summaryrefslogtreecommitdiffstats
path: root/modules/brotli/enc/brotli_bit_stream.c
diff options
context:
space:
mode:
authorwolfbeast <mcwerewolf@wolfbeast.com>2019-11-14 09:07:29 +0100
committerwolfbeast <mcwerewolf@wolfbeast.com>2019-11-14 09:07:29 +0100
commit56de283899bc91f7110aba58a3ca174c10852683 (patch)
tree779e6501bbbe4f015509c423ab44f2f40ea97cc8 /modules/brotli/enc/brotli_bit_stream.c
parentce0dd36a78814c59950fde6c19413c1f7ea85ee1 (diff)
downloadUXP-56de283899bc91f7110aba58a3ca174c10852683.tar
UXP-56de283899bc91f7110aba58a3ca174c10852683.tar.gz
UXP-56de283899bc91f7110aba58a3ca174c10852683.tar.lz
UXP-56de283899bc91f7110aba58a3ca174c10852683.tar.xz
UXP-56de283899bc91f7110aba58a3ca174c10852683.zip
Issue #1288 - Part 1a: Update brotli to 1.0.7
This also reorganizes the exports in the build system to use `brotli/` as include directory.
Diffstat (limited to 'modules/brotli/enc/brotli_bit_stream.c')
-rw-r--r--modules/brotli/enc/brotli_bit_stream.c1331
1 files changed, 1331 insertions, 0 deletions
diff --git a/modules/brotli/enc/brotli_bit_stream.c b/modules/brotli/enc/brotli_bit_stream.c
new file mode 100644
index 000000000..aaf2dad7d
--- /dev/null
+++ b/modules/brotli/enc/brotli_bit_stream.c
@@ -0,0 +1,1331 @@
+/* Copyright 2014 Google Inc. All Rights Reserved.
+
+ Distributed under MIT license.
+ See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
+*/
+
+/* Brotli bit stream functions to support the low level format. There are no
+ compression algorithms here, just the right ordering of bits to match the
+ specs. */
+
+#include "./brotli_bit_stream.h"
+
+#include <string.h> /* memcpy, memset */
+
+#include "../common/constants.h"
+#include "../common/context.h"
+#include "../common/platform.h"
+#include <brotli/types.h>
+#include "./entropy_encode.h"
+#include "./entropy_encode_static.h"
+#include "./fast_log.h"
+#include "./histogram.h"
+#include "./memory.h"
+#include "./write_bits.h"
+
+#if defined(__cplusplus) || defined(c_plusplus)
+extern "C" {
+#endif
+
+#define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1)
+/* The maximum size of Huffman dictionary for distances assuming that
+ NPOSTFIX = 0 and NDIRECT = 0. */
+#define MAX_SIMPLE_DISTANCE_ALPHABET_SIZE \
+ BROTLI_DISTANCE_ALPHABET_SIZE(0, 0, BROTLI_LARGE_MAX_DISTANCE_BITS)
+/* MAX_SIMPLE_DISTANCE_ALPHABET_SIZE == 140 */
+
+/* Represents the range of values belonging to a prefix code:
+ [offset, offset + 2^nbits) */
+typedef struct PrefixCodeRange {
+ uint32_t offset;
+ uint32_t nbits;
+} PrefixCodeRange;
+
+static const PrefixCodeRange
+ kBlockLengthPrefixCode[BROTLI_NUM_BLOCK_LEN_SYMBOLS] = {
+ { 1, 2}, { 5, 2}, { 9, 2}, {13, 2}, {17, 3}, { 25, 3}, { 33, 3},
+ {41, 3}, {49, 4}, {65, 4}, {81, 4}, {97, 4}, {113, 5}, {145, 5},
+ {177, 5}, { 209, 5}, { 241, 6}, { 305, 6}, { 369, 7}, { 497, 8},
+ {753, 9}, {1265, 10}, {2289, 11}, {4337, 12}, {8433, 13}, {16625, 24}
+};
+
+static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) {
+ uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0);
+ while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) &&
+ len >= kBlockLengthPrefixCode[code + 1].offset) ++code;
+ return code;
+}
+
+static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code,
+ uint32_t* n_extra, uint32_t* extra) {
+ *code = BlockLengthPrefixCode(len);
+ *n_extra = kBlockLengthPrefixCode[*code].nbits;
+ *extra = len - kBlockLengthPrefixCode[*code].offset;
+}
+
+typedef struct BlockTypeCodeCalculator {
+ size_t last_type;
+ size_t second_last_type;
+} BlockTypeCodeCalculator;
+
+static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) {
+ self->last_type = 1;
+ self->second_last_type = 0;
+}
+
+static BROTLI_INLINE size_t NextBlockTypeCode(
+ BlockTypeCodeCalculator* calculator, uint8_t type) {
+ size_t type_code = (type == calculator->last_type + 1) ? 1u :
+ (type == calculator->second_last_type) ? 0u : type + 2u;
+ calculator->second_last_type = calculator->last_type;
+ calculator->last_type = type;
+ return type_code;
+}
+
+/* |nibblesbits| represents the 2 bits to encode MNIBBLES (0-3)
+ REQUIRES: length > 0
+ REQUIRES: length <= (1 << 24) */
+static void BrotliEncodeMlen(size_t length, uint64_t* bits,
+ size_t* numbits, uint64_t* nibblesbits) {
+ size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1;
+ size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
+ BROTLI_DCHECK(length > 0);
+ BROTLI_DCHECK(length <= (1 << 24));
+ BROTLI_DCHECK(lg <= 24);
+ *nibblesbits = mnibbles - 4;
+ *numbits = mnibbles * 4;
+ *bits = length - 1;
+}
+
+static BROTLI_INLINE void StoreCommandExtra(
+ const Command* cmd, size_t* storage_ix, uint8_t* storage) {
+ uint32_t copylen_code = CommandCopyLenCode(cmd);
+ uint16_t inscode = GetInsertLengthCode(cmd->insert_len_);
+ uint16_t copycode = GetCopyLengthCode(copylen_code);
+ uint32_t insnumextra = GetInsertExtra(inscode);
+ uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode);
+ uint64_t copyextraval = copylen_code - GetCopyBase(copycode);
+ uint64_t bits = (copyextraval << insnumextra) | insextraval;
+ BrotliWriteBits(
+ insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage);
+}
+
+/* Data structure that stores almost everything that is needed to encode each
+ block switch command. */
+typedef struct BlockSplitCode {
+ BlockTypeCodeCalculator type_code_calculator;
+ uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
+ uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
+ uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
+ uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
+} BlockSplitCode;
+
+/* Stores a number between 0 and 255. */
+static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) {
+ if (n == 0) {
+ BrotliWriteBits(1, 0, storage_ix, storage);
+ } else {
+ size_t nbits = Log2FloorNonZero(n);
+ BrotliWriteBits(1, 1, storage_ix, storage);
+ BrotliWriteBits(3, nbits, storage_ix, storage);
+ BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage);
+ }
+}
+
+/* Stores the compressed meta-block header.
+ REQUIRES: length > 0
+ REQUIRES: length <= (1 << 24) */
+static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block,
+ size_t length,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ uint64_t lenbits;
+ size_t nlenbits;
+ uint64_t nibblesbits;
+
+ /* Write ISLAST bit. */
+ BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage);
+ /* Write ISEMPTY bit. */
+ if (is_final_block) {
+ BrotliWriteBits(1, 0, storage_ix, storage);
+ }
+
+ BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
+ BrotliWriteBits(2, nibblesbits, storage_ix, storage);
+ BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
+
+ if (!is_final_block) {
+ /* Write ISUNCOMPRESSED bit. */
+ BrotliWriteBits(1, 0, storage_ix, storage);
+ }
+}
+
+/* Stores the uncompressed meta-block header.
+ REQUIRES: length > 0
+ REQUIRES: length <= (1 << 24) */
+static void BrotliStoreUncompressedMetaBlockHeader(size_t length,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ uint64_t lenbits;
+ size_t nlenbits;
+ uint64_t nibblesbits;
+
+ /* Write ISLAST bit.
+ Uncompressed block cannot be the last one, so set to 0. */
+ BrotliWriteBits(1, 0, storage_ix, storage);
+ BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
+ BrotliWriteBits(2, nibblesbits, storage_ix, storage);
+ BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
+ /* Write ISUNCOMPRESSED bit. */
+ BrotliWriteBits(1, 1, storage_ix, storage);
+}
+
+static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(
+ const int num_codes, const uint8_t* code_length_bitdepth,
+ size_t* storage_ix, uint8_t* storage) {
+ static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = {
+ 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
+ };
+ /* The bit lengths of the Huffman code over the code length alphabet
+ are compressed with the following static Huffman code:
+ Symbol Code
+ ------ ----
+ 0 00
+ 1 1110
+ 2 110
+ 3 01
+ 4 10
+ 5 1111 */
+ static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
+ 0, 7, 3, 2, 1, 15
+ };
+ static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
+ 2, 4, 3, 2, 2, 4
+ };
+
+ size_t skip_some = 0; /* skips none. */
+
+ /* Throw away trailing zeros: */
+ size_t codes_to_store = BROTLI_CODE_LENGTH_CODES;
+ if (num_codes > 1) {
+ for (; codes_to_store > 0; --codes_to_store) {
+ if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
+ break;
+ }
+ }
+ }
+ if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
+ code_length_bitdepth[kStorageOrder[1]] == 0) {
+ skip_some = 2; /* skips two. */
+ if (code_length_bitdepth[kStorageOrder[2]] == 0) {
+ skip_some = 3; /* skips three. */
+ }
+ }
+ BrotliWriteBits(2, skip_some, storage_ix, storage);
+ {
+ size_t i;
+ for (i = skip_some; i < codes_to_store; ++i) {
+ size_t l = code_length_bitdepth[kStorageOrder[i]];
+ BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
+ kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
+ }
+ }
+}
+
+static void BrotliStoreHuffmanTreeToBitMask(
+ const size_t huffman_tree_size, const uint8_t* huffman_tree,
+ const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth,
+ const uint16_t* code_length_bitdepth_symbols,
+ size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) {
+ size_t i;
+ for (i = 0; i < huffman_tree_size; ++i) {
+ size_t ix = huffman_tree[i];
+ BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
+ storage_ix, storage);
+ /* Extra bits */
+ switch (ix) {
+ case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH:
+ BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
+ break;
+ case BROTLI_REPEAT_ZERO_CODE_LENGTH:
+ BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
+ break;
+ }
+ }
+}
+
+static void StoreSimpleHuffmanTree(const uint8_t* depths,
+ size_t symbols[4],
+ size_t num_symbols,
+ size_t max_bits,
+ size_t* storage_ix, uint8_t* storage) {
+ /* value of 1 indicates a simple Huffman code */
+ BrotliWriteBits(2, 1, storage_ix, storage);
+ BrotliWriteBits(2, num_symbols - 1, storage_ix, storage); /* NSYM - 1 */
+
+ {
+ /* Sort */
+ size_t i;
+ for (i = 0; i < num_symbols; i++) {
+ size_t j;
+ for (j = i + 1; j < num_symbols; j++) {
+ if (depths[symbols[j]] < depths[symbols[i]]) {
+ BROTLI_SWAP(size_t, symbols, j, i);
+ }
+ }
+ }
+ }
+
+ if (num_symbols == 2) {
+ BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
+ } else if (num_symbols == 3) {
+ BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
+ } else {
+ BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
+ /* tree-select */
+ BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
+ }
+}
+
+/* num = alphabet size
+ depths = symbol depths */
+void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num,
+ HuffmanTree* tree,
+ size_t* storage_ix, uint8_t* storage) {
+ /* Write the Huffman tree into the brotli-representation.
+ The command alphabet is the largest, so this allocation will fit all
+ alphabets. */
+ uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS];
+ uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS];
+ size_t huffman_tree_size = 0;
+ uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 };
+ uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES];
+ uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 };
+ size_t i;
+ int num_codes = 0;
+ size_t code = 0;
+
+ BROTLI_DCHECK(num <= BROTLI_NUM_COMMAND_SYMBOLS);
+
+ BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree,
+ huffman_tree_extra_bits);
+
+ /* Calculate the statistics of the Huffman tree in brotli-representation. */
+ for (i = 0; i < huffman_tree_size; ++i) {
+ ++huffman_tree_histogram[huffman_tree[i]];
+ }
+
+ for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) {
+ if (huffman_tree_histogram[i]) {
+ if (num_codes == 0) {
+ code = i;
+ num_codes = 1;
+ } else if (num_codes == 1) {
+ num_codes = 2;
+ break;
+ }
+ }
+ }
+
+ /* Calculate another Huffman tree to use for compressing both the
+ earlier Huffman tree with. */
+ BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES,
+ 5, tree, code_length_bitdepth);
+ BrotliConvertBitDepthsToSymbols(code_length_bitdepth,
+ BROTLI_CODE_LENGTH_CODES,
+ code_length_bitdepth_symbols);
+
+ /* Now, we have all the data, let's start storing it */
+ BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
+ storage_ix, storage);
+
+ if (num_codes == 1) {
+ code_length_bitdepth[code] = 0;
+ }
+
+ /* Store the real Huffman tree now. */
+ BrotliStoreHuffmanTreeToBitMask(huffman_tree_size,
+ huffman_tree,
+ huffman_tree_extra_bits,
+ code_length_bitdepth,
+ code_length_bitdepth_symbols,
+ storage_ix, storage);
+}
+
+/* Builds a Huffman tree from histogram[0:length] into depth[0:length] and
+ bits[0:length] and stores the encoded tree to the bit stream. */
+static void BuildAndStoreHuffmanTree(const uint32_t* histogram,
+ const size_t histogram_length,
+ const size_t alphabet_size,
+ HuffmanTree* tree,
+ uint8_t* depth,
+ uint16_t* bits,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ size_t count = 0;
+ size_t s4[4] = { 0 };
+ size_t i;
+ size_t max_bits = 0;
+ for (i = 0; i < histogram_length; i++) {
+ if (histogram[i]) {
+ if (count < 4) {
+ s4[count] = i;
+ } else if (count > 4) {
+ break;
+ }
+ count++;
+ }
+ }
+
+ {
+ size_t max_bits_counter = alphabet_size - 1;
+ while (max_bits_counter) {
+ max_bits_counter >>= 1;
+ ++max_bits;
+ }
+ }
+
+ if (count <= 1) {
+ BrotliWriteBits(4, 1, storage_ix, storage);
+ BrotliWriteBits(max_bits, s4[0], storage_ix, storage);
+ depth[s4[0]] = 0;
+ bits[s4[0]] = 0;
+ return;
+ }
+
+ memset(depth, 0, histogram_length * sizeof(depth[0]));
+ BrotliCreateHuffmanTree(histogram, histogram_length, 15, tree, depth);
+ BrotliConvertBitDepthsToSymbols(depth, histogram_length, bits);
+
+ if (count <= 4) {
+ StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
+ } else {
+ BrotliStoreHuffmanTree(depth, histogram_length, tree, storage_ix, storage);
+ }
+}
+
+static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
+ const HuffmanTree* v0, const HuffmanTree* v1) {
+ return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
+}
+
+void BrotliBuildAndStoreHuffmanTreeFast(MemoryManager* m,
+ const uint32_t* histogram,
+ const size_t histogram_total,
+ const size_t max_bits,
+ uint8_t* depth, uint16_t* bits,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ size_t count = 0;
+ size_t symbols[4] = { 0 };
+ size_t length = 0;
+ size_t total = histogram_total;
+ while (total != 0) {
+ if (histogram[length]) {
+ if (count < 4) {
+ symbols[count] = length;
+ }
+ ++count;
+ total -= histogram[length];
+ }
+ ++length;
+ }
+
+ if (count <= 1) {
+ BrotliWriteBits(4, 1, storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
+ depth[symbols[0]] = 0;
+ bits[symbols[0]] = 0;
+ return;
+ }
+
+ memset(depth, 0, length * sizeof(depth[0]));
+ {
+ const size_t max_tree_size = 2 * length + 1;
+ HuffmanTree* tree = BROTLI_ALLOC(m, HuffmanTree, max_tree_size);
+ uint32_t count_limit;
+ if (BROTLI_IS_OOM(m)) return;
+ for (count_limit = 1; ; count_limit *= 2) {
+ HuffmanTree* node = tree;
+ size_t l;
+ for (l = length; l != 0;) {
+ --l;
+ if (histogram[l]) {
+ if (BROTLI_PREDICT_TRUE(histogram[l] >= count_limit)) {
+ InitHuffmanTree(node, histogram[l], -1, (int16_t)l);
+ } else {
+ InitHuffmanTree(node, count_limit, -1, (int16_t)l);
+ }
+ ++node;
+ }
+ }
+ {
+ const int n = (int)(node - tree);
+ HuffmanTree sentinel;
+ int i = 0; /* Points to the next leaf node. */
+ int j = n + 1; /* Points to the next non-leaf node. */
+ int k;
+
+ SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree);
+ /* The nodes are:
+ [0, n): the sorted leaf nodes that we start with.
+ [n]: we add a sentinel here.
+ [n + 1, 2n): new parent nodes are added here, starting from
+ (n+1). These are naturally in ascending order.
+ [2n]: we add a sentinel at the end as well.
+ There will be (2n+1) elements at the end. */
+ InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
+ *node++ = sentinel;
+ *node++ = sentinel;
+
+ for (k = n - 1; k > 0; --k) {
+ int left, right;
+ if (tree[i].total_count_ <= tree[j].total_count_) {
+ left = i;
+ ++i;
+ } else {
+ left = j;
+ ++j;
+ }
+ if (tree[i].total_count_ <= tree[j].total_count_) {
+ right = i;
+ ++i;
+ } else {
+ right = j;
+ ++j;
+ }
+ /* The sentinel node becomes the parent node. */
+ node[-1].total_count_ =
+ tree[left].total_count_ + tree[right].total_count_;
+ node[-1].index_left_ = (int16_t)left;
+ node[-1].index_right_or_value_ = (int16_t)right;
+ /* Add back the last sentinel node. */
+ *node++ = sentinel;
+ }
+ if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) {
+ /* We need to pack the Huffman tree in 14 bits. If this was not
+ successful, add fake entities to the lowest values and retry. */
+ break;
+ }
+ }
+ }
+ BROTLI_FREE(m, tree);
+ }
+ BrotliConvertBitDepthsToSymbols(depth, length, bits);
+ if (count <= 4) {
+ size_t i;
+ /* value of 1 indicates a simple Huffman code */
+ BrotliWriteBits(2, 1, storage_ix, storage);
+ BrotliWriteBits(2, count - 1, storage_ix, storage); /* NSYM - 1 */
+
+ /* Sort */
+ for (i = 0; i < count; i++) {
+ size_t j;
+ for (j = i + 1; j < count; j++) {
+ if (depth[symbols[j]] < depth[symbols[i]]) {
+ BROTLI_SWAP(size_t, symbols, j, i);
+ }
+ }
+ }
+
+ if (count == 2) {
+ BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
+ } else if (count == 3) {
+ BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
+ } else {
+ BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
+ BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
+ /* tree-select */
+ BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
+ }
+ } else {
+ uint8_t previous_value = 8;
+ size_t i;
+ /* Complex Huffman Tree */
+ StoreStaticCodeLengthCode(storage_ix, storage);
+
+ /* Actual RLE coding. */
+ for (i = 0; i < length;) {
+ const uint8_t value = depth[i];
+ size_t reps = 1;
+ size_t k;
+ for (k = i + 1; k < length && depth[k] == value; ++k) {
+ ++reps;
+ }
+ i += reps;
+ if (value == 0) {
+ BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps],
+ storage_ix, storage);
+ } else {
+ if (previous_value != value) {
+ BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
+ storage_ix, storage);
+ --reps;
+ }
+ if (reps < 3) {
+ while (reps != 0) {
+ reps--;
+ BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
+ storage_ix, storage);
+ }
+ } else {
+ reps -= 3;
+ BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps],
+ storage_ix, storage);
+ }
+ previous_value = value;
+ }
+ }
+ }
+}
+
+static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) {
+ size_t i = 0;
+ for (; i < v_size; ++i) {
+ if (v[i] == value) return i;
+ }
+ return i;
+}
+
+static void MoveToFront(uint8_t* v, size_t index) {
+ uint8_t value = v[index];
+ size_t i;
+ for (i = index; i != 0; --i) {
+ v[i] = v[i - 1];
+ }
+ v[0] = value;
+}
+
+static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in,
+ const size_t v_size,
+ uint32_t* v_out) {
+ size_t i;
+ uint8_t mtf[256];
+ uint32_t max_value;
+ if (v_size == 0) {
+ return;
+ }
+ max_value = v_in[0];
+ for (i = 1; i < v_size; ++i) {
+ if (v_in[i] > max_value) max_value = v_in[i];
+ }
+ BROTLI_DCHECK(max_value < 256u);
+ for (i = 0; i <= max_value; ++i) {
+ mtf[i] = (uint8_t)i;
+ }
+ {
+ size_t mtf_size = max_value + 1;
+ for (i = 0; i < v_size; ++i) {
+ size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]);
+ BROTLI_DCHECK(index < mtf_size);
+ v_out[i] = (uint32_t)index;
+ MoveToFront(mtf, index);
+ }
+ }
+}
+
+/* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of
+ the run length plus extra bits (lower 9 bits is the prefix code and the rest
+ are the extra bits). Non-zero values in v[] are shifted by
+ *max_length_prefix. Will not create prefix codes bigger than the initial
+ value of *max_run_length_prefix. The prefix code of run length L is simply
+ Log2Floor(L) and the number of extra bits is the same as the prefix code. */
+static void RunLengthCodeZeros(const size_t in_size,
+ uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size,
+ uint32_t* BROTLI_RESTRICT max_run_length_prefix) {
+ uint32_t max_reps = 0;
+ size_t i;
+ uint32_t max_prefix;
+ for (i = 0; i < in_size;) {
+ uint32_t reps = 0;
+ for (; i < in_size && v[i] != 0; ++i) ;
+ for (; i < in_size && v[i] == 0; ++i) {
+ ++reps;
+ }
+ max_reps = BROTLI_MAX(uint32_t, reps, max_reps);
+ }
+ max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0;
+ max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix);
+ *max_run_length_prefix = max_prefix;
+ *out_size = 0;
+ for (i = 0; i < in_size;) {
+ BROTLI_DCHECK(*out_size <= i);
+ if (v[i] != 0) {
+ v[*out_size] = v[i] + *max_run_length_prefix;
+ ++i;
+ ++(*out_size);
+ } else {
+ uint32_t reps = 1;
+ size_t k;
+ for (k = i + 1; k < in_size && v[k] == 0; ++k) {
+ ++reps;
+ }
+ i += reps;
+ while (reps != 0) {
+ if (reps < (2u << max_prefix)) {
+ uint32_t run_length_prefix = Log2FloorNonZero(reps);
+ const uint32_t extra_bits = reps - (1u << run_length_prefix);
+ v[*out_size] = run_length_prefix + (extra_bits << 9);
+ ++(*out_size);
+ break;
+ } else {
+ const uint32_t extra_bits = (1u << max_prefix) - 1u;
+ v[*out_size] = max_prefix + (extra_bits << 9);
+ reps -= (2u << max_prefix) - 1u;
+ ++(*out_size);
+ }
+ }
+ }
+ }
+}
+
+#define SYMBOL_BITS 9
+
+static void EncodeContextMap(MemoryManager* m,
+ const uint32_t* context_map,
+ size_t context_map_size,
+ size_t num_clusters,
+ HuffmanTree* tree,
+ size_t* storage_ix, uint8_t* storage) {
+ size_t i;
+ uint32_t* rle_symbols;
+ uint32_t max_run_length_prefix = 6;
+ size_t num_rle_symbols = 0;
+ uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
+ static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u;
+ uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
+ uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
+
+ StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
+
+ if (num_clusters == 1) {
+ return;
+ }
+
+ rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size);
+ if (BROTLI_IS_OOM(m)) return;
+ MoveToFrontTransform(context_map, context_map_size, rle_symbols);
+ RunLengthCodeZeros(context_map_size, rle_symbols,
+ &num_rle_symbols, &max_run_length_prefix);
+ memset(histogram, 0, sizeof(histogram));
+ for (i = 0; i < num_rle_symbols; ++i) {
+ ++histogram[rle_symbols[i] & kSymbolMask];
+ }
+ {
+ BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0);
+ BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage);
+ if (use_rle) {
+ BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
+ }
+ }
+ BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix,
+ num_clusters + max_run_length_prefix,
+ tree, depths, bits, storage_ix, storage);
+ for (i = 0; i < num_rle_symbols; ++i) {
+ const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask;
+ const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS;
+ BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage);
+ if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) {
+ BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage);
+ }
+ }
+ BrotliWriteBits(1, 1, storage_ix, storage); /* use move-to-front */
+ BROTLI_FREE(m, rle_symbols);
+}
+
+/* Stores the block switch command with index block_ix to the bit stream. */
+static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code,
+ const uint32_t block_len,
+ const uint8_t block_type,
+ BROTLI_BOOL is_first_block,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type);
+ size_t lencode;
+ uint32_t len_nextra;
+ uint32_t len_extra;
+ if (!is_first_block) {
+ BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode],
+ storage_ix, storage);
+ }
+ GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra);
+
+ BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode],
+ storage_ix, storage);
+ BrotliWriteBits(len_nextra, len_extra, storage_ix, storage);
+}
+
+/* Builds a BlockSplitCode data structure from the block split given by the
+ vector of block types and block lengths and stores it to the bit stream. */
+static void BuildAndStoreBlockSplitCode(const uint8_t* types,
+ const uint32_t* lengths,
+ const size_t num_blocks,
+ const size_t num_types,
+ HuffmanTree* tree,
+ BlockSplitCode* code,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
+ uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
+ size_t i;
+ BlockTypeCodeCalculator type_code_calculator;
+ memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0]));
+ memset(length_histo, 0, sizeof(length_histo));
+ InitBlockTypeCodeCalculator(&type_code_calculator);
+ for (i = 0; i < num_blocks; ++i) {
+ size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]);
+ if (i != 0) ++type_histo[type_code];
+ ++length_histo[BlockLengthPrefixCode(lengths[i])];
+ }
+ StoreVarLenUint8(num_types - 1, storage_ix, storage);
+ if (num_types > 1) { /* TODO: else? could StoreBlockSwitch occur? */
+ BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, num_types + 2, tree,
+ &code->type_depths[0], &code->type_bits[0],
+ storage_ix, storage);
+ BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS,
+ BROTLI_NUM_BLOCK_LEN_SYMBOLS,
+ tree, &code->length_depths[0],
+ &code->length_bits[0], storage_ix, storage);
+ StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage);
+ }
+}
+
+/* Stores a context map where the histogram type is always the block type. */
+static void StoreTrivialContextMap(size_t num_types,
+ size_t context_bits,
+ HuffmanTree* tree,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ StoreVarLenUint8(num_types - 1, storage_ix, storage);
+ if (num_types > 1) {
+ size_t repeat_code = context_bits - 1u;
+ size_t repeat_bits = (1u << repeat_code) - 1u;
+ size_t alphabet_size = num_types + repeat_code;
+ uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
+ uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
+ uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
+ size_t i;
+ memset(histogram, 0, alphabet_size * sizeof(histogram[0]));
+ /* Write RLEMAX. */
+ BrotliWriteBits(1, 1, storage_ix, storage);
+ BrotliWriteBits(4, repeat_code - 1, storage_ix, storage);
+ histogram[repeat_code] = (uint32_t)num_types;
+ histogram[0] = 1;
+ for (i = context_bits; i < alphabet_size; ++i) {
+ histogram[i] = 1;
+ }
+ BuildAndStoreHuffmanTree(histogram, alphabet_size, alphabet_size,
+ tree, depths, bits, storage_ix, storage);
+ for (i = 0; i < num_types; ++i) {
+ size_t code = (i == 0 ? 0 : i + context_bits - 1);
+ BrotliWriteBits(depths[code], bits[code], storage_ix, storage);
+ BrotliWriteBits(
+ depths[repeat_code], bits[repeat_code], storage_ix, storage);
+ BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage);
+ }
+ /* Write IMTF (inverse-move-to-front) bit. */
+ BrotliWriteBits(1, 1, storage_ix, storage);
+ }
+}
+
+/* Manages the encoding of one block category (literal, command or distance). */
+typedef struct BlockEncoder {
+ size_t histogram_length_;
+ size_t num_block_types_;
+ const uint8_t* block_types_; /* Not owned. */
+ const uint32_t* block_lengths_; /* Not owned. */
+ size_t num_blocks_;
+ BlockSplitCode block_split_code_;
+ size_t block_ix_;
+ size_t block_len_;
+ size_t entropy_ix_;
+ uint8_t* depths_;
+ uint16_t* bits_;
+} BlockEncoder;
+
+static void InitBlockEncoder(BlockEncoder* self, size_t histogram_length,
+ size_t num_block_types, const uint8_t* block_types,
+ const uint32_t* block_lengths, const size_t num_blocks) {
+ self->histogram_length_ = histogram_length;
+ self->num_block_types_ = num_block_types;
+ self->block_types_ = block_types;
+ self->block_lengths_ = block_lengths;
+ self->num_blocks_ = num_blocks;
+ InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator);
+ self->block_ix_ = 0;
+ self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0];
+ self->entropy_ix_ = 0;
+ self->depths_ = 0;
+ self->bits_ = 0;
+}
+
+static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) {
+ BROTLI_FREE(m, self->depths_);
+ BROTLI_FREE(m, self->bits_);
+}
+
+/* Creates entropy codes of block lengths and block types and stores them
+ to the bit stream. */
+static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self,
+ HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) {
+ BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_,
+ self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_,
+ storage_ix, storage);
+}
+
+/* Stores the next symbol with the entropy code of the current block type.
+ Updates the block type and block length at block boundaries. */
+static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix,
+ uint8_t* storage) {
+ if (self->block_len_ == 0) {
+ size_t block_ix = ++self->block_ix_;
+ uint32_t block_len = self->block_lengths_[block_ix];
+ uint8_t block_type = self->block_types_[block_ix];
+ self->block_len_ = block_len;
+ self->entropy_ix_ = block_type * self->histogram_length_;
+ StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
+ storage_ix, storage);
+ }
+ --self->block_len_;
+ {
+ size_t ix = self->entropy_ix_ + symbol;
+ BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
+ }
+}
+
+/* Stores the next symbol with the entropy code of the current block type and
+ context value.
+ Updates the block type and block length at block boundaries. */
+static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol,
+ size_t context, const uint32_t* context_map, size_t* storage_ix,
+ uint8_t* storage, const size_t context_bits) {
+ if (self->block_len_ == 0) {
+ size_t block_ix = ++self->block_ix_;
+ uint32_t block_len = self->block_lengths_[block_ix];
+ uint8_t block_type = self->block_types_[block_ix];
+ self->block_len_ = block_len;
+ self->entropy_ix_ = (size_t)block_type << context_bits;
+ StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
+ storage_ix, storage);
+ }
+ --self->block_len_;
+ {
+ size_t histo_ix = context_map[self->entropy_ix_ + context];
+ size_t ix = histo_ix * self->histogram_length_ + symbol;
+ BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
+ }
+}
+
+#define FN(X) X ## Literal
+/* NOLINTNEXTLINE(build/include) */
+#include "./block_encoder_inc.h"
+#undef FN
+
+#define FN(X) X ## Command
+/* NOLINTNEXTLINE(build/include) */
+#include "./block_encoder_inc.h"
+#undef FN
+
+#define FN(X) X ## Distance
+/* NOLINTNEXTLINE(build/include) */
+#include "./block_encoder_inc.h"
+#undef FN
+
+static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) {
+ *storage_ix = (*storage_ix + 7u) & ~7u;
+ storage[*storage_ix >> 3] = 0;
+}
+
+void BrotliStoreMetaBlock(MemoryManager* m,
+ const uint8_t* input, size_t start_pos, size_t length, size_t mask,
+ uint8_t prev_byte, uint8_t prev_byte2, BROTLI_BOOL is_last,
+ const BrotliEncoderParams* params, ContextType literal_context_mode,
+ const Command* commands, size_t n_commands, const MetaBlockSplit* mb,
+ size_t* storage_ix, uint8_t* storage) {
+
+ size_t pos = start_pos;
+ size_t i;
+ uint32_t num_distance_symbols = params->dist.alphabet_size;
+ uint32_t num_effective_distance_symbols = num_distance_symbols;
+ HuffmanTree* tree;
+ ContextLut literal_context_lut = BROTLI_CONTEXT_LUT(literal_context_mode);
+ BlockEncoder literal_enc;
+ BlockEncoder command_enc;
+ BlockEncoder distance_enc;
+ const BrotliDistanceParams* dist = &params->dist;
+ if (params->large_window &&
+ num_effective_distance_symbols > BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS) {
+ num_effective_distance_symbols = BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS;
+ }
+
+ StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
+
+ tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
+ if (BROTLI_IS_OOM(m)) return;
+ InitBlockEncoder(&literal_enc, BROTLI_NUM_LITERAL_SYMBOLS,
+ mb->literal_split.num_types, mb->literal_split.types,
+ mb->literal_split.lengths, mb->literal_split.num_blocks);
+ InitBlockEncoder(&command_enc, BROTLI_NUM_COMMAND_SYMBOLS,
+ mb->command_split.num_types, mb->command_split.types,
+ mb->command_split.lengths, mb->command_split.num_blocks);
+ InitBlockEncoder(&distance_enc, num_effective_distance_symbols,
+ mb->distance_split.num_types, mb->distance_split.types,
+ mb->distance_split.lengths, mb->distance_split.num_blocks);
+
+ BuildAndStoreBlockSwitchEntropyCodes(&literal_enc, tree, storage_ix, storage);
+ BuildAndStoreBlockSwitchEntropyCodes(&command_enc, tree, storage_ix, storage);
+ BuildAndStoreBlockSwitchEntropyCodes(
+ &distance_enc, tree, storage_ix, storage);
+
+ BrotliWriteBits(2, dist->distance_postfix_bits, storage_ix, storage);
+ BrotliWriteBits(
+ 4, dist->num_direct_distance_codes >> dist->distance_postfix_bits,
+ storage_ix, storage);
+ for (i = 0; i < mb->literal_split.num_types; ++i) {
+ BrotliWriteBits(2, literal_context_mode, storage_ix, storage);
+ }
+
+ if (mb->literal_context_map_size == 0) {
+ StoreTrivialContextMap(mb->literal_histograms_size,
+ BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage);
+ } else {
+ EncodeContextMap(m,
+ mb->literal_context_map, mb->literal_context_map_size,
+ mb->literal_histograms_size, tree, storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ }
+
+ if (mb->distance_context_map_size == 0) {
+ StoreTrivialContextMap(mb->distance_histograms_size,
+ BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage);
+ } else {
+ EncodeContextMap(m,
+ mb->distance_context_map, mb->distance_context_map_size,
+ mb->distance_histograms_size, tree, storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ }
+
+ BuildAndStoreEntropyCodesLiteral(m, &literal_enc, mb->literal_histograms,
+ mb->literal_histograms_size, BROTLI_NUM_LITERAL_SYMBOLS, tree,
+ storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ BuildAndStoreEntropyCodesCommand(m, &command_enc, mb->command_histograms,
+ mb->command_histograms_size, BROTLI_NUM_COMMAND_SYMBOLS, tree,
+ storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ BuildAndStoreEntropyCodesDistance(m, &distance_enc, mb->distance_histograms,
+ mb->distance_histograms_size, num_distance_symbols, tree,
+ storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ BROTLI_FREE(m, tree);
+
+ for (i = 0; i < n_commands; ++i) {
+ const Command cmd = commands[i];
+ size_t cmd_code = cmd.cmd_prefix_;
+ StoreSymbol(&command_enc, cmd_code, storage_ix, storage);
+ StoreCommandExtra(&cmd, storage_ix, storage);
+ if (mb->literal_context_map_size == 0) {
+ size_t j;
+ for (j = cmd.insert_len_; j != 0; --j) {
+ StoreSymbol(&literal_enc, input[pos & mask], storage_ix, storage);
+ ++pos;
+ }
+ } else {
+ size_t j;
+ for (j = cmd.insert_len_; j != 0; --j) {
+ size_t context =
+ BROTLI_CONTEXT(prev_byte, prev_byte2, literal_context_lut);
+ uint8_t literal = input[pos & mask];
+ StoreSymbolWithContext(&literal_enc, literal, context,
+ mb->literal_context_map, storage_ix, storage,
+ BROTLI_LITERAL_CONTEXT_BITS);
+ prev_byte2 = prev_byte;
+ prev_byte = literal;
+ ++pos;
+ }
+ }
+ pos += CommandCopyLen(&cmd);
+ if (CommandCopyLen(&cmd)) {
+ prev_byte2 = input[(pos - 2) & mask];
+ prev_byte = input[(pos - 1) & mask];
+ if (cmd.cmd_prefix_ >= 128) {
+ size_t dist_code = cmd.dist_prefix_ & 0x3FF;
+ uint32_t distnumextra = cmd.dist_prefix_ >> 10;
+ uint64_t distextra = cmd.dist_extra_;
+ if (mb->distance_context_map_size == 0) {
+ StoreSymbol(&distance_enc, dist_code, storage_ix, storage);
+ } else {
+ size_t context = CommandDistanceContext(&cmd);
+ StoreSymbolWithContext(&distance_enc, dist_code, context,
+ mb->distance_context_map, storage_ix, storage,
+ BROTLI_DISTANCE_CONTEXT_BITS);
+ }
+ BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
+ }
+ }
+ }
+ CleanupBlockEncoder(m, &distance_enc);
+ CleanupBlockEncoder(m, &command_enc);
+ CleanupBlockEncoder(m, &literal_enc);
+ if (is_last) {
+ JumpToByteBoundary(storage_ix, storage);
+ }
+}
+
+static void BuildHistograms(const uint8_t* input,
+ size_t start_pos,
+ size_t mask,
+ const Command* commands,
+ size_t n_commands,
+ HistogramLiteral* lit_histo,
+ HistogramCommand* cmd_histo,
+ HistogramDistance* dist_histo) {
+ size_t pos = start_pos;
+ size_t i;
+ for (i = 0; i < n_commands; ++i) {
+ const Command cmd = commands[i];
+ size_t j;
+ HistogramAddCommand(cmd_histo, cmd.cmd_prefix_);
+ for (j = cmd.insert_len_; j != 0; --j) {
+ HistogramAddLiteral(lit_histo, input[pos & mask]);
+ ++pos;
+ }
+ pos += CommandCopyLen(&cmd);
+ if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
+ HistogramAddDistance(dist_histo, cmd.dist_prefix_ & 0x3FF);
+ }
+ }
+}
+
+static void StoreDataWithHuffmanCodes(const uint8_t* input,
+ size_t start_pos,
+ size_t mask,
+ const Command* commands,
+ size_t n_commands,
+ const uint8_t* lit_depth,
+ const uint16_t* lit_bits,
+ const uint8_t* cmd_depth,
+ const uint16_t* cmd_bits,
+ const uint8_t* dist_depth,
+ const uint16_t* dist_bits,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ size_t pos = start_pos;
+ size_t i;
+ for (i = 0; i < n_commands; ++i) {
+ const Command cmd = commands[i];
+ const size_t cmd_code = cmd.cmd_prefix_;
+ size_t j;
+ BrotliWriteBits(
+ cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage);
+ StoreCommandExtra(&cmd, storage_ix, storage);
+ for (j = cmd.insert_len_; j != 0; --j) {
+ const uint8_t literal = input[pos & mask];
+ BrotliWriteBits(
+ lit_depth[literal], lit_bits[literal], storage_ix, storage);
+ ++pos;
+ }
+ pos += CommandCopyLen(&cmd);
+ if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
+ const size_t dist_code = cmd.dist_prefix_ & 0x3FF;
+ const uint32_t distnumextra = cmd.dist_prefix_ >> 10;
+ const uint32_t distextra = cmd.dist_extra_;
+ BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code],
+ storage_ix, storage);
+ BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
+ }
+ }
+}
+
+void BrotliStoreMetaBlockTrivial(MemoryManager* m,
+ const uint8_t* input, size_t start_pos, size_t length, size_t mask,
+ BROTLI_BOOL is_last, const BrotliEncoderParams* params,
+ const Command* commands, size_t n_commands,
+ size_t* storage_ix, uint8_t* storage) {
+ HistogramLiteral lit_histo;
+ HistogramCommand cmd_histo;
+ HistogramDistance dist_histo;
+ uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
+ uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
+ uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
+ uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
+ uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
+ uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
+ HuffmanTree* tree;
+ uint32_t num_distance_symbols = params->dist.alphabet_size;
+
+ StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
+
+ HistogramClearLiteral(&lit_histo);
+ HistogramClearCommand(&cmd_histo);
+ HistogramClearDistance(&dist_histo);
+
+ BuildHistograms(input, start_pos, mask, commands, n_commands,
+ &lit_histo, &cmd_histo, &dist_histo);
+
+ BrotliWriteBits(13, 0, storage_ix, storage);
+
+ tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
+ if (BROTLI_IS_OOM(m)) return;
+ BuildAndStoreHuffmanTree(lit_histo.data_, BROTLI_NUM_LITERAL_SYMBOLS,
+ BROTLI_NUM_LITERAL_SYMBOLS, tree,
+ lit_depth, lit_bits,
+ storage_ix, storage);
+ BuildAndStoreHuffmanTree(cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS,
+ BROTLI_NUM_COMMAND_SYMBOLS, tree,
+ cmd_depth, cmd_bits,
+ storage_ix, storage);
+ BuildAndStoreHuffmanTree(dist_histo.data_, MAX_SIMPLE_DISTANCE_ALPHABET_SIZE,
+ num_distance_symbols, tree,
+ dist_depth, dist_bits,
+ storage_ix, storage);
+ BROTLI_FREE(m, tree);
+ StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
+ n_commands, lit_depth, lit_bits,
+ cmd_depth, cmd_bits,
+ dist_depth, dist_bits,
+ storage_ix, storage);
+ if (is_last) {
+ JumpToByteBoundary(storage_ix, storage);
+ }
+}
+
+void BrotliStoreMetaBlockFast(MemoryManager* m,
+ const uint8_t* input, size_t start_pos, size_t length, size_t mask,
+ BROTLI_BOOL is_last, const BrotliEncoderParams* params,
+ const Command* commands, size_t n_commands,
+ size_t* storage_ix, uint8_t* storage) {
+ uint32_t num_distance_symbols = params->dist.alphabet_size;
+ uint32_t distance_alphabet_bits =
+ Log2FloorNonZero(num_distance_symbols - 1) + 1;
+
+ StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
+
+ BrotliWriteBits(13, 0, storage_ix, storage);
+
+ if (n_commands <= 128) {
+ uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 };
+ size_t pos = start_pos;
+ size_t num_literals = 0;
+ size_t i;
+ uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
+ uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
+ for (i = 0; i < n_commands; ++i) {
+ const Command cmd = commands[i];
+ size_t j;
+ for (j = cmd.insert_len_; j != 0; --j) {
+ ++histogram[input[pos & mask]];
+ ++pos;
+ }
+ num_literals += cmd.insert_len_;
+ pos += CommandCopyLen(&cmd);
+ }
+ BrotliBuildAndStoreHuffmanTreeFast(m, histogram, num_literals,
+ /* max_bits = */ 8,
+ lit_depth, lit_bits,
+ storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ StoreStaticCommandHuffmanTree(storage_ix, storage);
+ StoreStaticDistanceHuffmanTree(storage_ix, storage);
+ StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
+ n_commands, lit_depth, lit_bits,
+ kStaticCommandCodeDepth,
+ kStaticCommandCodeBits,
+ kStaticDistanceCodeDepth,
+ kStaticDistanceCodeBits,
+ storage_ix, storage);
+ } else {
+ HistogramLiteral lit_histo;
+ HistogramCommand cmd_histo;
+ HistogramDistance dist_histo;
+ uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
+ uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
+ uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
+ uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
+ uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
+ uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
+ HistogramClearLiteral(&lit_histo);
+ HistogramClearCommand(&cmd_histo);
+ HistogramClearDistance(&dist_histo);
+ BuildHistograms(input, start_pos, mask, commands, n_commands,
+ &lit_histo, &cmd_histo, &dist_histo);
+ BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo.data_,
+ lit_histo.total_count_,
+ /* max_bits = */ 8,
+ lit_depth, lit_bits,
+ storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ BrotliBuildAndStoreHuffmanTreeFast(m, cmd_histo.data_,
+ cmd_histo.total_count_,
+ /* max_bits = */ 10,
+ cmd_depth, cmd_bits,
+ storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ BrotliBuildAndStoreHuffmanTreeFast(m, dist_histo.data_,
+ dist_histo.total_count_,
+ /* max_bits = */
+ distance_alphabet_bits,
+ dist_depth, dist_bits,
+ storage_ix, storage);
+ if (BROTLI_IS_OOM(m)) return;
+ StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
+ n_commands, lit_depth, lit_bits,
+ cmd_depth, cmd_bits,
+ dist_depth, dist_bits,
+ storage_ix, storage);
+ }
+
+ if (is_last) {
+ JumpToByteBoundary(storage_ix, storage);
+ }
+}
+
+/* This is for storing uncompressed blocks (simple raw storage of
+ bytes-as-bytes). */
+void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block,
+ const uint8_t* BROTLI_RESTRICT input,
+ size_t position, size_t mask,
+ size_t len,
+ size_t* BROTLI_RESTRICT storage_ix,
+ uint8_t* BROTLI_RESTRICT storage) {
+ size_t masked_pos = position & mask;
+ BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage);
+ JumpToByteBoundary(storage_ix, storage);
+
+ if (masked_pos + len > mask + 1) {
+ size_t len1 = mask + 1 - masked_pos;
+ memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1);
+ *storage_ix += len1 << 3;
+ len -= len1;
+ masked_pos = 0;
+ }
+ memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len);
+ *storage_ix += len << 3;
+
+ /* We need to clear the next 4 bytes to continue to be
+ compatible with BrotliWriteBits. */
+ BrotliWriteBitsPrepareStorage(*storage_ix, storage);
+
+ /* Since the uncompressed block itself may not be the final block, add an
+ empty one after this. */
+ if (is_final_block) {
+ BrotliWriteBits(1, 1, storage_ix, storage); /* islast */
+ BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */
+ JumpToByteBoundary(storage_ix, storage);
+ }
+}
+
+#if defined(__cplusplus) || defined(c_plusplus)
+} /* extern "C" */
+#endif