diff options
author | wolfbeast <mcwerewolf@wolfbeast.com> | 2019-11-14 09:07:29 +0100 |
---|---|---|
committer | wolfbeast <mcwerewolf@wolfbeast.com> | 2019-11-14 09:07:29 +0100 |
commit | 56de283899bc91f7110aba58a3ca174c10852683 (patch) | |
tree | 779e6501bbbe4f015509c423ab44f2f40ea97cc8 /modules/brotli/enc/brotli_bit_stream.c | |
parent | ce0dd36a78814c59950fde6c19413c1f7ea85ee1 (diff) | |
download | UXP-56de283899bc91f7110aba58a3ca174c10852683.tar UXP-56de283899bc91f7110aba58a3ca174c10852683.tar.gz UXP-56de283899bc91f7110aba58a3ca174c10852683.tar.lz UXP-56de283899bc91f7110aba58a3ca174c10852683.tar.xz UXP-56de283899bc91f7110aba58a3ca174c10852683.zip |
Issue #1288 - Part 1a: Update brotli to 1.0.7
This also reorganizes the exports in the build system to use `brotli/`
as include directory.
Diffstat (limited to 'modules/brotli/enc/brotli_bit_stream.c')
-rw-r--r-- | modules/brotli/enc/brotli_bit_stream.c | 1331 |
1 files changed, 1331 insertions, 0 deletions
diff --git a/modules/brotli/enc/brotli_bit_stream.c b/modules/brotli/enc/brotli_bit_stream.c new file mode 100644 index 000000000..aaf2dad7d --- /dev/null +++ b/modules/brotli/enc/brotli_bit_stream.c @@ -0,0 +1,1331 @@ +/* Copyright 2014 Google Inc. All Rights Reserved. + + Distributed under MIT license. + See file LICENSE for detail or copy at https://opensource.org/licenses/MIT +*/ + +/* Brotli bit stream functions to support the low level format. There are no + compression algorithms here, just the right ordering of bits to match the + specs. */ + +#include "./brotli_bit_stream.h" + +#include <string.h> /* memcpy, memset */ + +#include "../common/constants.h" +#include "../common/context.h" +#include "../common/platform.h" +#include <brotli/types.h> +#include "./entropy_encode.h" +#include "./entropy_encode_static.h" +#include "./fast_log.h" +#include "./histogram.h" +#include "./memory.h" +#include "./write_bits.h" + +#if defined(__cplusplus) || defined(c_plusplus) +extern "C" { +#endif + +#define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1) +/* The maximum size of Huffman dictionary for distances assuming that + NPOSTFIX = 0 and NDIRECT = 0. */ +#define MAX_SIMPLE_DISTANCE_ALPHABET_SIZE \ + BROTLI_DISTANCE_ALPHABET_SIZE(0, 0, BROTLI_LARGE_MAX_DISTANCE_BITS) +/* MAX_SIMPLE_DISTANCE_ALPHABET_SIZE == 140 */ + +/* Represents the range of values belonging to a prefix code: + [offset, offset + 2^nbits) */ +typedef struct PrefixCodeRange { + uint32_t offset; + uint32_t nbits; +} PrefixCodeRange; + +static const PrefixCodeRange + kBlockLengthPrefixCode[BROTLI_NUM_BLOCK_LEN_SYMBOLS] = { + { 1, 2}, { 5, 2}, { 9, 2}, {13, 2}, {17, 3}, { 25, 3}, { 33, 3}, + {41, 3}, {49, 4}, {65, 4}, {81, 4}, {97, 4}, {113, 5}, {145, 5}, + {177, 5}, { 209, 5}, { 241, 6}, { 305, 6}, { 369, 7}, { 497, 8}, + {753, 9}, {1265, 10}, {2289, 11}, {4337, 12}, {8433, 13}, {16625, 24} +}; + +static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) { + uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0); + while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) && + len >= kBlockLengthPrefixCode[code + 1].offset) ++code; + return code; +} + +static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code, + uint32_t* n_extra, uint32_t* extra) { + *code = BlockLengthPrefixCode(len); + *n_extra = kBlockLengthPrefixCode[*code].nbits; + *extra = len - kBlockLengthPrefixCode[*code].offset; +} + +typedef struct BlockTypeCodeCalculator { + size_t last_type; + size_t second_last_type; +} BlockTypeCodeCalculator; + +static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) { + self->last_type = 1; + self->second_last_type = 0; +} + +static BROTLI_INLINE size_t NextBlockTypeCode( + BlockTypeCodeCalculator* calculator, uint8_t type) { + size_t type_code = (type == calculator->last_type + 1) ? 1u : + (type == calculator->second_last_type) ? 0u : type + 2u; + calculator->second_last_type = calculator->last_type; + calculator->last_type = type; + return type_code; +} + +/* |nibblesbits| represents the 2 bits to encode MNIBBLES (0-3) + REQUIRES: length > 0 + REQUIRES: length <= (1 << 24) */ +static void BrotliEncodeMlen(size_t length, uint64_t* bits, + size_t* numbits, uint64_t* nibblesbits) { + size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1; + size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4; + BROTLI_DCHECK(length > 0); + BROTLI_DCHECK(length <= (1 << 24)); + BROTLI_DCHECK(lg <= 24); + *nibblesbits = mnibbles - 4; + *numbits = mnibbles * 4; + *bits = length - 1; +} + +static BROTLI_INLINE void StoreCommandExtra( + const Command* cmd, size_t* storage_ix, uint8_t* storage) { + uint32_t copylen_code = CommandCopyLenCode(cmd); + uint16_t inscode = GetInsertLengthCode(cmd->insert_len_); + uint16_t copycode = GetCopyLengthCode(copylen_code); + uint32_t insnumextra = GetInsertExtra(inscode); + uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode); + uint64_t copyextraval = copylen_code - GetCopyBase(copycode); + uint64_t bits = (copyextraval << insnumextra) | insextraval; + BrotliWriteBits( + insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage); +} + +/* Data structure that stores almost everything that is needed to encode each + block switch command. */ +typedef struct BlockSplitCode { + BlockTypeCodeCalculator type_code_calculator; + uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; + uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; + uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; + uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; +} BlockSplitCode; + +/* Stores a number between 0 and 255. */ +static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) { + if (n == 0) { + BrotliWriteBits(1, 0, storage_ix, storage); + } else { + size_t nbits = Log2FloorNonZero(n); + BrotliWriteBits(1, 1, storage_ix, storage); + BrotliWriteBits(3, nbits, storage_ix, storage); + BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage); + } +} + +/* Stores the compressed meta-block header. + REQUIRES: length > 0 + REQUIRES: length <= (1 << 24) */ +static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block, + size_t length, + size_t* storage_ix, + uint8_t* storage) { + uint64_t lenbits; + size_t nlenbits; + uint64_t nibblesbits; + + /* Write ISLAST bit. */ + BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage); + /* Write ISEMPTY bit. */ + if (is_final_block) { + BrotliWriteBits(1, 0, storage_ix, storage); + } + + BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); + BrotliWriteBits(2, nibblesbits, storage_ix, storage); + BrotliWriteBits(nlenbits, lenbits, storage_ix, storage); + + if (!is_final_block) { + /* Write ISUNCOMPRESSED bit. */ + BrotliWriteBits(1, 0, storage_ix, storage); + } +} + +/* Stores the uncompressed meta-block header. + REQUIRES: length > 0 + REQUIRES: length <= (1 << 24) */ +static void BrotliStoreUncompressedMetaBlockHeader(size_t length, + size_t* storage_ix, + uint8_t* storage) { + uint64_t lenbits; + size_t nlenbits; + uint64_t nibblesbits; + + /* Write ISLAST bit. + Uncompressed block cannot be the last one, so set to 0. */ + BrotliWriteBits(1, 0, storage_ix, storage); + BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); + BrotliWriteBits(2, nibblesbits, storage_ix, storage); + BrotliWriteBits(nlenbits, lenbits, storage_ix, storage); + /* Write ISUNCOMPRESSED bit. */ + BrotliWriteBits(1, 1, storage_ix, storage); +} + +static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask( + const int num_codes, const uint8_t* code_length_bitdepth, + size_t* storage_ix, uint8_t* storage) { + static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = { + 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15 + }; + /* The bit lengths of the Huffman code over the code length alphabet + are compressed with the following static Huffman code: + Symbol Code + ------ ---- + 0 00 + 1 1110 + 2 110 + 3 01 + 4 10 + 5 1111 */ + static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = { + 0, 7, 3, 2, 1, 15 + }; + static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = { + 2, 4, 3, 2, 2, 4 + }; + + size_t skip_some = 0; /* skips none. */ + + /* Throw away trailing zeros: */ + size_t codes_to_store = BROTLI_CODE_LENGTH_CODES; + if (num_codes > 1) { + for (; codes_to_store > 0; --codes_to_store) { + if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { + break; + } + } + } + if (code_length_bitdepth[kStorageOrder[0]] == 0 && + code_length_bitdepth[kStorageOrder[1]] == 0) { + skip_some = 2; /* skips two. */ + if (code_length_bitdepth[kStorageOrder[2]] == 0) { + skip_some = 3; /* skips three. */ + } + } + BrotliWriteBits(2, skip_some, storage_ix, storage); + { + size_t i; + for (i = skip_some; i < codes_to_store; ++i) { + size_t l = code_length_bitdepth[kStorageOrder[i]]; + BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l], + kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage); + } + } +} + +static void BrotliStoreHuffmanTreeToBitMask( + const size_t huffman_tree_size, const uint8_t* huffman_tree, + const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth, + const uint16_t* code_length_bitdepth_symbols, + size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) { + size_t i; + for (i = 0; i < huffman_tree_size; ++i) { + size_t ix = huffman_tree[i]; + BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix], + storage_ix, storage); + /* Extra bits */ + switch (ix) { + case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH: + BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage); + break; + case BROTLI_REPEAT_ZERO_CODE_LENGTH: + BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage); + break; + } + } +} + +static void StoreSimpleHuffmanTree(const uint8_t* depths, + size_t symbols[4], + size_t num_symbols, + size_t max_bits, + size_t* storage_ix, uint8_t* storage) { + /* value of 1 indicates a simple Huffman code */ + BrotliWriteBits(2, 1, storage_ix, storage); + BrotliWriteBits(2, num_symbols - 1, storage_ix, storage); /* NSYM - 1 */ + + { + /* Sort */ + size_t i; + for (i = 0; i < num_symbols; i++) { + size_t j; + for (j = i + 1; j < num_symbols; j++) { + if (depths[symbols[j]] < depths[symbols[i]]) { + BROTLI_SWAP(size_t, symbols, j, i); + } + } + } + } + + if (num_symbols == 2) { + BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); + } else if (num_symbols == 3) { + BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); + } else { + BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[3], storage_ix, storage); + /* tree-select */ + BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); + } +} + +/* num = alphabet size + depths = symbol depths */ +void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num, + HuffmanTree* tree, + size_t* storage_ix, uint8_t* storage) { + /* Write the Huffman tree into the brotli-representation. + The command alphabet is the largest, so this allocation will fit all + alphabets. */ + uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS]; + uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS]; + size_t huffman_tree_size = 0; + uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 }; + uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES]; + uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 }; + size_t i; + int num_codes = 0; + size_t code = 0; + + BROTLI_DCHECK(num <= BROTLI_NUM_COMMAND_SYMBOLS); + + BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree, + huffman_tree_extra_bits); + + /* Calculate the statistics of the Huffman tree in brotli-representation. */ + for (i = 0; i < huffman_tree_size; ++i) { + ++huffman_tree_histogram[huffman_tree[i]]; + } + + for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) { + if (huffman_tree_histogram[i]) { + if (num_codes == 0) { + code = i; + num_codes = 1; + } else if (num_codes == 1) { + num_codes = 2; + break; + } + } + } + + /* Calculate another Huffman tree to use for compressing both the + earlier Huffman tree with. */ + BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES, + 5, tree, code_length_bitdepth); + BrotliConvertBitDepthsToSymbols(code_length_bitdepth, + BROTLI_CODE_LENGTH_CODES, + code_length_bitdepth_symbols); + + /* Now, we have all the data, let's start storing it */ + BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth, + storage_ix, storage); + + if (num_codes == 1) { + code_length_bitdepth[code] = 0; + } + + /* Store the real Huffman tree now. */ + BrotliStoreHuffmanTreeToBitMask(huffman_tree_size, + huffman_tree, + huffman_tree_extra_bits, + code_length_bitdepth, + code_length_bitdepth_symbols, + storage_ix, storage); +} + +/* Builds a Huffman tree from histogram[0:length] into depth[0:length] and + bits[0:length] and stores the encoded tree to the bit stream. */ +static void BuildAndStoreHuffmanTree(const uint32_t* histogram, + const size_t histogram_length, + const size_t alphabet_size, + HuffmanTree* tree, + uint8_t* depth, + uint16_t* bits, + size_t* storage_ix, + uint8_t* storage) { + size_t count = 0; + size_t s4[4] = { 0 }; + size_t i; + size_t max_bits = 0; + for (i = 0; i < histogram_length; i++) { + if (histogram[i]) { + if (count < 4) { + s4[count] = i; + } else if (count > 4) { + break; + } + count++; + } + } + + { + size_t max_bits_counter = alphabet_size - 1; + while (max_bits_counter) { + max_bits_counter >>= 1; + ++max_bits; + } + } + + if (count <= 1) { + BrotliWriteBits(4, 1, storage_ix, storage); + BrotliWriteBits(max_bits, s4[0], storage_ix, storage); + depth[s4[0]] = 0; + bits[s4[0]] = 0; + return; + } + + memset(depth, 0, histogram_length * sizeof(depth[0])); + BrotliCreateHuffmanTree(histogram, histogram_length, 15, tree, depth); + BrotliConvertBitDepthsToSymbols(depth, histogram_length, bits); + + if (count <= 4) { + StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage); + } else { + BrotliStoreHuffmanTree(depth, histogram_length, tree, storage_ix, storage); + } +} + +static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree( + const HuffmanTree* v0, const HuffmanTree* v1) { + return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_); +} + +void BrotliBuildAndStoreHuffmanTreeFast(MemoryManager* m, + const uint32_t* histogram, + const size_t histogram_total, + const size_t max_bits, + uint8_t* depth, uint16_t* bits, + size_t* storage_ix, + uint8_t* storage) { + size_t count = 0; + size_t symbols[4] = { 0 }; + size_t length = 0; + size_t total = histogram_total; + while (total != 0) { + if (histogram[length]) { + if (count < 4) { + symbols[count] = length; + } + ++count; + total -= histogram[length]; + } + ++length; + } + + if (count <= 1) { + BrotliWriteBits(4, 1, storage_ix, storage); + BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); + depth[symbols[0]] = 0; + bits[symbols[0]] = 0; + return; + } + + memset(depth, 0, length * sizeof(depth[0])); + { + const size_t max_tree_size = 2 * length + 1; + HuffmanTree* tree = BROTLI_ALLOC(m, HuffmanTree, max_tree_size); + uint32_t count_limit; + if (BROTLI_IS_OOM(m)) return; + for (count_limit = 1; ; count_limit *= 2) { + HuffmanTree* node = tree; + size_t l; + for (l = length; l != 0;) { + --l; + if (histogram[l]) { + if (BROTLI_PREDICT_TRUE(histogram[l] >= count_limit)) { + InitHuffmanTree(node, histogram[l], -1, (int16_t)l); + } else { + InitHuffmanTree(node, count_limit, -1, (int16_t)l); + } + ++node; + } + } + { + const int n = (int)(node - tree); + HuffmanTree sentinel; + int i = 0; /* Points to the next leaf node. */ + int j = n + 1; /* Points to the next non-leaf node. */ + int k; + + SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree); + /* The nodes are: + [0, n): the sorted leaf nodes that we start with. + [n]: we add a sentinel here. + [n + 1, 2n): new parent nodes are added here, starting from + (n+1). These are naturally in ascending order. + [2n]: we add a sentinel at the end as well. + There will be (2n+1) elements at the end. */ + InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1); + *node++ = sentinel; + *node++ = sentinel; + + for (k = n - 1; k > 0; --k) { + int left, right; + if (tree[i].total_count_ <= tree[j].total_count_) { + left = i; + ++i; + } else { + left = j; + ++j; + } + if (tree[i].total_count_ <= tree[j].total_count_) { + right = i; + ++i; + } else { + right = j; + ++j; + } + /* The sentinel node becomes the parent node. */ + node[-1].total_count_ = + tree[left].total_count_ + tree[right].total_count_; + node[-1].index_left_ = (int16_t)left; + node[-1].index_right_or_value_ = (int16_t)right; + /* Add back the last sentinel node. */ + *node++ = sentinel; + } + if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) { + /* We need to pack the Huffman tree in 14 bits. If this was not + successful, add fake entities to the lowest values and retry. */ + break; + } + } + } + BROTLI_FREE(m, tree); + } + BrotliConvertBitDepthsToSymbols(depth, length, bits); + if (count <= 4) { + size_t i; + /* value of 1 indicates a simple Huffman code */ + BrotliWriteBits(2, 1, storage_ix, storage); + BrotliWriteBits(2, count - 1, storage_ix, storage); /* NSYM - 1 */ + + /* Sort */ + for (i = 0; i < count; i++) { + size_t j; + for (j = i + 1; j < count; j++) { + if (depth[symbols[j]] < depth[symbols[i]]) { + BROTLI_SWAP(size_t, symbols, j, i); + } + } + } + + if (count == 2) { + BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); + } else if (count == 3) { + BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); + } else { + BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); + BrotliWriteBits(max_bits, symbols[3], storage_ix, storage); + /* tree-select */ + BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); + } + } else { + uint8_t previous_value = 8; + size_t i; + /* Complex Huffman Tree */ + StoreStaticCodeLengthCode(storage_ix, storage); + + /* Actual RLE coding. */ + for (i = 0; i < length;) { + const uint8_t value = depth[i]; + size_t reps = 1; + size_t k; + for (k = i + 1; k < length && depth[k] == value; ++k) { + ++reps; + } + i += reps; + if (value == 0) { + BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps], + storage_ix, storage); + } else { + if (previous_value != value) { + BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], + storage_ix, storage); + --reps; + } + if (reps < 3) { + while (reps != 0) { + reps--; + BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], + storage_ix, storage); + } + } else { + reps -= 3; + BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps], + storage_ix, storage); + } + previous_value = value; + } + } + } +} + +static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) { + size_t i = 0; + for (; i < v_size; ++i) { + if (v[i] == value) return i; + } + return i; +} + +static void MoveToFront(uint8_t* v, size_t index) { + uint8_t value = v[index]; + size_t i; + for (i = index; i != 0; --i) { + v[i] = v[i - 1]; + } + v[0] = value; +} + +static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in, + const size_t v_size, + uint32_t* v_out) { + size_t i; + uint8_t mtf[256]; + uint32_t max_value; + if (v_size == 0) { + return; + } + max_value = v_in[0]; + for (i = 1; i < v_size; ++i) { + if (v_in[i] > max_value) max_value = v_in[i]; + } + BROTLI_DCHECK(max_value < 256u); + for (i = 0; i <= max_value; ++i) { + mtf[i] = (uint8_t)i; + } + { + size_t mtf_size = max_value + 1; + for (i = 0; i < v_size; ++i) { + size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]); + BROTLI_DCHECK(index < mtf_size); + v_out[i] = (uint32_t)index; + MoveToFront(mtf, index); + } + } +} + +/* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of + the run length plus extra bits (lower 9 bits is the prefix code and the rest + are the extra bits). Non-zero values in v[] are shifted by + *max_length_prefix. Will not create prefix codes bigger than the initial + value of *max_run_length_prefix. The prefix code of run length L is simply + Log2Floor(L) and the number of extra bits is the same as the prefix code. */ +static void RunLengthCodeZeros(const size_t in_size, + uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size, + uint32_t* BROTLI_RESTRICT max_run_length_prefix) { + uint32_t max_reps = 0; + size_t i; + uint32_t max_prefix; + for (i = 0; i < in_size;) { + uint32_t reps = 0; + for (; i < in_size && v[i] != 0; ++i) ; + for (; i < in_size && v[i] == 0; ++i) { + ++reps; + } + max_reps = BROTLI_MAX(uint32_t, reps, max_reps); + } + max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0; + max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix); + *max_run_length_prefix = max_prefix; + *out_size = 0; + for (i = 0; i < in_size;) { + BROTLI_DCHECK(*out_size <= i); + if (v[i] != 0) { + v[*out_size] = v[i] + *max_run_length_prefix; + ++i; + ++(*out_size); + } else { + uint32_t reps = 1; + size_t k; + for (k = i + 1; k < in_size && v[k] == 0; ++k) { + ++reps; + } + i += reps; + while (reps != 0) { + if (reps < (2u << max_prefix)) { + uint32_t run_length_prefix = Log2FloorNonZero(reps); + const uint32_t extra_bits = reps - (1u << run_length_prefix); + v[*out_size] = run_length_prefix + (extra_bits << 9); + ++(*out_size); + break; + } else { + const uint32_t extra_bits = (1u << max_prefix) - 1u; + v[*out_size] = max_prefix + (extra_bits << 9); + reps -= (2u << max_prefix) - 1u; + ++(*out_size); + } + } + } + } +} + +#define SYMBOL_BITS 9 + +static void EncodeContextMap(MemoryManager* m, + const uint32_t* context_map, + size_t context_map_size, + size_t num_clusters, + HuffmanTree* tree, + size_t* storage_ix, uint8_t* storage) { + size_t i; + uint32_t* rle_symbols; + uint32_t max_run_length_prefix = 6; + size_t num_rle_symbols = 0; + uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; + static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u; + uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; + uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; + + StoreVarLenUint8(num_clusters - 1, storage_ix, storage); + + if (num_clusters == 1) { + return; + } + + rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size); + if (BROTLI_IS_OOM(m)) return; + MoveToFrontTransform(context_map, context_map_size, rle_symbols); + RunLengthCodeZeros(context_map_size, rle_symbols, + &num_rle_symbols, &max_run_length_prefix); + memset(histogram, 0, sizeof(histogram)); + for (i = 0; i < num_rle_symbols; ++i) { + ++histogram[rle_symbols[i] & kSymbolMask]; + } + { + BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0); + BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage); + if (use_rle) { + BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage); + } + } + BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix, + num_clusters + max_run_length_prefix, + tree, depths, bits, storage_ix, storage); + for (i = 0; i < num_rle_symbols; ++i) { + const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask; + const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS; + BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage); + if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) { + BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage); + } + } + BrotliWriteBits(1, 1, storage_ix, storage); /* use move-to-front */ + BROTLI_FREE(m, rle_symbols); +} + +/* Stores the block switch command with index block_ix to the bit stream. */ +static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code, + const uint32_t block_len, + const uint8_t block_type, + BROTLI_BOOL is_first_block, + size_t* storage_ix, + uint8_t* storage) { + size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type); + size_t lencode; + uint32_t len_nextra; + uint32_t len_extra; + if (!is_first_block) { + BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode], + storage_ix, storage); + } + GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra); + + BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode], + storage_ix, storage); + BrotliWriteBits(len_nextra, len_extra, storage_ix, storage); +} + +/* Builds a BlockSplitCode data structure from the block split given by the + vector of block types and block lengths and stores it to the bit stream. */ +static void BuildAndStoreBlockSplitCode(const uint8_t* types, + const uint32_t* lengths, + const size_t num_blocks, + const size_t num_types, + HuffmanTree* tree, + BlockSplitCode* code, + size_t* storage_ix, + uint8_t* storage) { + uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; + uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; + size_t i; + BlockTypeCodeCalculator type_code_calculator; + memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0])); + memset(length_histo, 0, sizeof(length_histo)); + InitBlockTypeCodeCalculator(&type_code_calculator); + for (i = 0; i < num_blocks; ++i) { + size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]); + if (i != 0) ++type_histo[type_code]; + ++length_histo[BlockLengthPrefixCode(lengths[i])]; + } + StoreVarLenUint8(num_types - 1, storage_ix, storage); + if (num_types > 1) { /* TODO: else? could StoreBlockSwitch occur? */ + BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, num_types + 2, tree, + &code->type_depths[0], &code->type_bits[0], + storage_ix, storage); + BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS, + BROTLI_NUM_BLOCK_LEN_SYMBOLS, + tree, &code->length_depths[0], + &code->length_bits[0], storage_ix, storage); + StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage); + } +} + +/* Stores a context map where the histogram type is always the block type. */ +static void StoreTrivialContextMap(size_t num_types, + size_t context_bits, + HuffmanTree* tree, + size_t* storage_ix, + uint8_t* storage) { + StoreVarLenUint8(num_types - 1, storage_ix, storage); + if (num_types > 1) { + size_t repeat_code = context_bits - 1u; + size_t repeat_bits = (1u << repeat_code) - 1u; + size_t alphabet_size = num_types + repeat_code; + uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; + uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; + uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; + size_t i; + memset(histogram, 0, alphabet_size * sizeof(histogram[0])); + /* Write RLEMAX. */ + BrotliWriteBits(1, 1, storage_ix, storage); + BrotliWriteBits(4, repeat_code - 1, storage_ix, storage); + histogram[repeat_code] = (uint32_t)num_types; + histogram[0] = 1; + for (i = context_bits; i < alphabet_size; ++i) { + histogram[i] = 1; + } + BuildAndStoreHuffmanTree(histogram, alphabet_size, alphabet_size, + tree, depths, bits, storage_ix, storage); + for (i = 0; i < num_types; ++i) { + size_t code = (i == 0 ? 0 : i + context_bits - 1); + BrotliWriteBits(depths[code], bits[code], storage_ix, storage); + BrotliWriteBits( + depths[repeat_code], bits[repeat_code], storage_ix, storage); + BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage); + } + /* Write IMTF (inverse-move-to-front) bit. */ + BrotliWriteBits(1, 1, storage_ix, storage); + } +} + +/* Manages the encoding of one block category (literal, command or distance). */ +typedef struct BlockEncoder { + size_t histogram_length_; + size_t num_block_types_; + const uint8_t* block_types_; /* Not owned. */ + const uint32_t* block_lengths_; /* Not owned. */ + size_t num_blocks_; + BlockSplitCode block_split_code_; + size_t block_ix_; + size_t block_len_; + size_t entropy_ix_; + uint8_t* depths_; + uint16_t* bits_; +} BlockEncoder; + +static void InitBlockEncoder(BlockEncoder* self, size_t histogram_length, + size_t num_block_types, const uint8_t* block_types, + const uint32_t* block_lengths, const size_t num_blocks) { + self->histogram_length_ = histogram_length; + self->num_block_types_ = num_block_types; + self->block_types_ = block_types; + self->block_lengths_ = block_lengths; + self->num_blocks_ = num_blocks; + InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator); + self->block_ix_ = 0; + self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0]; + self->entropy_ix_ = 0; + self->depths_ = 0; + self->bits_ = 0; +} + +static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) { + BROTLI_FREE(m, self->depths_); + BROTLI_FREE(m, self->bits_); +} + +/* Creates entropy codes of block lengths and block types and stores them + to the bit stream. */ +static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self, + HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) { + BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_, + self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_, + storage_ix, storage); +} + +/* Stores the next symbol with the entropy code of the current block type. + Updates the block type and block length at block boundaries. */ +static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix, + uint8_t* storage) { + if (self->block_len_ == 0) { + size_t block_ix = ++self->block_ix_; + uint32_t block_len = self->block_lengths_[block_ix]; + uint8_t block_type = self->block_types_[block_ix]; + self->block_len_ = block_len; + self->entropy_ix_ = block_type * self->histogram_length_; + StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0, + storage_ix, storage); + } + --self->block_len_; + { + size_t ix = self->entropy_ix_ + symbol; + BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage); + } +} + +/* Stores the next symbol with the entropy code of the current block type and + context value. + Updates the block type and block length at block boundaries. */ +static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol, + size_t context, const uint32_t* context_map, size_t* storage_ix, + uint8_t* storage, const size_t context_bits) { + if (self->block_len_ == 0) { + size_t block_ix = ++self->block_ix_; + uint32_t block_len = self->block_lengths_[block_ix]; + uint8_t block_type = self->block_types_[block_ix]; + self->block_len_ = block_len; + self->entropy_ix_ = (size_t)block_type << context_bits; + StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0, + storage_ix, storage); + } + --self->block_len_; + { + size_t histo_ix = context_map[self->entropy_ix_ + context]; + size_t ix = histo_ix * self->histogram_length_ + symbol; + BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage); + } +} + +#define FN(X) X ## Literal +/* NOLINTNEXTLINE(build/include) */ +#include "./block_encoder_inc.h" +#undef FN + +#define FN(X) X ## Command +/* NOLINTNEXTLINE(build/include) */ +#include "./block_encoder_inc.h" +#undef FN + +#define FN(X) X ## Distance +/* NOLINTNEXTLINE(build/include) */ +#include "./block_encoder_inc.h" +#undef FN + +static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) { + *storage_ix = (*storage_ix + 7u) & ~7u; + storage[*storage_ix >> 3] = 0; +} + +void BrotliStoreMetaBlock(MemoryManager* m, + const uint8_t* input, size_t start_pos, size_t length, size_t mask, + uint8_t prev_byte, uint8_t prev_byte2, BROTLI_BOOL is_last, + const BrotliEncoderParams* params, ContextType literal_context_mode, + const Command* commands, size_t n_commands, const MetaBlockSplit* mb, + size_t* storage_ix, uint8_t* storage) { + + size_t pos = start_pos; + size_t i; + uint32_t num_distance_symbols = params->dist.alphabet_size; + uint32_t num_effective_distance_symbols = num_distance_symbols; + HuffmanTree* tree; + ContextLut literal_context_lut = BROTLI_CONTEXT_LUT(literal_context_mode); + BlockEncoder literal_enc; + BlockEncoder command_enc; + BlockEncoder distance_enc; + const BrotliDistanceParams* dist = ¶ms->dist; + if (params->large_window && + num_effective_distance_symbols > BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS) { + num_effective_distance_symbols = BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS; + } + + StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); + + tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE); + if (BROTLI_IS_OOM(m)) return; + InitBlockEncoder(&literal_enc, BROTLI_NUM_LITERAL_SYMBOLS, + mb->literal_split.num_types, mb->literal_split.types, + mb->literal_split.lengths, mb->literal_split.num_blocks); + InitBlockEncoder(&command_enc, BROTLI_NUM_COMMAND_SYMBOLS, + mb->command_split.num_types, mb->command_split.types, + mb->command_split.lengths, mb->command_split.num_blocks); + InitBlockEncoder(&distance_enc, num_effective_distance_symbols, + mb->distance_split.num_types, mb->distance_split.types, + mb->distance_split.lengths, mb->distance_split.num_blocks); + + BuildAndStoreBlockSwitchEntropyCodes(&literal_enc, tree, storage_ix, storage); + BuildAndStoreBlockSwitchEntropyCodes(&command_enc, tree, storage_ix, storage); + BuildAndStoreBlockSwitchEntropyCodes( + &distance_enc, tree, storage_ix, storage); + + BrotliWriteBits(2, dist->distance_postfix_bits, storage_ix, storage); + BrotliWriteBits( + 4, dist->num_direct_distance_codes >> dist->distance_postfix_bits, + storage_ix, storage); + for (i = 0; i < mb->literal_split.num_types; ++i) { + BrotliWriteBits(2, literal_context_mode, storage_ix, storage); + } + + if (mb->literal_context_map_size == 0) { + StoreTrivialContextMap(mb->literal_histograms_size, + BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage); + } else { + EncodeContextMap(m, + mb->literal_context_map, mb->literal_context_map_size, + mb->literal_histograms_size, tree, storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + } + + if (mb->distance_context_map_size == 0) { + StoreTrivialContextMap(mb->distance_histograms_size, + BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage); + } else { + EncodeContextMap(m, + mb->distance_context_map, mb->distance_context_map_size, + mb->distance_histograms_size, tree, storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + } + + BuildAndStoreEntropyCodesLiteral(m, &literal_enc, mb->literal_histograms, + mb->literal_histograms_size, BROTLI_NUM_LITERAL_SYMBOLS, tree, + storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + BuildAndStoreEntropyCodesCommand(m, &command_enc, mb->command_histograms, + mb->command_histograms_size, BROTLI_NUM_COMMAND_SYMBOLS, tree, + storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + BuildAndStoreEntropyCodesDistance(m, &distance_enc, mb->distance_histograms, + mb->distance_histograms_size, num_distance_symbols, tree, + storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + BROTLI_FREE(m, tree); + + for (i = 0; i < n_commands; ++i) { + const Command cmd = commands[i]; + size_t cmd_code = cmd.cmd_prefix_; + StoreSymbol(&command_enc, cmd_code, storage_ix, storage); + StoreCommandExtra(&cmd, storage_ix, storage); + if (mb->literal_context_map_size == 0) { + size_t j; + for (j = cmd.insert_len_; j != 0; --j) { + StoreSymbol(&literal_enc, input[pos & mask], storage_ix, storage); + ++pos; + } + } else { + size_t j; + for (j = cmd.insert_len_; j != 0; --j) { + size_t context = + BROTLI_CONTEXT(prev_byte, prev_byte2, literal_context_lut); + uint8_t literal = input[pos & mask]; + StoreSymbolWithContext(&literal_enc, literal, context, + mb->literal_context_map, storage_ix, storage, + BROTLI_LITERAL_CONTEXT_BITS); + prev_byte2 = prev_byte; + prev_byte = literal; + ++pos; + } + } + pos += CommandCopyLen(&cmd); + if (CommandCopyLen(&cmd)) { + prev_byte2 = input[(pos - 2) & mask]; + prev_byte = input[(pos - 1) & mask]; + if (cmd.cmd_prefix_ >= 128) { + size_t dist_code = cmd.dist_prefix_ & 0x3FF; + uint32_t distnumextra = cmd.dist_prefix_ >> 10; + uint64_t distextra = cmd.dist_extra_; + if (mb->distance_context_map_size == 0) { + StoreSymbol(&distance_enc, dist_code, storage_ix, storage); + } else { + size_t context = CommandDistanceContext(&cmd); + StoreSymbolWithContext(&distance_enc, dist_code, context, + mb->distance_context_map, storage_ix, storage, + BROTLI_DISTANCE_CONTEXT_BITS); + } + BrotliWriteBits(distnumextra, distextra, storage_ix, storage); + } + } + } + CleanupBlockEncoder(m, &distance_enc); + CleanupBlockEncoder(m, &command_enc); + CleanupBlockEncoder(m, &literal_enc); + if (is_last) { + JumpToByteBoundary(storage_ix, storage); + } +} + +static void BuildHistograms(const uint8_t* input, + size_t start_pos, + size_t mask, + const Command* commands, + size_t n_commands, + HistogramLiteral* lit_histo, + HistogramCommand* cmd_histo, + HistogramDistance* dist_histo) { + size_t pos = start_pos; + size_t i; + for (i = 0; i < n_commands; ++i) { + const Command cmd = commands[i]; + size_t j; + HistogramAddCommand(cmd_histo, cmd.cmd_prefix_); + for (j = cmd.insert_len_; j != 0; --j) { + HistogramAddLiteral(lit_histo, input[pos & mask]); + ++pos; + } + pos += CommandCopyLen(&cmd); + if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) { + HistogramAddDistance(dist_histo, cmd.dist_prefix_ & 0x3FF); + } + } +} + +static void StoreDataWithHuffmanCodes(const uint8_t* input, + size_t start_pos, + size_t mask, + const Command* commands, + size_t n_commands, + const uint8_t* lit_depth, + const uint16_t* lit_bits, + const uint8_t* cmd_depth, + const uint16_t* cmd_bits, + const uint8_t* dist_depth, + const uint16_t* dist_bits, + size_t* storage_ix, + uint8_t* storage) { + size_t pos = start_pos; + size_t i; + for (i = 0; i < n_commands; ++i) { + const Command cmd = commands[i]; + const size_t cmd_code = cmd.cmd_prefix_; + size_t j; + BrotliWriteBits( + cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage); + StoreCommandExtra(&cmd, storage_ix, storage); + for (j = cmd.insert_len_; j != 0; --j) { + const uint8_t literal = input[pos & mask]; + BrotliWriteBits( + lit_depth[literal], lit_bits[literal], storage_ix, storage); + ++pos; + } + pos += CommandCopyLen(&cmd); + if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) { + const size_t dist_code = cmd.dist_prefix_ & 0x3FF; + const uint32_t distnumextra = cmd.dist_prefix_ >> 10; + const uint32_t distextra = cmd.dist_extra_; + BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code], + storage_ix, storage); + BrotliWriteBits(distnumextra, distextra, storage_ix, storage); + } + } +} + +void BrotliStoreMetaBlockTrivial(MemoryManager* m, + const uint8_t* input, size_t start_pos, size_t length, size_t mask, + BROTLI_BOOL is_last, const BrotliEncoderParams* params, + const Command* commands, size_t n_commands, + size_t* storage_ix, uint8_t* storage) { + HistogramLiteral lit_histo; + HistogramCommand cmd_histo; + HistogramDistance dist_histo; + uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; + uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; + uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS]; + uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS]; + uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE]; + uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE]; + HuffmanTree* tree; + uint32_t num_distance_symbols = params->dist.alphabet_size; + + StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); + + HistogramClearLiteral(&lit_histo); + HistogramClearCommand(&cmd_histo); + HistogramClearDistance(&dist_histo); + + BuildHistograms(input, start_pos, mask, commands, n_commands, + &lit_histo, &cmd_histo, &dist_histo); + + BrotliWriteBits(13, 0, storage_ix, storage); + + tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE); + if (BROTLI_IS_OOM(m)) return; + BuildAndStoreHuffmanTree(lit_histo.data_, BROTLI_NUM_LITERAL_SYMBOLS, + BROTLI_NUM_LITERAL_SYMBOLS, tree, + lit_depth, lit_bits, + storage_ix, storage); + BuildAndStoreHuffmanTree(cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS, + BROTLI_NUM_COMMAND_SYMBOLS, tree, + cmd_depth, cmd_bits, + storage_ix, storage); + BuildAndStoreHuffmanTree(dist_histo.data_, MAX_SIMPLE_DISTANCE_ALPHABET_SIZE, + num_distance_symbols, tree, + dist_depth, dist_bits, + storage_ix, storage); + BROTLI_FREE(m, tree); + StoreDataWithHuffmanCodes(input, start_pos, mask, commands, + n_commands, lit_depth, lit_bits, + cmd_depth, cmd_bits, + dist_depth, dist_bits, + storage_ix, storage); + if (is_last) { + JumpToByteBoundary(storage_ix, storage); + } +} + +void BrotliStoreMetaBlockFast(MemoryManager* m, + const uint8_t* input, size_t start_pos, size_t length, size_t mask, + BROTLI_BOOL is_last, const BrotliEncoderParams* params, + const Command* commands, size_t n_commands, + size_t* storage_ix, uint8_t* storage) { + uint32_t num_distance_symbols = params->dist.alphabet_size; + uint32_t distance_alphabet_bits = + Log2FloorNonZero(num_distance_symbols - 1) + 1; + + StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); + + BrotliWriteBits(13, 0, storage_ix, storage); + + if (n_commands <= 128) { + uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 }; + size_t pos = start_pos; + size_t num_literals = 0; + size_t i; + uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; + uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; + for (i = 0; i < n_commands; ++i) { + const Command cmd = commands[i]; + size_t j; + for (j = cmd.insert_len_; j != 0; --j) { + ++histogram[input[pos & mask]]; + ++pos; + } + num_literals += cmd.insert_len_; + pos += CommandCopyLen(&cmd); + } + BrotliBuildAndStoreHuffmanTreeFast(m, histogram, num_literals, + /* max_bits = */ 8, + lit_depth, lit_bits, + storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + StoreStaticCommandHuffmanTree(storage_ix, storage); + StoreStaticDistanceHuffmanTree(storage_ix, storage); + StoreDataWithHuffmanCodes(input, start_pos, mask, commands, + n_commands, lit_depth, lit_bits, + kStaticCommandCodeDepth, + kStaticCommandCodeBits, + kStaticDistanceCodeDepth, + kStaticDistanceCodeBits, + storage_ix, storage); + } else { + HistogramLiteral lit_histo; + HistogramCommand cmd_histo; + HistogramDistance dist_histo; + uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; + uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; + uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS]; + uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS]; + uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE]; + uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE]; + HistogramClearLiteral(&lit_histo); + HistogramClearCommand(&cmd_histo); + HistogramClearDistance(&dist_histo); + BuildHistograms(input, start_pos, mask, commands, n_commands, + &lit_histo, &cmd_histo, &dist_histo); + BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo.data_, + lit_histo.total_count_, + /* max_bits = */ 8, + lit_depth, lit_bits, + storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + BrotliBuildAndStoreHuffmanTreeFast(m, cmd_histo.data_, + cmd_histo.total_count_, + /* max_bits = */ 10, + cmd_depth, cmd_bits, + storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + BrotliBuildAndStoreHuffmanTreeFast(m, dist_histo.data_, + dist_histo.total_count_, + /* max_bits = */ + distance_alphabet_bits, + dist_depth, dist_bits, + storage_ix, storage); + if (BROTLI_IS_OOM(m)) return; + StoreDataWithHuffmanCodes(input, start_pos, mask, commands, + n_commands, lit_depth, lit_bits, + cmd_depth, cmd_bits, + dist_depth, dist_bits, + storage_ix, storage); + } + + if (is_last) { + JumpToByteBoundary(storage_ix, storage); + } +} + +/* This is for storing uncompressed blocks (simple raw storage of + bytes-as-bytes). */ +void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block, + const uint8_t* BROTLI_RESTRICT input, + size_t position, size_t mask, + size_t len, + size_t* BROTLI_RESTRICT storage_ix, + uint8_t* BROTLI_RESTRICT storage) { + size_t masked_pos = position & mask; + BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage); + JumpToByteBoundary(storage_ix, storage); + + if (masked_pos + len > mask + 1) { + size_t len1 = mask + 1 - masked_pos; + memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1); + *storage_ix += len1 << 3; + len -= len1; + masked_pos = 0; + } + memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len); + *storage_ix += len << 3; + + /* We need to clear the next 4 bytes to continue to be + compatible with BrotliWriteBits. */ + BrotliWriteBitsPrepareStorage(*storage_ix, storage); + + /* Since the uncompressed block itself may not be the final block, add an + empty one after this. */ + if (is_final_block) { + BrotliWriteBits(1, 1, storage_ix, storage); /* islast */ + BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */ + JumpToByteBoundary(storage_ix, storage); + } +} + +#if defined(__cplusplus) || defined(c_plusplus) +} /* extern "C" */ +#endif |