diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /mfbt/FloatingPoint.h | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'mfbt/FloatingPoint.h')
-rw-r--r-- | mfbt/FloatingPoint.h | 479 |
1 files changed, 479 insertions, 0 deletions
diff --git a/mfbt/FloatingPoint.h b/mfbt/FloatingPoint.h new file mode 100644 index 000000000..59afccd13 --- /dev/null +++ b/mfbt/FloatingPoint.h @@ -0,0 +1,479 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* Various predicates and operations on IEEE-754 floating point types. */ + +#ifndef mozilla_FloatingPoint_h +#define mozilla_FloatingPoint_h + +#include "mozilla/Assertions.h" +#include "mozilla/Attributes.h" +#include "mozilla/Casting.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/Types.h" + +#include <stdint.h> + +namespace mozilla { + +/* + * It's reasonable to ask why we have this header at all. Don't isnan, + * copysign, the built-in comparison operators, and the like solve these + * problems? Unfortunately, they don't. We've found that various compilers + * (MSVC, MSVC when compiling with PGO, and GCC on OS X, at least) miscompile + * the standard methods in various situations, so we can't use them. Some of + * these compilers even have problems compiling seemingly reasonable bitwise + * algorithms! But with some care we've found algorithms that seem to not + * trigger those compiler bugs. + * + * For the aforementioned reasons, be very wary of making changes to any of + * these algorithms. If you must make changes, keep a careful eye out for + * compiler bustage, particularly PGO-specific bustage. + */ + +struct FloatTypeTraits +{ + typedef uint32_t Bits; + + static const unsigned kExponentBias = 127; + static const unsigned kExponentShift = 23; + + static const Bits kSignBit = 0x80000000UL; + static const Bits kExponentBits = 0x7F800000UL; + static const Bits kSignificandBits = 0x007FFFFFUL; +}; + +struct DoubleTypeTraits +{ + typedef uint64_t Bits; + + static const unsigned kExponentBias = 1023; + static const unsigned kExponentShift = 52; + + static const Bits kSignBit = 0x8000000000000000ULL; + static const Bits kExponentBits = 0x7ff0000000000000ULL; + static const Bits kSignificandBits = 0x000fffffffffffffULL; +}; + +template<typename T> struct SelectTrait; +template<> struct SelectTrait<float> : public FloatTypeTraits {}; +template<> struct SelectTrait<double> : public DoubleTypeTraits {}; + +/* + * This struct contains details regarding the encoding of floating-point + * numbers that can be useful for direct bit manipulation. As of now, the + * template parameter has to be float or double. + * + * The nested typedef |Bits| is the unsigned integral type with the same size + * as T: uint32_t for float and uint64_t for double (static assertions + * double-check these assumptions). + * + * kExponentBias is the offset that is subtracted from the exponent when + * computing the value, i.e. one plus the opposite of the mininum possible + * exponent. + * kExponentShift is the shift that one needs to apply to retrieve the + * exponent component of the value. + * + * kSignBit contains a bits mask. Bit-and-ing with this mask will result in + * obtaining the sign bit. + * kExponentBits contains the mask needed for obtaining the exponent bits and + * kSignificandBits contains the mask needed for obtaining the significand + * bits. + * + * Full details of how floating point number formats are encoded are beyond + * the scope of this comment. For more information, see + * http://en.wikipedia.org/wiki/IEEE_floating_point + * http://en.wikipedia.org/wiki/Floating_point#IEEE_754:_floating_point_in_modern_computers + */ +template<typename T> +struct FloatingPoint : public SelectTrait<T> +{ + typedef SelectTrait<T> Base; + typedef typename Base::Bits Bits; + + static_assert((Base::kSignBit & Base::kExponentBits) == 0, + "sign bit shouldn't overlap exponent bits"); + static_assert((Base::kSignBit & Base::kSignificandBits) == 0, + "sign bit shouldn't overlap significand bits"); + static_assert((Base::kExponentBits & Base::kSignificandBits) == 0, + "exponent bits shouldn't overlap significand bits"); + + static_assert((Base::kSignBit | Base::kExponentBits | Base::kSignificandBits) == + ~Bits(0), + "all bits accounted for"); + + /* + * These implementations assume float/double are 32/64-bit single/double + * format number types compatible with the IEEE-754 standard. C++ don't + * require this to be the case. But we required this in implementations of + * these algorithms that preceded this header, so we shouldn't break anything + * if we keep doing so. + */ + static_assert(sizeof(T) == sizeof(Bits), "Bits must be same size as T"); +}; + +/** Determines whether a float/double is NaN. */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +IsNaN(T aValue) +{ + /* + * A float/double is NaN if all exponent bits are 1 and the significand + * contains at least one non-zero bit. + */ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + return (BitwiseCast<Bits>(aValue) & Traits::kExponentBits) == Traits::kExponentBits && + (BitwiseCast<Bits>(aValue) & Traits::kSignificandBits) != 0; +} + +/** Determines whether a float/double is +Infinity or -Infinity. */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +IsInfinite(T aValue) +{ + /* Infinities have all exponent bits set to 1 and an all-0 significand. */ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast<Bits>(aValue); + return (bits & ~Traits::kSignBit) == Traits::kExponentBits; +} + +/** Determines whether a float/double is not NaN or infinite. */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +IsFinite(T aValue) +{ + /* + * NaN and Infinities are the only non-finite floats/doubles, and both have + * all exponent bits set to 1. + */ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast<Bits>(aValue); + return (bits & Traits::kExponentBits) != Traits::kExponentBits; +} + +/** + * Determines whether a float/double is negative or -0. It is an error + * to call this method on a float/double which is NaN. + */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +IsNegative(T aValue) +{ + MOZ_ASSERT(!IsNaN(aValue), "NaN does not have a sign"); + + /* The sign bit is set if the double is negative. */ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast<Bits>(aValue); + return (bits & Traits::kSignBit) != 0; +} + +/** Determines whether a float/double represents -0. */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +IsNegativeZero(T aValue) +{ + /* Only the sign bit is set if the value is -0. */ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast<Bits>(aValue); + return bits == Traits::kSignBit; +} + +/** Determines wether a float/double represents +0. */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +IsPositiveZero(T aValue) +{ + /* All bits are zero if the value is +0. */ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast<Bits>(aValue); + return bits == 0; +} + +/** + * Returns 0 if a float/double is NaN or infinite; + * otherwise, the float/double is returned. + */ +template<typename T> +static MOZ_ALWAYS_INLINE T +ToZeroIfNonfinite(T aValue) +{ + return IsFinite(aValue) ? aValue : 0; +} + +/** + * Returns the exponent portion of the float/double. + * + * Zero is not special-cased, so ExponentComponent(0.0) is + * -int_fast16_t(Traits::kExponentBias). + */ +template<typename T> +static MOZ_ALWAYS_INLINE int_fast16_t +ExponentComponent(T aValue) +{ + /* + * The exponent component of a float/double is an unsigned number, biased + * from its actual value. Subtract the bias to retrieve the actual exponent. + */ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + Bits bits = BitwiseCast<Bits>(aValue); + return int_fast16_t((bits & Traits::kExponentBits) >> Traits::kExponentShift) - + int_fast16_t(Traits::kExponentBias); +} + +/** Returns +Infinity. */ +template<typename T> +static MOZ_ALWAYS_INLINE T +PositiveInfinity() +{ + /* + * Positive infinity has all exponent bits set, sign bit set to 0, and no + * significand. + */ + typedef FloatingPoint<T> Traits; + return BitwiseCast<T>(Traits::kExponentBits); +} + +/** Returns -Infinity. */ +template<typename T> +static MOZ_ALWAYS_INLINE T +NegativeInfinity() +{ + /* + * Negative infinity has all exponent bits set, sign bit set to 1, and no + * significand. + */ + typedef FloatingPoint<T> Traits; + return BitwiseCast<T>(Traits::kSignBit | Traits::kExponentBits); +} + +/** + * Computes the bit pattern for a NaN with the specified sign bit and + * significand bits. + */ +template<typename T, + int SignBit, + typename FloatingPoint<T>::Bits Significand> +struct SpecificNaNBits +{ + using Traits = FloatingPoint<T>; + + static_assert(SignBit == 0 || SignBit == 1, "bad sign bit"); + static_assert((Significand & ~Traits::kSignificandBits) == 0, + "significand must only have significand bits set"); + static_assert(Significand & Traits::kSignificandBits, + "significand must be nonzero"); + + static constexpr typename Traits::Bits value = + (SignBit * Traits::kSignBit) | Traits::kExponentBits | Significand; +}; + +/** + * Constructs a NaN value with the specified sign bit and significand bits. + * + * There is also a variant that returns the value directly. In most cases, the + * two variants should be identical. However, in the specific case of x86 + * chips, the behavior differs: returning floating-point values directly is done + * through the x87 stack, and x87 loads and stores turn signaling NaNs into + * quiet NaNs... silently. Returning floating-point values via outparam, + * however, is done entirely within the SSE registers when SSE2 floating-point + * is enabled in the compiler, which has semantics-preserving behavior you would + * expect. + * + * If preserving the distinction between signaling NaNs and quiet NaNs is + * important to you, you should use the outparam version. In all other cases, + * you should use the direct return version. + */ +template<typename T> +static MOZ_ALWAYS_INLINE void +SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand, T* result) +{ + typedef FloatingPoint<T> Traits; + MOZ_ASSERT(signbit == 0 || signbit == 1); + MOZ_ASSERT((significand & ~Traits::kSignificandBits) == 0); + MOZ_ASSERT(significand & Traits::kSignificandBits); + + BitwiseCast<T>((signbit ? Traits::kSignBit : 0) | + Traits::kExponentBits | + significand, + result); + MOZ_ASSERT(IsNaN(*result)); +} + +template<typename T> +static MOZ_ALWAYS_INLINE T +SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand) +{ + T t; + SpecificNaN(signbit, significand, &t); + return t; +} + +/** Computes the smallest non-zero positive float/double value. */ +template<typename T> +static MOZ_ALWAYS_INLINE T +MinNumberValue() +{ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + return BitwiseCast<T>(Bits(1)); +} + +/** + * If aValue is equal to some int32_t value, set *aInt32 to that value and + * return true; otherwise return false. + * + * Note that negative zero is "equal" to zero here. To test whether a value can + * be losslessly converted to int32_t and back, use NumberIsInt32 instead. + */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +NumberEqualsInt32(T aValue, int32_t* aInt32) +{ + /* + * XXX Casting a floating-point value that doesn't truncate to int32_t, to + * int32_t, induces undefined behavior. We should definitely fix this + * (bug 744965), but as apparently it "works" in practice, it's not a + * pressing concern now. + */ + return aValue == (*aInt32 = int32_t(aValue)); +} + +/** + * If d can be converted to int32_t and back to an identical double value, + * set *aInt32 to that value and return true; otherwise return false. + * + * The difference between this and NumberEqualsInt32 is that this method returns + * false for negative zero. + */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +NumberIsInt32(T aValue, int32_t* aInt32) +{ + return !IsNegativeZero(aValue) && NumberEqualsInt32(aValue, aInt32); +} + +/** + * Computes a NaN value. Do not use this method if you depend upon a particular + * NaN value being returned. + */ +template<typename T> +static MOZ_ALWAYS_INLINE T +UnspecifiedNaN() +{ + /* + * If we can use any quiet NaN, we might as well use the all-ones NaN, + * since it's cheap to materialize on common platforms (such as x64, where + * this value can be represented in a 32-bit signed immediate field, allowing + * it to be stored to memory in a single instruction). + */ + typedef FloatingPoint<T> Traits; + return SpecificNaN<T>(1, Traits::kSignificandBits); +} + +/** + * Compare two doubles for equality, *without* equating -0 to +0, and equating + * any NaN value to any other NaN value. (The normal equality operators equate + * -0 with +0, and they equate NaN to no other value.) + */ +template<typename T> +static inline bool +NumbersAreIdentical(T aValue1, T aValue2) +{ + typedef FloatingPoint<T> Traits; + typedef typename Traits::Bits Bits; + if (IsNaN(aValue1)) { + return IsNaN(aValue2); + } + return BitwiseCast<Bits>(aValue1) == BitwiseCast<Bits>(aValue2); +} + +namespace detail { + +template<typename T> +struct FuzzyEqualsEpsilon; + +template<> +struct FuzzyEqualsEpsilon<float> +{ + // A number near 1e-5 that is exactly representable in a float. + static float value() { return 1.0f / (1 << 17); } +}; + +template<> +struct FuzzyEqualsEpsilon<double> +{ + // A number near 1e-12 that is exactly representable in a double. + static double value() { return 1.0 / (1LL << 40); } +}; + +} // namespace detail + +/** + * Compare two floating point values for equality, modulo rounding error. That + * is, the two values are considered equal if they are both not NaN and if they + * are less than or equal to aEpsilon apart. The default value of aEpsilon is + * near 1e-5. + * + * For most scenarios you will want to use FuzzyEqualsMultiplicative instead, + * as it is more reasonable over the entire range of floating point numbers. + * This additive version should only be used if you know the range of the + * numbers you are dealing with is bounded and stays around the same order of + * magnitude. + */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +FuzzyEqualsAdditive(T aValue1, T aValue2, + T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value()) +{ + static_assert(IsFloatingPoint<T>::value, "floating point type required"); + return Abs(aValue1 - aValue2) <= aEpsilon; +} + +/** + * Compare two floating point values for equality, allowing for rounding error + * relative to the magnitude of the values. That is, the two values are + * considered equal if they are both not NaN and they are less than or equal to + * some aEpsilon apart, where the aEpsilon is scaled by the smaller of the two + * argument values. + * + * In most cases you will want to use this rather than FuzzyEqualsAdditive, as + * this function effectively masks out differences in the bottom few bits of + * the floating point numbers being compared, regardless of what order of + * magnitude those numbers are at. + */ +template<typename T> +static MOZ_ALWAYS_INLINE bool +FuzzyEqualsMultiplicative(T aValue1, T aValue2, + T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value()) +{ + static_assert(IsFloatingPoint<T>::value, "floating point type required"); + // can't use std::min because of bug 965340 + T smaller = Abs(aValue1) < Abs(aValue2) ? Abs(aValue1) : Abs(aValue2); + return Abs(aValue1 - aValue2) <= aEpsilon * smaller; +} + +/** + * Returns true if the given value can be losslessly represented as an IEEE-754 + * single format number, false otherwise. All NaN values are considered + * representable (notwithstanding that the exact bit pattern of a double format + * NaN value can't be exactly represented in single format). + * + * This function isn't inlined to avoid buggy optimizations by MSVC. + */ +MOZ_MUST_USE +extern MFBT_API bool +IsFloat32Representable(double aFloat32); + +} /* namespace mozilla */ + +#endif /* mozilla_FloatingPoint_h */ |