summaryrefslogtreecommitdiffstats
path: root/media/libwebp/dsp/alpha_processing_sse2.c
diff options
context:
space:
mode:
authorMatt A. Tobin <email@mattatobin.com>2018-02-03 08:48:48 -0500
committerMatt A. Tobin <email@mattatobin.com>2018-02-03 08:48:48 -0500
commitc6856f968b8c85502f14c6c3412b00a05fc0c0de (patch)
treec0720fdf31018c72fcb69134f2e9667d16970c3a /media/libwebp/dsp/alpha_processing_sse2.c
parent36f73c8cd27e62cbd3e85939d6fe11a240e3416f (diff)
parent1e1fb5ea2504e548bc17521bdb273c9e59b9cf01 (diff)
downloadUXP-c6856f968b8c85502f14c6c3412b00a05fc0c0de.tar
UXP-c6856f968b8c85502f14c6c3412b00a05fc0c0de.tar.gz
UXP-c6856f968b8c85502f14c6c3412b00a05fc0c0de.tar.lz
UXP-c6856f968b8c85502f14c6c3412b00a05fc0c0de.tar.xz
UXP-c6856f968b8c85502f14c6c3412b00a05fc0c0de.zip
Merge branch 'master' into configurebuild-work
Diffstat (limited to 'media/libwebp/dsp/alpha_processing_sse2.c')
-rw-r--r--media/libwebp/dsp/alpha_processing_sse2.c285
1 files changed, 285 insertions, 0 deletions
diff --git a/media/libwebp/dsp/alpha_processing_sse2.c b/media/libwebp/dsp/alpha_processing_sse2.c
new file mode 100644
index 000000000..83dc559fa
--- /dev/null
+++ b/media/libwebp/dsp/alpha_processing_sse2.c
@@ -0,0 +1,285 @@
+// Copyright 2014 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Utilities for processing transparent channel.
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_SSE2)
+#include <emmintrin.h>
+
+//------------------------------------------------------------------------------
+
+static int DispatchAlpha(const uint8_t* alpha, int alpha_stride,
+ int width, int height,
+ uint8_t* dst, int dst_stride) {
+ // alpha_and stores an 'and' operation of all the alpha[] values. The final
+ // value is not 0xff if any of the alpha[] is not equal to 0xff.
+ uint32_t alpha_and = 0xff;
+ int i, j;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u); // to preserve RGB
+ const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
+ __m128i all_alphas = all_0xff;
+
+ // We must be able to access 3 extra bytes after the last written byte
+ // 'dst[4 * width - 4]', because we don't know if alpha is the first or the
+ // last byte of the quadruplet.
+ const int limit = (width - 1) & ~7;
+
+ for (j = 0; j < height; ++j) {
+ __m128i* out = (__m128i*)dst;
+ for (i = 0; i < limit; i += 8) {
+ // load 8 alpha bytes
+ const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]);
+ const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
+ const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
+ const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
+ // load 8 dst pixels (32 bytes)
+ const __m128i b0_lo = _mm_loadu_si128(out + 0);
+ const __m128i b0_hi = _mm_loadu_si128(out + 1);
+ // mask dst alpha values
+ const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask);
+ const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask);
+ // combine
+ const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo);
+ const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi);
+ // store
+ _mm_storeu_si128(out + 0, b2_lo);
+ _mm_storeu_si128(out + 1, b2_hi);
+ // accumulate eight alpha 'and' in parallel
+ all_alphas = _mm_and_si128(all_alphas, a0);
+ out += 2;
+ }
+ for (; i < width; ++i) {
+ const uint32_t alpha_value = alpha[i];
+ dst[4 * i] = alpha_value;
+ alpha_and &= alpha_value;
+ }
+ alpha += alpha_stride;
+ dst += dst_stride;
+ }
+ // Combine the eight alpha 'and' into a 8-bit mask.
+ alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
+ return (alpha_and != 0xff);
+}
+
+static void DispatchAlphaToGreen(const uint8_t* alpha, int alpha_stride,
+ int width, int height,
+ uint32_t* dst, int dst_stride) {
+ int i, j;
+ const __m128i zero = _mm_setzero_si128();
+ const int limit = width & ~15;
+ for (j = 0; j < height; ++j) {
+ for (i = 0; i < limit; i += 16) { // process 16 alpha bytes
+ const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]);
+ const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first!
+ const __m128i b1 = _mm_unpackhi_epi8(zero, a0);
+ const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
+ const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero);
+ const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
+ const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero);
+ _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo);
+ _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi);
+ _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo);
+ _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi);
+ }
+ for (; i < width; ++i) dst[i] = alpha[i] << 8;
+ alpha += alpha_stride;
+ dst += dst_stride;
+ }
+}
+
+static int ExtractAlpha(const uint8_t* argb, int argb_stride,
+ int width, int height,
+ uint8_t* alpha, int alpha_stride) {
+ // alpha_and stores an 'and' operation of all the alpha[] values. The final
+ // value is not 0xff if any of the alpha[] is not equal to 0xff.
+ uint32_t alpha_and = 0xff;
+ int i, j;
+ const __m128i a_mask = _mm_set1_epi32(0xffu); // to preserve alpha
+ const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
+ __m128i all_alphas = all_0xff;
+
+ // We must be able to access 3 extra bytes after the last written byte
+ // 'src[4 * width - 4]', because we don't know if alpha is the first or the
+ // last byte of the quadruplet.
+ const int limit = (width - 1) & ~7;
+
+ for (j = 0; j < height; ++j) {
+ const __m128i* src = (const __m128i*)argb;
+ for (i = 0; i < limit; i += 8) {
+ // load 32 argb bytes
+ const __m128i a0 = _mm_loadu_si128(src + 0);
+ const __m128i a1 = _mm_loadu_si128(src + 1);
+ const __m128i b0 = _mm_and_si128(a0, a_mask);
+ const __m128i b1 = _mm_and_si128(a1, a_mask);
+ const __m128i c0 = _mm_packs_epi32(b0, b1);
+ const __m128i d0 = _mm_packus_epi16(c0, c0);
+ // store
+ _mm_storel_epi64((__m128i*)&alpha[i], d0);
+ // accumulate eight alpha 'and' in parallel
+ all_alphas = _mm_and_si128(all_alphas, d0);
+ src += 2;
+ }
+ for (; i < width; ++i) {
+ const uint32_t alpha_value = argb[4 * i];
+ alpha[i] = alpha_value;
+ alpha_and &= alpha_value;
+ }
+ argb += argb_stride;
+ alpha += alpha_stride;
+ }
+ // Combine the eight alpha 'and' into a 8-bit mask.
+ alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
+ return (alpha_and == 0xff);
+}
+
+//------------------------------------------------------------------------------
+// Non-dither premultiplied modes
+
+#define MULTIPLIER(a) ((a) * 0x8081)
+#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
+
+// We can't use a 'const int' for the SHUFFLE value, because it has to be an
+// immediate in the _mm_shufflexx_epi16() instruction. We really need a macro.
+// We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit
+// value.
+#define APPLY_ALPHA(RGBX, SHUFFLE) do { \
+ const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \
+ const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \
+ const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \
+ const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \
+ const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \
+ const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \
+ const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \
+ const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \
+ const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \
+ /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \
+ const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \
+ const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \
+ const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \
+ const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \
+ const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \
+ const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \
+ const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \
+ _mm_storeu_si128((__m128i*)&(RGBX), A3); \
+} while (0)
+
+static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first,
+ int w, int h, int stride) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i kMult = _mm_set1_epi16(0x8081u);
+ const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0);
+ const int kSpan = 4;
+ while (h-- > 0) {
+ uint32_t* const rgbx = (uint32_t*)rgba;
+ int i;
+ if (!alpha_first) {
+ for (i = 0; i + kSpan <= w; i += kSpan) {
+ APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3));
+ }
+ } else {
+ for (i = 0; i + kSpan <= w; i += kSpan) {
+ APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1));
+ }
+ }
+ // Finish with left-overs.
+ for (; i < w; ++i) {
+ uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
+ const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
+ const uint32_t a = alpha[4 * i];
+ if (a != 0xff) {
+ const uint32_t mult = MULTIPLIER(a);
+ rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
+ rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
+ rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
+ }
+ }
+ rgba += stride;
+ }
+}
+#undef MULTIPLIER
+#undef PREMULTIPLY
+
+// -----------------------------------------------------------------------------
+// Apply alpha value to rows
+
+static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) {
+ int x = 0;
+ if (!inverse) {
+ const int kSpan = 2;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i k128 = _mm_set1_epi16(128);
+ const __m128i kMult = _mm_set1_epi16(0x0101);
+ const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0);
+ for (x = 0; x + kSpan <= width; x += kSpan) {
+ // To compute 'result = (int)(a * x / 255. + .5)', we use:
+ // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16
+ const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]);
+ const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
+ const __m128i A2 = _mm_or_si128(A1, kMask);
+ const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3));
+ const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3));
+ // here, A4 = [ff a0 a0 a0][ff a1 a1 a1]
+ const __m128i A5 = _mm_mullo_epi16(A4, A1);
+ const __m128i A6 = _mm_add_epi16(A5, k128);
+ const __m128i A7 = _mm_mulhi_epu16(A6, kMult);
+ const __m128i A10 = _mm_packus_epi16(A7, zero);
+ _mm_storel_epi64((__m128i*)&ptr[x], A10);
+ }
+ }
+ width -= x;
+ if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse);
+}
+
+static void MultRow_SSE2(uint8_t* const ptr, const uint8_t* const alpha,
+ int width, int inverse) {
+ int x = 0;
+ if (!inverse) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i k128 = _mm_set1_epi16(128);
+ const __m128i kMult = _mm_set1_epi16(0x0101);
+ for (x = 0; x + 8 <= width; x += 8) {
+ const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
+ const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
+ const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
+ const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
+ const __m128i v2 = _mm_mullo_epi16(v1, a1);
+ const __m128i v3 = _mm_add_epi16(v2, k128);
+ const __m128i v4 = _mm_mulhi_epu16(v3, kMult);
+ const __m128i v5 = _mm_packus_epi16(v4, zero);
+ _mm_storel_epi64((__m128i*)&ptr[x], v5);
+ }
+ }
+ width -= x;
+ if (width > 0) WebPMultRowC(ptr + x, alpha + x, width, inverse);
+}
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void WebPInitAlphaProcessingSSE2(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
+ WebPMultARGBRow = MultARGBRow_SSE2;
+ WebPMultRow = MultRow_SSE2;
+ WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2;
+ WebPDispatchAlpha = DispatchAlpha;
+ WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
+ WebPExtractAlpha = ExtractAlpha;
+}
+
+#else // !WEBP_USE_SSE2
+
+WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2)
+
+#endif // WEBP_USE_SSE2