summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/sha_fast.c
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /security/nss/lib/freebl/sha_fast.c
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'security/nss/lib/freebl/sha_fast.c')
-rw-r--r--security/nss/lib/freebl/sha_fast.c545
1 files changed, 545 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/sha_fast.c b/security/nss/lib/freebl/sha_fast.c
new file mode 100644
index 000000000..52071f0c9
--- /dev/null
+++ b/security/nss/lib/freebl/sha_fast.c
@@ -0,0 +1,545 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifdef FREEBL_NO_DEPEND
+#include "stubs.h"
+#endif
+
+#include <memory.h>
+#include "blapi.h"
+#include "sha_fast.h"
+#include "prerror.h"
+
+#ifdef TRACING_SSL
+#include "ssl.h"
+#include "ssltrace.h"
+#endif
+
+static void shaCompress(volatile SHA_HW_t *X, const PRUint32 *datain);
+
+#define W u.w
+#define B u.b
+
+#define SHA_F1(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
+#define SHA_F2(X, Y, Z) ((X) ^ (Y) ^ (Z))
+#define SHA_F3(X, Y, Z) (((X) & (Y)) | ((Z) & ((X) | (Y))))
+#define SHA_F4(X, Y, Z) ((X) ^ (Y) ^ (Z))
+
+#define SHA_MIX(n, a, b, c) XW(n) = SHA_ROTL(XW(a) ^ XW(b) ^ XW(c) ^ XW(n), 1)
+
+/*
+ * SHA: initialize context
+ */
+void
+SHA1_Begin(SHA1Context *ctx)
+{
+ ctx->size = 0;
+ /*
+ * Initialize H with constants from FIPS180-1.
+ */
+ ctx->H[0] = 0x67452301L;
+ ctx->H[1] = 0xefcdab89L;
+ ctx->H[2] = 0x98badcfeL;
+ ctx->H[3] = 0x10325476L;
+ ctx->H[4] = 0xc3d2e1f0L;
+}
+
+/* Explanation of H array and index values:
+ * The context's H array is actually the concatenation of two arrays
+ * defined by SHA1, the H array of state variables (5 elements),
+ * and the W array of intermediate values, of which there are 16 elements.
+ * The W array starts at H[5], that is W[0] is H[5].
+ * Although these values are defined as 32-bit values, we use 64-bit
+ * variables to hold them because the AMD64 stores 64 bit values in
+ * memory MUCH faster than it stores any smaller values.
+ *
+ * Rather than passing the context structure to shaCompress, we pass
+ * this combined array of H and W values. We do not pass the address
+ * of the first element of this array, but rather pass the address of an
+ * element in the middle of the array, element X. Presently X[0] is H[11].
+ * So we pass the address of H[11] as the address of array X to shaCompress.
+ * Then shaCompress accesses the members of the array using positive AND
+ * negative indexes.
+ *
+ * Pictorially: (each element is 8 bytes)
+ * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
+ * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
+ *
+ * The byte offset from X[0] to any member of H and W is always
+ * representable in a signed 8-bit value, which will be encoded
+ * as a single byte offset in the X86-64 instruction set.
+ * If we didn't pass the address of H[11], and instead passed the
+ * address of H[0], the offsets to elements H[16] and above would be
+ * greater than 127, not representable in a signed 8-bit value, and the
+ * x86-64 instruction set would encode every such offset as a 32-bit
+ * signed number in each instruction that accessed element H[16] or
+ * higher. This results in much bigger and slower code.
+ */
+#if !defined(SHA_PUT_W_IN_STACK)
+#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
+#define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */
+#else
+#define H2X 0
+#endif
+
+/*
+ * SHA: Add data to context.
+ */
+void
+SHA1_Update(SHA1Context *ctx, const unsigned char *dataIn, unsigned int len)
+{
+ register unsigned int lenB;
+ register unsigned int togo;
+
+ if (!len)
+ return;
+
+ /* accumulate the byte count. */
+ lenB = (unsigned int)(ctx->size) & 63U;
+
+ ctx->size += len;
+
+ /*
+ * Read the data into W and process blocks as they get full
+ */
+ if (lenB > 0) {
+ togo = 64U - lenB;
+ if (len < togo)
+ togo = len;
+ memcpy(ctx->B + lenB, dataIn, togo);
+ len -= togo;
+ dataIn += togo;
+ lenB = (lenB + togo) & 63U;
+ if (!lenB) {
+ shaCompress(&ctx->H[H2X], ctx->W);
+ }
+ }
+#if !defined(HAVE_UNALIGNED_ACCESS)
+ if ((ptrdiff_t)dataIn % sizeof(PRUint32)) {
+ while (len >= 64U) {
+ memcpy(ctx->B, dataIn, 64);
+ len -= 64U;
+ shaCompress(&ctx->H[H2X], ctx->W);
+ dataIn += 64U;
+ }
+ } else
+#endif
+ {
+ while (len >= 64U) {
+ len -= 64U;
+ shaCompress(&ctx->H[H2X], (PRUint32 *)dataIn);
+ dataIn += 64U;
+ }
+ }
+ if (len) {
+ memcpy(ctx->B, dataIn, len);
+ }
+}
+
+/*
+ * SHA: Generate hash value from context
+ */
+void NO_SANITIZE_ALIGNMENT
+SHA1_End(SHA1Context *ctx, unsigned char *hashout,
+ unsigned int *pDigestLen, unsigned int maxDigestLen)
+{
+ register PRUint64 size;
+ register PRUint32 lenB;
+
+ static const unsigned char bulk_pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+#define tmp lenB
+
+ PORT_Assert(maxDigestLen >= SHA1_LENGTH);
+
+ /*
+ * Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
+ */
+ size = ctx->size;
+
+ lenB = (PRUint32)size & 63;
+ SHA1_Update(ctx, bulk_pad, (((55 + 64) - lenB) & 63) + 1);
+ PORT_Assert(((PRUint32)ctx->size & 63) == 56);
+ /* Convert size from bytes to bits. */
+ size <<= 3;
+ ctx->W[14] = SHA_HTONL((PRUint32)(size >> 32));
+ ctx->W[15] = SHA_HTONL((PRUint32)size);
+ shaCompress(&ctx->H[H2X], ctx->W);
+
+ /*
+ * Output hash
+ */
+ SHA_STORE_RESULT;
+ if (pDigestLen) {
+ *pDigestLen = SHA1_LENGTH;
+ }
+#undef tmp
+}
+
+void
+SHA1_EndRaw(SHA1Context *ctx, unsigned char *hashout,
+ unsigned int *pDigestLen, unsigned int maxDigestLen)
+{
+#if defined(SHA_NEED_TMP_VARIABLE)
+ register PRUint32 tmp;
+#endif
+ PORT_Assert(maxDigestLen >= SHA1_LENGTH);
+
+ SHA_STORE_RESULT;
+ if (pDigestLen)
+ *pDigestLen = SHA1_LENGTH;
+}
+
+#undef B
+/*
+ * SHA: Compression function, unrolled.
+ *
+ * Some operations in shaCompress are done as 5 groups of 16 operations.
+ * Others are done as 4 groups of 20 operations.
+ * The code below shows that structure.
+ *
+ * The functions that compute the new values of the 5 state variables
+ * A-E are done in 4 groups of 20 operations (or you may also think
+ * of them as being done in 16 groups of 5 operations). They are
+ * done by the SHA_RNDx macros below, in the right column.
+ *
+ * The functions that set the 16 values of the W array are done in
+ * 5 groups of 16 operations. The first group is done by the
+ * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
+ * in the left column.
+ *
+ * gcc's optimizer observes that each member of the W array is assigned
+ * a value 5 times in this code. It reduces the number of store
+ * operations done to the W array in the context (that is, in the X array)
+ * by creating a W array on the stack, and storing the W values there for
+ * the first 4 groups of operations on W, and storing the values in the
+ * context's W array only in the fifth group. This is undesirable.
+ * It is MUCH bigger code than simply using the context's W array, because
+ * all the offsets to the W array in the stack are 32-bit signed offsets,
+ * and it is no faster than storing the values in the context's W array.
+ *
+ * The original code for sha_fast.c prevented this creation of a separate
+ * W array in the stack by creating a W array of 80 members, each of
+ * whose elements is assigned only once. It also separated the computations
+ * of the W array values and the computations of the values for the 5
+ * state variables into two separate passes, W's, then A-E's so that the
+ * second pass could be done all in registers (except for accessing the W
+ * array) on machines with fewer registers. The method is suboptimal
+ * for machines with enough registers to do it all in one pass, and it
+ * necessitates using many instructions with 32-bit offsets.
+ *
+ * This code eliminates the separate W array on the stack by a completely
+ * different means: by declaring the X array volatile. This prevents
+ * the optimizer from trying to reduce the use of the X array by the
+ * creation of a MORE expensive W array on the stack. The result is
+ * that all instructions use signed 8-bit offsets and not 32-bit offsets.
+ *
+ * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
+ * results in code that is 3 times faster than the previous NSS sha_fast
+ * code on AMD64.
+ */
+static void NO_SANITIZE_ALIGNMENT
+shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf)
+{
+ register SHA_HW_t A, B, C, D, E;
+
+#if defined(SHA_NEED_TMP_VARIABLE)
+ register PRUint32 tmp;
+#endif
+
+#if !defined(SHA_PUT_W_IN_STACK)
+#define XH(n) X[n - H2X]
+#define XW(n) X[n - W2X]
+#else
+ SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
+ w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
+#define XW(n) w_##n
+#define XH(n) X[n]
+#endif
+
+#define K0 0x5a827999L
+#define K1 0x6ed9eba1L
+#define K2 0x8f1bbcdcL
+#define K3 0xca62c1d6L
+
+#define SHA_RND1(a, b, c, d, e, n) \
+ a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; \
+ c = SHA_ROTL(c, 30)
+#define SHA_RND2(a, b, c, d, e, n) \
+ a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; \
+ c = SHA_ROTL(c, 30)
+#define SHA_RND3(a, b, c, d, e, n) \
+ a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; \
+ c = SHA_ROTL(c, 30)
+#define SHA_RND4(a, b, c, d, e, n) \
+ a = SHA_ROTL(b, 5) + SHA_F4(c, d, e) + a + XW(n) + K3; \
+ c = SHA_ROTL(c, 30)
+
+#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])
+
+ A = XH(0);
+ B = XH(1);
+ C = XH(2);
+ D = XH(3);
+ E = XH(4);
+
+ LOAD(0);
+ SHA_RND1(E, A, B, C, D, 0);
+ LOAD(1);
+ SHA_RND1(D, E, A, B, C, 1);
+ LOAD(2);
+ SHA_RND1(C, D, E, A, B, 2);
+ LOAD(3);
+ SHA_RND1(B, C, D, E, A, 3);
+ LOAD(4);
+ SHA_RND1(A, B, C, D, E, 4);
+ LOAD(5);
+ SHA_RND1(E, A, B, C, D, 5);
+ LOAD(6);
+ SHA_RND1(D, E, A, B, C, 6);
+ LOAD(7);
+ SHA_RND1(C, D, E, A, B, 7);
+ LOAD(8);
+ SHA_RND1(B, C, D, E, A, 8);
+ LOAD(9);
+ SHA_RND1(A, B, C, D, E, 9);
+ LOAD(10);
+ SHA_RND1(E, A, B, C, D, 10);
+ LOAD(11);
+ SHA_RND1(D, E, A, B, C, 11);
+ LOAD(12);
+ SHA_RND1(C, D, E, A, B, 12);
+ LOAD(13);
+ SHA_RND1(B, C, D, E, A, 13);
+ LOAD(14);
+ SHA_RND1(A, B, C, D, E, 14);
+ LOAD(15);
+ SHA_RND1(E, A, B, C, D, 15);
+
+ SHA_MIX(0, 13, 8, 2);
+ SHA_RND1(D, E, A, B, C, 0);
+ SHA_MIX(1, 14, 9, 3);
+ SHA_RND1(C, D, E, A, B, 1);
+ SHA_MIX(2, 15, 10, 4);
+ SHA_RND1(B, C, D, E, A, 2);
+ SHA_MIX(3, 0, 11, 5);
+ SHA_RND1(A, B, C, D, E, 3);
+
+ SHA_MIX(4, 1, 12, 6);
+ SHA_RND2(E, A, B, C, D, 4);
+ SHA_MIX(5, 2, 13, 7);
+ SHA_RND2(D, E, A, B, C, 5);
+ SHA_MIX(6, 3, 14, 8);
+ SHA_RND2(C, D, E, A, B, 6);
+ SHA_MIX(7, 4, 15, 9);
+ SHA_RND2(B, C, D, E, A, 7);
+ SHA_MIX(8, 5, 0, 10);
+ SHA_RND2(A, B, C, D, E, 8);
+ SHA_MIX(9, 6, 1, 11);
+ SHA_RND2(E, A, B, C, D, 9);
+ SHA_MIX(10, 7, 2, 12);
+ SHA_RND2(D, E, A, B, C, 10);
+ SHA_MIX(11, 8, 3, 13);
+ SHA_RND2(C, D, E, A, B, 11);
+ SHA_MIX(12, 9, 4, 14);
+ SHA_RND2(B, C, D, E, A, 12);
+ SHA_MIX(13, 10, 5, 15);
+ SHA_RND2(A, B, C, D, E, 13);
+ SHA_MIX(14, 11, 6, 0);
+ SHA_RND2(E, A, B, C, D, 14);
+ SHA_MIX(15, 12, 7, 1);
+ SHA_RND2(D, E, A, B, C, 15);
+
+ SHA_MIX(0, 13, 8, 2);
+ SHA_RND2(C, D, E, A, B, 0);
+ SHA_MIX(1, 14, 9, 3);
+ SHA_RND2(B, C, D, E, A, 1);
+ SHA_MIX(2, 15, 10, 4);
+ SHA_RND2(A, B, C, D, E, 2);
+ SHA_MIX(3, 0, 11, 5);
+ SHA_RND2(E, A, B, C, D, 3);
+ SHA_MIX(4, 1, 12, 6);
+ SHA_RND2(D, E, A, B, C, 4);
+ SHA_MIX(5, 2, 13, 7);
+ SHA_RND2(C, D, E, A, B, 5);
+ SHA_MIX(6, 3, 14, 8);
+ SHA_RND2(B, C, D, E, A, 6);
+ SHA_MIX(7, 4, 15, 9);
+ SHA_RND2(A, B, C, D, E, 7);
+
+ SHA_MIX(8, 5, 0, 10);
+ SHA_RND3(E, A, B, C, D, 8);
+ SHA_MIX(9, 6, 1, 11);
+ SHA_RND3(D, E, A, B, C, 9);
+ SHA_MIX(10, 7, 2, 12);
+ SHA_RND3(C, D, E, A, B, 10);
+ SHA_MIX(11, 8, 3, 13);
+ SHA_RND3(B, C, D, E, A, 11);
+ SHA_MIX(12, 9, 4, 14);
+ SHA_RND3(A, B, C, D, E, 12);
+ SHA_MIX(13, 10, 5, 15);
+ SHA_RND3(E, A, B, C, D, 13);
+ SHA_MIX(14, 11, 6, 0);
+ SHA_RND3(D, E, A, B, C, 14);
+ SHA_MIX(15, 12, 7, 1);
+ SHA_RND3(C, D, E, A, B, 15);
+
+ SHA_MIX(0, 13, 8, 2);
+ SHA_RND3(B, C, D, E, A, 0);
+ SHA_MIX(1, 14, 9, 3);
+ SHA_RND3(A, B, C, D, E, 1);
+ SHA_MIX(2, 15, 10, 4);
+ SHA_RND3(E, A, B, C, D, 2);
+ SHA_MIX(3, 0, 11, 5);
+ SHA_RND3(D, E, A, B, C, 3);
+ SHA_MIX(4, 1, 12, 6);
+ SHA_RND3(C, D, E, A, B, 4);
+ SHA_MIX(5, 2, 13, 7);
+ SHA_RND3(B, C, D, E, A, 5);
+ SHA_MIX(6, 3, 14, 8);
+ SHA_RND3(A, B, C, D, E, 6);
+ SHA_MIX(7, 4, 15, 9);
+ SHA_RND3(E, A, B, C, D, 7);
+ SHA_MIX(8, 5, 0, 10);
+ SHA_RND3(D, E, A, B, C, 8);
+ SHA_MIX(9, 6, 1, 11);
+ SHA_RND3(C, D, E, A, B, 9);
+ SHA_MIX(10, 7, 2, 12);
+ SHA_RND3(B, C, D, E, A, 10);
+ SHA_MIX(11, 8, 3, 13);
+ SHA_RND3(A, B, C, D, E, 11);
+
+ SHA_MIX(12, 9, 4, 14);
+ SHA_RND4(E, A, B, C, D, 12);
+ SHA_MIX(13, 10, 5, 15);
+ SHA_RND4(D, E, A, B, C, 13);
+ SHA_MIX(14, 11, 6, 0);
+ SHA_RND4(C, D, E, A, B, 14);
+ SHA_MIX(15, 12, 7, 1);
+ SHA_RND4(B, C, D, E, A, 15);
+
+ SHA_MIX(0, 13, 8, 2);
+ SHA_RND4(A, B, C, D, E, 0);
+ SHA_MIX(1, 14, 9, 3);
+ SHA_RND4(E, A, B, C, D, 1);
+ SHA_MIX(2, 15, 10, 4);
+ SHA_RND4(D, E, A, B, C, 2);
+ SHA_MIX(3, 0, 11, 5);
+ SHA_RND4(C, D, E, A, B, 3);
+ SHA_MIX(4, 1, 12, 6);
+ SHA_RND4(B, C, D, E, A, 4);
+ SHA_MIX(5, 2, 13, 7);
+ SHA_RND4(A, B, C, D, E, 5);
+ SHA_MIX(6, 3, 14, 8);
+ SHA_RND4(E, A, B, C, D, 6);
+ SHA_MIX(7, 4, 15, 9);
+ SHA_RND4(D, E, A, B, C, 7);
+ SHA_MIX(8, 5, 0, 10);
+ SHA_RND4(C, D, E, A, B, 8);
+ SHA_MIX(9, 6, 1, 11);
+ SHA_RND4(B, C, D, E, A, 9);
+ SHA_MIX(10, 7, 2, 12);
+ SHA_RND4(A, B, C, D, E, 10);
+ SHA_MIX(11, 8, 3, 13);
+ SHA_RND4(E, A, B, C, D, 11);
+ SHA_MIX(12, 9, 4, 14);
+ SHA_RND4(D, E, A, B, C, 12);
+ SHA_MIX(13, 10, 5, 15);
+ SHA_RND4(C, D, E, A, B, 13);
+ SHA_MIX(14, 11, 6, 0);
+ SHA_RND4(B, C, D, E, A, 14);
+ SHA_MIX(15, 12, 7, 1);
+ SHA_RND4(A, B, C, D, E, 15);
+
+ XH(0) += A;
+ XH(1) += B;
+ XH(2) += C;
+ XH(3) += D;
+ XH(4) += E;
+}
+
+/*************************************************************************
+** Code below this line added to make SHA code support BLAPI interface
+*/
+
+SHA1Context *
+SHA1_NewContext(void)
+{
+ SHA1Context *cx;
+
+ /* no need to ZNew, SHA1_Begin will init the context */
+ cx = PORT_New(SHA1Context);
+ return cx;
+}
+
+/* Zero and free the context */
+void
+SHA1_DestroyContext(SHA1Context *cx, PRBool freeit)
+{
+ memset(cx, 0, sizeof *cx);
+ if (freeit) {
+ PORT_Free(cx);
+ }
+}
+
+SECStatus
+SHA1_HashBuf(unsigned char *dest, const unsigned char *src, PRUint32 src_length)
+{
+ SHA1Context ctx;
+ unsigned int outLen;
+
+ SHA1_Begin(&ctx);
+ SHA1_Update(&ctx, src, src_length);
+ SHA1_End(&ctx, dest, &outLen, SHA1_LENGTH);
+ memset(&ctx, 0, sizeof ctx);
+ return SECSuccess;
+}
+
+/* Hash a null-terminated character string. */
+SECStatus
+SHA1_Hash(unsigned char *dest, const char *src)
+{
+ return SHA1_HashBuf(dest, (const unsigned char *)src, PORT_Strlen(src));
+}
+
+/*
+ * need to support save/restore state in pkcs11. Stores all the info necessary
+ * for a structure into just a stream of bytes.
+ */
+unsigned int
+SHA1_FlattenSize(SHA1Context *cx)
+{
+ return sizeof(SHA1Context);
+}
+
+SECStatus
+SHA1_Flatten(SHA1Context *cx, unsigned char *space)
+{
+ PORT_Memcpy(space, cx, sizeof(SHA1Context));
+ return SECSuccess;
+}
+
+SHA1Context *
+SHA1_Resurrect(unsigned char *space, void *arg)
+{
+ SHA1Context *cx = SHA1_NewContext();
+ if (cx == NULL)
+ return NULL;
+
+ PORT_Memcpy(cx, space, sizeof(SHA1Context));
+ return cx;
+}
+
+void
+SHA1_Clone(SHA1Context *dest, SHA1Context *src)
+{
+ memcpy(dest, src, sizeof *dest);
+}
+
+void
+SHA1_TraceState(SHA1Context *ctx)
+{
+ PORT_SetError(PR_NOT_IMPLEMENTED_ERROR);
+}