summaryrefslogtreecommitdiffstats
path: root/python/PyECC/ecc/elliptic.py
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /python/PyECC/ecc/elliptic.py
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'python/PyECC/ecc/elliptic.py')
-rw-r--r--python/PyECC/ecc/elliptic.py381
1 files changed, 381 insertions, 0 deletions
diff --git a/python/PyECC/ecc/elliptic.py b/python/PyECC/ecc/elliptic.py
new file mode 100644
index 000000000..9191a8848
--- /dev/null
+++ b/python/PyECC/ecc/elliptic.py
@@ -0,0 +1,381 @@
+
+# --- ELLIPTIC CURVE MATH ------------------------------------------------------
+#
+# curve definition: y^2 = x^3 - p*x - q
+# over finite field: Z/nZ* (prime residue classes modulo a prime number n)
+#
+#
+# COPYRIGHT (c) 2010 by Toni Mattis <solaris@live.de>
+# ------------------------------------------------------------------------------
+
+'''
+Module for elliptic curve arithmetic over a prime field GF(n).
+E(GF(n)) takes the form y**2 == x**3 - p*x - q (mod n) for a prime n.
+
+0. Structures used by this module
+
+ PARAMETERS and SCALARS are non-negative (long) integers.
+
+ A POINT (x, y), usually denoted p1, p2, ...
+ is a pair of (long) integers where 0 <= x < n and 0 <= y < n
+
+ A POINT in PROJECTIVE COORDINATES, usually denoted jp1, jp2, ...
+ takes the form (X, Y, Z, Z**2, Z**3) where x = X / Z**2
+ and y = Y / z**3. This form is called Jacobian coordinates.
+
+ The NEUTRAL element "0" or "O" is represented by None
+ in both coordinate systems.
+
+1. Basic Functions
+
+ euclid() Is the Extended Euclidean Algorithm.
+ inv() Computes the multiplicative inversion modulo n.
+ curve_q() Finds the curve parameter q (mod n)
+ when p and a point are given.
+ element() Tests whether a point (x, y) is on the curve.
+
+2. Point transformations
+
+ to_projective() Converts a point (x, y) to projective coordinates.
+ from_projective() Converts a point from projective coordinates
+ to (x, y) using the transformation described above.
+ neg() Computes the inverse point -P in both coordinate
+ systems.
+
+3. Slow point arithmetic
+
+ These algorithms make use of basic geometry and modular arithmetic
+ thus being suitable for small numbers and academic study.
+
+ add() Computes the sum of two (x, y)-points
+ mul() Perform scalar multiplication using "double & add"
+
+4. Fast point arithmetic
+
+ These algorithms make use of projective coordinates, signed binary
+ expansion and a JSP-like approach (joint sparse form).
+
+ The following functions consume and return projective coordinates:
+
+ addf() Optimized point addition.
+ doublef() Optimized point doubling.
+ mulf() Highly optimized scalar multiplication.
+ muladdf() Highly optimized addition of two products.
+
+ The following functions use the optimized ones above but consume
+ and output (x, y)-coordinates for a more convenient usage:
+
+ mulp() Encapsulates mulf()
+ muladdp() Encapsulates muladdf()
+
+ For single additions add() is generally faster than an encapsulation of
+ addf() which would involve expensive coordinate transformations.
+ Hence there is no addp() and doublep().
+'''
+
+# BASIC MATH -------------------------------------------------------------------
+
+def euclid(a, b):
+ '''Solve x*a + y*b = ggt(a, b) and return (x, y, ggt(a, b))'''
+ # Non-recursive approach hence suitable for large numbers
+ x = yy = 0
+ y = xx = 1
+ while b:
+ q = a // b
+ a, b = b, a % b
+ x, xx = xx - q * x, x
+ y, yy = yy - q * y, y
+ return xx, yy, a
+
+def inv(a, n):
+ '''Perform inversion 1/a modulo n. a and n should be COPRIME.'''
+ # coprimality is not checked here in favour of performance
+ i = euclid(a, n)[0]
+ while i < 0:
+ i += n
+ return i
+
+def curve_q(x, y, p, n):
+ '''Find curve parameter q mod n having point (x, y) and parameter p'''
+ return ((x * x - p) * x - y * y) % n
+
+def element(point, p, q, n):
+ '''Test, whether the given point is on the curve (p, q, n)'''
+ if point:
+ x, y = point
+ return (x * x * x - p * x - q) % n == (y * y) % n
+ else:
+ return True
+
+def to_projective(p):
+ '''Transform point p given as (x, y) to projective coordinates'''
+ if p:
+ return (p[0], p[1], 1, 1, 1)
+ else:
+ return None # Identity point (0)
+
+def from_projective(jp, n):
+ '''Transform a point from projective coordinates to (x, y) mod n'''
+ if jp:
+ return (jp[0] * inv(jp[3], n)) % n, (jp[1] * inv(jp[4], n)) % n
+ else:
+ return None # Identity point (0)
+
+def neg(p, n):
+ '''Compute the inverse point to p in any coordinate system'''
+ return (p[0], (n - p[1]) % n) + p[2:] if p else None
+
+
+# POINT ADDITION ---------------------------------------------------------------
+
+# addition of points in y**2 = x**3 - p*x - q over <Z/nZ*; +>
+def add(p, q, n, p1, p2):
+ '''Add points p1 and p2 over curve (p, q, n)'''
+ if p1 and p2:
+ x1, y1 = p1
+ x2, y2 = p2
+ if (x1 - x2) % n:
+ s = ((y1 - y2) * inv(x1 - x2, n)) % n # slope
+ x = (s * s - x1 - x2) % n # intersection with curve
+ return (x, n - (y1 + s * (x - x1)) % n)
+ else:
+ if (y1 + y2) % n: # slope s calculated by derivation
+ s = ((3 * x1 * x1 - p) * inv(2 * y1, n)) % n
+ x = (s * s - 2 * x1) % n # intersection with curve
+ return (x, n - (y1 + s * (x - x1)) % n)
+ else:
+ return None
+ else: # either p1 is not none -> ret. p1, otherwiese p2, which may be
+ return p1 if p1 else p2 # none too.
+
+
+# faster addition: redundancy in projective coordinates eliminates
+# expensive inversions mod n.
+def addf(p, q, n, jp1, jp2):
+ '''Add jp1 and jp2 in projective (jacobian) coordinates.'''
+ if jp1 and jp2:
+
+ x1, y1, z1, z1s, z1c = jp1
+ x2, y2, z2, z2s, z2c = jp2
+
+ s1 = (y1 * z2c) % n
+ s2 = (y2 * z1c) % n
+
+ u1 = (x1 * z2s) % n
+ u2 = (x2 * z1s) % n
+
+ if (u1 - u2) % n:
+
+ h = (u2 - u1) % n
+ r = (s2 - s1) % n
+
+ hs = (h * h) % n
+ hc = (hs * h) % n
+
+ x3 = (-hc - 2 * u1 * hs + r * r) % n
+ y3 = (-s1 * hc + r * (u1 * hs - x3)) % n
+ z3 = (z1 * z2 * h) % n
+
+ z3s = (z3 * z3) % n
+ z3c = (z3s * z3) % n
+
+ return (x3, y3, z3, z3s, z3c)
+
+ else:
+ if (s1 + s2) % n:
+ return doublef(p, q, n, jp1)
+ else:
+ return None
+ else:
+ return jp1 if jp1 else jp2
+
+# explicit point doubling using redundant coordinates
+def doublef(p, q, n, jp):
+ '''Double jp in projective (jacobian) coordinates'''
+ if not jp:
+ return None
+ x1, y1, z1, z1p2, z1p3 = jp
+
+ y1p2 = (y1 * y1) % n
+ a = (4 * x1 * y1p2) % n
+ b = (3 * x1 * x1 - p * z1p3 * z1) % n
+ x3 = (b * b - 2 * a) % n
+ y3 = (b * (a - x3) - 8 * y1p2 * y1p2) % n
+ z3 = (2 * y1 * z1) % n
+ z3p2 = (z3 * z3) % n
+
+ return x3, y3, z3, z3p2, (z3p2 * z3) % n
+
+
+# SCALAR MULTIPLICATION --------------------------------------------------------
+
+# scalar multiplication p1 * c = p1 + p1 + ... + p1 (c times) in O(log(n))
+def mul(p, q, n, p1, c):
+ '''multiply point p1 by scalar c over curve (p, q, n)'''
+ res = None
+ while c > 0:
+ if c & 1:
+ res = add(p, q, n, res, p1)
+ c >>= 1 # c = c / 2
+ p1 = add(p, q, n, p1, p1) # p1 = p1 * 2
+ return res
+
+
+# this method allows _signed_bin() to choose between 1 and -1. It will select
+# the sign which leaves the higher number of zeroes in the binary
+# representation (the higher GDB).
+def _gbd(n):
+ '''Compute second greatest base-2 divisor'''
+ i = 1
+ if n <= 0: return 0
+ while not n % i:
+ i <<= 1
+ return i >> 2
+
+
+# This method transforms n into a binary representation having signed bits.
+# A signed binary expansion contains more zero-bits hence reducing the number
+# of additions required by a multiplication algorithm.
+#
+# Example: 15 ( 0b1111 ) can be written as 16 - 1, resulting in (1,0,0,0,-1)
+# and saving 2 additions. Subtraction can be performed as
+# efficiently as addition.
+def _signed_bin(n):
+ '''Transform n into an optimized signed binary representation'''
+ r = []
+ while n > 1:
+ if n & 1:
+ cp = _gbd(n + 1)
+ cn = _gbd(n - 1)
+ if cp > cn: # -1 leaves more zeroes -> subtract -1 (= +1)
+ r.append(-1)
+ n += 1
+ else: # +1 leaves more zeroes -> subtract +1 (= -1)
+ r.append(+1)
+ n -= 1
+ else:
+ r.append(0) # be glad about one more zero
+ n >>= 1
+ r.append(n)
+ return r[::-1]
+
+
+# This multiplication algorithm combines signed binary expansion and
+# fast addition using projective coordinates resulting in 5 to 10 times
+# faster multiplication.
+def mulf(p, q, n, jp1, c):
+ '''Multiply point jp1 by c in projective coordinates'''
+ sb = _signed_bin(c)
+ res = None
+ jp0 = neg(jp1, n) # additive inverse of jp1 to be used fot bit -1
+ for s in sb:
+ res = doublef(p, q, n, res)
+ if s:
+ res = addf(p, q, n, res, jp1) if s > 0 else \
+ addf(p, q, n, res, jp0)
+ return res
+
+# Encapsulates mulf() in order to enable flat coordinates (x, y)
+def mulp(p, q, n, p1, c):
+ '''Multiply point p by c using fast multiplication'''
+ return from_projective(mulf(p, q, n, to_projective(p1), c), n)
+
+
+# Sum of two products using Shamir's trick and signed binary expansion
+def muladdf(p, q, n, jp1, c1, jp2, c2):
+ '''Efficiently compute c1 * jp1 + c2 * jp2 in projective coordinates'''
+ s1 = _signed_bin(c1)
+ s2 = _signed_bin(c2)
+ diff = len(s2) - len(s1)
+ if diff > 0:
+ s1 = [0] * diff + s1
+ elif diff < 0:
+ s2 = [0] * -diff + s2
+
+ jp1p2 = addf(p, q, n, jp1, jp2)
+ jp1n2 = addf(p, q, n, jp1, neg(jp2, n))
+
+ precomp = ((None, jp2, neg(jp2, n)),
+ (jp1, jp1p2, jp1n2),
+ (neg(jp1, n), neg(jp1n2, n), neg(jp1p2, n)))
+ res = None
+
+ for i, j in zip(s1, s2):
+ res = doublef(p, q, n, res)
+ if i or j:
+ res = addf(p, q, n, res, precomp[i][j])
+ return res
+
+# Encapsulate muladdf()
+def muladdp(p, q, n, p1, c1, p2, c2):
+ '''Efficiently compute c1 * p1 + c2 * p2 in (x, y)-coordinates'''
+ return from_projective(muladdf(p, q, n,
+ to_projective(p1), c1,
+ to_projective(p2), c2), n)
+
+# POINT COMPRESSION ------------------------------------------------------------
+
+# Compute the square root modulo n
+
+
+# Determine the sign-bit of a point allowing to reconstruct y-coordinates
+# when x and the sign-bit are given:
+def sign_bit(p1):
+ '''Return the signedness of a point p1'''
+ return p1[1] % 2 if p1 else 0
+
+# Reconstruct the y-coordinate when curve parameters, x and the sign-bit of
+# the y coordinate are given:
+def y_from_x(x, p, q, n, sign):
+ '''Return the y coordinate over curve (p, q, n) for given (x, sign)'''
+
+ # optimized form of (x**3 - p*x - q) % n
+ a = (((x * x) % n - p) * x - q) % n
+
+
+
+if __name__ == "__main__":
+ import rsa
+ import time
+
+ t = time.time()
+ n = rsa.get_prime(256/8, 20)
+ tp = time.time() - t
+ p = rsa.random.randint(1, n)
+ p1 = (rsa.random.randint(1, n), rsa.random.randint(1, n))
+ q = curve_q(p1[0], p1[1], p, n)
+ r1 = rsa.random.randint(1,n)
+ r2 = rsa.random.randint(1,n)
+ q1 = mulp(p, q, n, p1, r1)
+ q2 = mulp(p, q, n, p1, r2)
+ s1 = mulp(p, q, n, q1, r2)
+ s2 = mulp(p, q, n, q2, r1)
+ s1 == s2
+ tt = time.time() - t
+
+ def test(tcount, bits = 256):
+ n = rsa.get_prime(bits/8, 20)
+ p = rsa.random.randint(1, n)
+ p1 = (rsa.random.randint(1, n), rsa.random.randint(1, n))
+ q = curve_q(p1[0], p1[1], p, n)
+ p2 = mulp(p, q, n, p1, rsa.random.randint(1, n))
+
+ c1 = [rsa.random.randint(1, n) for i in xrange(tcount)]
+ c2 = [rsa.random.randint(1, n) for i in xrange(tcount)]
+ c = zip(c1, c2)
+
+ t = time.time()
+ for i, j in c:
+ from_projective(addf(p, q, n,
+ mulf(p, q, n, to_projective(p1), i),
+ mulf(p, q, n, to_projective(p2), j)), n)
+ t1 = time.time() - t
+ t = time.time()
+ for i, j in c:
+ muladdp(p, q, n, p1, i, p2, j)
+ t2 = time.time() - t
+
+ return tcount, t1, t2
+
+
+