diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /media/sphinxbase/src/libsphinxbase/util/matrix.c | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/sphinxbase/src/libsphinxbase/util/matrix.c')
-rw-r--r-- | media/sphinxbase/src/libsphinxbase/util/matrix.c | 313 |
1 files changed, 313 insertions, 0 deletions
diff --git a/media/sphinxbase/src/libsphinxbase/util/matrix.c b/media/sphinxbase/src/libsphinxbase/util/matrix.c new file mode 100644 index 000000000..27ba08f68 --- /dev/null +++ b/media/sphinxbase/src/libsphinxbase/util/matrix.c @@ -0,0 +1,313 @@ +/* -*- c-basic-offset: 4 -*- */ +/* ==================================================================== + * Copyright (c) 1997-2006 Carnegie Mellon University. All rights + * reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * This work was supported in part by funding from the Defense Advanced + * Research Projects Agency and the National Science Foundation of the + * United States of America, and the CMU Sphinx Speech Consortium. + * + * THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND + * ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, + * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY + * NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * ==================================================================== + * + */ +#include <string.h> +#include <stdlib.h> + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "sphinxbase/clapack_lite.h" +#include "sphinxbase/matrix.h" +#include "sphinxbase/err.h" +#include "sphinxbase/ckd_alloc.h" + +void +norm_3d(float32 ***arr, + uint32 d1, + uint32 d2, + uint32 d3) +{ + uint32 i, j, k; + float64 s; + + for (i = 0; i < d1; i++) { + for (j = 0; j < d2; j++) { + + /* compute sum (i, j) as over all k */ + for (k = 0, s = 0; k < d3; k++) { + s += arr[i][j][k]; + } + + /* do 1 floating point divide */ + s = 1.0 / s; + + /* divide all k by sum over k */ + for (k = 0; k < d3; k++) { + arr[i][j][k] *= s; + } + } + } +} + +void +accum_3d(float32 ***out, + float32 ***in, + uint32 d1, + uint32 d2, + uint32 d3) +{ + uint32 i, j, k; + + for (i = 0; i < d1; i++) { + for (j = 0; j < d2; j++) { + for (k = 0; k < d3; k++) { + out[i][j][k] += in[i][j][k]; + } + } + } +} + +void +floor_nz_3d(float32 ***m, + uint32 d1, + uint32 d2, + uint32 d3, + float32 floor) +{ + uint32 i, j, k; + + for (i = 0; i < d1; i++) { + for (j = 0; j < d2; j++) { + for (k = 0; k < d3; k++) { + if ((m[i][j][k] != 0) && (m[i][j][k] < floor)) + m[i][j][k] = floor; + } + } + } +} +void +floor_nz_1d(float32 *v, + uint32 d1, + float32 floor) +{ + uint32 i; + + for (i = 0; i < d1; i++) { + if ((v[i] != 0) && (v[i] < floor)) + v[i] = floor; + } +} + +void +band_nz_1d(float32 *v, + uint32 d1, + float32 band) +{ + uint32 i; + + for (i = 0; i < d1; i++) { + if (v[i] != 0) { + if ((v[i] > 0) && (v[i] < band)) { + v[i] = band; + } + else if ((v[i] < 0) && (v[i] > -band)) { + v[i] = -band; + } + } + } +} + +#ifndef WITH_LAPACK +float64 +determinant(float32 **a, int32 n) +{ + E_FATAL("No LAPACK library available, cannot compute determinant (FIXME)\n"); + return 0.0; +} +int32 +invert(float32 **ainv, float32 **a, int32 n) +{ + E_FATAL("No LAPACK library available, cannot compute matrix inverse (FIXME)\n"); + return 0; +} +int32 +solve(float32 **a, float32 *b, float32 *out_x, int32 n) +{ + E_FATAL("No LAPACK library available, cannot solve linear equations (FIXME)\n"); + return 0; +} + +void +matrixmultiply(float32 ** c, float32 ** a, float32 ** b, int32 n) +{ + int32 i, j, k; + + memset(c[0], 0, n*n*sizeof(float32)); + for (i = 0; i < n; ++i) { + for (j = 0; j < n; ++j) { + for (k = 0; k < n; ++k) { + c[i][k] += a[i][j] * b[j][k]; + } + } + } +} +#else /* WITH_LAPACK */ +/* Find determinant through LU decomposition. */ +float64 +determinant(float32 ** a, int32 n) +{ + float32 **tmp_a; + float64 det; + char uplo; + int32 info, i; + + /* a is assumed to be symmetric, so we don't need to switch the + * ordering of the data. But we do need to copy it since it is + * overwritten by LAPACK. */ + tmp_a = (float32 **)ckd_calloc_2d(n, n, sizeof(float32)); + memcpy(tmp_a[0], a[0], n*n*sizeof(float32)); + + uplo = 'L'; + spotrf_(&uplo, &n, tmp_a[0], &n, &info); + det = tmp_a[0][0]; + /* det = prod(diag(l))^2 */ + for (i = 1; i < n; ++i) + det *= tmp_a[i][i]; + ckd_free_2d((void **)tmp_a); + if (info > 0) + return -1.0; /* Generic "not positive-definite" answer */ + else + return det * det; +} + +int32 +solve(float32 **a, /*Input : an n*n matrix A */ + float32 *b, /*Input : a n dimesion vector b */ + float32 *out_x, /*Output : a n dimesion vector x */ + int32 n) +{ + char uplo; + float32 **tmp_a; + int32 info, nrhs; + + /* a is assumed to be symmetric, so we don't need to switch the + * ordering of the data. But we do need to copy it since it is + * overwritten by LAPACK. */ + tmp_a = (float32 **)ckd_calloc_2d(n, n, sizeof(float32)); + memcpy(tmp_a[0], a[0], n*n*sizeof(float32)); + memcpy(out_x, b, n*sizeof(float32)); + uplo = 'L'; + nrhs = 1; + sposv_(&uplo, &n, &nrhs, tmp_a[0], &n, out_x, &n, &info); + ckd_free_2d((void **)tmp_a); + + if (info != 0) + return -1; + else + return info; +} + +/* Find inverse by solving AX=I. */ +int32 +invert(float32 ** ainv, float32 ** a, int32 n) +{ + char uplo; + float32 **tmp_a; + int32 info, nrhs, i; + + /* Construct an identity matrix. */ + memset(ainv[0], 0, sizeof(float32) * n * n); + for (i = 0; i < n; i++) + ainv[i][i] = 1.0; + /* a is assumed to be symmetric, so we don't need to switch the + * ordering of the data. But we do need to copy it since it is + * overwritten by LAPACK. */ + tmp_a = (float32 **)ckd_calloc_2d(n, n, sizeof(float32)); + memcpy(tmp_a[0], a[0], n*n*sizeof(float32)); + uplo = 'L'; + nrhs = n; + sposv_(&uplo, &n, &nrhs, tmp_a[0], &n, ainv[0], &n, &info); + ckd_free_2d((void **)tmp_a); + + if (info != 0) + return -1; + else + return info; +} + +void +matrixmultiply(float32 ** c, float32 ** a, float32 ** b, int32 n) +{ + char side, uplo; + float32 alpha; + + side = 'L'; + uplo = 'L'; + alpha = 1.0; + ssymm_(&side, &uplo, &n, &n, &alpha, a[0], &n, b[0], &n, &alpha, c[0], &n); +} + +#endif /* WITH_LAPACK */ + +void +outerproduct(float32 ** a, float32 * x, float32 * y, int32 len) +{ + int32 i, j; + + for (i = 0; i < len; ++i) { + a[i][i] = x[i] * y[i]; + for (j = i + 1; j < len; ++j) { + a[i][j] = x[i] * y[j]; + a[j][i] = x[j] * y[i]; + } + } +} + +void +scalarmultiply(float32 ** a, float32 x, int32 n) +{ + int32 i, j; + + for (i = 0; i < n; ++i) { + a[i][i] *= x; + for (j = i+1; j < n; ++j) { + a[i][j] *= x; + a[j][i] *= x; + } + } +} + +void +matrixadd(float32 ** a, float32 ** b, int32 n) +{ + int32 i, j; + + for (i = 0; i < n; ++i) + for (j = 0; j < n; ++j) + a[i][j] += b[i][j]; +} |