summaryrefslogtreecommitdiffstats
path: root/taskcluster/taskgraph/generator.py
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /taskcluster/taskgraph/generator.py
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'taskcluster/taskgraph/generator.py')
-rw-r--r--taskcluster/taskgraph/generator.py218
1 files changed, 218 insertions, 0 deletions
diff --git a/taskcluster/taskgraph/generator.py b/taskcluster/taskgraph/generator.py
new file mode 100644
index 000000000..809ed1f5c
--- /dev/null
+++ b/taskcluster/taskgraph/generator.py
@@ -0,0 +1,218 @@
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+from __future__ import absolute_import, print_function, unicode_literals
+import logging
+import os
+import yaml
+
+from .graph import Graph
+from .taskgraph import TaskGraph
+from .optimize import optimize_task_graph
+from .util.python_path import find_object
+
+logger = logging.getLogger(__name__)
+
+
+class Kind(object):
+
+ def __init__(self, name, path, config):
+ self.name = name
+ self.path = path
+ self.config = config
+
+ def _get_impl_class(self):
+ # load the class defined by implementation
+ try:
+ impl = self.config['implementation']
+ except KeyError:
+ raise KeyError("{!r} does not define implementation".format(self.path))
+ return find_object(impl)
+
+ def load_tasks(self, parameters, loaded_tasks):
+ impl_class = self._get_impl_class()
+ return impl_class.load_tasks(self.name, self.path, self.config,
+ parameters, loaded_tasks)
+
+
+class TaskGraphGenerator(object):
+ """
+ The central controller for taskgraph. This handles all phases of graph
+ generation. The task is generated from all of the kinds defined in
+ subdirectories of the generator's root directory.
+
+ Access to the results of this generation, as well as intermediate values at
+ various phases of generation, is available via properties. This encourages
+ the provision of all generation inputs at instance construction time.
+ """
+
+ # Task-graph generation is implemented as a Python generator that yields
+ # each "phase" of generation. This allows some mach subcommands to short-
+ # circuit generation of the entire graph by never completing the generator.
+
+ def __init__(self, root_dir, parameters,
+ target_tasks_method):
+ """
+ @param root_dir: root directory, with subdirectories for each kind
+ @param parameters: parameters for this task-graph generation
+ @type parameters: dict
+ @param target_tasks_method: function to determine the target_task_set;
+ see `./target_tasks.py`.
+ @type target_tasks_method: function
+ """
+
+ self.root_dir = root_dir
+ self.parameters = parameters
+ self.target_tasks_method = target_tasks_method
+
+ # this can be set up until the time the target task set is generated;
+ # it defaults to parameters['target_tasks']
+ self._target_tasks = parameters.get('target_tasks')
+
+ # start the generator
+ self._run = self._run()
+ self._run_results = {}
+
+ @property
+ def full_task_set(self):
+ """
+ The full task set: all tasks defined by any kind (a graph without edges)
+
+ @type: TaskGraph
+ """
+ return self._run_until('full_task_set')
+
+ @property
+ def full_task_graph(self):
+ """
+ The full task graph: the full task set, with edges representing
+ dependencies.
+
+ @type: TaskGraph
+ """
+ return self._run_until('full_task_graph')
+
+ @property
+ def target_task_set(self):
+ """
+ The set of targetted tasks (a graph without edges)
+
+ @type: TaskGraph
+ """
+ return self._run_until('target_task_set')
+
+ @property
+ def target_task_graph(self):
+ """
+ The set of targetted tasks and all of their dependencies
+
+ @type: TaskGraph
+ """
+ return self._run_until('target_task_graph')
+
+ @property
+ def optimized_task_graph(self):
+ """
+ The set of targetted tasks and all of their dependencies; tasks that
+ have been optimized out are either omitted or replaced with a Task
+ instance containing only a task_id.
+
+ @type: TaskGraph
+ """
+ return self._run_until('optimized_task_graph')
+
+ @property
+ def label_to_taskid(self):
+ """
+ A dictionary mapping task label to assigned taskId. This property helps
+ in interpreting `optimized_task_graph`.
+
+ @type: dictionary
+ """
+ return self._run_until('label_to_taskid')
+
+ def _load_kinds(self):
+ for path in os.listdir(self.root_dir):
+ path = os.path.join(self.root_dir, path)
+ if not os.path.isdir(path):
+ continue
+ kind_name = os.path.basename(path)
+
+ kind_yml = os.path.join(path, 'kind.yml')
+ if not os.path.exists(kind_yml):
+ continue
+
+ logger.debug("loading kind `{}` from `{}`".format(kind_name, path))
+ with open(kind_yml) as f:
+ config = yaml.load(f)
+
+ yield Kind(kind_name, path, config)
+
+ def _run(self):
+ logger.info("Loading kinds")
+ # put the kinds into a graph and sort topologically so that kinds are loaded
+ # in post-order
+ kinds = {kind.name: kind for kind in self._load_kinds()}
+ edges = set()
+ for kind in kinds.itervalues():
+ for dep in kind.config.get('kind-dependencies', []):
+ edges.add((kind.name, dep, 'kind-dependency'))
+ kind_graph = Graph(set(kinds), edges)
+
+ logger.info("Generating full task set")
+ all_tasks = {}
+ for kind_name in kind_graph.visit_postorder():
+ logger.debug("Loading tasks for kind {}".format(kind_name))
+ kind = kinds[kind_name]
+ new_tasks = kind.load_tasks(self.parameters, list(all_tasks.values()))
+ for task in new_tasks:
+ if task.label in all_tasks:
+ raise Exception("duplicate tasks with label " + task.label)
+ all_tasks[task.label] = task
+ logger.info("Generated {} tasks for kind {}".format(len(new_tasks), kind_name))
+ full_task_set = TaskGraph(all_tasks, Graph(set(all_tasks), set()))
+ yield 'full_task_set', full_task_set
+
+ logger.info("Generating full task graph")
+ edges = set()
+ for t in full_task_set:
+ for dep, depname in t.get_dependencies(full_task_set):
+ edges.add((t.label, dep, depname))
+
+ full_task_graph = TaskGraph(all_tasks,
+ Graph(full_task_set.graph.nodes, edges))
+ yield 'full_task_graph', full_task_graph
+
+ logger.info("Generating target task set")
+ target_tasks = set(self.target_tasks_method(full_task_graph, self.parameters))
+ target_task_set = TaskGraph(
+ {l: all_tasks[l] for l in target_tasks},
+ Graph(target_tasks, set()))
+ yield 'target_task_set', target_task_set
+
+ logger.info("Generating target task graph")
+ target_graph = full_task_graph.graph.transitive_closure(target_tasks)
+ target_task_graph = TaskGraph(
+ {l: all_tasks[l] for l in target_graph.nodes},
+ target_graph)
+ yield 'target_task_graph', target_task_graph
+
+ logger.info("Generating optimized task graph")
+ do_not_optimize = set()
+ if not self.parameters.get('optimize_target_tasks', True):
+ do_not_optimize = target_task_set.graph.nodes
+ optimized_task_graph, label_to_taskid = optimize_task_graph(target_task_graph,
+ self.parameters,
+ do_not_optimize)
+ yield 'label_to_taskid', label_to_taskid
+ yield 'optimized_task_graph', optimized_task_graph
+
+ def _run_until(self, name):
+ while name not in self._run_results:
+ try:
+ k, v = self._run.next()
+ except StopIteration:
+ raise AttributeError("No such run result {}".format(name))
+ self._run_results[k] = v
+ return self._run_results[name]