summaryrefslogtreecommitdiffstats
path: root/media/libyuv/source/planar_functions.cc
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /media/libyuv/source/planar_functions.cc
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libyuv/source/planar_functions.cc')
-rw-r--r--media/libyuv/source/planar_functions.cc2671
1 files changed, 2671 insertions, 0 deletions
diff --git a/media/libyuv/source/planar_functions.cc b/media/libyuv/source/planar_functions.cc
new file mode 100644
index 000000000..237ab6831
--- /dev/null
+++ b/media/libyuv/source/planar_functions.cc
@@ -0,0 +1,2671 @@
+/*
+ * Copyright 2011 The LibYuv Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "libyuv/planar_functions.h"
+
+#include <string.h> // for memset()
+
+#include "libyuv/cpu_id.h"
+#ifdef HAVE_JPEG
+#include "libyuv/mjpeg_decoder.h"
+#endif
+#include "libyuv/row.h"
+#include "libyuv/scale_row.h" // for ScaleRowDown2
+
+#ifdef __cplusplus
+namespace libyuv {
+extern "C" {
+#endif
+
+// Copy a plane of data
+LIBYUV_API
+void CopyPlane(const uint8* src_y, int src_stride_y,
+ uint8* dst_y, int dst_stride_y,
+ int width, int height) {
+ int y;
+ void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C;
+ // Coalesce rows.
+ if (src_stride_y == width &&
+ dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_y = 0;
+ }
+ // Nothing to do.
+ if (src_y == dst_y && src_stride_y == dst_stride_y) {
+ return;
+ }
+#if defined(HAS_COPYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2;
+ }
+#endif
+#if defined(HAS_COPYROW_AVX)
+ if (TestCpuFlag(kCpuHasAVX)) {
+ CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX;
+ }
+#endif
+#if defined(HAS_COPYROW_ERMS)
+ if (TestCpuFlag(kCpuHasERMS)) {
+ CopyRow = CopyRow_ERMS;
+ }
+#endif
+#if defined(HAS_COPYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON;
+ }
+#endif
+#if defined(HAS_COPYROW_MIPS)
+ if (TestCpuFlag(kCpuHasMIPS)) {
+ CopyRow = CopyRow_MIPS;
+ }
+#endif
+
+ // Copy plane
+ for (y = 0; y < height; ++y) {
+ CopyRow(src_y, dst_y, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+LIBYUV_API
+void CopyPlane_16(const uint16* src_y, int src_stride_y,
+ uint16* dst_y, int dst_stride_y,
+ int width, int height) {
+ int y;
+ void (*CopyRow)(const uint16* src, uint16* dst, int width) = CopyRow_16_C;
+ // Coalesce rows.
+ if (src_stride_y == width &&
+ dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_y = 0;
+ }
+#if defined(HAS_COPYROW_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32)) {
+ CopyRow = CopyRow_16_SSE2;
+ }
+#endif
+#if defined(HAS_COPYROW_16_ERMS)
+ if (TestCpuFlag(kCpuHasERMS)) {
+ CopyRow = CopyRow_16_ERMS;
+ }
+#endif
+#if defined(HAS_COPYROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 32)) {
+ CopyRow = CopyRow_16_NEON;
+ }
+#endif
+#if defined(HAS_COPYROW_16_MIPS)
+ if (TestCpuFlag(kCpuHasMIPS)) {
+ CopyRow = CopyRow_16_MIPS;
+ }
+#endif
+
+ // Copy plane
+ for (y = 0; y < height; ++y) {
+ CopyRow(src_y, dst_y, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+// Copy I422.
+LIBYUV_API
+int I422Copy(const uint8* src_y, int src_stride_y,
+ const uint8* src_u, int src_stride_u,
+ const uint8* src_v, int src_stride_v,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_u, int dst_stride_u,
+ uint8* dst_v, int dst_stride_v,
+ int width, int height) {
+ int halfwidth = (width + 1) >> 1;
+ if (!src_y || !src_u || !src_v ||
+ !dst_y || !dst_u || !dst_v ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_u = src_u + (height - 1) * src_stride_u;
+ src_v = src_v + (height - 1) * src_stride_v;
+ src_stride_y = -src_stride_y;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height);
+ CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height);
+ return 0;
+}
+
+// Copy I444.
+LIBYUV_API
+int I444Copy(const uint8* src_y, int src_stride_y,
+ const uint8* src_u, int src_stride_u,
+ const uint8* src_v, int src_stride_v,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_u, int dst_stride_u,
+ uint8* dst_v, int dst_stride_v,
+ int width, int height) {
+ if (!src_y || !src_u || !src_v ||
+ !dst_y || !dst_u || !dst_v ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_u = src_u + (height - 1) * src_stride_u;
+ src_v = src_v + (height - 1) * src_stride_v;
+ src_stride_y = -src_stride_y;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
+ CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
+ return 0;
+}
+
+// Copy I400.
+LIBYUV_API
+int I400ToI400(const uint8* src_y, int src_stride_y,
+ uint8* dst_y, int dst_stride_y,
+ int width, int height) {
+ if (!src_y || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ return 0;
+}
+
+// Convert I420 to I400.
+LIBYUV_API
+int I420ToI400(const uint8* src_y, int src_stride_y,
+ const uint8* src_u, int src_stride_u,
+ const uint8* src_v, int src_stride_v,
+ uint8* dst_y, int dst_stride_y,
+ int width, int height) {
+ if (!src_y || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ return 0;
+}
+
+// Mirror a plane of data.
+void MirrorPlane(const uint8* src_y, int src_stride_y,
+ uint8* dst_y, int dst_stride_y,
+ int width, int height) {
+ int y;
+ void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C;
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+#if defined(HAS_MIRRORROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MirrorRow = MirrorRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ MirrorRow = MirrorRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ MirrorRow = MirrorRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ MirrorRow = MirrorRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MirrorRow = MirrorRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ MirrorRow = MirrorRow_AVX2;
+ }
+ }
+#endif
+// TODO(fbarchard): Mirror on mips handle unaligned memory.
+#if defined(HAS_MIRRORROW_DSPR2)
+ if (TestCpuFlag(kCpuHasDSPR2) &&
+ IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) &&
+ IS_ALIGNED(dst_y, 4) && IS_ALIGNED(dst_stride_y, 4)) {
+ MirrorRow = MirrorRow_DSPR2;
+ }
+#endif
+
+ // Mirror plane
+ for (y = 0; y < height; ++y) {
+ MirrorRow(src_y, dst_y, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+// Convert YUY2 to I422.
+LIBYUV_API
+int YUY2ToI422(const uint8* src_yuy2, int src_stride_yuy2,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_u, int dst_stride_u,
+ uint8* dst_v, int dst_stride_v,
+ int width, int height) {
+ int y;
+ void (*YUY2ToUV422Row)(const uint8* src_yuy2,
+ uint8* dst_u, uint8* dst_v, int width) =
+ YUY2ToUV422Row_C;
+ void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int width) =
+ YUY2ToYRow_C;
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
+ src_stride_yuy2 = -src_stride_yuy2;
+ }
+ // Coalesce rows.
+ if (src_stride_yuy2 == width * 2 &&
+ dst_stride_y == width &&
+ dst_stride_u * 2 == width &&
+ dst_stride_v * 2 == width) {
+ width *= height;
+ height = 1;
+ src_stride_yuy2 = dst_stride_y = dst_stride_u = dst_stride_v = 0;
+ }
+#if defined(HAS_YUY2TOYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2;
+ YUY2ToYRow = YUY2ToYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToUV422Row = YUY2ToUV422Row_SSE2;
+ YUY2ToYRow = YUY2ToYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ YUY2ToUV422Row = YUY2ToUV422Row_Any_AVX2;
+ YUY2ToYRow = YUY2ToYRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToUV422Row = YUY2ToUV422Row_AVX2;
+ YUY2ToYRow = YUY2ToYRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ YUY2ToYRow = YUY2ToYRow_Any_NEON;
+ if (width >= 16) {
+ YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON;
+ }
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToYRow = YUY2ToYRow_NEON;
+ YUY2ToUV422Row = YUY2ToUV422Row_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width);
+ YUY2ToYRow(src_yuy2, dst_y, width);
+ src_yuy2 += src_stride_yuy2;
+ dst_y += dst_stride_y;
+ dst_u += dst_stride_u;
+ dst_v += dst_stride_v;
+ }
+ return 0;
+}
+
+// Convert UYVY to I422.
+LIBYUV_API
+int UYVYToI422(const uint8* src_uyvy, int src_stride_uyvy,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_u, int dst_stride_u,
+ uint8* dst_v, int dst_stride_v,
+ int width, int height) {
+ int y;
+ void (*UYVYToUV422Row)(const uint8* src_uyvy,
+ uint8* dst_u, uint8* dst_v, int width) =
+ UYVYToUV422Row_C;
+ void (*UYVYToYRow)(const uint8* src_uyvy,
+ uint8* dst_y, int width) = UYVYToYRow_C;
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
+ src_stride_uyvy = -src_stride_uyvy;
+ }
+ // Coalesce rows.
+ if (src_stride_uyvy == width * 2 &&
+ dst_stride_y == width &&
+ dst_stride_u * 2 == width &&
+ dst_stride_v * 2 == width) {
+ width *= height;
+ height = 1;
+ src_stride_uyvy = dst_stride_y = dst_stride_u = dst_stride_v = 0;
+ }
+#if defined(HAS_UYVYTOYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ UYVYToUV422Row = UYVYToUV422Row_Any_SSE2;
+ UYVYToYRow = UYVYToYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ UYVYToUV422Row = UYVYToUV422Row_SSE2;
+ UYVYToYRow = UYVYToYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ UYVYToUV422Row = UYVYToUV422Row_Any_AVX2;
+ UYVYToYRow = UYVYToYRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ UYVYToUV422Row = UYVYToUV422Row_AVX2;
+ UYVYToYRow = UYVYToYRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ UYVYToYRow = UYVYToYRow_Any_NEON;
+ if (width >= 16) {
+ UYVYToUV422Row = UYVYToUV422Row_Any_NEON;
+ }
+ if (IS_ALIGNED(width, 16)) {
+ UYVYToYRow = UYVYToYRow_NEON;
+ UYVYToUV422Row = UYVYToUV422Row_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ UYVYToUV422Row(src_uyvy, dst_u, dst_v, width);
+ UYVYToYRow(src_uyvy, dst_y, width);
+ src_uyvy += src_stride_uyvy;
+ dst_y += dst_stride_y;
+ dst_u += dst_stride_u;
+ dst_v += dst_stride_v;
+ }
+ return 0;
+}
+
+// Mirror I400 with optional flipping
+LIBYUV_API
+int I400Mirror(const uint8* src_y, int src_stride_y,
+ uint8* dst_y, int dst_stride_y,
+ int width, int height) {
+ if (!src_y || !dst_y ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+
+ MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ return 0;
+}
+
+// Mirror I420 with optional flipping
+LIBYUV_API
+int I420Mirror(const uint8* src_y, int src_stride_y,
+ const uint8* src_u, int src_stride_u,
+ const uint8* src_v, int src_stride_v,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_u, int dst_stride_u,
+ uint8* dst_v, int dst_stride_v,
+ int width, int height) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+ if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ halfheight = (height + 1) >> 1;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_u = src_u + (halfheight - 1) * src_stride_u;
+ src_v = src_v + (halfheight - 1) * src_stride_v;
+ src_stride_y = -src_stride_y;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+
+ if (dst_y) {
+ MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ }
+ MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
+ MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
+ return 0;
+}
+
+// ARGB mirror.
+LIBYUV_API
+int ARGBMirror(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) =
+ ARGBMirrorRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+#if defined(HAS_ARGBMIRRORROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBMirrorRow = ARGBMirrorRow_Any_NEON;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBMirrorRow = ARGBMirrorRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMIRRORROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBMirrorRow = ARGBMirrorRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBMirrorRow = ARGBMirrorRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMIRRORROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBMirrorRow = ARGBMirrorRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBMirrorRow = ARGBMirrorRow_AVX2;
+ }
+ }
+#endif
+
+ // Mirror plane
+ for (y = 0; y < height; ++y) {
+ ARGBMirrorRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Get a blender that optimized for the CPU and pixel count.
+// As there are 6 blenders to choose from, the caller should try to use
+// the same blend function for all pixels if possible.
+LIBYUV_API
+ARGBBlendRow GetARGBBlend() {
+ void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
+ uint8* dst_argb, int width) = ARGBBlendRow_C;
+#if defined(HAS_ARGBBLENDROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ARGBBlendRow = ARGBBlendRow_SSSE3;
+ return ARGBBlendRow;
+ }
+#endif
+#if defined(HAS_ARGBBLENDROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBBlendRow = ARGBBlendRow_NEON;
+ }
+#endif
+ return ARGBBlendRow;
+}
+
+// Alpha Blend 2 ARGB images and store to destination.
+LIBYUV_API
+int ARGBBlend(const uint8* src_argb0, int src_stride_argb0,
+ const uint8* src_argb1, int src_stride_argb1,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1,
+ uint8* dst_argb, int width) = GetARGBBlend();
+ if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb0 == width * 4 &&
+ src_stride_argb1 == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
+ }
+
+ for (y = 0; y < height; ++y) {
+ ARGBBlendRow(src_argb0, src_argb1, dst_argb, width);
+ src_argb0 += src_stride_argb0;
+ src_argb1 += src_stride_argb1;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Alpha Blend plane and store to destination.
+LIBYUV_API
+int BlendPlane(const uint8* src_y0, int src_stride_y0,
+ const uint8* src_y1, int src_stride_y1,
+ const uint8* alpha, int alpha_stride,
+ uint8* dst_y, int dst_stride_y,
+ int width, int height) {
+ int y;
+ void (*BlendPlaneRow)(const uint8* src0, const uint8* src1,
+ const uint8* alpha, uint8* dst, int width) = BlendPlaneRow_C;
+ if (!src_y0 || !src_y1 || !alpha || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+
+ // Coalesce rows for Y plane.
+ if (src_stride_y0 == width &&
+ src_stride_y1 == width &&
+ alpha_stride == width &&
+ dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y0 = src_stride_y1 = alpha_stride = dst_stride_y = 0;
+ }
+
+#if defined(HAS_BLENDPLANEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ BlendPlaneRow = BlendPlaneRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ BlendPlaneRow = BlendPlaneRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_BLENDPLANEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ BlendPlaneRow = BlendPlaneRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ BlendPlaneRow = BlendPlaneRow_AVX2;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ BlendPlaneRow(src_y0, src_y1, alpha, dst_y, width);
+ src_y0 += src_stride_y0;
+ src_y1 += src_stride_y1;
+ alpha += alpha_stride;
+ dst_y += dst_stride_y;
+ }
+ return 0;
+}
+
+#define MAXTWIDTH 2048
+// Alpha Blend YUV images and store to destination.
+LIBYUV_API
+int I420Blend(const uint8* src_y0, int src_stride_y0,
+ const uint8* src_u0, int src_stride_u0,
+ const uint8* src_v0, int src_stride_v0,
+ const uint8* src_y1, int src_stride_y1,
+ const uint8* src_u1, int src_stride_u1,
+ const uint8* src_v1, int src_stride_v1,
+ const uint8* alpha, int alpha_stride,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_u, int dst_stride_u,
+ uint8* dst_v, int dst_stride_v,
+ int width, int height) {
+ int y;
+ // Half width/height for UV.
+ int halfwidth = (width + 1) >> 1;
+ void (*BlendPlaneRow)(const uint8* src0, const uint8* src1,
+ const uint8* alpha, uint8* dst, int width) = BlendPlaneRow_C;
+ void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride,
+ uint8* dst_ptr, int dst_width) = ScaleRowDown2Box_C;
+ if (!src_y0 || !src_u0 || !src_v0 || !src_y1 || !src_u1 || !src_v1 ||
+ !alpha || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+
+ // Blend Y plane.
+ BlendPlane(src_y0, src_stride_y0,
+ src_y1, src_stride_y1,
+ alpha, alpha_stride,
+ dst_y, dst_stride_y,
+ width, height);
+
+#if defined(HAS_BLENDPLANEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ BlendPlaneRow = BlendPlaneRow_Any_SSSE3;
+ if (IS_ALIGNED(halfwidth, 8)) {
+ BlendPlaneRow = BlendPlaneRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_BLENDPLANEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ BlendPlaneRow = BlendPlaneRow_Any_AVX2;
+ if (IS_ALIGNED(halfwidth, 32)) {
+ BlendPlaneRow = BlendPlaneRow_AVX2;
+ }
+ }
+#endif
+ if (!IS_ALIGNED(width, 2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Odd_C;
+ }
+#if defined(HAS_SCALEROWDOWN2_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Odd_NEON;
+ if (IS_ALIGNED(width, 2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Any_NEON;
+ if (IS_ALIGNED(halfwidth, 16)) {
+ ScaleRowDown2 = ScaleRowDown2Box_NEON;
+ }
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN2_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Odd_SSSE3;
+ if (IS_ALIGNED(width, 2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Any_SSSE3;
+ if (IS_ALIGNED(halfwidth, 16)) {
+ ScaleRowDown2 = ScaleRowDown2Box_SSSE3;
+ }
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN2_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Odd_AVX2;
+ if (IS_ALIGNED(width, 2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Any_AVX2;
+ if (IS_ALIGNED(halfwidth, 32)) {
+ ScaleRowDown2 = ScaleRowDown2Box_AVX2;
+ }
+ }
+ }
+#endif
+
+ // Row buffer for intermediate alpha pixels.
+ align_buffer_64(halfalpha, halfwidth);
+ for (y = 0; y < height; y += 2) {
+ // last row of odd height image use 1 row of alpha instead of 2.
+ if (y == (height - 1)) {
+ alpha_stride = 0;
+ }
+ // Subsample 2 rows of UV to half width and half height.
+ ScaleRowDown2(alpha, alpha_stride, halfalpha, halfwidth);
+ alpha += alpha_stride * 2;
+ BlendPlaneRow(src_u0, src_u1, halfalpha, dst_u, halfwidth);
+ BlendPlaneRow(src_v0, src_v1, halfalpha, dst_v, halfwidth);
+ src_u0 += src_stride_u0;
+ src_u1 += src_stride_u1;
+ dst_u += dst_stride_u;
+ src_v0 += src_stride_v0;
+ src_v1 += src_stride_v1;
+ dst_v += dst_stride_v;
+ }
+ free_aligned_buffer_64(halfalpha);
+ return 0;
+}
+
+// Multiply 2 ARGB images and store to destination.
+LIBYUV_API
+int ARGBMultiply(const uint8* src_argb0, int src_stride_argb0,
+ const uint8* src_argb1, int src_stride_argb1,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBMultiplyRow)(const uint8* src0, const uint8* src1, uint8* dst,
+ int width) = ARGBMultiplyRow_C;
+ if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb0 == width * 4 &&
+ src_stride_argb1 == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBMULTIPLYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMULTIPLYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMULTIPLYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_NEON;
+ }
+ }
+#endif
+
+ // Multiply plane
+ for (y = 0; y < height; ++y) {
+ ARGBMultiplyRow(src_argb0, src_argb1, dst_argb, width);
+ src_argb0 += src_stride_argb0;
+ src_argb1 += src_stride_argb1;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Add 2 ARGB images and store to destination.
+LIBYUV_API
+int ARGBAdd(const uint8* src_argb0, int src_stride_argb0,
+ const uint8* src_argb1, int src_stride_argb1,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBAddRow)(const uint8* src0, const uint8* src1, uint8* dst,
+ int width) = ARGBAddRow_C;
+ if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb0 == width * 4 &&
+ src_stride_argb1 == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBADDROW_SSE2) && (defined(_MSC_VER) && !defined(__clang__))
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBAddRow = ARGBAddRow_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBADDROW_SSE2) && !(defined(_MSC_VER) && !defined(__clang__))
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBAddRow = ARGBAddRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBAddRow = ARGBAddRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBADDROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBAddRow = ARGBAddRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAddRow = ARGBAddRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBADDROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBAddRow = ARGBAddRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAddRow = ARGBAddRow_NEON;
+ }
+ }
+#endif
+
+ // Add plane
+ for (y = 0; y < height; ++y) {
+ ARGBAddRow(src_argb0, src_argb1, dst_argb, width);
+ src_argb0 += src_stride_argb0;
+ src_argb1 += src_stride_argb1;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Subtract 2 ARGB images and store to destination.
+LIBYUV_API
+int ARGBSubtract(const uint8* src_argb0, int src_stride_argb0,
+ const uint8* src_argb1, int src_stride_argb1,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBSubtractRow)(const uint8* src0, const uint8* src1, uint8* dst,
+ int width) = ARGBSubtractRow_C;
+ if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb0 == width * 4 &&
+ src_stride_argb1 == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBSUBTRACTROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBSubtractRow = ARGBSubtractRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBSubtractRow = ARGBSubtractRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSUBTRACTROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBSubtractRow = ARGBSubtractRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBSubtractRow = ARGBSubtractRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSUBTRACTROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBSubtractRow = ARGBSubtractRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBSubtractRow = ARGBSubtractRow_NEON;
+ }
+ }
+#endif
+
+ // Subtract plane
+ for (y = 0; y < height; ++y) {
+ ARGBSubtractRow(src_argb0, src_argb1, dst_argb, width);
+ src_argb0 += src_stride_argb0;
+ src_argb1 += src_stride_argb1;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+// Convert I422 to RGBA with matrix
+static int I422ToRGBAMatrix(const uint8* src_y, int src_stride_y,
+ const uint8* src_u, int src_stride_u,
+ const uint8* src_v, int src_stride_v,
+ uint8* dst_rgba, int dst_stride_rgba,
+ const struct YuvConstants* yuvconstants,
+ int width, int height) {
+ int y;
+ void (*I422ToRGBARow)(const uint8* y_buf,
+ const uint8* u_buf,
+ const uint8* v_buf,
+ uint8* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) = I422ToRGBARow_C;
+ if (!src_y || !src_u || !src_v || !dst_rgba ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_rgba = dst_rgba + (height - 1) * dst_stride_rgba;
+ dst_stride_rgba = -dst_stride_rgba;
+ }
+#if defined(HAS_I422TORGBAROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ I422ToRGBARow = I422ToRGBARow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ I422ToRGBARow = I422ToRGBARow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_I422TORGBAROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ I422ToRGBARow = I422ToRGBARow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ I422ToRGBARow = I422ToRGBARow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_I422TORGBAROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ I422ToRGBARow = I422ToRGBARow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ I422ToRGBARow = I422ToRGBARow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_I422TORGBAROW_DSPR2)
+ if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) &&
+ IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) &&
+ IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) &&
+ IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) &&
+ IS_ALIGNED(dst_rgba, 4) && IS_ALIGNED(dst_stride_rgba, 4)) {
+ I422ToRGBARow = I422ToRGBARow_DSPR2;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ I422ToRGBARow(src_y, src_u, src_v, dst_rgba, yuvconstants, width);
+ dst_rgba += dst_stride_rgba;
+ src_y += src_stride_y;
+ src_u += src_stride_u;
+ src_v += src_stride_v;
+ }
+ return 0;
+}
+
+// Convert I422 to RGBA.
+LIBYUV_API
+int I422ToRGBA(const uint8* src_y, int src_stride_y,
+ const uint8* src_u, int src_stride_u,
+ const uint8* src_v, int src_stride_v,
+ uint8* dst_rgba, int dst_stride_rgba,
+ int width, int height) {
+ return I422ToRGBAMatrix(src_y, src_stride_y,
+ src_u, src_stride_u,
+ src_v, src_stride_v,
+ dst_rgba, dst_stride_rgba,
+ &kYuvI601Constants,
+ width, height);
+}
+
+// Convert I422 to BGRA.
+LIBYUV_API
+int I422ToBGRA(const uint8* src_y, int src_stride_y,
+ const uint8* src_u, int src_stride_u,
+ const uint8* src_v, int src_stride_v,
+ uint8* dst_bgra, int dst_stride_bgra,
+ int width, int height) {
+ return I422ToRGBAMatrix(src_y, src_stride_y,
+ src_v, src_stride_v, // Swap U and V
+ src_u, src_stride_u,
+ dst_bgra, dst_stride_bgra,
+ &kYvuI601Constants, // Use Yvu matrix
+ width, height);
+}
+
+// Convert NV12 to RGB565.
+LIBYUV_API
+int NV12ToRGB565(const uint8* src_y, int src_stride_y,
+ const uint8* src_uv, int src_stride_uv,
+ uint8* dst_rgb565, int dst_stride_rgb565,
+ int width, int height) {
+ int y;
+ void (*NV12ToRGB565Row)(const uint8* y_buf,
+ const uint8* uv_buf,
+ uint8* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) = NV12ToRGB565Row_C;
+ if (!src_y || !src_uv || !dst_rgb565 ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565;
+ dst_stride_rgb565 = -dst_stride_rgb565;
+ }
+#if defined(HAS_NV12TORGB565ROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ NV12ToRGB565Row = NV12ToRGB565Row_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ NV12ToRGB565Row = NV12ToRGB565Row_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_NV12TORGB565ROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ NV12ToRGB565Row = NV12ToRGB565Row_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ NV12ToRGB565Row = NV12ToRGB565Row_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_NV12TORGB565ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ NV12ToRGB565Row = NV12ToRGB565Row_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ NV12ToRGB565Row = NV12ToRGB565Row_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ NV12ToRGB565Row(src_y, src_uv, dst_rgb565, &kYuvI601Constants, width);
+ dst_rgb565 += dst_stride_rgb565;
+ src_y += src_stride_y;
+ if (y & 1) {
+ src_uv += src_stride_uv;
+ }
+ }
+ return 0;
+}
+
+// Convert RAW to RGB24.
+LIBYUV_API
+int RAWToRGB24(const uint8* src_raw, int src_stride_raw,
+ uint8* dst_rgb24, int dst_stride_rgb24,
+ int width, int height) {
+ int y;
+ void (*RAWToRGB24Row)(const uint8* src_rgb, uint8* dst_rgb24, int width) =
+ RAWToRGB24Row_C;
+ if (!src_raw || !dst_rgb24 ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_raw = src_raw + (height - 1) * src_stride_raw;
+ src_stride_raw = -src_stride_raw;
+ }
+ // Coalesce rows.
+ if (src_stride_raw == width * 3 &&
+ dst_stride_rgb24 == width * 3) {
+ width *= height;
+ height = 1;
+ src_stride_raw = dst_stride_rgb24 = 0;
+ }
+#if defined(HAS_RAWTORGB24ROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ RAWToRGB24Row = RAWToRGB24Row_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ RAWToRGB24Row = RAWToRGB24Row_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_RAWTORGB24ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ RAWToRGB24Row = RAWToRGB24Row_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ RAWToRGB24Row = RAWToRGB24Row_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ RAWToRGB24Row(src_raw, dst_rgb24, width);
+ src_raw += src_stride_raw;
+ dst_rgb24 += dst_stride_rgb24;
+ }
+ return 0;
+}
+
+LIBYUV_API
+void SetPlane(uint8* dst_y, int dst_stride_y,
+ int width, int height,
+ uint32 value) {
+ int y;
+ void (*SetRow)(uint8* dst, uint8 value, int width) = SetRow_C;
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+ // Coalesce rows.
+ if (dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ dst_stride_y = 0;
+ }
+#if defined(HAS_SETROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SetRow = SetRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SetRow = SetRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SETROW_X86)
+ if (TestCpuFlag(kCpuHasX86)) {
+ SetRow = SetRow_Any_X86;
+ if (IS_ALIGNED(width, 4)) {
+ SetRow = SetRow_X86;
+ }
+ }
+#endif
+#if defined(HAS_SETROW_ERMS)
+ if (TestCpuFlag(kCpuHasERMS)) {
+ SetRow = SetRow_ERMS;
+ }
+#endif
+
+ // Set plane
+ for (y = 0; y < height; ++y) {
+ SetRow(dst_y, value, width);
+ dst_y += dst_stride_y;
+ }
+}
+
+// Draw a rectangle into I420
+LIBYUV_API
+int I420Rect(uint8* dst_y, int dst_stride_y,
+ uint8* dst_u, int dst_stride_u,
+ uint8* dst_v, int dst_stride_v,
+ int x, int y,
+ int width, int height,
+ int value_y, int value_u, int value_v) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+ uint8* start_y = dst_y + y * dst_stride_y + x;
+ uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2);
+ uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2);
+ if (!dst_y || !dst_u || !dst_v ||
+ width <= 0 || height == 0 ||
+ x < 0 || y < 0 ||
+ value_y < 0 || value_y > 255 ||
+ value_u < 0 || value_u > 255 ||
+ value_v < 0 || value_v > 255) {
+ return -1;
+ }
+
+ SetPlane(start_y, dst_stride_y, width, height, value_y);
+ SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u);
+ SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v);
+ return 0;
+}
+
+// Draw a rectangle into ARGB
+LIBYUV_API
+int ARGBRect(uint8* dst_argb, int dst_stride_argb,
+ int dst_x, int dst_y,
+ int width, int height,
+ uint32 value) {
+ int y;
+ void (*ARGBSetRow)(uint8* dst_argb, uint32 value, int width) = ARGBSetRow_C;
+ if (!dst_argb ||
+ width <= 0 || height == 0 ||
+ dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ dst_argb += dst_y * dst_stride_argb + dst_x * 4;
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+
+#if defined(HAS_ARGBSETROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBSetRow = ARGBSetRow_Any_NEON;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBSetRow = ARGBSetRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSETROW_X86)
+ if (TestCpuFlag(kCpuHasX86)) {
+ ARGBSetRow = ARGBSetRow_X86;
+ }
+#endif
+
+ // Set plane
+ for (y = 0; y < height; ++y) {
+ ARGBSetRow(dst_argb, value, width);
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Convert unattentuated ARGB to preattenuated ARGB.
+// An unattenutated ARGB alpha blend uses the formula
+// p = a * f + (1 - a) * b
+// where
+// p is output pixel
+// f is foreground pixel
+// b is background pixel
+// a is alpha value from foreground pixel
+// An preattenutated ARGB alpha blend uses the formula
+// p = f + (1 - a) * b
+// where
+// f is foreground pixel premultiplied by alpha
+
+LIBYUV_API
+int ARGBAttenuate(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb,
+ int width) = ARGBAttenuateRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBATTENUATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_ARGBATTENUATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBATTENUATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBAttenuateRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Convert preattentuated ARGB to unattenuated ARGB.
+LIBYUV_API
+int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb,
+ int width) = ARGBUnattenuateRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBUNATTENUATEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBUnattenuateRow = ARGBUnattenuateRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBUNATTENUATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBUnattenuateRow = ARGBUnattenuateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBUnattenuateRow = ARGBUnattenuateRow_AVX2;
+ }
+ }
+#endif
+// TODO(fbarchard): Neon version.
+
+ for (y = 0; y < height; ++y) {
+ ARGBUnattenuateRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Convert ARGB to Grayed ARGB.
+LIBYUV_API
+int ARGBGrayTo(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb,
+ int width) = ARGBGrayRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBGRAYROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_SSSE3;
+ }
+#endif
+#if defined(HAS_ARGBGRAYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_NEON;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBGrayRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Make a rectangle of ARGB gray scale.
+LIBYUV_API
+int ARGBGray(uint8* dst_argb, int dst_stride_argb,
+ int dst_x, int dst_y,
+ int width, int height) {
+ int y;
+ void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb,
+ int width) = ARGBGrayRow_C;
+ uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBGRAYROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_SSSE3;
+ }
+#endif
+#if defined(HAS_ARGBGRAYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_NEON;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ ARGBGrayRow(dst, dst, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Make a rectangle of ARGB Sepia tone.
+LIBYUV_API
+int ARGBSepia(uint8* dst_argb, int dst_stride_argb,
+ int dst_x, int dst_y, int width, int height) {
+ int y;
+ void (*ARGBSepiaRow)(uint8* dst_argb, int width) = ARGBSepiaRow_C;
+ uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBSEPIAROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
+ ARGBSepiaRow = ARGBSepiaRow_SSSE3;
+ }
+#endif
+#if defined(HAS_ARGBSEPIAROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBSepiaRow = ARGBSepiaRow_NEON;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ ARGBSepiaRow(dst, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Apply a 4x4 matrix to each ARGB pixel.
+// Note: Normally for shading, but can be used to swizzle or invert.
+LIBYUV_API
+int ARGBColorMatrix(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ const int8* matrix_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBColorMatrixRow)(const uint8* src_argb, uint8* dst_argb,
+ const int8* matrix_argb, int width) = ARGBColorMatrixRow_C;
+ if (!src_argb || !dst_argb || !matrix_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBCOLORMATRIXROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
+ ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3;
+ }
+#endif
+#if defined(HAS_ARGBCOLORMATRIXROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBColorMatrixRow = ARGBColorMatrixRow_NEON;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ ARGBColorMatrixRow(src_argb, dst_argb, matrix_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Apply a 4x3 matrix to each ARGB pixel.
+// Deprecated.
+LIBYUV_API
+int RGBColorMatrix(uint8* dst_argb, int dst_stride_argb,
+ const int8* matrix_rgb,
+ int dst_x, int dst_y, int width, int height) {
+ SIMD_ALIGNED(int8 matrix_argb[16]);
+ uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || !matrix_rgb || width <= 0 || height <= 0 ||
+ dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+
+ // Convert 4x3 7 bit matrix to 4x4 6 bit matrix.
+ matrix_argb[0] = matrix_rgb[0] / 2;
+ matrix_argb[1] = matrix_rgb[1] / 2;
+ matrix_argb[2] = matrix_rgb[2] / 2;
+ matrix_argb[3] = matrix_rgb[3] / 2;
+ matrix_argb[4] = matrix_rgb[4] / 2;
+ matrix_argb[5] = matrix_rgb[5] / 2;
+ matrix_argb[6] = matrix_rgb[6] / 2;
+ matrix_argb[7] = matrix_rgb[7] / 2;
+ matrix_argb[8] = matrix_rgb[8] / 2;
+ matrix_argb[9] = matrix_rgb[9] / 2;
+ matrix_argb[10] = matrix_rgb[10] / 2;
+ matrix_argb[11] = matrix_rgb[11] / 2;
+ matrix_argb[14] = matrix_argb[13] = matrix_argb[12] = 0;
+ matrix_argb[15] = 64; // 1.0
+
+ return ARGBColorMatrix((const uint8*)(dst), dst_stride_argb,
+ dst, dst_stride_argb,
+ &matrix_argb[0], width, height);
+}
+
+// Apply a color table each ARGB pixel.
+// Table contains 256 ARGB values.
+LIBYUV_API
+int ARGBColorTable(uint8* dst_argb, int dst_stride_argb,
+ const uint8* table_argb,
+ int dst_x, int dst_y, int width, int height) {
+ int y;
+ void (*ARGBColorTableRow)(uint8* dst_argb, const uint8* table_argb,
+ int width) = ARGBColorTableRow_C;
+ uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || !table_argb || width <= 0 || height <= 0 ||
+ dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBCOLORTABLEROW_X86)
+ if (TestCpuFlag(kCpuHasX86)) {
+ ARGBColorTableRow = ARGBColorTableRow_X86;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ ARGBColorTableRow(dst, table_argb, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Apply a color table each ARGB pixel but preserve destination alpha.
+// Table contains 256 ARGB values.
+LIBYUV_API
+int RGBColorTable(uint8* dst_argb, int dst_stride_argb,
+ const uint8* table_argb,
+ int dst_x, int dst_y, int width, int height) {
+ int y;
+ void (*RGBColorTableRow)(uint8* dst_argb, const uint8* table_argb,
+ int width) = RGBColorTableRow_C;
+ uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || !table_argb || width <= 0 || height <= 0 ||
+ dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_RGBCOLORTABLEROW_X86)
+ if (TestCpuFlag(kCpuHasX86)) {
+ RGBColorTableRow = RGBColorTableRow_X86;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ RGBColorTableRow(dst, table_argb, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// ARGBQuantize is used to posterize art.
+// e.g. rgb / qvalue * qvalue + qvalue / 2
+// But the low levels implement efficiently with 3 parameters, and could be
+// used for other high level operations.
+// dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset;
+// where scale is 1 / interval_size as a fixed point value.
+// The divide is replaces with a multiply by reciprocal fixed point multiply.
+// Caveat - although SSE2 saturates, the C function does not and should be used
+// with care if doing anything but quantization.
+LIBYUV_API
+int ARGBQuantize(uint8* dst_argb, int dst_stride_argb,
+ int scale, int interval_size, int interval_offset,
+ int dst_x, int dst_y, int width, int height) {
+ int y;
+ void (*ARGBQuantizeRow)(uint8* dst_argb, int scale, int interval_size,
+ int interval_offset, int width) = ARGBQuantizeRow_C;
+ uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 ||
+ interval_size < 1 || interval_size > 255) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBQUANTIZEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
+ ARGBQuantizeRow = ARGBQuantizeRow_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBQUANTIZEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBQuantizeRow = ARGBQuantizeRow_NEON;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Computes table of cumulative sum for image where the value is the sum
+// of all values above and to the left of the entry. Used by ARGBBlur.
+LIBYUV_API
+int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb,
+ int32* dst_cumsum, int dst_stride32_cumsum,
+ int width, int height) {
+ int y;
+ void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum,
+ const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C;
+ int32* previous_cumsum = dst_cumsum;
+ if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) {
+ return -1;
+ }
+#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
+ }
+#endif
+ memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel.
+ for (y = 0; y < height; ++y) {
+ ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width);
+ previous_cumsum = dst_cumsum;
+ dst_cumsum += dst_stride32_cumsum;
+ src_argb += src_stride_argb;
+ }
+ return 0;
+}
+
+// Blur ARGB image.
+// Caller should allocate CumulativeSum table of width * height * 16 bytes
+// aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory
+// as the buffer is treated as circular.
+LIBYUV_API
+int ARGBBlur(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int32* dst_cumsum, int dst_stride32_cumsum,
+ int width, int height, int radius) {
+ int y;
+ void (*ComputeCumulativeSumRow)(const uint8 *row, int32 *cumsum,
+ const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C;
+ void (*CumulativeSumToAverageRow)(const int32* topleft, const int32* botleft,
+ int width, int area, uint8* dst, int count) = CumulativeSumToAverageRow_C;
+ int32* cumsum_bot_row;
+ int32* max_cumsum_bot_row;
+ int32* cumsum_top_row;
+
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ if (radius > height) {
+ radius = height;
+ }
+ if (radius > (width / 2 - 1)) {
+ radius = width / 2 - 1;
+ }
+ if (radius <= 0) {
+ return -1;
+ }
+#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
+ CumulativeSumToAverageRow = CumulativeSumToAverageRow_SSE2;
+ }
+#endif
+ // Compute enough CumulativeSum for first row to be blurred. After this
+ // one row of CumulativeSum is updated at a time.
+ ARGBComputeCumulativeSum(src_argb, src_stride_argb,
+ dst_cumsum, dst_stride32_cumsum,
+ width, radius);
+
+ src_argb = src_argb + radius * src_stride_argb;
+ cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum];
+
+ max_cumsum_bot_row = &dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum];
+ cumsum_top_row = &dst_cumsum[0];
+
+ for (y = 0; y < height; ++y) {
+ int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0;
+ int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1);
+ int area = radius * (bot_y - top_y);
+ int boxwidth = radius * 4;
+ int x;
+ int n;
+
+ // Increment cumsum_top_row pointer with circular buffer wrap around.
+ if (top_y) {
+ cumsum_top_row += dst_stride32_cumsum;
+ if (cumsum_top_row >= max_cumsum_bot_row) {
+ cumsum_top_row = dst_cumsum;
+ }
+ }
+ // Increment cumsum_bot_row pointer with circular buffer wrap around and
+ // then fill in a row of CumulativeSum.
+ if ((y + radius) < height) {
+ const int32* prev_cumsum_bot_row = cumsum_bot_row;
+ cumsum_bot_row += dst_stride32_cumsum;
+ if (cumsum_bot_row >= max_cumsum_bot_row) {
+ cumsum_bot_row = dst_cumsum;
+ }
+ ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row,
+ width);
+ src_argb += src_stride_argb;
+ }
+
+ // Left clipped.
+ for (x = 0; x < radius + 1; ++x) {
+ CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row,
+ boxwidth, area, &dst_argb[x * 4], 1);
+ area += (bot_y - top_y);
+ boxwidth += 4;
+ }
+
+ // Middle unclipped.
+ n = (width - 1) - radius - x + 1;
+ CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row,
+ boxwidth, area, &dst_argb[x * 4], n);
+
+ // Right clipped.
+ for (x += n; x <= width - 1; ++x) {
+ area -= (bot_y - top_y);
+ boxwidth -= 4;
+ CumulativeSumToAverageRow(cumsum_top_row + (x - radius - 1) * 4,
+ cumsum_bot_row + (x - radius - 1) * 4,
+ boxwidth, area, &dst_argb[x * 4], 1);
+ }
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Multiply ARGB image by a specified ARGB value.
+LIBYUV_API
+int ARGBShade(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height, uint32 value) {
+ int y;
+ void (*ARGBShadeRow)(const uint8* src_argb, uint8* dst_argb,
+ int width, uint32 value) = ARGBShadeRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0 || value == 0u) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBSHADEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
+ ARGBShadeRow = ARGBShadeRow_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBSHADEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBShadeRow = ARGBShadeRow_NEON;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBShadeRow(src_argb, dst_argb, width, value);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Interpolate 2 planes by specified amount (0 to 255).
+LIBYUV_API
+int InterpolatePlane(const uint8* src0, int src_stride0,
+ const uint8* src1, int src_stride1,
+ uint8* dst, int dst_stride,
+ int width, int height, int interpolation) {
+ int y;
+ void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+ if (!src0 || !src1 || !dst || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst = dst + (height - 1) * dst_stride;
+ dst_stride = -dst_stride;
+ }
+ // Coalesce rows.
+ if (src_stride0 == width &&
+ src_stride1 == width &&
+ dst_stride == width) {
+ width *= height;
+ height = 1;
+ src_stride0 = src_stride1 = dst_stride = 0;
+ }
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_DSPR2)
+ if (TestCpuFlag(kCpuHasDSPR2) &&
+ IS_ALIGNED(src0, 4) && IS_ALIGNED(src_stride0, 4) &&
+ IS_ALIGNED(src1, 4) && IS_ALIGNED(src_stride1, 4) &&
+ IS_ALIGNED(dst, 4) && IS_ALIGNED(dst_stride, 4) &&
+ IS_ALIGNED(width, 4)) {
+ InterpolateRow = InterpolateRow_DSPR2;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ InterpolateRow(dst, src0, src1 - src0, width, interpolation);
+ src0 += src_stride0;
+ src1 += src_stride1;
+ dst += dst_stride;
+ }
+ return 0;
+}
+
+// Interpolate 2 ARGB images by specified amount (0 to 255).
+LIBYUV_API
+int ARGBInterpolate(const uint8* src_argb0, int src_stride_argb0,
+ const uint8* src_argb1, int src_stride_argb1,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height, int interpolation) {
+ return InterpolatePlane(src_argb0, src_stride_argb0,
+ src_argb1, src_stride_argb1,
+ dst_argb, dst_stride_argb,
+ width * 4, height, interpolation);
+}
+
+// Interpolate 2 YUV images by specified amount (0 to 255).
+LIBYUV_API
+int I420Interpolate(const uint8* src0_y, int src0_stride_y,
+ const uint8* src0_u, int src0_stride_u,
+ const uint8* src0_v, int src0_stride_v,
+ const uint8* src1_y, int src1_stride_y,
+ const uint8* src1_u, int src1_stride_u,
+ const uint8* src1_v, int src1_stride_v,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_u, int dst_stride_u,
+ uint8* dst_v, int dst_stride_v,
+ int width, int height, int interpolation) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+ if (!src0_y || !src0_u || !src0_v ||
+ !src1_y || !src1_u || !src1_v ||
+ !dst_y || !dst_u || !dst_v ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ InterpolatePlane(src0_y, src0_stride_y,
+ src1_y, src1_stride_y,
+ dst_y, dst_stride_y,
+ width, height, interpolation);
+ InterpolatePlane(src0_u, src0_stride_u,
+ src1_u, src1_stride_u,
+ dst_u, dst_stride_u,
+ halfwidth, halfheight, interpolation);
+ InterpolatePlane(src0_v, src0_stride_v,
+ src1_v, src1_stride_v,
+ dst_v, dst_stride_v,
+ halfwidth, halfheight, interpolation);
+ return 0;
+}
+
+// Shuffle ARGB channel order. e.g. BGRA to ARGB.
+LIBYUV_API
+int ARGBShuffle(const uint8* src_bgra, int src_stride_bgra,
+ uint8* dst_argb, int dst_stride_argb,
+ const uint8* shuffler, int width, int height) {
+ int y;
+ void (*ARGBShuffleRow)(const uint8* src_bgra, uint8* dst_argb,
+ const uint8* shuffler, int width) = ARGBShuffleRow_C;
+ if (!src_bgra || !dst_argb ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_bgra = src_bgra + (height - 1) * src_stride_bgra;
+ src_stride_bgra = -src_stride_bgra;
+ }
+ // Coalesce rows.
+ if (src_stride_bgra == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_bgra = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBSHUFFLEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBShuffleRow = ARGBShuffleRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBShuffleRow = ARGBShuffleRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBShuffleRow = ARGBShuffleRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_NEON;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBShuffleRow = ARGBShuffleRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBShuffleRow(src_bgra, dst_argb, shuffler, width);
+ src_bgra += src_stride_bgra;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Sobel ARGB effect.
+static int ARGBSobelize(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height,
+ void (*SobelRow)(const uint8* src_sobelx,
+ const uint8* src_sobely,
+ uint8* dst, int width)) {
+ int y;
+ void (*ARGBToYJRow)(const uint8* src_argb, uint8* dst_g, int width) =
+ ARGBToYJRow_C;
+ void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1,
+ uint8* dst_sobely, int width) = SobelYRow_C;
+ void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1,
+ const uint8* src_y2, uint8* dst_sobely, int width) =
+ SobelXRow_C;
+ const int kEdge = 16; // Extra pixels at start of row for extrude/align.
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+
+#if defined(HAS_ARGBTOYJROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ARGBToYJRow = ARGBToYJRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBToYJRow = ARGBToYJRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_ARGBTOYJROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBToYJRow = ARGBToYJRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ ARGBToYJRow = ARGBToYJRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBTOYJROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBToYJRow = ARGBToYJRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBToYJRow = ARGBToYJRow_NEON;
+ }
+ }
+#endif
+
+#if defined(HAS_SOBELYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelYRow = SobelYRow_SSE2;
+ }
+#endif
+#if defined(HAS_SOBELYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelYRow = SobelYRow_NEON;
+ }
+#endif
+#if defined(HAS_SOBELXROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelXRow = SobelXRow_SSE2;
+ }
+#endif
+#if defined(HAS_SOBELXROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelXRow = SobelXRow_NEON;
+ }
+#endif
+ {
+ // 3 rows with edges before/after.
+ const int kRowSize = (width + kEdge + 31) & ~31;
+ align_buffer_64(rows, kRowSize * 2 + (kEdge + kRowSize * 3 + kEdge));
+ uint8* row_sobelx = rows;
+ uint8* row_sobely = rows + kRowSize;
+ uint8* row_y = rows + kRowSize * 2;
+
+ // Convert first row.
+ uint8* row_y0 = row_y + kEdge;
+ uint8* row_y1 = row_y0 + kRowSize;
+ uint8* row_y2 = row_y1 + kRowSize;
+ ARGBToYJRow(src_argb, row_y0, width);
+ row_y0[-1] = row_y0[0];
+ memset(row_y0 + width, row_y0[width - 1], 16); // Extrude 16 for valgrind.
+ ARGBToYJRow(src_argb, row_y1, width);
+ row_y1[-1] = row_y1[0];
+ memset(row_y1 + width, row_y1[width - 1], 16);
+ memset(row_y2 + width, 0, 16);
+
+ for (y = 0; y < height; ++y) {
+ // Convert next row of ARGB to G.
+ if (y < (height - 1)) {
+ src_argb += src_stride_argb;
+ }
+ ARGBToYJRow(src_argb, row_y2, width);
+ row_y2[-1] = row_y2[0];
+ row_y2[width] = row_y2[width - 1];
+
+ SobelXRow(row_y0 - 1, row_y1 - 1, row_y2 - 1, row_sobelx, width);
+ SobelYRow(row_y0 - 1, row_y2 - 1, row_sobely, width);
+ SobelRow(row_sobelx, row_sobely, dst_argb, width);
+
+ // Cycle thru circular queue of 3 row_y buffers.
+ {
+ uint8* row_yt = row_y0;
+ row_y0 = row_y1;
+ row_y1 = row_y2;
+ row_y2 = row_yt;
+ }
+
+ dst_argb += dst_stride_argb;
+ }
+ free_aligned_buffer_64(rows);
+ }
+ return 0;
+}
+
+// Sobel ARGB effect.
+LIBYUV_API
+int ARGBSobel(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely,
+ uint8* dst_argb, int width) = SobelRow_C;
+#if defined(HAS_SOBELROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelRow = SobelRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SobelRow = SobelRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SOBELROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelRow = SobelRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ SobelRow = SobelRow_NEON;
+ }
+ }
+#endif
+ return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
+ width, height, SobelRow);
+}
+
+// Sobel ARGB effect with planar output.
+LIBYUV_API
+int ARGBSobelToPlane(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_y, int dst_stride_y,
+ int width, int height) {
+ void (*SobelToPlaneRow)(const uint8* src_sobelx, const uint8* src_sobely,
+ uint8* dst_, int width) = SobelToPlaneRow_C;
+#if defined(HAS_SOBELTOPLANEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelToPlaneRow = SobelToPlaneRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SobelToPlaneRow = SobelToPlaneRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SOBELTOPLANEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelToPlaneRow = SobelToPlaneRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SobelToPlaneRow = SobelToPlaneRow_NEON;
+ }
+ }
+#endif
+ return ARGBSobelize(src_argb, src_stride_argb, dst_y, dst_stride_y,
+ width, height, SobelToPlaneRow);
+}
+
+// SobelXY ARGB effect.
+// Similar to Sobel, but also stores Sobel X in R and Sobel Y in B. G = Sobel.
+LIBYUV_API
+int ARGBSobelXY(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ void (*SobelXYRow)(const uint8* src_sobelx, const uint8* src_sobely,
+ uint8* dst_argb, int width) = SobelXYRow_C;
+#if defined(HAS_SOBELXYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelXYRow = SobelXYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SobelXYRow = SobelXYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SOBELXYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelXYRow = SobelXYRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ SobelXYRow = SobelXYRow_NEON;
+ }
+ }
+#endif
+ return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
+ width, height, SobelXYRow);
+}
+
+// Apply a 4x4 polynomial to each ARGB pixel.
+LIBYUV_API
+int ARGBPolynomial(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ const float* poly,
+ int width, int height) {
+ int y;
+ void (*ARGBPolynomialRow)(const uint8* src_argb,
+ uint8* dst_argb, const float* poly,
+ int width) = ARGBPolynomialRow_C;
+ if (!src_argb || !dst_argb || !poly || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBPOLYNOMIALROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 2)) {
+ ARGBPolynomialRow = ARGBPolynomialRow_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBPOLYNOMIALROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2) && TestCpuFlag(kCpuHasFMA3) &&
+ IS_ALIGNED(width, 2)) {
+ ARGBPolynomialRow = ARGBPolynomialRow_AVX2;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBPolynomialRow(src_argb, dst_argb, poly, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Apply a lumacolortable to each ARGB pixel.
+LIBYUV_API
+int ARGBLumaColorTable(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ const uint8* luma,
+ int width, int height) {
+ int y;
+ void (*ARGBLumaColorTableRow)(const uint8* src_argb, uint8* dst_argb,
+ int width, const uint8* luma, const uint32 lumacoeff) =
+ ARGBLumaColorTableRow_C;
+ if (!src_argb || !dst_argb || !luma || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBLUMACOLORTABLEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4)) {
+ ARGBLumaColorTableRow = ARGBLumaColorTableRow_SSSE3;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBLumaColorTableRow(src_argb, dst_argb, width, luma, 0x00264b0f);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Copy Alpha from one ARGB image to another.
+LIBYUV_API
+int ARGBCopyAlpha(const uint8* src_argb, int src_stride_argb,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBCopyAlphaRow)(const uint8* src_argb, uint8* dst_argb, int width) =
+ ARGBCopyAlphaRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBCOPYALPHAROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBCopyAlphaRow = ARGBCopyAlphaRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBCOPYALPHAROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBCopyAlphaRow = ARGBCopyAlphaRow_AVX2;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBCopyAlphaRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Extract just the alpha channel from ARGB.
+LIBYUV_API
+int ARGBExtractAlpha(const uint8* src_argb, int src_stride,
+ uint8* dst_a, int dst_stride,
+ int width, int height) {
+ if (!src_argb || !dst_a || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb += (height - 1) * src_stride;
+ src_stride = -src_stride;
+ }
+ // Coalesce rows.
+ if (src_stride == width * 4 && dst_stride == width) {
+ width *= height;
+ height = 1;
+ src_stride = dst_stride = 0;
+ }
+ void (*ARGBExtractAlphaRow)(const uint8 *src_argb, uint8 *dst_a, int width) =
+ ARGBExtractAlphaRow_C;
+#if defined(HAS_ARGBEXTRACTALPHAROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBExtractAlphaRow = IS_ALIGNED(width, 8) ? ARGBExtractAlphaRow_SSE2
+ : ARGBExtractAlphaRow_Any_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBEXTRACTALPHAROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBExtractAlphaRow = IS_ALIGNED(width, 16) ? ARGBExtractAlphaRow_NEON
+ : ARGBExtractAlphaRow_Any_NEON;
+ }
+#endif
+
+ for (int y = 0; y < height; ++y) {
+ ARGBExtractAlphaRow(src_argb, dst_a, width);
+ src_argb += src_stride;
+ dst_a += dst_stride;
+ }
+ return 0;
+}
+
+// Copy a planar Y channel to the alpha channel of a destination ARGB image.
+LIBYUV_API
+int ARGBCopyYToAlpha(const uint8* src_y, int src_stride_y,
+ uint8* dst_argb, int dst_stride_argb,
+ int width, int height) {
+ int y;
+ void (*ARGBCopyYToAlphaRow)(const uint8* src_y, uint8* dst_argb, int width) =
+ ARGBCopyYToAlphaRow_C;
+ if (!src_y || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+ // Coalesce rows.
+ if (src_stride_y == width &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBCOPYYTOALPHAROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBCOPYYTOALPHAROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_AVX2;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBCopyYToAlphaRow(src_y, dst_argb, width);
+ src_y += src_stride_y;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// TODO(fbarchard): Consider if width is even Y channel can be split
+// directly. A SplitUVRow_Odd function could copy the remaining chroma.
+
+LIBYUV_API
+int YUY2ToNV12(const uint8* src_yuy2, int src_stride_yuy2,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_uv, int dst_stride_uv,
+ int width, int height) {
+ int y;
+ int halfwidth = (width + 1) >> 1;
+ void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v,
+ int width) = SplitUVRow_C;
+ void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+ if (!src_yuy2 ||
+ !dst_y || !dst_uv ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
+ src_stride_yuy2 = -src_stride_yuy2;
+ }
+#if defined(HAS_SPLITUVROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SplitUVRow = SplitUVRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow = SplitUVRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ SplitUVRow = SplitUVRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ SplitUVRow = SplitUVRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SplitUVRow = SplitUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow = SplitUVRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+
+ {
+ int awidth = halfwidth * 2;
+ // row of y and 2 rows of uv
+ align_buffer_64(rows, awidth * 3);
+
+ for (y = 0; y < height - 1; y += 2) {
+ // Split Y from UV.
+ SplitUVRow(src_yuy2, rows, rows + awidth, awidth);
+ memcpy(dst_y, rows, width);
+ SplitUVRow(src_yuy2 + src_stride_yuy2, rows, rows + awidth * 2, awidth);
+ memcpy(dst_y + dst_stride_y, rows, width);
+ InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128);
+ src_yuy2 += src_stride_yuy2 * 2;
+ dst_y += dst_stride_y * 2;
+ dst_uv += dst_stride_uv;
+ }
+ if (height & 1) {
+ // Split Y from UV.
+ SplitUVRow(src_yuy2, rows, dst_uv, awidth);
+ memcpy(dst_y, rows, width);
+ }
+ free_aligned_buffer_64(rows);
+ }
+ return 0;
+}
+
+LIBYUV_API
+int UYVYToNV12(const uint8* src_uyvy, int src_stride_uyvy,
+ uint8* dst_y, int dst_stride_y,
+ uint8* dst_uv, int dst_stride_uv,
+ int width, int height) {
+ int y;
+ int halfwidth = (width + 1) >> 1;
+ void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v,
+ int width) = SplitUVRow_C;
+ void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+ if (!src_uyvy ||
+ !dst_y || !dst_uv ||
+ width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
+ src_stride_uyvy = -src_stride_uyvy;
+ }
+#if defined(HAS_SPLITUVROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SplitUVRow = SplitUVRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow = SplitUVRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ SplitUVRow = SplitUVRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ SplitUVRow = SplitUVRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SplitUVRow = SplitUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow = SplitUVRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+
+ {
+ int awidth = halfwidth * 2;
+ // row of y and 2 rows of uv
+ align_buffer_64(rows, awidth * 3);
+
+ for (y = 0; y < height - 1; y += 2) {
+ // Split Y from UV.
+ SplitUVRow(src_uyvy, rows + awidth, rows, awidth);
+ memcpy(dst_y, rows, width);
+ SplitUVRow(src_uyvy + src_stride_uyvy, rows + awidth * 2, rows, awidth);
+ memcpy(dst_y + dst_stride_y, rows, width);
+ InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128);
+ src_uyvy += src_stride_uyvy * 2;
+ dst_y += dst_stride_y * 2;
+ dst_uv += dst_stride_uv;
+ }
+ if (height & 1) {
+ // Split Y from UV.
+ SplitUVRow(src_uyvy, dst_uv, rows, awidth);
+ memcpy(dst_y, rows, width);
+ }
+ free_aligned_buffer_64(rows);
+ }
+ return 0;
+}
+
+#ifdef __cplusplus
+} // extern "C"
+} // namespace libyuv
+#endif