }; - aom_noise_model_free(&ctx->noise_model); - if (!aom_noise_model_init(&ctx->noise_model, params)) { - fprintf(stderr, "Unable to init noise model\n"); - return 0; - } - - // Simply use a flat PSD (although we could use the flat blocks to estimate - // PSD) those to estimate an actual noise PSD) - const float y_noise_level = - aom_noise_psd_get_default_value(ctx->block_size, ctx->noise_level); - const float uv_noise_level = aom_noise_psd_get_default_value( - ctx->block_size >> sd->subsampling_x, ctx->noise_level); - for (int i = 0; i < block_size * block_size; ++i) { - ctx->noise_psd[0][i] = y_noise_level; - ctx->noise_psd[1][i] = ctx->noise_psd[2][i] = uv_noise_level; - } - return 1; -} - -int aom_denoise_and_model_run(struct aom_denoise_and_model_t *ctx, - YV12_BUFFER_CONFIG *sd, - aom_film_grain_t *film_grain) { - const int block_size = ctx->block_size; - const int use_highbd = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0; - uint8_t *raw_data[3] = { - use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->y_buffer) : sd->y_buffer, - use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->u_buffer) : sd->u_buffer, - use_highbd ? (uint8_t *)CONVERT_TO_SHORTPTR(sd->v_buffer) : sd->v_buffer, - }; - const uint8_t *const data[3] = { raw_data[0], raw_data[1], raw_data[2] }; - int strides[3] = { sd->y_stride, sd->uv_stride, sd->uv_stride }; - int chroma_sub_log2[2] = { sd->subsampling_x, sd->subsampling_y }; - - if (!denoise_and_model_realloc_if_necessary(ctx, sd)) { - fprintf(stderr, "Unable to realloc buffers\n"); - return 0; - } - - aom_flat_block_finder_run(&ctx->flat_block_finder, data[0], sd->y_width, - sd->y_height, strides[0], ctx->flat_blocks); - - if (!aom_wiener_denoise_2d(data, ctx->denoised, sd->y_width, sd->y_height, - strides, chroma_sub_log2, ctx->noise_psd, - block_size, ctx->bit_depth, use_highbd)) { - fprintf(stderr, "Unable to denoise image\n"); - return 0; - } - - const aom_noise_status_t status = aom_noise_model_update( - &ctx->noise_model, data, (const uint8_t *const *)ctx->denoised, - sd->y_width, sd->y_height, strides, chroma_sub_log2, ctx->flat_blocks, - block_size); - int have_noise_estimate = 0; - if (status == AOM_NOISE_STATUS_OK) { - have_noise_estimate = 1; - } else if (status == AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE) { - aom_noise_model_save_latest(&ctx->noise_model); - have_noise_estimate = 1; - } else { - // Unable to update noise model; proceed if we have a previous estimate. - have_noise_estimate = - (ctx->noise_model.combined_state[0].strength_solver.num_equations > 0); - } - - film_grain->apply_grain = 0; - if (have_noise_estimate) { - if (!aom_noise_model_get_grain_parameters(&ctx->noise_model, film_grain)) { - fprintf(stderr, "Unable to get grain parameters.\n"); - return 0; - } - if (!film_grain->random_seed) { - film_grain->random_seed = 7391; - } - memcpy(raw_data[0], ctx->denoised[0], - (strides[0] * sd->y_height) << use_highbd); - memcpy(raw_data[1], ctx->denoised[1], - (strides[1] * sd->uv_height) << use_highbd); - memcpy(raw_data[2], ctx->denoised[2], - (strides[2] * sd->uv_height) << use_highbd); - } - return 1; -} |