summaryrefslogtreecommitdiffstats
path: root/media/libvpx/vp9/encoder
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /media/libvpx/vp9/encoder
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libvpx/vp9/encoder')
-rw-r--r--media/libvpx/vp9/encoder/arm/neon/vp9_dct_neon.c241
-rw-r--r--media/libvpx/vp9/encoder/arm/neon/vp9_quantize_neon.c118
-rw-r--r--media/libvpx/vp9/encoder/arm/neon/vp9_subtract_neon.c81
-rw-r--r--media/libvpx/vp9/encoder/arm/neon/vp9_variance_neon.c153
-rw-r--r--media/libvpx/vp9/encoder/arm/neon/vp9enc_avg_neon.c49
-rw-r--r--media/libvpx/vp9/encoder/vp9_aq_complexity.c163
-rw-r--r--media/libvpx/vp9/encoder/vp9_aq_complexity.h37
-rw-r--r--media/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.c519
-rw-r--r--media/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.h99
-rw-r--r--media/libvpx/vp9/encoder/vp9_aq_variance.c207
-rw-r--r--media/libvpx/vp9/encoder/vp9_aq_variance.h31
-rw-r--r--media/libvpx/vp9/encoder/vp9_avg.c211
-rw-r--r--media/libvpx/vp9/encoder/vp9_bitstream.c1246
-rw-r--r--media/libvpx/vp9/encoder/vp9_bitstream.h37
-rw-r--r--media/libvpx/vp9/encoder/vp9_block.h137
-rw-r--r--media/libvpx/vp9/encoder/vp9_blockiness.c138
-rw-r--r--media/libvpx/vp9/encoder/vp9_context_tree.c158
-rw-r--r--media/libvpx/vp9/encoder/vp9_context_tree.h86
-rw-r--r--media/libvpx/vp9/encoder/vp9_cost.c62
-rw-r--r--media/libvpx/vp9/encoder/vp9_cost.h55
-rw-r--r--media/libvpx/vp9/encoder/vp9_dct.c1592
-rw-r--r--media/libvpx/vp9/encoder/vp9_dct.h61
-rw-r--r--media/libvpx/vp9/encoder/vp9_denoiser.c498
-rw-r--r--media/libvpx/vp9/encoder/vp9_denoiser.h69
-rw-r--r--media/libvpx/vp9/encoder/vp9_encodeframe.c4236
-rw-r--r--media/libvpx/vp9/encoder/vp9_encodeframe.h49
-rw-r--r--media/libvpx/vp9/encoder/vp9_encodemb.c1046
-rw-r--r--media/libvpx/vp9/encoder/vp9_encodemb.h46
-rw-r--r--media/libvpx/vp9/encoder/vp9_encodemv.c266
-rw-r--r--media/libvpx/vp9/encoder/vp9_encodemv.h38
-rw-r--r--media/libvpx/vp9/encoder/vp9_encoder.c4578
-rw-r--r--media/libvpx/vp9/encoder/vp9_encoder.h654
-rw-r--r--media/libvpx/vp9/encoder/vp9_ethread.c179
-rw-r--r--media/libvpx/vp9/encoder/vp9_ethread.h25
-rw-r--r--media/libvpx/vp9/encoder/vp9_extend.c198
-rw-r--r--media/libvpx/vp9/encoder/vp9_extend.h33
-rw-r--r--media/libvpx/vp9/encoder/vp9_fastssim.c465
-rw-r--r--media/libvpx/vp9/encoder/vp9_firstpass.c2749
-rw-r--r--media/libvpx/vp9/encoder/vp9_firstpass.h154
-rw-r--r--media/libvpx/vp9/encoder/vp9_lookahead.c245
-rw-r--r--media/libvpx/vp9/encoder/vp9_lookahead.h124
-rw-r--r--media/libvpx/vp9/encoder/vp9_mbgraph.c416
-rw-r--r--media/libvpx/vp9/encoder/vp9_mbgraph.h40
-rw-r--r--media/libvpx/vp9/encoder/vp9_mcomp.c2357
-rw-r--r--media/libvpx/vp9/encoder/vp9_mcomp.h165
-rw-r--r--media/libvpx/vp9/encoder/vp9_picklpf.c192
-rw-r--r--media/libvpx/vp9/encoder/vp9_picklpf.h30
-rw-r--r--media/libvpx/vp9/encoder/vp9_pickmode.c1885
-rw-r--r--media/libvpx/vp9/encoder/vp9_pickmode.h39
-rw-r--r--media/libvpx/vp9/encoder/vp9_psnrhvs.c223
-rw-r--r--media/libvpx/vp9/encoder/vp9_quantize.c728
-rw-r--r--media/libvpx/vp9/encoder/vp9_quantize.h87
-rw-r--r--media/libvpx/vp9/encoder/vp9_ratectrl.c1758
-rw-r--r--media/libvpx/vp9/encoder/vp9_ratectrl.h252
-rw-r--r--media/libvpx/vp9/encoder/vp9_rd.c664
-rw-r--r--media/libvpx/vp9/encoder/vp9_rd.h190
-rw-r--r--media/libvpx/vp9/encoder/vp9_rdopt.c4313
-rw-r--r--media/libvpx/vp9/encoder/vp9_rdopt.h68
-rw-r--r--media/libvpx/vp9/encoder/vp9_resize.c925
-rw-r--r--media/libvpx/vp9/encoder/vp9_resize.h124
-rw-r--r--media/libvpx/vp9/encoder/vp9_segmentation.c281
-rw-r--r--media/libvpx/vp9/encoder/vp9_segmentation.h53
-rw-r--r--media/libvpx/vp9/encoder/vp9_skin_detection.c104
-rw-r--r--media/libvpx/vp9/encoder/vp9_skin_detection.h35
-rw-r--r--media/libvpx/vp9/encoder/vp9_speed_features.c531
-rw-r--r--media/libvpx/vp9/encoder/vp9_speed_features.h429
-rw-r--r--media/libvpx/vp9/encoder/vp9_ssim.h96
-rw-r--r--media/libvpx/vp9/encoder/vp9_subexp.c214
-rw-r--r--media/libvpx/vp9/encoder/vp9_subexp.h44
-rw-r--r--media/libvpx/vp9/encoder/vp9_svc_layercontext.c646
-rw-r--r--media/libvpx/vp9/encoder/vp9_svc_layercontext.h122
-rw-r--r--media/libvpx/vp9/encoder/vp9_temporal_filter.c750
-rw-r--r--media/libvpx/vp9/encoder/vp9_temporal_filter.h25
-rw-r--r--media/libvpx/vp9/encoder/vp9_tokenize.c634
-rw-r--r--media/libvpx/vp9/encoder/vp9_tokenize.h112
-rw-r--r--media/libvpx/vp9/encoder/vp9_treewriter.c58
-rw-r--r--media/libvpx/vp9/encoder/vp9_treewriter.h51
-rw-r--r--media/libvpx/vp9/encoder/vp9_variance.c380
-rw-r--r--media/libvpx/vp9/encoder/vp9_variance.h81
-rw-r--r--media/libvpx/vp9/encoder/vp9_write_bit_buffer.c35
-rw-r--r--media/libvpx/vp9/encoder/vp9_write_bit_buffer.h36
-rw-r--r--media/libvpx/vp9/encoder/vp9_writer.c34
-rw-r--r--media/libvpx/vp9/encoder/vp9_writer.h98
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_avg_intrin_sse2.c423
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct32x32_avx2_impl.h2713
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2_impl.h3151
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct_avx2.c26
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct_mmx.asm101
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct_sse2.c2429
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct_sse2.h464
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct_sse2_impl.h1024
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c471
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_dct_ssse3_x86_64.asm255
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_denoiser_sse2.c375
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_error_intrin_avx2.c73
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_error_sse2.asm120
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_highbd_block_error_intrin_sse2.c71
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_highbd_quantize_intrin_sse2.c181
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_highbd_subpel_variance.asm1039
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_highbd_variance_sse2.c349
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_quantize_sse2.c419
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_quantize_ssse3_x86_64.asm399
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_ssim_opt_x86_64.asm216
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm1396
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c525
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_subtract_sse2.asm127
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_temporal_filter_apply_sse2.asm212
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_variance_avx2.c104
-rw-r--r--media/libvpx/vp9/encoder/x86/vp9_variance_sse2.c182
109 files changed, 57283 insertions, 0 deletions
diff --git a/media/libvpx/vp9/encoder/arm/neon/vp9_dct_neon.c b/media/libvpx/vp9/encoder/arm/neon/vp9_dct_neon.c
new file mode 100644
index 000000000..a6d4797ad
--- /dev/null
+++ b/media/libvpx/vp9/encoder/arm/neon/vp9_dct_neon.c
@@ -0,0 +1,241 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+#include "./vp9_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vp9/common/vp9_blockd.h"
+#include "vp9/common/vp9_idct.h"
+
+void vp9_fdct8x8_1_neon(const int16_t *input, int16_t *output, int stride) {
+ int r;
+ int16x8_t sum = vld1q_s16(&input[0]);
+ for (r = 1; r < 8; ++r) {
+ const int16x8_t input_00 = vld1q_s16(&input[r * stride]);
+ sum = vaddq_s16(sum, input_00);
+ }
+ {
+ const int32x4_t a = vpaddlq_s16(sum);
+ const int64x2_t b = vpaddlq_s32(a);
+ const int32x2_t c = vadd_s32(vreinterpret_s32_s64(vget_low_s64(b)),
+ vreinterpret_s32_s64(vget_high_s64(b)));
+ output[0] = vget_lane_s16(vreinterpret_s16_s32(c), 0);
+ output[1] = 0;
+ }
+}
+
+void vp9_fdct8x8_quant_neon(const int16_t *input, int stride,
+ int16_t* coeff_ptr, intptr_t n_coeffs,
+ int skip_block, const int16_t* zbin_ptr,
+ const int16_t* round_ptr, const int16_t* quant_ptr,
+ const int16_t* quant_shift_ptr,
+ int16_t* qcoeff_ptr, int16_t* dqcoeff_ptr,
+ const int16_t* dequant_ptr, uint16_t* eob_ptr,
+ const int16_t* scan_ptr,
+ const int16_t* iscan_ptr) {
+ int16_t temp_buffer[64];
+ (void)coeff_ptr;
+
+ vp9_fdct8x8_neon(input, temp_buffer, stride);
+ vp9_quantize_fp_neon(temp_buffer, n_coeffs, skip_block, zbin_ptr, round_ptr,
+ quant_ptr, quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr,
+ dequant_ptr, eob_ptr, scan_ptr, iscan_ptr);
+}
+
+void vp9_fdct8x8_neon(const int16_t *input, int16_t *final_output, int stride) {
+ int i;
+ // stage 1
+ int16x8_t input_0 = vshlq_n_s16(vld1q_s16(&input[0 * stride]), 2);
+ int16x8_t input_1 = vshlq_n_s16(vld1q_s16(&input[1 * stride]), 2);
+ int16x8_t input_2 = vshlq_n_s16(vld1q_s16(&input[2 * stride]), 2);
+ int16x8_t input_3 = vshlq_n_s16(vld1q_s16(&input[3 * stride]), 2);
+ int16x8_t input_4 = vshlq_n_s16(vld1q_s16(&input[4 * stride]), 2);
+ int16x8_t input_5 = vshlq_n_s16(vld1q_s16(&input[5 * stride]), 2);
+ int16x8_t input_6 = vshlq_n_s16(vld1q_s16(&input[6 * stride]), 2);
+ int16x8_t input_7 = vshlq_n_s16(vld1q_s16(&input[7 * stride]), 2);
+ for (i = 0; i < 2; ++i) {
+ int16x8_t out_0, out_1, out_2, out_3, out_4, out_5, out_6, out_7;
+ const int16x8_t v_s0 = vaddq_s16(input_0, input_7);
+ const int16x8_t v_s1 = vaddq_s16(input_1, input_6);
+ const int16x8_t v_s2 = vaddq_s16(input_2, input_5);
+ const int16x8_t v_s3 = vaddq_s16(input_3, input_4);
+ const int16x8_t v_s4 = vsubq_s16(input_3, input_4);
+ const int16x8_t v_s5 = vsubq_s16(input_2, input_5);
+ const int16x8_t v_s6 = vsubq_s16(input_1, input_6);
+ const int16x8_t v_s7 = vsubq_s16(input_0, input_7);
+ // fdct4(step, step);
+ int16x8_t v_x0 = vaddq_s16(v_s0, v_s3);
+ int16x8_t v_x1 = vaddq_s16(v_s1, v_s2);
+ int16x8_t v_x2 = vsubq_s16(v_s1, v_s2);
+ int16x8_t v_x3 = vsubq_s16(v_s0, v_s3);
+ // fdct4(step, step);
+ int32x4_t v_t0_lo = vaddl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1));
+ int32x4_t v_t0_hi = vaddl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1));
+ int32x4_t v_t1_lo = vsubl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1));
+ int32x4_t v_t1_hi = vsubl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1));
+ int32x4_t v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), (int16_t)cospi_24_64);
+ int32x4_t v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), (int16_t)cospi_24_64);
+ int32x4_t v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_24_64);
+ int32x4_t v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_24_64);
+ v_t2_lo = vmlal_n_s16(v_t2_lo, vget_low_s16(v_x3), (int16_t)cospi_8_64);
+ v_t2_hi = vmlal_n_s16(v_t2_hi, vget_high_s16(v_x3), (int16_t)cospi_8_64);
+ v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x2), (int16_t)cospi_8_64);
+ v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x2), (int16_t)cospi_8_64);
+ v_t0_lo = vmulq_n_s32(v_t0_lo, cospi_16_64);
+ v_t0_hi = vmulq_n_s32(v_t0_hi, cospi_16_64);
+ v_t1_lo = vmulq_n_s32(v_t1_lo, cospi_16_64);
+ v_t1_hi = vmulq_n_s32(v_t1_hi, cospi_16_64);
+ {
+ const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
+ const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
+ const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
+ const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
+ const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS);
+ const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS);
+ const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS);
+ const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS);
+ out_0 = vcombine_s16(a, c); // 00 01 02 03 40 41 42 43
+ out_2 = vcombine_s16(e, g); // 20 21 22 23 60 61 62 63
+ out_4 = vcombine_s16(b, d); // 04 05 06 07 44 45 46 47
+ out_6 = vcombine_s16(f, h); // 24 25 26 27 64 65 66 67
+ }
+ // Stage 2
+ v_x0 = vsubq_s16(v_s6, v_s5);
+ v_x1 = vaddq_s16(v_s6, v_s5);
+ v_t0_lo = vmull_n_s16(vget_low_s16(v_x0), (int16_t)cospi_16_64);
+ v_t0_hi = vmull_n_s16(vget_high_s16(v_x0), (int16_t)cospi_16_64);
+ v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), (int16_t)cospi_16_64);
+ v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), (int16_t)cospi_16_64);
+ {
+ const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
+ const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
+ const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
+ const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
+ const int16x8_t ab = vcombine_s16(a, b);
+ const int16x8_t cd = vcombine_s16(c, d);
+ // Stage 3
+ v_x0 = vaddq_s16(v_s4, ab);
+ v_x1 = vsubq_s16(v_s4, ab);
+ v_x2 = vsubq_s16(v_s7, cd);
+ v_x3 = vaddq_s16(v_s7, cd);
+ }
+ // Stage 4
+ v_t0_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_4_64);
+ v_t0_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_4_64);
+ v_t0_lo = vmlal_n_s16(v_t0_lo, vget_low_s16(v_x0), (int16_t)cospi_28_64);
+ v_t0_hi = vmlal_n_s16(v_t0_hi, vget_high_s16(v_x0), (int16_t)cospi_28_64);
+ v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), (int16_t)cospi_12_64);
+ v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), (int16_t)cospi_12_64);
+ v_t1_lo = vmlal_n_s16(v_t1_lo, vget_low_s16(v_x2), (int16_t)cospi_20_64);
+ v_t1_hi = vmlal_n_s16(v_t1_hi, vget_high_s16(v_x2), (int16_t)cospi_20_64);
+ v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), (int16_t)cospi_12_64);
+ v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), (int16_t)cospi_12_64);
+ v_t2_lo = vmlsl_n_s16(v_t2_lo, vget_low_s16(v_x1), (int16_t)cospi_20_64);
+ v_t2_hi = vmlsl_n_s16(v_t2_hi, vget_high_s16(v_x1), (int16_t)cospi_20_64);
+ v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), (int16_t)cospi_28_64);
+ v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), (int16_t)cospi_28_64);
+ v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x0), (int16_t)cospi_4_64);
+ v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x0), (int16_t)cospi_4_64);
+ {
+ const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS);
+ const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS);
+ const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS);
+ const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS);
+ const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS);
+ const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS);
+ const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS);
+ const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS);
+ out_1 = vcombine_s16(a, c); // 10 11 12 13 50 51 52 53
+ out_3 = vcombine_s16(e, g); // 30 31 32 33 70 71 72 73
+ out_5 = vcombine_s16(b, d); // 14 15 16 17 54 55 56 57
+ out_7 = vcombine_s16(f, h); // 34 35 36 37 74 75 76 77
+ }
+ // transpose 8x8
+ {
+ // 00 01 02 03 40 41 42 43
+ // 10 11 12 13 50 51 52 53
+ // 20 21 22 23 60 61 62 63
+ // 30 31 32 33 70 71 72 73
+ // 04 05 06 07 44 45 46 47
+ // 14 15 16 17 54 55 56 57
+ // 24 25 26 27 64 65 66 67
+ // 34 35 36 37 74 75 76 77
+ const int32x4x2_t r02_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_0),
+ vreinterpretq_s32_s16(out_2));
+ const int32x4x2_t r13_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_1),
+ vreinterpretq_s32_s16(out_3));
+ const int32x4x2_t r46_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_4),
+ vreinterpretq_s32_s16(out_6));
+ const int32x4x2_t r57_s32 = vtrnq_s32(vreinterpretq_s32_s16(out_5),
+ vreinterpretq_s32_s16(out_7));
+ const int16x8x2_t r01_s16 =
+ vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[0]),
+ vreinterpretq_s16_s32(r13_s32.val[0]));
+ const int16x8x2_t r23_s16 =
+ vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[1]),
+ vreinterpretq_s16_s32(r13_s32.val[1]));
+ const int16x8x2_t r45_s16 =
+ vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[0]),
+ vreinterpretq_s16_s32(r57_s32.val[0]));
+ const int16x8x2_t r67_s16 =
+ vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[1]),
+ vreinterpretq_s16_s32(r57_s32.val[1]));
+ input_0 = r01_s16.val[0];
+ input_1 = r01_s16.val[1];
+ input_2 = r23_s16.val[0];
+ input_3 = r23_s16.val[1];
+ input_4 = r45_s16.val[0];
+ input_5 = r45_s16.val[1];
+ input_6 = r67_s16.val[0];
+ input_7 = r67_s16.val[1];
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ }
+ } // for
+ {
+ // from vp9_dct_sse2.c
+ // Post-condition (division by two)
+ // division of two 16 bits signed numbers using shifts
+ // n / 2 = (n - (n >> 15)) >> 1
+ const int16x8_t sign_in0 = vshrq_n_s16(input_0, 15);
+ const int16x8_t sign_in1 = vshrq_n_s16(input_1, 15);
+ const int16x8_t sign_in2 = vshrq_n_s16(input_2, 15);
+ const int16x8_t sign_in3 = vshrq_n_s16(input_3, 15);
+ const int16x8_t sign_in4 = vshrq_n_s16(input_4, 15);
+ const int16x8_t sign_in5 = vshrq_n_s16(input_5, 15);
+ const int16x8_t sign_in6 = vshrq_n_s16(input_6, 15);
+ const int16x8_t sign_in7 = vshrq_n_s16(input_7, 15);
+ input_0 = vhsubq_s16(input_0, sign_in0);
+ input_1 = vhsubq_s16(input_1, sign_in1);
+ input_2 = vhsubq_s16(input_2, sign_in2);
+ input_3 = vhsubq_s16(input_3, sign_in3);
+ input_4 = vhsubq_s16(input_4, sign_in4);
+ input_5 = vhsubq_s16(input_5, sign_in5);
+ input_6 = vhsubq_s16(input_6, sign_in6);
+ input_7 = vhsubq_s16(input_7, sign_in7);
+ // store results
+ vst1q_s16(&final_output[0 * 8], input_0);
+ vst1q_s16(&final_output[1 * 8], input_1);
+ vst1q_s16(&final_output[2 * 8], input_2);
+ vst1q_s16(&final_output[3 * 8], input_3);
+ vst1q_s16(&final_output[4 * 8], input_4);
+ vst1q_s16(&final_output[5 * 8], input_5);
+ vst1q_s16(&final_output[6 * 8], input_6);
+ vst1q_s16(&final_output[7 * 8], input_7);
+ }
+}
+
diff --git a/media/libvpx/vp9/encoder/arm/neon/vp9_quantize_neon.c b/media/libvpx/vp9/encoder/arm/neon/vp9_quantize_neon.c
new file mode 100644
index 000000000..47363c75b
--- /dev/null
+++ b/media/libvpx/vp9/encoder/arm/neon/vp9_quantize_neon.c
@@ -0,0 +1,118 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+
+#include <math.h>
+
+#include "vpx_mem/vpx_mem.h"
+
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_rd.h"
+
+void vp9_quantize_fp_neon(const int16_t *coeff_ptr, intptr_t count,
+ int skip_block, const int16_t *zbin_ptr,
+ const int16_t *round_ptr, const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr, int16_t *qcoeff_ptr,
+ int16_t *dqcoeff_ptr, const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan, const int16_t *iscan) {
+ // TODO(jingning) Decide the need of these arguments after the
+ // quantization process is completed.
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+ (void)scan;
+
+ if (!skip_block) {
+ // Quantization pass: All coefficients with index >= zero_flag are
+ // skippable. Note: zero_flag can be zero.
+ int i;
+ const int16x8_t v_zero = vdupq_n_s16(0);
+ const int16x8_t v_one = vdupq_n_s16(1);
+ int16x8_t v_eobmax_76543210 = vdupq_n_s16(-1);
+ int16x8_t v_round = vmovq_n_s16(round_ptr[1]);
+ int16x8_t v_quant = vmovq_n_s16(quant_ptr[1]);
+ int16x8_t v_dequant = vmovq_n_s16(dequant_ptr[1]);
+ // adjust for dc
+ v_round = vsetq_lane_s16(round_ptr[0], v_round, 0);
+ v_quant = vsetq_lane_s16(quant_ptr[0], v_quant, 0);
+ v_dequant = vsetq_lane_s16(dequant_ptr[0], v_dequant, 0);
+ // process dc and the first seven ac coeffs
+ {
+ const int16x8_t v_iscan = vld1q_s16(&iscan[0]);
+ const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[0]);
+ const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15);
+ const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero);
+ const int32x4_t v_tmp_lo = vmull_s16(vget_low_s16(v_tmp),
+ vget_low_s16(v_quant));
+ const int32x4_t v_tmp_hi = vmull_s16(vget_high_s16(v_tmp),
+ vget_high_s16(v_quant));
+ const int16x8_t v_tmp2 = vcombine_s16(vshrn_n_s32(v_tmp_lo, 16),
+ vshrn_n_s32(v_tmp_hi, 16));
+ const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero);
+ const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one);
+ const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1);
+ const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign);
+ const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign);
+ const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant);
+ v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan);
+ vst1q_s16(&qcoeff_ptr[0], v_qcoeff);
+ vst1q_s16(&dqcoeff_ptr[0], v_dqcoeff);
+ v_round = vmovq_n_s16(round_ptr[1]);
+ v_quant = vmovq_n_s16(quant_ptr[1]);
+ v_dequant = vmovq_n_s16(dequant_ptr[1]);
+ }
+ // now process the rest of the ac coeffs
+ for (i = 8; i < count; i += 8) {
+ const int16x8_t v_iscan = vld1q_s16(&iscan[i]);
+ const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[i]);
+ const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15);
+ const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero);
+ const int32x4_t v_tmp_lo = vmull_s16(vget_low_s16(v_tmp),
+ vget_low_s16(v_quant));
+ const int32x4_t v_tmp_hi = vmull_s16(vget_high_s16(v_tmp),
+ vget_high_s16(v_quant));
+ const int16x8_t v_tmp2 = vcombine_s16(vshrn_n_s32(v_tmp_lo, 16),
+ vshrn_n_s32(v_tmp_hi, 16));
+ const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero);
+ const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one);
+ const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1);
+ const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign);
+ const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign);
+ const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant);
+ v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan);
+ vst1q_s16(&qcoeff_ptr[i], v_qcoeff);
+ vst1q_s16(&dqcoeff_ptr[i], v_dqcoeff);
+ }
+ {
+ const int16x4_t v_eobmax_3210 =
+ vmax_s16(vget_low_s16(v_eobmax_76543210),
+ vget_high_s16(v_eobmax_76543210));
+ const int64x1_t v_eobmax_xx32 =
+ vshr_n_s64(vreinterpret_s64_s16(v_eobmax_3210), 32);
+ const int16x4_t v_eobmax_tmp =
+ vmax_s16(v_eobmax_3210, vreinterpret_s16_s64(v_eobmax_xx32));
+ const int64x1_t v_eobmax_xxx3 =
+ vshr_n_s64(vreinterpret_s64_s16(v_eobmax_tmp), 16);
+ const int16x4_t v_eobmax_final =
+ vmax_s16(v_eobmax_tmp, vreinterpret_s16_s64(v_eobmax_xxx3));
+
+ *eob_ptr = (uint16_t)vget_lane_s16(v_eobmax_final, 0);
+ }
+ } else {
+ memset(qcoeff_ptr, 0, count * sizeof(int16_t));
+ memset(dqcoeff_ptr, 0, count * sizeof(int16_t));
+ *eob_ptr = 0;
+ }
+}
diff --git a/media/libvpx/vp9/encoder/arm/neon/vp9_subtract_neon.c b/media/libvpx/vp9/encoder/arm/neon/vp9_subtract_neon.c
new file mode 100644
index 000000000..b4bf567db
--- /dev/null
+++ b/media/libvpx/vp9/encoder/arm/neon/vp9_subtract_neon.c
@@ -0,0 +1,81 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+#include "./vp9_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vpx/vpx_integer.h"
+
+void vp9_subtract_block_neon(int rows, int cols,
+ int16_t *diff, ptrdiff_t diff_stride,
+ const uint8_t *src, ptrdiff_t src_stride,
+ const uint8_t *pred, ptrdiff_t pred_stride) {
+ int r, c;
+
+ if (cols > 16) {
+ for (r = 0; r < rows; ++r) {
+ for (c = 0; c < cols; c += 32) {
+ const uint8x16_t v_src_00 = vld1q_u8(&src[c + 0]);
+ const uint8x16_t v_src_16 = vld1q_u8(&src[c + 16]);
+ const uint8x16_t v_pred_00 = vld1q_u8(&pred[c + 0]);
+ const uint8x16_t v_pred_16 = vld1q_u8(&pred[c + 16]);
+ const uint16x8_t v_diff_lo_00 = vsubl_u8(vget_low_u8(v_src_00),
+ vget_low_u8(v_pred_00));
+ const uint16x8_t v_diff_hi_00 = vsubl_u8(vget_high_u8(v_src_00),
+ vget_high_u8(v_pred_00));
+ const uint16x8_t v_diff_lo_16 = vsubl_u8(vget_low_u8(v_src_16),
+ vget_low_u8(v_pred_16));
+ const uint16x8_t v_diff_hi_16 = vsubl_u8(vget_high_u8(v_src_16),
+ vget_high_u8(v_pred_16));
+ vst1q_s16(&diff[c + 0], vreinterpretq_s16_u16(v_diff_lo_00));
+ vst1q_s16(&diff[c + 8], vreinterpretq_s16_u16(v_diff_hi_00));
+ vst1q_s16(&diff[c + 16], vreinterpretq_s16_u16(v_diff_lo_16));
+ vst1q_s16(&diff[c + 24], vreinterpretq_s16_u16(v_diff_hi_16));
+ }
+ diff += diff_stride;
+ pred += pred_stride;
+ src += src_stride;
+ }
+ } else if (cols > 8) {
+ for (r = 0; r < rows; ++r) {
+ const uint8x16_t v_src = vld1q_u8(&src[0]);
+ const uint8x16_t v_pred = vld1q_u8(&pred[0]);
+ const uint16x8_t v_diff_lo = vsubl_u8(vget_low_u8(v_src),
+ vget_low_u8(v_pred));
+ const uint16x8_t v_diff_hi = vsubl_u8(vget_high_u8(v_src),
+ vget_high_u8(v_pred));
+ vst1q_s16(&diff[0], vreinterpretq_s16_u16(v_diff_lo));
+ vst1q_s16(&diff[8], vreinterpretq_s16_u16(v_diff_hi));
+ diff += diff_stride;
+ pred += pred_stride;
+ src += src_stride;
+ }
+ } else if (cols > 4) {
+ for (r = 0; r < rows; ++r) {
+ const uint8x8_t v_src = vld1_u8(&src[0]);
+ const uint8x8_t v_pred = vld1_u8(&pred[0]);
+ const uint16x8_t v_diff = vsubl_u8(v_src, v_pred);
+ vst1q_s16(&diff[0], vreinterpretq_s16_u16(v_diff));
+ diff += diff_stride;
+ pred += pred_stride;
+ src += src_stride;
+ }
+ } else {
+ for (r = 0; r < rows; ++r) {
+ for (c = 0; c < cols; ++c)
+ diff[c] = src[c] - pred[c];
+
+ diff += diff_stride;
+ pred += pred_stride;
+ src += src_stride;
+ }
+ }
+}
diff --git a/media/libvpx/vp9/encoder/arm/neon/vp9_variance_neon.c b/media/libvpx/vp9/encoder/arm/neon/vp9_variance_neon.c
new file mode 100644
index 000000000..0ac194e92
--- /dev/null
+++ b/media/libvpx/vp9/encoder/arm/neon/vp9_variance_neon.c
@@ -0,0 +1,153 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vpx_ports/mem.h"
+#include "vpx/vpx_integer.h"
+
+#include "vp9/common/vp9_filter.h"
+
+static uint8_t bilinear_filters[8][2] = {
+ { 128, 0, },
+ { 112, 16, },
+ { 96, 32, },
+ { 80, 48, },
+ { 64, 64, },
+ { 48, 80, },
+ { 32, 96, },
+ { 16, 112, },
+};
+
+static void var_filter_block2d_bil_w8(const uint8_t *src_ptr,
+ uint8_t *output_ptr,
+ unsigned int src_pixels_per_line,
+ int pixel_step,
+ unsigned int output_height,
+ unsigned int output_width,
+ const uint8_t *vp9_filter) {
+ const uint8x8_t f0 = vmov_n_u8(vp9_filter[0]);
+ const uint8x8_t f1 = vmov_n_u8(vp9_filter[1]);
+ unsigned int i;
+ for (i = 0; i < output_height; ++i) {
+ const uint8x8_t src_0 = vld1_u8(&src_ptr[0]);
+ const uint8x8_t src_1 = vld1_u8(&src_ptr[pixel_step]);
+ const uint16x8_t a = vmull_u8(src_0, f0);
+ const uint16x8_t b = vmlal_u8(a, src_1, f1);
+ const uint8x8_t out = vrshrn_n_u16(b, FILTER_BITS);
+ vst1_u8(&output_ptr[0], out);
+ // Next row...
+ src_ptr += src_pixels_per_line;
+ output_ptr += output_width;
+ }
+}
+
+static void var_filter_block2d_bil_w16(const uint8_t *src_ptr,
+ uint8_t *output_ptr,
+ unsigned int src_pixels_per_line,
+ int pixel_step,
+ unsigned int output_height,
+ unsigned int output_width,
+ const uint8_t *vp9_filter) {
+ const uint8x8_t f0 = vmov_n_u8(vp9_filter[0]);
+ const uint8x8_t f1 = vmov_n_u8(vp9_filter[1]);
+ unsigned int i, j;
+ for (i = 0; i < output_height; ++i) {
+ for (j = 0; j < output_width; j += 16) {
+ const uint8x16_t src_0 = vld1q_u8(&src_ptr[j]);
+ const uint8x16_t src_1 = vld1q_u8(&src_ptr[j + pixel_step]);
+ const uint16x8_t a = vmull_u8(vget_low_u8(src_0), f0);
+ const uint16x8_t b = vmlal_u8(a, vget_low_u8(src_1), f1);
+ const uint8x8_t out_lo = vrshrn_n_u16(b, FILTER_BITS);
+ const uint16x8_t c = vmull_u8(vget_high_u8(src_0), f0);
+ const uint16x8_t d = vmlal_u8(c, vget_high_u8(src_1), f1);
+ const uint8x8_t out_hi = vrshrn_n_u16(d, FILTER_BITS);
+ vst1q_u8(&output_ptr[j], vcombine_u8(out_lo, out_hi));
+ }
+ // Next row...
+ src_ptr += src_pixels_per_line;
+ output_ptr += output_width;
+ }
+}
+
+unsigned int vp9_sub_pixel_variance8x8_neon(const uint8_t *src,
+ int src_stride,
+ int xoffset,
+ int yoffset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse) {
+ DECLARE_ALIGNED(16, uint8_t, temp2[8 * 8]);
+ DECLARE_ALIGNED(16, uint8_t, fdata3[9 * 8]);
+
+ var_filter_block2d_bil_w8(src, fdata3, src_stride, 1,
+ 9, 8,
+ bilinear_filters[xoffset]);
+ var_filter_block2d_bil_w8(fdata3, temp2, 8, 8, 8,
+ 8, bilinear_filters[yoffset]);
+ return vpx_variance8x8_neon(temp2, 8, dst, dst_stride, sse);
+}
+
+unsigned int vp9_sub_pixel_variance16x16_neon(const uint8_t *src,
+ int src_stride,
+ int xoffset,
+ int yoffset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse) {
+ DECLARE_ALIGNED(16, uint8_t, temp2[16 * 16]);
+ DECLARE_ALIGNED(16, uint8_t, fdata3[17 * 16]);
+
+ var_filter_block2d_bil_w16(src, fdata3, src_stride, 1,
+ 17, 16,
+ bilinear_filters[xoffset]);
+ var_filter_block2d_bil_w16(fdata3, temp2, 16, 16, 16,
+ 16, bilinear_filters[yoffset]);
+ return vpx_variance16x16_neon(temp2, 16, dst, dst_stride, sse);
+}
+
+unsigned int vp9_sub_pixel_variance32x32_neon(const uint8_t *src,
+ int src_stride,
+ int xoffset,
+ int yoffset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse) {
+ DECLARE_ALIGNED(16, uint8_t, temp2[32 * 32]);
+ DECLARE_ALIGNED(16, uint8_t, fdata3[33 * 32]);
+
+ var_filter_block2d_bil_w16(src, fdata3, src_stride, 1,
+ 33, 32,
+ bilinear_filters[xoffset]);
+ var_filter_block2d_bil_w16(fdata3, temp2, 32, 32, 32,
+ 32, bilinear_filters[yoffset]);
+ return vpx_variance32x32_neon(temp2, 32, dst, dst_stride, sse);
+}
+
+unsigned int vp9_sub_pixel_variance64x64_neon(const uint8_t *src,
+ int src_stride,
+ int xoffset,
+ int yoffset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse) {
+ DECLARE_ALIGNED(16, uint8_t, temp2[64 * 64]);
+ DECLARE_ALIGNED(16, uint8_t, fdata3[65 * 64]);
+
+ var_filter_block2d_bil_w16(src, fdata3, src_stride, 1,
+ 65, 64,
+ bilinear_filters[xoffset]);
+ var_filter_block2d_bil_w16(fdata3, temp2, 64, 64, 64,
+ 64, bilinear_filters[yoffset]);
+ return vpx_variance64x64_neon(temp2, 64, dst, dst_stride, sse);
+}
diff --git a/media/libvpx/vp9/encoder/arm/neon/vp9enc_avg_neon.c b/media/libvpx/vp9/encoder/arm/neon/vp9enc_avg_neon.c
new file mode 100644
index 000000000..f505fcb7a
--- /dev/null
+++ b/media/libvpx/vp9/encoder/arm/neon/vp9enc_avg_neon.c
@@ -0,0 +1,49 @@
+/*
+ * Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <arm_neon.h>
+#include "./vp9_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vpx/vpx_integer.h"
+
+static INLINE unsigned int horizontal_add_u16x8(const uint16x8_t v_16x8) {
+ const uint32x4_t a = vpaddlq_u16(v_16x8);
+ const uint64x2_t b = vpaddlq_u32(a);
+ const uint32x2_t c = vadd_u32(vreinterpret_u32_u64(vget_low_u64(b)),
+ vreinterpret_u32_u64(vget_high_u64(b)));
+ return vget_lane_u32(c, 0);
+}
+
+unsigned int vp9_avg_8x8_neon(const uint8_t *s, int p) {
+ uint8x8_t v_s0 = vld1_u8(s);
+ const uint8x8_t v_s1 = vld1_u8(s + p);
+ uint16x8_t v_sum = vaddl_u8(v_s0, v_s1);
+
+ v_s0 = vld1_u8(s + 2 * p);
+ v_sum = vaddw_u8(v_sum, v_s0);
+
+ v_s0 = vld1_u8(s + 3 * p);
+ v_sum = vaddw_u8(v_sum, v_s0);
+
+ v_s0 = vld1_u8(s + 4 * p);
+ v_sum = vaddw_u8(v_sum, v_s0);
+
+ v_s0 = vld1_u8(s + 5 * p);
+ v_sum = vaddw_u8(v_sum, v_s0);
+
+ v_s0 = vld1_u8(s + 6 * p);
+ v_sum = vaddw_u8(v_sum, v_s0);
+
+ v_s0 = vld1_u8(s + 7 * p);
+ v_sum = vaddw_u8(v_sum, v_s0);
+
+ return (horizontal_add_u16x8(v_sum) + 32) >> 6;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_aq_complexity.c b/media/libvpx/vp9/encoder/vp9_aq_complexity.c
new file mode 100644
index 000000000..bea7653d2
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_aq_complexity.c
@@ -0,0 +1,163 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+
+#include "vp9/encoder/vp9_aq_complexity.h"
+#include "vp9/encoder/vp9_aq_variance.h"
+#include "vp9/encoder/vp9_encodeframe.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/encoder/vp9_segmentation.h"
+
+#define AQ_C_SEGMENTS 5
+#define DEFAULT_AQ2_SEG 3 // Neutral Q segment
+#define AQ_C_STRENGTHS 3
+static const double aq_c_q_adj_factor[AQ_C_STRENGTHS][AQ_C_SEGMENTS] =
+ { {1.75, 1.25, 1.05, 1.00, 0.90},
+ {2.00, 1.50, 1.15, 1.00, 0.85},
+ {2.50, 1.75, 1.25, 1.00, 0.80} };
+static const double aq_c_transitions[AQ_C_STRENGTHS][AQ_C_SEGMENTS] =
+ { {0.15, 0.30, 0.55, 2.00, 100.0},
+ {0.20, 0.40, 0.65, 2.00, 100.0},
+ {0.25, 0.50, 0.75, 2.00, 100.0} };
+static const double aq_c_var_thresholds[AQ_C_STRENGTHS][AQ_C_SEGMENTS] =
+ { {-4.0, -3.0, -2.0, 100.00, 100.0},
+ {-3.5, -2.5, -1.5, 100.00, 100.0},
+ {-3.0, -2.0, -1.0, 100.00, 100.0} };
+
+#define DEFAULT_COMPLEXITY 64
+
+
+static int get_aq_c_strength(int q_index, vpx_bit_depth_t bit_depth) {
+ // Approximate base quatizer (truncated to int)
+ const int base_quant = vp9_ac_quant(q_index, 0, bit_depth) / 4;
+ return (base_quant > 10) + (base_quant > 25);
+}
+
+void vp9_setup_in_frame_q_adj(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ struct segmentation *const seg = &cm->seg;
+
+ // Make SURE use of floating point in this function is safe.
+ vp9_clear_system_state();
+
+ if (cm->frame_type == KEY_FRAME ||
+ cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+ int segment;
+ const int aq_strength = get_aq_c_strength(cm->base_qindex, cm->bit_depth);
+
+ // Clear down the segment map.
+ memset(cpi->segmentation_map, DEFAULT_AQ2_SEG, cm->mi_rows * cm->mi_cols);
+
+ vp9_clearall_segfeatures(seg);
+
+ // Segmentation only makes sense if the target bits per SB is above a
+ // threshold. Below this the overheads will usually outweigh any benefit.
+ if (cpi->rc.sb64_target_rate < 256) {
+ vp9_disable_segmentation(seg);
+ return;
+ }
+
+ vp9_enable_segmentation(seg);
+
+ // Select delta coding method.
+ seg->abs_delta = SEGMENT_DELTADATA;
+
+ // Default segment "Q" feature is disabled so it defaults to the baseline Q.
+ vp9_disable_segfeature(seg, DEFAULT_AQ2_SEG, SEG_LVL_ALT_Q);
+
+ // Use some of the segments for in frame Q adjustment.
+ for (segment = 0; segment < AQ_C_SEGMENTS; ++segment) {
+ int qindex_delta;
+
+ if (segment == DEFAULT_AQ2_SEG)
+ continue;
+
+ qindex_delta =
+ vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, cm->base_qindex,
+ aq_c_q_adj_factor[aq_strength][segment],
+ cm->bit_depth);
+
+
+ // For AQ complexity mode, we dont allow Q0 in a segment if the base
+ // Q is not 0. Q0 (lossless) implies 4x4 only and in AQ mode 2 a segment
+ // Q delta is sometimes applied without going back around the rd loop.
+ // This could lead to an illegal combination of partition size and q.
+ if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) {
+ qindex_delta = -cm->base_qindex + 1;
+ }
+ if ((cm->base_qindex + qindex_delta) > 0) {
+ vp9_enable_segfeature(seg, segment, SEG_LVL_ALT_Q);
+ vp9_set_segdata(seg, segment, SEG_LVL_ALT_Q, qindex_delta);
+ }
+ }
+ }
+}
+
+#define DEFAULT_LV_THRESH 10.0
+#define MIN_DEFAULT_LV_THRESH 8.0
+#define VAR_STRENGTH_STEP 0.25
+// Select a segment for the current block.
+// The choice of segment for a block depends on the ratio of the projected
+// bits for the block vs a target average and its spatial complexity.
+void vp9_caq_select_segment(VP9_COMP *cpi, MACROBLOCK *mb, BLOCK_SIZE bs,
+ int mi_row, int mi_col, int projected_rate) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ const int mi_offset = mi_row * cm->mi_cols + mi_col;
+ const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
+ const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
+ const int xmis = MIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[bs]);
+ const int ymis = MIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[bs]);
+ int x, y;
+ int i;
+ unsigned char segment;
+
+ if (0) {
+ segment = DEFAULT_AQ2_SEG;
+ } else {
+ // Rate depends on fraction of a SB64 in frame (xmis * ymis / bw * bh).
+ // It is converted to bits * 256 units.
+ const int target_rate = (cpi->rc.sb64_target_rate * xmis * ymis * 256) /
+ (bw * bh);
+ double logvar;
+ double low_var_thresh;
+ const int aq_strength = get_aq_c_strength(cm->base_qindex, cm->bit_depth);
+
+ vp9_clear_system_state();
+ low_var_thresh = (cpi->oxcf.pass == 2)
+ ? MAX(cpi->twopass.mb_av_energy, MIN_DEFAULT_LV_THRESH)
+ : DEFAULT_LV_THRESH;
+
+ vp9_setup_src_planes(mb, cpi->Source, mi_row, mi_col);
+ logvar = vp9_log_block_var(cpi, mb, bs);
+
+ segment = AQ_C_SEGMENTS - 1; // Just in case no break out below.
+ for (i = 0; i < AQ_C_SEGMENTS; ++i) {
+ // Test rate against a threshold value and variance against a threshold.
+ // Increasing segment number (higher variance and complexity) = higher Q.
+ if ((projected_rate <
+ target_rate * aq_c_transitions[aq_strength][i]) &&
+ (logvar < (low_var_thresh + aq_c_var_thresholds[aq_strength][i]))) {
+ segment = i;
+ break;
+ }
+ }
+ }
+
+ // Fill in the entires in the segment map corresponding to this SB64.
+ for (y = 0; y < ymis; y++) {
+ for (x = 0; x < xmis; x++) {
+ cpi->segmentation_map[mi_offset + y * cm->mi_cols + x] = segment;
+ }
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_aq_complexity.h b/media/libvpx/vp9/encoder/vp9_aq_complexity.h
new file mode 100644
index 000000000..e9acb1ca5
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_aq_complexity.h
@@ -0,0 +1,37 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_AQ_COMPLEXITY_H_
+#define VP9_ENCODER_VP9_AQ_COMPLEXITY_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "vp9/common/vp9_enums.h"
+
+struct VP9_COMP;
+struct macroblock;
+
+// Select a segment for the current Block.
+void vp9_caq_select_segment(struct VP9_COMP *cpi, struct macroblock *,
+ BLOCK_SIZE bs,
+ int mi_row, int mi_col, int projected_rate);
+
+// This function sets up a set of segments with delta Q values around
+// the baseline frame quantizer.
+void vp9_setup_in_frame_q_adj(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_AQ_COMPLEXITY_H_
diff --git a/media/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.c b/media/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.c
new file mode 100644
index 000000000..4b1c95957
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.c
@@ -0,0 +1,519 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_segmentation.h"
+
+struct CYCLIC_REFRESH {
+ // Percentage of blocks per frame that are targeted as candidates
+ // for cyclic refresh.
+ int percent_refresh;
+ // Maximum q-delta as percentage of base q.
+ int max_qdelta_perc;
+ // Superblock starting index for cycling through the frame.
+ int sb_index;
+ // Controls how long block will need to wait to be refreshed again, in
+ // excess of the cycle time, i.e., in the case of all zero motion, block
+ // will be refreshed every (100/percent_refresh + time_for_refresh) frames.
+ int time_for_refresh;
+ // Target number of (8x8) blocks that are set for delta-q.
+ int target_num_seg_blocks;
+ // Actual number of (8x8) blocks that were applied delta-q.
+ int actual_num_seg1_blocks;
+ int actual_num_seg2_blocks;
+ // RD mult. parameters for segment 1.
+ int rdmult;
+ // Cyclic refresh map.
+ signed char *map;
+ // Thresholds applied to the projected rate/distortion of the coding block,
+ // when deciding whether block should be refreshed.
+ int64_t thresh_rate_sb;
+ int64_t thresh_dist_sb;
+ // Threshold applied to the motion vector (in units of 1/8 pel) of the
+ // coding block, when deciding whether block should be refreshed.
+ int16_t motion_thresh;
+ // Rate target ratio to set q delta.
+ double rate_ratio_qdelta;
+ double low_content_avg;
+ int qindex_delta_seg1;
+ int qindex_delta_seg2;
+};
+
+CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) {
+ CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr));
+ if (cr == NULL)
+ return NULL;
+
+ cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map));
+ if (cr->map == NULL) {
+ vpx_free(cr);
+ return NULL;
+ }
+
+ return cr;
+}
+
+void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) {
+ vpx_free(cr->map);
+ vpx_free(cr);
+}
+
+// Check if we should turn off cyclic refresh based on bitrate condition.
+static int apply_cyclic_refresh_bitrate(const VP9_COMMON *cm,
+ const RATE_CONTROL *rc) {
+ // Turn off cyclic refresh if bits available per frame is not sufficiently
+ // larger than bit cost of segmentation. Segment map bit cost should scale
+ // with number of seg blocks, so compare available bits to number of blocks.
+ // Average bits available per frame = avg_frame_bandwidth
+ // Number of (8x8) blocks in frame = mi_rows * mi_cols;
+ const float factor = 0.25;
+ const int number_blocks = cm->mi_rows * cm->mi_cols;
+ // The condition below corresponds to turning off at target bitrates:
+ // (at 30fps), ~12kbps for CIF, 36kbps for VGA, 100kps for HD/720p.
+ // Also turn off at very small frame sizes, to avoid too large fraction of
+ // superblocks to be refreshed per frame. Threshold below is less than QCIF.
+ if (rc->avg_frame_bandwidth < factor * number_blocks ||
+ number_blocks / 64 < 5)
+ return 0;
+ else
+ return 1;
+}
+
+// Check if this coding block, of size bsize, should be considered for refresh
+// (lower-qp coding). Decision can be based on various factors, such as
+// size of the coding block (i.e., below min_block size rejected), coding
+// mode, and rate/distortion.
+static int candidate_refresh_aq(const CYCLIC_REFRESH *cr,
+ const MB_MODE_INFO *mbmi,
+ int64_t rate,
+ int64_t dist,
+ int bsize) {
+ MV mv = mbmi->mv[0].as_mv;
+ // Reject the block for lower-qp coding if projected distortion
+ // is above the threshold, and any of the following is true:
+ // 1) mode uses large mv
+ // 2) mode is an intra-mode
+ // Otherwise accept for refresh.
+ if (dist > cr->thresh_dist_sb &&
+ (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh ||
+ mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh ||
+ !is_inter_block(mbmi)))
+ return CR_SEGMENT_ID_BASE;
+ else if (bsize >= BLOCK_16X16 &&
+ rate < cr->thresh_rate_sb &&
+ is_inter_block(mbmi) &&
+ mbmi->mv[0].as_int == 0)
+ // More aggressive delta-q for bigger blocks with zero motion.
+ return CR_SEGMENT_ID_BOOST2;
+ else
+ return CR_SEGMENT_ID_BOOST1;
+}
+
+// Compute delta-q for the segment.
+static int compute_deltaq(const VP9_COMP *cpi, int q, double rate_factor) {
+ const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int deltaq = vp9_compute_qdelta_by_rate(rc, cpi->common.frame_type,
+ q, rate_factor,
+ cpi->common.bit_depth);
+ if ((-deltaq) > cr->max_qdelta_perc * q / 100) {
+ deltaq = -cr->max_qdelta_perc * q / 100;
+ }
+ return deltaq;
+}
+
+// For the just encoded frame, estimate the bits, incorporating the delta-q
+// from non-base segment. For now ignore effect of multiple segments
+// (with different delta-q). Note this function is called in the postencode
+// (called from rc_update_rate_correction_factors()).
+int vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP *cpi,
+ double correction_factor) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ int estimated_bits;
+ int mbs = cm->MBs;
+ int num8x8bl = mbs << 2;
+ // Weight for non-base segments: use actual number of blocks refreshed in
+ // previous/just encoded frame. Note number of blocks here is in 8x8 units.
+ double weight_segment1 = (double)cr->actual_num_seg1_blocks / num8x8bl;
+ double weight_segment2 = (double)cr->actual_num_seg2_blocks / num8x8bl;
+ // Take segment weighted average for estimated bits.
+ estimated_bits = (int)((1.0 - weight_segment1 - weight_segment2) *
+ vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs,
+ correction_factor, cm->bit_depth) +
+ weight_segment1 *
+ vp9_estimate_bits_at_q(cm->frame_type,
+ cm->base_qindex + cr->qindex_delta_seg1, mbs,
+ correction_factor, cm->bit_depth) +
+ weight_segment2 *
+ vp9_estimate_bits_at_q(cm->frame_type,
+ cm->base_qindex + cr->qindex_delta_seg2, mbs,
+ correction_factor, cm->bit_depth));
+ return estimated_bits;
+}
+
+// Prior to encoding the frame, estimate the bits per mb, for a given q = i and
+// a corresponding delta-q (for segment 1). This function is called in the
+// rc_regulate_q() to set the base qp index.
+// Note: the segment map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or
+// to 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock, prior to encoding.
+int vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP *cpi, int i,
+ double correction_factor) {
+ const VP9_COMMON *const cm = &cpi->common;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ int bits_per_mb;
+ int num8x8bl = cm->MBs << 2;
+ // Weight for segment prior to encoding: take the average of the target
+ // number for the frame to be encoded and the actual from the previous frame.
+ double weight_segment = (double)((cr->target_num_seg_blocks +
+ cr->actual_num_seg1_blocks + cr->actual_num_seg2_blocks) >> 1) /
+ num8x8bl;
+ // Compute delta-q corresponding to qindex i.
+ int deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta);
+ // Take segment weighted average for bits per mb.
+ bits_per_mb = (int)((1.0 - weight_segment) *
+ vp9_rc_bits_per_mb(cm->frame_type, i, correction_factor, cm->bit_depth) +
+ weight_segment *
+ vp9_rc_bits_per_mb(cm->frame_type, i + deltaq, correction_factor,
+ cm->bit_depth));
+ return bits_per_mb;
+}
+
+// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
+// check if we should reset the segment_id, and update the cyclic_refresh map
+// and segmentation map.
+void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi,
+ MB_MODE_INFO *const mbmi,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize,
+ int64_t rate,
+ int64_t dist,
+ int skip) {
+ const VP9_COMMON *const cm = &cpi->common;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ const int bw = num_8x8_blocks_wide_lookup[bsize];
+ const int bh = num_8x8_blocks_high_lookup[bsize];
+ const int xmis = MIN(cm->mi_cols - mi_col, bw);
+ const int ymis = MIN(cm->mi_rows - mi_row, bh);
+ const int block_index = mi_row * cm->mi_cols + mi_col;
+ const int refresh_this_block = candidate_refresh_aq(cr, mbmi, rate, dist,
+ bsize);
+ // Default is to not update the refresh map.
+ int new_map_value = cr->map[block_index];
+ int x = 0; int y = 0;
+
+ // If this block is labeled for refresh, check if we should reset the
+ // segment_id.
+ if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
+ mbmi->segment_id = refresh_this_block;
+ // Reset segment_id if will be skipped.
+ if (skip)
+ mbmi->segment_id = CR_SEGMENT_ID_BASE;
+ }
+
+ // Update the cyclic refresh map, to be used for setting segmentation map
+ // for the next frame. If the block will be refreshed this frame, mark it
+ // as clean. The magnitude of the -ve influences how long before we consider
+ // it for refresh again.
+ if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) {
+ new_map_value = -cr->time_for_refresh;
+ } else if (refresh_this_block) {
+ // Else if it is accepted as candidate for refresh, and has not already
+ // been refreshed (marked as 1) then mark it as a candidate for cleanup
+ // for future time (marked as 0), otherwise don't update it.
+ if (cr->map[block_index] == 1)
+ new_map_value = 0;
+ } else {
+ // Leave it marked as block that is not candidate for refresh.
+ new_map_value = 1;
+ }
+
+ // Update entries in the cyclic refresh map with new_map_value, and
+ // copy mbmi->segment_id into global segmentation map.
+ for (y = 0; y < ymis; y++)
+ for (x = 0; x < xmis; x++) {
+ cr->map[block_index + y * cm->mi_cols + x] = new_map_value;
+ cpi->segmentation_map[block_index + y * cm->mi_cols + x] =
+ mbmi->segment_id;
+ }
+}
+
+// Update the actual number of blocks that were applied the segment delta q.
+void vp9_cyclic_refresh_postencode(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ unsigned char *const seg_map = cpi->segmentation_map;
+ int mi_row, mi_col;
+ cr->actual_num_seg1_blocks = 0;
+ cr->actual_num_seg2_blocks = 0;
+ for (mi_row = 0; mi_row < cm->mi_rows; mi_row++)
+ for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
+ if (cyclic_refresh_segment_id(
+ seg_map[mi_row * cm->mi_cols + mi_col]) == CR_SEGMENT_ID_BOOST1)
+ cr->actual_num_seg1_blocks++;
+ else if (cyclic_refresh_segment_id(
+ seg_map[mi_row * cm->mi_cols + mi_col]) == CR_SEGMENT_ID_BOOST2)
+ cr->actual_num_seg2_blocks++;
+ }
+}
+
+// Set golden frame update interval, for non-svc 1 pass CBR mode.
+void vp9_cyclic_refresh_set_golden_update(VP9_COMP *const cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ // Set minimum gf_interval for GF update to a multiple (== 2) of refresh
+ // period. Depending on past encoding stats, GF flag may be reset and update
+ // may not occur until next baseline_gf_interval.
+ if (cr->percent_refresh > 0)
+ rc->baseline_gf_interval = 4 * (100 / cr->percent_refresh);
+ else
+ rc->baseline_gf_interval = 40;
+}
+
+// Update some encoding stats (from the just encoded frame). If this frame's
+// background has high motion, refresh the golden frame. Otherwise, if the
+// golden reference is to be updated check if we should NOT update the golden
+// ref.
+void vp9_cyclic_refresh_check_golden_update(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ int mi_row, mi_col;
+ double fraction_low = 0.0;
+ int low_content_frame = 0;
+
+ MODE_INFO **mi = cm->mi_grid_visible;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const int rows = cm->mi_rows, cols = cm->mi_cols;
+ int cnt1 = 0, cnt2 = 0;
+ int force_gf_refresh = 0;
+
+ for (mi_row = 0; mi_row < rows; mi_row++) {
+ for (mi_col = 0; mi_col < cols; mi_col++) {
+ int16_t abs_mvr = mi[0]->mbmi.mv[0].as_mv.row >= 0 ?
+ mi[0]->mbmi.mv[0].as_mv.row : -1 * mi[0]->mbmi.mv[0].as_mv.row;
+ int16_t abs_mvc = mi[0]->mbmi.mv[0].as_mv.col >= 0 ?
+ mi[0]->mbmi.mv[0].as_mv.col : -1 * mi[0]->mbmi.mv[0].as_mv.col;
+
+ // Calculate the motion of the background.
+ if (abs_mvr <= 16 && abs_mvc <= 16) {
+ cnt1++;
+ if (abs_mvr == 0 && abs_mvc == 0)
+ cnt2++;
+ }
+ mi++;
+
+ // Accumulate low_content_frame.
+ if (cr->map[mi_row * cols + mi_col] < 1)
+ low_content_frame++;
+ }
+ mi += 8;
+ }
+
+ // For video conference clips, if the background has high motion in current
+ // frame because of the camera movement, set this frame as the golden frame.
+ // Use 70% and 5% as the thresholds for golden frame refreshing.
+ if (cnt1 * 10 > (70 * rows * cols) && cnt2 * 20 < cnt1) {
+ vp9_cyclic_refresh_set_golden_update(cpi);
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+
+ if (rc->frames_till_gf_update_due > rc->frames_to_key)
+ rc->frames_till_gf_update_due = rc->frames_to_key;
+ cpi->refresh_golden_frame = 1;
+ force_gf_refresh = 1;
+ }
+
+ fraction_low =
+ (double)low_content_frame / (rows * cols);
+ // Update average.
+ cr->low_content_avg = (fraction_low + 3 * cr->low_content_avg) / 4;
+ if (!force_gf_refresh && cpi->refresh_golden_frame == 1) {
+ // Don't update golden reference if the amount of low_content for the
+ // current encoded frame is small, or if the recursive average of the
+ // low_content over the update interval window falls below threshold.
+ if (fraction_low < 0.8 || cr->low_content_avg < 0.7)
+ cpi->refresh_golden_frame = 0;
+ // Reset for next internal.
+ cr->low_content_avg = fraction_low;
+ }
+}
+
+// Update the segmentation map, and related quantities: cyclic refresh map,
+// refresh sb_index, and target number of blocks to be refreshed.
+// The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to
+// 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock.
+// Blocks labeled as BOOST1 may later get set to BOOST2 (during the
+// encoding of the superblock).
+static void cyclic_refresh_update_map(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ unsigned char *const seg_map = cpi->segmentation_map;
+ int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
+ int xmis, ymis, x, y;
+ memset(seg_map, CR_SEGMENT_ID_BASE, cm->mi_rows * cm->mi_cols);
+ sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
+ sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
+ sbs_in_frame = sb_cols * sb_rows;
+ // Number of target blocks to get the q delta (segment 1).
+ block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100;
+ // Set the segmentation map: cycle through the superblocks, starting at
+ // cr->mb_index, and stopping when either block_count blocks have been found
+ // to be refreshed, or we have passed through whole frame.
+ assert(cr->sb_index < sbs_in_frame);
+ i = cr->sb_index;
+ cr->target_num_seg_blocks = 0;
+ do {
+ int sum_map = 0;
+ // Get the mi_row/mi_col corresponding to superblock index i.
+ int sb_row_index = (i / sb_cols);
+ int sb_col_index = i - sb_row_index * sb_cols;
+ int mi_row = sb_row_index * MI_BLOCK_SIZE;
+ int mi_col = sb_col_index * MI_BLOCK_SIZE;
+ assert(mi_row >= 0 && mi_row < cm->mi_rows);
+ assert(mi_col >= 0 && mi_col < cm->mi_cols);
+ bl_index = mi_row * cm->mi_cols + mi_col;
+ // Loop through all 8x8 blocks in superblock and update map.
+ xmis = MIN(cm->mi_cols - mi_col,
+ num_8x8_blocks_wide_lookup[BLOCK_64X64]);
+ ymis = MIN(cm->mi_rows - mi_row,
+ num_8x8_blocks_high_lookup[BLOCK_64X64]);
+ for (y = 0; y < ymis; y++) {
+ for (x = 0; x < xmis; x++) {
+ const int bl_index2 = bl_index + y * cm->mi_cols + x;
+ // If the block is as a candidate for clean up then mark it
+ // for possible boost/refresh (segment 1). The segment id may get
+ // reset to 0 later if block gets coded anything other than ZEROMV.
+ if (cr->map[bl_index2] == 0) {
+ sum_map++;
+ } else if (cr->map[bl_index2] < 0) {
+ cr->map[bl_index2]++;
+ }
+ }
+ }
+ // Enforce constant segment over superblock.
+ // If segment is at least half of superblock, set to 1.
+ if (sum_map >= xmis * ymis / 2) {
+ for (y = 0; y < ymis; y++)
+ for (x = 0; x < xmis; x++) {
+ seg_map[bl_index + y * cm->mi_cols + x] = CR_SEGMENT_ID_BOOST1;
+ }
+ cr->target_num_seg_blocks += xmis * ymis;
+ }
+ i++;
+ if (i == sbs_in_frame) {
+ i = 0;
+ }
+ } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index);
+ cr->sb_index = i;
+}
+
+// Set/update global/frame level cyclic refresh parameters.
+void vp9_cyclic_refresh_update_parameters(VP9_COMP *const cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ cr->percent_refresh = 10;
+ // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4)
+ // periods of the refresh cycle, after a key frame. This corresponds to ~40
+ // frames with cr->percent_refresh = 10.
+ if (rc->frames_since_key < 40)
+ cr->rate_ratio_qdelta = 3.0;
+ else
+ cr->rate_ratio_qdelta = 2.0;
+}
+
+// Setup cyclic background refresh: set delta q and segmentation map.
+void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ struct segmentation *const seg = &cm->seg;
+ const int apply_cyclic_refresh = apply_cyclic_refresh_bitrate(cm, rc);
+ if (cm->current_video_frame == 0)
+ cr->low_content_avg = 0.0;
+ // Don't apply refresh on key frame or enhancement layer frames.
+ if (!apply_cyclic_refresh ||
+ (cm->frame_type == KEY_FRAME) ||
+ (cpi->svc.temporal_layer_id > 0) ||
+ (cpi->svc.spatial_layer_id > 0)) {
+ // Set segmentation map to 0 and disable.
+ unsigned char *const seg_map = cpi->segmentation_map;
+ memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
+ vp9_disable_segmentation(&cm->seg);
+ if (cm->frame_type == KEY_FRAME)
+ cr->sb_index = 0;
+ return;
+ } else {
+ int qindex_delta = 0;
+ int qindex2;
+ const double q = vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth);
+ vp9_clear_system_state();
+ cr->max_qdelta_perc = 50;
+ cr->time_for_refresh = 0;
+ // Set rate threshold to some multiple (set to 2 for now) of the target
+ // rate (target is given by sb64_target_rate and scaled by 256).
+ cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2;
+ // Distortion threshold, quadratic in Q, scale factor to be adjusted.
+ // q will not exceed 457, so (q * q) is within 32bit; see:
+ // vp9_convert_qindex_to_q(), vp9_ac_quant(), ac_qlookup*[].
+ cr->thresh_dist_sb = ((int64_t)(q * q)) << 2;
+ cr->motion_thresh = 32;
+ // Set up segmentation.
+ // Clear down the segment map.
+ vp9_enable_segmentation(&cm->seg);
+ vp9_clearall_segfeatures(seg);
+ // Select delta coding method.
+ seg->abs_delta = SEGMENT_DELTADATA;
+
+ // Note: setting temporal_update has no effect, as the seg-map coding method
+ // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(),
+ // based on the coding cost of each method. For error_resilient mode on the
+ // last_frame_seg_map is set to 0, so if temporal coding is used, it is
+ // relative to 0 previous map.
+ // seg->temporal_update = 0;
+
+ // Segment BASE "Q" feature is disabled so it defaults to the baseline Q.
+ vp9_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q);
+ // Use segment BOOST1 for in-frame Q adjustment.
+ vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q);
+ // Use segment BOOST2 for more aggressive in-frame Q adjustment.
+ vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q);
+
+ // Set the q delta for segment BOOST1.
+ qindex_delta = compute_deltaq(cpi, cm->base_qindex, cr->rate_ratio_qdelta);
+ cr->qindex_delta_seg1 = qindex_delta;
+
+ // Compute rd-mult for segment BOOST1.
+ qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ);
+
+ cr->rdmult = vp9_compute_rd_mult(cpi, qindex2);
+
+ vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta);
+
+ // Set a more aggressive (higher) q delta for segment BOOST2.
+ qindex_delta = compute_deltaq(cpi, cm->base_qindex,
+ MIN(CR_MAX_RATE_TARGET_RATIO,
+ CR_BOOST2_FAC * cr->rate_ratio_qdelta));
+ cr->qindex_delta_seg2 = qindex_delta;
+ vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta);
+
+ // Update the segmentation and refresh map.
+ cyclic_refresh_update_map(cpi);
+ }
+}
+
+int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) {
+ return cr->rdmult;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.h b/media/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.h
new file mode 100644
index 000000000..21f114b5e
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_aq_cyclicrefresh.h
@@ -0,0 +1,99 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_
+#define VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_
+
+#include "vp9/common/vp9_blockd.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// The segment ids used in cyclic refresh: from base (no boost) to increasing
+// boost (higher delta-qp).
+#define CR_SEGMENT_ID_BASE 0
+#define CR_SEGMENT_ID_BOOST1 1
+#define CR_SEGMENT_ID_BOOST2 2
+
+// Maximum rate target ratio for setting segment delta-qp.
+#define CR_MAX_RATE_TARGET_RATIO 4.0
+
+// Boost factor for rate target ratio, for segment CR_SEGMENT_ID_BOOST2.
+#define CR_BOOST2_FAC 1.7
+
+struct VP9_COMP;
+
+struct CYCLIC_REFRESH;
+typedef struct CYCLIC_REFRESH CYCLIC_REFRESH;
+
+CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols);
+
+void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr);
+
+// Estimate the bits, incorporating the delta-q from segment 1, after encoding
+// the frame.
+int vp9_cyclic_refresh_estimate_bits_at_q(const struct VP9_COMP *cpi,
+ double correction_factor);
+
+// Estimate the bits per mb, for a given q = i and a corresponding delta-q
+// (for segment 1), prior to encoding the frame.
+int vp9_cyclic_refresh_rc_bits_per_mb(const struct VP9_COMP *cpi, int i,
+ double correction_factor);
+
+// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
+// check if we should reset the segment_id, and update the cyclic_refresh map
+// and segmentation map.
+void vp9_cyclic_refresh_update_segment(struct VP9_COMP *const cpi,
+ MB_MODE_INFO *const mbmi,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ int64_t rate, int64_t dist, int skip);
+
+// Update the segmentation map, and related quantities: cyclic refresh map,
+// refresh sb_index, and target number of blocks to be refreshed.
+void vp9_cyclic_refresh_update__map(struct VP9_COMP *const cpi);
+
+// Update the actual number of blocks that were applied the segment delta q.
+void vp9_cyclic_refresh_postencode(struct VP9_COMP *const cpi);
+
+// Set golden frame update interval, for non-svc 1 pass CBR mode.
+void vp9_cyclic_refresh_set_golden_update(struct VP9_COMP *const cpi);
+
+// Check if we should not update golden reference, based on past refresh stats.
+void vp9_cyclic_refresh_check_golden_update(struct VP9_COMP *const cpi);
+
+// Set/update global/frame level refresh parameters.
+void vp9_cyclic_refresh_update_parameters(struct VP9_COMP *const cpi);
+
+// Setup cyclic background refresh: set delta q and segmentation map.
+void vp9_cyclic_refresh_setup(struct VP9_COMP *const cpi);
+
+int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr);
+
+static INLINE int cyclic_refresh_segment_id_boosted(int segment_id) {
+ return segment_id == CR_SEGMENT_ID_BOOST1 ||
+ segment_id == CR_SEGMENT_ID_BOOST2;
+}
+
+static INLINE int cyclic_refresh_segment_id(int segment_id) {
+ if (segment_id == CR_SEGMENT_ID_BOOST1)
+ return CR_SEGMENT_ID_BOOST1;
+ else if (segment_id == CR_SEGMENT_ID_BOOST2)
+ return CR_SEGMENT_ID_BOOST2;
+ else
+ return CR_SEGMENT_ID_BASE;
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_
diff --git a/media/libvpx/vp9/encoder/vp9_aq_variance.c b/media/libvpx/vp9/encoder/vp9_aq_variance.c
new file mode 100644
index 000000000..f072717f1
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_aq_variance.c
@@ -0,0 +1,207 @@
+/*
+ * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+
+#include "vpx_ports/mem.h"
+
+#include "vp9/encoder/vp9_aq_variance.h"
+
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rd.h"
+#include "vp9/encoder/vp9_segmentation.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+#define ENERGY_MIN (-4)
+#define ENERGY_MAX (1)
+#define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1)
+#define ENERGY_IN_BOUNDS(energy)\
+ assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX)
+
+static const double rate_ratio[MAX_SEGMENTS] =
+ {2.5, 2.0, 1.5, 1.0, 0.75, 1.0, 1.0, 1.0};
+static const int segment_id[ENERGY_SPAN] = {0, 1, 1, 2, 3, 4};
+
+#define SEGMENT_ID(i) segment_id[(i) - ENERGY_MIN]
+
+DECLARE_ALIGNED(16, static const uint8_t, vp9_64_zeros[64]) = {0};
+#if CONFIG_VP9_HIGHBITDEPTH
+DECLARE_ALIGNED(16, static const uint16_t, vp9_highbd_64_zeros[64]) = {0};
+#endif
+
+unsigned int vp9_vaq_segment_id(int energy) {
+ ENERGY_IN_BOUNDS(energy);
+ return SEGMENT_ID(energy);
+}
+
+void vp9_vaq_frame_setup(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+ struct segmentation *seg = &cm->seg;
+ int i;
+
+ if (cm->frame_type == KEY_FRAME ||
+ cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+ vp9_enable_segmentation(seg);
+ vp9_clearall_segfeatures(seg);
+
+ seg->abs_delta = SEGMENT_DELTADATA;
+
+ vp9_clear_system_state();
+
+ for (i = 0; i < MAX_SEGMENTS; ++i) {
+ int qindex_delta =
+ vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, cm->base_qindex,
+ rate_ratio[i], cm->bit_depth);
+
+ // We don't allow qindex 0 in a segment if the base value is not 0.
+ // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment
+ // Q delta is sometimes applied without going back around the rd loop.
+ // This could lead to an illegal combination of partition size and q.
+ if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) {
+ qindex_delta = -cm->base_qindex + 1;
+ }
+
+ // No need to enable SEG_LVL_ALT_Q for this segment.
+ if (rate_ratio[i] == 1.0) {
+ continue;
+ }
+
+ vp9_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta);
+ vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
+ }
+ }
+}
+
+/* TODO(agrange, paulwilkins): The block_variance calls the unoptimized versions
+ * of variance() and highbd_8_variance(). It should not.
+ */
+static void aq_variance(const uint8_t *a, int a_stride,
+ const uint8_t *b, int b_stride,
+ int w, int h, unsigned int *sse, int *sum) {
+ int i, j;
+
+ *sum = 0;
+ *sse = 0;
+
+ for (i = 0; i < h; i++) {
+ for (j = 0; j < w; j++) {
+ const int diff = a[j] - b[j];
+ *sum += diff;
+ *sse += diff * diff;
+ }
+
+ a += a_stride;
+ b += b_stride;
+ }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void aq_highbd_variance64(const uint8_t *a8, int a_stride,
+ const uint8_t *b8, int b_stride,
+ int w, int h, uint64_t *sse, uint64_t *sum) {
+ int i, j;
+
+ uint16_t *a = CONVERT_TO_SHORTPTR(a8);
+ uint16_t *b = CONVERT_TO_SHORTPTR(b8);
+ *sum = 0;
+ *sse = 0;
+
+ for (i = 0; i < h; i++) {
+ for (j = 0; j < w; j++) {
+ const int diff = a[j] - b[j];
+ *sum += diff;
+ *sse += diff * diff;
+ }
+ a += a_stride;
+ b += b_stride;
+ }
+}
+
+static void aq_highbd_8_variance(const uint8_t *a8, int a_stride,
+ const uint8_t *b8, int b_stride,
+ int w, int h, unsigned int *sse, int *sum) {
+ uint64_t sse_long = 0;
+ uint64_t sum_long = 0;
+ aq_highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long);
+ *sse = (unsigned int)sse_long;
+ *sum = (int)sum_long;
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+static unsigned int block_variance(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bs) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ unsigned int var, sse;
+ int right_overflow = (xd->mb_to_right_edge < 0) ?
+ ((-xd->mb_to_right_edge) >> 3) : 0;
+ int bottom_overflow = (xd->mb_to_bottom_edge < 0) ?
+ ((-xd->mb_to_bottom_edge) >> 3) : 0;
+
+ if (right_overflow || bottom_overflow) {
+ const int bw = 8 * num_8x8_blocks_wide_lookup[bs] - right_overflow;
+ const int bh = 8 * num_8x8_blocks_high_lookup[bs] - bottom_overflow;
+ int avg;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ aq_highbd_8_variance(x->plane[0].src.buf, x->plane[0].src.stride,
+ CONVERT_TO_BYTEPTR(vp9_highbd_64_zeros), 0, bw, bh,
+ &sse, &avg);
+ sse >>= 2 * (xd->bd - 8);
+ avg >>= (xd->bd - 8);
+ } else {
+ aq_variance(x->plane[0].src.buf, x->plane[0].src.stride,
+ vp9_64_zeros, 0, bw, bh, &sse, &avg);
+ }
+#else
+ aq_variance(x->plane[0].src.buf, x->plane[0].src.stride,
+ vp9_64_zeros, 0, bw, bh, &sse, &avg);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ var = sse - (((int64_t)avg * avg) / (bw * bh));
+ return (256 * var) / (bw * bh);
+ } else {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf,
+ x->plane[0].src.stride,
+ CONVERT_TO_BYTEPTR(vp9_highbd_64_zeros),
+ 0, &sse);
+ } else {
+ var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf,
+ x->plane[0].src.stride,
+ vp9_64_zeros, 0, &sse);
+ }
+#else
+ var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf,
+ x->plane[0].src.stride,
+ vp9_64_zeros, 0, &sse);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ return (256 * var) >> num_pels_log2_lookup[bs];
+ }
+}
+
+double vp9_log_block_var(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) {
+ unsigned int var = block_variance(cpi, x, bs);
+ vp9_clear_system_state();
+ return log(var + 1.0);
+}
+
+#define DEFAULT_E_MIDPOINT 10.0
+int vp9_block_energy(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) {
+ double energy;
+ double energy_midpoint;
+ vp9_clear_system_state();
+ energy_midpoint =
+ (cpi->oxcf.pass == 2) ? cpi->twopass.mb_av_energy : DEFAULT_E_MIDPOINT;
+ energy = vp9_log_block_var(cpi, x, bs) - energy_midpoint;
+ return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_aq_variance.h b/media/libvpx/vp9/encoder/vp9_aq_variance.h
new file mode 100644
index 000000000..a0effa311
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_aq_variance.h
@@ -0,0 +1,31 @@
+/*
+ * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_AQ_VARIANCE_H_
+#define VP9_ENCODER_VP9_AQ_VARIANCE_H_
+
+#include "vp9/encoder/vp9_encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+unsigned int vp9_vaq_segment_id(int energy);
+void vp9_vaq_frame_setup(VP9_COMP *cpi);
+
+int vp9_block_energy(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs);
+double vp9_log_block_var(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_AQ_VARIANCE_H_
diff --git a/media/libvpx/vp9/encoder/vp9_avg.c b/media/libvpx/vp9/encoder/vp9_avg.c
new file mode 100644
index 000000000..b9987c1ce
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_avg.c
@@ -0,0 +1,211 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include "./vp9_rtcd.h"
+#include "vp9/common/vp9_common.h"
+#include "vpx_ports/mem.h"
+
+unsigned int vp9_avg_8x8_c(const uint8_t *s, int p) {
+ int i, j;
+ int sum = 0;
+ for (i = 0; i < 8; ++i, s+=p)
+ for (j = 0; j < 8; sum += s[j], ++j) {}
+
+ return (sum + 32) >> 6;
+}
+
+unsigned int vp9_avg_4x4_c(const uint8_t *s, int p) {
+ int i, j;
+ int sum = 0;
+ for (i = 0; i < 4; ++i, s+=p)
+ for (j = 0; j < 4; sum += s[j], ++j) {}
+
+ return (sum + 8) >> 4;
+}
+
+static void hadamard_col8(const int16_t *src_diff, int src_stride,
+ int16_t *coeff) {
+ int16_t b0 = src_diff[0 * src_stride] + src_diff[1 * src_stride];
+ int16_t b1 = src_diff[0 * src_stride] - src_diff[1 * src_stride];
+ int16_t b2 = src_diff[2 * src_stride] + src_diff[3 * src_stride];
+ int16_t b3 = src_diff[2 * src_stride] - src_diff[3 * src_stride];
+ int16_t b4 = src_diff[4 * src_stride] + src_diff[5 * src_stride];
+ int16_t b5 = src_diff[4 * src_stride] - src_diff[5 * src_stride];
+ int16_t b6 = src_diff[6 * src_stride] + src_diff[7 * src_stride];
+ int16_t b7 = src_diff[6 * src_stride] - src_diff[7 * src_stride];
+
+ int16_t c0 = b0 + b2;
+ int16_t c1 = b1 + b3;
+ int16_t c2 = b0 - b2;
+ int16_t c3 = b1 - b3;
+ int16_t c4 = b4 + b6;
+ int16_t c5 = b5 + b7;
+ int16_t c6 = b4 - b6;
+ int16_t c7 = b5 - b7;
+
+ coeff[0] = c0 + c4;
+ coeff[7] = c1 + c5;
+ coeff[3] = c2 + c6;
+ coeff[4] = c3 + c7;
+ coeff[2] = c0 - c4;
+ coeff[6] = c1 - c5;
+ coeff[1] = c2 - c6;
+ coeff[5] = c3 - c7;
+}
+
+void vp9_hadamard_8x8_c(int16_t const *src_diff, int src_stride,
+ int16_t *coeff) {
+ int idx;
+ int16_t buffer[64];
+ int16_t *tmp_buf = &buffer[0];
+ for (idx = 0; idx < 8; ++idx) {
+ hadamard_col8(src_diff, src_stride, tmp_buf);
+ tmp_buf += 8;
+ ++src_diff;
+ }
+
+ tmp_buf = &buffer[0];
+ for (idx = 0; idx < 8; ++idx) {
+ hadamard_col8(tmp_buf, 8, coeff);
+ coeff += 8;
+ ++tmp_buf;
+ }
+}
+
+// In place 16x16 2D Hadamard transform
+void vp9_hadamard_16x16_c(int16_t const *src_diff, int src_stride,
+ int16_t *coeff) {
+ int idx;
+ for (idx = 0; idx < 4; ++idx) {
+ int16_t const *src_ptr = src_diff + (idx >> 1) * 8 * src_stride
+ + (idx & 0x01) * 8;
+ vp9_hadamard_8x8_c(src_ptr, src_stride, coeff + idx * 64);
+ }
+
+ for (idx = 0; idx < 64; ++idx) {
+ int16_t a0 = coeff[0];
+ int16_t a1 = coeff[64];
+ int16_t a2 = coeff[128];
+ int16_t a3 = coeff[192];
+
+ int16_t b0 = a0 + a1;
+ int16_t b1 = a0 - a1;
+ int16_t b2 = a2 + a3;
+ int16_t b3 = a2 - a3;
+
+ coeff[0] = (b0 + b2) >> 1;
+ coeff[64] = (b1 + b3) >> 1;
+ coeff[128] = (b0 - b2) >> 1;
+ coeff[192] = (b1 - b3) >> 1;
+
+ ++coeff;
+ }
+}
+
+int16_t vp9_satd_c(const int16_t *coeff, int length) {
+ int i;
+ int satd = 0;
+ for (i = 0; i < length; ++i)
+ satd += abs(coeff[i]);
+
+ return (int16_t)satd;
+}
+
+// Integer projection onto row vectors.
+void vp9_int_pro_row_c(int16_t *hbuf, uint8_t const *ref,
+ const int ref_stride, const int height) {
+ int idx;
+ const int norm_factor = MAX(8, height >> 1);
+ for (idx = 0; idx < 16; ++idx) {
+ int i;
+ hbuf[idx] = 0;
+ for (i = 0; i < height; ++i)
+ hbuf[idx] += ref[i * ref_stride];
+ hbuf[idx] /= norm_factor;
+ ++ref;
+ }
+}
+
+int16_t vp9_int_pro_col_c(uint8_t const *ref, const int width) {
+ int idx;
+ int16_t sum = 0;
+ for (idx = 0; idx < width; ++idx)
+ sum += ref[idx];
+ return sum;
+}
+
+int vp9_vector_var_c(int16_t const *ref, int16_t const *src,
+ const int bwl) {
+ int i;
+ int width = 4 << bwl;
+ int sse = 0, mean = 0, var;
+
+ for (i = 0; i < width; ++i) {
+ int diff = ref[i] - src[i];
+ mean += diff;
+ sse += diff * diff;
+ }
+
+ var = sse - ((mean * mean) >> (bwl + 2));
+ return var;
+}
+
+void vp9_minmax_8x8_c(const uint8_t *s, int p, const uint8_t *d, int dp,
+ int *min, int *max) {
+ int i, j;
+ *min = 255;
+ *max = 0;
+ for (i = 0; i < 8; ++i, s += p, d += dp) {
+ for (j = 0; j < 8; ++j) {
+ int diff = abs(s[j]-d[j]);
+ *min = diff < *min ? diff : *min;
+ *max = diff > *max ? diff : *max;
+ }
+ }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+unsigned int vp9_highbd_avg_8x8_c(const uint8_t *s8, int p) {
+ int i, j;
+ int sum = 0;
+ const uint16_t* s = CONVERT_TO_SHORTPTR(s8);
+ for (i = 0; i < 8; ++i, s+=p)
+ for (j = 0; j < 8; sum += s[j], ++j) {}
+
+ return (sum + 32) >> 6;
+}
+
+unsigned int vp9_highbd_avg_4x4_c(const uint8_t *s8, int p) {
+ int i, j;
+ int sum = 0;
+ const uint16_t* s = CONVERT_TO_SHORTPTR(s8);
+ for (i = 0; i < 4; ++i, s+=p)
+ for (j = 0; j < 4; sum += s[j], ++j) {}
+
+ return (sum + 8) >> 4;
+}
+
+void vp9_highbd_minmax_8x8_c(const uint8_t *s8, int p, const uint8_t *d8,
+ int dp, int *min, int *max) {
+ int i, j;
+ const uint16_t* s = CONVERT_TO_SHORTPTR(s8);
+ const uint16_t* d = CONVERT_TO_SHORTPTR(d8);
+ *min = 255;
+ *max = 0;
+ for (i = 0; i < 8; ++i, s += p, d += dp) {
+ for (j = 0; j < 8; ++j) {
+ int diff = abs(s[j]-d[j]);
+ *min = diff < *min ? diff : *min;
+ *max = diff > *max ? diff : *max;
+ }
+ }
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+
diff --git a/media/libvpx/vp9/encoder/vp9_bitstream.c b/media/libvpx/vp9/encoder/vp9_bitstream.c
new file mode 100644
index 000000000..d20e06766
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_bitstream.c
@@ -0,0 +1,1246 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <limits.h>
+
+#include "vpx/vpx_encoder.h"
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem_ops.h"
+
+#include "vp9/common/vp9_entropy.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_entropymv.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/common/vp9_tile_common.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_bitstream.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_segmentation.h"
+#include "vp9/encoder/vp9_subexp.h"
+#include "vp9/encoder/vp9_tokenize.h"
+#include "vp9/encoder/vp9_write_bit_buffer.h"
+
+static const struct vp9_token intra_mode_encodings[INTRA_MODES] = {
+ {0, 1}, {6, 3}, {28, 5}, {30, 5}, {58, 6}, {59, 6}, {126, 7}, {127, 7},
+ {62, 6}, {2, 2}};
+static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
+ {{0, 1}, {2, 2}, {3, 2}};
+static const struct vp9_token partition_encodings[PARTITION_TYPES] =
+ {{0, 1}, {2, 2}, {6, 3}, {7, 3}};
+static const struct vp9_token inter_mode_encodings[INTER_MODES] =
+ {{2, 2}, {6, 3}, {0, 1}, {7, 3}};
+
+static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
+ const vp9_prob *probs) {
+ vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
+}
+
+static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
+ const vp9_prob *probs) {
+ assert(is_inter_mode(mode));
+ vp9_write_token(w, vp9_inter_mode_tree, probs,
+ &inter_mode_encodings[INTER_OFFSET(mode)]);
+}
+
+static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
+ int data, int max) {
+ vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
+}
+
+static void prob_diff_update(const vp9_tree_index *tree,
+ vp9_prob probs[/*n - 1*/],
+ const unsigned int counts[/*n - 1*/],
+ int n, vp9_writer *w) {
+ int i;
+ unsigned int branch_ct[32][2];
+
+ // Assuming max number of probabilities <= 32
+ assert(n <= 32);
+
+ vp9_tree_probs_from_distribution(tree, branch_ct, counts);
+ for (i = 0; i < n - 1; ++i)
+ vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
+}
+
+static void write_selected_tx_size(const VP9_COMMON *cm,
+ const MACROBLOCKD *xd, vp9_writer *w) {
+ TX_SIZE tx_size = xd->mi[0]->mbmi.tx_size;
+ BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+ const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
+ const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
+ &cm->fc->tx_probs);
+ vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
+ if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
+ vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
+ if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
+ vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
+ }
+}
+
+static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd,
+ int segment_id, const MODE_INFO *mi, vp9_writer *w) {
+ if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
+ return 1;
+ } else {
+ const int skip = mi->mbmi.skip;
+ vp9_write(w, skip, vp9_get_skip_prob(cm, xd));
+ return skip;
+ }
+}
+
+static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w,
+ FRAME_COUNTS *counts) {
+ int k;
+
+ for (k = 0; k < SKIP_CONTEXTS; ++k)
+ vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
+}
+
+static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w,
+ FRAME_COUNTS *counts) {
+ int j;
+ for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
+ prob_diff_update(vp9_switchable_interp_tree,
+ cm->fc->switchable_interp_prob[j],
+ counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
+}
+
+static void pack_mb_tokens(vp9_writer *w,
+ TOKENEXTRA **tp, const TOKENEXTRA *const stop,
+ vpx_bit_depth_t bit_depth) {
+ TOKENEXTRA *p = *tp;
+
+ while (p < stop && p->token != EOSB_TOKEN) {
+ const int t = p->token;
+ const struct vp9_token *const a = &vp9_coef_encodings[t];
+ int i = 0;
+ int v = a->value;
+ int n = a->len;
+#if CONFIG_VP9_HIGHBITDEPTH
+ const vp9_extra_bit *b;
+ if (bit_depth == VPX_BITS_12)
+ b = &vp9_extra_bits_high12[t];
+ else if (bit_depth == VPX_BITS_10)
+ b = &vp9_extra_bits_high10[t];
+ else
+ b = &vp9_extra_bits[t];
+#else
+ const vp9_extra_bit *const b = &vp9_extra_bits[t];
+ (void) bit_depth;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ /* skip one or two nodes */
+ if (p->skip_eob_node) {
+ n -= p->skip_eob_node;
+ i = 2 * p->skip_eob_node;
+ }
+
+ // TODO(jbb): expanding this can lead to big gains. It allows
+ // much better branch prediction and would enable us to avoid numerous
+ // lookups and compares.
+
+ // If we have a token that's in the constrained set, the coefficient tree
+ // is split into two treed writes. The first treed write takes care of the
+ // unconstrained nodes. The second treed write takes care of the
+ // constrained nodes.
+ if (t >= TWO_TOKEN && t < EOB_TOKEN) {
+ int len = UNCONSTRAINED_NODES - p->skip_eob_node;
+ int bits = v >> (n - len);
+ vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
+ vp9_write_tree(w, vp9_coef_con_tree,
+ vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
+ v, n - len, 0);
+ } else {
+ vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
+ }
+
+ if (b->base_val) {
+ const int e = p->extra, l = b->len;
+
+ if (l) {
+ const unsigned char *pb = b->prob;
+ int v = e >> 1;
+ int n = l; /* number of bits in v, assumed nonzero */
+ int i = 0;
+
+ do {
+ const int bb = (v >> --n) & 1;
+ vp9_write(w, bb, pb[i >> 1]);
+ i = b->tree[i + bb];
+ } while (n);
+ }
+
+ vp9_write_bit(w, e & 1);
+ }
+ ++p;
+ }
+
+ *tp = p + (p->token == EOSB_TOKEN);
+}
+
+static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
+ int segment_id) {
+ if (seg->enabled && seg->update_map)
+ vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
+}
+
+// This function encodes the reference frame
+static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd,
+ vp9_writer *w) {
+ const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const int is_compound = has_second_ref(mbmi);
+ const int segment_id = mbmi->segment_id;
+
+ // If segment level coding of this signal is disabled...
+ // or the segment allows multiple reference frame options
+ if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
+ assert(!is_compound);
+ assert(mbmi->ref_frame[0] ==
+ vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
+ } else {
+ // does the feature use compound prediction or not
+ // (if not specified at the frame/segment level)
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
+ } else {
+ assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
+ }
+
+ if (is_compound) {
+ vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
+ vp9_get_pred_prob_comp_ref_p(cm, xd));
+ } else {
+ const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
+ vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
+ if (bit0) {
+ const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
+ vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
+ }
+ }
+ }
+}
+
+static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
+ vp9_writer *w) {
+ VP9_COMMON *const cm = &cpi->common;
+ const nmv_context *nmvc = &cm->fc->nmvc;
+ const MACROBLOCK *const x = &cpi->td.mb;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct segmentation *const seg = &cm->seg;
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
+ const PREDICTION_MODE mode = mbmi->mode;
+ const int segment_id = mbmi->segment_id;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ const int allow_hp = cm->allow_high_precision_mv;
+ const int is_inter = is_inter_block(mbmi);
+ const int is_compound = has_second_ref(mbmi);
+ int skip, ref;
+
+ if (seg->update_map) {
+ if (seg->temporal_update) {
+ const int pred_flag = mbmi->seg_id_predicted;
+ vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
+ vp9_write(w, pred_flag, pred_prob);
+ if (!pred_flag)
+ write_segment_id(w, seg, segment_id);
+ } else {
+ write_segment_id(w, seg, segment_id);
+ }
+ }
+
+ skip = write_skip(cm, xd, segment_id, mi, w);
+
+ if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
+ vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
+
+ if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
+ !(is_inter && skip)) {
+ write_selected_tx_size(cm, xd, w);
+ }
+
+ if (!is_inter) {
+ if (bsize >= BLOCK_8X8) {
+ write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
+ } else {
+ int idx, idy;
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
+ write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
+ }
+ }
+ }
+ write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]);
+ } else {
+ const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
+ const vp9_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
+ write_ref_frames(cm, xd, w);
+
+ // If segment skip is not enabled code the mode.
+ if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
+ if (bsize >= BLOCK_8X8) {
+ write_inter_mode(w, mode, inter_probs);
+ }
+ }
+
+ if (cm->interp_filter == SWITCHABLE) {
+ const int ctx = vp9_get_pred_context_switchable_interp(xd);
+ vp9_write_token(w, vp9_switchable_interp_tree,
+ cm->fc->switchable_interp_prob[ctx],
+ &switchable_interp_encodings[mbmi->interp_filter]);
+ ++cpi->interp_filter_selected[0][mbmi->interp_filter];
+ } else {
+ assert(mbmi->interp_filter == cm->interp_filter);
+ }
+
+ if (bsize < BLOCK_8X8) {
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ int idx, idy;
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const int j = idy * 2 + idx;
+ const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
+ write_inter_mode(w, b_mode, inter_probs);
+ if (b_mode == NEWMV) {
+ for (ref = 0; ref < 1 + is_compound; ++ref)
+ vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
+ &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
+ nmvc, allow_hp);
+ }
+ }
+ }
+ } else {
+ if (mode == NEWMV) {
+ for (ref = 0; ref < 1 + is_compound; ++ref)
+ vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
+ &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
+ allow_hp);
+ }
+ }
+ }
+}
+
+static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
+ MODE_INFO **mi_8x8, vp9_writer *w) {
+ const struct segmentation *const seg = &cm->seg;
+ const MODE_INFO *const mi = mi_8x8[0];
+ const MODE_INFO *const above_mi = xd->above_mi;
+ const MODE_INFO *const left_mi = xd->left_mi;
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+
+ if (seg->update_map)
+ write_segment_id(w, seg, mbmi->segment_id);
+
+ write_skip(cm, xd, mbmi->segment_id, mi, w);
+
+ if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
+ write_selected_tx_size(cm, xd, w);
+
+ if (bsize >= BLOCK_8X8) {
+ write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
+ } else {
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ int idx, idy;
+
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const int block = idy * 2 + idx;
+ write_intra_mode(w, mi->bmi[block].as_mode,
+ get_y_mode_probs(mi, above_mi, left_mi, block));
+ }
+ }
+ }
+
+ write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
+}
+
+static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
+ vp9_writer *w, TOKENEXTRA **tok,
+ const TOKENEXTRA *const tok_end,
+ int mi_row, int mi_col) {
+ const VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ MODE_INFO *m;
+
+ xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
+ m = xd->mi[0];
+
+ set_mi_row_col(xd, tile,
+ mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
+ mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
+ cm->mi_rows, cm->mi_cols);
+ if (frame_is_intra_only(cm)) {
+ write_mb_modes_kf(cm, xd, xd->mi, w);
+ } else {
+ pack_inter_mode_mvs(cpi, m, w);
+ }
+
+ assert(*tok < tok_end);
+ pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
+}
+
+static void write_partition(const VP9_COMMON *const cm,
+ const MACROBLOCKD *const xd,
+ int hbs, int mi_row, int mi_col,
+ PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
+ const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ const vp9_prob *const probs = get_partition_probs(cm, ctx);
+ const int has_rows = (mi_row + hbs) < cm->mi_rows;
+ const int has_cols = (mi_col + hbs) < cm->mi_cols;
+
+ if (has_rows && has_cols) {
+ vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
+ } else if (!has_rows && has_cols) {
+ assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
+ vp9_write(w, p == PARTITION_SPLIT, probs[1]);
+ } else if (has_rows && !has_cols) {
+ assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
+ vp9_write(w, p == PARTITION_SPLIT, probs[2]);
+ } else {
+ assert(p == PARTITION_SPLIT);
+ }
+}
+
+static void write_modes_sb(VP9_COMP *cpi,
+ const TileInfo *const tile, vp9_writer *w,
+ TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
+ int mi_row, int mi_col, BLOCK_SIZE bsize) {
+ const VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+ const int bsl = b_width_log2_lookup[bsize];
+ const int bs = (1 << bsl) / 4;
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+ const MODE_INFO *m = NULL;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
+
+ partition = partition_lookup[bsl][m->mbmi.sb_type];
+ write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
+ subsize = get_subsize(bsize, partition);
+ if (subsize < BLOCK_8X8) {
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+ } else {
+ switch (partition) {
+ case PARTITION_NONE:
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+ break;
+ case PARTITION_HORZ:
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+ if (mi_row + bs < cm->mi_rows)
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
+ break;
+ case PARTITION_VERT:
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
+ if (mi_col + bs < cm->mi_cols)
+ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
+ break;
+ case PARTITION_SPLIT:
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
+ subsize);
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
+ subsize);
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
+ subsize);
+ break;
+ default:
+ assert(0);
+ }
+ }
+
+ // update partition context
+ if (bsize >= BLOCK_8X8 &&
+ (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+}
+
+static void write_modes(VP9_COMP *cpi,
+ const TileInfo *const tile, vp9_writer *w,
+ TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ int mi_row, mi_col;
+
+ for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
+ mi_row += MI_BLOCK_SIZE) {
+ vp9_zero(xd->left_seg_context);
+ for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
+ mi_col += MI_BLOCK_SIZE)
+ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
+ BLOCK_64X64);
+ }
+}
+
+static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
+ vp9_coeff_stats *coef_branch_ct,
+ vp9_coeff_probs_model *coef_probs) {
+ vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
+ unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
+ cpi->common.counts.eob_branch[tx_size];
+ int i, j, k, l, m;
+
+ for (i = 0; i < PLANE_TYPES; ++i) {
+ for (j = 0; j < REF_TYPES; ++j) {
+ for (k = 0; k < COEF_BANDS; ++k) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ vp9_tree_probs_from_distribution(vp9_coef_tree,
+ coef_branch_ct[i][j][k][l],
+ coef_counts[i][j][k][l]);
+ coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
+ coef_branch_ct[i][j][k][l][0][0];
+ for (m = 0; m < UNCONSTRAINED_NODES; ++m)
+ coef_probs[i][j][k][l][m] = get_binary_prob(
+ coef_branch_ct[i][j][k][l][m][0],
+ coef_branch_ct[i][j][k][l][m][1]);
+ }
+ }
+ }
+ }
+}
+
+static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
+ TX_SIZE tx_size,
+ vp9_coeff_stats *frame_branch_ct,
+ vp9_coeff_probs_model *new_coef_probs) {
+ vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
+ const vp9_prob upd = DIFF_UPDATE_PROB;
+ const int entropy_nodes_update = UNCONSTRAINED_NODES;
+ int i, j, k, l, t;
+ int stepsize = cpi->sf.coeff_prob_appx_step;
+
+ switch (cpi->sf.use_fast_coef_updates) {
+ case TWO_LOOP: {
+ /* dry run to see if there is any update at all needed */
+ int savings = 0;
+ int update[2] = {0, 0};
+ for (i = 0; i < PLANE_TYPES; ++i) {
+ for (j = 0; j < REF_TYPES; ++j) {
+ for (k = 0; k < COEF_BANDS; ++k) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ for (t = 0; t < entropy_nodes_update; ++t) {
+ vp9_prob newp = new_coef_probs[i][j][k][l][t];
+ const vp9_prob oldp = old_coef_probs[i][j][k][l][t];
+ int s;
+ int u = 0;
+ if (t == PIVOT_NODE)
+ s = vp9_prob_diff_update_savings_search_model(
+ frame_branch_ct[i][j][k][l][0],
+ old_coef_probs[i][j][k][l], &newp, upd, stepsize);
+ else
+ s = vp9_prob_diff_update_savings_search(
+ frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
+ if (s > 0 && newp != oldp)
+ u = 1;
+ if (u)
+ savings += s - (int)(vp9_cost_zero(upd));
+ else
+ savings -= (int)(vp9_cost_zero(upd));
+ update[u]++;
+ }
+ }
+ }
+ }
+ }
+
+ // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
+ /* Is coef updated at all */
+ if (update[1] == 0 || savings < 0) {
+ vp9_write_bit(bc, 0);
+ return;
+ }
+ vp9_write_bit(bc, 1);
+ for (i = 0; i < PLANE_TYPES; ++i) {
+ for (j = 0; j < REF_TYPES; ++j) {
+ for (k = 0; k < COEF_BANDS; ++k) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ // calc probs and branch cts for this frame only
+ for (t = 0; t < entropy_nodes_update; ++t) {
+ vp9_prob newp = new_coef_probs[i][j][k][l][t];
+ vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
+ const vp9_prob upd = DIFF_UPDATE_PROB;
+ int s;
+ int u = 0;
+ if (t == PIVOT_NODE)
+ s = vp9_prob_diff_update_savings_search_model(
+ frame_branch_ct[i][j][k][l][0],
+ old_coef_probs[i][j][k][l], &newp, upd, stepsize);
+ else
+ s = vp9_prob_diff_update_savings_search(
+ frame_branch_ct[i][j][k][l][t],
+ *oldp, &newp, upd);
+ if (s > 0 && newp != *oldp)
+ u = 1;
+ vp9_write(bc, u, upd);
+ if (u) {
+ /* send/use new probability */
+ vp9_write_prob_diff_update(bc, newp, *oldp);
+ *oldp = newp;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+
+ case ONE_LOOP_REDUCED: {
+ int updates = 0;
+ int noupdates_before_first = 0;
+ for (i = 0; i < PLANE_TYPES; ++i) {
+ for (j = 0; j < REF_TYPES; ++j) {
+ for (k = 0; k < COEF_BANDS; ++k) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ // calc probs and branch cts for this frame only
+ for (t = 0; t < entropy_nodes_update; ++t) {
+ vp9_prob newp = new_coef_probs[i][j][k][l][t];
+ vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
+ int s;
+ int u = 0;
+
+ if (t == PIVOT_NODE) {
+ s = vp9_prob_diff_update_savings_search_model(
+ frame_branch_ct[i][j][k][l][0],
+ old_coef_probs[i][j][k][l], &newp, upd, stepsize);
+ } else {
+ s = vp9_prob_diff_update_savings_search(
+ frame_branch_ct[i][j][k][l][t],
+ *oldp, &newp, upd);
+ }
+
+ if (s > 0 && newp != *oldp)
+ u = 1;
+ updates += u;
+ if (u == 0 && updates == 0) {
+ noupdates_before_first++;
+ continue;
+ }
+ if (u == 1 && updates == 1) {
+ int v;
+ // first update
+ vp9_write_bit(bc, 1);
+ for (v = 0; v < noupdates_before_first; ++v)
+ vp9_write(bc, 0, upd);
+ }
+ vp9_write(bc, u, upd);
+ if (u) {
+ /* send/use new probability */
+ vp9_write_prob_diff_update(bc, newp, *oldp);
+ *oldp = newp;
+ }
+ }
+ }
+ }
+ }
+ }
+ if (updates == 0) {
+ vp9_write_bit(bc, 0); // no updates
+ }
+ return;
+ }
+ default:
+ assert(0);
+ }
+}
+
+static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
+ const TX_MODE tx_mode = cpi->common.tx_mode;
+ const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
+ TX_SIZE tx_size;
+ for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
+ vp9_coeff_stats frame_branch_ct[PLANE_TYPES];
+ vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES];
+ if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
+ (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
+ vp9_write_bit(w, 0);
+ } else {
+ build_tree_distribution(cpi, tx_size, frame_branch_ct,
+ frame_coef_probs);
+ update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
+ frame_coef_probs);
+ }
+ }
+}
+
+static void encode_loopfilter(struct loopfilter *lf,
+ struct vp9_write_bit_buffer *wb) {
+ int i;
+
+ // Encode the loop filter level and type
+ vp9_wb_write_literal(wb, lf->filter_level, 6);
+ vp9_wb_write_literal(wb, lf->sharpness_level, 3);
+
+ // Write out loop filter deltas applied at the MB level based on mode or
+ // ref frame (if they are enabled).
+ vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
+
+ if (lf->mode_ref_delta_enabled) {
+ vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
+ if (lf->mode_ref_delta_update) {
+ for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
+ const int delta = lf->ref_deltas[i];
+ const int changed = delta != lf->last_ref_deltas[i];
+ vp9_wb_write_bit(wb, changed);
+ if (changed) {
+ lf->last_ref_deltas[i] = delta;
+ vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
+ vp9_wb_write_bit(wb, delta < 0);
+ }
+ }
+
+ for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
+ const int delta = lf->mode_deltas[i];
+ const int changed = delta != lf->last_mode_deltas[i];
+ vp9_wb_write_bit(wb, changed);
+ if (changed) {
+ lf->last_mode_deltas[i] = delta;
+ vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
+ vp9_wb_write_bit(wb, delta < 0);
+ }
+ }
+ }
+ }
+}
+
+static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
+ if (delta_q != 0) {
+ vp9_wb_write_bit(wb, 1);
+ vp9_wb_write_literal(wb, abs(delta_q), 4);
+ vp9_wb_write_bit(wb, delta_q < 0);
+ } else {
+ vp9_wb_write_bit(wb, 0);
+ }
+}
+
+static void encode_quantization(const VP9_COMMON *const cm,
+ struct vp9_write_bit_buffer *wb) {
+ vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
+ write_delta_q(wb, cm->y_dc_delta_q);
+ write_delta_q(wb, cm->uv_dc_delta_q);
+ write_delta_q(wb, cm->uv_ac_delta_q);
+}
+
+static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
+ struct vp9_write_bit_buffer *wb) {
+ int i, j;
+
+ const struct segmentation *seg = &cm->seg;
+
+ vp9_wb_write_bit(wb, seg->enabled);
+ if (!seg->enabled)
+ return;
+
+ // Segmentation map
+ vp9_wb_write_bit(wb, seg->update_map);
+ if (seg->update_map) {
+ // Select the coding strategy (temporal or spatial)
+ vp9_choose_segmap_coding_method(cm, xd);
+ // Write out probabilities used to decode unpredicted macro-block segments
+ for (i = 0; i < SEG_TREE_PROBS; i++) {
+ const int prob = seg->tree_probs[i];
+ const int update = prob != MAX_PROB;
+ vp9_wb_write_bit(wb, update);
+ if (update)
+ vp9_wb_write_literal(wb, prob, 8);
+ }
+
+ // Write out the chosen coding method.
+ vp9_wb_write_bit(wb, seg->temporal_update);
+ if (seg->temporal_update) {
+ for (i = 0; i < PREDICTION_PROBS; i++) {
+ const int prob = seg->pred_probs[i];
+ const int update = prob != MAX_PROB;
+ vp9_wb_write_bit(wb, update);
+ if (update)
+ vp9_wb_write_literal(wb, prob, 8);
+ }
+ }
+ }
+
+ // Segmentation data
+ vp9_wb_write_bit(wb, seg->update_data);
+ if (seg->update_data) {
+ vp9_wb_write_bit(wb, seg->abs_delta);
+
+ for (i = 0; i < MAX_SEGMENTS; i++) {
+ for (j = 0; j < SEG_LVL_MAX; j++) {
+ const int active = vp9_segfeature_active(seg, i, j);
+ vp9_wb_write_bit(wb, active);
+ if (active) {
+ const int data = vp9_get_segdata(seg, i, j);
+ const int data_max = vp9_seg_feature_data_max(j);
+
+ if (vp9_is_segfeature_signed(j)) {
+ encode_unsigned_max(wb, abs(data), data_max);
+ vp9_wb_write_bit(wb, data < 0);
+ } else {
+ encode_unsigned_max(wb, data, data_max);
+ }
+ }
+ }
+ }
+ }
+}
+
+static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w,
+ FRAME_COUNTS *counts) {
+ // Mode
+ vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
+ if (cm->tx_mode >= ALLOW_32X32)
+ vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
+
+ // Probabilities
+ if (cm->tx_mode == TX_MODE_SELECT) {
+ int i, j;
+ unsigned int ct_8x8p[TX_SIZES - 3][2];
+ unsigned int ct_16x16p[TX_SIZES - 2][2];
+ unsigned int ct_32x32p[TX_SIZES - 1][2];
+
+
+ for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+ tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
+ for (j = 0; j < TX_SIZES - 3; j++)
+ vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
+ }
+
+ for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+ tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
+ for (j = 0; j < TX_SIZES - 2; j++)
+ vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
+ ct_16x16p[j]);
+ }
+
+ for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+ tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
+ for (j = 0; j < TX_SIZES - 1; j++)
+ vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
+ ct_32x32p[j]);
+ }
+ }
+}
+
+static void write_interp_filter(INTERP_FILTER filter,
+ struct vp9_write_bit_buffer *wb) {
+ const int filter_to_literal[] = { 1, 0, 2, 3 };
+
+ vp9_wb_write_bit(wb, filter == SWITCHABLE);
+ if (filter != SWITCHABLE)
+ vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
+}
+
+static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
+ if (cm->interp_filter == SWITCHABLE) {
+ // Check to see if only one of the filters is actually used
+ int count[SWITCHABLE_FILTERS];
+ int i, j, c = 0;
+ for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+ count[i] = 0;
+ for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
+ count[i] += counts->switchable_interp[j][i];
+ c += (count[i] > 0);
+ }
+ if (c == 1) {
+ // Only one filter is used. So set the filter at frame level
+ for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+ if (count[i]) {
+ cm->interp_filter = i;
+ break;
+ }
+ }
+ }
+ }
+}
+
+static void write_tile_info(const VP9_COMMON *const cm,
+ struct vp9_write_bit_buffer *wb) {
+ int min_log2_tile_cols, max_log2_tile_cols, ones;
+ vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
+
+ // columns
+ ones = cm->log2_tile_cols - min_log2_tile_cols;
+ while (ones--)
+ vp9_wb_write_bit(wb, 1);
+
+ if (cm->log2_tile_cols < max_log2_tile_cols)
+ vp9_wb_write_bit(wb, 0);
+
+ // rows
+ vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
+ if (cm->log2_tile_rows != 0)
+ vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
+}
+
+static int get_refresh_mask(VP9_COMP *cpi) {
+ if (vp9_preserve_existing_gf(cpi)) {
+ // We have decided to preserve the previously existing golden frame as our
+ // new ARF frame. However, in the short term we leave it in the GF slot and,
+ // if we're updating the GF with the current decoded frame, we save it
+ // instead to the ARF slot.
+ // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
+ // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
+ // there so that it can be done outside of the recode loop.
+ // Note: This is highly specific to the use of ARF as a forward reference,
+ // and this needs to be generalized as other uses are implemented
+ // (like RTC/temporal scalability).
+ return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
+ (cpi->refresh_golden_frame << cpi->alt_fb_idx);
+ } else {
+ int arf_idx = cpi->alt_fb_idx;
+ if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ arf_idx = gf_group->arf_update_idx[gf_group->index];
+ }
+ return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
+ (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
+ (cpi->refresh_alt_ref_frame << arf_idx);
+ }
+}
+
+static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
+ VP9_COMMON *const cm = &cpi->common;
+ vp9_writer residual_bc;
+ int tile_row, tile_col;
+ TOKENEXTRA *tok_end;
+ size_t total_size = 0;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ const int tile_rows = 1 << cm->log2_tile_rows;
+
+ memset(cm->above_seg_context, 0,
+ sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
+
+ for (tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (tile_col = 0; tile_col < tile_cols; tile_col++) {
+ int tile_idx = tile_row * tile_cols + tile_col;
+ TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
+
+ tok_end = cpi->tile_tok[tile_row][tile_col] +
+ cpi->tok_count[tile_row][tile_col];
+
+ if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
+ vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
+ else
+ vp9_start_encode(&residual_bc, data_ptr + total_size);
+
+ write_modes(cpi, &cpi->tile_data[tile_idx].tile_info,
+ &residual_bc, &tok, tok_end);
+ assert(tok == tok_end);
+ vp9_stop_encode(&residual_bc);
+ if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
+ // size of this tile
+ mem_put_be32(data_ptr + total_size, residual_bc.pos);
+ total_size += 4;
+ }
+
+ total_size += residual_bc.pos;
+ }
+ }
+
+ return total_size;
+}
+
+static void write_display_size(const VP9_COMMON *cm,
+ struct vp9_write_bit_buffer *wb) {
+ const int scaling_active = cm->width != cm->display_width ||
+ cm->height != cm->display_height;
+ vp9_wb_write_bit(wb, scaling_active);
+ if (scaling_active) {
+ vp9_wb_write_literal(wb, cm->display_width - 1, 16);
+ vp9_wb_write_literal(wb, cm->display_height - 1, 16);
+ }
+}
+
+static void write_frame_size(const VP9_COMMON *cm,
+ struct vp9_write_bit_buffer *wb) {
+ vp9_wb_write_literal(wb, cm->width - 1, 16);
+ vp9_wb_write_literal(wb, cm->height - 1, 16);
+
+ write_display_size(cm, wb);
+}
+
+static void write_frame_size_with_refs(VP9_COMP *cpi,
+ struct vp9_write_bit_buffer *wb) {
+ VP9_COMMON *const cm = &cpi->common;
+ int found = 0;
+
+ MV_REFERENCE_FRAME ref_frame;
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
+
+ // Set "found" to 0 for temporal svc and for spatial svc key frame
+ if (cpi->use_svc &&
+ ((cpi->svc.number_temporal_layers > 1 &&
+ cpi->oxcf.rc_mode == VPX_CBR) ||
+ (cpi->svc.number_spatial_layers > 1 &&
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) ||
+ (is_two_pass_svc(cpi) &&
+ cpi->svc.encode_empty_frame_state == ENCODING &&
+ cpi->svc.layer_context[0].frames_from_key_frame <
+ cpi->svc.number_temporal_layers + 1))) {
+ found = 0;
+ } else if (cfg != NULL) {
+ found = cm->width == cfg->y_crop_width &&
+ cm->height == cfg->y_crop_height;
+ }
+ vp9_wb_write_bit(wb, found);
+ if (found) {
+ break;
+ }
+ }
+
+ if (!found) {
+ vp9_wb_write_literal(wb, cm->width - 1, 16);
+ vp9_wb_write_literal(wb, cm->height - 1, 16);
+ }
+
+ write_display_size(cm, wb);
+}
+
+static void write_sync_code(struct vp9_write_bit_buffer *wb) {
+ vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
+ vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
+ vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
+}
+
+static void write_profile(BITSTREAM_PROFILE profile,
+ struct vp9_write_bit_buffer *wb) {
+ switch (profile) {
+ case PROFILE_0:
+ vp9_wb_write_literal(wb, 0, 2);
+ break;
+ case PROFILE_1:
+ vp9_wb_write_literal(wb, 2, 2);
+ break;
+ case PROFILE_2:
+ vp9_wb_write_literal(wb, 1, 2);
+ break;
+ case PROFILE_3:
+ vp9_wb_write_literal(wb, 6, 3);
+ break;
+ default:
+ assert(0);
+ }
+}
+
+static void write_bitdepth_colorspace_sampling(
+ VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) {
+ if (cm->profile >= PROFILE_2) {
+ assert(cm->bit_depth > VPX_BITS_8);
+ vp9_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
+ }
+ vp9_wb_write_literal(wb, cm->color_space, 3);
+ if (cm->color_space != VPX_CS_SRGB) {
+ vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
+ if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
+ assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
+ vp9_wb_write_bit(wb, cm->subsampling_x);
+ vp9_wb_write_bit(wb, cm->subsampling_y);
+ vp9_wb_write_bit(wb, 0); // unused
+ } else {
+ assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
+ }
+ } else {
+ assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
+ vp9_wb_write_bit(wb, 0); // unused
+ }
+}
+
+static void write_uncompressed_header(VP9_COMP *cpi,
+ struct vp9_write_bit_buffer *wb) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+ vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
+
+ write_profile(cm->profile, wb);
+
+ vp9_wb_write_bit(wb, 0); // show_existing_frame
+ vp9_wb_write_bit(wb, cm->frame_type);
+ vp9_wb_write_bit(wb, cm->show_frame);
+ vp9_wb_write_bit(wb, cm->error_resilient_mode);
+
+ if (cm->frame_type == KEY_FRAME) {
+ write_sync_code(wb);
+ write_bitdepth_colorspace_sampling(cm, wb);
+ write_frame_size(cm, wb);
+ } else {
+ // In spatial svc if it's not error_resilient_mode then we need to code all
+ // visible frames as invisible. But we need to keep the show_frame flag so
+ // that the publisher could know whether it is supposed to be visible.
+ // So we will code the show_frame flag as it is. Then code the intra_only
+ // bit here. This will make the bitstream incompatible. In the player we
+ // will change to show_frame flag to 0, then add an one byte frame with
+ // show_existing_frame flag which tells the decoder which frame we want to
+ // show.
+ if (!cm->show_frame)
+ vp9_wb_write_bit(wb, cm->intra_only);
+
+ if (!cm->error_resilient_mode)
+ vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
+
+ if (cm->intra_only) {
+ write_sync_code(wb);
+
+ // Note for profile 0, 420 8bpp is assumed.
+ if (cm->profile > PROFILE_0) {
+ write_bitdepth_colorspace_sampling(cm, wb);
+ }
+
+ vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
+ write_frame_size(cm, wb);
+ } else {
+ MV_REFERENCE_FRAME ref_frame;
+ vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
+ vp9_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
+ REF_FRAMES_LOG2);
+ vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
+ }
+
+ write_frame_size_with_refs(cpi, wb);
+
+ vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
+
+ fix_interp_filter(cm, cpi->td.counts);
+ write_interp_filter(cm->interp_filter, wb);
+ }
+ }
+
+ if (!cm->error_resilient_mode) {
+ vp9_wb_write_bit(wb, cm->refresh_frame_context);
+ vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
+ }
+
+ vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
+
+ encode_loopfilter(&cm->lf, wb);
+ encode_quantization(cm, wb);
+ encode_segmentation(cm, xd, wb);
+
+ write_tile_info(cm, wb);
+}
+
+static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ FRAME_CONTEXT *const fc = cm->fc;
+ FRAME_COUNTS *counts = cpi->td.counts;
+ vp9_writer header_bc;
+
+ vp9_start_encode(&header_bc, data);
+
+ if (xd->lossless)
+ cm->tx_mode = ONLY_4X4;
+ else
+ encode_txfm_probs(cm, &header_bc, counts);
+
+ update_coef_probs(cpi, &header_bc);
+ update_skip_probs(cm, &header_bc, counts);
+
+ if (!frame_is_intra_only(cm)) {
+ int i;
+
+ for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
+ prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i],
+ counts->inter_mode[i], INTER_MODES, &header_bc);
+
+ if (cm->interp_filter == SWITCHABLE)
+ update_switchable_interp_probs(cm, &header_bc, counts);
+
+ for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
+ vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
+ counts->intra_inter[i]);
+
+ if (cpi->allow_comp_inter_inter) {
+ const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
+ const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
+
+ vp9_write_bit(&header_bc, use_compound_pred);
+ if (use_compound_pred) {
+ vp9_write_bit(&header_bc, use_hybrid_pred);
+ if (use_hybrid_pred)
+ for (i = 0; i < COMP_INTER_CONTEXTS; i++)
+ vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
+ counts->comp_inter[i]);
+ }
+ }
+
+ if (cm->reference_mode != COMPOUND_REFERENCE) {
+ for (i = 0; i < REF_CONTEXTS; i++) {
+ vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
+ counts->single_ref[i][0]);
+ vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
+ counts->single_ref[i][1]);
+ }
+ }
+
+ if (cm->reference_mode != SINGLE_REFERENCE)
+ for (i = 0; i < REF_CONTEXTS; i++)
+ vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
+ counts->comp_ref[i]);
+
+ for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
+ prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i],
+ counts->y_mode[i], INTRA_MODES, &header_bc);
+
+ for (i = 0; i < PARTITION_CONTEXTS; ++i)
+ prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
+ counts->partition[i], PARTITION_TYPES, &header_bc);
+
+ vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
+ &counts->mv);
+ }
+
+ vp9_stop_encode(&header_bc);
+ assert(header_bc.pos <= 0xffff);
+
+ return header_bc.pos;
+}
+
+void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
+ uint8_t *data = dest;
+ size_t first_part_size, uncompressed_hdr_size;
+ struct vp9_write_bit_buffer wb = {data, 0};
+ struct vp9_write_bit_buffer saved_wb;
+
+ write_uncompressed_header(cpi, &wb);
+ saved_wb = wb;
+ vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
+
+ uncompressed_hdr_size = vp9_wb_bytes_written(&wb);
+ data += uncompressed_hdr_size;
+
+ vp9_clear_system_state();
+
+ first_part_size = write_compressed_header(cpi, data);
+ data += first_part_size;
+ // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
+ vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
+
+ data += encode_tiles(cpi, data);
+
+ *size = data - dest;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_bitstream.h b/media/libvpx/vp9/encoder/vp9_bitstream.h
new file mode 100644
index 000000000..da6b41464
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_bitstream.h
@@ -0,0 +1,37 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_BITSTREAM_H_
+#define VP9_ENCODER_VP9_BITSTREAM_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "vp9/encoder/vp9_encoder.h"
+
+void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size);
+
+static INLINE int vp9_preserve_existing_gf(VP9_COMP *cpi) {
+ return !cpi->multi_arf_allowed && cpi->refresh_golden_frame &&
+ cpi->rc.is_src_frame_alt_ref &&
+ (!cpi->use_svc || // Add spatial svc base layer case here
+ (is_two_pass_svc(cpi) &&
+ cpi->svc.spatial_layer_id == 0 &&
+ cpi->svc.layer_context[0].gold_ref_idx >=0 &&
+ cpi->oxcf.ss_enable_auto_arf[0]));
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_BITSTREAM_H_
diff --git a/media/libvpx/vp9/encoder/vp9_block.h b/media/libvpx/vp9/encoder/vp9_block.h
new file mode 100644
index 000000000..04a1b8f3c
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_block.h
@@ -0,0 +1,137 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_BLOCK_H_
+#define VP9_ENCODER_VP9_BLOCK_H_
+
+#include "vp9/common/vp9_entropymv.h"
+#include "vp9/common/vp9_entropy.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+ unsigned int sse;
+ int sum;
+ unsigned int var;
+} diff;
+
+struct macroblock_plane {
+ DECLARE_ALIGNED(16, int16_t, src_diff[64 * 64]);
+ tran_low_t *qcoeff;
+ tran_low_t *coeff;
+ uint16_t *eobs;
+ struct buf_2d src;
+
+ // Quantizer setings
+ int16_t *quant_fp;
+ int16_t *round_fp;
+ int16_t *quant;
+ int16_t *quant_shift;
+ int16_t *zbin;
+ int16_t *round;
+
+ int64_t quant_thred[2];
+};
+
+/* The [2] dimension is for whether we skip the EOB node (i.e. if previous
+ * coefficient in this block was zero) or not. */
+typedef unsigned int vp9_coeff_cost[PLANE_TYPES][REF_TYPES][COEF_BANDS][2]
+ [COEFF_CONTEXTS][ENTROPY_TOKENS];
+
+typedef struct macroblock MACROBLOCK;
+struct macroblock {
+ struct macroblock_plane plane[MAX_MB_PLANE];
+
+ MACROBLOCKD e_mbd;
+ int skip_block;
+ int select_tx_size;
+ int skip_recode;
+ int skip_optimize;
+ int q_index;
+
+ int errorperbit;
+ int sadperbit16;
+ int sadperbit4;
+ int rddiv;
+ int rdmult;
+ int mb_energy;
+
+ // These are set to their default values at the beginning, and then adjusted
+ // further in the encoding process.
+ BLOCK_SIZE min_partition_size;
+ BLOCK_SIZE max_partition_size;
+
+ int mv_best_ref_index[MAX_REF_FRAMES];
+ unsigned int max_mv_context[MAX_REF_FRAMES];
+ unsigned int source_variance;
+ unsigned int pred_sse[MAX_REF_FRAMES];
+ int pred_mv_sad[MAX_REF_FRAMES];
+
+ int nmvjointcost[MV_JOINTS];
+ int *nmvcost[2];
+ int *nmvcost_hp[2];
+ int **mvcost;
+
+ int nmvjointsadcost[MV_JOINTS];
+ int *nmvsadcost[2];
+ int *nmvsadcost_hp[2];
+ int **mvsadcost;
+
+ // These define limits to motion vector components to prevent them
+ // from extending outside the UMV borders
+ int mv_col_min;
+ int mv_col_max;
+ int mv_row_min;
+ int mv_row_max;
+
+ uint8_t zcoeff_blk[TX_SIZES][256];
+ int skip;
+
+ int encode_breakout;
+
+ // note that token_costs is the cost when eob node is skipped
+ vp9_coeff_cost token_costs[TX_SIZES];
+
+ int optimize;
+
+ // indicate if it is in the rd search loop or encoding process
+ int use_lp32x32fdct;
+ int skip_encode;
+
+ // use fast quantization process
+ int quant_fp;
+
+ // skip forward transform and quantization
+ uint8_t skip_txfm[MAX_MB_PLANE << 2];
+
+ int64_t bsse[MAX_MB_PLANE << 2];
+
+ // Used to store sub partition's choices.
+ MV pred_mv[MAX_REF_FRAMES];
+
+ // Strong color activity detection. Used in RTC coding mode to enhance
+ // the visual quality at the boundary of moving color objects.
+ uint8_t color_sensitivity[2];
+
+ void (*fwd_txm4x4)(const int16_t *input, tran_low_t *output, int stride);
+ void (*itxm_add)(const tran_low_t *input, uint8_t *dest, int stride, int eob);
+#if CONFIG_VP9_HIGHBITDEPTH
+ void (*highbd_itxm_add)(const tran_low_t *input, uint8_t *dest, int stride,
+ int eob, int bd);
+#endif
+};
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_BLOCK_H_
diff --git a/media/libvpx/vp9/encoder/vp9_blockiness.c b/media/libvpx/vp9/encoder/vp9_blockiness.c
new file mode 100644
index 000000000..b8629bd3b
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_blockiness.c
@@ -0,0 +1,138 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "./vpx_config.h"
+#include "./vp9_rtcd.h"
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_convolve.h"
+#include "vp9/common/vp9_filter.h"
+#include "vpx/vpx_integer.h"
+#include "vpx_ports/mem.h"
+
+static int horizontal_filter(const uint8_t *s) {
+ return (s[1] - s[-2]) * 2 + (s[-1] - s[0]) * 6;
+}
+
+static int vertical_filter(const uint8_t *s, int p) {
+ return (s[p] - s[-2 * p]) * 2 + (s[-p] - s[0]) * 6;
+}
+
+static int variance(int sum, int sum_squared, int size) {
+ return sum_squared / size - (sum / size) * (sum / size);
+}
+// Calculate a blockiness level for a vertical block edge.
+// This function returns a new blockiness metric that's defined as
+
+// p0 p1 p2 p3
+// q0 q1 q2 q3
+// block edge ->
+// r0 r1 r2 r3
+// s0 s1 s2 s3
+
+// blockiness = p0*-2+q0*6+r0*-6+s0*2 +
+// p1*-2+q1*6+r1*-6+s1*2 +
+// p2*-2+q2*6+r2*-6+s2*2 +
+// p3*-2+q3*6+r3*-6+s3*2 ;
+
+// reconstructed_blockiness = abs(blockiness from reconstructed buffer -
+// blockiness from source buffer,0)
+//
+// I make the assumption that flat blocks are much more visible than high
+// contrast blocks. As such, I scale the result of the blockiness calc
+// by dividing the blockiness by the variance of the pixels on either side
+// of the edge as follows:
+// var_0 = (q0^2+q1^2+q2^2+q3^2) - ((q0 + q1 + q2 + q3) / 4 )^2
+// var_1 = (r0^2+r1^2+r2^2+r3^2) - ((r0 + r1 + r2 + r3) / 4 )^2
+// The returned blockiness is the scaled value
+// Reconstructed blockiness / ( 1 + var_0 + var_1 ) ;
+int blockiness_vertical(const uint8_t *s, int sp, const uint8_t *r, int rp,
+ int size) {
+ int s_blockiness = 0;
+ int r_blockiness = 0;
+ int sum_0 = 0;
+ int sum_sq_0 = 0;
+ int sum_1 = 0;
+ int sum_sq_1 = 0;
+ int i;
+ int var_0;
+ int var_1;
+ for (i = 0; i < size; ++i, s += sp, r += rp) {
+ s_blockiness += horizontal_filter(s);
+ r_blockiness += horizontal_filter(r);
+ sum_0 += s[0];
+ sum_sq_0 += s[0]*s[0];
+ sum_1 += s[-1];
+ sum_sq_1 += s[-1]*s[-1];
+ }
+ var_0 = variance(sum_0, sum_sq_0, size);
+ var_1 = variance(sum_1, sum_sq_1, size);
+ r_blockiness = abs(r_blockiness);
+ s_blockiness = abs(s_blockiness);
+
+ if (r_blockiness > s_blockiness)
+ return (r_blockiness - s_blockiness) / (1 + var_0 + var_1);
+ else
+ return 0;
+}
+
+// Calculate a blockiness level for a horizontal block edge
+// same as above.
+int blockiness_horizontal(const uint8_t *s, int sp, const uint8_t *r, int rp,
+ int size) {
+ int s_blockiness = 0;
+ int r_blockiness = 0;
+ int sum_0 = 0;
+ int sum_sq_0 = 0;
+ int sum_1 = 0;
+ int sum_sq_1 = 0;
+ int i;
+ int var_0;
+ int var_1;
+ for (i = 0; i < size; ++i, ++s, ++r) {
+ s_blockiness += vertical_filter(s, sp);
+ r_blockiness += vertical_filter(r, rp);
+ sum_0 += s[0];
+ sum_sq_0 += s[0] * s[0];
+ sum_1 += s[-sp];
+ sum_sq_1 += s[-sp] * s[-sp];
+ }
+ var_0 = variance(sum_0, sum_sq_0, size);
+ var_1 = variance(sum_1, sum_sq_1, size);
+ r_blockiness = abs(r_blockiness);
+ s_blockiness = abs(s_blockiness);
+
+ if (r_blockiness > s_blockiness)
+ return (r_blockiness - s_blockiness) / (1 + var_0 + var_1);
+ else
+ return 0;
+}
+
+// This function returns the blockiness for the entire frame currently by
+// looking at all borders in steps of 4.
+double vp9_get_blockiness(const unsigned char *img1, int img1_pitch,
+ const unsigned char *img2, int img2_pitch,
+ int width, int height ) {
+ double blockiness = 0;
+ int i, j;
+ vp9_clear_system_state();
+ for (i = 0; i < height; i += 4, img1 += img1_pitch * 4,
+ img2 += img2_pitch * 4) {
+ for (j = 0; j < width; j += 4) {
+ if (i > 0 && i < height && j > 0 && j < width) {
+ blockiness += blockiness_vertical(img1 + j, img1_pitch,
+ img2 + j, img2_pitch, 4);
+ blockiness += blockiness_horizontal(img1 + j, img1_pitch,
+ img2 + j, img2_pitch, 4);
+ }
+ }
+ }
+ blockiness /= width * height / 16;
+ return blockiness;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_context_tree.c b/media/libvpx/vp9/encoder/vp9_context_tree.c
new file mode 100644
index 000000000..f647ab395
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_context_tree.c
@@ -0,0 +1,158 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp9/encoder/vp9_context_tree.h"
+#include "vp9/encoder/vp9_encoder.h"
+
+static const BLOCK_SIZE square[] = {
+ BLOCK_8X8,
+ BLOCK_16X16,
+ BLOCK_32X32,
+ BLOCK_64X64,
+};
+
+static void alloc_mode_context(VP9_COMMON *cm, int num_4x4_blk,
+ PICK_MODE_CONTEXT *ctx) {
+ const int num_blk = (num_4x4_blk < 4 ? 4 : num_4x4_blk);
+ const int num_pix = num_blk << 4;
+ int i, k;
+ ctx->num_4x4_blk = num_blk;
+
+ CHECK_MEM_ERROR(cm, ctx->zcoeff_blk,
+ vpx_calloc(num_4x4_blk, sizeof(uint8_t)));
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ for (k = 0; k < 3; ++k) {
+ CHECK_MEM_ERROR(cm, ctx->coeff[i][k],
+ vpx_memalign(16, num_pix * sizeof(*ctx->coeff[i][k])));
+ CHECK_MEM_ERROR(cm, ctx->qcoeff[i][k],
+ vpx_memalign(16, num_pix * sizeof(*ctx->qcoeff[i][k])));
+ CHECK_MEM_ERROR(cm, ctx->dqcoeff[i][k],
+ vpx_memalign(16, num_pix * sizeof(*ctx->dqcoeff[i][k])));
+ CHECK_MEM_ERROR(cm, ctx->eobs[i][k],
+ vpx_memalign(16, num_pix * sizeof(*ctx->eobs[i][k])));
+ ctx->coeff_pbuf[i][k] = ctx->coeff[i][k];
+ ctx->qcoeff_pbuf[i][k] = ctx->qcoeff[i][k];
+ ctx->dqcoeff_pbuf[i][k] = ctx->dqcoeff[i][k];
+ ctx->eobs_pbuf[i][k] = ctx->eobs[i][k];
+ }
+ }
+}
+
+static void free_mode_context(PICK_MODE_CONTEXT *ctx) {
+ int i, k;
+ vpx_free(ctx->zcoeff_blk);
+ ctx->zcoeff_blk = 0;
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ for (k = 0; k < 3; ++k) {
+ vpx_free(ctx->coeff[i][k]);
+ ctx->coeff[i][k] = 0;
+ vpx_free(ctx->qcoeff[i][k]);
+ ctx->qcoeff[i][k] = 0;
+ vpx_free(ctx->dqcoeff[i][k]);
+ ctx->dqcoeff[i][k] = 0;
+ vpx_free(ctx->eobs[i][k]);
+ ctx->eobs[i][k] = 0;
+ }
+ }
+}
+
+static void alloc_tree_contexts(VP9_COMMON *cm, PC_TREE *tree,
+ int num_4x4_blk) {
+ alloc_mode_context(cm, num_4x4_blk, &tree->none);
+ alloc_mode_context(cm, num_4x4_blk/2, &tree->horizontal[0]);
+ alloc_mode_context(cm, num_4x4_blk/2, &tree->vertical[0]);
+
+ /* TODO(Jbb): for 4x8 and 8x4 these allocated values are not used.
+ * Figure out a better way to do this. */
+ alloc_mode_context(cm, num_4x4_blk/2, &tree->horizontal[1]);
+ alloc_mode_context(cm, num_4x4_blk/2, &tree->vertical[1]);
+}
+
+static void free_tree_contexts(PC_TREE *tree) {
+ free_mode_context(&tree->none);
+ free_mode_context(&tree->horizontal[0]);
+ free_mode_context(&tree->horizontal[1]);
+ free_mode_context(&tree->vertical[0]);
+ free_mode_context(&tree->vertical[1]);
+}
+
+// This function sets up a tree of contexts such that at each square
+// partition level. There are contexts for none, horizontal, vertical, and
+// split. Along with a block_size value and a selected block_size which
+// represents the state of our search.
+void vp9_setup_pc_tree(VP9_COMMON *cm, ThreadData *td) {
+ int i, j;
+ const int leaf_nodes = 64;
+ const int tree_nodes = 64 + 16 + 4 + 1;
+ int pc_tree_index = 0;
+ PC_TREE *this_pc;
+ PICK_MODE_CONTEXT *this_leaf;
+ int square_index = 1;
+ int nodes;
+
+ vpx_free(td->leaf_tree);
+ CHECK_MEM_ERROR(cm, td->leaf_tree, vpx_calloc(leaf_nodes,
+ sizeof(*td->leaf_tree)));
+ vpx_free(td->pc_tree);
+ CHECK_MEM_ERROR(cm, td->pc_tree, vpx_calloc(tree_nodes,
+ sizeof(*td->pc_tree)));
+
+ this_pc = &td->pc_tree[0];
+ this_leaf = &td->leaf_tree[0];
+
+ // 4x4 blocks smaller than 8x8 but in the same 8x8 block share the same
+ // context so we only need to allocate 1 for each 8x8 block.
+ for (i = 0; i < leaf_nodes; ++i)
+ alloc_mode_context(cm, 1, &td->leaf_tree[i]);
+
+ // Sets up all the leaf nodes in the tree.
+ for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) {
+ PC_TREE *const tree = &td->pc_tree[pc_tree_index];
+ tree->block_size = square[0];
+ alloc_tree_contexts(cm, tree, 4);
+ tree->leaf_split[0] = this_leaf++;
+ for (j = 1; j < 4; j++)
+ tree->leaf_split[j] = tree->leaf_split[0];
+ }
+
+ // Each node has 4 leaf nodes, fill each block_size level of the tree
+ // from leafs to the root.
+ for (nodes = 16; nodes > 0; nodes >>= 2) {
+ for (i = 0; i < nodes; ++i) {
+ PC_TREE *const tree = &td->pc_tree[pc_tree_index];
+ alloc_tree_contexts(cm, tree, 4 << (2 * square_index));
+ tree->block_size = square[square_index];
+ for (j = 0; j < 4; j++)
+ tree->split[j] = this_pc++;
+ ++pc_tree_index;
+ }
+ ++square_index;
+ }
+ td->pc_root = &td->pc_tree[tree_nodes - 1];
+ td->pc_root[0].none.best_mode_index = 2;
+}
+
+void vp9_free_pc_tree(ThreadData *td) {
+ const int tree_nodes = 64 + 16 + 4 + 1;
+ int i;
+
+ // Set up all 4x4 mode contexts
+ for (i = 0; i < 64; ++i)
+ free_mode_context(&td->leaf_tree[i]);
+
+ // Sets up all the leaf nodes in the tree.
+ for (i = 0; i < tree_nodes; ++i)
+ free_tree_contexts(&td->pc_tree[i]);
+
+ vpx_free(td->pc_tree);
+ td->pc_tree = NULL;
+ vpx_free(td->leaf_tree);
+ td->leaf_tree = NULL;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_context_tree.h b/media/libvpx/vp9/encoder/vp9_context_tree.h
new file mode 100644
index 000000000..70bf032c3
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_context_tree.h
@@ -0,0 +1,86 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_CONTEXT_TREE_H_
+#define VP9_ENCODER_VP9_CONTEXT_TREE_H_
+
+#include "vp9/common/vp9_blockd.h"
+
+struct VP9_COMP;
+struct VP9Common;
+struct ThreadData;
+
+// Structure to hold snapshot of coding context during the mode picking process
+typedef struct {
+ MODE_INFO mic;
+ uint8_t *zcoeff_blk;
+ tran_low_t *coeff[MAX_MB_PLANE][3];
+ tran_low_t *qcoeff[MAX_MB_PLANE][3];
+ tran_low_t *dqcoeff[MAX_MB_PLANE][3];
+ uint16_t *eobs[MAX_MB_PLANE][3];
+
+ // dual buffer pointers, 0: in use, 1: best in store
+ tran_low_t *coeff_pbuf[MAX_MB_PLANE][3];
+ tran_low_t *qcoeff_pbuf[MAX_MB_PLANE][3];
+ tran_low_t *dqcoeff_pbuf[MAX_MB_PLANE][3];
+ uint16_t *eobs_pbuf[MAX_MB_PLANE][3];
+
+ int is_coded;
+ int num_4x4_blk;
+ int skip;
+ int pred_pixel_ready;
+ // For current partition, only if all Y, U, and V transform blocks'
+ // coefficients are quantized to 0, skippable is set to 0.
+ int skippable;
+ uint8_t skip_txfm[MAX_MB_PLANE << 2];
+ int best_mode_index;
+ int hybrid_pred_diff;
+ int comp_pred_diff;
+ int single_pred_diff;
+ int64_t tx_rd_diff[TX_MODES];
+ int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+
+ // TODO(jingning) Use RD_COST struct here instead. This involves a boarder
+ // scope of refactoring.
+ int rate;
+ int64_t dist;
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ unsigned int newmv_sse;
+ unsigned int zeromv_sse;
+ PREDICTION_MODE best_sse_inter_mode;
+ int_mv best_sse_mv;
+ MV_REFERENCE_FRAME best_reference_frame;
+ MV_REFERENCE_FRAME best_zeromv_reference_frame;
+#endif
+
+ // motion vector cache for adaptive motion search control in partition
+ // search loop
+ MV pred_mv[MAX_REF_FRAMES];
+ INTERP_FILTER pred_interp_filter;
+} PICK_MODE_CONTEXT;
+
+typedef struct PC_TREE {
+ int index;
+ PARTITION_TYPE partitioning;
+ BLOCK_SIZE block_size;
+ PICK_MODE_CONTEXT none;
+ PICK_MODE_CONTEXT horizontal[2];
+ PICK_MODE_CONTEXT vertical[2];
+ union {
+ struct PC_TREE *split[4];
+ PICK_MODE_CONTEXT *leaf_split[4];
+ };
+} PC_TREE;
+
+void vp9_setup_pc_tree(struct VP9Common *cm, struct ThreadData *td);
+void vp9_free_pc_tree(struct ThreadData *td);
+
+#endif /* VP9_ENCODER_VP9_CONTEXT_TREE_H_ */
diff --git a/media/libvpx/vp9/encoder/vp9_cost.c b/media/libvpx/vp9/encoder/vp9_cost.c
new file mode 100644
index 000000000..1c3c3d248
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_cost.c
@@ -0,0 +1,62 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp9/encoder/vp9_cost.h"
+
+const unsigned int vp9_prob_cost[256] = {
+ 2047, 2047, 1791, 1641, 1535, 1452, 1385, 1328, 1279, 1235, 1196, 1161,
+ 1129, 1099, 1072, 1046, 1023, 1000, 979, 959, 940, 922, 905, 889,
+ 873, 858, 843, 829, 816, 803, 790, 778, 767, 755, 744, 733,
+ 723, 713, 703, 693, 684, 675, 666, 657, 649, 641, 633, 625,
+ 617, 609, 602, 594, 587, 580, 573, 567, 560, 553, 547, 541,
+ 534, 528, 522, 516, 511, 505, 499, 494, 488, 483, 477, 472,
+ 467, 462, 457, 452, 447, 442, 437, 433, 428, 424, 419, 415,
+ 410, 406, 401, 397, 393, 389, 385, 381, 377, 373, 369, 365,
+ 361, 357, 353, 349, 346, 342, 338, 335, 331, 328, 324, 321,
+ 317, 314, 311, 307, 304, 301, 297, 294, 291, 288, 285, 281,
+ 278, 275, 272, 269, 266, 263, 260, 257, 255, 252, 249, 246,
+ 243, 240, 238, 235, 232, 229, 227, 224, 221, 219, 216, 214,
+ 211, 208, 206, 203, 201, 198, 196, 194, 191, 189, 186, 184,
+ 181, 179, 177, 174, 172, 170, 168, 165, 163, 161, 159, 156,
+ 154, 152, 150, 148, 145, 143, 141, 139, 137, 135, 133, 131,
+ 129, 127, 125, 123, 121, 119, 117, 115, 113, 111, 109, 107,
+ 105, 103, 101, 99, 97, 95, 93, 92, 90, 88, 86, 84,
+ 82, 81, 79, 77, 75, 73, 72, 70, 68, 66, 65, 63,
+ 61, 60, 58, 56, 55, 53, 51, 50, 48, 46, 45, 43,
+ 41, 40, 38, 37, 35, 33, 32, 30, 29, 27, 25, 24,
+ 22, 21, 19, 18, 16, 15, 13, 12, 10, 9, 7, 6,
+ 4, 3, 1, 1};
+
+static void cost(int *costs, vp9_tree tree, const vp9_prob *probs,
+ int i, int c) {
+ const vp9_prob prob = probs[i / 2];
+ int b;
+
+ for (b = 0; b <= 1; ++b) {
+ const int cc = c + vp9_cost_bit(prob, b);
+ const vp9_tree_index ii = tree[i + b];
+
+ if (ii <= 0)
+ costs[-ii] = cc;
+ else
+ cost(costs, tree, probs, ii, cc);
+ }
+}
+
+void vp9_cost_tokens(int *costs, const vp9_prob *probs, vp9_tree tree) {
+ cost(costs, tree, probs, 0, 0);
+}
+
+void vp9_cost_tokens_skip(int *costs, const vp9_prob *probs, vp9_tree tree) {
+ assert(tree[0] <= 0 && tree[1] > 0);
+
+ costs[-tree[0]] = vp9_cost_bit(probs[0], 0);
+ cost(costs, tree, probs, 2, 0);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_cost.h b/media/libvpx/vp9/encoder/vp9_cost.h
new file mode 100644
index 000000000..6d2b9400d
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_cost.h
@@ -0,0 +1,55 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_COST_H_
+#define VP9_ENCODER_VP9_COST_H_
+
+#include "vp9/common/vp9_prob.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+extern const unsigned int vp9_prob_cost[256];
+
+#define vp9_cost_zero(prob) (vp9_prob_cost[prob])
+
+#define vp9_cost_one(prob) vp9_cost_zero(vp9_complement(prob))
+
+#define vp9_cost_bit(prob, bit) vp9_cost_zero((bit) ? vp9_complement(prob) \
+ : (prob))
+
+static INLINE unsigned int cost_branch256(const unsigned int ct[2],
+ vp9_prob p) {
+ return ct[0] * vp9_cost_zero(p) + ct[1] * vp9_cost_one(p);
+}
+
+static INLINE int treed_cost(vp9_tree tree, const vp9_prob *probs,
+ int bits, int len) {
+ int cost = 0;
+ vp9_tree_index i = 0;
+
+ do {
+ const int bit = (bits >> --len) & 1;
+ cost += vp9_cost_bit(probs[i >> 1], bit);
+ i = tree[i + bit];
+ } while (len);
+
+ return cost;
+}
+
+void vp9_cost_tokens(int *costs, const vp9_prob *probs, vp9_tree tree);
+void vp9_cost_tokens_skip(int *costs, const vp9_prob *probs, vp9_tree tree);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_COST_H_
diff --git a/media/libvpx/vp9/encoder/vp9_dct.c b/media/libvpx/vp9/encoder/vp9_dct.c
new file mode 100644
index 000000000..414d2bb15
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_dct.c
@@ -0,0 +1,1592 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+
+#include "./vpx_config.h"
+#include "./vp9_rtcd.h"
+
+#include "vpx_ports/mem.h"
+#include "vp9/common/vp9_blockd.h"
+#include "vp9/common/vp9_idct.h"
+#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/encoder/vp9_dct.h"
+
+static INLINE tran_high_t fdct_round_shift(tran_high_t input) {
+ tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
+ // TODO(debargha, peter.derivaz): Find new bounds for this assert
+ // and make the bounds consts.
+ // assert(INT16_MIN <= rv && rv <= INT16_MAX);
+ return rv;
+}
+
+void vp9_fdct4(const tran_low_t *input, tran_low_t *output) {
+ tran_high_t step[4];
+ tran_high_t temp1, temp2;
+
+ step[0] = input[0] + input[3];
+ step[1] = input[1] + input[2];
+ step[2] = input[1] - input[2];
+ step[3] = input[0] - input[3];
+
+ temp1 = (step[0] + step[1]) * cospi_16_64;
+ temp2 = (step[0] - step[1]) * cospi_16_64;
+ output[0] = (tran_low_t)fdct_round_shift(temp1);
+ output[2] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
+ temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
+ output[1] = (tran_low_t)fdct_round_shift(temp1);
+ output[3] = (tran_low_t)fdct_round_shift(temp2);
+}
+
+void vp9_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) {
+ int r, c;
+ tran_low_t sum = 0;
+ for (r = 0; r < 4; ++r)
+ for (c = 0; c < 4; ++c)
+ sum += input[r * stride + c];
+
+ output[0] = sum << 1;
+ output[1] = 0;
+}
+
+void vp9_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // We need an intermediate buffer between passes.
+ tran_low_t intermediate[4 * 4];
+ const int16_t *in_pass0 = input;
+ const tran_low_t *in = NULL;
+ tran_low_t *out = intermediate;
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ tran_high_t input[4]; // canbe16
+ tran_high_t step[4]; // canbe16
+ tran_high_t temp1, temp2; // needs32
+ int i;
+ for (i = 0; i < 4; ++i) {
+ // Load inputs.
+ if (0 == pass) {
+ input[0] = in_pass0[0 * stride] * 16;
+ input[1] = in_pass0[1 * stride] * 16;
+ input[2] = in_pass0[2 * stride] * 16;
+ input[3] = in_pass0[3 * stride] * 16;
+ if (i == 0 && input[0]) {
+ input[0] += 1;
+ }
+ } else {
+ input[0] = in[0 * 4];
+ input[1] = in[1 * 4];
+ input[2] = in[2 * 4];
+ input[3] = in[3 * 4];
+ }
+ // Transform.
+ step[0] = input[0] + input[3];
+ step[1] = input[1] + input[2];
+ step[2] = input[1] - input[2];
+ step[3] = input[0] - input[3];
+ temp1 = (step[0] + step[1]) * cospi_16_64;
+ temp2 = (step[0] - step[1]) * cospi_16_64;
+ out[0] = (tran_low_t)fdct_round_shift(temp1);
+ out[2] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
+ temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
+ out[1] = (tran_low_t)fdct_round_shift(temp1);
+ out[3] = (tran_low_t)fdct_round_shift(temp2);
+ // Do next column (which is a transposed row in second/horizontal pass)
+ in_pass0++;
+ in++;
+ out += 4;
+ }
+ // Setup in/out for next pass.
+ in = intermediate;
+ out = output;
+ }
+
+ {
+ int i, j;
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
+ }
+ }
+}
+
+void vp9_fadst4(const tran_low_t *input, tran_low_t *output) {
+ tran_high_t x0, x1, x2, x3;
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
+
+ x0 = input[0];
+ x1 = input[1];
+ x2 = input[2];
+ x3 = input[3];
+
+ if (!(x0 | x1 | x2 | x3)) {
+ output[0] = output[1] = output[2] = output[3] = 0;
+ return;
+ }
+
+ s0 = sinpi_1_9 * x0;
+ s1 = sinpi_4_9 * x0;
+ s2 = sinpi_2_9 * x1;
+ s3 = sinpi_1_9 * x1;
+ s4 = sinpi_3_9 * x2;
+ s5 = sinpi_4_9 * x3;
+ s6 = sinpi_2_9 * x3;
+ s7 = x0 + x1 - x3;
+
+ x0 = s0 + s2 + s5;
+ x1 = sinpi_3_9 * s7;
+ x2 = s1 - s3 + s6;
+ x3 = s4;
+
+ s0 = x0 + x3;
+ s1 = x1;
+ s2 = x2 - x3;
+ s3 = x2 - x0 + x3;
+
+ // 1-D transform scaling factor is sqrt(2).
+ output[0] = (tran_low_t)fdct_round_shift(s0);
+ output[1] = (tran_low_t)fdct_round_shift(s1);
+ output[2] = (tran_low_t)fdct_round_shift(s2);
+ output[3] = (tran_low_t)fdct_round_shift(s3);
+}
+
+void vp9_fht4x4_c(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_fdct4x4_c(input, output, stride);
+ } else {
+ tran_low_t out[4 * 4];
+ int i, j;
+ tran_low_t temp_in[4], temp_out[4];
+ const transform_2d ht = FHT_4[tx_type];
+
+ // Columns
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = input[j * stride + i] * 16;
+ if (i == 0 && temp_in[0])
+ temp_in[0] += 1;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 4; ++j)
+ out[j * 4 + i] = temp_out[j];
+ }
+
+ // Rows
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = out[j + i * 4];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 4; ++j)
+ output[j + i * 4] = (temp_out[j] + 1) >> 2;
+ }
+ }
+}
+
+void vp9_fdct8(const tran_low_t *input, tran_low_t *output) {
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
+ tran_high_t t0, t1, t2, t3; // needs32
+ tran_high_t x0, x1, x2, x3; // canbe16
+
+ // stage 1
+ s0 = input[0] + input[7];
+ s1 = input[1] + input[6];
+ s2 = input[2] + input[5];
+ s3 = input[3] + input[4];
+ s4 = input[3] - input[4];
+ s5 = input[2] - input[5];
+ s6 = input[1] - input[6];
+ s7 = input[0] - input[7];
+
+ // fdct4(step, step);
+ x0 = s0 + s3;
+ x1 = s1 + s2;
+ x2 = s1 - s2;
+ x3 = s0 - s3;
+ t0 = (x0 + x1) * cospi_16_64;
+ t1 = (x0 - x1) * cospi_16_64;
+ t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
+ t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
+ output[0] = (tran_low_t)fdct_round_shift(t0);
+ output[2] = (tran_low_t)fdct_round_shift(t2);
+ output[4] = (tran_low_t)fdct_round_shift(t1);
+ output[6] = (tran_low_t)fdct_round_shift(t3);
+
+ // Stage 2
+ t0 = (s6 - s5) * cospi_16_64;
+ t1 = (s6 + s5) * cospi_16_64;
+ t2 = (tran_low_t)fdct_round_shift(t0);
+ t3 = (tran_low_t)fdct_round_shift(t1);
+
+ // Stage 3
+ x0 = s4 + t2;
+ x1 = s4 - t2;
+ x2 = s7 - t3;
+ x3 = s7 + t3;
+
+ // Stage 4
+ t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+ t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+ t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+ t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+ output[1] = (tran_low_t)fdct_round_shift(t0);
+ output[3] = (tran_low_t)fdct_round_shift(t2);
+ output[5] = (tran_low_t)fdct_round_shift(t1);
+ output[7] = (tran_low_t)fdct_round_shift(t3);
+}
+
+void vp9_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) {
+ int r, c;
+ tran_low_t sum = 0;
+ for (r = 0; r < 8; ++r)
+ for (c = 0; c < 8; ++c)
+ sum += input[r * stride + c];
+
+ output[0] = sum;
+ output[1] = 0;
+}
+
+void vp9_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
+ int i, j;
+ tran_low_t intermediate[64];
+
+ // Transform columns
+ {
+ tran_low_t *output = intermediate;
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
+ tran_high_t t0, t1, t2, t3; // needs32
+ tran_high_t x0, x1, x2, x3; // canbe16
+
+ int i;
+ for (i = 0; i < 8; i++) {
+ // stage 1
+ s0 = (input[0 * stride] + input[7 * stride]) * 4;
+ s1 = (input[1 * stride] + input[6 * stride]) * 4;
+ s2 = (input[2 * stride] + input[5 * stride]) * 4;
+ s3 = (input[3 * stride] + input[4 * stride]) * 4;
+ s4 = (input[3 * stride] - input[4 * stride]) * 4;
+ s5 = (input[2 * stride] - input[5 * stride]) * 4;
+ s6 = (input[1 * stride] - input[6 * stride]) * 4;
+ s7 = (input[0 * stride] - input[7 * stride]) * 4;
+
+ // fdct4(step, step);
+ x0 = s0 + s3;
+ x1 = s1 + s2;
+ x2 = s1 - s2;
+ x3 = s0 - s3;
+ t0 = (x0 + x1) * cospi_16_64;
+ t1 = (x0 - x1) * cospi_16_64;
+ t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
+ t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
+ output[0 * 8] = (tran_low_t)fdct_round_shift(t0);
+ output[2 * 8] = (tran_low_t)fdct_round_shift(t2);
+ output[4 * 8] = (tran_low_t)fdct_round_shift(t1);
+ output[6 * 8] = (tran_low_t)fdct_round_shift(t3);
+
+ // Stage 2
+ t0 = (s6 - s5) * cospi_16_64;
+ t1 = (s6 + s5) * cospi_16_64;
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
+
+ // Stage 3
+ x0 = s4 + t2;
+ x1 = s4 - t2;
+ x2 = s7 - t3;
+ x3 = s7 + t3;
+
+ // Stage 4
+ t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+ t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+ t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+ t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+ output[1 * 8] = (tran_low_t)fdct_round_shift(t0);
+ output[3 * 8] = (tran_low_t)fdct_round_shift(t2);
+ output[5 * 8] = (tran_low_t)fdct_round_shift(t1);
+ output[7 * 8] = (tran_low_t)fdct_round_shift(t3);
+ input++;
+ output++;
+ }
+ }
+
+ // Rows
+ for (i = 0; i < 8; ++i) {
+ vp9_fdct8(&intermediate[i * 8], &final_output[i * 8]);
+ for (j = 0; j < 8; ++j)
+ final_output[j + i * 8] /= 2;
+ }
+}
+
+void vp9_fdct8x8_quant_c(const int16_t *input, int stride,
+ tran_low_t *coeff_ptr, intptr_t n_coeffs,
+ int skip_block,
+ const int16_t *zbin_ptr, const int16_t *round_ptr,
+ const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan, const int16_t *iscan) {
+ int eob = -1;
+
+ int i, j;
+ tran_low_t intermediate[64];
+
+ // Transform columns
+ {
+ tran_low_t *output = intermediate;
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
+ tran_high_t t0, t1, t2, t3; // needs32
+ tran_high_t x0, x1, x2, x3; // canbe16
+
+ int i;
+ for (i = 0; i < 8; i++) {
+ // stage 1
+ s0 = (input[0 * stride] + input[7 * stride]) * 4;
+ s1 = (input[1 * stride] + input[6 * stride]) * 4;
+ s2 = (input[2 * stride] + input[5 * stride]) * 4;
+ s3 = (input[3 * stride] + input[4 * stride]) * 4;
+ s4 = (input[3 * stride] - input[4 * stride]) * 4;
+ s5 = (input[2 * stride] - input[5 * stride]) * 4;
+ s6 = (input[1 * stride] - input[6 * stride]) * 4;
+ s7 = (input[0 * stride] - input[7 * stride]) * 4;
+
+ // fdct4(step, step);
+ x0 = s0 + s3;
+ x1 = s1 + s2;
+ x2 = s1 - s2;
+ x3 = s0 - s3;
+ t0 = (x0 + x1) * cospi_16_64;
+ t1 = (x0 - x1) * cospi_16_64;
+ t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
+ t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
+ output[0 * 8] = (tran_low_t)fdct_round_shift(t0);
+ output[2 * 8] = (tran_low_t)fdct_round_shift(t2);
+ output[4 * 8] = (tran_low_t)fdct_round_shift(t1);
+ output[6 * 8] = (tran_low_t)fdct_round_shift(t3);
+
+ // Stage 2
+ t0 = (s6 - s5) * cospi_16_64;
+ t1 = (s6 + s5) * cospi_16_64;
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
+
+ // Stage 3
+ x0 = s4 + t2;
+ x1 = s4 - t2;
+ x2 = s7 - t3;
+ x3 = s7 + t3;
+
+ // Stage 4
+ t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+ t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+ t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+ t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+ output[1 * 8] = (tran_low_t)fdct_round_shift(t0);
+ output[3 * 8] = (tran_low_t)fdct_round_shift(t2);
+ output[5 * 8] = (tran_low_t)fdct_round_shift(t1);
+ output[7 * 8] = (tran_low_t)fdct_round_shift(t3);
+ input++;
+ output++;
+ }
+ }
+
+ // Rows
+ for (i = 0; i < 8; ++i) {
+ vp9_fdct8(&intermediate[i * 8], &coeff_ptr[i * 8]);
+ for (j = 0; j < 8; ++j)
+ coeff_ptr[j + i * 8] /= 2;
+ }
+
+ // TODO(jingning) Decide the need of these arguments after the
+ // quantization process is completed.
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Quantization pass: All coefficients with index >= zero_flag are
+ // skippable. Note: zero_flag can be zero.
+ for (i = 0; i < n_coeffs; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
+ tmp = (tmp * quant_ptr[rc != 0]) >> 16;
+
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+
+ if (tmp)
+ eob = i;
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+
+void vp9_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) {
+ int r, c;
+ tran_low_t sum = 0;
+ for (r = 0; r < 16; ++r)
+ for (c = 0; c < 16; ++c)
+ sum += input[r * stride + c];
+
+ output[0] = sum >> 1;
+ output[1] = 0;
+}
+
+void vp9_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // We need an intermediate buffer between passes.
+ tran_low_t intermediate[256];
+ const int16_t *in_pass0 = input;
+ const tran_low_t *in = NULL;
+ tran_low_t *out = intermediate;
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ tran_high_t step1[8]; // canbe16
+ tran_high_t step2[8]; // canbe16
+ tran_high_t step3[8]; // canbe16
+ tran_high_t input[8]; // canbe16
+ tran_high_t temp1, temp2; // needs32
+ int i;
+ for (i = 0; i < 16; i++) {
+ if (0 == pass) {
+ // Calculate input for the first 8 results.
+ input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
+ input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
+ input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
+ input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
+ input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
+ input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
+ input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4;
+ input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4;
+ // Calculate input for the next 8 results.
+ step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4;
+ step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4;
+ step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
+ step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
+ step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
+ step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
+ step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
+ step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
+ } else {
+ // Calculate input for the first 8 results.
+ input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
+ input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
+ input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
+ input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
+ input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
+ input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
+ input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
+ input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
+ // Calculate input for the next 8 results.
+ step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
+ step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
+ step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
+ step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
+ step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
+ step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
+ step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
+ step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
+ }
+ // Work on the first eight values; fdct8(input, even_results);
+ {
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
+ tran_high_t t0, t1, t2, t3; // needs32
+ tran_high_t x0, x1, x2, x3; // canbe16
+
+ // stage 1
+ s0 = input[0] + input[7];
+ s1 = input[1] + input[6];
+ s2 = input[2] + input[5];
+ s3 = input[3] + input[4];
+ s4 = input[3] - input[4];
+ s5 = input[2] - input[5];
+ s6 = input[1] - input[6];
+ s7 = input[0] - input[7];
+
+ // fdct4(step, step);
+ x0 = s0 + s3;
+ x1 = s1 + s2;
+ x2 = s1 - s2;
+ x3 = s0 - s3;
+ t0 = (x0 + x1) * cospi_16_64;
+ t1 = (x0 - x1) * cospi_16_64;
+ t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
+ t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
+ out[0] = (tran_low_t)fdct_round_shift(t0);
+ out[4] = (tran_low_t)fdct_round_shift(t2);
+ out[8] = (tran_low_t)fdct_round_shift(t1);
+ out[12] = (tran_low_t)fdct_round_shift(t3);
+
+ // Stage 2
+ t0 = (s6 - s5) * cospi_16_64;
+ t1 = (s6 + s5) * cospi_16_64;
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
+
+ // Stage 3
+ x0 = s4 + t2;
+ x1 = s4 - t2;
+ x2 = s7 - t3;
+ x3 = s7 + t3;
+
+ // Stage 4
+ t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+ t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+ t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+ t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+ out[2] = (tran_low_t)fdct_round_shift(t0);
+ out[6] = (tran_low_t)fdct_round_shift(t2);
+ out[10] = (tran_low_t)fdct_round_shift(t1);
+ out[14] = (tran_low_t)fdct_round_shift(t3);
+ }
+ // Work on the next eight values; step1 -> odd_results
+ {
+ // step 2
+ temp1 = (step1[5] - step1[2]) * cospi_16_64;
+ temp2 = (step1[4] - step1[3]) * cospi_16_64;
+ step2[2] = fdct_round_shift(temp1);
+ step2[3] = fdct_round_shift(temp2);
+ temp1 = (step1[4] + step1[3]) * cospi_16_64;
+ temp2 = (step1[5] + step1[2]) * cospi_16_64;
+ step2[4] = fdct_round_shift(temp1);
+ step2[5] = fdct_round_shift(temp2);
+ // step 3
+ step3[0] = step1[0] + step2[3];
+ step3[1] = step1[1] + step2[2];
+ step3[2] = step1[1] - step2[2];
+ step3[3] = step1[0] - step2[3];
+ step3[4] = step1[7] - step2[4];
+ step3[5] = step1[6] - step2[5];
+ step3[6] = step1[6] + step2[5];
+ step3[7] = step1[7] + step2[4];
+ // step 4
+ temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
+ temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
+ step2[1] = fdct_round_shift(temp1);
+ step2[2] = fdct_round_shift(temp2);
+ temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
+ temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
+ step2[5] = fdct_round_shift(temp1);
+ step2[6] = fdct_round_shift(temp2);
+ // step 5
+ step1[0] = step3[0] + step2[1];
+ step1[1] = step3[0] - step2[1];
+ step1[2] = step3[3] + step2[2];
+ step1[3] = step3[3] - step2[2];
+ step1[4] = step3[4] - step2[5];
+ step1[5] = step3[4] + step2[5];
+ step1[6] = step3[7] - step2[6];
+ step1[7] = step3[7] + step2[6];
+ // step 6
+ temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
+ temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
+ out[1] = (tran_low_t)fdct_round_shift(temp1);
+ out[9] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
+ temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
+ out[5] = (tran_low_t)fdct_round_shift(temp1);
+ out[13] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
+ temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
+ out[3] = (tran_low_t)fdct_round_shift(temp1);
+ out[11] = (tran_low_t)fdct_round_shift(temp2);
+ temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
+ temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
+ out[7] = (tran_low_t)fdct_round_shift(temp1);
+ out[15] = (tran_low_t)fdct_round_shift(temp2);
+ }
+ // Do next column (which is a transposed row in second/horizontal pass)
+ in++;
+ in_pass0++;
+ out += 16;
+ }
+ // Setup in/out for next pass.
+ in = intermediate;
+ out = output;
+ }
+}
+
+void vp9_fadst8(const tran_low_t *input, tran_low_t *output) {
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
+
+ tran_high_t x0 = input[7];
+ tran_high_t x1 = input[0];
+ tran_high_t x2 = input[5];
+ tran_high_t x3 = input[2];
+ tran_high_t x4 = input[3];
+ tran_high_t x5 = input[4];
+ tran_high_t x6 = input[1];
+ tran_high_t x7 = input[6];
+
+ // stage 1
+ s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
+ s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
+ s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
+ s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
+ s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
+ s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
+ s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
+ s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
+
+ x0 = fdct_round_shift(s0 + s4);
+ x1 = fdct_round_shift(s1 + s5);
+ x2 = fdct_round_shift(s2 + s6);
+ x3 = fdct_round_shift(s3 + s7);
+ x4 = fdct_round_shift(s0 - s4);
+ x5 = fdct_round_shift(s1 - s5);
+ x6 = fdct_round_shift(s2 - s6);
+ x7 = fdct_round_shift(s3 - s7);
+
+ // stage 2
+ s0 = x0;
+ s1 = x1;
+ s2 = x2;
+ s3 = x3;
+ s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
+ s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
+ s6 = - cospi_24_64 * x6 + cospi_8_64 * x7;
+ s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
+
+ x0 = s0 + s2;
+ x1 = s1 + s3;
+ x2 = s0 - s2;
+ x3 = s1 - s3;
+ x4 = fdct_round_shift(s4 + s6);
+ x5 = fdct_round_shift(s5 + s7);
+ x6 = fdct_round_shift(s4 - s6);
+ x7 = fdct_round_shift(s5 - s7);
+
+ // stage 3
+ s2 = cospi_16_64 * (x2 + x3);
+ s3 = cospi_16_64 * (x2 - x3);
+ s6 = cospi_16_64 * (x6 + x7);
+ s7 = cospi_16_64 * (x6 - x7);
+
+ x2 = fdct_round_shift(s2);
+ x3 = fdct_round_shift(s3);
+ x6 = fdct_round_shift(s6);
+ x7 = fdct_round_shift(s7);
+
+ output[0] = (tran_low_t)x0;
+ output[1] = (tran_low_t)-x4;
+ output[2] = (tran_low_t)x6;
+ output[3] = (tran_low_t)-x2;
+ output[4] = (tran_low_t)x3;
+ output[5] = (tran_low_t)-x7;
+ output[6] = (tran_low_t)x5;
+ output[7] = (tran_low_t)-x1;
+}
+
+void vp9_fht8x8_c(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_fdct8x8_c(input, output, stride);
+ } else {
+ tran_low_t out[64];
+ int i, j;
+ tran_low_t temp_in[8], temp_out[8];
+ const transform_2d ht = FHT_8[tx_type];
+
+ // Columns
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 8; ++j)
+ out[j * 8 + i] = temp_out[j];
+ }
+
+ // Rows
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = out[j + i * 8];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 8; ++j)
+ output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
+ }
+ }
+}
+
+/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
+ pixel. */
+void vp9_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) {
+ int i;
+ tran_high_t a1, b1, c1, d1, e1;
+ const int16_t *ip_pass0 = input;
+ const tran_low_t *ip = NULL;
+ tran_low_t *op = output;
+
+ for (i = 0; i < 4; i++) {
+ a1 = ip_pass0[0 * stride];
+ b1 = ip_pass0[1 * stride];
+ c1 = ip_pass0[2 * stride];
+ d1 = ip_pass0[3 * stride];
+
+ a1 += b1;
+ d1 = d1 - c1;
+ e1 = (a1 - d1) >> 1;
+ b1 = e1 - b1;
+ c1 = e1 - c1;
+ a1 -= c1;
+ d1 += b1;
+ op[0] = (tran_low_t)a1;
+ op[4] = (tran_low_t)c1;
+ op[8] = (tran_low_t)d1;
+ op[12] = (tran_low_t)b1;
+
+ ip_pass0++;
+ op++;
+ }
+ ip = output;
+ op = output;
+
+ for (i = 0; i < 4; i++) {
+ a1 = ip[0];
+ b1 = ip[1];
+ c1 = ip[2];
+ d1 = ip[3];
+
+ a1 += b1;
+ d1 -= c1;
+ e1 = (a1 - d1) >> 1;
+ b1 = e1 - b1;
+ c1 = e1 - c1;
+ a1 -= c1;
+ d1 += b1;
+ op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR);
+ op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR);
+ op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR);
+ op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR);
+
+ ip += 4;
+ op += 4;
+ }
+}
+
+// Rewrote to use same algorithm as others.
+void vp9_fdct16(const tran_low_t in[16], tran_low_t out[16]) {
+ tran_high_t step1[8]; // canbe16
+ tran_high_t step2[8]; // canbe16
+ tran_high_t step3[8]; // canbe16
+ tran_high_t input[8]; // canbe16
+ tran_high_t temp1, temp2; // needs32
+
+ // step 1
+ input[0] = in[0] + in[15];
+ input[1] = in[1] + in[14];
+ input[2] = in[2] + in[13];
+ input[3] = in[3] + in[12];
+ input[4] = in[4] + in[11];
+ input[5] = in[5] + in[10];
+ input[6] = in[6] + in[ 9];
+ input[7] = in[7] + in[ 8];
+
+ step1[0] = in[7] - in[ 8];
+ step1[1] = in[6] - in[ 9];
+ step1[2] = in[5] - in[10];
+ step1[3] = in[4] - in[11];
+ step1[4] = in[3] - in[12];
+ step1[5] = in[2] - in[13];
+ step1[6] = in[1] - in[14];
+ step1[7] = in[0] - in[15];
+
+ // fdct8(step, step);
+ {
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
+ tran_high_t t0, t1, t2, t3; // needs32
+ tran_high_t x0, x1, x2, x3; // canbe16
+
+ // stage 1
+ s0 = input[0] + input[7];
+ s1 = input[1] + input[6];
+ s2 = input[2] + input[5];
+ s3 = input[3] + input[4];
+ s4 = input[3] - input[4];
+ s5 = input[2] - input[5];
+ s6 = input[1] - input[6];
+ s7 = input[0] - input[7];
+
+ // fdct4(step, step);
+ x0 = s0 + s3;
+ x1 = s1 + s2;
+ x2 = s1 - s2;
+ x3 = s0 - s3;
+ t0 = (x0 + x1) * cospi_16_64;
+ t1 = (x0 - x1) * cospi_16_64;
+ t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
+ t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
+ out[0] = (tran_low_t)fdct_round_shift(t0);
+ out[4] = (tran_low_t)fdct_round_shift(t2);
+ out[8] = (tran_low_t)fdct_round_shift(t1);
+ out[12] = (tran_low_t)fdct_round_shift(t3);
+
+ // Stage 2
+ t0 = (s6 - s5) * cospi_16_64;
+ t1 = (s6 + s5) * cospi_16_64;
+ t2 = fdct_round_shift(t0);
+ t3 = fdct_round_shift(t1);
+
+ // Stage 3
+ x0 = s4 + t2;
+ x1 = s4 - t2;
+ x2 = s7 - t3;
+ x3 = s7 + t3;
+
+ // Stage 4
+ t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
+ t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
+ t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
+ t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
+ out[2] = (tran_low_t)fdct_round_shift(t0);
+ out[6] = (tran_low_t)fdct_round_shift(t2);
+ out[10] = (tran_low_t)fdct_round_shift(t1);
+ out[14] = (tran_low_t)fdct_round_shift(t3);
+ }
+
+ // step 2
+ temp1 = (step1[5] - step1[2]) * cospi_16_64;
+ temp2 = (step1[4] - step1[3]) * cospi_16_64;
+ step2[2] = fdct_round_shift(temp1);
+ step2[3] = fdct_round_shift(temp2);
+ temp1 = (step1[4] + step1[3]) * cospi_16_64;
+ temp2 = (step1[5] + step1[2]) * cospi_16_64;
+ step2[4] = fdct_round_shift(temp1);
+ step2[5] = fdct_round_shift(temp2);
+
+ // step 3
+ step3[0] = step1[0] + step2[3];
+ step3[1] = step1[1] + step2[2];
+ step3[2] = step1[1] - step2[2];
+ step3[3] = step1[0] - step2[3];
+ step3[4] = step1[7] - step2[4];
+ step3[5] = step1[6] - step2[5];
+ step3[6] = step1[6] + step2[5];
+ step3[7] = step1[7] + step2[4];
+
+ // step 4
+ temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
+ temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
+ step2[1] = fdct_round_shift(temp1);
+ step2[2] = fdct_round_shift(temp2);
+ temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
+ temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
+ step2[5] = fdct_round_shift(temp1);
+ step2[6] = fdct_round_shift(temp2);
+
+ // step 5
+ step1[0] = step3[0] + step2[1];
+ step1[1] = step3[0] - step2[1];
+ step1[2] = step3[3] + step2[2];
+ step1[3] = step3[3] - step2[2];
+ step1[4] = step3[4] - step2[5];
+ step1[5] = step3[4] + step2[5];
+ step1[6] = step3[7] - step2[6];
+ step1[7] = step3[7] + step2[6];
+
+ // step 6
+ temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
+ temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
+ out[1] = (tran_low_t)fdct_round_shift(temp1);
+ out[9] = (tran_low_t)fdct_round_shift(temp2);
+
+ temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
+ temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
+ out[5] = (tran_low_t)fdct_round_shift(temp1);
+ out[13] = (tran_low_t)fdct_round_shift(temp2);
+
+ temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
+ temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
+ out[3] = (tran_low_t)fdct_round_shift(temp1);
+ out[11] = (tran_low_t)fdct_round_shift(temp2);
+
+ temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
+ temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
+ out[7] = (tran_low_t)fdct_round_shift(temp1);
+ out[15] = (tran_low_t)fdct_round_shift(temp2);
+}
+
+void vp9_fadst16(const tran_low_t *input, tran_low_t *output) {
+ tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
+ tran_high_t s9, s10, s11, s12, s13, s14, s15;
+
+ tran_high_t x0 = input[15];
+ tran_high_t x1 = input[0];
+ tran_high_t x2 = input[13];
+ tran_high_t x3 = input[2];
+ tran_high_t x4 = input[11];
+ tran_high_t x5 = input[4];
+ tran_high_t x6 = input[9];
+ tran_high_t x7 = input[6];
+ tran_high_t x8 = input[7];
+ tran_high_t x9 = input[8];
+ tran_high_t x10 = input[5];
+ tran_high_t x11 = input[10];
+ tran_high_t x12 = input[3];
+ tran_high_t x13 = input[12];
+ tran_high_t x14 = input[1];
+ tran_high_t x15 = input[14];
+
+ // stage 1
+ s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
+ s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
+ s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
+ s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
+ s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
+ s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
+ s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
+ s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
+ s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
+ s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
+ s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
+ s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
+ s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
+ s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
+ s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
+ s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
+
+ x0 = fdct_round_shift(s0 + s8);
+ x1 = fdct_round_shift(s1 + s9);
+ x2 = fdct_round_shift(s2 + s10);
+ x3 = fdct_round_shift(s3 + s11);
+ x4 = fdct_round_shift(s4 + s12);
+ x5 = fdct_round_shift(s5 + s13);
+ x6 = fdct_round_shift(s6 + s14);
+ x7 = fdct_round_shift(s7 + s15);
+ x8 = fdct_round_shift(s0 - s8);
+ x9 = fdct_round_shift(s1 - s9);
+ x10 = fdct_round_shift(s2 - s10);
+ x11 = fdct_round_shift(s3 - s11);
+ x12 = fdct_round_shift(s4 - s12);
+ x13 = fdct_round_shift(s5 - s13);
+ x14 = fdct_round_shift(s6 - s14);
+ x15 = fdct_round_shift(s7 - s15);
+
+ // stage 2
+ s0 = x0;
+ s1 = x1;
+ s2 = x2;
+ s3 = x3;
+ s4 = x4;
+ s5 = x5;
+ s6 = x6;
+ s7 = x7;
+ s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
+ s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
+ s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
+ s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
+ s12 = - x12 * cospi_28_64 + x13 * cospi_4_64;
+ s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
+ s14 = - x14 * cospi_12_64 + x15 * cospi_20_64;
+ s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
+
+ x0 = s0 + s4;
+ x1 = s1 + s5;
+ x2 = s2 + s6;
+ x3 = s3 + s7;
+ x4 = s0 - s4;
+ x5 = s1 - s5;
+ x6 = s2 - s6;
+ x7 = s3 - s7;
+ x8 = fdct_round_shift(s8 + s12);
+ x9 = fdct_round_shift(s9 + s13);
+ x10 = fdct_round_shift(s10 + s14);
+ x11 = fdct_round_shift(s11 + s15);
+ x12 = fdct_round_shift(s8 - s12);
+ x13 = fdct_round_shift(s9 - s13);
+ x14 = fdct_round_shift(s10 - s14);
+ x15 = fdct_round_shift(s11 - s15);
+
+ // stage 3
+ s0 = x0;
+ s1 = x1;
+ s2 = x2;
+ s3 = x3;
+ s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
+ s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
+ s6 = - x6 * cospi_24_64 + x7 * cospi_8_64;
+ s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
+ s8 = x8;
+ s9 = x9;
+ s10 = x10;
+ s11 = x11;
+ s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
+ s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
+ s14 = - x14 * cospi_24_64 + x15 * cospi_8_64;
+ s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
+
+ x0 = s0 + s2;
+ x1 = s1 + s3;
+ x2 = s0 - s2;
+ x3 = s1 - s3;
+ x4 = fdct_round_shift(s4 + s6);
+ x5 = fdct_round_shift(s5 + s7);
+ x6 = fdct_round_shift(s4 - s6);
+ x7 = fdct_round_shift(s5 - s7);
+ x8 = s8 + s10;
+ x9 = s9 + s11;
+ x10 = s8 - s10;
+ x11 = s9 - s11;
+ x12 = fdct_round_shift(s12 + s14);
+ x13 = fdct_round_shift(s13 + s15);
+ x14 = fdct_round_shift(s12 - s14);
+ x15 = fdct_round_shift(s13 - s15);
+
+ // stage 4
+ s2 = (- cospi_16_64) * (x2 + x3);
+ s3 = cospi_16_64 * (x2 - x3);
+ s6 = cospi_16_64 * (x6 + x7);
+ s7 = cospi_16_64 * (- x6 + x7);
+ s10 = cospi_16_64 * (x10 + x11);
+ s11 = cospi_16_64 * (- x10 + x11);
+ s14 = (- cospi_16_64) * (x14 + x15);
+ s15 = cospi_16_64 * (x14 - x15);
+
+ x2 = fdct_round_shift(s2);
+ x3 = fdct_round_shift(s3);
+ x6 = fdct_round_shift(s6);
+ x7 = fdct_round_shift(s7);
+ x10 = fdct_round_shift(s10);
+ x11 = fdct_round_shift(s11);
+ x14 = fdct_round_shift(s14);
+ x15 = fdct_round_shift(s15);
+
+ output[0] = (tran_low_t)x0;
+ output[1] = (tran_low_t)-x8;
+ output[2] = (tran_low_t)x12;
+ output[3] = (tran_low_t)-x4;
+ output[4] = (tran_low_t)x6;
+ output[5] = (tran_low_t)x14;
+ output[6] = (tran_low_t)x10;
+ output[7] = (tran_low_t)x2;
+ output[8] = (tran_low_t)x3;
+ output[9] = (tran_low_t)x11;
+ output[10] = (tran_low_t)x15;
+ output[11] = (tran_low_t)x7;
+ output[12] = (tran_low_t)x5;
+ output[13] = (tran_low_t)-x13;
+ output[14] = (tran_low_t)x9;
+ output[15] = (tran_low_t)-x1;
+}
+
+void vp9_fht16x16_c(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_fdct16x16_c(input, output, stride);
+ } else {
+ tran_low_t out[256];
+ int i, j;
+ tran_low_t temp_in[16], temp_out[16];
+ const transform_2d ht = FHT_16[tx_type];
+
+ // Columns
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 16; ++j)
+ out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
+ }
+
+ // Rows
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = out[j + i * 16];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 16; ++j)
+ output[j + i * 16] = temp_out[j];
+ }
+ }
+}
+
+static INLINE tran_high_t dct_32_round(tran_high_t input) {
+ tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
+ // TODO(debargha, peter.derivaz): Find new bounds for this assert,
+ // and make the bounds consts.
+ // assert(-131072 <= rv && rv <= 131071);
+ return rv;
+}
+
+static INLINE tran_high_t half_round_shift(tran_high_t input) {
+ tran_high_t rv = (input + 1 + (input < 0)) >> 2;
+ return rv;
+}
+
+void vp9_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
+ tran_high_t step[32];
+ // Stage 1
+ step[0] = input[0] + input[(32 - 1)];
+ step[1] = input[1] + input[(32 - 2)];
+ step[2] = input[2] + input[(32 - 3)];
+ step[3] = input[3] + input[(32 - 4)];
+ step[4] = input[4] + input[(32 - 5)];
+ step[5] = input[5] + input[(32 - 6)];
+ step[6] = input[6] + input[(32 - 7)];
+ step[7] = input[7] + input[(32 - 8)];
+ step[8] = input[8] + input[(32 - 9)];
+ step[9] = input[9] + input[(32 - 10)];
+ step[10] = input[10] + input[(32 - 11)];
+ step[11] = input[11] + input[(32 - 12)];
+ step[12] = input[12] + input[(32 - 13)];
+ step[13] = input[13] + input[(32 - 14)];
+ step[14] = input[14] + input[(32 - 15)];
+ step[15] = input[15] + input[(32 - 16)];
+ step[16] = -input[16] + input[(32 - 17)];
+ step[17] = -input[17] + input[(32 - 18)];
+ step[18] = -input[18] + input[(32 - 19)];
+ step[19] = -input[19] + input[(32 - 20)];
+ step[20] = -input[20] + input[(32 - 21)];
+ step[21] = -input[21] + input[(32 - 22)];
+ step[22] = -input[22] + input[(32 - 23)];
+ step[23] = -input[23] + input[(32 - 24)];
+ step[24] = -input[24] + input[(32 - 25)];
+ step[25] = -input[25] + input[(32 - 26)];
+ step[26] = -input[26] + input[(32 - 27)];
+ step[27] = -input[27] + input[(32 - 28)];
+ step[28] = -input[28] + input[(32 - 29)];
+ step[29] = -input[29] + input[(32 - 30)];
+ step[30] = -input[30] + input[(32 - 31)];
+ step[31] = -input[31] + input[(32 - 32)];
+
+ // Stage 2
+ output[0] = step[0] + step[16 - 1];
+ output[1] = step[1] + step[16 - 2];
+ output[2] = step[2] + step[16 - 3];
+ output[3] = step[3] + step[16 - 4];
+ output[4] = step[4] + step[16 - 5];
+ output[5] = step[5] + step[16 - 6];
+ output[6] = step[6] + step[16 - 7];
+ output[7] = step[7] + step[16 - 8];
+ output[8] = -step[8] + step[16 - 9];
+ output[9] = -step[9] + step[16 - 10];
+ output[10] = -step[10] + step[16 - 11];
+ output[11] = -step[11] + step[16 - 12];
+ output[12] = -step[12] + step[16 - 13];
+ output[13] = -step[13] + step[16 - 14];
+ output[14] = -step[14] + step[16 - 15];
+ output[15] = -step[15] + step[16 - 16];
+
+ output[16] = step[16];
+ output[17] = step[17];
+ output[18] = step[18];
+ output[19] = step[19];
+
+ output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
+ output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
+ output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
+ output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
+
+ output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
+ output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
+ output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
+ output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
+
+ output[28] = step[28];
+ output[29] = step[29];
+ output[30] = step[30];
+ output[31] = step[31];
+
+ // dump the magnitude by 4, hence the intermediate values are within
+ // the range of 16 bits.
+ if (round) {
+ output[0] = half_round_shift(output[0]);
+ output[1] = half_round_shift(output[1]);
+ output[2] = half_round_shift(output[2]);
+ output[3] = half_round_shift(output[3]);
+ output[4] = half_round_shift(output[4]);
+ output[5] = half_round_shift(output[5]);
+ output[6] = half_round_shift(output[6]);
+ output[7] = half_round_shift(output[7]);
+ output[8] = half_round_shift(output[8]);
+ output[9] = half_round_shift(output[9]);
+ output[10] = half_round_shift(output[10]);
+ output[11] = half_round_shift(output[11]);
+ output[12] = half_round_shift(output[12]);
+ output[13] = half_round_shift(output[13]);
+ output[14] = half_round_shift(output[14]);
+ output[15] = half_round_shift(output[15]);
+
+ output[16] = half_round_shift(output[16]);
+ output[17] = half_round_shift(output[17]);
+ output[18] = half_round_shift(output[18]);
+ output[19] = half_round_shift(output[19]);
+ output[20] = half_round_shift(output[20]);
+ output[21] = half_round_shift(output[21]);
+ output[22] = half_round_shift(output[22]);
+ output[23] = half_round_shift(output[23]);
+ output[24] = half_round_shift(output[24]);
+ output[25] = half_round_shift(output[25]);
+ output[26] = half_round_shift(output[26]);
+ output[27] = half_round_shift(output[27]);
+ output[28] = half_round_shift(output[28]);
+ output[29] = half_round_shift(output[29]);
+ output[30] = half_round_shift(output[30]);
+ output[31] = half_round_shift(output[31]);
+ }
+
+ // Stage 3
+ step[0] = output[0] + output[(8 - 1)];
+ step[1] = output[1] + output[(8 - 2)];
+ step[2] = output[2] + output[(8 - 3)];
+ step[3] = output[3] + output[(8 - 4)];
+ step[4] = -output[4] + output[(8 - 5)];
+ step[5] = -output[5] + output[(8 - 6)];
+ step[6] = -output[6] + output[(8 - 7)];
+ step[7] = -output[7] + output[(8 - 8)];
+ step[8] = output[8];
+ step[9] = output[9];
+ step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
+ step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
+ step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
+ step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
+ step[14] = output[14];
+ step[15] = output[15];
+
+ step[16] = output[16] + output[23];
+ step[17] = output[17] + output[22];
+ step[18] = output[18] + output[21];
+ step[19] = output[19] + output[20];
+ step[20] = -output[20] + output[19];
+ step[21] = -output[21] + output[18];
+ step[22] = -output[22] + output[17];
+ step[23] = -output[23] + output[16];
+ step[24] = -output[24] + output[31];
+ step[25] = -output[25] + output[30];
+ step[26] = -output[26] + output[29];
+ step[27] = -output[27] + output[28];
+ step[28] = output[28] + output[27];
+ step[29] = output[29] + output[26];
+ step[30] = output[30] + output[25];
+ step[31] = output[31] + output[24];
+
+ // Stage 4
+ output[0] = step[0] + step[3];
+ output[1] = step[1] + step[2];
+ output[2] = -step[2] + step[1];
+ output[3] = -step[3] + step[0];
+ output[4] = step[4];
+ output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
+ output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
+ output[7] = step[7];
+ output[8] = step[8] + step[11];
+ output[9] = step[9] + step[10];
+ output[10] = -step[10] + step[9];
+ output[11] = -step[11] + step[8];
+ output[12] = -step[12] + step[15];
+ output[13] = -step[13] + step[14];
+ output[14] = step[14] + step[13];
+ output[15] = step[15] + step[12];
+
+ output[16] = step[16];
+ output[17] = step[17];
+ output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
+ output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
+ output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
+ output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
+ output[22] = step[22];
+ output[23] = step[23];
+ output[24] = step[24];
+ output[25] = step[25];
+ output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
+ output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
+ output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
+ output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
+ output[30] = step[30];
+ output[31] = step[31];
+
+ // Stage 5
+ step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
+ step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
+ step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
+ step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
+ step[4] = output[4] + output[5];
+ step[5] = -output[5] + output[4];
+ step[6] = -output[6] + output[7];
+ step[7] = output[7] + output[6];
+ step[8] = output[8];
+ step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
+ step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
+ step[11] = output[11];
+ step[12] = output[12];
+ step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
+ step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
+ step[15] = output[15];
+
+ step[16] = output[16] + output[19];
+ step[17] = output[17] + output[18];
+ step[18] = -output[18] + output[17];
+ step[19] = -output[19] + output[16];
+ step[20] = -output[20] + output[23];
+ step[21] = -output[21] + output[22];
+ step[22] = output[22] + output[21];
+ step[23] = output[23] + output[20];
+ step[24] = output[24] + output[27];
+ step[25] = output[25] + output[26];
+ step[26] = -output[26] + output[25];
+ step[27] = -output[27] + output[24];
+ step[28] = -output[28] + output[31];
+ step[29] = -output[29] + output[30];
+ step[30] = output[30] + output[29];
+ step[31] = output[31] + output[28];
+
+ // Stage 6
+ output[0] = step[0];
+ output[1] = step[1];
+ output[2] = step[2];
+ output[3] = step[3];
+ output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
+ output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
+ output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
+ output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
+ output[8] = step[8] + step[9];
+ output[9] = -step[9] + step[8];
+ output[10] = -step[10] + step[11];
+ output[11] = step[11] + step[10];
+ output[12] = step[12] + step[13];
+ output[13] = -step[13] + step[12];
+ output[14] = -step[14] + step[15];
+ output[15] = step[15] + step[14];
+
+ output[16] = step[16];
+ output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
+ output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
+ output[19] = step[19];
+ output[20] = step[20];
+ output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
+ output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
+ output[23] = step[23];
+ output[24] = step[24];
+ output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
+ output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
+ output[27] = step[27];
+ output[28] = step[28];
+ output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
+ output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
+ output[31] = step[31];
+
+ // Stage 7
+ step[0] = output[0];
+ step[1] = output[1];
+ step[2] = output[2];
+ step[3] = output[3];
+ step[4] = output[4];
+ step[5] = output[5];
+ step[6] = output[6];
+ step[7] = output[7];
+ step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
+ step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
+ step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
+ step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
+ step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
+ step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
+ step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
+ step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
+
+ step[16] = output[16] + output[17];
+ step[17] = -output[17] + output[16];
+ step[18] = -output[18] + output[19];
+ step[19] = output[19] + output[18];
+ step[20] = output[20] + output[21];
+ step[21] = -output[21] + output[20];
+ step[22] = -output[22] + output[23];
+ step[23] = output[23] + output[22];
+ step[24] = output[24] + output[25];
+ step[25] = -output[25] + output[24];
+ step[26] = -output[26] + output[27];
+ step[27] = output[27] + output[26];
+ step[28] = output[28] + output[29];
+ step[29] = -output[29] + output[28];
+ step[30] = -output[30] + output[31];
+ step[31] = output[31] + output[30];
+
+ // Final stage --- outputs indices are bit-reversed.
+ output[0] = step[0];
+ output[16] = step[1];
+ output[8] = step[2];
+ output[24] = step[3];
+ output[4] = step[4];
+ output[20] = step[5];
+ output[12] = step[6];
+ output[28] = step[7];
+ output[2] = step[8];
+ output[18] = step[9];
+ output[10] = step[10];
+ output[26] = step[11];
+ output[6] = step[12];
+ output[22] = step[13];
+ output[14] = step[14];
+ output[30] = step[15];
+
+ output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
+ output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
+ output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
+ output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
+ output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
+ output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
+ output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
+ output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
+ output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
+ output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
+ output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
+ output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
+ output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
+ output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
+ output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
+ output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
+}
+
+void vp9_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) {
+ int r, c;
+ tran_low_t sum = 0;
+ for (r = 0; r < 32; ++r)
+ for (c = 0; c < 32; ++c)
+ sum += input[r * stride + c];
+
+ output[0] = sum >> 3;
+ output[1] = 0;
+}
+
+void vp9_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
+ int i, j;
+ tran_high_t output[32 * 32];
+
+ // Columns
+ for (i = 0; i < 32; ++i) {
+ tran_high_t temp_in[32], temp_out[32];
+ for (j = 0; j < 32; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ vp9_fdct32(temp_in, temp_out, 0);
+ for (j = 0; j < 32; ++j)
+ output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
+ }
+
+ // Rows
+ for (i = 0; i < 32; ++i) {
+ tran_high_t temp_in[32], temp_out[32];
+ for (j = 0; j < 32; ++j)
+ temp_in[j] = output[j + i * 32];
+ vp9_fdct32(temp_in, temp_out, 0);
+ for (j = 0; j < 32; ++j)
+ out[j + i * 32] =
+ (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
+ }
+}
+
+// Note that although we use dct_32_round in dct32 computation flow,
+// this 2d fdct32x32 for rate-distortion optimization loop is operating
+// within 16 bits precision.
+void vp9_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) {
+ int i, j;
+ tran_high_t output[32 * 32];
+
+ // Columns
+ for (i = 0; i < 32; ++i) {
+ tran_high_t temp_in[32], temp_out[32];
+ for (j = 0; j < 32; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ vp9_fdct32(temp_in, temp_out, 0);
+ for (j = 0; j < 32; ++j)
+ // TODO(cd): see quality impact of only doing
+ // output[j * 32 + i] = (temp_out[j] + 1) >> 2;
+ // PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c
+ output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
+ }
+
+ // Rows
+ for (i = 0; i < 32; ++i) {
+ tran_high_t temp_in[32], temp_out[32];
+ for (j = 0; j < 32; ++j)
+ temp_in[j] = output[j + i * 32];
+ vp9_fdct32(temp_in, temp_out, 1);
+ for (j = 0; j < 32; ++j)
+ out[j + i * 32] = (tran_low_t)temp_out[j];
+ }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
+ int stride) {
+ vp9_fdct4x4_c(input, output, stride);
+}
+
+void vp9_highbd_fht4x4_c(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ vp9_fht4x4_c(input, output, stride, tx_type);
+}
+
+void vp9_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output,
+ int stride) {
+ vp9_fdct8x8_1_c(input, final_output, stride);
+}
+
+void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
+ int stride) {
+ vp9_fdct8x8_c(input, final_output, stride);
+}
+
+void vp9_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output,
+ int stride) {
+ vp9_fdct16x16_1_c(input, output, stride);
+}
+
+void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
+ int stride) {
+ vp9_fdct16x16_c(input, output, stride);
+}
+
+void vp9_highbd_fht8x8_c(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ vp9_fht8x8_c(input, output, stride, tx_type);
+}
+
+void vp9_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output,
+ int stride) {
+ vp9_fwht4x4_c(input, output, stride);
+}
+
+void vp9_highbd_fht16x16_c(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ vp9_fht16x16_c(input, output, stride, tx_type);
+}
+
+void vp9_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out,
+ int stride) {
+ vp9_fdct32x32_1_c(input, out, stride);
+}
+
+void vp9_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
+ vp9_fdct32x32_c(input, out, stride);
+}
+
+void vp9_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
+ int stride) {
+ vp9_fdct32x32_rd_c(input, out, stride);
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
diff --git a/media/libvpx/vp9/encoder/vp9_dct.h b/media/libvpx/vp9/encoder/vp9_dct.h
new file mode 100644
index 000000000..49afcbbd5
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_dct.h
@@ -0,0 +1,61 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_DCT_H_
+#define VP9_ENCODER_VP9_DCT_H_
+
+#include "vp9/common/vp9_idct.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride);
+void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *output, int stride);
+void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
+ int stride);
+void vp9_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride);
+void vp9_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
+ int stride);
+
+void vp9_fdct4(const tran_low_t *input, tran_low_t *output);
+void vp9_fadst4(const tran_low_t *input, tran_low_t *output);
+void vp9_fdct8(const tran_low_t *input, tran_low_t *output);
+void vp9_fadst8(const tran_low_t *input, tran_low_t *output);
+void vp9_fdct16(const tran_low_t in[16], tran_low_t out[16]);
+void vp9_fadst16(const tran_low_t *input, tran_low_t *output);
+void vp9_fdct32(const tran_high_t *input, tran_high_t *output, int round);
+
+static const transform_2d FHT_4[] = {
+ { vp9_fdct4, vp9_fdct4 }, // DCT_DCT = 0
+ { vp9_fadst4, vp9_fdct4 }, // ADST_DCT = 1
+ { vp9_fdct4, vp9_fadst4 }, // DCT_ADST = 2
+ { vp9_fadst4, vp9_fadst4 } // ADST_ADST = 3
+};
+
+static const transform_2d FHT_8[] = {
+ { vp9_fdct8, vp9_fdct8 }, // DCT_DCT = 0
+ { vp9_fadst8, vp9_fdct8 }, // ADST_DCT = 1
+ { vp9_fdct8, vp9_fadst8 }, // DCT_ADST = 2
+ { vp9_fadst8, vp9_fadst8 } // ADST_ADST = 3
+};
+
+static const transform_2d FHT_16[] = {
+ { vp9_fdct16, vp9_fdct16 }, // DCT_DCT = 0
+ { vp9_fadst16, vp9_fdct16 }, // ADST_DCT = 1
+ { vp9_fdct16, vp9_fadst16 }, // DCT_ADST = 2
+ { vp9_fadst16, vp9_fadst16 } // ADST_ADST = 3
+};
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_DCT_H_
diff --git a/media/libvpx/vp9/encoder/vp9_denoiser.c b/media/libvpx/vp9/encoder/vp9_denoiser.c
new file mode 100644
index 000000000..08134e152
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_denoiser.c
@@ -0,0 +1,498 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include "vpx_scale/yv12config.h"
+#include "vpx/vpx_integer.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/encoder/vp9_context_tree.h"
+#include "vp9/encoder/vp9_denoiser.h"
+
+/* The VP9 denoiser is a work-in-progress. It currently is only designed to work
+ * with speed 6, though it (inexplicably) seems to also work with speed 5 (one
+ * would need to modify the source code in vp9_pickmode.c and vp9_encoder.c to
+ * make the calls to the vp9_denoiser_* functions when in speed 5).
+ *
+ * The implementation is very similar to that of the VP8 denoiser. While
+ * choosing the motion vectors / reference frames, the denoiser is run, and if
+ * it did not modify the signal to much, the denoised block is copied to the
+ * signal.
+ */
+
+#ifdef OUTPUT_YUV_DENOISED
+static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
+#endif
+
+static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
+ (void)bs;
+ return 3 + (increase_denoising ? 1 : 0);
+}
+
+static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
+ (void)bs;
+ (void)increase_denoising;
+ return 4;
+}
+
+static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
+ (void)bs;
+ (void)increase_denoising;
+ return 625;
+}
+
+static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
+ return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 60 : 40);
+}
+
+static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
+ int motion_magnitude) {
+ if (motion_magnitude >
+ noise_motion_thresh(bs, increase_denoising)) {
+ return 0;
+ } else {
+ return (1 << num_pels_log2_lookup[bs]) * 20;
+ }
+}
+
+int total_adj_strong_thresh(BLOCK_SIZE bs, int increase_denoising) {
+ return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
+}
+
+static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
+ return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
+}
+
+// TODO(jackychen): If increase_denoising is enabled in the future,
+// we might need to update the code for calculating 'total_adj' in
+// case the C code is not bit-exact with corresponding sse2 code.
+int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride,
+ const uint8_t *mc_avg,
+ int mc_avg_stride,
+ uint8_t *avg, int avg_stride,
+ int increase_denoising,
+ BLOCK_SIZE bs,
+ int motion_magnitude) {
+ int r, c;
+ const uint8_t *sig_start = sig;
+ const uint8_t *mc_avg_start = mc_avg;
+ uint8_t *avg_start = avg;
+ int diff, adj, absdiff, delta;
+ int adj_val[] = {3, 4, 6};
+ int total_adj = 0;
+ int shift_inc = 1;
+
+ // If motion_magnitude is small, making the denoiser more aggressive by
+ // increasing the adjustment for each level. Add another increment for
+ // blocks that are labeled for increase denoising.
+ if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
+ if (increase_denoising) {
+ shift_inc = 2;
+ }
+ adj_val[0] += shift_inc;
+ adj_val[1] += shift_inc;
+ adj_val[2] += shift_inc;
+ }
+
+ // First attempt to apply a strong temporal denoising filter.
+ for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
+ for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
+ diff = mc_avg[c] - sig[c];
+ absdiff = abs(diff);
+
+ if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
+ avg[c] = mc_avg[c];
+ total_adj += diff;
+ } else {
+ switch (absdiff) {
+ case 4: case 5: case 6: case 7:
+ adj = adj_val[0];
+ break;
+ case 8: case 9: case 10: case 11:
+ case 12: case 13: case 14: case 15:
+ adj = adj_val[1];
+ break;
+ default:
+ adj = adj_val[2];
+ }
+ if (diff > 0) {
+ avg[c] = MIN(UINT8_MAX, sig[c] + adj);
+ total_adj += adj;
+ } else {
+ avg[c] = MAX(0, sig[c] - adj);
+ total_adj -= adj;
+ }
+ }
+ }
+ sig += sig_stride;
+ avg += avg_stride;
+ mc_avg += mc_avg_stride;
+ }
+
+ // If the strong filter did not modify the signal too much, we're all set.
+ if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
+ return FILTER_BLOCK;
+ }
+
+ // Otherwise, we try to dampen the filter if the delta is not too high.
+ delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising))
+ >> num_pels_log2_lookup[bs]) + 1;
+
+ if (delta >= delta_thresh(bs, increase_denoising)) {
+ return COPY_BLOCK;
+ }
+
+ mc_avg = mc_avg_start;
+ avg = avg_start;
+ sig = sig_start;
+ for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
+ for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) {
+ diff = mc_avg[c] - sig[c];
+ adj = abs(diff);
+ if (adj > delta) {
+ adj = delta;
+ }
+ if (diff > 0) {
+ // Diff positive means we made positive adjustment above
+ // (in first try/attempt), so now make negative adjustment to bring
+ // denoised signal down.
+ avg[c] = MAX(0, avg[c] - adj);
+ total_adj -= adj;
+ } else {
+ // Diff negative means we made negative adjustment above
+ // (in first try/attempt), so now make positive adjustment to bring
+ // denoised signal up.
+ avg[c] = MIN(UINT8_MAX, avg[c] + adj);
+ total_adj += adj;
+ }
+ }
+ sig += sig_stride;
+ avg += avg_stride;
+ mc_avg += mc_avg_stride;
+ }
+
+ // We can use the filter if it has been sufficiently dampened
+ if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
+ return FILTER_BLOCK;
+ }
+ return COPY_BLOCK;
+}
+
+static uint8_t *block_start(uint8_t *framebuf, int stride,
+ int mi_row, int mi_col) {
+ return framebuf + (stride * mi_row * 8) + (mi_col * 8);
+}
+
+static VP9_DENOISER_DECISION perform_motion_compensation(VP9_DENOISER *denoiser,
+ MACROBLOCK *mb,
+ BLOCK_SIZE bs,
+ int increase_denoising,
+ int mi_row,
+ int mi_col,
+ PICK_MODE_CONTEXT *ctx,
+ int *motion_magnitude
+ ) {
+ int mv_col, mv_row;
+ int sse_diff = ctx->zeromv_sse - ctx->newmv_sse;
+ MV_REFERENCE_FRAME frame;
+ MACROBLOCKD *filter_mbd = &mb->e_mbd;
+ MB_MODE_INFO *mbmi = &filter_mbd->mi[0]->mbmi;
+ MB_MODE_INFO saved_mbmi;
+ int i, j;
+ struct buf_2d saved_dst[MAX_MB_PLANE];
+ struct buf_2d saved_pre[MAX_MB_PLANE][2]; // 2 pre buffers
+
+ mv_col = ctx->best_sse_mv.as_mv.col;
+ mv_row = ctx->best_sse_mv.as_mv.row;
+ *motion_magnitude = mv_row * mv_row + mv_col * mv_col;
+ frame = ctx->best_reference_frame;
+
+ saved_mbmi = *mbmi;
+
+ // If the best reference frame uses inter-prediction and there is enough of a
+ // difference in sum-squared-error, use it.
+ if (frame != INTRA_FRAME &&
+ sse_diff > sse_diff_thresh(bs, increase_denoising, *motion_magnitude)) {
+ mbmi->ref_frame[0] = ctx->best_reference_frame;
+ mbmi->mode = ctx->best_sse_inter_mode;
+ mbmi->mv[0] = ctx->best_sse_mv;
+ } else {
+ // Otherwise, use the zero reference frame.
+ frame = ctx->best_zeromv_reference_frame;
+
+ mbmi->ref_frame[0] = ctx->best_zeromv_reference_frame;
+ mbmi->mode = ZEROMV;
+ mbmi->mv[0].as_int = 0;
+
+ ctx->best_sse_inter_mode = ZEROMV;
+ ctx->best_sse_mv.as_int = 0;
+ ctx->newmv_sse = ctx->zeromv_sse;
+ }
+
+ if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
+ // Restore everything to its original state
+ *mbmi = saved_mbmi;
+ return COPY_BLOCK;
+ }
+ if (*motion_magnitude >
+ (noise_motion_thresh(bs, increase_denoising) << 3)) {
+ // Restore everything to its original state
+ *mbmi = saved_mbmi;
+ return COPY_BLOCK;
+ }
+
+ // We will restore these after motion compensation.
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ for (j = 0; j < 2; ++j) {
+ saved_pre[i][j] = filter_mbd->plane[i].pre[j];
+ }
+ saved_dst[i] = filter_mbd->plane[i].dst;
+ }
+
+ // Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
+ // struct.
+ for (j = 0; j < 2; ++j) {
+ filter_mbd->plane[0].pre[j].buf =
+ block_start(denoiser->running_avg_y[frame].y_buffer,
+ denoiser->running_avg_y[frame].y_stride,
+ mi_row, mi_col);
+ filter_mbd->plane[0].pre[j].stride =
+ denoiser->running_avg_y[frame].y_stride;
+ filter_mbd->plane[1].pre[j].buf =
+ block_start(denoiser->running_avg_y[frame].u_buffer,
+ denoiser->running_avg_y[frame].uv_stride,
+ mi_row, mi_col);
+ filter_mbd->plane[1].pre[j].stride =
+ denoiser->running_avg_y[frame].uv_stride;
+ filter_mbd->plane[2].pre[j].buf =
+ block_start(denoiser->running_avg_y[frame].v_buffer,
+ denoiser->running_avg_y[frame].uv_stride,
+ mi_row, mi_col);
+ filter_mbd->plane[2].pre[j].stride =
+ denoiser->running_avg_y[frame].uv_stride;
+ }
+ filter_mbd->plane[0].dst.buf =
+ block_start(denoiser->mc_running_avg_y.y_buffer,
+ denoiser->mc_running_avg_y.y_stride,
+ mi_row, mi_col);
+ filter_mbd->plane[0].dst.stride = denoiser->mc_running_avg_y.y_stride;
+ filter_mbd->plane[1].dst.buf =
+ block_start(denoiser->mc_running_avg_y.u_buffer,
+ denoiser->mc_running_avg_y.uv_stride,
+ mi_row, mi_col);
+ filter_mbd->plane[1].dst.stride = denoiser->mc_running_avg_y.uv_stride;
+ filter_mbd->plane[2].dst.buf =
+ block_start(denoiser->mc_running_avg_y.v_buffer,
+ denoiser->mc_running_avg_y.uv_stride,
+ mi_row, mi_col);
+ filter_mbd->plane[2].dst.stride = denoiser->mc_running_avg_y.uv_stride;
+
+ vp9_build_inter_predictors_sby(filter_mbd, mv_row, mv_col, bs);
+
+ // Restore everything to its original state
+ *mbmi = saved_mbmi;
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ for (j = 0; j < 2; ++j) {
+ filter_mbd->plane[i].pre[j] = saved_pre[i][j];
+ }
+ filter_mbd->plane[i].dst = saved_dst[i];
+ }
+
+ mv_row = ctx->best_sse_mv.as_mv.row;
+ mv_col = ctx->best_sse_mv.as_mv.col;
+
+ return FILTER_BLOCK;
+}
+
+void vp9_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb,
+ int mi_row, int mi_col, BLOCK_SIZE bs,
+ PICK_MODE_CONTEXT *ctx) {
+ int motion_magnitude = 0;
+ VP9_DENOISER_DECISION decision = FILTER_BLOCK;
+ YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME];
+ YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y;
+ uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
+ uint8_t *mc_avg_start = block_start(mc_avg.y_buffer, mc_avg.y_stride,
+ mi_row, mi_col);
+ struct buf_2d src = mb->plane[0].src;
+
+ decision = perform_motion_compensation(denoiser, mb, bs,
+ denoiser->increase_denoising,
+ mi_row, mi_col, ctx,
+ &motion_magnitude);
+
+ if (decision == FILTER_BLOCK) {
+ decision = vp9_denoiser_filter(src.buf, src.stride,
+ mc_avg_start, mc_avg.y_stride,
+ avg_start, avg.y_stride,
+ 0, bs, motion_magnitude);
+ }
+
+ if (decision == FILTER_BLOCK) {
+ vp9_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride,
+ NULL, 0, NULL, 0,
+ num_4x4_blocks_wide_lookup[bs] << 2,
+ num_4x4_blocks_high_lookup[bs] << 2);
+ } else { // COPY_BLOCK
+ vp9_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride,
+ NULL, 0, NULL, 0,
+ num_4x4_blocks_wide_lookup[bs] << 2,
+ num_4x4_blocks_high_lookup[bs] << 2);
+ }
+}
+
+static void copy_frame(YV12_BUFFER_CONFIG dest, const YV12_BUFFER_CONFIG src) {
+ int r;
+ const uint8_t *srcbuf = src.y_buffer;
+ uint8_t *destbuf = dest.y_buffer;
+
+ assert(dest.y_width == src.y_width);
+ assert(dest.y_height == src.y_height);
+
+ for (r = 0; r < dest.y_height; ++r) {
+ memcpy(destbuf, srcbuf, dest.y_width);
+ destbuf += dest.y_stride;
+ srcbuf += src.y_stride;
+ }
+}
+
+static void swap_frame_buffer(YV12_BUFFER_CONFIG *dest,
+ YV12_BUFFER_CONFIG *src) {
+ uint8_t *tmp_buf = dest->y_buffer;
+ assert(dest->y_width == src->y_width);
+ assert(dest->y_height == src->y_height);
+ dest->y_buffer = src->y_buffer;
+ src->y_buffer = tmp_buf;
+}
+
+void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
+ YV12_BUFFER_CONFIG src,
+ FRAME_TYPE frame_type,
+ int refresh_alt_ref_frame,
+ int refresh_golden_frame,
+ int refresh_last_frame) {
+ if (frame_type == KEY_FRAME) {
+ int i;
+ // Start at 1 so as not to overwrite the INTRA_FRAME
+ for (i = 1; i < MAX_REF_FRAMES; ++i)
+ copy_frame(denoiser->running_avg_y[i], src);
+ return;
+ }
+
+ /* For non key frames */
+ if (refresh_alt_ref_frame) {
+ swap_frame_buffer(&denoiser->running_avg_y[ALTREF_FRAME],
+ &denoiser->running_avg_y[INTRA_FRAME]);
+ }
+ if (refresh_golden_frame) {
+ swap_frame_buffer(&denoiser->running_avg_y[GOLDEN_FRAME],
+ &denoiser->running_avg_y[INTRA_FRAME]);
+ }
+ if (refresh_last_frame) {
+ swap_frame_buffer(&denoiser->running_avg_y[LAST_FRAME],
+ &denoiser->running_avg_y[INTRA_FRAME]);
+ }
+}
+
+void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
+ ctx->zeromv_sse = UINT_MAX;
+ ctx->newmv_sse = UINT_MAX;
+}
+
+void vp9_denoiser_update_frame_stats(MB_MODE_INFO *mbmi, unsigned int sse,
+ PREDICTION_MODE mode,
+ PICK_MODE_CONTEXT *ctx) {
+ // TODO(tkopp): Use both MVs if possible
+ if (mbmi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
+ ctx->zeromv_sse = sse;
+ ctx->best_zeromv_reference_frame = mbmi->ref_frame[0];
+ }
+
+ if (mbmi->mv[0].as_int != 0 && sse < ctx->newmv_sse) {
+ ctx->newmv_sse = sse;
+ ctx->best_sse_inter_mode = mode;
+ ctx->best_sse_mv = mbmi->mv[0];
+ ctx->best_reference_frame = mbmi->ref_frame[0];
+ }
+}
+
+int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
+ int ssx, int ssy,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int use_highbitdepth,
+#endif
+ int border) {
+ int i, fail;
+ const int legacy_byte_alignment = 0;
+ assert(denoiser != NULL);
+
+ for (i = 0; i < MAX_REF_FRAMES; ++i) {
+ fail = vp9_alloc_frame_buffer(&denoiser->running_avg_y[i], width, height,
+ ssx, ssy,
+#if CONFIG_VP9_HIGHBITDEPTH
+ use_highbitdepth,
+#endif
+ border, legacy_byte_alignment);
+ if (fail) {
+ vp9_denoiser_free(denoiser);
+ return 1;
+ }
+#ifdef OUTPUT_YUV_DENOISED
+ make_grayscale(&denoiser->running_avg_y[i]);
+#endif
+ }
+
+ fail = vp9_alloc_frame_buffer(&denoiser->mc_running_avg_y, width, height,
+ ssx, ssy,
+#if CONFIG_VP9_HIGHBITDEPTH
+ use_highbitdepth,
+#endif
+ border, legacy_byte_alignment);
+ if (fail) {
+ vp9_denoiser_free(denoiser);
+ return 1;
+ }
+#ifdef OUTPUT_YUV_DENOISED
+ make_grayscale(&denoiser->running_avg_y[i]);
+#endif
+ denoiser->increase_denoising = 0;
+ denoiser->frame_buffer_initialized = 1;
+
+ return 0;
+}
+
+void vp9_denoiser_free(VP9_DENOISER *denoiser) {
+ int i;
+ denoiser->frame_buffer_initialized = 0;
+ if (denoiser == NULL) {
+ return;
+ }
+ for (i = 0; i < MAX_REF_FRAMES; ++i) {
+ vp9_free_frame_buffer(&denoiser->running_avg_y[i]);
+ }
+ vp9_free_frame_buffer(&denoiser->mc_running_avg_y);
+}
+
+#ifdef OUTPUT_YUV_DENOISED
+static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
+ int r, c;
+ uint8_t *u = yuv->u_buffer;
+ uint8_t *v = yuv->v_buffer;
+
+ for (r = 0; r < yuv->uv_height; ++r) {
+ for (c = 0; c < yuv->uv_width; ++c) {
+ u[c] = UINT8_MAX / 2;
+ v[c] = UINT8_MAX / 2;
+ }
+ u += yuv->uv_stride;
+ v += yuv->uv_stride;
+ }
+}
+#endif
diff --git a/media/libvpx/vp9/encoder/vp9_denoiser.h b/media/libvpx/vp9/encoder/vp9_denoiser.h
new file mode 100644
index 000000000..8eb5da1b8
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_denoiser.h
@@ -0,0 +1,69 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_DENOISER_H_
+#define VP9_ENCODER_DENOISER_H_
+
+#include "vp9/encoder/vp9_block.h"
+#include "vpx_scale/yv12config.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define MOTION_MAGNITUDE_THRESHOLD (8 * 3)
+
+typedef enum vp9_denoiser_decision {
+ COPY_BLOCK,
+ FILTER_BLOCK
+} VP9_DENOISER_DECISION;
+
+typedef struct vp9_denoiser {
+ YV12_BUFFER_CONFIG running_avg_y[MAX_REF_FRAMES];
+ YV12_BUFFER_CONFIG mc_running_avg_y;
+ int increase_denoising;
+ int frame_buffer_initialized;
+} VP9_DENOISER;
+
+void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
+ YV12_BUFFER_CONFIG src,
+ FRAME_TYPE frame_type,
+ int refresh_alt_ref_frame,
+ int refresh_golden_frame,
+ int refresh_last_frame);
+
+void vp9_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb,
+ int mi_row, int mi_col, BLOCK_SIZE bs,
+ PICK_MODE_CONTEXT *ctx);
+
+void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx);
+
+void vp9_denoiser_update_frame_stats(MB_MODE_INFO *mbmi,
+ unsigned int sse, PREDICTION_MODE mode,
+ PICK_MODE_CONTEXT *ctx);
+
+int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
+ int ssx, int ssy,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int use_highbitdepth,
+#endif
+ int border);
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+int total_adj_strong_thresh(BLOCK_SIZE bs, int increase_denoising);
+#endif
+
+void vp9_denoiser_free(VP9_DENOISER *denoiser);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_DENOISER_H_
diff --git a/media/libvpx/vp9/encoder/vp9_encodeframe.c b/media/libvpx/vp9/encoder/vp9_encodeframe.c
new file mode 100644
index 000000000..49e888768
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_encodeframe.c
@@ -0,0 +1,4236 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vpx_ports/mem.h"
+#include "vpx_ports/vpx_timer.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropy.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_idct.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_reconintra.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/common/vp9_tile_common.h"
+
+#include "vp9/encoder/vp9_aq_complexity.h"
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+#include "vp9/encoder/vp9_aq_variance.h"
+#include "vp9/encoder/vp9_encodeframe.h"
+#include "vp9/encoder/vp9_encodemb.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_ethread.h"
+#include "vp9/encoder/vp9_extend.h"
+#include "vp9/encoder/vp9_pickmode.h"
+#include "vp9/encoder/vp9_rd.h"
+#include "vp9/encoder/vp9_rdopt.h"
+#include "vp9/encoder/vp9_segmentation.h"
+#include "vp9/encoder/vp9_tokenize.h"
+
+static void encode_superblock(VP9_COMP *cpi, ThreadData * td,
+ TOKENEXTRA **t, int output_enabled,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx);
+
+// This is used as a reference when computing the source variance for the
+// purposes of activity masking.
+// Eventually this should be replaced by custom no-reference routines,
+// which will be faster.
+static const uint8_t VP9_VAR_OFFS[64] = {
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128
+};
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128,
+ 128, 128, 128, 128, 128, 128, 128, 128
+};
+
+static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
+ 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
+ 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
+ 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
+ 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
+ 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
+ 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
+ 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
+ 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4
+};
+
+static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
+ 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
+ 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
+ 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
+ 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
+ 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
+ 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
+ 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
+ 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16
+};
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
+ const struct buf_2d *ref,
+ BLOCK_SIZE bs) {
+ unsigned int sse;
+ const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+ VP9_VAR_OFFS, 0, &sse);
+ return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+unsigned int vp9_high_get_sby_perpixel_variance(
+ VP9_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs, int bd) {
+ unsigned int var, sse;
+ switch (bd) {
+ case 10:
+ var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+ CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10),
+ 0, &sse);
+ break;
+ case 12:
+ var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+ CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12),
+ 0, &sse);
+ break;
+ case 8:
+ default:
+ var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
+ CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8),
+ 0, &sse);
+ break;
+ }
+ return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
+ const struct buf_2d *ref,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bs) {
+ unsigned int sse, var;
+ uint8_t *last_y;
+ const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
+
+ assert(last != NULL);
+ last_y =
+ &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
+ var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
+ return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
+}
+
+static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x,
+ int mi_row,
+ int mi_col) {
+ unsigned int var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src,
+ mi_row, mi_col,
+ BLOCK_64X64);
+ if (var < 8)
+ return BLOCK_64X64;
+ else if (var < 128)
+ return BLOCK_32X32;
+ else if (var < 2048)
+ return BLOCK_16X16;
+ else
+ return BLOCK_8X8;
+}
+
+// Lighter version of set_offsets that only sets the mode info
+// pointers.
+static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
+ MACROBLOCKD *const xd,
+ int mi_row,
+ int mi_col) {
+ const int idx_str = xd->mi_stride * mi_row + mi_col;
+ xd->mi = cm->mi_grid_visible + idx_str;
+ xd->mi[0] = cm->mi + idx_str;
+}
+
+static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
+ MACROBLOCK *const x, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi;
+ const int mi_width = num_8x8_blocks_wide_lookup[bsize];
+ const int mi_height = num_8x8_blocks_high_lookup[bsize];
+ const struct segmentation *const seg = &cm->seg;
+
+ set_skip_context(xd, mi_row, mi_col);
+
+ set_mode_info_offsets(cm, xd, mi_row, mi_col);
+
+ mbmi = &xd->mi[0]->mbmi;
+
+ // Set up destination pointers.
+ vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
+
+ // Set up limit values for MV components.
+ // Mv beyond the range do not produce new/different prediction block.
+ x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
+ x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
+ x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
+ x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
+
+ // Set up distance of MB to edge of frame in 1/8th pel units.
+ assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
+ set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
+ cm->mi_rows, cm->mi_cols);
+
+ // Set up source buffers.
+ vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
+
+ // R/D setup.
+ x->rddiv = cpi->rd.RDDIV;
+ x->rdmult = cpi->rd.RDMULT;
+
+ // Setup segment ID.
+ if (seg->enabled) {
+ if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
+ const uint8_t *const map = seg->update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
+ }
+ vp9_init_plane_quantizers(cpi, x);
+
+ x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
+ } else {
+ mbmi->segment_id = 0;
+ x->encode_breakout = cpi->encode_breakout;
+ }
+}
+
+static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const int block_width = num_8x8_blocks_wide_lookup[bsize];
+ const int block_height = num_8x8_blocks_high_lookup[bsize];
+ int i, j;
+ for (j = 0; j < block_height; ++j)
+ for (i = 0; i < block_width; ++i) {
+ if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols)
+ xd->mi[j * xd->mi_stride + i] = xd->mi[0];
+ }
+}
+
+static void set_block_size(VP9_COMP * const cpi,
+ MACROBLOCKD *const xd,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
+ set_mode_info_offsets(&cpi->common, xd, mi_row, mi_col);
+ xd->mi[0]->mbmi.sb_type = bsize;
+ }
+}
+
+typedef struct {
+ int64_t sum_square_error;
+ int64_t sum_error;
+ int log2_count;
+ int variance;
+} var;
+
+typedef struct {
+ var none;
+ var horz[2];
+ var vert[2];
+} partition_variance;
+
+typedef struct {
+ partition_variance part_variances;
+ var split[4];
+} v4x4;
+
+typedef struct {
+ partition_variance part_variances;
+ v4x4 split[4];
+} v8x8;
+
+typedef struct {
+ partition_variance part_variances;
+ v8x8 split[4];
+} v16x16;
+
+typedef struct {
+ partition_variance part_variances;
+ v16x16 split[4];
+} v32x32;
+
+typedef struct {
+ partition_variance part_variances;
+ v32x32 split[4];
+} v64x64;
+
+typedef struct {
+ partition_variance *part_variances;
+ var *split[4];
+} variance_node;
+
+typedef enum {
+ V16X16,
+ V32X32,
+ V64X64,
+} TREE_LEVEL;
+
+static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
+ int i;
+ node->part_variances = NULL;
+ switch (bsize) {
+ case BLOCK_64X64: {
+ v64x64 *vt = (v64x64 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i].part_variances.none;
+ break;
+ }
+ case BLOCK_32X32: {
+ v32x32 *vt = (v32x32 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i].part_variances.none;
+ break;
+ }
+ case BLOCK_16X16: {
+ v16x16 *vt = (v16x16 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i].part_variances.none;
+ break;
+ }
+ case BLOCK_8X8: {
+ v8x8 *vt = (v8x8 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i].part_variances.none;
+ break;
+ }
+ case BLOCK_4X4: {
+ v4x4 *vt = (v4x4 *) data;
+ node->part_variances = &vt->part_variances;
+ for (i = 0; i < 4; i++)
+ node->split[i] = &vt->split[i];
+ break;
+ }
+ default: {
+ assert(0);
+ break;
+ }
+ }
+}
+
+// Set variance values given sum square error, sum error, count.
+static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
+ v->sum_square_error = s2;
+ v->sum_error = s;
+ v->log2_count = c;
+}
+
+static void get_variance(var *v) {
+ v->variance = (int)(256 * (v->sum_square_error -
+ ((v->sum_error * v->sum_error) >> v->log2_count)) >> v->log2_count);
+}
+
+static void sum_2_variances(const var *a, const var *b, var *r) {
+ assert(a->log2_count == b->log2_count);
+ fill_variance(a->sum_square_error + b->sum_square_error,
+ a->sum_error + b->sum_error, a->log2_count + 1, r);
+}
+
+static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
+ variance_node node;
+ tree_to_node(data, bsize, &node);
+ sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
+ sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
+ sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
+ sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
+ sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
+ &node.part_variances->none);
+}
+
+static int set_vt_partitioning(VP9_COMP *cpi,
+ MACROBLOCKD *const xd,
+ void *data,
+ BLOCK_SIZE bsize,
+ int mi_row,
+ int mi_col,
+ int64_t threshold,
+ BLOCK_SIZE bsize_min,
+ int force_split) {
+ VP9_COMMON * const cm = &cpi->common;
+ variance_node vt;
+ const int block_width = num_8x8_blocks_wide_lookup[bsize];
+ const int block_height = num_8x8_blocks_high_lookup[bsize];
+ const int low_res = (cm->width <= 352 && cm->height <= 288);
+
+ assert(block_height == block_width);
+ tree_to_node(data, bsize, &vt);
+
+ if (force_split == 1)
+ return 0;
+
+ // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
+ // variance is below threshold, otherwise split will be selected.
+ // No check for vert/horiz split as too few samples for variance.
+ if (bsize == bsize_min) {
+ // Variance already computed to set the force_split.
+ if (low_res || cm->frame_type == KEY_FRAME)
+ get_variance(&vt.part_variances->none);
+ if (mi_col + block_width / 2 < cm->mi_cols &&
+ mi_row + block_height / 2 < cm->mi_rows &&
+ vt.part_variances->none.variance < threshold) {
+ set_block_size(cpi, xd, mi_row, mi_col, bsize);
+ return 1;
+ }
+ return 0;
+ } else if (bsize > bsize_min) {
+ // Variance already computed to set the force_split.
+ if (low_res || cm->frame_type == KEY_FRAME)
+ get_variance(&vt.part_variances->none);
+ // For key frame: take split for bsize above 32X32 or very high variance.
+ if (cm->frame_type == KEY_FRAME &&
+ (bsize > BLOCK_32X32 ||
+ vt.part_variances->none.variance > (threshold << 4))) {
+ return 0;
+ }
+ // If variance is low, take the bsize (no split).
+ if (mi_col + block_width / 2 < cm->mi_cols &&
+ mi_row + block_height / 2 < cm->mi_rows &&
+ vt.part_variances->none.variance < threshold) {
+ set_block_size(cpi, xd, mi_row, mi_col, bsize);
+ return 1;
+ }
+
+ // Check vertical split.
+ if (mi_row + block_height / 2 < cm->mi_rows) {
+ BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
+ get_variance(&vt.part_variances->vert[0]);
+ get_variance(&vt.part_variances->vert[1]);
+ if (vt.part_variances->vert[0].variance < threshold &&
+ vt.part_variances->vert[1].variance < threshold &&
+ get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
+ set_block_size(cpi, xd, mi_row, mi_col, subsize);
+ set_block_size(cpi, xd, mi_row, mi_col + block_width / 2, subsize);
+ return 1;
+ }
+ }
+ // Check horizontal split.
+ if (mi_col + block_width / 2 < cm->mi_cols) {
+ BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
+ get_variance(&vt.part_variances->horz[0]);
+ get_variance(&vt.part_variances->horz[1]);
+ if (vt.part_variances->horz[0].variance < threshold &&
+ vt.part_variances->horz[1].variance < threshold &&
+ get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
+ set_block_size(cpi, xd, mi_row, mi_col, subsize);
+ set_block_size(cpi, xd, mi_row + block_height / 2, mi_col, subsize);
+ return 1;
+ }
+ }
+
+ return 0;
+ }
+ return 0;
+}
+
+// Set the variance split thresholds for following the block sizes:
+// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
+// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
+// currently only used on key frame.
+static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int is_key_frame = (cm->frame_type == KEY_FRAME);
+ const int threshold_multiplier = is_key_frame ? 20 : 1;
+ const int64_t threshold_base = (int64_t)(threshold_multiplier *
+ cpi->y_dequant[q][1]);
+ if (is_key_frame) {
+ thresholds[0] = threshold_base;
+ thresholds[1] = threshold_base >> 2;
+ thresholds[2] = threshold_base >> 2;
+ thresholds[3] = threshold_base << 2;
+ } else {
+ thresholds[1] = threshold_base;
+ if (cm->width <= 352 && cm->height <= 288) {
+ thresholds[0] = threshold_base >> 2;
+ thresholds[2] = threshold_base << 3;
+ } else {
+ thresholds[0] = threshold_base;
+ thresholds[1] = (5 * threshold_base) >> 2;
+ if (cm->width >= 1920 && cm->height >= 1080)
+ thresholds[1] = (7 * threshold_base) >> 2;
+ thresholds[2] = threshold_base << cpi->oxcf.speed;
+ }
+ }
+}
+
+void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q) {
+ VP9_COMMON *const cm = &cpi->common;
+ SPEED_FEATURES *const sf = &cpi->sf;
+ const int is_key_frame = (cm->frame_type == KEY_FRAME);
+ if (sf->partition_search_type != VAR_BASED_PARTITION &&
+ sf->partition_search_type != REFERENCE_PARTITION) {
+ return;
+ } else {
+ set_vbp_thresholds(cpi, cpi->vbp_thresholds, q);
+ // The thresholds below are not changed locally.
+ if (is_key_frame) {
+ cpi->vbp_threshold_sad = 0;
+ cpi->vbp_bsize_min = BLOCK_8X8;
+ } else {
+ if (cm->width <= 352 && cm->height <= 288)
+ cpi->vbp_threshold_sad = 100;
+ else
+ cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000 ?
+ (cpi->y_dequant[q][1] << 1) : 1000;
+ cpi->vbp_bsize_min = BLOCK_16X16;
+ }
+ cpi->vbp_threshold_minmax = 15 + (q >> 3);
+ }
+}
+
+// Compute the minmax over the 8x8 subblocks.
+static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
+ int dp, int x16_idx, int y16_idx,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int highbd_flag,
+#endif
+ int pixels_wide,
+ int pixels_high) {
+ int k;
+ int minmax_max = 0;
+ int minmax_min = 255;
+ // Loop over the 4 8x8 subblocks.
+ for (k = 0; k < 4; k++) {
+ int x8_idx = x16_idx + ((k & 1) << 3);
+ int y8_idx = y16_idx + ((k >> 1) << 3);
+ int min = 0;
+ int max = 0;
+ if (x8_idx < pixels_wide && y8_idx < pixels_high) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
+ d + y8_idx * dp + x8_idx, dp,
+ &min, &max);
+ } else {
+ vp9_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
+ d + y8_idx * dp + x8_idx, dp,
+ &min, &max);
+ }
+#else
+ vp9_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
+ d + y8_idx * dp + x8_idx, dp,
+ &min, &max);
+#endif
+ if ((max - min) > minmax_max)
+ minmax_max = (max - min);
+ if ((max - min) < minmax_min)
+ minmax_min = (max - min);
+ }
+ }
+ return (minmax_max - minmax_min);
+}
+
+static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
+ int dp, int x8_idx, int y8_idx, v8x8 *vst,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int highbd_flag,
+#endif
+ int pixels_wide,
+ int pixels_high,
+ int is_key_frame) {
+ int k;
+ for (k = 0; k < 4; k++) {
+ int x4_idx = x8_idx + ((k & 1) << 2);
+ int y4_idx = y8_idx + ((k >> 1) << 2);
+ unsigned int sse = 0;
+ int sum = 0;
+ if (x4_idx < pixels_wide && y4_idx < pixels_high) {
+ int s_avg;
+ int d_avg = 128;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
+ s_avg = vp9_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
+ if (!is_key_frame)
+ d_avg = vp9_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
+ } else {
+ s_avg = vp9_avg_4x4(s + y4_idx * sp + x4_idx, sp);
+ if (!is_key_frame)
+ d_avg = vp9_avg_4x4(d + y4_idx * dp + x4_idx, dp);
+ }
+#else
+ s_avg = vp9_avg_4x4(s + y4_idx * sp + x4_idx, sp);
+ if (!is_key_frame)
+ d_avg = vp9_avg_4x4(d + y4_idx * dp + x4_idx, dp);
+#endif
+ sum = s_avg - d_avg;
+ sse = sum * sum;
+ }
+ fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
+ }
+}
+
+static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
+ int dp, int x16_idx, int y16_idx, v16x16 *vst,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int highbd_flag,
+#endif
+ int pixels_wide,
+ int pixels_high,
+ int is_key_frame) {
+ int k;
+ for (k = 0; k < 4; k++) {
+ int x8_idx = x16_idx + ((k & 1) << 3);
+ int y8_idx = y16_idx + ((k >> 1) << 3);
+ unsigned int sse = 0;
+ int sum = 0;
+ if (x8_idx < pixels_wide && y8_idx < pixels_high) {
+ int s_avg;
+ int d_avg = 128;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
+ s_avg = vp9_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
+ if (!is_key_frame)
+ d_avg = vp9_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
+ } else {
+ s_avg = vp9_avg_8x8(s + y8_idx * sp + x8_idx, sp);
+ if (!is_key_frame)
+ d_avg = vp9_avg_8x8(d + y8_idx * dp + x8_idx, dp);
+ }
+#else
+ s_avg = vp9_avg_8x8(s + y8_idx * sp + x8_idx, sp);
+ if (!is_key_frame)
+ d_avg = vp9_avg_8x8(d + y8_idx * dp + x8_idx, dp);
+#endif
+ sum = s_avg - d_avg;
+ sse = sum * sum;
+ }
+ fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
+ }
+}
+
+// This function chooses partitioning based on the variance between source and
+// reconstructed last, where variance is computed for down-sampled inputs.
+static int choose_partitioning(VP9_COMP *cpi,
+ const TileInfo *const tile,
+ MACROBLOCK *x,
+ int mi_row, int mi_col) {
+ VP9_COMMON * const cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ int i, j, k, m;
+ v64x64 vt;
+ v16x16 vt2[16];
+ int force_split[21];
+ uint8_t *s;
+ const uint8_t *d;
+ int sp;
+ int dp;
+ int pixels_wide = 64, pixels_high = 64;
+ int64_t thresholds[4] = {cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
+ cpi->vbp_thresholds[2], cpi->vbp_thresholds[3]};
+
+ // Always use 4x4 partition for key frame.
+ const int is_key_frame = (cm->frame_type == KEY_FRAME);
+ const int use_4x4_partition = is_key_frame;
+ const int low_res = (cm->width <= 352 && cm->height <= 288);
+ int variance4x4downsample[16];
+
+ int segment_id = CR_SEGMENT_ID_BASE;
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
+ const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map :
+ cm->last_frame_seg_map;
+ segment_id = vp9_get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
+
+ if (cyclic_refresh_segment_id_boosted(segment_id)) {
+ int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
+ set_vbp_thresholds(cpi, thresholds, q);
+ }
+ }
+
+ set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
+
+ if (xd->mb_to_right_edge < 0)
+ pixels_wide += (xd->mb_to_right_edge >> 3);
+ if (xd->mb_to_bottom_edge < 0)
+ pixels_high += (xd->mb_to_bottom_edge >> 3);
+
+ s = x->plane[0].src.buf;
+ sp = x->plane[0].src.stride;
+
+ if (!is_key_frame && !(is_one_pass_cbr_svc(cpi) &&
+ cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)) {
+ // In the case of spatial/temporal scalable coding, the assumption here is
+ // that the temporal reference frame will always be of type LAST_FRAME.
+ // TODO(marpan): If that assumption is broken, we need to revisit this code.
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ unsigned int uv_sad;
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
+
+ const YV12_BUFFER_CONFIG *yv12_g = NULL;
+ unsigned int y_sad, y_sad_g;
+ const BLOCK_SIZE bsize = BLOCK_32X32
+ + (mi_col + 4 < cm->mi_cols) * 2 + (mi_row + 4 < cm->mi_rows);
+
+ assert(yv12 != NULL);
+
+ if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id)) {
+ // For now, GOLDEN will not be used for non-zero spatial layers, since
+ // it may not be a temporal reference.
+ yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
+ }
+
+ if (yv12_g && yv12_g != yv12) {
+ vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
+ &cm->frame_refs[GOLDEN_FRAME - 1].sf);
+ y_sad_g = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
+ x->plane[0].src.stride,
+ xd->plane[0].pre[0].buf,
+ xd->plane[0].pre[0].stride);
+ } else {
+ y_sad_g = UINT_MAX;
+ }
+
+ vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
+ &cm->frame_refs[LAST_FRAME - 1].sf);
+ mbmi->ref_frame[0] = LAST_FRAME;
+ mbmi->ref_frame[1] = NONE;
+ mbmi->sb_type = BLOCK_64X64;
+ mbmi->mv[0].as_int = 0;
+ mbmi->interp_filter = BILINEAR;
+
+ y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
+ if (y_sad_g < y_sad) {
+ vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
+ &cm->frame_refs[GOLDEN_FRAME - 1].sf);
+ mbmi->ref_frame[0] = GOLDEN_FRAME;
+ mbmi->mv[0].as_int = 0;
+ y_sad = y_sad_g;
+ } else {
+ x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv;
+ }
+
+ vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
+
+ for (i = 1; i <= 2; ++i) {
+ struct macroblock_plane *p = &x->plane[i];
+ struct macroblockd_plane *pd = &xd->plane[i];
+ const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
+
+ if (bs == BLOCK_INVALID)
+ uv_sad = UINT_MAX;
+ else
+ uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride);
+
+ x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
+ }
+
+ d = xd->plane[0].dst.buf;
+ dp = xd->plane[0].dst.stride;
+
+ // If the y_sad is very small, take 64x64 as partition and exit.
+ // Don't check on boosted segment for now, as 64x64 is suppressed there.
+ if (segment_id == CR_SEGMENT_ID_BASE &&
+ y_sad < cpi->vbp_threshold_sad) {
+ const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
+ const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
+ if (mi_col + block_width / 2 < cm->mi_cols &&
+ mi_row + block_height / 2 < cm->mi_rows) {
+ set_block_size(cpi, xd, mi_row, mi_col, BLOCK_64X64);
+ return 0;
+ }
+ }
+ } else {
+ d = VP9_VAR_OFFS;
+ dp = 0;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ switch (xd->bd) {
+ case 10:
+ d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10);
+ break;
+ case 12:
+ d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12);
+ break;
+ case 8:
+ default:
+ d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8);
+ break;
+ }
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+
+ // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
+ // 5-20 for the 16x16 blocks.
+ force_split[0] = 0;
+ // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
+ // for splits.
+ for (i = 0; i < 4; i++) {
+ const int x32_idx = ((i & 1) << 5);
+ const int y32_idx = ((i >> 1) << 5);
+ const int i2 = i << 2;
+ force_split[i + 1] = 0;
+ for (j = 0; j < 4; j++) {
+ const int x16_idx = x32_idx + ((j & 1) << 4);
+ const int y16_idx = y32_idx + ((j >> 1) << 4);
+ const int split_index = 5 + i2 + j;
+ v16x16 *vst = &vt.split[i].split[j];
+ force_split[split_index] = 0;
+ variance4x4downsample[i2 + j] = 0;
+ if (!is_key_frame) {
+ fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
+#if CONFIG_VP9_HIGHBITDEPTH
+ xd->cur_buf->flags,
+#endif
+ pixels_wide,
+ pixels_high,
+ is_key_frame);
+ fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
+ get_variance(&vt.split[i].split[j].part_variances.none);
+ if (vt.split[i].split[j].part_variances.none.variance >
+ thresholds[2]) {
+ // 16X16 variance is above threshold for split, so force split to 8x8
+ // for this 16x16 block (this also forces splits for upper levels).
+ force_split[split_index] = 1;
+ force_split[i + 1] = 1;
+ force_split[0] = 1;
+ } else if (vt.split[i].split[j].part_variances.none.variance >
+ thresholds[1] &&
+ !cyclic_refresh_segment_id_boosted(segment_id)) {
+ // We have some nominal amount of 16x16 variance (based on average),
+ // compute the minmax over the 8x8 sub-blocks, and if above threshold,
+ // force split to 8x8 block for this 16x16 block.
+ int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
+#if CONFIG_VP9_HIGHBITDEPTH
+ xd->cur_buf->flags,
+#endif
+ pixels_wide, pixels_high);
+ if (minmax > cpi->vbp_threshold_minmax) {
+ force_split[split_index] = 1;
+ force_split[i + 1] = 1;
+ force_split[0] = 1;
+ }
+ }
+ }
+ // TODO(marpan): There is an issue with variance based on 4x4 average in
+ // svc mode, don't allow it for now.
+ if (is_key_frame || (low_res && !cpi->use_svc &&
+ vt.split[i].split[j].part_variances.none.variance >
+ (thresholds[1] << 1))) {
+ force_split[split_index] = 0;
+ // Go down to 4x4 down-sampling for variance.
+ variance4x4downsample[i2 + j] = 1;
+ for (k = 0; k < 4; k++) {
+ int x8_idx = x16_idx + ((k & 1) << 3);
+ int y8_idx = y16_idx + ((k >> 1) << 3);
+ v8x8 *vst2 = is_key_frame ? &vst->split[k] :
+ &vt2[i2 + j].split[k];
+ fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
+#if CONFIG_VP9_HIGHBITDEPTH
+ xd->cur_buf->flags,
+#endif
+ pixels_wide,
+ pixels_high,
+ is_key_frame);
+ }
+ }
+ }
+ }
+
+ // Fill the rest of the variance tree by summing split partition values.
+ for (i = 0; i < 4; i++) {
+ const int i2 = i << 2;
+ for (j = 0; j < 4; j++) {
+ if (variance4x4downsample[i2 + j] == 1) {
+ v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] :
+ &vt.split[i].split[j];
+ for (m = 0; m < 4; m++)
+ fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
+ fill_variance_tree(vtemp, BLOCK_16X16);
+ }
+ }
+ fill_variance_tree(&vt.split[i], BLOCK_32X32);
+ // If variance of this 32x32 block is above the threshold, force the block
+ // to split. This also forces a split on the upper (64x64) level.
+ if (!force_split[i + 1]) {
+ get_variance(&vt.split[i].part_variances.none);
+ if (vt.split[i].part_variances.none.variance > thresholds[1]) {
+ force_split[i + 1] = 1;
+ force_split[0] = 1;
+ }
+ }
+ }
+ if (!force_split[0]) {
+ fill_variance_tree(&vt, BLOCK_64X64);
+ get_variance(&vt.part_variances.none);
+ }
+
+ // Now go through the entire structure, splitting every block size until
+ // we get to one that's got a variance lower than our threshold.
+ if ( mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
+ !set_vt_partitioning(cpi, xd, &vt, BLOCK_64X64, mi_row, mi_col,
+ thresholds[0], BLOCK_16X16, force_split[0])) {
+ for (i = 0; i < 4; ++i) {
+ const int x32_idx = ((i & 1) << 2);
+ const int y32_idx = ((i >> 1) << 2);
+ const int i2 = i << 2;
+ if (!set_vt_partitioning(cpi, xd, &vt.split[i], BLOCK_32X32,
+ (mi_row + y32_idx), (mi_col + x32_idx),
+ thresholds[1], BLOCK_16X16,
+ force_split[i + 1])) {
+ for (j = 0; j < 4; ++j) {
+ const int x16_idx = ((j & 1) << 1);
+ const int y16_idx = ((j >> 1) << 1);
+ // For inter frames: if variance4x4downsample[] == 1 for this 16x16
+ // block, then the variance is based on 4x4 down-sampling, so use vt2
+ // in set_vt_partioning(), otherwise use vt.
+ v16x16 *vtemp = (!is_key_frame &&
+ variance4x4downsample[i2 + j] == 1) ?
+ &vt2[i2 + j] : &vt.split[i].split[j];
+ if (!set_vt_partitioning(cpi, xd, vtemp, BLOCK_16X16,
+ mi_row + y32_idx + y16_idx,
+ mi_col + x32_idx + x16_idx,
+ thresholds[2],
+ cpi->vbp_bsize_min,
+ force_split[5 + i2 + j])) {
+ for (k = 0; k < 4; ++k) {
+ const int x8_idx = (k & 1);
+ const int y8_idx = (k >> 1);
+ if (use_4x4_partition) {
+ if (!set_vt_partitioning(cpi, xd, &vtemp->split[k],
+ BLOCK_8X8,
+ mi_row + y32_idx + y16_idx + y8_idx,
+ mi_col + x32_idx + x16_idx + x8_idx,
+ thresholds[3], BLOCK_8X8, 0)) {
+ set_block_size(cpi, xd,
+ (mi_row + y32_idx + y16_idx + y8_idx),
+ (mi_col + x32_idx + x16_idx + x8_idx),
+ BLOCK_4X4);
+ }
+ } else {
+ set_block_size(cpi, xd,
+ (mi_row + y32_idx + y16_idx + y8_idx),
+ (mi_col + x32_idx + x16_idx + x8_idx),
+ BLOCK_8X8);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+static void update_state(VP9_COMP *cpi, ThreadData *td,
+ PICK_MODE_CONTEXT *ctx,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ int output_enabled) {
+ int i, x_idx, y;
+ VP9_COMMON *const cm = &cpi->common;
+ RD_COUNTS *const rdc = &td->rd_counts;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ MODE_INFO *mi = &ctx->mic;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ MODE_INFO *mi_addr = xd->mi[0];
+ const struct segmentation *const seg = &cm->seg;
+ const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
+ const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
+ const int x_mis = MIN(bw, cm->mi_cols - mi_col);
+ const int y_mis = MIN(bh, cm->mi_rows - mi_row);
+ MV_REF *const frame_mvs =
+ cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
+ int w, h;
+
+ const int mis = cm->mi_stride;
+ const int mi_width = num_8x8_blocks_wide_lookup[bsize];
+ const int mi_height = num_8x8_blocks_high_lookup[bsize];
+ int max_plane;
+
+ assert(mi->mbmi.sb_type == bsize);
+
+ *mi_addr = *mi;
+
+ // If segmentation in use
+ if (seg->enabled) {
+ // For in frame complexity AQ copy the segment id from the segment map.
+ if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+ const uint8_t *const map = seg->update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ mi_addr->mbmi.segment_id =
+ vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
+ }
+ // Else for cyclic refresh mode update the segment map, set the segment id
+ // and then update the quantizer.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
+ vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row,
+ mi_col, bsize, ctx->rate, ctx->dist,
+ x->skip);
+ }
+ }
+
+ max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
+ for (i = 0; i < max_plane; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][1];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
+ p[i].eobs = ctx->eobs_pbuf[i][1];
+ }
+
+ for (i = max_plane; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][2];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
+ p[i].eobs = ctx->eobs_pbuf[i][2];
+ }
+
+ // Restore the coding context of the MB to that that was in place
+ // when the mode was picked for it
+ for (y = 0; y < mi_height; y++)
+ for (x_idx = 0; x_idx < mi_width; x_idx++)
+ if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
+ && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
+ xd->mi[x_idx + y * mis] = mi_addr;
+ }
+
+ if (cpi->oxcf.aq_mode)
+ vp9_init_plane_quantizers(cpi, x);
+
+ // FIXME(rbultje) I'm pretty sure this should go to the end of this block
+ // (i.e. after the output_enabled)
+ if (bsize < BLOCK_32X32) {
+ if (bsize < BLOCK_16X16)
+ ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
+ ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
+ }
+
+ if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
+ mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
+ mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
+ }
+
+ x->skip = ctx->skip;
+ memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
+ sizeof(uint8_t) * ctx->num_4x4_blk);
+
+ if (!output_enabled)
+ return;
+
+ if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ for (i = 0; i < TX_MODES; i++)
+ rdc->tx_select_diff[i] += ctx->tx_rd_diff[i];
+ }
+
+#if CONFIG_INTERNAL_STATS
+ if (frame_is_intra_only(cm)) {
+ static const int kf_mode_index[] = {
+ THR_DC /*DC_PRED*/,
+ THR_V_PRED /*V_PRED*/,
+ THR_H_PRED /*H_PRED*/,
+ THR_D45_PRED /*D45_PRED*/,
+ THR_D135_PRED /*D135_PRED*/,
+ THR_D117_PRED /*D117_PRED*/,
+ THR_D153_PRED /*D153_PRED*/,
+ THR_D207_PRED /*D207_PRED*/,
+ THR_D63_PRED /*D63_PRED*/,
+ THR_TM /*TM_PRED*/,
+ };
+ ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
+ } else {
+ // Note how often each mode chosen as best
+ ++cpi->mode_chosen_counts[ctx->best_mode_index];
+ }
+#endif
+ if (!frame_is_intra_only(cm)) {
+ if (is_inter_block(mbmi)) {
+ vp9_update_mv_count(td);
+
+ if (cm->interp_filter == SWITCHABLE) {
+ const int ctx = vp9_get_pred_context_switchable_interp(xd);
+ ++td->counts->switchable_interp[ctx][mbmi->interp_filter];
+ }
+ }
+
+ rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
+ rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
+ rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ rdc->filter_diff[i] += ctx->best_filter_diff[i];
+ }
+
+ for (h = 0; h < y_mis; ++h) {
+ MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
+ for (w = 0; w < x_mis; ++w) {
+ MV_REF *const mv = frame_mv + w;
+ mv->ref_frame[0] = mi->mbmi.ref_frame[0];
+ mv->ref_frame[1] = mi->mbmi.ref_frame[1];
+ mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
+ mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
+ }
+ }
+}
+
+void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
+ int mi_row, int mi_col) {
+ uint8_t *const buffers[3] = {src->y_buffer, src->u_buffer, src->v_buffer };
+ const int strides[3] = {src->y_stride, src->uv_stride, src->uv_stride };
+ int i;
+
+ // Set current frame pointer.
+ x->e_mbd.cur_buf = src;
+
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
+ NULL, x->e_mbd.plane[i].subsampling_x,
+ x->e_mbd.plane[i].subsampling_y);
+}
+
+static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
+ RD_COST *rd_cost, BLOCK_SIZE bsize) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ INTERP_FILTER filter_ref;
+
+ if (xd->up_available)
+ filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
+ else if (xd->left_available)
+ filter_ref = xd->mi[-1]->mbmi.interp_filter;
+ else
+ filter_ref = EIGHTTAP;
+
+ mbmi->sb_type = bsize;
+ mbmi->mode = ZEROMV;
+ mbmi->tx_size = MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[tx_mode]);
+ mbmi->skip = 1;
+ mbmi->uv_mode = DC_PRED;
+ mbmi->ref_frame[0] = LAST_FRAME;
+ mbmi->ref_frame[1] = NONE;
+ mbmi->mv[0].as_int = 0;
+ mbmi->interp_filter = filter_ref;
+
+ xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
+ x->skip = 1;
+
+ vp9_rd_cost_init(rd_cost);
+}
+
+static int set_segment_rdmult(VP9_COMP *const cpi,
+ MACROBLOCK *const x,
+ int8_t segment_id) {
+ int segment_qindex;
+ VP9_COMMON *const cm = &cpi->common;
+ vp9_init_plane_quantizers(cpi, x);
+ vp9_clear_system_state();
+ segment_qindex = vp9_get_qindex(&cm->seg, segment_id,
+ cm->base_qindex);
+ return vp9_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
+}
+
+static void rd_pick_sb_modes(VP9_COMP *cpi,
+ TileDataEnc *tile_data,
+ MACROBLOCK *const x,
+ int mi_row, int mi_col, RD_COST *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
+ int i, orig_rdmult;
+
+ vp9_clear_system_state();
+
+ // Use the lower precision, but faster, 32x32 fdct for mode selection.
+ x->use_lp32x32fdct = 1;
+
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+ mbmi = &xd->mi[0]->mbmi;
+ mbmi->sb_type = bsize;
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][0];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
+ p[i].eobs = ctx->eobs_pbuf[i][0];
+ }
+ ctx->is_coded = 0;
+ ctx->skippable = 0;
+ ctx->pred_pixel_ready = 0;
+ x->skip_recode = 0;
+
+ // Set to zero to make sure we do not use the previous encoded frame stats
+ mbmi->skip = 0;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ x->source_variance =
+ vp9_high_get_sby_perpixel_variance(cpi, &x->plane[0].src,
+ bsize, xd->bd);
+ } else {
+ x->source_variance =
+ vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
+ }
+#else
+ x->source_variance =
+ vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ // Save rdmult before it might be changed, so it can be restored later.
+ orig_rdmult = x->rdmult;
+
+ if (aq_mode == VARIANCE_AQ) {
+ const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
+ : vp9_block_energy(cpi, x, bsize);
+ if (cm->frame_type == KEY_FRAME ||
+ cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
+ mbmi->segment_id = vp9_vaq_segment_id(energy);
+ } else {
+ const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
+ }
+ x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
+ } else if (aq_mode == COMPLEXITY_AQ) {
+ x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
+ } else if (aq_mode == CYCLIC_REFRESH_AQ) {
+ const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ // If segment is boosted, use rdmult for that segment.
+ if (cyclic_refresh_segment_id_boosted(
+ vp9_get_segment_id(cm, map, bsize, mi_row, mi_col)))
+ x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
+ }
+
+ // Find best coding mode & reconstruct the MB so it is available
+ // as a predictor for MBs that follow in the SB
+ if (frame_is_intra_only(cm)) {
+ vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
+ } else {
+ if (bsize >= BLOCK_8X8) {
+ if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
+ vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
+ ctx, best_rd);
+ else
+ vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col,
+ rd_cost, bsize, ctx, best_rd);
+ } else {
+ vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col,
+ rd_cost, bsize, ctx, best_rd);
+ }
+ }
+
+
+ // Examine the resulting rate and for AQ mode 2 make a segment choice.
+ if ((rd_cost->rate != INT_MAX) &&
+ (aq_mode == COMPLEXITY_AQ) && (bsize >= BLOCK_16X16) &&
+ (cm->frame_type == KEY_FRAME ||
+ cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
+ vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
+ }
+
+ x->rdmult = orig_rdmult;
+
+ // TODO(jingning) The rate-distortion optimization flow needs to be
+ // refactored to provide proper exit/return handle.
+ if (rd_cost->rate == INT_MAX)
+ rd_cost->rdcost = INT64_MAX;
+
+ ctx->rate = rd_cost->rate;
+ ctx->dist = rd_cost->dist;
+}
+
+static void update_stats(VP9_COMMON *cm, ThreadData *td) {
+ const MACROBLOCK *x = &td->mb;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MODE_INFO *const mi = xd->mi[0];
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+
+ if (!frame_is_intra_only(cm)) {
+ FRAME_COUNTS *const counts = td->counts;
+ const int inter_block = is_inter_block(mbmi);
+ const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
+ SEG_LVL_REF_FRAME);
+ if (!seg_ref_active) {
+ counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++;
+ // If the segment reference feature is enabled we have only a single
+ // reference frame allowed for the segment so exclude it from
+ // the reference frame counts used to work out probabilities.
+ if (inter_block) {
+ const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
+ [has_second_ref(mbmi)]++;
+
+ if (has_second_ref(mbmi)) {
+ counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
+ [ref0 == GOLDEN_FRAME]++;
+ } else {
+ counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
+ [ref0 != LAST_FRAME]++;
+ if (ref0 != LAST_FRAME)
+ counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
+ [ref0 != GOLDEN_FRAME]++;
+ }
+ }
+ }
+ if (inter_block &&
+ !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
+ const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
+ if (bsize >= BLOCK_8X8) {
+ const PREDICTION_MODE mode = mbmi->mode;
+ ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
+ } else {
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ int idx, idy;
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const int j = idy * 2 + idx;
+ const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
+ ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
+ }
+ }
+ }
+ }
+ }
+}
+
+static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
+ ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
+ ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
+ PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
+ BLOCK_SIZE bsize) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int p;
+ const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+ int mi_width = num_8x8_blocks_wide_lookup[bsize];
+ int mi_height = num_8x8_blocks_high_lookup[bsize];
+ for (p = 0; p < MAX_MB_PLANE; p++) {
+ memcpy(
+ xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
+ a + num_4x4_blocks_wide * p,
+ (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
+ xd->plane[p].subsampling_x);
+ memcpy(
+ xd->left_context[p]
+ + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
+ l + num_4x4_blocks_high * p,
+ (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
+ xd->plane[p].subsampling_y);
+ }
+ memcpy(xd->above_seg_context + mi_col, sa,
+ sizeof(*xd->above_seg_context) * mi_width);
+ memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
+ sizeof(xd->left_seg_context[0]) * mi_height);
+}
+
+static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
+ ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
+ ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
+ PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
+ BLOCK_SIZE bsize) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ int p;
+ const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+ int mi_width = num_8x8_blocks_wide_lookup[bsize];
+ int mi_height = num_8x8_blocks_high_lookup[bsize];
+
+ // buffer the above/left context information of the block in search.
+ for (p = 0; p < MAX_MB_PLANE; ++p) {
+ memcpy(
+ a + num_4x4_blocks_wide * p,
+ xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
+ (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
+ xd->plane[p].subsampling_x);
+ memcpy(
+ l + num_4x4_blocks_high * p,
+ xd->left_context[p]
+ + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
+ (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
+ xd->plane[p].subsampling_y);
+ }
+ memcpy(sa, xd->above_seg_context + mi_col,
+ sizeof(*xd->above_seg_context) * mi_width);
+ memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
+ sizeof(xd->left_seg_context[0]) * mi_height);
+}
+
+static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
+ ThreadData *td,
+ TOKENEXTRA **tp, int mi_row, int mi_col,
+ int output_enabled, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+ MACROBLOCK *const x = &td->mb;
+ set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
+ update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
+ encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
+
+ if (output_enabled) {
+ update_stats(&cpi->common, td);
+
+ (*tp)->token = EOSB_TOKEN;
+ (*tp)++;
+ }
+}
+
+static void encode_sb(VP9_COMP *cpi, ThreadData *td,
+ const TileInfo *const tile,
+ TOKENEXTRA **tp, int mi_row, int mi_col,
+ int output_enabled, BLOCK_SIZE bsize,
+ PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
+ int ctx;
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize = bsize;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ if (bsize >= BLOCK_8X8) {
+ ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ subsize = get_subsize(bsize, pc_tree->partitioning);
+ } else {
+ ctx = 0;
+ subsize = BLOCK_4X4;
+ }
+
+ partition = partition_lookup[bsl][subsize];
+ if (output_enabled && bsize != BLOCK_4X4)
+ td->counts->partition[ctx][partition]++;
+
+ switch (partition) {
+ case PARTITION_NONE:
+ encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->none);
+ break;
+ case PARTITION_VERT:
+ encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->vertical[0]);
+ if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
+ encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
+ subsize, &pc_tree->vertical[1]);
+ }
+ break;
+ case PARTITION_HORZ:
+ encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->horizontal[0]);
+ if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
+ encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
+ subsize, &pc_tree->horizontal[1]);
+ }
+ break;
+ case PARTITION_SPLIT:
+ if (bsize == BLOCK_8X8) {
+ encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
+ pc_tree->leaf_split[0]);
+ } else {
+ encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ pc_tree->split[0]);
+ encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
+ subsize, pc_tree->split[1]);
+ encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
+ subsize, pc_tree->split[2]);
+ encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
+ subsize, pc_tree->split[3]);
+ }
+ break;
+ default:
+ assert(0 && "Invalid partition type.");
+ break;
+ }
+
+ if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+}
+
+// Check to see if the given partition size is allowed for a specified number
+// of 8x8 block rows and columns remaining in the image.
+// If not then return the largest allowed partition size
+static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
+ int rows_left, int cols_left,
+ int *bh, int *bw) {
+ if (rows_left <= 0 || cols_left <= 0) {
+ return MIN(bsize, BLOCK_8X8);
+ } else {
+ for (; bsize > 0; bsize -= 3) {
+ *bh = num_8x8_blocks_high_lookup[bsize];
+ *bw = num_8x8_blocks_wide_lookup[bsize];
+ if ((*bh <= rows_left) && (*bw <= cols_left)) {
+ break;
+ }
+ }
+ }
+ return bsize;
+}
+
+static void set_partial_b64x64_partition(MODE_INFO *mi, int mis,
+ int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining,
+ BLOCK_SIZE bsize, MODE_INFO **mi_8x8) {
+ int bh = bh_in;
+ int r, c;
+ for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
+ int bw = bw_in;
+ for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
+ const int index = r * mis + c;
+ mi_8x8[index] = mi + index;
+ mi_8x8[index]->mbmi.sb_type = find_partition_size(bsize,
+ row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
+ }
+ }
+}
+
+// This function attempts to set all mode info entries in a given SB64
+// to the same block partition size.
+// However, at the bottom and right borders of the image the requested size
+// may not be allowed in which case this code attempts to choose the largest
+// allowable partition.
+static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
+ MODE_INFO **mi_8x8, int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int mis = cm->mi_stride;
+ const int row8x8_remaining = tile->mi_row_end - mi_row;
+ const int col8x8_remaining = tile->mi_col_end - mi_col;
+ int block_row, block_col;
+ MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
+ int bh = num_8x8_blocks_high_lookup[bsize];
+ int bw = num_8x8_blocks_wide_lookup[bsize];
+
+ assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
+
+ // Apply the requested partition size to the SB64 if it is all "in image"
+ if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
+ (row8x8_remaining >= MI_BLOCK_SIZE)) {
+ for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
+ for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
+ int index = block_row * mis + block_col;
+ mi_8x8[index] = mi_upper_left + index;
+ mi_8x8[index]->mbmi.sb_type = bsize;
+ }
+ }
+ } else {
+ // Else this is a partial SB64.
+ set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
+ col8x8_remaining, bsize, mi_8x8);
+ }
+}
+
+const struct {
+ int row;
+ int col;
+} coord_lookup[16] = {
+ // 32x32 index = 0
+ {0, 0}, {0, 2}, {2, 0}, {2, 2},
+ // 32x32 index = 1
+ {0, 4}, {0, 6}, {2, 4}, {2, 6},
+ // 32x32 index = 2
+ {4, 0}, {4, 2}, {6, 0}, {6, 2},
+ // 32x32 index = 3
+ {4, 4}, {4, 6}, {6, 4}, {6, 6},
+};
+
+static void set_source_var_based_partition(VP9_COMP *cpi,
+ const TileInfo *const tile,
+ MACROBLOCK *const x,
+ MODE_INFO **mi_8x8,
+ int mi_row, int mi_col) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int mis = cm->mi_stride;
+ const int row8x8_remaining = tile->mi_row_end - mi_row;
+ const int col8x8_remaining = tile->mi_col_end - mi_col;
+ MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
+
+ vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
+
+ assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
+
+ // In-image SB64
+ if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
+ (row8x8_remaining >= MI_BLOCK_SIZE)) {
+ int i, j;
+ int index;
+ diff d32[4];
+ const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
+ int is_larger_better = 0;
+ int use32x32 = 0;
+ unsigned int thr = cpi->source_var_thresh;
+
+ memset(d32, 0, 4 * sizeof(diff));
+
+ for (i = 0; i < 4; i++) {
+ diff *d16[4];
+
+ for (j = 0; j < 4; j++) {
+ int b_mi_row = coord_lookup[i * 4 + j].row;
+ int b_mi_col = coord_lookup[i * 4 + j].col;
+ int boffset = b_mi_row / 2 * cm->mb_cols +
+ b_mi_col / 2;
+
+ d16[j] = cpi->source_diff_var + offset + boffset;
+
+ index = b_mi_row * mis + b_mi_col;
+ mi_8x8[index] = mi_upper_left + index;
+ mi_8x8[index]->mbmi.sb_type = BLOCK_16X16;
+
+ // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
+ // size to further improve quality.
+ }
+
+ is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
+ (d16[2]->var < thr) && (d16[3]->var < thr);
+
+ // Use 32x32 partition
+ if (is_larger_better) {
+ use32x32 += 1;
+
+ for (j = 0; j < 4; j++) {
+ d32[i].sse += d16[j]->sse;
+ d32[i].sum += d16[j]->sum;
+ }
+
+ d32[i].var = d32[i].sse - (((int64_t)d32[i].sum * d32[i].sum) >> 10);
+
+ index = coord_lookup[i*4].row * mis + coord_lookup[i*4].col;
+ mi_8x8[index] = mi_upper_left + index;
+ mi_8x8[index]->mbmi.sb_type = BLOCK_32X32;
+ }
+ }
+
+ if (use32x32 == 4) {
+ thr <<= 1;
+ is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
+ (d32[2].var < thr) && (d32[3].var < thr);
+
+ // Use 64x64 partition
+ if (is_larger_better) {
+ mi_8x8[0] = mi_upper_left;
+ mi_8x8[0]->mbmi.sb_type = BLOCK_64X64;
+ }
+ }
+ } else { // partial in-image SB64
+ int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
+ int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
+ set_partial_b64x64_partition(mi_upper_left, mis, bh, bw,
+ row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8);
+ }
+}
+
+static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
+ PICK_MODE_CONTEXT *ctx,
+ int mi_row, int mi_col, int bsize) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MODE_INFO *const mi = xd->mi[0];
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const struct segmentation *const seg = &cm->seg;
+ const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
+ const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
+ const int x_mis = MIN(bw, cm->mi_cols - mi_col);
+ const int y_mis = MIN(bh, cm->mi_rows - mi_row);
+
+ *(xd->mi[0]) = ctx->mic;
+
+ if (seg->enabled && cpi->oxcf.aq_mode) {
+ // For in frame complexity AQ or variance AQ, copy segment_id from
+ // segmentation_map.
+ if (cpi->oxcf.aq_mode == COMPLEXITY_AQ ||
+ cpi->oxcf.aq_mode == VARIANCE_AQ ) {
+ const uint8_t *const map = seg->update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
+ } else {
+ // Setting segmentation map for cyclic_refresh.
+ vp9_cyclic_refresh_update_segment(cpi, mbmi, mi_row, mi_col, bsize,
+ ctx->rate, ctx->dist, x->skip);
+ }
+ vp9_init_plane_quantizers(cpi, x);
+ }
+
+ if (is_inter_block(mbmi)) {
+ vp9_update_mv_count(td);
+ if (cm->interp_filter == SWITCHABLE) {
+ const int pred_ctx = vp9_get_pred_context_switchable_interp(xd);
+ ++td->counts->switchable_interp[pred_ctx][mbmi->interp_filter];
+ }
+
+ if (mbmi->sb_type < BLOCK_8X8) {
+ mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
+ mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
+ }
+ }
+
+ if (cm->use_prev_frame_mvs) {
+ MV_REF *const frame_mvs =
+ cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
+ int w, h;
+
+ for (h = 0; h < y_mis; ++h) {
+ MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
+ for (w = 0; w < x_mis; ++w) {
+ MV_REF *const mv = frame_mv + w;
+ mv->ref_frame[0] = mi->mbmi.ref_frame[0];
+ mv->ref_frame[1] = mi->mbmi.ref_frame[1];
+ mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
+ mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
+ }
+ }
+ }
+
+ x->skip = ctx->skip;
+ x->skip_txfm[0] = mbmi->segment_id ? 0 : ctx->skip_txfm[0];
+}
+
+static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
+ const TileInfo *const tile,
+ TOKENEXTRA **tp, int mi_row, int mi_col,
+ int output_enabled, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+ MACROBLOCK *const x = &td->mb;
+ set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
+ update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ if (cpi->oxcf.noise_sensitivity > 0 && output_enabled &&
+ cpi->common.frame_type != KEY_FRAME) {
+ vp9_denoiser_denoise(&cpi->denoiser, x, mi_row, mi_col,
+ MAX(BLOCK_8X8, bsize), ctx);
+ }
+#endif
+
+ encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
+ update_stats(&cpi->common, td);
+
+ (*tp)->token = EOSB_TOKEN;
+ (*tp)++;
+}
+
+static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
+ const TileInfo *const tile,
+ TOKENEXTRA **tp, int mi_row, int mi_col,
+ int output_enabled, BLOCK_SIZE bsize,
+ PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
+ int ctx;
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ if (bsize >= BLOCK_8X8) {
+ const int idx_str = xd->mi_stride * mi_row + mi_col;
+ MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str;
+ ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ subsize = mi_8x8[0]->mbmi.sb_type;
+ } else {
+ ctx = 0;
+ subsize = BLOCK_4X4;
+ }
+
+ partition = partition_lookup[bsl][subsize];
+ if (output_enabled && bsize != BLOCK_4X4)
+ td->counts->partition[ctx][partition]++;
+
+ switch (partition) {
+ case PARTITION_NONE:
+ encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->none);
+ break;
+ case PARTITION_VERT:
+ encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->vertical[0]);
+ if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
+ encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
+ subsize, &pc_tree->vertical[1]);
+ }
+ break;
+ case PARTITION_HORZ:
+ encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ &pc_tree->horizontal[0]);
+ if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
+ encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
+ subsize, &pc_tree->horizontal[1]);
+ }
+ break;
+ case PARTITION_SPLIT:
+ subsize = get_subsize(bsize, PARTITION_SPLIT);
+ encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
+ pc_tree->split[0]);
+ encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
+ subsize, pc_tree->split[1]);
+ encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
+ subsize, pc_tree->split[2]);
+ encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
+ output_enabled, subsize, pc_tree->split[3]);
+ break;
+ default:
+ assert(0 && "Invalid partition type.");
+ break;
+ }
+
+ if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+}
+
+static void rd_use_partition(VP9_COMP *cpi,
+ ThreadData *td,
+ TileDataEnc *tile_data,
+ MODE_INFO **mi_8x8, TOKENEXTRA **tp,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize,
+ int *rate, int64_t *dist,
+ int do_recon, PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int mis = cm->mi_stride;
+ const int bsl = b_width_log2_lookup[bsize];
+ const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
+ const int bss = (1 << bsl) / 4;
+ int i, pl;
+ PARTITION_TYPE partition = PARTITION_NONE;
+ BLOCK_SIZE subsize;
+ ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
+ PARTITION_CONTEXT sl[8], sa[8];
+ RD_COST last_part_rdc, none_rdc, chosen_rdc;
+ BLOCK_SIZE sub_subsize = BLOCK_4X4;
+ int splits_below = 0;
+ BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
+ int do_partition_search = 1;
+ PICK_MODE_CONTEXT *ctx = &pc_tree->none;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ assert(num_4x4_blocks_wide_lookup[bsize] ==
+ num_4x4_blocks_high_lookup[bsize]);
+
+ vp9_rd_cost_reset(&last_part_rdc);
+ vp9_rd_cost_reset(&none_rdc);
+ vp9_rd_cost_reset(&chosen_rdc);
+
+ partition = partition_lookup[bsl][bs_type];
+ subsize = get_subsize(bsize, partition);
+
+ pc_tree->partitioning = partition;
+ save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+
+ if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+ x->mb_energy = vp9_block_energy(cpi, x, bsize);
+ }
+
+ if (do_partition_search &&
+ cpi->sf.partition_search_type == SEARCH_PARTITION &&
+ cpi->sf.adjust_partitioning_from_last_frame) {
+ // Check if any of the sub blocks are further split.
+ if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
+ sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
+ splits_below = 1;
+ for (i = 0; i < 4; i++) {
+ int jj = i >> 1, ii = i & 0x01;
+ MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
+ if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
+ splits_below = 0;
+ }
+ }
+ }
+
+ // If partition is not none try none unless each of the 4 splits are split
+ // even further..
+ if (partition != PARTITION_NONE && !splits_below &&
+ mi_row + (mi_step >> 1) < cm->mi_rows &&
+ mi_col + (mi_step >> 1) < cm->mi_cols) {
+ pc_tree->partitioning = PARTITION_NONE;
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
+ ctx, INT64_MAX);
+
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+
+ if (none_rdc.rate < INT_MAX) {
+ none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
+ none_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, none_rdc.rate,
+ none_rdc.dist);
+ }
+
+ restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+ mi_8x8[0]->mbmi.sb_type = bs_type;
+ pc_tree->partitioning = partition;
+ }
+ }
+
+ switch (partition) {
+ case PARTITION_NONE:
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ bsize, ctx, INT64_MAX);
+ break;
+ case PARTITION_HORZ:
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ subsize, &pc_tree->horizontal[0],
+ INT64_MAX);
+ if (last_part_rdc.rate != INT_MAX &&
+ bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
+ RD_COST tmp_rdc;
+ PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
+ vp9_rd_cost_init(&tmp_rdc);
+ update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
+ rd_pick_sb_modes(cpi, tile_data, x,
+ mi_row + (mi_step >> 1), mi_col, &tmp_rdc,
+ subsize, &pc_tree->horizontal[1], INT64_MAX);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ vp9_rd_cost_reset(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ last_part_rdc.rdcost += tmp_rdc.rdcost;
+ }
+ break;
+ case PARTITION_VERT:
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ subsize, &pc_tree->vertical[0], INT64_MAX);
+ if (last_part_rdc.rate != INT_MAX &&
+ bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
+ RD_COST tmp_rdc;
+ PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
+ vp9_rd_cost_init(&tmp_rdc);
+ update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
+ rd_pick_sb_modes(cpi, tile_data, x,
+ mi_row, mi_col + (mi_step >> 1), &tmp_rdc,
+ subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
+ INT64_MAX);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ vp9_rd_cost_reset(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ last_part_rdc.rdcost += tmp_rdc.rdcost;
+ }
+ break;
+ case PARTITION_SPLIT:
+ if (bsize == BLOCK_8X8) {
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
+ subsize, pc_tree->leaf_split[0], INT64_MAX);
+ break;
+ }
+ last_part_rdc.rate = 0;
+ last_part_rdc.dist = 0;
+ last_part_rdc.rdcost = 0;
+ for (i = 0; i < 4; i++) {
+ int x_idx = (i & 1) * (mi_step >> 1);
+ int y_idx = (i >> 1) * (mi_step >> 1);
+ int jj = i >> 1, ii = i & 0x01;
+ RD_COST tmp_rdc;
+ if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
+ continue;
+
+ vp9_rd_cost_init(&tmp_rdc);
+ rd_use_partition(cpi, td, tile_data,
+ mi_8x8 + jj * bss * mis + ii * bss, tp,
+ mi_row + y_idx, mi_col + x_idx, subsize,
+ &tmp_rdc.rate, &tmp_rdc.dist,
+ i != 3, pc_tree->split[i]);
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ vp9_rd_cost_reset(&last_part_rdc);
+ break;
+ }
+ last_part_rdc.rate += tmp_rdc.rate;
+ last_part_rdc.dist += tmp_rdc.dist;
+ }
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ if (last_part_rdc.rate < INT_MAX) {
+ last_part_rdc.rate += cpi->partition_cost[pl][partition];
+ last_part_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ last_part_rdc.rate, last_part_rdc.dist);
+ }
+
+ if (do_partition_search
+ && cpi->sf.adjust_partitioning_from_last_frame
+ && cpi->sf.partition_search_type == SEARCH_PARTITION
+ && partition != PARTITION_SPLIT && bsize > BLOCK_8X8
+ && (mi_row + mi_step < cm->mi_rows ||
+ mi_row + (mi_step >> 1) == cm->mi_rows)
+ && (mi_col + mi_step < cm->mi_cols ||
+ mi_col + (mi_step >> 1) == cm->mi_cols)) {
+ BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
+ chosen_rdc.rate = 0;
+ chosen_rdc.dist = 0;
+ restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+ pc_tree->partitioning = PARTITION_SPLIT;
+
+ // Split partition.
+ for (i = 0; i < 4; i++) {
+ int x_idx = (i & 1) * (mi_step >> 1);
+ int y_idx = (i >> 1) * (mi_step >> 1);
+ RD_COST tmp_rdc;
+ ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
+ PARTITION_CONTEXT sl[8], sa[8];
+
+ if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
+ continue;
+
+ save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+ pc_tree->split[i]->partitioning = PARTITION_NONE;
+ rd_pick_sb_modes(cpi, tile_data, x,
+ mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
+ split_subsize, &pc_tree->split[i]->none, INT64_MAX);
+
+ restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+
+ if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
+ vp9_rd_cost_reset(&chosen_rdc);
+ break;
+ }
+
+ chosen_rdc.rate += tmp_rdc.rate;
+ chosen_rdc.dist += tmp_rdc.dist;
+
+ if (i != 3)
+ encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
+ split_subsize, pc_tree->split[i]);
+
+ pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
+ split_subsize);
+ chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
+ }
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ if (chosen_rdc.rate < INT_MAX) {
+ chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
+ chosen_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ chosen_rdc.rate, chosen_rdc.dist);
+ }
+ }
+
+ // If last_part is better set the partitioning to that.
+ if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
+ mi_8x8[0]->mbmi.sb_type = bsize;
+ if (bsize >= BLOCK_8X8)
+ pc_tree->partitioning = partition;
+ chosen_rdc = last_part_rdc;
+ }
+ // If none was better set the partitioning to that.
+ if (none_rdc.rdcost < chosen_rdc.rdcost) {
+ if (bsize >= BLOCK_8X8)
+ pc_tree->partitioning = PARTITION_NONE;
+ chosen_rdc = none_rdc;
+ }
+
+ restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+
+ // We must have chosen a partitioning and encoding or we'll fail later on.
+ // No other opportunities for success.
+ if (bsize == BLOCK_64X64)
+ assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
+
+ if (do_recon) {
+ int output_enabled = (bsize == BLOCK_64X64);
+ encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
+ pc_tree);
+ }
+
+ *rate = chosen_rdc.rate;
+ *dist = chosen_rdc.dist;
+}
+
+static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
+ BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
+ BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
+ BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
+ BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
+ BLOCK_16X16
+};
+
+static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
+ BLOCK_8X8, BLOCK_16X16, BLOCK_16X16,
+ BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
+ BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
+ BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
+ BLOCK_64X64
+};
+
+// Look at all the mode_info entries for blocks that are part of this
+// partition and find the min and max values for sb_type.
+// At the moment this is designed to work on a 64x64 SB but could be
+// adjusted to use a size parameter.
+//
+// The min and max are assumed to have been initialized prior to calling this
+// function so repeat calls can accumulate a min and max of more than one sb64.
+static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
+ BLOCK_SIZE *min_block_size,
+ BLOCK_SIZE *max_block_size,
+ int bs_hist[BLOCK_SIZES]) {
+ int sb_width_in_blocks = MI_BLOCK_SIZE;
+ int sb_height_in_blocks = MI_BLOCK_SIZE;
+ int i, j;
+ int index = 0;
+
+ // Check the sb_type for each block that belongs to this region.
+ for (i = 0; i < sb_height_in_blocks; ++i) {
+ for (j = 0; j < sb_width_in_blocks; ++j) {
+ MODE_INFO *mi = mi_8x8[index+j];
+ BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
+ bs_hist[sb_type]++;
+ *min_block_size = MIN(*min_block_size, sb_type);
+ *max_block_size = MAX(*max_block_size, sb_type);
+ }
+ index += xd->mi_stride;
+ }
+}
+
+// Next square block size less or equal than current block size.
+static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
+ BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
+ BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
+ BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
+ BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
+ BLOCK_64X64
+};
+
+// Look at neighboring blocks and set a min and max partition size based on
+// what they chose.
+static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
+ MACROBLOCKD *const xd,
+ int mi_row, int mi_col,
+ BLOCK_SIZE *min_block_size,
+ BLOCK_SIZE *max_block_size) {
+ VP9_COMMON *const cm = &cpi->common;
+ MODE_INFO **mi = xd->mi;
+ const int left_in_image = xd->left_available && mi[-1];
+ const int above_in_image = xd->up_available && mi[-xd->mi_stride];
+ const int row8x8_remaining = tile->mi_row_end - mi_row;
+ const int col8x8_remaining = tile->mi_col_end - mi_col;
+ int bh, bw;
+ BLOCK_SIZE min_size = BLOCK_4X4;
+ BLOCK_SIZE max_size = BLOCK_64X64;
+ int bs_hist[BLOCK_SIZES] = {0};
+
+ // Trap case where we do not have a prediction.
+ if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
+ // Default "min to max" and "max to min"
+ min_size = BLOCK_64X64;
+ max_size = BLOCK_4X4;
+
+ // NOTE: each call to get_sb_partition_size_range() uses the previous
+ // passed in values for min and max as a starting point.
+ // Find the min and max partition used in previous frame at this location
+ if (cm->frame_type != KEY_FRAME) {
+ MODE_INFO **prev_mi =
+ &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
+ get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
+ }
+ // Find the min and max partition sizes used in the left SB64
+ if (left_in_image) {
+ MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
+ get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
+ bs_hist);
+ }
+ // Find the min and max partition sizes used in the above SB64.
+ if (above_in_image) {
+ MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
+ get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
+ bs_hist);
+ }
+
+ // Adjust observed min and max for "relaxed" auto partition case.
+ if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
+ min_size = min_partition_size[min_size];
+ max_size = max_partition_size[max_size];
+ }
+ }
+
+ // Check border cases where max and min from neighbors may not be legal.
+ max_size = find_partition_size(max_size,
+ row8x8_remaining, col8x8_remaining,
+ &bh, &bw);
+ min_size = MIN(cpi->sf.rd_auto_partition_min_limit, MIN(min_size, max_size));
+
+ // When use_square_partition_only is true, make sure at least one square
+ // partition is allowed by selecting the next smaller square size as
+ // *min_block_size.
+ if (cpi->sf.use_square_partition_only &&
+ next_square_size[max_size] < min_size) {
+ min_size = next_square_size[max_size];
+ }
+
+ *min_block_size = min_size;
+ *max_block_size = max_size;
+}
+
+static void auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
+ MACROBLOCKD *const xd,
+ int mi_row, int mi_col,
+ BLOCK_SIZE *min_block_size,
+ BLOCK_SIZE *max_block_size) {
+ VP9_COMMON *const cm = &cpi->common;
+ MODE_INFO **mi_8x8 = xd->mi;
+ const int left_in_image = xd->left_available && mi_8x8[-1];
+ const int above_in_image = xd->up_available && mi_8x8[-xd->mi_stride];
+ int row8x8_remaining = tile->mi_row_end - mi_row;
+ int col8x8_remaining = tile->mi_col_end - mi_col;
+ int bh, bw;
+ BLOCK_SIZE min_size = BLOCK_32X32;
+ BLOCK_SIZE max_size = BLOCK_8X8;
+ int bsl = mi_width_log2_lookup[BLOCK_64X64];
+ const int search_range_ctrl = (((mi_row + mi_col) >> bsl) +
+ get_chessboard_index(cm->current_video_frame)) & 0x1;
+ // Trap case where we do not have a prediction.
+ if (search_range_ctrl &&
+ (left_in_image || above_in_image || cm->frame_type != KEY_FRAME)) {
+ int block;
+ MODE_INFO **mi;
+ BLOCK_SIZE sb_type;
+
+ // Find the min and max partition sizes used in the left SB64.
+ if (left_in_image) {
+ MODE_INFO *cur_mi;
+ mi = &mi_8x8[-1];
+ for (block = 0; block < MI_BLOCK_SIZE; ++block) {
+ cur_mi = mi[block * xd->mi_stride];
+ sb_type = cur_mi ? cur_mi->mbmi.sb_type : 0;
+ min_size = MIN(min_size, sb_type);
+ max_size = MAX(max_size, sb_type);
+ }
+ }
+ // Find the min and max partition sizes used in the above SB64.
+ if (above_in_image) {
+ mi = &mi_8x8[-xd->mi_stride * MI_BLOCK_SIZE];
+ for (block = 0; block < MI_BLOCK_SIZE; ++block) {
+ sb_type = mi[block] ? mi[block]->mbmi.sb_type : 0;
+ min_size = MIN(min_size, sb_type);
+ max_size = MAX(max_size, sb_type);
+ }
+ }
+
+ min_size = min_partition_size[min_size];
+ max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
+ &bh, &bw);
+ min_size = MIN(min_size, max_size);
+ min_size = MAX(min_size, BLOCK_8X8);
+ max_size = MIN(max_size, BLOCK_32X32);
+ } else {
+ min_size = BLOCK_8X8;
+ max_size = BLOCK_32X32;
+ }
+
+ *min_block_size = min_size;
+ *max_block_size = max_size;
+}
+
+// TODO(jingning) refactor functions setting partition search range
+static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
+ int mi_width = num_8x8_blocks_wide_lookup[bsize];
+ int mi_height = num_8x8_blocks_high_lookup[bsize];
+ int idx, idy;
+
+ MODE_INFO *mi;
+ const int idx_str = cm->mi_stride * mi_row + mi_col;
+ MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
+ BLOCK_SIZE bs, min_size, max_size;
+
+ min_size = BLOCK_64X64;
+ max_size = BLOCK_4X4;
+
+ if (prev_mi) {
+ for (idy = 0; idy < mi_height; ++idy) {
+ for (idx = 0; idx < mi_width; ++idx) {
+ mi = prev_mi[idy * cm->mi_stride + idx];
+ bs = mi ? mi->mbmi.sb_type : bsize;
+ min_size = MIN(min_size, bs);
+ max_size = MAX(max_size, bs);
+ }
+ }
+ }
+
+ if (xd->left_available) {
+ for (idy = 0; idy < mi_height; ++idy) {
+ mi = xd->mi[idy * cm->mi_stride - 1];
+ bs = mi ? mi->mbmi.sb_type : bsize;
+ min_size = MIN(min_size, bs);
+ max_size = MAX(max_size, bs);
+ }
+ }
+
+ if (xd->up_available) {
+ for (idx = 0; idx < mi_width; ++idx) {
+ mi = xd->mi[idx - cm->mi_stride];
+ bs = mi ? mi->mbmi.sb_type : bsize;
+ min_size = MIN(min_size, bs);
+ max_size = MAX(max_size, bs);
+ }
+ }
+
+ if (min_size == max_size) {
+ min_size = min_partition_size[min_size];
+ max_size = max_partition_size[max_size];
+ }
+
+ *min_bs = min_size;
+ *max_bs = max_size;
+}
+
+static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
+ memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
+}
+
+static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
+ memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
+}
+
+#if CONFIG_FP_MB_STATS
+const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] =
+ {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4};
+const int num_16x16_blocks_high_lookup[BLOCK_SIZES] =
+ {1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4};
+const int qindex_skip_threshold_lookup[BLOCK_SIZES] =
+ {0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120};
+const int qindex_split_threshold_lookup[BLOCK_SIZES] =
+ {0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120};
+const int complexity_16x16_blocks_threshold[BLOCK_SIZES] =
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6};
+
+typedef enum {
+ MV_ZERO = 0,
+ MV_LEFT = 1,
+ MV_UP = 2,
+ MV_RIGHT = 3,
+ MV_DOWN = 4,
+ MV_INVALID
+} MOTION_DIRECTION;
+
+static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
+ if (fp_byte & FPMB_MOTION_ZERO_MASK) {
+ return MV_ZERO;
+ } else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
+ return MV_LEFT;
+ } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
+ return MV_RIGHT;
+ } else if (fp_byte & FPMB_MOTION_UP_MASK) {
+ return MV_UP;
+ } else {
+ return MV_DOWN;
+ }
+}
+
+static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
+ MOTION_DIRECTION that_mv) {
+ if (this_mv == that_mv) {
+ return 0;
+ } else {
+ return abs(this_mv - that_mv) == 2 ? 2 : 1;
+ }
+}
+#endif
+
+// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
+// unlikely to be selected depending on previous rate-distortion optimization
+// results, for encoding speed-up.
+static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data,
+ TOKENEXTRA **tp, int mi_row, int mi_col,
+ BLOCK_SIZE bsize, RD_COST *rd_cost,
+ int64_t best_rd, PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
+ ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
+ PARTITION_CONTEXT sl[8], sa[8];
+ TOKENEXTRA *tp_orig = *tp;
+ PICK_MODE_CONTEXT *ctx = &pc_tree->none;
+ int i, pl;
+ BLOCK_SIZE subsize;
+ RD_COST this_rdc, sum_rdc, best_rdc;
+ int do_split = bsize >= BLOCK_8X8;
+ int do_rect = 1;
+
+ // Override skipping rectangular partition operations for edge blocks
+ const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
+ const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
+ const int xss = x->e_mbd.plane[1].subsampling_x;
+ const int yss = x->e_mbd.plane[1].subsampling_y;
+
+ BLOCK_SIZE min_size = x->min_partition_size;
+ BLOCK_SIZE max_size = x->max_partition_size;
+
+#if CONFIG_FP_MB_STATS
+ unsigned int src_diff_var = UINT_MAX;
+ int none_complexity = 0;
+#endif
+
+ int partition_none_allowed = !force_horz_split && !force_vert_split;
+ int partition_horz_allowed = !force_vert_split && yss <= xss &&
+ bsize >= BLOCK_8X8;
+ int partition_vert_allowed = !force_horz_split && xss <= yss &&
+ bsize >= BLOCK_8X8;
+ (void) *tp_orig;
+
+ assert(num_8x8_blocks_wide_lookup[bsize] ==
+ num_8x8_blocks_high_lookup[bsize]);
+
+ vp9_rd_cost_init(&this_rdc);
+ vp9_rd_cost_init(&sum_rdc);
+ vp9_rd_cost_reset(&best_rdc);
+ best_rdc.rdcost = best_rd;
+
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+
+ if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode)
+ x->mb_energy = vp9_block_energy(cpi, x, bsize);
+
+ if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
+ int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3)
+ + get_chessboard_index(cm->current_video_frame)) & 0x1;
+
+ if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
+ set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
+ }
+
+ // Determine partition types in search according to the speed features.
+ // The threshold set here has to be of square block size.
+ if (cpi->sf.auto_min_max_partition_size) {
+ partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
+ partition_horz_allowed &= ((bsize <= max_size && bsize > min_size) ||
+ force_horz_split);
+ partition_vert_allowed &= ((bsize <= max_size && bsize > min_size) ||
+ force_vert_split);
+ do_split &= bsize > min_size;
+ }
+ if (cpi->sf.use_square_partition_only) {
+ partition_horz_allowed &= force_horz_split;
+ partition_vert_allowed &= force_vert_split;
+ }
+
+ save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+ src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src,
+ mi_row, mi_col, bsize);
+ }
+#endif
+
+#if CONFIG_FP_MB_STATS
+ // Decide whether we shall split directly and skip searching NONE by using
+ // the first pass block statistics
+ if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
+ partition_none_allowed && src_diff_var > 4 &&
+ cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
+ int mb_row = mi_row >> 1;
+ int mb_col = mi_col >> 1;
+ int mb_row_end =
+ MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
+ int mb_col_end =
+ MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
+ int r, c;
+
+ // compute a complexity measure, basically measure inconsistency of motion
+ // vectors obtained from the first pass in the current block
+ for (r = mb_row; r < mb_row_end ; r++) {
+ for (c = mb_col; c < mb_col_end; c++) {
+ const int mb_index = r * cm->mb_cols + c;
+
+ MOTION_DIRECTION this_mv;
+ MOTION_DIRECTION right_mv;
+ MOTION_DIRECTION bottom_mv;
+
+ this_mv =
+ get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
+
+ // to its right
+ if (c != mb_col_end - 1) {
+ right_mv = get_motion_direction_fp(
+ cpi->twopass.this_frame_mb_stats[mb_index + 1]);
+ none_complexity += get_motion_inconsistency(this_mv, right_mv);
+ }
+
+ // to its bottom
+ if (r != mb_row_end - 1) {
+ bottom_mv = get_motion_direction_fp(
+ cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
+ none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
+ }
+
+ // do not count its left and top neighbors to avoid double counting
+ }
+ }
+
+ if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
+ partition_none_allowed = 0;
+ }
+ }
+#endif
+
+ // PARTITION_NONE
+ if (partition_none_allowed) {
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col,
+ &this_rdc, bsize, ctx, best_rdc.rdcost);
+ if (this_rdc.rate != INT_MAX) {
+ if (bsize >= BLOCK_8X8) {
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
+ this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ this_rdc.rate, this_rdc.dist);
+ }
+
+ if (this_rdc.rdcost < best_rdc.rdcost) {
+ int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr;
+ int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr;
+
+ best_rdc = this_rdc;
+ if (bsize >= BLOCK_8X8)
+ pc_tree->partitioning = PARTITION_NONE;
+
+ // Adjust dist breakout threshold according to the partition size.
+ dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] +
+ b_height_log2_lookup[bsize]);
+
+ rate_breakout_thr *= num_pels_log2_lookup[bsize];
+
+ // If all y, u, v transform blocks in this partition are skippable, and
+ // the dist & rate are within the thresholds, the partition search is
+ // terminated for current branch of the partition search tree.
+ // The dist & rate thresholds are set to 0 at speed 0 to disable the
+ // early termination at that speed.
+ if (!x->e_mbd.lossless &&
+ (ctx->skippable && best_rdc.dist < dist_breakout_thr &&
+ best_rdc.rate < rate_breakout_thr)) {
+ do_split = 0;
+ do_rect = 0;
+ }
+
+#if CONFIG_FP_MB_STATS
+ // Check if every 16x16 first pass block statistics has zero
+ // motion and the corresponding first pass residue is small enough.
+ // If that is the case, check the difference variance between the
+ // current frame and the last frame. If the variance is small enough,
+ // stop further splitting in RD optimization
+ if (cpi->use_fp_mb_stats && do_split != 0 &&
+ cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
+ int mb_row = mi_row >> 1;
+ int mb_col = mi_col >> 1;
+ int mb_row_end =
+ MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
+ int mb_col_end =
+ MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
+ int r, c;
+
+ int skip = 1;
+ for (r = mb_row; r < mb_row_end; r++) {
+ for (c = mb_col; c < mb_col_end; c++) {
+ const int mb_index = r * cm->mb_cols + c;
+ if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
+ FPMB_MOTION_ZERO_MASK) ||
+ !(cpi->twopass.this_frame_mb_stats[mb_index] &
+ FPMB_ERROR_SMALL_MASK)) {
+ skip = 0;
+ break;
+ }
+ }
+ if (skip == 0) {
+ break;
+ }
+ }
+ if (skip) {
+ if (src_diff_var == UINT_MAX) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+ src_diff_var = get_sby_perpixel_diff_variance(
+ cpi, &x->plane[0].src, mi_row, mi_col, bsize);
+ }
+ if (src_diff_var < 8) {
+ do_split = 0;
+ do_rect = 0;
+ }
+ }
+ }
+#endif
+ }
+ }
+ restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+ }
+
+ // store estimated motion vector
+ if (cpi->sf.adaptive_motion_search)
+ store_pred_mv(x, ctx);
+
+ // PARTITION_SPLIT
+ // TODO(jingning): use the motion vectors given by the above search as
+ // the starting point of motion search in the following partition type check.
+ if (do_split) {
+ subsize = get_subsize(bsize, PARTITION_SPLIT);
+ if (bsize == BLOCK_8X8) {
+ i = 4;
+ if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
+ pc_tree->leaf_split[0]->pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
+ pc_tree->leaf_split[0], best_rdc.rdcost);
+ if (sum_rdc.rate == INT_MAX)
+ sum_rdc.rdcost = INT64_MAX;
+ } else {
+ for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
+ const int x_idx = (i & 1) * mi_step;
+ const int y_idx = (i >> 1) * mi_step;
+
+ if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
+ continue;
+
+ if (cpi->sf.adaptive_motion_search)
+ load_pred_mv(x, ctx);
+
+ pc_tree->split[i]->index = i;
+ rd_pick_partition(cpi, td, tile_data, tp,
+ mi_row + y_idx, mi_col + x_idx,
+ subsize, &this_rdc,
+ best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
+
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc.rdcost = INT64_MAX;
+ break;
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ sum_rdc.rdcost += this_rdc.rdcost;
+ }
+ }
+ }
+
+ if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) {
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
+ sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ sum_rdc.rate, sum_rdc.dist);
+
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ }
+ } else {
+ // skip rectangular partition test when larger block size
+ // gives better rd cost
+ if (cpi->sf.less_rectangular_check)
+ do_rect &= !partition_none_allowed;
+ }
+ restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+ }
+
+ // PARTITION_HORZ
+ if (partition_horz_allowed && do_rect) {
+ subsize = get_subsize(bsize, PARTITION_HORZ);
+ if (cpi->sf.adaptive_motion_search)
+ load_pred_mv(x, ctx);
+ if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+ partition_none_allowed)
+ pc_tree->horizontal[0].pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
+ &pc_tree->horizontal[0], best_rdc.rdcost);
+
+ if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
+ bsize > BLOCK_8X8) {
+ PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
+ update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
+
+ if (cpi->sf.adaptive_motion_search)
+ load_pred_mv(x, ctx);
+ if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+ partition_none_allowed)
+ pc_tree->horizontal[1].pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col,
+ &this_rdc, subsize, &pc_tree->horizontal[1],
+ best_rdc.rdcost - sum_rdc.rdcost);
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc.rdcost = INT64_MAX;
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ sum_rdc.rdcost += this_rdc.rdcost;
+ }
+ }
+
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
+ sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ pc_tree->partitioning = PARTITION_HORZ;
+ }
+ }
+ restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+ }
+ // PARTITION_VERT
+ if (partition_vert_allowed && do_rect) {
+ subsize = get_subsize(bsize, PARTITION_VERT);
+
+ if (cpi->sf.adaptive_motion_search)
+ load_pred_mv(x, ctx);
+ if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+ partition_none_allowed)
+ pc_tree->vertical[0].pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
+ &pc_tree->vertical[0], best_rdc.rdcost);
+ if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
+ bsize > BLOCK_8X8) {
+ update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
+ encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
+ &pc_tree->vertical[0]);
+
+ if (cpi->sf.adaptive_motion_search)
+ load_pred_mv(x, ctx);
+ if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
+ partition_none_allowed)
+ pc_tree->vertical[1].pred_interp_filter =
+ ctx->mic.mbmi.interp_filter;
+ rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step,
+ &this_rdc, subsize,
+ &pc_tree->vertical[1], best_rdc.rdcost - sum_rdc.rdcost);
+ if (this_rdc.rate == INT_MAX) {
+ sum_rdc.rdcost = INT64_MAX;
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ sum_rdc.rdcost += this_rdc.rdcost;
+ }
+ }
+
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
+ sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ sum_rdc.rate, sum_rdc.dist);
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ pc_tree->partitioning = PARTITION_VERT;
+ }
+ }
+ restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
+ }
+
+ // TODO(jbb): This code added so that we avoid static analysis
+ // warning related to the fact that best_rd isn't used after this
+ // point. This code should be refactored so that the duplicate
+ // checks occur in some sub function and thus are used...
+ (void) best_rd;
+ *rd_cost = best_rdc;
+
+
+ if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
+ pc_tree->index != 3) {
+ int output_enabled = (bsize == BLOCK_64X64);
+ encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
+ bsize, pc_tree);
+ }
+
+ if (bsize == BLOCK_64X64) {
+ assert(tp_orig < *tp);
+ assert(best_rdc.rate < INT_MAX);
+ assert(best_rdc.dist < INT64_MAX);
+ } else {
+ assert(tp_orig == *tp);
+ }
+}
+
+static void encode_rd_sb_row(VP9_COMP *cpi,
+ ThreadData *td,
+ TileDataEnc *tile_data,
+ int mi_row,
+ TOKENEXTRA **tp) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ SPEED_FEATURES *const sf = &cpi->sf;
+ int mi_col;
+
+ // Initialize the left context for the new SB row
+ memset(&xd->left_context, 0, sizeof(xd->left_context));
+ memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
+
+ // Code each SB in the row
+ for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
+ mi_col += MI_BLOCK_SIZE) {
+ const struct segmentation *const seg = &cm->seg;
+ int dummy_rate;
+ int64_t dummy_dist;
+ RD_COST dummy_rdc;
+ int i;
+ int seg_skip = 0;
+
+ const int idx_str = cm->mi_stride * mi_row + mi_col;
+ MODE_INFO **mi = cm->mi_grid_visible + idx_str;
+
+ if (sf->adaptive_pred_interp_filter) {
+ for (i = 0; i < 64; ++i)
+ td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
+
+ for (i = 0; i < 64; ++i) {
+ td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
+ td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
+ td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
+ td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
+ }
+ }
+
+ vp9_zero(x->pred_mv);
+ td->pc_root->index = 0;
+
+ if (seg->enabled) {
+ const uint8_t *const map = seg->update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ int segment_id = vp9_get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
+ seg_skip = vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP);
+ }
+
+ x->source_variance = UINT_MAX;
+ if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
+ const BLOCK_SIZE bsize =
+ seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
+ set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+ rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
+ } else if (cpi->partition_search_skippable_frame) {
+ BLOCK_SIZE bsize;
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
+ bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
+ set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+ rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
+ } else if (sf->partition_search_type == VAR_BASED_PARTITION &&
+ cm->frame_type != KEY_FRAME) {
+ choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
+ rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ BLOCK_64X64, &dummy_rate, &dummy_dist, 1, td->pc_root);
+ } else {
+ // If required set upper and lower partition size limits
+ if (sf->auto_min_max_partition_size) {
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
+ rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
+ &x->min_partition_size,
+ &x->max_partition_size);
+ }
+ rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
+ &dummy_rdc, INT64_MAX, td->pc_root);
+ }
+ }
+}
+
+static void init_encode_frame_mb_context(VP9_COMP *cpi) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
+
+ // Copy data over into macro block data structures.
+ vp9_setup_src_planes(x, cpi->Source, 0, 0);
+
+ vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
+
+ // Note: this memset assumes above_context[0], [1] and [2]
+ // are allocated as part of the same buffer.
+ memset(xd->above_context[0], 0,
+ sizeof(*xd->above_context[0]) *
+ 2 * aligned_mi_cols * MAX_MB_PLANE);
+ memset(xd->above_seg_context, 0,
+ sizeof(*xd->above_seg_context) * aligned_mi_cols);
+}
+
+static int check_dual_ref_flags(VP9_COMP *cpi) {
+ const int ref_flags = cpi->ref_frame_flags;
+
+ if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
+ return 0;
+ } else {
+ return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
+ + !!(ref_flags & VP9_ALT_FLAG)) >= 2;
+ }
+}
+
+static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
+ int mi_row, mi_col;
+ const int mis = cm->mi_stride;
+ MODE_INFO **mi_ptr = cm->mi_grid_visible;
+
+ for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
+ for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
+ if (mi_ptr[mi_col]->mbmi.tx_size > max_tx_size)
+ mi_ptr[mi_col]->mbmi.tx_size = max_tx_size;
+ }
+ }
+}
+
+static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
+ if (frame_is_intra_only(&cpi->common))
+ return INTRA_FRAME;
+ else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
+ return ALTREF_FRAME;
+ else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
+ return GOLDEN_FRAME;
+ else
+ return LAST_FRAME;
+}
+
+static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
+ if (xd->lossless)
+ return ONLY_4X4;
+ if (cpi->common.frame_type == KEY_FRAME &&
+ cpi->sf.use_nonrd_pick_mode &&
+ cpi->sf.partition_search_type == VAR_BASED_PARTITION)
+ return ALLOW_16X16;
+ if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
+ return ALLOW_32X32;
+ else if (cpi->sf.tx_size_search_method == USE_FULL_RD||
+ cpi->sf.tx_size_search_method == USE_TX_8X8)
+ return TX_MODE_SELECT;
+ else
+ return cpi->common.tx_mode;
+}
+
+static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
+ RD_COST *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+ if (bsize < BLOCK_16X16)
+ vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
+ else
+ vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
+}
+
+static void nonrd_pick_sb_modes(VP9_COMP *cpi,
+ TileDataEnc *tile_data, MACROBLOCK *const x,
+ int mi_row, int mi_col, RD_COST *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi;
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
+ mbmi = &xd->mi[0]->mbmi;
+ mbmi->sb_type = bsize;
+
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
+ if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
+ x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
+
+ if (cm->frame_type == KEY_FRAME)
+ hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
+ else if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
+ set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize);
+ else if (bsize >= BLOCK_8X8)
+ vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col,
+ rd_cost, bsize, ctx);
+ else
+ vp9_pick_inter_mode_sub8x8(cpi, x, tile_data, mi_row, mi_col,
+ rd_cost, bsize, ctx);
+
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
+
+ if (rd_cost->rate == INT_MAX)
+ vp9_rd_cost_reset(rd_cost);
+
+ ctx->rate = rd_cost->rate;
+ ctx->dist = rd_cost->dist;
+}
+
+static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize,
+ PC_TREE *pc_tree) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
+ PARTITION_TYPE partition = pc_tree->partitioning;
+ BLOCK_SIZE subsize = get_subsize(bsize, partition);
+
+ assert(bsize >= BLOCK_8X8);
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ switch (partition) {
+ case PARTITION_NONE:
+ set_mode_info_offsets(cm, xd, mi_row, mi_col);
+ *(xd->mi[0]) = pc_tree->none.mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
+ break;
+ case PARTITION_VERT:
+ set_mode_info_offsets(cm, xd, mi_row, mi_col);
+ *(xd->mi[0]) = pc_tree->vertical[0].mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
+
+ if (mi_col + hbs < cm->mi_cols) {
+ set_mode_info_offsets(cm, xd, mi_row, mi_col + hbs);
+ *(xd->mi[0]) = pc_tree->vertical[1].mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
+ }
+ break;
+ case PARTITION_HORZ:
+ set_mode_info_offsets(cm, xd, mi_row, mi_col);
+ *(xd->mi[0]) = pc_tree->horizontal[0].mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
+ if (mi_row + hbs < cm->mi_rows) {
+ set_mode_info_offsets(cm, xd, mi_row + hbs, mi_col);
+ *(xd->mi[0]) = pc_tree->horizontal[1].mic;
+ duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
+ }
+ break;
+ case PARTITION_SPLIT: {
+ fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]);
+ fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
+ pc_tree->split[1]);
+ fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
+ pc_tree->split[2]);
+ fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
+ pc_tree->split[3]);
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+// Reset the prediction pixel ready flag recursively.
+static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
+ pc_tree->none.pred_pixel_ready = 0;
+ pc_tree->horizontal[0].pred_pixel_ready = 0;
+ pc_tree->horizontal[1].pred_pixel_ready = 0;
+ pc_tree->vertical[0].pred_pixel_ready = 0;
+ pc_tree->vertical[1].pred_pixel_ready = 0;
+
+ if (bsize > BLOCK_8X8) {
+ BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
+ int i;
+ for (i = 0; i < 4; ++i)
+ pred_pixel_ready_reset(pc_tree->split[i], subsize);
+ }
+}
+
+static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
+ TileDataEnc *tile_data,
+ TOKENEXTRA **tp, int mi_row,
+ int mi_col, BLOCK_SIZE bsize, RD_COST *rd_cost,
+ int do_recon, int64_t best_rd,
+ PC_TREE *pc_tree) {
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
+ TOKENEXTRA *tp_orig = *tp;
+ PICK_MODE_CONTEXT *ctx = &pc_tree->none;
+ int i;
+ BLOCK_SIZE subsize = bsize;
+ RD_COST this_rdc, sum_rdc, best_rdc;
+ int do_split = bsize >= BLOCK_8X8;
+ int do_rect = 1;
+ // Override skipping rectangular partition operations for edge blocks
+ const int force_horz_split = (mi_row + ms >= cm->mi_rows);
+ const int force_vert_split = (mi_col + ms >= cm->mi_cols);
+ const int xss = x->e_mbd.plane[1].subsampling_x;
+ const int yss = x->e_mbd.plane[1].subsampling_y;
+
+ int partition_none_allowed = !force_horz_split && !force_vert_split;
+ int partition_horz_allowed = !force_vert_split && yss <= xss &&
+ bsize >= BLOCK_8X8;
+ int partition_vert_allowed = !force_horz_split && xss <= yss &&
+ bsize >= BLOCK_8X8;
+ (void) *tp_orig;
+
+ assert(num_8x8_blocks_wide_lookup[bsize] ==
+ num_8x8_blocks_high_lookup[bsize]);
+
+ vp9_rd_cost_init(&sum_rdc);
+ vp9_rd_cost_reset(&best_rdc);
+ best_rdc.rdcost = best_rd;
+
+ // Determine partition types in search according to the speed features.
+ // The threshold set here has to be of square block size.
+ if (sf->auto_min_max_partition_size) {
+ partition_none_allowed &= (bsize <= x->max_partition_size &&
+ bsize >= x->min_partition_size);
+ partition_horz_allowed &= ((bsize <= x->max_partition_size &&
+ bsize > x->min_partition_size) ||
+ force_horz_split);
+ partition_vert_allowed &= ((bsize <= x->max_partition_size &&
+ bsize > x->min_partition_size) ||
+ force_vert_split);
+ do_split &= bsize > x->min_partition_size;
+ }
+ if (sf->use_square_partition_only) {
+ partition_horz_allowed &= force_horz_split;
+ partition_vert_allowed &= force_vert_split;
+ }
+
+ ctx->pred_pixel_ready = !(partition_vert_allowed ||
+ partition_horz_allowed ||
+ do_split);
+
+ // PARTITION_NONE
+ if (partition_none_allowed) {
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col,
+ &this_rdc, bsize, ctx);
+ ctx->mic.mbmi = xd->mi[0]->mbmi;
+ ctx->skip_txfm[0] = x->skip_txfm[0];
+ ctx->skip = x->skip;
+
+ if (this_rdc.rate != INT_MAX) {
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
+ this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ this_rdc.rate, this_rdc.dist);
+ if (this_rdc.rdcost < best_rdc.rdcost) {
+ int64_t dist_breakout_thr = sf->partition_search_breakout_dist_thr;
+ int64_t rate_breakout_thr = sf->partition_search_breakout_rate_thr;
+
+ dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] +
+ b_height_log2_lookup[bsize]);
+
+ rate_breakout_thr *= num_pels_log2_lookup[bsize];
+
+ best_rdc = this_rdc;
+ if (bsize >= BLOCK_8X8)
+ pc_tree->partitioning = PARTITION_NONE;
+
+ if (!x->e_mbd.lossless &&
+ this_rdc.rate < rate_breakout_thr &&
+ this_rdc.dist < dist_breakout_thr) {
+ do_split = 0;
+ do_rect = 0;
+ }
+ }
+ }
+ }
+
+ // store estimated motion vector
+ store_pred_mv(x, ctx);
+
+ // PARTITION_SPLIT
+ if (do_split) {
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
+ sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
+ subsize = get_subsize(bsize, PARTITION_SPLIT);
+ for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
+ const int x_idx = (i & 1) * ms;
+ const int y_idx = (i >> 1) * ms;
+
+ if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
+ continue;
+ load_pred_mv(x, ctx);
+ nonrd_pick_partition(cpi, td, tile_data, tp,
+ mi_row + y_idx, mi_col + x_idx,
+ subsize, &this_rdc, 0,
+ best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
+
+ if (this_rdc.rate == INT_MAX) {
+ vp9_rd_cost_reset(&sum_rdc);
+ } else {
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ sum_rdc.rdcost += this_rdc.rdcost;
+ }
+ }
+
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ pc_tree->partitioning = PARTITION_SPLIT;
+ } else {
+ // skip rectangular partition test when larger block size
+ // gives better rd cost
+ if (sf->less_rectangular_check)
+ do_rect &= !partition_none_allowed;
+ }
+ }
+
+ // PARTITION_HORZ
+ if (partition_horz_allowed && do_rect) {
+ subsize = get_subsize(bsize, PARTITION_HORZ);
+ if (sf->adaptive_motion_search)
+ load_pred_mv(x, ctx);
+ pc_tree->horizontal[0].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
+ &pc_tree->horizontal[0]);
+
+ pc_tree->horizontal[0].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->horizontal[0].skip = x->skip;
+
+ if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
+ load_pred_mv(x, ctx);
+ pc_tree->horizontal[1].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col,
+ &this_rdc, subsize,
+ &pc_tree->horizontal[1]);
+
+ pc_tree->horizontal[1].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->horizontal[1].skip = x->skip;
+
+ if (this_rdc.rate == INT_MAX) {
+ vp9_rd_cost_reset(&sum_rdc);
+ } else {
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ sum_rdc.rate, sum_rdc.dist);
+ }
+ }
+
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ pc_tree->partitioning = PARTITION_HORZ;
+ } else {
+ pred_pixel_ready_reset(pc_tree, bsize);
+ }
+ }
+
+ // PARTITION_VERT
+ if (partition_vert_allowed && do_rect) {
+ subsize = get_subsize(bsize, PARTITION_VERT);
+ if (sf->adaptive_motion_search)
+ load_pred_mv(x, ctx);
+ pc_tree->vertical[0].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
+ &pc_tree->vertical[0]);
+ pc_tree->vertical[0].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->vertical[0].skip = x->skip;
+
+ if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
+ load_pred_mv(x, ctx);
+ pc_tree->vertical[1].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms,
+ &this_rdc, subsize,
+ &pc_tree->vertical[1]);
+ pc_tree->vertical[1].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->vertical[1].skip = x->skip;
+
+ if (this_rdc.rate == INT_MAX) {
+ vp9_rd_cost_reset(&sum_rdc);
+ } else {
+ int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
+ sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
+ sum_rdc.rate += this_rdc.rate;
+ sum_rdc.dist += this_rdc.dist;
+ sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ sum_rdc.rate, sum_rdc.dist);
+ }
+ }
+
+ if (sum_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = sum_rdc;
+ pc_tree->partitioning = PARTITION_VERT;
+ } else {
+ pred_pixel_ready_reset(pc_tree, bsize);
+ }
+ }
+
+ *rd_cost = best_rdc;
+
+ if (best_rdc.rate == INT_MAX) {
+ vp9_rd_cost_reset(rd_cost);
+ return;
+ }
+
+ // update mode info array
+ fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree);
+
+ if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
+ int output_enabled = (bsize == BLOCK_64X64);
+ encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
+ bsize, pc_tree);
+ }
+
+ if (bsize == BLOCK_64X64 && do_recon) {
+ assert(tp_orig < *tp);
+ assert(best_rdc.rate < INT_MAX);
+ assert(best_rdc.dist < INT64_MAX);
+ } else {
+ assert(tp_orig == *tp);
+ }
+}
+
+static void nonrd_select_partition(VP9_COMP *cpi,
+ ThreadData *td,
+ TileDataEnc *tile_data,
+ MODE_INFO **mi,
+ TOKENEXTRA **tp,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize, int output_enabled,
+ RD_COST *rd_cost, PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
+ const int mis = cm->mi_stride;
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+ RD_COST this_rdc;
+
+ vp9_rd_cost_reset(&this_rdc);
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ subsize = (bsize >= BLOCK_8X8) ? mi[0]->mbmi.sb_type : BLOCK_4X4;
+ partition = partition_lookup[bsl][subsize];
+
+ if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
+ subsize >= BLOCK_16X16) {
+ x->max_partition_size = BLOCK_32X32;
+ x->min_partition_size = BLOCK_8X8;
+ nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize,
+ rd_cost, 0, INT64_MAX, pc_tree);
+ } else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
+ x->max_partition_size = BLOCK_16X16;
+ x->min_partition_size = BLOCK_8X8;
+ nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize,
+ rd_cost, 0, INT64_MAX, pc_tree);
+ } else {
+ switch (partition) {
+ case PARTITION_NONE:
+ pc_tree->none.pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost,
+ subsize, &pc_tree->none);
+ pc_tree->none.mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->none.skip = x->skip;
+ break;
+ case PARTITION_VERT:
+ pc_tree->vertical[0].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost,
+ subsize, &pc_tree->vertical[0]);
+ pc_tree->vertical[0].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->vertical[0].skip = x->skip;
+ if (mi_col + hbs < cm->mi_cols) {
+ pc_tree->vertical[1].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
+ &this_rdc, subsize, &pc_tree->vertical[1]);
+ pc_tree->vertical[1].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->vertical[1].skip = x->skip;
+ if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
+ rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
+ rd_cost->rate += this_rdc.rate;
+ rd_cost->dist += this_rdc.dist;
+ }
+ }
+ break;
+ case PARTITION_HORZ:
+ pc_tree->horizontal[0].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost,
+ subsize, &pc_tree->horizontal[0]);
+ pc_tree->horizontal[0].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->horizontal[0].skip = x->skip;
+ if (mi_row + hbs < cm->mi_rows) {
+ pc_tree->horizontal[1].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
+ &this_rdc, subsize, &pc_tree->horizontal[1]);
+ pc_tree->horizontal[1].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->horizontal[1].skip = x->skip;
+ if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
+ rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
+ rd_cost->rate += this_rdc.rate;
+ rd_cost->dist += this_rdc.dist;
+ }
+ }
+ break;
+ case PARTITION_SPLIT:
+ subsize = get_subsize(bsize, PARTITION_SPLIT);
+ nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ subsize, output_enabled, rd_cost,
+ pc_tree->split[0]);
+ nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp,
+ mi_row, mi_col + hbs, subsize, output_enabled,
+ &this_rdc, pc_tree->split[1]);
+ if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
+ rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
+ rd_cost->rate += this_rdc.rate;
+ rd_cost->dist += this_rdc.dist;
+ }
+ nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp,
+ mi_row + hbs, mi_col, subsize, output_enabled,
+ &this_rdc, pc_tree->split[2]);
+ if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
+ rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
+ rd_cost->rate += this_rdc.rate;
+ rd_cost->dist += this_rdc.dist;
+ }
+ nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
+ mi_row + hbs, mi_col + hbs, subsize,
+ output_enabled, &this_rdc, pc_tree->split[3]);
+ if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
+ rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
+ rd_cost->rate += this_rdc.rate;
+ rd_cost->dist += this_rdc.dist;
+ }
+ break;
+ default:
+ assert(0 && "Invalid partition type.");
+ break;
+ }
+ }
+
+ if (bsize == BLOCK_64X64 && output_enabled)
+ encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree);
+}
+
+
+static void nonrd_use_partition(VP9_COMP *cpi,
+ ThreadData *td,
+ TileDataEnc *tile_data,
+ MODE_INFO **mi,
+ TOKENEXTRA **tp,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize, int output_enabled,
+ RD_COST *dummy_cost, PC_TREE *pc_tree) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
+ const int mis = cm->mi_stride;
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ subsize = (bsize >= BLOCK_8X8) ? mi[0]->mbmi.sb_type : BLOCK_4X4;
+ partition = partition_lookup[bsl][subsize];
+
+ if (output_enabled && bsize != BLOCK_4X4) {
+ int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ td->counts->partition[ctx][partition]++;
+ }
+
+ switch (partition) {
+ case PARTITION_NONE:
+ pc_tree->none.pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
+ subsize, &pc_tree->none);
+ pc_tree->none.mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->none.skip = x->skip;
+ encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
+ subsize, &pc_tree->none);
+ break;
+ case PARTITION_VERT:
+ pc_tree->vertical[0].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
+ subsize, &pc_tree->vertical[0]);
+ pc_tree->vertical[0].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->vertical[0].skip = x->skip;
+ encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
+ subsize, &pc_tree->vertical[0]);
+ if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
+ pc_tree->vertical[1].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
+ dummy_cost, subsize, &pc_tree->vertical[1]);
+ pc_tree->vertical[1].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->vertical[1].skip = x->skip;
+ encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs,
+ output_enabled, subsize, &pc_tree->vertical[1]);
+ }
+ break;
+ case PARTITION_HORZ:
+ pc_tree->horizontal[0].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
+ subsize, &pc_tree->horizontal[0]);
+ pc_tree->horizontal[0].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->horizontal[0].skip = x->skip;
+ encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
+ subsize, &pc_tree->horizontal[0]);
+
+ if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
+ pc_tree->horizontal[1].pred_pixel_ready = 1;
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
+ dummy_cost, subsize, &pc_tree->horizontal[1]);
+ pc_tree->horizontal[1].mic.mbmi = xd->mi[0]->mbmi;
+ pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
+ pc_tree->horizontal[1].skip = x->skip;
+ encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col,
+ output_enabled, subsize, &pc_tree->horizontal[1]);
+ }
+ break;
+ case PARTITION_SPLIT:
+ subsize = get_subsize(bsize, PARTITION_SPLIT);
+ if (bsize == BLOCK_8X8) {
+ nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
+ subsize, pc_tree->leaf_split[0]);
+ encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col,
+ output_enabled, subsize, pc_tree->leaf_split[0]);
+ } else {
+ nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ subsize, output_enabled, dummy_cost,
+ pc_tree->split[0]);
+ nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp,
+ mi_row, mi_col + hbs, subsize, output_enabled,
+ dummy_cost, pc_tree->split[1]);
+ nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp,
+ mi_row + hbs, mi_col, subsize, output_enabled,
+ dummy_cost, pc_tree->split[2]);
+ nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
+ mi_row + hbs, mi_col + hbs, subsize, output_enabled,
+ dummy_cost, pc_tree->split[3]);
+ }
+ break;
+ default:
+ assert(0 && "Invalid partition type.");
+ break;
+ }
+
+ if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+}
+
+static void encode_nonrd_sb_row(VP9_COMP *cpi,
+ ThreadData *td,
+ TileDataEnc *tile_data,
+ int mi_row,
+ TOKENEXTRA **tp) {
+ SPEED_FEATURES *const sf = &cpi->sf;
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int mi_col;
+
+ // Initialize the left context for the new SB row
+ memset(&xd->left_context, 0, sizeof(xd->left_context));
+ memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
+
+ // Code each SB in the row
+ for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
+ mi_col += MI_BLOCK_SIZE) {
+ const struct segmentation *const seg = &cm->seg;
+ RD_COST dummy_rdc;
+ const int idx_str = cm->mi_stride * mi_row + mi_col;
+ MODE_INFO **mi = cm->mi_grid_visible + idx_str;
+ PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type;
+ BLOCK_SIZE bsize = BLOCK_64X64;
+ int seg_skip = 0;
+ x->source_variance = UINT_MAX;
+ vp9_zero(x->pred_mv);
+ vp9_rd_cost_init(&dummy_rdc);
+ x->color_sensitivity[0] = 0;
+ x->color_sensitivity[1] = 0;
+
+ if (seg->enabled) {
+ const uint8_t *const map = seg->update_map ? cpi->segmentation_map
+ : cm->last_frame_seg_map;
+ int segment_id = vp9_get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
+ seg_skip = vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP);
+ if (seg_skip) {
+ partition_search_type = FIXED_PARTITION;
+ }
+ }
+
+ // Set the partition type of the 64X64 block
+ switch (partition_search_type) {
+ case VAR_BASED_PARTITION:
+ // TODO(jingning, marpan): The mode decision and encoding process
+ // support both intra and inter sub8x8 block coding for RTC mode.
+ // Tune the thresholds accordingly to use sub8x8 block coding for
+ // coding performance improvement.
+ choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
+ nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
+ break;
+ case SOURCE_VAR_BASED_PARTITION:
+ set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col);
+ nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
+ break;
+ case FIXED_PARTITION:
+ if (!seg_skip)
+ bsize = sf->always_this_block_size;
+ set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
+ nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
+ break;
+ case REFERENCE_PARTITION:
+ set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
+ xd->mi[0]->mbmi.segment_id) {
+ x->max_partition_size = BLOCK_64X64;
+ x->min_partition_size = BLOCK_8X8;
+ nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
+ BLOCK_64X64, &dummy_rdc, 1,
+ INT64_MAX, td->pc_root);
+ } else {
+ choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
+ nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
+ BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
+ }
+
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ }
+}
+// end RTC play code
+
+static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ const VP9_COMMON *const cm = &cpi->common;
+
+ const uint8_t *src = cpi->Source->y_buffer;
+ const uint8_t *last_src = cpi->Last_Source->y_buffer;
+ const int src_stride = cpi->Source->y_stride;
+ const int last_stride = cpi->Last_Source->y_stride;
+
+ // Pick cutoff threshold
+ const int cutoff = (MIN(cm->width, cm->height) >= 720) ?
+ (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) :
+ (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
+ DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
+ diff *var16 = cpi->source_diff_var;
+
+ int sum = 0;
+ int i, j;
+
+ memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
+
+ for (i = 0; i < cm->mb_rows; i++) {
+ for (j = 0; j < cm->mb_cols; j++) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) {
+ switch (cm->bit_depth) {
+ case VPX_BITS_8:
+ vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride,
+ &var16->sse, &var16->sum);
+ break;
+ case VPX_BITS_10:
+ vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
+ &var16->sse, &var16->sum);
+ break;
+ case VPX_BITS_12:
+ vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
+ &var16->sse, &var16->sum);
+ break;
+ default:
+ assert(0 && "cm->bit_depth should be VPX_BITS_8, VPX_BITS_10"
+ " or VPX_BITS_12");
+ return -1;
+ }
+ } else {
+ vpx_get16x16var(src, src_stride, last_src, last_stride,
+ &var16->sse, &var16->sum);
+ }
+#else
+ vpx_get16x16var(src, src_stride, last_src, last_stride,
+ &var16->sse, &var16->sum);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ var16->var = var16->sse -
+ (((uint32_t)var16->sum * var16->sum) >> 8);
+
+ if (var16->var >= VAR_HIST_MAX_BG_VAR)
+ hist[VAR_HIST_BINS - 1]++;
+ else
+ hist[var16->var / VAR_HIST_FACTOR]++;
+
+ src += 16;
+ last_src += 16;
+ var16++;
+ }
+
+ src = src - cm->mb_cols * 16 + 16 * src_stride;
+ last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
+ }
+
+ cpi->source_var_thresh = 0;
+
+ if (hist[VAR_HIST_BINS - 1] < cutoff) {
+ for (i = 0; i < VAR_HIST_BINS - 1; i++) {
+ sum += hist[i];
+
+ if (sum > cutoff) {
+ cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
+ return 0;
+ }
+ }
+ }
+
+ return sf->search_type_check_frequency;
+}
+
+static void source_var_based_partition_search_method(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ SPEED_FEATURES *const sf = &cpi->sf;
+
+ if (cm->frame_type == KEY_FRAME) {
+ // For key frame, use SEARCH_PARTITION.
+ sf->partition_search_type = SEARCH_PARTITION;
+ } else if (cm->intra_only) {
+ sf->partition_search_type = FIXED_PARTITION;
+ } else {
+ if (cm->last_width != cm->width || cm->last_height != cm->height) {
+ if (cpi->source_diff_var)
+ vpx_free(cpi->source_diff_var);
+
+ CHECK_MEM_ERROR(cm, cpi->source_diff_var,
+ vpx_calloc(cm->MBs, sizeof(diff)));
+ }
+
+ if (!cpi->frames_till_next_var_check)
+ cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
+
+ if (cpi->frames_till_next_var_check > 0) {
+ sf->partition_search_type = FIXED_PARTITION;
+ cpi->frames_till_next_var_check--;
+ }
+ }
+}
+
+static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) {
+ unsigned int intra_count = 0, inter_count = 0;
+ int j;
+
+ for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
+ intra_count += td->counts->intra_inter[j][0];
+ inter_count += td->counts->intra_inter[j][1];
+ }
+
+ return (intra_count << 2) < inter_count &&
+ cm->frame_type != KEY_FRAME &&
+ cm->show_frame;
+}
+
+void vp9_init_tile_data(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ const int tile_rows = 1 << cm->log2_tile_rows;
+ int tile_col, tile_row;
+ TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
+ int tile_tok = 0;
+
+ if (cpi->tile_data == NULL) {
+ CHECK_MEM_ERROR(cm, cpi->tile_data,
+ vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data)));
+ for (tile_row = 0; tile_row < tile_rows; ++tile_row)
+ for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
+ TileDataEnc *tile_data =
+ &cpi->tile_data[tile_row * tile_cols + tile_col];
+ int i, j;
+ for (i = 0; i < BLOCK_SIZES; ++i) {
+ for (j = 0; j < MAX_MODES; ++j) {
+ tile_data->thresh_freq_fact[i][j] = 32;
+ tile_data->mode_map[i][j] = j;
+ }
+ }
+ }
+ }
+
+ for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
+ for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
+ TileInfo *tile_info =
+ &cpi->tile_data[tile_row * tile_cols + tile_col].tile_info;
+ vp9_tile_init(tile_info, cm, tile_row, tile_col);
+
+ cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
+ pre_tok = cpi->tile_tok[tile_row][tile_col];
+ tile_tok = allocated_tokens(*tile_info);
+ }
+ }
+}
+
+void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td,
+ int tile_row, int tile_col) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ TileDataEnc *this_tile =
+ &cpi->tile_data[tile_row * tile_cols + tile_col];
+ const TileInfo * const tile_info = &this_tile->tile_info;
+ TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
+ int mi_row;
+
+ for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
+ mi_row += MI_BLOCK_SIZE) {
+ if (cpi->sf.use_nonrd_pick_mode)
+ encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
+ else
+ encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
+ }
+ cpi->tok_count[tile_row][tile_col] =
+ (unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]);
+ assert(tok - cpi->tile_tok[tile_row][tile_col] <=
+ allocated_tokens(*tile_info));
+}
+
+static void encode_tiles(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ const int tile_rows = 1 << cm->log2_tile_rows;
+ int tile_col, tile_row;
+
+ vp9_init_tile_data(cpi);
+
+ for (tile_row = 0; tile_row < tile_rows; ++tile_row)
+ for (tile_col = 0; tile_col < tile_cols; ++tile_col)
+ vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col);
+}
+
+#if CONFIG_FP_MB_STATS
+static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
+ VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
+ uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
+ cm->current_video_frame * cm->MBs * sizeof(uint8_t);
+
+ if (mb_stats_in > firstpass_mb_stats->mb_stats_end)
+ return EOF;
+
+ *this_frame_mb_stats = mb_stats_in;
+
+ return 1;
+}
+#endif
+
+static void encode_frame_internal(VP9_COMP *cpi) {
+ SPEED_FEATURES *const sf = &cpi->sf;
+ RD_OPT *const rd_opt = &cpi->rd;
+ ThreadData *const td = &cpi->td;
+ MACROBLOCK *const x = &td->mb;
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ RD_COUNTS *const rdc = &cpi->td.rd_counts;
+
+ xd->mi = cm->mi_grid_visible;
+ xd->mi[0] = cm->mi;
+
+ vp9_zero(*td->counts);
+ vp9_zero(rdc->coef_counts);
+ vp9_zero(rdc->comp_pred_diff);
+ vp9_zero(rdc->filter_diff);
+ vp9_zero(rdc->tx_select_diff);
+ vp9_zero(rd_opt->tx_select_threshes);
+
+ xd->lossless = cm->base_qindex == 0 &&
+ cm->y_dc_delta_q == 0 &&
+ cm->uv_dc_delta_q == 0 &&
+ cm->uv_ac_delta_q == 0;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth)
+ x->fwd_txm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vp9_highbd_fdct4x4;
+ else
+ x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vp9_fdct4x4;
+ x->highbd_itxm_add = xd->lossless ? vp9_highbd_iwht4x4_add :
+ vp9_highbd_idct4x4_add;
+#else
+ x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vp9_fdct4x4;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ x->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
+
+ if (xd->lossless)
+ x->optimize = 0;
+
+ cm->tx_mode = select_tx_mode(cpi, xd);
+
+ vp9_frame_init_quantizer(cpi);
+
+ vp9_initialize_rd_consts(cpi);
+ vp9_initialize_me_consts(cpi, x, cm->base_qindex);
+ init_encode_frame_mb_context(cpi);
+ cm->use_prev_frame_mvs = !cm->error_resilient_mode &&
+ cm->width == cm->last_width &&
+ cm->height == cm->last_height &&
+ !cm->intra_only &&
+ cm->last_show_frame;
+ // Special case: set prev_mi to NULL when the previous mode info
+ // context cannot be used.
+ cm->prev_mi = cm->use_prev_frame_mvs ?
+ cm->prev_mip + cm->mi_stride + 1 : NULL;
+
+ x->quant_fp = cpi->sf.use_quant_fp;
+ vp9_zero(x->skip_txfm);
+ if (sf->use_nonrd_pick_mode) {
+ // Initialize internal buffer pointers for rtc coding, where non-RD
+ // mode decision is used and hence no buffer pointer swap needed.
+ int i;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][0];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
+ p[i].eobs = ctx->eobs_pbuf[i][0];
+ }
+ vp9_zero(x->zcoeff_blk);
+
+ if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0)
+ cpi->ref_frame_flags &= (~VP9_GOLD_FLAG);
+
+ if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
+ source_var_based_partition_search_method(cpi);
+ }
+
+ {
+ struct vpx_usec_timer emr_timer;
+ vpx_usec_timer_start(&emr_timer);
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
+ &cpi->twopass.this_frame_mb_stats);
+ }
+#endif
+
+ // If allowed, encoding tiles in parallel with one thread handling one tile.
+ if (MIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
+ vp9_encode_tiles_mt(cpi);
+ else
+ encode_tiles(cpi);
+
+ vpx_usec_timer_mark(&emr_timer);
+ cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
+ }
+
+ sf->skip_encode_frame = sf->skip_encode_sb ?
+ get_skip_encode_frame(cm, td) : 0;
+
+#if 0
+ // Keep record of the total distortion this time around for future use
+ cpi->last_frame_distortion = cpi->frame_distortion;
+#endif
+}
+
+static INTERP_FILTER get_interp_filter(
+ const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
+ if (!is_alt_ref &&
+ threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
+ threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
+ threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
+ return EIGHTTAP_SMOOTH;
+ } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
+ threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
+ return EIGHTTAP_SHARP;
+ } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
+ return EIGHTTAP;
+ } else {
+ return SWITCHABLE;
+ }
+}
+
+void vp9_encode_frame(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ // In the longer term the encoder should be generalized to match the
+ // decoder such that we allow compound where one of the 3 buffers has a
+ // different sign bias and that buffer is then the fixed ref. However, this
+ // requires further work in the rd loop. For now the only supported encoder
+ // side behavior is where the ALT ref buffer has opposite sign bias to
+ // the other two.
+ if (!frame_is_intra_only(cm)) {
+ if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
+ cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
+ (cm->ref_frame_sign_bias[ALTREF_FRAME] ==
+ cm->ref_frame_sign_bias[LAST_FRAME])) {
+ cpi->allow_comp_inter_inter = 0;
+ } else {
+ cpi->allow_comp_inter_inter = 1;
+ cm->comp_fixed_ref = ALTREF_FRAME;
+ cm->comp_var_ref[0] = LAST_FRAME;
+ cm->comp_var_ref[1] = GOLDEN_FRAME;
+ }
+ }
+
+ if (cpi->sf.frame_parameter_update) {
+ int i;
+ RD_OPT *const rd_opt = &cpi->rd;
+ FRAME_COUNTS *counts = cpi->td.counts;
+ RD_COUNTS *const rdc = &cpi->td.rd_counts;
+
+ // This code does a single RD pass over the whole frame assuming
+ // either compound, single or hybrid prediction as per whatever has
+ // worked best for that type of frame in the past.
+ // It also predicts whether another coding mode would have worked
+ // better that this coding mode. If that is the case, it remembers
+ // that for subsequent frames.
+ // It does the same analysis for transform size selection also.
+ const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
+ int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
+ int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
+ int *const tx_thrs = rd_opt->tx_select_threshes[frame_type];
+ const int is_alt_ref = frame_type == ALTREF_FRAME;
+
+ /* prediction (compound, single or hybrid) mode selection */
+ if (is_alt_ref || !cpi->allow_comp_inter_inter)
+ cm->reference_mode = SINGLE_REFERENCE;
+ else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
+ mode_thrs[COMPOUND_REFERENCE] >
+ mode_thrs[REFERENCE_MODE_SELECT] &&
+ check_dual_ref_flags(cpi) &&
+ cpi->static_mb_pct == 100)
+ cm->reference_mode = COMPOUND_REFERENCE;
+ else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
+ cm->reference_mode = SINGLE_REFERENCE;
+ else
+ cm->reference_mode = REFERENCE_MODE_SELECT;
+
+ if (cm->interp_filter == SWITCHABLE)
+ cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
+
+ encode_frame_internal(cpi);
+
+ for (i = 0; i < REFERENCE_MODES; ++i)
+ mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
+
+ for (i = 0; i < TX_MODES; ++i) {
+ int64_t pd = rdc->tx_select_diff[i];
+ if (i == TX_MODE_SELECT)
+ pd -= RDCOST(cpi->td.mb.rdmult, cpi->td.mb.rddiv, 2048 * (TX_SIZES - 1),
+ 0);
+ tx_thrs[i] = (tx_thrs[i] + (int)(pd / cm->MBs)) / 2;
+ }
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ int single_count_zero = 0;
+ int comp_count_zero = 0;
+
+ for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
+ single_count_zero += counts->comp_inter[i][0];
+ comp_count_zero += counts->comp_inter[i][1];
+ }
+
+ if (comp_count_zero == 0) {
+ cm->reference_mode = SINGLE_REFERENCE;
+ vp9_zero(counts->comp_inter);
+ } else if (single_count_zero == 0) {
+ cm->reference_mode = COMPOUND_REFERENCE;
+ vp9_zero(counts->comp_inter);
+ }
+ }
+
+ if (cm->tx_mode == TX_MODE_SELECT) {
+ int count4x4 = 0;
+ int count8x8_lp = 0, count8x8_8x8p = 0;
+ int count16x16_16x16p = 0, count16x16_lp = 0;
+ int count32x32 = 0;
+
+ for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
+ count4x4 += counts->tx.p32x32[i][TX_4X4];
+ count4x4 += counts->tx.p16x16[i][TX_4X4];
+ count4x4 += counts->tx.p8x8[i][TX_4X4];
+
+ count8x8_lp += counts->tx.p32x32[i][TX_8X8];
+ count8x8_lp += counts->tx.p16x16[i][TX_8X8];
+ count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
+
+ count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
+ count16x16_lp += counts->tx.p32x32[i][TX_16X16];
+ count32x32 += counts->tx.p32x32[i][TX_32X32];
+ }
+ if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
+ count32x32 == 0) {
+ cm->tx_mode = ALLOW_8X8;
+ reset_skip_tx_size(cm, TX_8X8);
+ } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
+ count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
+ cm->tx_mode = ONLY_4X4;
+ reset_skip_tx_size(cm, TX_4X4);
+ } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
+ cm->tx_mode = ALLOW_32X32;
+ } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
+ cm->tx_mode = ALLOW_16X16;
+ reset_skip_tx_size(cm, TX_16X16);
+ }
+ }
+ } else {
+ cm->reference_mode = SINGLE_REFERENCE;
+ encode_frame_internal(cpi);
+ }
+}
+
+static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
+ const PREDICTION_MODE y_mode = mi->mbmi.mode;
+ const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
+ const BLOCK_SIZE bsize = mi->mbmi.sb_type;
+
+ if (bsize < BLOCK_8X8) {
+ int idx, idy;
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ for (idy = 0; idy < 2; idy += num_4x4_h)
+ for (idx = 0; idx < 2; idx += num_4x4_w)
+ ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
+ } else {
+ ++counts->y_mode[size_group_lookup[bsize]][y_mode];
+ }
+
+ ++counts->uv_mode[y_mode][uv_mode];
+}
+
+static void encode_superblock(VP9_COMP *cpi, ThreadData *td,
+ TOKENEXTRA **t, int output_enabled,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MODE_INFO **mi_8x8 = xd->mi;
+ MODE_INFO *mi = mi_8x8[0];
+ MB_MODE_INFO *mbmi = &mi->mbmi;
+ const int seg_skip = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
+ SEG_LVL_SKIP);
+ const int mis = cm->mi_stride;
+ const int mi_width = num_8x8_blocks_wide_lookup[bsize];
+ const int mi_height = num_8x8_blocks_high_lookup[bsize];
+
+ x->skip_recode = !x->select_tx_size && mbmi->sb_type >= BLOCK_8X8 &&
+ cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
+ cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
+ cpi->sf.allow_skip_recode;
+
+ if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
+ memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+
+ x->skip_optimize = ctx->is_coded;
+ ctx->is_coded = 1;
+ x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
+ x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
+ x->q_index < QIDX_SKIP_THRESH);
+
+ if (x->skip_encode)
+ return;
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+
+ if (!is_inter_block(mbmi)) {
+ int plane;
+ mbmi->skip = 1;
+ for (plane = 0; plane < MAX_MB_PLANE; ++plane)
+ vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
+ if (output_enabled)
+ sum_intra_stats(td->counts, mi);
+ vp9_tokenize_sb(cpi, td, t, !output_enabled, MAX(bsize, BLOCK_8X8));
+ } else {
+ int ref;
+ const int is_compound = has_second_ref(mbmi);
+ for (ref = 0; ref < 1 + is_compound; ++ref) {
+ YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
+ mbmi->ref_frame[ref]);
+ assert(cfg != NULL);
+ vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
+ &xd->block_refs[ref]->sf);
+ }
+ if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
+ vp9_build_inter_predictors_sby(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
+
+ vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
+
+ vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
+ vp9_tokenize_sb(cpi, td, t, !output_enabled, MAX(bsize, BLOCK_8X8));
+ }
+
+ if (output_enabled) {
+ if (cm->tx_mode == TX_MODE_SELECT &&
+ mbmi->sb_type >= BLOCK_8X8 &&
+ !(is_inter_block(mbmi) && (mbmi->skip || seg_skip))) {
+ ++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
+ &td->counts->tx)[mbmi->tx_size];
+ } else {
+ int x, y;
+ TX_SIZE tx_size;
+ // The new intra coding scheme requires no change of transform size
+ if (is_inter_block(&mi->mbmi)) {
+ tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
+ max_txsize_lookup[bsize]);
+ } else {
+ tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
+ }
+
+ for (y = 0; y < mi_height; y++)
+ for (x = 0; x < mi_width; x++)
+ if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
+ mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;
+ }
+ ++td->counts->tx.tx_totals[mbmi->tx_size];
+ ++td->counts->tx.tx_totals[get_uv_tx_size(mbmi, &xd->plane[1])];
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_encodeframe.h b/media/libvpx/vp9/encoder/vp9_encodeframe.h
new file mode 100644
index 000000000..6aaa56463
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_encodeframe.h
@@ -0,0 +1,49 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_ENCODEFRAME_H_
+#define VP9_ENCODER_VP9_ENCODEFRAME_H_
+
+#include "vpx/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct macroblock;
+struct yv12_buffer_config;
+struct VP9_COMP;
+struct ThreadData;
+
+// Constants used in SOURCE_VAR_BASED_PARTITION
+#define VAR_HIST_MAX_BG_VAR 1000
+#define VAR_HIST_FACTOR 10
+#define VAR_HIST_BINS (VAR_HIST_MAX_BG_VAR / VAR_HIST_FACTOR + 1)
+#define VAR_HIST_LARGE_CUT_OFF 75
+#define VAR_HIST_SMALL_CUT_OFF 45
+
+void vp9_setup_src_planes(struct macroblock *x,
+ const struct yv12_buffer_config *src,
+ int mi_row, int mi_col);
+
+void vp9_encode_frame(struct VP9_COMP *cpi);
+
+void vp9_init_tile_data(struct VP9_COMP *cpi);
+void vp9_encode_tile(struct VP9_COMP *cpi, struct ThreadData *td,
+ int tile_row, int tile_col);
+
+void vp9_set_variance_partition_thresholds(struct VP9_COMP *cpi, int q);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_ENCODEFRAME_H_
diff --git a/media/libvpx/vp9/encoder/vp9_encodemb.c b/media/libvpx/vp9/encoder/vp9_encodemb.c
new file mode 100644
index 000000000..2829365e5
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_encodemb.c
@@ -0,0 +1,1046 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#include "./vp9_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_idct.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_reconintra.h"
+#include "vp9/common/vp9_scan.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_encodemb.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_rd.h"
+#include "vp9/encoder/vp9_tokenize.h"
+
+struct optimize_ctx {
+ ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
+ ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
+};
+
+void vp9_subtract_block_c(int rows, int cols,
+ int16_t *diff, ptrdiff_t diff_stride,
+ const uint8_t *src, ptrdiff_t src_stride,
+ const uint8_t *pred, ptrdiff_t pred_stride) {
+ int r, c;
+
+ for (r = 0; r < rows; r++) {
+ for (c = 0; c < cols; c++)
+ diff[c] = src[c] - pred[c];
+
+ diff += diff_stride;
+ pred += pred_stride;
+ src += src_stride;
+ }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_subtract_block_c(int rows, int cols,
+ int16_t *diff, ptrdiff_t diff_stride,
+ const uint8_t *src8, ptrdiff_t src_stride,
+ const uint8_t *pred8, ptrdiff_t pred_stride,
+ int bd) {
+ int r, c;
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
+ (void) bd;
+
+ for (r = 0; r < rows; r++) {
+ for (c = 0; c < cols; c++) {
+ diff[c] = src[c] - pred[c];
+ }
+
+ diff += diff_stride;
+ pred += pred_stride;
+ src += src_stride;
+ }
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+ struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+ const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
+ p->src.stride, pd->dst.buf, pd->dst.stride,
+ x->e_mbd.bd);
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ vp9_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride);
+}
+
+#define RDTRUNC(RM, DM, R, D) ((128 + (R) * (RM)) & 0xFF)
+
+typedef struct vp9_token_state {
+ int rate;
+ int error;
+ int next;
+ int16_t token;
+ short qc;
+} vp9_token_state;
+
+// TODO(jimbankoski): experiment to find optimal RD numbers.
+static const int plane_rd_mult[PLANE_TYPES] = { 4, 2 };
+
+#define UPDATE_RD_COST()\
+{\
+ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
+ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
+ if (rd_cost0 == rd_cost1) {\
+ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
+ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
+ }\
+}
+
+// This function is a place holder for now but may ultimately need
+// to scan previous tokens to work out the correct context.
+static int trellis_get_coeff_context(const int16_t *scan,
+ const int16_t *nb,
+ int idx, int token,
+ uint8_t *token_cache) {
+ int bak = token_cache[scan[idx]], pt;
+ token_cache[scan[idx]] = vp9_pt_energy_class[token];
+ pt = get_coef_context(nb, token_cache, idx + 1);
+ token_cache[scan[idx]] = bak;
+ return pt;
+}
+
+static int optimize_b(MACROBLOCK *mb, int plane, int block,
+ TX_SIZE tx_size, int ctx) {
+ MACROBLOCKD *const xd = &mb->e_mbd;
+ struct macroblock_plane *const p = &mb->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int ref = is_inter_block(&xd->mi[0]->mbmi);
+ vp9_token_state tokens[1025][2];
+ unsigned best_index[1025][2];
+ uint8_t token_cache[1024];
+ const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ const int eob = p->eobs[block];
+ const PLANE_TYPE type = pd->plane_type;
+ const int default_eob = 16 << (tx_size << 1);
+ const int mul = 1 + (tx_size == TX_32X32);
+ const int16_t *dequant_ptr = pd->dequant;
+ const uint8_t *const band_translate = get_band_translate(tx_size);
+ const scan_order *const so = get_scan(xd, tx_size, type, block);
+ const int16_t *const scan = so->scan;
+ const int16_t *const nb = so->neighbors;
+ int next = eob, sz = 0;
+ int64_t rdmult = mb->rdmult * plane_rd_mult[type], rddiv = mb->rddiv;
+ int64_t rd_cost0, rd_cost1;
+ int rate0, rate1, error0, error1;
+ int16_t t0, t1;
+ EXTRABIT e0;
+ int best, band, pt, i, final_eob;
+#if CONFIG_VP9_HIGHBITDEPTH
+ const int16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd);
+#else
+ const int16_t *cat6_high_cost = vp9_get_high_cost_table(8);
+#endif
+
+ assert((!type && !plane) || (type && plane));
+ assert(eob <= default_eob);
+
+ /* Now set up a Viterbi trellis to evaluate alternative roundings. */
+ if (!ref)
+ rdmult = (rdmult * 9) >> 4;
+
+ /* Initialize the sentinel node of the trellis. */
+ tokens[eob][0].rate = 0;
+ tokens[eob][0].error = 0;
+ tokens[eob][0].next = default_eob;
+ tokens[eob][0].token = EOB_TOKEN;
+ tokens[eob][0].qc = 0;
+ tokens[eob][1] = tokens[eob][0];
+
+ for (i = 0; i < eob; i++)
+ token_cache[scan[i]] =
+ vp9_pt_energy_class[vp9_get_token(qcoeff[scan[i]])];
+
+ for (i = eob; i-- > 0;) {
+ int base_bits, d2, dx;
+ const int rc = scan[i];
+ int x = qcoeff[rc];
+ /* Only add a trellis state for non-zero coefficients. */
+ if (x) {
+ int shortcut = 0;
+ error0 = tokens[next][0].error;
+ error1 = tokens[next][1].error;
+ /* Evaluate the first possibility for this state. */
+ rate0 = tokens[next][0].rate;
+ rate1 = tokens[next][1].rate;
+ vp9_get_token_extra(x, &t0, &e0);
+ /* Consider both possible successor states. */
+ if (next < default_eob) {
+ band = band_translate[i + 1];
+ pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
+ rate0 += mb->token_costs[tx_size][type][ref][band][0][pt]
+ [tokens[next][0].token];
+ rate1 += mb->token_costs[tx_size][type][ref][band][0][pt]
+ [tokens[next][1].token];
+ }
+ UPDATE_RD_COST();
+ /* And pick the best. */
+ best = rd_cost1 < rd_cost0;
+ base_bits = vp9_get_cost(t0, e0, cat6_high_cost);
+ dx = mul * (dqcoeff[rc] - coeff[rc]);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx >>= xd->bd - 8;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ d2 = dx * dx;
+ tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
+ tokens[i][0].error = d2 + (best ? error1 : error0);
+ tokens[i][0].next = next;
+ tokens[i][0].token = t0;
+ tokens[i][0].qc = x;
+ best_index[i][0] = best;
+
+ /* Evaluate the second possibility for this state. */
+ rate0 = tokens[next][0].rate;
+ rate1 = tokens[next][1].rate;
+
+ if ((abs(x) * dequant_ptr[rc != 0] > abs(coeff[rc]) * mul) &&
+ (abs(x) * dequant_ptr[rc != 0] < abs(coeff[rc]) * mul +
+ dequant_ptr[rc != 0]))
+ shortcut = 1;
+ else
+ shortcut = 0;
+
+ if (shortcut) {
+ sz = -(x < 0);
+ x -= 2 * sz + 1;
+ }
+
+ /* Consider both possible successor states. */
+ if (!x) {
+ /* If we reduced this coefficient to zero, check to see if
+ * we need to move the EOB back here.
+ */
+ t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
+ t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
+ e0 = 0;
+ } else {
+ vp9_get_token_extra(x, &t0, &e0);
+ t1 = t0;
+ }
+ if (next < default_eob) {
+ band = band_translate[i + 1];
+ if (t0 != EOB_TOKEN) {
+ pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
+ rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt]
+ [tokens[next][0].token];
+ }
+ if (t1 != EOB_TOKEN) {
+ pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
+ rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt]
+ [tokens[next][1].token];
+ }
+ }
+
+ UPDATE_RD_COST();
+ /* And pick the best. */
+ best = rd_cost1 < rd_cost0;
+ base_bits = vp9_get_cost(t0, e0, cat6_high_cost);
+
+ if (shortcut) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz;
+ } else {
+ dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
+ }
+#else
+ dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ d2 = dx * dx;
+ }
+ tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
+ tokens[i][1].error = d2 + (best ? error1 : error0);
+ tokens[i][1].next = next;
+ tokens[i][1].token = best ? t1 : t0;
+ tokens[i][1].qc = x;
+ best_index[i][1] = best;
+ /* Finally, make this the new head of the trellis. */
+ next = i;
+ } else {
+ /* There's no choice to make for a zero coefficient, so we don't
+ * add a new trellis node, but we do need to update the costs.
+ */
+ band = band_translate[i + 1];
+ t0 = tokens[next][0].token;
+ t1 = tokens[next][1].token;
+ /* Update the cost of each path if we're past the EOB token. */
+ if (t0 != EOB_TOKEN) {
+ tokens[next][0].rate +=
+ mb->token_costs[tx_size][type][ref][band][1][0][t0];
+ tokens[next][0].token = ZERO_TOKEN;
+ }
+ if (t1 != EOB_TOKEN) {
+ tokens[next][1].rate +=
+ mb->token_costs[tx_size][type][ref][band][1][0][t1];
+ tokens[next][1].token = ZERO_TOKEN;
+ }
+ best_index[i][0] = best_index[i][1] = 0;
+ /* Don't update next, because we didn't add a new node. */
+ }
+ }
+
+ /* Now pick the best path through the whole trellis. */
+ band = band_translate[i + 1];
+ rate0 = tokens[next][0].rate;
+ rate1 = tokens[next][1].rate;
+ error0 = tokens[next][0].error;
+ error1 = tokens[next][1].error;
+ t0 = tokens[next][0].token;
+ t1 = tokens[next][1].token;
+ rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0];
+ rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1];
+ UPDATE_RD_COST();
+ best = rd_cost1 < rd_cost0;
+ final_eob = -1;
+ memset(qcoeff, 0, sizeof(*qcoeff) * (16 << (tx_size * 2)));
+ memset(dqcoeff, 0, sizeof(*dqcoeff) * (16 << (tx_size * 2)));
+ for (i = next; i < eob; i = next) {
+ const int x = tokens[i][best].qc;
+ const int rc = scan[i];
+ if (x) {
+ final_eob = i;
+ }
+
+ qcoeff[rc] = x;
+ dqcoeff[rc] = (x * dequant_ptr[rc != 0]) / mul;
+
+ next = tokens[i][best].next;
+ best = best_index[i][best];
+ }
+ final_eob++;
+
+ mb->plane[plane].eobs[block] = final_eob;
+ return final_eob;
+}
+
+static INLINE void fdct32x32(int rd_transform,
+ const int16_t *src, tran_low_t *dst,
+ int src_stride) {
+ if (rd_transform)
+ vp9_fdct32x32_rd(src, dst, src_stride);
+ else
+ vp9_fdct32x32(src, dst, src_stride);
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static INLINE void highbd_fdct32x32(int rd_transform, const int16_t *src,
+ tran_low_t *dst, int src_stride) {
+ if (rd_transform)
+ vp9_highbd_fdct32x32_rd(src, dst, src_stride);
+ else
+ vp9_highbd_fdct32x32(src, dst, src_stride);
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
+ tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint16_t *const eob = &p->eobs[block];
+ const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ int i, j;
+ const int16_t *src_diff;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ src_diff = &p->src_diff[4 * (j * diff_stride + i)];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ switch (tx_size) {
+ case TX_32X32:
+ highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin,
+ p->round_fp, p->quant_fp, p->quant_shift,
+ qcoeff, dqcoeff, pd->dequant,
+ eob, scan_order->scan,
+ scan_order->iscan);
+ break;
+ case TX_16X16:
+ vp9_highbd_fdct16x16(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_8X8:
+ vp9_highbd_fdct8x8(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_4X4:
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ default:
+ assert(0);
+ }
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ switch (tx_size) {
+ case TX_32X32:
+ fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+ vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob, scan_order->scan,
+ scan_order->iscan);
+ break;
+ case TX_16X16:
+ vp9_fdct16x16(src_diff, coeff, diff_stride);
+ vp9_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_8X8:
+ vp9_fdct8x8_quant(src_diff, diff_stride, coeff, 64,
+ x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_4X4:
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+void vp9_xform_quant_dc(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint16_t *const eob = &p->eobs[block];
+ const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ int i, j;
+ const int16_t *src_diff;
+
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ src_diff = &p->src_diff[4 * (j * diff_stride + i)];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ switch (tx_size) {
+ case TX_32X32:
+ vp9_highbd_fdct32x32_1(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_dc_32x32(coeff, x->skip_block, p->round,
+ p->quant_fp[0], qcoeff, dqcoeff,
+ pd->dequant[0], eob);
+ break;
+ case TX_16X16:
+ vp9_highbd_fdct16x16_1(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_dc(coeff, 256, x->skip_block, p->round,
+ p->quant_fp[0], qcoeff, dqcoeff,
+ pd->dequant[0], eob);
+ break;
+ case TX_8X8:
+ vp9_highbd_fdct8x8_1(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_dc(coeff, 64, x->skip_block, p->round,
+ p->quant_fp[0], qcoeff, dqcoeff,
+ pd->dequant[0], eob);
+ break;
+ case TX_4X4:
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_dc(coeff, 16, x->skip_block, p->round,
+ p->quant_fp[0], qcoeff, dqcoeff,
+ pd->dequant[0], eob);
+ break;
+ default:
+ assert(0);
+ }
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ switch (tx_size) {
+ case TX_32X32:
+ vp9_fdct32x32_1(src_diff, coeff, diff_stride);
+ vp9_quantize_dc_32x32(coeff, x->skip_block, p->round,
+ p->quant_fp[0], qcoeff, dqcoeff,
+ pd->dequant[0], eob);
+ break;
+ case TX_16X16:
+ vp9_fdct16x16_1(src_diff, coeff, diff_stride);
+ vp9_quantize_dc(coeff, 256, x->skip_block, p->round,
+ p->quant_fp[0], qcoeff, dqcoeff,
+ pd->dequant[0], eob);
+ break;
+ case TX_8X8:
+ vp9_fdct8x8_1(src_diff, coeff, diff_stride);
+ vp9_quantize_dc(coeff, 64, x->skip_block, p->round,
+ p->quant_fp[0], qcoeff, dqcoeff,
+ pd->dequant[0], eob);
+ break;
+ case TX_4X4:
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_quantize_dc(coeff, 16, x->skip_block, p->round,
+ p->quant_fp[0], qcoeff, dqcoeff,
+ pd->dequant[0], eob);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
+ tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint16_t *const eob = &p->eobs[block];
+ const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ int i, j;
+ const int16_t *src_diff;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ src_diff = &p->src_diff[4 * (j * diff_stride + i)];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ switch (tx_size) {
+ case TX_32X32:
+ highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
+ p->round, p->quant, p->quant_shift, qcoeff,
+ dqcoeff, pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_16X16:
+ vp9_highbd_fdct16x16(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_8X8:
+ vp9_highbd_fdct8x8(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_4X4:
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ default:
+ assert(0);
+ }
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ switch (tx_size) {
+ case TX_32X32:
+ fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+ vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob, scan_order->scan,
+ scan_order->iscan);
+ break;
+ case TX_16X16:
+ vp9_fdct16x16(src_diff, coeff, diff_stride);
+ vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_8X8:
+ vp9_fdct8x8(src_diff, coeff, diff_stride);
+ vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_4X4:
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
+ struct encode_b_args *const args = arg;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct optimize_ctx *const ctx = args->ctx;
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ int i, j;
+ uint8_t *dst;
+ ENTROPY_CONTEXT *a, *l;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
+ a = &ctx->ta[plane][i];
+ l = &ctx->tl[plane][j];
+
+ // TODO(jingning): per transformed block zero forcing only enabled for
+ // luma component. will integrate chroma components as well.
+ if (x->zcoeff_blk[tx_size][block] && plane == 0) {
+ p->eobs[block] = 0;
+ *a = *l = 0;
+ return;
+ }
+
+ if (!x->skip_recode) {
+ if (x->quant_fp) {
+ // Encoding process for rtc mode
+ if (x->skip_txfm[0] == 1 && plane == 0) {
+ // skip forward transform
+ p->eobs[block] = 0;
+ *a = *l = 0;
+ return;
+ } else {
+ vp9_xform_quant_fp(x, plane, block, plane_bsize, tx_size);
+ }
+ } else {
+ if (max_txsize_lookup[plane_bsize] == tx_size) {
+ int txfm_blk_index = (plane << 2) + (block >> (tx_size << 1));
+ if (x->skip_txfm[txfm_blk_index] == 0) {
+ // full forward transform and quantization
+ vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
+ } else if (x->skip_txfm[txfm_blk_index]== 2) {
+ // fast path forward transform and quantization
+ vp9_xform_quant_dc(x, plane, block, plane_bsize, tx_size);
+ } else {
+ // skip forward transform
+ p->eobs[block] = 0;
+ *a = *l = 0;
+ return;
+ }
+ } else {
+ vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
+ }
+ }
+ }
+
+ if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
+ const int ctx = combine_entropy_contexts(*a, *l);
+ *a = *l = optimize_b(x, plane, block, tx_size, ctx) > 0;
+ } else {
+ *a = *l = p->eobs[block] > 0;
+ }
+
+ if (p->eobs[block])
+ *(args->skip) = 0;
+
+ if (x->skip_encode || p->eobs[block] == 0)
+ return;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ switch (tx_size) {
+ case TX_32X32:
+ vp9_highbd_idct32x32_add(dqcoeff, dst, pd->dst.stride,
+ p->eobs[block], xd->bd);
+ break;
+ case TX_16X16:
+ vp9_highbd_idct16x16_add(dqcoeff, dst, pd->dst.stride,
+ p->eobs[block], xd->bd);
+ break;
+ case TX_8X8:
+ vp9_highbd_idct8x8_add(dqcoeff, dst, pd->dst.stride,
+ p->eobs[block], xd->bd);
+ break;
+ case TX_4X4:
+ // this is like vp9_short_idct4x4 but has a special case around eob<=1
+ // which is significant (not just an optimization) for the lossless
+ // case.
+ x->highbd_itxm_add(dqcoeff, dst, pd->dst.stride,
+ p->eobs[block], xd->bd);
+ break;
+ default:
+ assert(0 && "Invalid transform size");
+ }
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ switch (tx_size) {
+ case TX_32X32:
+ vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+ break;
+ case TX_16X16:
+ vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+ break;
+ case TX_8X8:
+ vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+ break;
+ case TX_4X4:
+ // this is like vp9_short_idct4x4 but has a special case around eob<=1
+ // which is significant (not just an optimization) for the lossless
+ // case.
+ x->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+ break;
+ default:
+ assert(0 && "Invalid transform size");
+ break;
+ }
+}
+
+static void encode_block_pass1(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
+ MACROBLOCK *const x = (MACROBLOCK *)arg;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ int i, j;
+ uint8_t *dst;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
+
+ vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
+
+ if (p->eobs[block] > 0) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ x->highbd_itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd);
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ x->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
+ }
+}
+
+void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) {
+ vp9_subtract_plane(x, bsize, 0);
+ vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
+ encode_block_pass1, x);
+}
+
+void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct optimize_ctx ctx;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct encode_b_args arg = {x, &ctx, &mbmi->skip};
+ int plane;
+
+ mbmi->skip = 1;
+
+ if (x->skip)
+ return;
+
+ for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
+ if (!x->skip_recode)
+ vp9_subtract_plane(x, bsize, plane);
+
+ if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
+ const struct macroblockd_plane* const pd = &xd->plane[plane];
+ const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
+ vp9_get_entropy_contexts(bsize, tx_size, pd,
+ ctx.ta[plane], ctx.tl[plane]);
+ }
+
+ vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
+ &arg);
+ }
+}
+
+void vp9_encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
+ struct encode_b_args* const args = arg;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ const scan_order *scan_order;
+ TX_TYPE tx_type;
+ PREDICTION_MODE mode;
+ const int bwl = b_width_log2_lookup[plane_bsize];
+ const int diff_stride = 4 * (1 << bwl);
+ uint8_t *src, *dst;
+ int16_t *src_diff;
+ uint16_t *eob = &p->eobs[block];
+ const int src_stride = p->src.stride;
+ const int dst_stride = pd->dst.stride;
+ int i, j;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ dst = &pd->dst.buf[4 * (j * dst_stride + i)];
+ src = &p->src.buf[4 * (j * src_stride + i)];
+ src_diff = &p->src_diff[4 * (j * diff_stride + i)];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ switch (tx_size) {
+ case TX_32X32:
+ scan_order = &vp9_default_scan_orders[TX_32X32];
+ mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
+ vp9_predict_intra_block(xd, block >> 6, bwl, TX_32X32, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_highbd_subtract_block(32, 32, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride, xd->bd);
+ highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
+ p->round, p->quant, p->quant_shift,
+ qcoeff, dqcoeff, pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ }
+ if (!x->skip_encode && *eob) {
+ vp9_highbd_idct32x32_add(dqcoeff, dst, dst_stride, *eob, xd->bd);
+ }
+ break;
+ case TX_16X16:
+ tx_type = get_tx_type(pd->plane_type, xd);
+ scan_order = &vp9_scan_orders[TX_16X16][tx_type];
+ mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
+ vp9_predict_intra_block(xd, block >> 4, bwl, TX_16X16, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_highbd_subtract_block(16, 16, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride, xd->bd);
+ vp9_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type);
+ vp9_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ }
+ if (!x->skip_encode && *eob) {
+ vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst, dst_stride,
+ *eob, xd->bd);
+ }
+ break;
+ case TX_8X8:
+ tx_type = get_tx_type(pd->plane_type, xd);
+ scan_order = &vp9_scan_orders[TX_8X8][tx_type];
+ mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
+ vp9_predict_intra_block(xd, block >> 2, bwl, TX_8X8, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_highbd_subtract_block(8, 8, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride, xd->bd);
+ vp9_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type);
+ vp9_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ }
+ if (!x->skip_encode && *eob) {
+ vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob,
+ xd->bd);
+ }
+ break;
+ case TX_4X4:
+ tx_type = get_tx_type_4x4(pd->plane_type, xd, block);
+ scan_order = &vp9_scan_orders[TX_4X4][tx_type];
+ mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
+ vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+
+ if (!x->skip_recode) {
+ vp9_highbd_subtract_block(4, 4, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride, xd->bd);
+ if (tx_type != DCT_DCT)
+ vp9_highbd_fht4x4(src_diff, coeff, diff_stride, tx_type);
+ else
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ }
+
+ if (!x->skip_encode && *eob) {
+ if (tx_type == DCT_DCT) {
+ // this is like vp9_short_idct4x4 but has a special case around
+ // eob<=1 which is significant (not just an optimization) for the
+ // lossless case.
+ x->highbd_itxm_add(dqcoeff, dst, dst_stride, *eob, xd->bd);
+ } else {
+ vp9_highbd_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type, xd->bd);
+ }
+ }
+ break;
+ default:
+ assert(0);
+ return;
+ }
+ if (*eob)
+ *(args->skip) = 0;
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ switch (tx_size) {
+ case TX_32X32:
+ scan_order = &vp9_default_scan_orders[TX_32X32];
+ mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
+ vp9_predict_intra_block(xd, block >> 6, bwl, TX_32X32, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_subtract_block(32, 32, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride);
+ fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
+ vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob, scan_order->scan,
+ scan_order->iscan);
+ }
+ if (!x->skip_encode && *eob)
+ vp9_idct32x32_add(dqcoeff, dst, dst_stride, *eob);
+ break;
+ case TX_16X16:
+ tx_type = get_tx_type(pd->plane_type, xd);
+ scan_order = &vp9_scan_orders[TX_16X16][tx_type];
+ mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
+ vp9_predict_intra_block(xd, block >> 4, bwl, TX_16X16, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_subtract_block(16, 16, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride);
+ vp9_fht16x16(src_diff, coeff, diff_stride, tx_type);
+ vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
+ p->quant, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob, scan_order->scan,
+ scan_order->iscan);
+ }
+ if (!x->skip_encode && *eob)
+ vp9_iht16x16_add(tx_type, dqcoeff, dst, dst_stride, *eob);
+ break;
+ case TX_8X8:
+ tx_type = get_tx_type(pd->plane_type, xd);
+ scan_order = &vp9_scan_orders[TX_8X8][tx_type];
+ mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
+ vp9_predict_intra_block(xd, block >> 2, bwl, TX_8X8, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+ if (!x->skip_recode) {
+ vp9_subtract_block(8, 8, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride);
+ vp9_fht8x8(src_diff, coeff, diff_stride, tx_type);
+ vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
+ p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob, scan_order->scan,
+ scan_order->iscan);
+ }
+ if (!x->skip_encode && *eob)
+ vp9_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob);
+ break;
+ case TX_4X4:
+ tx_type = get_tx_type_4x4(pd->plane_type, xd, block);
+ scan_order = &vp9_scan_orders[TX_4X4][tx_type];
+ mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
+ vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, i, j, plane);
+
+ if (!x->skip_recode) {
+ vp9_subtract_block(4, 4, src_diff, diff_stride,
+ src, src_stride, dst, dst_stride);
+ if (tx_type != DCT_DCT)
+ vp9_fht4x4(src_diff, coeff, diff_stride, tx_type);
+ else
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
+ p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob, scan_order->scan,
+ scan_order->iscan);
+ }
+
+ if (!x->skip_encode && *eob) {
+ if (tx_type == DCT_DCT)
+ // this is like vp9_short_idct4x4 but has a special case around eob<=1
+ // which is significant (not just an optimization) for the lossless
+ // case.
+ x->itxm_add(dqcoeff, dst, dst_stride, *eob);
+ else
+ vp9_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type);
+ }
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ if (*eob)
+ *(args->skip) = 0;
+}
+
+void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ struct encode_b_args arg = {x, NULL, &xd->mi[0]->mbmi.skip};
+
+ vp9_foreach_transformed_block_in_plane(xd, bsize, plane,
+ vp9_encode_block_intra, &arg);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_encodemb.h b/media/libvpx/vp9/encoder/vp9_encodemb.h
new file mode 100644
index 000000000..97df8a66b
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_encodemb.h
@@ -0,0 +1,46 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_ENCODEMB_H_
+#define VP9_ENCODER_VP9_ENCODEMB_H_
+
+#include "./vpx_config.h"
+#include "vp9/encoder/vp9_block.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct encode_b_args {
+ MACROBLOCK *x;
+ struct optimize_ctx *ctx;
+ int8_t *skip;
+};
+void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize);
+void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize);
+void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
+void vp9_xform_quant_dc(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
+void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
+
+void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+
+void vp9_encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg);
+
+void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_ENCODEMB_H_
diff --git a/media/libvpx/vp9/encoder/vp9_encodemv.c b/media/libvpx/vp9/encoder/vp9_encodemv.c
new file mode 100644
index 000000000..22759983f
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_encodemv.c
@@ -0,0 +1,266 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_encodemv.h"
+
+static struct vp9_token mv_joint_encodings[MV_JOINTS];
+static struct vp9_token mv_class_encodings[MV_CLASSES];
+static struct vp9_token mv_fp_encodings[MV_FP_SIZE];
+static struct vp9_token mv_class0_encodings[CLASS0_SIZE];
+
+void vp9_entropy_mv_init(void) {
+ vp9_tokens_from_tree(mv_joint_encodings, vp9_mv_joint_tree);
+ vp9_tokens_from_tree(mv_class_encodings, vp9_mv_class_tree);
+ vp9_tokens_from_tree(mv_class0_encodings, vp9_mv_class0_tree);
+ vp9_tokens_from_tree(mv_fp_encodings, vp9_mv_fp_tree);
+}
+
+static void encode_mv_component(vp9_writer* w, int comp,
+ const nmv_component* mvcomp, int usehp) {
+ int offset;
+ const int sign = comp < 0;
+ const int mag = sign ? -comp : comp;
+ const int mv_class = vp9_get_mv_class(mag - 1, &offset);
+ const int d = offset >> 3; // int mv data
+ const int fr = (offset >> 1) & 3; // fractional mv data
+ const int hp = offset & 1; // high precision mv data
+
+ assert(comp != 0);
+
+ // Sign
+ vp9_write(w, sign, mvcomp->sign);
+
+ // Class
+ vp9_write_token(w, vp9_mv_class_tree, mvcomp->classes,
+ &mv_class_encodings[mv_class]);
+
+ // Integer bits
+ if (mv_class == MV_CLASS_0) {
+ vp9_write_token(w, vp9_mv_class0_tree, mvcomp->class0,
+ &mv_class0_encodings[d]);
+ } else {
+ int i;
+ const int n = mv_class + CLASS0_BITS - 1; // number of bits
+ for (i = 0; i < n; ++i)
+ vp9_write(w, (d >> i) & 1, mvcomp->bits[i]);
+ }
+
+ // Fractional bits
+ vp9_write_token(w, vp9_mv_fp_tree,
+ mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp,
+ &mv_fp_encodings[fr]);
+
+ // High precision bit
+ if (usehp)
+ vp9_write(w, hp,
+ mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp);
+}
+
+
+static void build_nmv_component_cost_table(int *mvcost,
+ const nmv_component* const mvcomp,
+ int usehp) {
+ int i, v;
+ int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE];
+ int bits_cost[MV_OFFSET_BITS][2];
+ int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE];
+ int class0_hp_cost[2], hp_cost[2];
+
+ sign_cost[0] = vp9_cost_zero(mvcomp->sign);
+ sign_cost[1] = vp9_cost_one(mvcomp->sign);
+ vp9_cost_tokens(class_cost, mvcomp->classes, vp9_mv_class_tree);
+ vp9_cost_tokens(class0_cost, mvcomp->class0, vp9_mv_class0_tree);
+ for (i = 0; i < MV_OFFSET_BITS; ++i) {
+ bits_cost[i][0] = vp9_cost_zero(mvcomp->bits[i]);
+ bits_cost[i][1] = vp9_cost_one(mvcomp->bits[i]);
+ }
+
+ for (i = 0; i < CLASS0_SIZE; ++i)
+ vp9_cost_tokens(class0_fp_cost[i], mvcomp->class0_fp[i], vp9_mv_fp_tree);
+ vp9_cost_tokens(fp_cost, mvcomp->fp, vp9_mv_fp_tree);
+
+ if (usehp) {
+ class0_hp_cost[0] = vp9_cost_zero(mvcomp->class0_hp);
+ class0_hp_cost[1] = vp9_cost_one(mvcomp->class0_hp);
+ hp_cost[0] = vp9_cost_zero(mvcomp->hp);
+ hp_cost[1] = vp9_cost_one(mvcomp->hp);
+ }
+ mvcost[0] = 0;
+ for (v = 1; v <= MV_MAX; ++v) {
+ int z, c, o, d, e, f, cost = 0;
+ z = v - 1;
+ c = vp9_get_mv_class(z, &o);
+ cost += class_cost[c];
+ d = (o >> 3); /* int mv data */
+ f = (o >> 1) & 3; /* fractional pel mv data */
+ e = (o & 1); /* high precision mv data */
+ if (c == MV_CLASS_0) {
+ cost += class0_cost[d];
+ } else {
+ int i, b;
+ b = c + CLASS0_BITS - 1; /* number of bits */
+ for (i = 0; i < b; ++i)
+ cost += bits_cost[i][((d >> i) & 1)];
+ }
+ if (c == MV_CLASS_0) {
+ cost += class0_fp_cost[d][f];
+ } else {
+ cost += fp_cost[f];
+ }
+ if (usehp) {
+ if (c == MV_CLASS_0) {
+ cost += class0_hp_cost[e];
+ } else {
+ cost += hp_cost[e];
+ }
+ }
+ mvcost[v] = cost + sign_cost[0];
+ mvcost[-v] = cost + sign_cost[1];
+ }
+}
+
+static int update_mv(vp9_writer *w, const unsigned int ct[2], vp9_prob *cur_p,
+ vp9_prob upd_p) {
+ const vp9_prob new_p = get_binary_prob(ct[0], ct[1]) | 1;
+ const int update = cost_branch256(ct, *cur_p) + vp9_cost_zero(upd_p) >
+ cost_branch256(ct, new_p) + vp9_cost_one(upd_p) + 7 * 256;
+ vp9_write(w, update, upd_p);
+ if (update) {
+ *cur_p = new_p;
+ vp9_write_literal(w, new_p >> 1, 7);
+ }
+ return update;
+}
+
+static void write_mv_update(const vp9_tree_index *tree,
+ vp9_prob probs[/*n - 1*/],
+ const unsigned int counts[/*n - 1*/],
+ int n, vp9_writer *w) {
+ int i;
+ unsigned int branch_ct[32][2];
+
+ // Assuming max number of probabilities <= 32
+ assert(n <= 32);
+
+ vp9_tree_probs_from_distribution(tree, branch_ct, counts);
+ for (i = 0; i < n - 1; ++i)
+ update_mv(w, branch_ct[i], &probs[i], MV_UPDATE_PROB);
+}
+
+void vp9_write_nmv_probs(VP9_COMMON *cm, int usehp, vp9_writer *w,
+ nmv_context_counts *const counts) {
+ int i, j;
+ nmv_context *const mvc = &cm->fc->nmvc;
+
+ write_mv_update(vp9_mv_joint_tree, mvc->joints, counts->joints, MV_JOINTS, w);
+
+ for (i = 0; i < 2; ++i) {
+ nmv_component *comp = &mvc->comps[i];
+ nmv_component_counts *comp_counts = &counts->comps[i];
+
+ update_mv(w, comp_counts->sign, &comp->sign, MV_UPDATE_PROB);
+ write_mv_update(vp9_mv_class_tree, comp->classes, comp_counts->classes,
+ MV_CLASSES, w);
+ write_mv_update(vp9_mv_class0_tree, comp->class0, comp_counts->class0,
+ CLASS0_SIZE, w);
+ for (j = 0; j < MV_OFFSET_BITS; ++j)
+ update_mv(w, comp_counts->bits[j], &comp->bits[j], MV_UPDATE_PROB);
+ }
+
+ for (i = 0; i < 2; ++i) {
+ for (j = 0; j < CLASS0_SIZE; ++j)
+ write_mv_update(vp9_mv_fp_tree, mvc->comps[i].class0_fp[j],
+ counts->comps[i].class0_fp[j], MV_FP_SIZE, w);
+
+ write_mv_update(vp9_mv_fp_tree, mvc->comps[i].fp, counts->comps[i].fp,
+ MV_FP_SIZE, w);
+ }
+
+ if (usehp) {
+ for (i = 0; i < 2; ++i) {
+ update_mv(w, counts->comps[i].class0_hp, &mvc->comps[i].class0_hp,
+ MV_UPDATE_PROB);
+ update_mv(w, counts->comps[i].hp, &mvc->comps[i].hp, MV_UPDATE_PROB);
+ }
+ }
+}
+
+void vp9_encode_mv(VP9_COMP* cpi, vp9_writer* w,
+ const MV* mv, const MV* ref,
+ const nmv_context* mvctx, int usehp) {
+ const MV diff = {mv->row - ref->row,
+ mv->col - ref->col};
+ const MV_JOINT_TYPE j = vp9_get_mv_joint(&diff);
+ usehp = usehp && vp9_use_mv_hp(ref);
+
+ vp9_write_token(w, vp9_mv_joint_tree, mvctx->joints, &mv_joint_encodings[j]);
+ if (mv_joint_vertical(j))
+ encode_mv_component(w, diff.row, &mvctx->comps[0], usehp);
+
+ if (mv_joint_horizontal(j))
+ encode_mv_component(w, diff.col, &mvctx->comps[1], usehp);
+
+ // If auto_mv_step_size is enabled then keep track of the largest
+ // motion vector component used.
+ if (cpi->sf.mv.auto_mv_step_size) {
+ unsigned int maxv = MAX(abs(mv->row), abs(mv->col)) >> 3;
+ cpi->max_mv_magnitude = MAX(maxv, cpi->max_mv_magnitude);
+ }
+}
+
+void vp9_build_nmv_cost_table(int *mvjoint, int *mvcost[2],
+ const nmv_context* ctx, int usehp) {
+ vp9_cost_tokens(mvjoint, ctx->joints, vp9_mv_joint_tree);
+ build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], usehp);
+ build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], usehp);
+}
+
+static void inc_mvs(const MB_MODE_INFO *mbmi, const int_mv mvs[2],
+ nmv_context_counts *counts) {
+ int i;
+
+ for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
+ const MV *ref = &mbmi->ref_mvs[mbmi->ref_frame[i]][0].as_mv;
+ const MV diff = {mvs[i].as_mv.row - ref->row,
+ mvs[i].as_mv.col - ref->col};
+ vp9_inc_mv(&diff, counts);
+ }
+}
+
+void vp9_update_mv_count(ThreadData *td) {
+ const MACROBLOCKD *xd = &td->mb.e_mbd;
+ const MODE_INFO *mi = xd->mi[0];
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
+
+ if (mbmi->sb_type < BLOCK_8X8) {
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi->sb_type];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[mbmi->sb_type];
+ int idx, idy;
+
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const int i = idy * 2 + idx;
+ if (mi->bmi[i].as_mode == NEWMV)
+ inc_mvs(mbmi, mi->bmi[i].as_mv, &td->counts->mv);
+ }
+ }
+ } else {
+ if (mbmi->mode == NEWMV)
+ inc_mvs(mbmi, mbmi->mv, &td->counts->mv);
+ }
+}
+
diff --git a/media/libvpx/vp9/encoder/vp9_encodemv.h b/media/libvpx/vp9/encoder/vp9_encodemv.h
new file mode 100644
index 000000000..e8ee5ab66
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_encodemv.h
@@ -0,0 +1,38 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_ENCODEMV_H_
+#define VP9_ENCODER_VP9_ENCODEMV_H_
+
+#include "vp9/encoder/vp9_encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_entropy_mv_init(void);
+
+void vp9_write_nmv_probs(VP9_COMMON *cm, int usehp, vp9_writer *w,
+ nmv_context_counts *const counts);
+
+void vp9_encode_mv(VP9_COMP *cpi, vp9_writer* w, const MV* mv, const MV* ref,
+ const nmv_context* mvctx, int usehp);
+
+void vp9_build_nmv_cost_table(int *mvjoint, int *mvcost[2],
+ const nmv_context* mvctx, int usehp);
+
+void vp9_update_mv_count(ThreadData *td);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_ENCODEMV_H_
diff --git a/media/libvpx/vp9/encoder/vp9_encoder.c b/media/libvpx/vp9/encoder/vp9_encoder.c
new file mode 100644
index 000000000..b79bc00d2
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_encoder.c
@@ -0,0 +1,4578 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <stdio.h>
+#include <limits.h>
+
+#include "./vpx_config.h"
+#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+#include "./vpx_scale_rtcd.h"
+#include "vpx/internal/vpx_psnr.h"
+#include "vpx_ports/mem.h"
+#include "vpx_ports/vpx_timer.h"
+
+#include "vp9/common/vp9_alloccommon.h"
+#include "vp9/common/vp9_filter.h"
+#include "vp9/common/vp9_idct.h"
+#if CONFIG_VP9_POSTPROC
+#include "vp9/common/vp9_postproc.h"
+#endif
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_reconintra.h"
+#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/common/vp9_tile_common.h"
+
+#include "vp9/encoder/vp9_aq_complexity.h"
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+#include "vp9/encoder/vp9_aq_variance.h"
+#include "vp9/encoder/vp9_bitstream.h"
+#include "vp9/encoder/vp9_context_tree.h"
+#include "vp9/encoder/vp9_encodeframe.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_ethread.h"
+#include "vp9/encoder/vp9_firstpass.h"
+#include "vp9/encoder/vp9_mbgraph.h"
+#include "vp9/encoder/vp9_picklpf.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rd.h"
+#include "vp9/encoder/vp9_resize.h"
+#include "vp9/encoder/vp9_segmentation.h"
+#include "vp9/encoder/vp9_skin_detection.h"
+#include "vp9/encoder/vp9_speed_features.h"
+#if CONFIG_INTERNAL_STATS
+#include "vp9/encoder/vp9_ssim.h"
+#endif
+#include "vp9/encoder/vp9_svc_layercontext.h"
+#include "vp9/encoder/vp9_temporal_filter.h"
+
+#define AM_SEGMENT_ID_INACTIVE 7
+#define AM_SEGMENT_ID_ACTIVE 0
+
+#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
+
+#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
+ // for altref computation.
+#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
+ // mv. Choose a very high value for
+ // now so that HIGH_PRECISION is always
+ // chosen.
+// #define OUTPUT_YUV_REC
+
+#ifdef OUTPUT_YUV_DENOISED
+FILE *yuv_denoised_file = NULL;
+#endif
+#ifdef OUTPUT_YUV_SKINMAP
+FILE *yuv_skinmap_file = NULL;
+#endif
+#ifdef OUTPUT_YUV_REC
+FILE *yuv_rec_file;
+#endif
+
+#if 0
+FILE *framepsnr;
+FILE *kf_list;
+FILE *keyfile;
+#endif
+
+static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
+ switch (mode) {
+ case NORMAL:
+ *hr = 1;
+ *hs = 1;
+ break;
+ case FOURFIVE:
+ *hr = 4;
+ *hs = 5;
+ break;
+ case THREEFIVE:
+ *hr = 3;
+ *hs = 5;
+ break;
+ case ONETWO:
+ *hr = 1;
+ *hs = 2;
+ break;
+ default:
+ *hr = 1;
+ *hs = 1;
+ assert(0);
+ break;
+ }
+}
+
+// Mark all inactive blocks as active. Other segmentation features may be set
+// so memset cannot be used, instead only inactive blocks should be reset.
+static void suppress_active_map(VP9_COMP *cpi) {
+ unsigned char *const seg_map = cpi->segmentation_map;
+ int i;
+ if (cpi->active_map.enabled || cpi->active_map.update)
+ for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
+ if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
+ seg_map[i] = AM_SEGMENT_ID_ACTIVE;
+}
+
+static void apply_active_map(VP9_COMP *cpi) {
+ struct segmentation *const seg = &cpi->common.seg;
+ unsigned char *const seg_map = cpi->segmentation_map;
+ const unsigned char *const active_map = cpi->active_map.map;
+ int i;
+
+ assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
+
+ if (frame_is_intra_only(&cpi->common)) {
+ cpi->active_map.enabled = 0;
+ cpi->active_map.update = 1;
+ }
+
+ if (cpi->active_map.update) {
+ if (cpi->active_map.enabled) {
+ for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
+ if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
+ vp9_enable_segmentation(seg);
+ vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
+ vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
+ // Setting the data to -MAX_LOOP_FILTER will result in the computed loop
+ // filter level being zero regardless of the value of seg->abs_delta.
+ vp9_set_segdata(seg, AM_SEGMENT_ID_INACTIVE,
+ SEG_LVL_ALT_LF, -MAX_LOOP_FILTER);
+ } else {
+ vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
+ vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
+ if (seg->enabled) {
+ seg->update_data = 1;
+ seg->update_map = 1;
+ }
+ }
+ cpi->active_map.update = 0;
+ }
+}
+
+int vp9_set_active_map(VP9_COMP* cpi,
+ unsigned char* new_map_16x16,
+ int rows,
+ int cols) {
+ if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
+ unsigned char *const active_map_8x8 = cpi->active_map.map;
+ const int mi_rows = cpi->common.mi_rows;
+ const int mi_cols = cpi->common.mi_cols;
+ cpi->active_map.update = 1;
+ if (new_map_16x16) {
+ int r, c;
+ for (r = 0; r < mi_rows; ++r) {
+ for (c = 0; c < mi_cols; ++c) {
+ active_map_8x8[r * mi_cols + c] =
+ new_map_16x16[(r >> 1) * cols + (c >> 1)]
+ ? AM_SEGMENT_ID_ACTIVE
+ : AM_SEGMENT_ID_INACTIVE;
+ }
+ }
+ cpi->active_map.enabled = 1;
+ } else {
+ cpi->active_map.enabled = 0;
+ }
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+int vp9_get_active_map(VP9_COMP* cpi,
+ unsigned char* new_map_16x16,
+ int rows,
+ int cols) {
+ if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
+ new_map_16x16) {
+ unsigned char* const seg_map_8x8 = cpi->segmentation_map;
+ const int mi_rows = cpi->common.mi_rows;
+ const int mi_cols = cpi->common.mi_cols;
+ memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
+ if (cpi->active_map.enabled) {
+ int r, c;
+ for (r = 0; r < mi_rows; ++r) {
+ for (c = 0; c < mi_cols; ++c) {
+ // Cyclic refresh segments are considered active despite not having
+ // AM_SEGMENT_ID_ACTIVE
+ new_map_16x16[(r >> 1) * cols + (c >> 1)] |=
+ seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
+ }
+ }
+ }
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
+ MACROBLOCK *const mb = &cpi->td.mb;
+ cpi->common.allow_high_precision_mv = allow_high_precision_mv;
+ if (cpi->common.allow_high_precision_mv) {
+ mb->mvcost = mb->nmvcost_hp;
+ mb->mvsadcost = mb->nmvsadcost_hp;
+ } else {
+ mb->mvcost = mb->nmvcost;
+ mb->mvsadcost = mb->nmvsadcost;
+ }
+}
+
+static void setup_frame(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ // Set up entropy context depending on frame type. The decoder mandates
+ // the use of the default context, index 0, for keyframes and inter
+ // frames where the error_resilient_mode or intra_only flag is set. For
+ // other inter-frames the encoder currently uses only two contexts;
+ // context 1 for ALTREF frames and context 0 for the others.
+ if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
+ vp9_setup_past_independence(cm);
+ } else {
+ if (!cpi->use_svc)
+ cm->frame_context_idx = cpi->refresh_alt_ref_frame;
+ }
+
+ if (cm->frame_type == KEY_FRAME) {
+ if (!is_two_pass_svc(cpi))
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_alt_ref_frame = 1;
+ vp9_zero(cpi->interp_filter_selected);
+ } else {
+ *cm->fc = cm->frame_contexts[cm->frame_context_idx];
+ vp9_zero(cpi->interp_filter_selected[0]);
+ }
+}
+
+static void vp9_enc_setup_mi(VP9_COMMON *cm) {
+ int i;
+ cm->mi = cm->mip + cm->mi_stride + 1;
+ memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip));
+ cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
+ // Clear top border row
+ memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
+ // Clear left border column
+ for (i = 1; i < cm->mi_rows + 1; ++i)
+ memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
+
+ cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
+ cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
+
+ memset(cm->mi_grid_base, 0,
+ cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base));
+}
+
+static int vp9_enc_alloc_mi(VP9_COMMON *cm, int mi_size) {
+ cm->mip = vpx_calloc(mi_size, sizeof(*cm->mip));
+ if (!cm->mip)
+ return 1;
+ cm->prev_mip = vpx_calloc(mi_size, sizeof(*cm->prev_mip));
+ if (!cm->prev_mip)
+ return 1;
+ cm->mi_alloc_size = mi_size;
+
+ cm->mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO*));
+ if (!cm->mi_grid_base)
+ return 1;
+ cm->prev_mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO*));
+ if (!cm->prev_mi_grid_base)
+ return 1;
+
+ return 0;
+}
+
+static void vp9_enc_free_mi(VP9_COMMON *cm) {
+ vpx_free(cm->mip);
+ cm->mip = NULL;
+ vpx_free(cm->prev_mip);
+ cm->prev_mip = NULL;
+ vpx_free(cm->mi_grid_base);
+ cm->mi_grid_base = NULL;
+ vpx_free(cm->prev_mi_grid_base);
+ cm->prev_mi_grid_base = NULL;
+}
+
+static void vp9_swap_mi_and_prev_mi(VP9_COMMON *cm) {
+ // Current mip will be the prev_mip for the next frame.
+ MODE_INFO **temp_base = cm->prev_mi_grid_base;
+ MODE_INFO *temp = cm->prev_mip;
+ cm->prev_mip = cm->mip;
+ cm->mip = temp;
+
+ // Update the upper left visible macroblock ptrs.
+ cm->mi = cm->mip + cm->mi_stride + 1;
+ cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
+
+ cm->prev_mi_grid_base = cm->mi_grid_base;
+ cm->mi_grid_base = temp_base;
+ cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
+ cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
+}
+
+void vp9_initialize_enc(void) {
+ static volatile int init_done = 0;
+
+ if (!init_done) {
+ vp9_rtcd();
+ vpx_dsp_rtcd();
+ vpx_scale_rtcd();
+ vp9_init_intra_predictors();
+ vp9_init_me_luts();
+ vp9_rc_init_minq_luts();
+ vp9_entropy_mv_init();
+ vp9_temporal_filter_init();
+ init_done = 1;
+ }
+}
+
+static void dealloc_compressor_data(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ int i;
+
+ vpx_free(cpi->tile_data);
+ cpi->tile_data = NULL;
+
+ // Delete sementation map
+ vpx_free(cpi->segmentation_map);
+ cpi->segmentation_map = NULL;
+ vpx_free(cpi->coding_context.last_frame_seg_map_copy);
+ cpi->coding_context.last_frame_seg_map_copy = NULL;
+
+ vpx_free(cpi->nmvcosts[0]);
+ vpx_free(cpi->nmvcosts[1]);
+ cpi->nmvcosts[0] = NULL;
+ cpi->nmvcosts[1] = NULL;
+
+ vpx_free(cpi->nmvcosts_hp[0]);
+ vpx_free(cpi->nmvcosts_hp[1]);
+ cpi->nmvcosts_hp[0] = NULL;
+ cpi->nmvcosts_hp[1] = NULL;
+
+ vpx_free(cpi->nmvsadcosts[0]);
+ vpx_free(cpi->nmvsadcosts[1]);
+ cpi->nmvsadcosts[0] = NULL;
+ cpi->nmvsadcosts[1] = NULL;
+
+ vpx_free(cpi->nmvsadcosts_hp[0]);
+ vpx_free(cpi->nmvsadcosts_hp[1]);
+ cpi->nmvsadcosts_hp[0] = NULL;
+ cpi->nmvsadcosts_hp[1] = NULL;
+
+ vp9_cyclic_refresh_free(cpi->cyclic_refresh);
+ cpi->cyclic_refresh = NULL;
+
+ vpx_free(cpi->active_map.map);
+ cpi->active_map.map = NULL;
+
+ vp9_free_ref_frame_buffers(cm->buffer_pool);
+#if CONFIG_VP9_POSTPROC
+ vp9_free_postproc_buffers(cm);
+#endif
+ vp9_free_context_buffers(cm);
+
+ vp9_free_frame_buffer(&cpi->last_frame_uf);
+ vp9_free_frame_buffer(&cpi->scaled_source);
+ vp9_free_frame_buffer(&cpi->scaled_last_source);
+ vp9_free_frame_buffer(&cpi->alt_ref_buffer);
+ vp9_lookahead_destroy(cpi->lookahead);
+
+ vpx_free(cpi->tile_tok[0][0]);
+ cpi->tile_tok[0][0] = 0;
+
+ vp9_free_pc_tree(&cpi->td);
+
+ for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
+ LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i];
+ vpx_free(lc->rc_twopass_stats_in.buf);
+ lc->rc_twopass_stats_in.buf = NULL;
+ lc->rc_twopass_stats_in.sz = 0;
+ }
+
+ if (cpi->source_diff_var != NULL) {
+ vpx_free(cpi->source_diff_var);
+ cpi->source_diff_var = NULL;
+ }
+
+ for (i = 0; i < MAX_LAG_BUFFERS; ++i) {
+ vp9_free_frame_buffer(&cpi->svc.scaled_frames[i]);
+ }
+ memset(&cpi->svc.scaled_frames[0], 0,
+ MAX_LAG_BUFFERS * sizeof(cpi->svc.scaled_frames[0]));
+
+ vp9_free_frame_buffer(&cpi->svc.empty_frame.img);
+ memset(&cpi->svc.empty_frame, 0, sizeof(cpi->svc.empty_frame));
+}
+
+static void save_coding_context(VP9_COMP *cpi) {
+ CODING_CONTEXT *const cc = &cpi->coding_context;
+ VP9_COMMON *cm = &cpi->common;
+
+ // Stores a snapshot of key state variables which can subsequently be
+ // restored with a call to vp9_restore_coding_context. These functions are
+ // intended for use in a re-code loop in vp9_compress_frame where the
+ // quantizer value is adjusted between loop iterations.
+ vp9_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost);
+
+ memcpy(cc->nmvcosts[0], cpi->nmvcosts[0],
+ MV_VALS * sizeof(*cpi->nmvcosts[0]));
+ memcpy(cc->nmvcosts[1], cpi->nmvcosts[1],
+ MV_VALS * sizeof(*cpi->nmvcosts[1]));
+ memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0],
+ MV_VALS * sizeof(*cpi->nmvcosts_hp[0]));
+ memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1],
+ MV_VALS * sizeof(*cpi->nmvcosts_hp[1]));
+
+ vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
+
+ memcpy(cpi->coding_context.last_frame_seg_map_copy,
+ cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
+
+ vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
+ vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
+
+ cc->fc = *cm->fc;
+}
+
+static void restore_coding_context(VP9_COMP *cpi) {
+ CODING_CONTEXT *const cc = &cpi->coding_context;
+ VP9_COMMON *cm = &cpi->common;
+
+ // Restore key state variables to the snapshot state stored in the
+ // previous call to vp9_save_coding_context.
+ vp9_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost);
+
+ memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0]));
+ memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1]));
+ memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0],
+ MV_VALS * sizeof(*cc->nmvcosts_hp[0]));
+ memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1],
+ MV_VALS * sizeof(*cc->nmvcosts_hp[1]));
+
+ vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
+
+ memcpy(cm->last_frame_seg_map,
+ cpi->coding_context.last_frame_seg_map_copy,
+ (cm->mi_rows * cm->mi_cols));
+
+ vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
+ vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
+
+ *cm->fc = cc->fc;
+}
+
+static void configure_static_seg_features(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ struct segmentation *const seg = &cm->seg;
+
+ int high_q = (int)(rc->avg_q > 48.0);
+ int qi_delta;
+
+ // Disable and clear down for KF
+ if (cm->frame_type == KEY_FRAME) {
+ // Clear down the global segmentation map
+ memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+ seg->update_map = 0;
+ seg->update_data = 0;
+ cpi->static_mb_pct = 0;
+
+ // Disable segmentation
+ vp9_disable_segmentation(seg);
+
+ // Clear down the segment features.
+ vp9_clearall_segfeatures(seg);
+ } else if (cpi->refresh_alt_ref_frame) {
+ // If this is an alt ref frame
+ // Clear down the global segmentation map
+ memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+ seg->update_map = 0;
+ seg->update_data = 0;
+ cpi->static_mb_pct = 0;
+
+ // Disable segmentation and individual segment features by default
+ vp9_disable_segmentation(seg);
+ vp9_clearall_segfeatures(seg);
+
+ // Scan frames from current to arf frame.
+ // This function re-enables segmentation if appropriate.
+ vp9_update_mbgraph_stats(cpi);
+
+ // If segmentation was enabled set those features needed for the
+ // arf itself.
+ if (seg->enabled) {
+ seg->update_map = 1;
+ seg->update_data = 1;
+
+ qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875,
+ cm->bit_depth);
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
+
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
+
+ // Where relevant assume segment data is delta data
+ seg->abs_delta = SEGMENT_DELTADATA;
+ }
+ } else if (seg->enabled) {
+ // All other frames if segmentation has been enabled
+
+ // First normal frame in a valid gf or alt ref group
+ if (rc->frames_since_golden == 0) {
+ // Set up segment features for normal frames in an arf group
+ if (rc->source_alt_ref_active) {
+ seg->update_map = 0;
+ seg->update_data = 1;
+ seg->abs_delta = SEGMENT_DELTADATA;
+
+ qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125,
+ cm->bit_depth);
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
+
+ vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
+
+ // Segment coding disabled for compred testing
+ if (high_q || (cpi->static_mb_pct == 100)) {
+ vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
+ }
+ } else {
+ // Disable segmentation and clear down features if alt ref
+ // is not active for this group
+
+ vp9_disable_segmentation(seg);
+
+ memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
+
+ seg->update_map = 0;
+ seg->update_data = 0;
+
+ vp9_clearall_segfeatures(seg);
+ }
+ } else if (rc->is_src_frame_alt_ref) {
+ // Special case where we are coding over the top of a previous
+ // alt ref frame.
+ // Segment coding disabled for compred testing
+
+ // Enable ref frame features for segment 0 as well
+ vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
+
+ // All mbs should use ALTREF_FRAME
+ vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
+ vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+ vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
+ vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
+
+ // Skip all MBs if high Q (0,0 mv and skip coeffs)
+ if (high_q) {
+ vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
+ vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
+ }
+ // Enable data update
+ seg->update_data = 1;
+ } else {
+ // All other frames.
+
+ // No updates.. leave things as they are.
+ seg->update_map = 0;
+ seg->update_data = 0;
+ }
+ }
+}
+
+static void update_reference_segmentation_map(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
+ uint8_t *cache_ptr = cm->last_frame_seg_map;
+ int row, col;
+
+ for (row = 0; row < cm->mi_rows; row++) {
+ MODE_INFO **mi_8x8 = mi_8x8_ptr;
+ uint8_t *cache = cache_ptr;
+ for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
+ cache[0] = mi_8x8[0]->mbmi.segment_id;
+ mi_8x8_ptr += cm->mi_stride;
+ cache_ptr += cm->mi_cols;
+ }
+}
+
+static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+
+ if (!cpi->lookahead)
+ cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ oxcf->lag_in_frames);
+ if (!cpi->lookahead)
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate lag buffers");
+
+ // TODO(agrange) Check if ARF is enabled and skip allocation if not.
+ if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
+ oxcf->width, oxcf->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+ NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate altref buffer");
+}
+
+static void alloc_util_frame_buffers(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+ NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate last frame buffer");
+
+ if (vp9_realloc_frame_buffer(&cpi->scaled_source,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+ NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate scaled source buffer");
+
+ if (vp9_realloc_frame_buffer(&cpi->scaled_last_source,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+ NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate scaled last source buffer");
+}
+
+void vp9_alloc_compressor_data(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+
+ vp9_alloc_context_buffers(cm, cm->width, cm->height);
+
+ vpx_free(cpi->tile_tok[0][0]);
+
+ {
+ unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
+ CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
+ vpx_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
+ }
+
+ vp9_setup_pc_tree(&cpi->common, &cpi->td);
+}
+
+void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
+ cpi->framerate = framerate < 0.1 ? 30 : framerate;
+ vp9_rc_update_framerate(cpi);
+}
+
+static void set_tile_limits(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ int min_log2_tile_cols, max_log2_tile_cols;
+ vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
+
+ if (is_two_pass_svc(cpi) &&
+ (cpi->svc.encode_empty_frame_state == ENCODING ||
+ cpi->svc.number_spatial_layers > 1)) {
+ cm->log2_tile_cols = 0;
+ cm->log2_tile_rows = 0;
+ } else {
+ cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
+ min_log2_tile_cols, max_log2_tile_cols);
+ cm->log2_tile_rows = cpi->oxcf.tile_rows;
+ }
+}
+
+static void update_frame_size(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+ vp9_set_mb_mi(cm, cm->width, cm->height);
+ vp9_init_context_buffers(cm);
+ init_macroblockd(cm, xd);
+
+ set_tile_limits(cpi);
+
+ if (is_two_pass_svc(cpi)) {
+ if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+ NULL, NULL, NULL))
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to reallocate alt_ref_buffer");
+ }
+}
+
+static void init_buffer_indices(VP9_COMP *cpi) {
+ cpi->lst_fb_idx = 0;
+ cpi->gld_fb_idx = 1;
+ cpi->alt_fb_idx = 2;
+}
+
+static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ cpi->oxcf = *oxcf;
+ cpi->framerate = oxcf->init_framerate;
+
+ cm->profile = oxcf->profile;
+ cm->bit_depth = oxcf->bit_depth;
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth = oxcf->use_highbitdepth;
+#endif
+ cm->color_space = oxcf->color_space;
+
+ cm->width = oxcf->width;
+ cm->height = oxcf->height;
+ vp9_alloc_compressor_data(cpi);
+
+ cpi->svc.temporal_layering_mode = oxcf->temporal_layering_mode;
+
+ // Single thread case: use counts in common.
+ cpi->td.counts = &cm->counts;
+
+ // Spatial scalability.
+ cpi->svc.number_spatial_layers = oxcf->ss_number_layers;
+ // Temporal scalability.
+ cpi->svc.number_temporal_layers = oxcf->ts_number_layers;
+
+ if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) ||
+ ((cpi->svc.number_temporal_layers > 1 ||
+ cpi->svc.number_spatial_layers > 1) &&
+ cpi->oxcf.pass != 1)) {
+ vp9_init_layer_context(cpi);
+ }
+
+ // change includes all joint functionality
+ vp9_change_config(cpi, oxcf);
+
+ cpi->static_mb_pct = 0;
+ cpi->ref_frame_flags = 0;
+
+ init_buffer_indices(cpi);
+}
+
+static void set_rc_buffer_sizes(RATE_CONTROL *rc,
+ const VP9EncoderConfig *oxcf) {
+ const int64_t bandwidth = oxcf->target_bandwidth;
+ const int64_t starting = oxcf->starting_buffer_level_ms;
+ const int64_t optimal = oxcf->optimal_buffer_level_ms;
+ const int64_t maximum = oxcf->maximum_buffer_size_ms;
+
+ rc->starting_buffer_level = starting * bandwidth / 1000;
+ rc->optimal_buffer_level = (optimal == 0) ? bandwidth / 8
+ : optimal * bandwidth / 1000;
+ rc->maximum_buffer_size = (maximum == 0) ? bandwidth / 8
+ : maximum * bandwidth / 1000;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
+ cpi->fn_ptr[BT].sdf = SDF; \
+ cpi->fn_ptr[BT].sdaf = SDAF; \
+ cpi->fn_ptr[BT].vf = VF; \
+ cpi->fn_ptr[BT].svf = SVF; \
+ cpi->fn_ptr[BT].svaf = SVAF; \
+ cpi->fn_ptr[BT].sdx3f = SDX3F; \
+ cpi->fn_ptr[BT].sdx8f = SDX8F; \
+ cpi->fn_ptr[BT].sdx4df = SDX4DF;
+
+#define MAKE_BFP_SAD_WRAPPER(fnname) \
+static unsigned int fnname##_bits8(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride) { \
+ return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \
+} \
+static unsigned int fnname##_bits10(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride) { \
+ return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \
+} \
+static unsigned int fnname##_bits12(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride) { \
+ return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \
+}
+
+#define MAKE_BFP_SADAVG_WRAPPER(fnname) static unsigned int \
+fnname##_bits8(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ const uint8_t *second_pred) { \
+ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \
+} \
+static unsigned int fnname##_bits10(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ const uint8_t *second_pred) { \
+ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
+ second_pred) >> 2; \
+} \
+static unsigned int fnname##_bits12(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ const uint8_t *second_pred) { \
+ return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
+ second_pred) >> 4; \
+}
+
+#define MAKE_BFP_SAD3_WRAPPER(fnname) \
+static void fnname##_bits8(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+} \
+static void fnname##_bits10(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ int i; \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+ for (i = 0; i < 3; i++) \
+ sad_array[i] >>= 2; \
+} \
+static void fnname##_bits12(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ int i; \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+ for (i = 0; i < 3; i++) \
+ sad_array[i] >>= 4; \
+}
+
+#define MAKE_BFP_SAD8_WRAPPER(fnname) \
+static void fnname##_bits8(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+} \
+static void fnname##_bits10(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ int i; \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+ for (i = 0; i < 8; i++) \
+ sad_array[i] >>= 2; \
+} \
+static void fnname##_bits12(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t *ref_ptr, \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ int i; \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+ for (i = 0; i < 8; i++) \
+ sad_array[i] >>= 4; \
+}
+#define MAKE_BFP_SAD4D_WRAPPER(fnname) \
+static void fnname##_bits8(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t* const ref_ptr[], \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+} \
+static void fnname##_bits10(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t* const ref_ptr[], \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ int i; \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+ for (i = 0; i < 4; i++) \
+ sad_array[i] >>= 2; \
+} \
+static void fnname##_bits12(const uint8_t *src_ptr, \
+ int source_stride, \
+ const uint8_t* const ref_ptr[], \
+ int ref_stride, \
+ unsigned int *sad_array) { \
+ int i; \
+ fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
+ for (i = 0; i < 4; i++) \
+ sad_array[i] >>= 4; \
+}
+
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x16)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x16_avg)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x16x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x32)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x32_avg)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x32x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x32)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x32_avg)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x32x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x64)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x64_avg)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x64x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x32)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x32_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad32x32x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad32x32x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x32x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x64)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x64_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad64x64x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad64x64x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x64x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x16)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x16_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad16x16x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad16x16x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x16x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x8)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x8_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad16x8x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad16x8x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x8x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x16)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x16_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad8x16x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x16x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x16x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x8)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x8_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad8x8x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x8x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x8x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x4)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x4_avg)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x4x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x4x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x8)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x8_avg)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad4x8x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x8x4d)
+MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x4)
+MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x4_avg)
+MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad4x4x3)
+MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad4x4x8)
+MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x4x4d)
+
+static void highbd_set_var_fns(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ if (cm->use_highbitdepth) {
+ switch (cm->bit_depth) {
+ case VPX_BITS_8:
+ HIGHBD_BFP(BLOCK_32X16,
+ vpx_highbd_sad32x16_bits8,
+ vpx_highbd_sad32x16_avg_bits8,
+ vpx_highbd_8_variance32x16,
+ vp9_highbd_sub_pixel_variance32x16,
+ vp9_highbd_sub_pixel_avg_variance32x16,
+ NULL,
+ NULL,
+ vpx_highbd_sad32x16x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_16X32,
+ vpx_highbd_sad16x32_bits8,
+ vpx_highbd_sad16x32_avg_bits8,
+ vpx_highbd_8_variance16x32,
+ vp9_highbd_sub_pixel_variance16x32,
+ vp9_highbd_sub_pixel_avg_variance16x32,
+ NULL,
+ NULL,
+ vpx_highbd_sad16x32x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_64X32,
+ vpx_highbd_sad64x32_bits8,
+ vpx_highbd_sad64x32_avg_bits8,
+ vpx_highbd_8_variance64x32,
+ vp9_highbd_sub_pixel_variance64x32,
+ vp9_highbd_sub_pixel_avg_variance64x32,
+ NULL,
+ NULL,
+ vpx_highbd_sad64x32x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_32X64,
+ vpx_highbd_sad32x64_bits8,
+ vpx_highbd_sad32x64_avg_bits8,
+ vpx_highbd_8_variance32x64,
+ vp9_highbd_sub_pixel_variance32x64,
+ vp9_highbd_sub_pixel_avg_variance32x64,
+ NULL,
+ NULL,
+ vpx_highbd_sad32x64x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_32X32,
+ vpx_highbd_sad32x32_bits8,
+ vpx_highbd_sad32x32_avg_bits8,
+ vpx_highbd_8_variance32x32,
+ vp9_highbd_sub_pixel_variance32x32,
+ vp9_highbd_sub_pixel_avg_variance32x32,
+ vpx_highbd_sad32x32x3_bits8,
+ vpx_highbd_sad32x32x8_bits8,
+ vpx_highbd_sad32x32x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_64X64,
+ vpx_highbd_sad64x64_bits8,
+ vpx_highbd_sad64x64_avg_bits8,
+ vpx_highbd_8_variance64x64,
+ vp9_highbd_sub_pixel_variance64x64,
+ vp9_highbd_sub_pixel_avg_variance64x64,
+ vpx_highbd_sad64x64x3_bits8,
+ vpx_highbd_sad64x64x8_bits8,
+ vpx_highbd_sad64x64x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_16X16,
+ vpx_highbd_sad16x16_bits8,
+ vpx_highbd_sad16x16_avg_bits8,
+ vpx_highbd_8_variance16x16,
+ vp9_highbd_sub_pixel_variance16x16,
+ vp9_highbd_sub_pixel_avg_variance16x16,
+ vpx_highbd_sad16x16x3_bits8,
+ vpx_highbd_sad16x16x8_bits8,
+ vpx_highbd_sad16x16x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_16X8,
+ vpx_highbd_sad16x8_bits8,
+ vpx_highbd_sad16x8_avg_bits8,
+ vpx_highbd_8_variance16x8,
+ vp9_highbd_sub_pixel_variance16x8,
+ vp9_highbd_sub_pixel_avg_variance16x8,
+ vpx_highbd_sad16x8x3_bits8,
+ vpx_highbd_sad16x8x8_bits8,
+ vpx_highbd_sad16x8x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_8X16,
+ vpx_highbd_sad8x16_bits8,
+ vpx_highbd_sad8x16_avg_bits8,
+ vpx_highbd_8_variance8x16,
+ vp9_highbd_sub_pixel_variance8x16,
+ vp9_highbd_sub_pixel_avg_variance8x16,
+ vpx_highbd_sad8x16x3_bits8,
+ vpx_highbd_sad8x16x8_bits8,
+ vpx_highbd_sad8x16x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_8X8,
+ vpx_highbd_sad8x8_bits8,
+ vpx_highbd_sad8x8_avg_bits8,
+ vpx_highbd_8_variance8x8,
+ vp9_highbd_sub_pixel_variance8x8,
+ vp9_highbd_sub_pixel_avg_variance8x8,
+ vpx_highbd_sad8x8x3_bits8,
+ vpx_highbd_sad8x8x8_bits8,
+ vpx_highbd_sad8x8x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_8X4,
+ vpx_highbd_sad8x4_bits8,
+ vpx_highbd_sad8x4_avg_bits8,
+ vpx_highbd_8_variance8x4,
+ vp9_highbd_sub_pixel_variance8x4,
+ vp9_highbd_sub_pixel_avg_variance8x4,
+ NULL,
+ vpx_highbd_sad8x4x8_bits8,
+ vpx_highbd_sad8x4x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_4X8,
+ vpx_highbd_sad4x8_bits8,
+ vpx_highbd_sad4x8_avg_bits8,
+ vpx_highbd_8_variance4x8,
+ vp9_highbd_sub_pixel_variance4x8,
+ vp9_highbd_sub_pixel_avg_variance4x8,
+ NULL,
+ vpx_highbd_sad4x8x8_bits8,
+ vpx_highbd_sad4x8x4d_bits8)
+
+ HIGHBD_BFP(BLOCK_4X4,
+ vpx_highbd_sad4x4_bits8,
+ vpx_highbd_sad4x4_avg_bits8,
+ vpx_highbd_8_variance4x4,
+ vp9_highbd_sub_pixel_variance4x4,
+ vp9_highbd_sub_pixel_avg_variance4x4,
+ vpx_highbd_sad4x4x3_bits8,
+ vpx_highbd_sad4x4x8_bits8,
+ vpx_highbd_sad4x4x4d_bits8)
+ break;
+
+ case VPX_BITS_10:
+ HIGHBD_BFP(BLOCK_32X16,
+ vpx_highbd_sad32x16_bits10,
+ vpx_highbd_sad32x16_avg_bits10,
+ vpx_highbd_10_variance32x16,
+ vp9_highbd_10_sub_pixel_variance32x16,
+ vp9_highbd_10_sub_pixel_avg_variance32x16,
+ NULL,
+ NULL,
+ vpx_highbd_sad32x16x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_16X32,
+ vpx_highbd_sad16x32_bits10,
+ vpx_highbd_sad16x32_avg_bits10,
+ vpx_highbd_10_variance16x32,
+ vp9_highbd_10_sub_pixel_variance16x32,
+ vp9_highbd_10_sub_pixel_avg_variance16x32,
+ NULL,
+ NULL,
+ vpx_highbd_sad16x32x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_64X32,
+ vpx_highbd_sad64x32_bits10,
+ vpx_highbd_sad64x32_avg_bits10,
+ vpx_highbd_10_variance64x32,
+ vp9_highbd_10_sub_pixel_variance64x32,
+ vp9_highbd_10_sub_pixel_avg_variance64x32,
+ NULL,
+ NULL,
+ vpx_highbd_sad64x32x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_32X64,
+ vpx_highbd_sad32x64_bits10,
+ vpx_highbd_sad32x64_avg_bits10,
+ vpx_highbd_10_variance32x64,
+ vp9_highbd_10_sub_pixel_variance32x64,
+ vp9_highbd_10_sub_pixel_avg_variance32x64,
+ NULL,
+ NULL,
+ vpx_highbd_sad32x64x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_32X32,
+ vpx_highbd_sad32x32_bits10,
+ vpx_highbd_sad32x32_avg_bits10,
+ vpx_highbd_10_variance32x32,
+ vp9_highbd_10_sub_pixel_variance32x32,
+ vp9_highbd_10_sub_pixel_avg_variance32x32,
+ vpx_highbd_sad32x32x3_bits10,
+ vpx_highbd_sad32x32x8_bits10,
+ vpx_highbd_sad32x32x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_64X64,
+ vpx_highbd_sad64x64_bits10,
+ vpx_highbd_sad64x64_avg_bits10,
+ vpx_highbd_10_variance64x64,
+ vp9_highbd_10_sub_pixel_variance64x64,
+ vp9_highbd_10_sub_pixel_avg_variance64x64,
+ vpx_highbd_sad64x64x3_bits10,
+ vpx_highbd_sad64x64x8_bits10,
+ vpx_highbd_sad64x64x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_16X16,
+ vpx_highbd_sad16x16_bits10,
+ vpx_highbd_sad16x16_avg_bits10,
+ vpx_highbd_10_variance16x16,
+ vp9_highbd_10_sub_pixel_variance16x16,
+ vp9_highbd_10_sub_pixel_avg_variance16x16,
+ vpx_highbd_sad16x16x3_bits10,
+ vpx_highbd_sad16x16x8_bits10,
+ vpx_highbd_sad16x16x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_16X8,
+ vpx_highbd_sad16x8_bits10,
+ vpx_highbd_sad16x8_avg_bits10,
+ vpx_highbd_10_variance16x8,
+ vp9_highbd_10_sub_pixel_variance16x8,
+ vp9_highbd_10_sub_pixel_avg_variance16x8,
+ vpx_highbd_sad16x8x3_bits10,
+ vpx_highbd_sad16x8x8_bits10,
+ vpx_highbd_sad16x8x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_8X16,
+ vpx_highbd_sad8x16_bits10,
+ vpx_highbd_sad8x16_avg_bits10,
+ vpx_highbd_10_variance8x16,
+ vp9_highbd_10_sub_pixel_variance8x16,
+ vp9_highbd_10_sub_pixel_avg_variance8x16,
+ vpx_highbd_sad8x16x3_bits10,
+ vpx_highbd_sad8x16x8_bits10,
+ vpx_highbd_sad8x16x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_8X8,
+ vpx_highbd_sad8x8_bits10,
+ vpx_highbd_sad8x8_avg_bits10,
+ vpx_highbd_10_variance8x8,
+ vp9_highbd_10_sub_pixel_variance8x8,
+ vp9_highbd_10_sub_pixel_avg_variance8x8,
+ vpx_highbd_sad8x8x3_bits10,
+ vpx_highbd_sad8x8x8_bits10,
+ vpx_highbd_sad8x8x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_8X4,
+ vpx_highbd_sad8x4_bits10,
+ vpx_highbd_sad8x4_avg_bits10,
+ vpx_highbd_10_variance8x4,
+ vp9_highbd_10_sub_pixel_variance8x4,
+ vp9_highbd_10_sub_pixel_avg_variance8x4,
+ NULL,
+ vpx_highbd_sad8x4x8_bits10,
+ vpx_highbd_sad8x4x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_4X8,
+ vpx_highbd_sad4x8_bits10,
+ vpx_highbd_sad4x8_avg_bits10,
+ vpx_highbd_10_variance4x8,
+ vp9_highbd_10_sub_pixel_variance4x8,
+ vp9_highbd_10_sub_pixel_avg_variance4x8,
+ NULL,
+ vpx_highbd_sad4x8x8_bits10,
+ vpx_highbd_sad4x8x4d_bits10)
+
+ HIGHBD_BFP(BLOCK_4X4,
+ vpx_highbd_sad4x4_bits10,
+ vpx_highbd_sad4x4_avg_bits10,
+ vpx_highbd_10_variance4x4,
+ vp9_highbd_10_sub_pixel_variance4x4,
+ vp9_highbd_10_sub_pixel_avg_variance4x4,
+ vpx_highbd_sad4x4x3_bits10,
+ vpx_highbd_sad4x4x8_bits10,
+ vpx_highbd_sad4x4x4d_bits10)
+ break;
+
+ case VPX_BITS_12:
+ HIGHBD_BFP(BLOCK_32X16,
+ vpx_highbd_sad32x16_bits12,
+ vpx_highbd_sad32x16_avg_bits12,
+ vpx_highbd_12_variance32x16,
+ vp9_highbd_12_sub_pixel_variance32x16,
+ vp9_highbd_12_sub_pixel_avg_variance32x16,
+ NULL,
+ NULL,
+ vpx_highbd_sad32x16x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_16X32,
+ vpx_highbd_sad16x32_bits12,
+ vpx_highbd_sad16x32_avg_bits12,
+ vpx_highbd_12_variance16x32,
+ vp9_highbd_12_sub_pixel_variance16x32,
+ vp9_highbd_12_sub_pixel_avg_variance16x32,
+ NULL,
+ NULL,
+ vpx_highbd_sad16x32x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_64X32,
+ vpx_highbd_sad64x32_bits12,
+ vpx_highbd_sad64x32_avg_bits12,
+ vpx_highbd_12_variance64x32,
+ vp9_highbd_12_sub_pixel_variance64x32,
+ vp9_highbd_12_sub_pixel_avg_variance64x32,
+ NULL,
+ NULL,
+ vpx_highbd_sad64x32x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_32X64,
+ vpx_highbd_sad32x64_bits12,
+ vpx_highbd_sad32x64_avg_bits12,
+ vpx_highbd_12_variance32x64,
+ vp9_highbd_12_sub_pixel_variance32x64,
+ vp9_highbd_12_sub_pixel_avg_variance32x64,
+ NULL,
+ NULL,
+ vpx_highbd_sad32x64x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_32X32,
+ vpx_highbd_sad32x32_bits12,
+ vpx_highbd_sad32x32_avg_bits12,
+ vpx_highbd_12_variance32x32,
+ vp9_highbd_12_sub_pixel_variance32x32,
+ vp9_highbd_12_sub_pixel_avg_variance32x32,
+ vpx_highbd_sad32x32x3_bits12,
+ vpx_highbd_sad32x32x8_bits12,
+ vpx_highbd_sad32x32x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_64X64,
+ vpx_highbd_sad64x64_bits12,
+ vpx_highbd_sad64x64_avg_bits12,
+ vpx_highbd_12_variance64x64,
+ vp9_highbd_12_sub_pixel_variance64x64,
+ vp9_highbd_12_sub_pixel_avg_variance64x64,
+ vpx_highbd_sad64x64x3_bits12,
+ vpx_highbd_sad64x64x8_bits12,
+ vpx_highbd_sad64x64x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_16X16,
+ vpx_highbd_sad16x16_bits12,
+ vpx_highbd_sad16x16_avg_bits12,
+ vpx_highbd_12_variance16x16,
+ vp9_highbd_12_sub_pixel_variance16x16,
+ vp9_highbd_12_sub_pixel_avg_variance16x16,
+ vpx_highbd_sad16x16x3_bits12,
+ vpx_highbd_sad16x16x8_bits12,
+ vpx_highbd_sad16x16x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_16X8,
+ vpx_highbd_sad16x8_bits12,
+ vpx_highbd_sad16x8_avg_bits12,
+ vpx_highbd_12_variance16x8,
+ vp9_highbd_12_sub_pixel_variance16x8,
+ vp9_highbd_12_sub_pixel_avg_variance16x8,
+ vpx_highbd_sad16x8x3_bits12,
+ vpx_highbd_sad16x8x8_bits12,
+ vpx_highbd_sad16x8x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_8X16,
+ vpx_highbd_sad8x16_bits12,
+ vpx_highbd_sad8x16_avg_bits12,
+ vpx_highbd_12_variance8x16,
+ vp9_highbd_12_sub_pixel_variance8x16,
+ vp9_highbd_12_sub_pixel_avg_variance8x16,
+ vpx_highbd_sad8x16x3_bits12,
+ vpx_highbd_sad8x16x8_bits12,
+ vpx_highbd_sad8x16x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_8X8,
+ vpx_highbd_sad8x8_bits12,
+ vpx_highbd_sad8x8_avg_bits12,
+ vpx_highbd_12_variance8x8,
+ vp9_highbd_12_sub_pixel_variance8x8,
+ vp9_highbd_12_sub_pixel_avg_variance8x8,
+ vpx_highbd_sad8x8x3_bits12,
+ vpx_highbd_sad8x8x8_bits12,
+ vpx_highbd_sad8x8x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_8X4,
+ vpx_highbd_sad8x4_bits12,
+ vpx_highbd_sad8x4_avg_bits12,
+ vpx_highbd_12_variance8x4,
+ vp9_highbd_12_sub_pixel_variance8x4,
+ vp9_highbd_12_sub_pixel_avg_variance8x4,
+ NULL,
+ vpx_highbd_sad8x4x8_bits12,
+ vpx_highbd_sad8x4x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_4X8,
+ vpx_highbd_sad4x8_bits12,
+ vpx_highbd_sad4x8_avg_bits12,
+ vpx_highbd_12_variance4x8,
+ vp9_highbd_12_sub_pixel_variance4x8,
+ vp9_highbd_12_sub_pixel_avg_variance4x8,
+ NULL,
+ vpx_highbd_sad4x8x8_bits12,
+ vpx_highbd_sad4x8x4d_bits12)
+
+ HIGHBD_BFP(BLOCK_4X4,
+ vpx_highbd_sad4x4_bits12,
+ vpx_highbd_sad4x4_avg_bits12,
+ vpx_highbd_12_variance4x4,
+ vp9_highbd_12_sub_pixel_variance4x4,
+ vp9_highbd_12_sub_pixel_avg_variance4x4,
+ vpx_highbd_sad4x4x3_bits12,
+ vpx_highbd_sad4x4x8_bits12,
+ vpx_highbd_sad4x4x4d_bits12)
+ break;
+
+ default:
+ assert(0 && "cm->bit_depth should be VPX_BITS_8, "
+ "VPX_BITS_10 or VPX_BITS_12");
+ }
+ }
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+static void realloc_segmentation_maps(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ // Create the encoder segmentation map and set all entries to 0
+ vpx_free(cpi->segmentation_map);
+ CHECK_MEM_ERROR(cm, cpi->segmentation_map,
+ vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+
+ // Create a map used for cyclic background refresh.
+ if (cpi->cyclic_refresh)
+ vp9_cyclic_refresh_free(cpi->cyclic_refresh);
+ CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
+ vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
+
+ // Create a map used to mark inactive areas.
+ vpx_free(cpi->active_map.map);
+ CHECK_MEM_ERROR(cm, cpi->active_map.map,
+ vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+
+ // And a place holder structure is the coding context
+ // for use if we want to save and restore it
+ vpx_free(cpi->coding_context.last_frame_seg_map_copy);
+ CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
+ vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
+}
+
+void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ if (cm->profile != oxcf->profile)
+ cm->profile = oxcf->profile;
+ cm->bit_depth = oxcf->bit_depth;
+ cm->color_space = oxcf->color_space;
+
+ if (cm->profile <= PROFILE_1)
+ assert(cm->bit_depth == VPX_BITS_8);
+ else
+ assert(cm->bit_depth > VPX_BITS_8);
+
+ cpi->oxcf = *oxcf;
+#if CONFIG_VP9_HIGHBITDEPTH
+ cpi->td.mb.e_mbd.bd = (int)cm->bit_depth;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
+
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_last_frame = 1;
+ cm->refresh_frame_context = 1;
+ cm->reset_frame_context = 0;
+
+ vp9_reset_segment_features(&cm->seg);
+ vp9_set_high_precision_mv(cpi, 0);
+
+ {
+ int i;
+
+ for (i = 0; i < MAX_SEGMENTS; i++)
+ cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
+ }
+ cpi->encode_breakout = cpi->oxcf.encode_breakout;
+
+ set_rc_buffer_sizes(rc, &cpi->oxcf);
+
+ // Under a configuration change, where maximum_buffer_size may change,
+ // keep buffer level clipped to the maximum allowed buffer size.
+ rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
+ rc->buffer_level = MIN(rc->buffer_level, rc->maximum_buffer_size);
+
+ // Set up frame rate and related parameters rate control values.
+ vp9_new_framerate(cpi, cpi->framerate);
+
+ // Set absolute upper and lower quality limits
+ rc->worst_quality = cpi->oxcf.worst_allowed_q;
+ rc->best_quality = cpi->oxcf.best_allowed_q;
+
+ cm->interp_filter = cpi->sf.default_interp_filter;
+
+ cm->display_width = cpi->oxcf.width;
+ cm->display_height = cpi->oxcf.height;
+ cm->width = cpi->oxcf.width;
+ cm->height = cpi->oxcf.height;
+
+ if (cpi->initial_width) {
+ if (cm->width > cpi->initial_width || cm->height > cpi->initial_height) {
+ vp9_free_context_buffers(cm);
+ vp9_alloc_compressor_data(cpi);
+ realloc_segmentation_maps(cpi);
+ cpi->initial_width = cpi->initial_height = 0;
+ }
+ }
+ update_frame_size(cpi);
+
+ if ((cpi->svc.number_temporal_layers > 1 &&
+ cpi->oxcf.rc_mode == VPX_CBR) ||
+ ((cpi->svc.number_temporal_layers > 1 ||
+ cpi->svc.number_spatial_layers > 1) &&
+ cpi->oxcf.pass != 1)) {
+ vp9_update_layer_context_change_config(cpi,
+ (int)cpi->oxcf.target_bandwidth);
+ }
+
+ cpi->alt_ref_source = NULL;
+ rc->is_src_frame_alt_ref = 0;
+
+#if 0
+ // Experimental RD Code
+ cpi->frame_distortion = 0;
+ cpi->last_frame_distortion = 0;
+#endif
+
+ set_tile_limits(cpi);
+
+ cpi->ext_refresh_frame_flags_pending = 0;
+ cpi->ext_refresh_frame_context_pending = 0;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ highbd_set_var_fns(cpi);
+#endif
+}
+
+#ifndef M_LOG2_E
+#define M_LOG2_E 0.693147180559945309417
+#endif
+#define log2f(x) (log (x) / (float) M_LOG2_E)
+
+static void cal_nmvjointsadcost(int *mvjointsadcost) {
+ mvjointsadcost[0] = 600;
+ mvjointsadcost[1] = 300;
+ mvjointsadcost[2] = 300;
+ mvjointsadcost[3] = 300;
+}
+
+static void cal_nmvsadcosts(int *mvsadcost[2]) {
+ int i = 1;
+
+ mvsadcost[0][0] = 0;
+ mvsadcost[1][0] = 0;
+
+ do {
+ double z = 256 * (2 * (log2f(8 * i) + .6));
+ mvsadcost[0][i] = (int)z;
+ mvsadcost[1][i] = (int)z;
+ mvsadcost[0][-i] = (int)z;
+ mvsadcost[1][-i] = (int)z;
+ } while (++i <= MV_MAX);
+}
+
+static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
+ int i = 1;
+
+ mvsadcost[0][0] = 0;
+ mvsadcost[1][0] = 0;
+
+ do {
+ double z = 256 * (2 * (log2f(8 * i) + .6));
+ mvsadcost[0][i] = (int)z;
+ mvsadcost[1][i] = (int)z;
+ mvsadcost[0][-i] = (int)z;
+ mvsadcost[1][-i] = (int)z;
+ } while (++i <= MV_MAX);
+}
+
+
+VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf,
+ BufferPool *const pool) {
+ unsigned int i;
+ VP9_COMP *volatile const cpi = vpx_memalign(32, sizeof(VP9_COMP));
+ VP9_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
+
+ if (!cm)
+ return NULL;
+
+ vp9_zero(*cpi);
+
+ if (setjmp(cm->error.jmp)) {
+ cm->error.setjmp = 0;
+ vp9_remove_compressor(cpi);
+ return 0;
+ }
+
+ cm->error.setjmp = 1;
+ cm->alloc_mi = vp9_enc_alloc_mi;
+ cm->free_mi = vp9_enc_free_mi;
+ cm->setup_mi = vp9_enc_setup_mi;
+
+ CHECK_MEM_ERROR(cm, cm->fc,
+ (FRAME_CONTEXT *)vpx_calloc(1, sizeof(*cm->fc)));
+ CHECK_MEM_ERROR(cm, cm->frame_contexts,
+ (FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS,
+ sizeof(*cm->frame_contexts)));
+
+ cpi->use_svc = 0;
+ cpi->common.buffer_pool = pool;
+
+ init_config(cpi, oxcf);
+ vp9_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
+
+ cm->current_video_frame = 0;
+ cpi->partition_search_skippable_frame = 0;
+ cpi->tile_data = NULL;
+
+ realloc_segmentation_maps(cpi);
+
+ CHECK_MEM_ERROR(cm, cpi->nmvcosts[0],
+ vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0])));
+ CHECK_MEM_ERROR(cm, cpi->nmvcosts[1],
+ vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1])));
+ CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0],
+ vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0])));
+ CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1],
+ vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1])));
+ CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0],
+ vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0])));
+ CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1],
+ vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1])));
+ CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0],
+ vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0])));
+ CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1],
+ vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1])));
+
+ for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
+ sizeof(cpi->mbgraph_stats[0])); i++) {
+ CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
+ vpx_calloc(cm->MBs *
+ sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
+ }
+
+#if CONFIG_FP_MB_STATS
+ cpi->use_fp_mb_stats = 0;
+ if (cpi->use_fp_mb_stats) {
+ // a place holder used to store the first pass mb stats in the first pass
+ CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
+ vpx_calloc(cm->MBs * sizeof(uint8_t), 1));
+ } else {
+ cpi->twopass.frame_mb_stats_buf = NULL;
+ }
+#endif
+
+ cpi->refresh_alt_ref_frame = 0;
+ cpi->multi_arf_last_grp_enabled = 0;
+
+ cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
+#if CONFIG_INTERNAL_STATS
+ cpi->b_calculate_ssimg = 0;
+ cpi->b_calculate_blockiness = 1;
+ cpi->b_calculate_consistency = 1;
+ cpi->total_inconsistency = 0;
+ cpi->psnr.worst = 100.0;
+ cpi->worst_ssim = 100.0;
+
+ cpi->count = 0;
+ cpi->bytes = 0;
+
+ if (cpi->b_calculate_psnr) {
+ cpi->total_sq_error = 0;
+ cpi->total_samples = 0;
+
+ cpi->totalp_sq_error = 0;
+ cpi->totalp_samples = 0;
+
+ cpi->tot_recode_hits = 0;
+ cpi->summed_quality = 0;
+ cpi->summed_weights = 0;
+ cpi->summedp_quality = 0;
+ cpi->summedp_weights = 0;
+ }
+
+ if (cpi->b_calculate_ssimg) {
+ cpi->ssimg.worst= 100.0;
+ }
+ cpi->fastssim.worst = 100.0;
+
+ cpi->psnrhvs.worst = 100.0;
+
+ if (cpi->b_calculate_blockiness) {
+ cpi->total_blockiness = 0;
+ cpi->worst_blockiness = 0.0;
+ }
+
+ if (cpi->b_calculate_consistency) {
+ cpi->ssim_vars = vpx_malloc(sizeof(*cpi->ssim_vars)*720*480);
+ cpi->worst_consistency = 100.0;
+ }
+
+#endif
+
+ cpi->first_time_stamp_ever = INT64_MAX;
+
+ cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost);
+ cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX];
+ cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX];
+ cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX];
+ cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX];
+ cal_nmvsadcosts(cpi->td.mb.nmvsadcost);
+
+ cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX];
+ cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX];
+ cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX];
+ cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX];
+ cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp);
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+#ifdef OUTPUT_YUV_DENOISED
+ yuv_denoised_file = fopen("denoised.yuv", "ab");
+#endif
+#endif
+#ifdef OUTPUT_YUV_SKINMAP
+ yuv_skinmap_file = fopen("skinmap.yuv", "ab");
+#endif
+#ifdef OUTPUT_YUV_REC
+ yuv_rec_file = fopen("rec.yuv", "wb");
+#endif
+
+#if 0
+ framepsnr = fopen("framepsnr.stt", "a");
+ kf_list = fopen("kf_list.stt", "w");
+#endif
+
+ cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
+
+ if (oxcf->pass == 1) {
+ vp9_init_first_pass(cpi);
+ } else if (oxcf->pass == 2) {
+ const size_t packet_sz = sizeof(FIRSTPASS_STATS);
+ const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
+
+ if (cpi->svc.number_spatial_layers > 1
+ || cpi->svc.number_temporal_layers > 1) {
+ FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf;
+ FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = {0};
+ int i;
+
+ for (i = 0; i < oxcf->ss_number_layers; ++i) {
+ FIRSTPASS_STATS *const last_packet_for_layer =
+ &stats[packets - oxcf->ss_number_layers + i];
+ const int layer_id = (int)last_packet_for_layer->spatial_layer_id;
+ const int packets_in_layer = (int)last_packet_for_layer->count + 1;
+ if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) {
+ LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id];
+
+ vpx_free(lc->rc_twopass_stats_in.buf);
+
+ lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz;
+ CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf,
+ vpx_malloc(lc->rc_twopass_stats_in.sz));
+ lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf;
+ lc->twopass.stats_in = lc->twopass.stats_in_start;
+ lc->twopass.stats_in_end = lc->twopass.stats_in_start
+ + packets_in_layer - 1;
+ stats_copy[layer_id] = lc->rc_twopass_stats_in.buf;
+ }
+ }
+
+ for (i = 0; i < packets; ++i) {
+ const int layer_id = (int)stats[i].spatial_layer_id;
+ if (layer_id >= 0 && layer_id < oxcf->ss_number_layers
+ && stats_copy[layer_id] != NULL) {
+ *stats_copy[layer_id] = stats[i];
+ ++stats_copy[layer_id];
+ }
+ }
+
+ vp9_init_second_pass_spatial_svc(cpi);
+ } else {
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ const size_t psz = cpi->common.MBs * sizeof(uint8_t);
+ const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
+
+ cpi->twopass.firstpass_mb_stats.mb_stats_start =
+ oxcf->firstpass_mb_stats_in.buf;
+ cpi->twopass.firstpass_mb_stats.mb_stats_end =
+ cpi->twopass.firstpass_mb_stats.mb_stats_start +
+ (ps - 1) * cpi->common.MBs * sizeof(uint8_t);
+ }
+#endif
+
+ cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
+ cpi->twopass.stats_in = cpi->twopass.stats_in_start;
+ cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
+
+ vp9_init_second_pass(cpi);
+ }
+ }
+
+ vp9_set_speed_features_framesize_independent(cpi);
+ vp9_set_speed_features_framesize_dependent(cpi);
+
+ // Allocate memory to store variances for a frame.
+ CHECK_MEM_ERROR(cm, cpi->source_diff_var,
+ vpx_calloc(cm->MBs, sizeof(diff)));
+ cpi->source_var_thresh = 0;
+ cpi->frames_till_next_var_check = 0;
+
+#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF)\
+ cpi->fn_ptr[BT].sdf = SDF; \
+ cpi->fn_ptr[BT].sdaf = SDAF; \
+ cpi->fn_ptr[BT].vf = VF; \
+ cpi->fn_ptr[BT].svf = SVF; \
+ cpi->fn_ptr[BT].svaf = SVAF; \
+ cpi->fn_ptr[BT].sdx3f = SDX3F; \
+ cpi->fn_ptr[BT].sdx8f = SDX8F; \
+ cpi->fn_ptr[BT].sdx4df = SDX4DF;
+
+ BFP(BLOCK_32X16, vpx_sad32x16, vpx_sad32x16_avg,
+ vpx_variance32x16, vp9_sub_pixel_variance32x16,
+ vp9_sub_pixel_avg_variance32x16, NULL, NULL, vpx_sad32x16x4d)
+
+ BFP(BLOCK_16X32, vpx_sad16x32, vpx_sad16x32_avg,
+ vpx_variance16x32, vp9_sub_pixel_variance16x32,
+ vp9_sub_pixel_avg_variance16x32, NULL, NULL, vpx_sad16x32x4d)
+
+ BFP(BLOCK_64X32, vpx_sad64x32, vpx_sad64x32_avg,
+ vpx_variance64x32, vp9_sub_pixel_variance64x32,
+ vp9_sub_pixel_avg_variance64x32, NULL, NULL, vpx_sad64x32x4d)
+
+ BFP(BLOCK_32X64, vpx_sad32x64, vpx_sad32x64_avg,
+ vpx_variance32x64, vp9_sub_pixel_variance32x64,
+ vp9_sub_pixel_avg_variance32x64, NULL, NULL, vpx_sad32x64x4d)
+
+ BFP(BLOCK_32X32, vpx_sad32x32, vpx_sad32x32_avg,
+ vpx_variance32x32, vp9_sub_pixel_variance32x32,
+ vp9_sub_pixel_avg_variance32x32, vpx_sad32x32x3, vpx_sad32x32x8,
+ vpx_sad32x32x4d)
+
+ BFP(BLOCK_64X64, vpx_sad64x64, vpx_sad64x64_avg,
+ vpx_variance64x64, vp9_sub_pixel_variance64x64,
+ vp9_sub_pixel_avg_variance64x64, vpx_sad64x64x3, vpx_sad64x64x8,
+ vpx_sad64x64x4d)
+
+ BFP(BLOCK_16X16, vpx_sad16x16, vpx_sad16x16_avg,
+ vpx_variance16x16, vp9_sub_pixel_variance16x16,
+ vp9_sub_pixel_avg_variance16x16, vpx_sad16x16x3, vpx_sad16x16x8,
+ vpx_sad16x16x4d)
+
+ BFP(BLOCK_16X8, vpx_sad16x8, vpx_sad16x8_avg,
+ vpx_variance16x8, vp9_sub_pixel_variance16x8,
+ vp9_sub_pixel_avg_variance16x8,
+ vpx_sad16x8x3, vpx_sad16x8x8, vpx_sad16x8x4d)
+
+ BFP(BLOCK_8X16, vpx_sad8x16, vpx_sad8x16_avg,
+ vpx_variance8x16, vp9_sub_pixel_variance8x16,
+ vp9_sub_pixel_avg_variance8x16,
+ vpx_sad8x16x3, vpx_sad8x16x8, vpx_sad8x16x4d)
+
+ BFP(BLOCK_8X8, vpx_sad8x8, vpx_sad8x8_avg,
+ vpx_variance8x8, vp9_sub_pixel_variance8x8,
+ vp9_sub_pixel_avg_variance8x8,
+ vpx_sad8x8x3, vpx_sad8x8x8, vpx_sad8x8x4d)
+
+ BFP(BLOCK_8X4, vpx_sad8x4, vpx_sad8x4_avg,
+ vpx_variance8x4, vp9_sub_pixel_variance8x4,
+ vp9_sub_pixel_avg_variance8x4, NULL, vpx_sad8x4x8, vpx_sad8x4x4d)
+
+ BFP(BLOCK_4X8, vpx_sad4x8, vpx_sad4x8_avg,
+ vpx_variance4x8, vp9_sub_pixel_variance4x8,
+ vp9_sub_pixel_avg_variance4x8, NULL, vpx_sad4x8x8, vpx_sad4x8x4d)
+
+ BFP(BLOCK_4X4, vpx_sad4x4, vpx_sad4x4_avg,
+ vpx_variance4x4, vp9_sub_pixel_variance4x4,
+ vp9_sub_pixel_avg_variance4x4,
+ vpx_sad4x4x3, vpx_sad4x4x8, vpx_sad4x4x4d)
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ highbd_set_var_fns(cpi);
+#endif
+
+ /* vp9_init_quantizer() is first called here. Add check in
+ * vp9_frame_init_quantizer() so that vp9_init_quantizer is only
+ * called later when needed. This will avoid unnecessary calls of
+ * vp9_init_quantizer() for every frame.
+ */
+ vp9_init_quantizer(cpi);
+
+ vp9_loop_filter_init(cm);
+
+ cm->error.setjmp = 0;
+
+ return cpi;
+}
+#define SNPRINT(H, T) \
+ snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
+
+#define SNPRINT2(H, T, V) \
+ snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
+
+void vp9_remove_compressor(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ unsigned int i;
+ int t;
+
+ if (!cpi)
+ return;
+
+ if (cpi && (cm->current_video_frame > 0)) {
+#if CONFIG_INTERNAL_STATS
+ vp9_clear_system_state();
+
+ if (cpi->oxcf.pass != 1) {
+ char headings[512] = {0};
+ char results[512] = {0};
+ FILE *f = fopen("opsnr.stt", "a");
+ double time_encoded = (cpi->last_end_time_stamp_seen
+ - cpi->first_time_stamp_ever) / 10000000.000;
+ double total_encode_time = (cpi->time_receive_data +
+ cpi->time_compress_data) / 1000.000;
+ const double dr =
+ (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
+ const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
+
+ if (cpi->b_calculate_psnr) {
+ const double total_psnr =
+ vpx_sse_to_psnr((double)cpi->total_samples, peak,
+ (double)cpi->total_sq_error);
+ const double totalp_psnr =
+ vpx_sse_to_psnr((double)cpi->totalp_samples, peak,
+ (double)cpi->totalp_sq_error);
+ const double total_ssim = 100 * pow(cpi->summed_quality /
+ cpi->summed_weights, 8.0);
+ const double totalp_ssim = 100 * pow(cpi->summedp_quality /
+ cpi->summedp_weights, 8.0);
+
+ snprintf(headings, sizeof(headings),
+ "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
+ "VPXSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
+ "WstPsnr\tWstSsim\tWstFast\tWstHVS");
+ snprintf(results, sizeof(results),
+ "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
+ "%7.3f\t%7.3f\t%7.3f\t%7.3f"
+ "%7.3f\t%7.3f\t%7.3f\t%7.3f",
+ dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr,
+ cpi->psnrp.stat[ALL] / cpi->count, totalp_psnr,
+ total_ssim, totalp_ssim,
+ cpi->fastssim.stat[ALL] / cpi->count,
+ cpi->psnrhvs.stat[ALL] / cpi->count,
+ cpi->psnr.worst, cpi->worst_ssim, cpi->fastssim.worst,
+ cpi->psnrhvs.worst);
+
+ if (cpi->b_calculate_blockiness) {
+ SNPRINT(headings, "\t Block\tWstBlck");
+ SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
+ SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
+ }
+
+ if (cpi->b_calculate_consistency) {
+ double consistency =
+ vpx_sse_to_psnr((double)cpi->totalp_samples, peak,
+ (double)cpi->total_inconsistency);
+
+ SNPRINT(headings, "\tConsist\tWstCons");
+ SNPRINT2(results, "\t%7.3f", consistency);
+ SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
+ }
+
+ if (cpi->b_calculate_ssimg) {
+ SNPRINT(headings, "\t SSIMG\tWtSSIMG");
+ SNPRINT2(results, "\t%7.3f", cpi->ssimg.stat[ALL] / cpi->count);
+ SNPRINT2(results, "\t%7.3f", cpi->ssimg.worst);
+ }
+
+ fprintf(f, "%s\t Time\n", headings);
+ fprintf(f, "%s\t%8.0f\n", results, total_encode_time);
+ }
+
+ fclose(f);
+ }
+
+#endif
+
+#if 0
+ {
+ printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
+ printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
+ printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
+ cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
+ cpi->time_compress_data / 1000,
+ (cpi->time_receive_data + cpi->time_compress_data) / 1000);
+ }
+#endif
+ }
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ vp9_denoiser_free(&(cpi->denoiser));
+#endif
+
+ for (t = 0; t < cpi->num_workers; ++t) {
+ VP9Worker *const worker = &cpi->workers[t];
+ EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
+
+ // Deallocate allocated threads.
+ vp9_get_worker_interface()->end(worker);
+
+ // Deallocate allocated thread data.
+ if (t < cpi->num_workers - 1) {
+ vpx_free(thread_data->td->counts);
+ vp9_free_pc_tree(thread_data->td);
+ vpx_free(thread_data->td);
+ }
+ }
+ vpx_free(cpi->tile_thr_data);
+ vpx_free(cpi->workers);
+
+ if (cpi->num_workers > 1)
+ vp9_loop_filter_dealloc(&cpi->lf_row_sync);
+
+ dealloc_compressor_data(cpi);
+
+ for (i = 0; i < sizeof(cpi->mbgraph_stats) /
+ sizeof(cpi->mbgraph_stats[0]); ++i) {
+ vpx_free(cpi->mbgraph_stats[i].mb_stats);
+ }
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ vpx_free(cpi->twopass.frame_mb_stats_buf);
+ cpi->twopass.frame_mb_stats_buf = NULL;
+ }
+#endif
+
+ vp9_remove_common(cm);
+ vp9_free_ref_frame_buffers(cm->buffer_pool);
+#if CONFIG_VP9_POSTPROC
+ vp9_free_postproc_buffers(cm);
+#endif
+ vpx_free(cpi);
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+#ifdef OUTPUT_YUV_DENOISED
+ fclose(yuv_denoised_file);
+#endif
+#endif
+#ifdef OUTPUT_YUV_SKINMAP
+ fclose(yuv_skinmap_file);
+#endif
+#ifdef OUTPUT_YUV_REC
+ fclose(yuv_rec_file);
+#endif
+
+#if 0
+
+ if (keyfile)
+ fclose(keyfile);
+
+ if (framepsnr)
+ fclose(framepsnr);
+
+ if (kf_list)
+ fclose(kf_list);
+
+#endif
+}
+
+/* TODO(yaowu): The block_variance calls the unoptimized versions of variance()
+ * and highbd_8_variance(). It should not.
+ */
+static void encoder_variance(const uint8_t *a, int a_stride,
+ const uint8_t *b, int b_stride,
+ int w, int h, unsigned int *sse, int *sum) {
+ int i, j;
+
+ *sum = 0;
+ *sse = 0;
+
+ for (i = 0; i < h; i++) {
+ for (j = 0; j < w; j++) {
+ const int diff = a[j] - b[j];
+ *sum += diff;
+ *sse += diff * diff;
+ }
+
+ a += a_stride;
+ b += b_stride;
+ }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void encoder_highbd_variance64(const uint8_t *a8, int a_stride,
+ const uint8_t *b8, int b_stride,
+ int w, int h, uint64_t *sse,
+ uint64_t *sum) {
+ int i, j;
+
+ uint16_t *a = CONVERT_TO_SHORTPTR(a8);
+ uint16_t *b = CONVERT_TO_SHORTPTR(b8);
+ *sum = 0;
+ *sse = 0;
+
+ for (i = 0; i < h; i++) {
+ for (j = 0; j < w; j++) {
+ const int diff = a[j] - b[j];
+ *sum += diff;
+ *sse += diff * diff;
+ }
+ a += a_stride;
+ b += b_stride;
+ }
+}
+
+static void encoder_highbd_8_variance(const uint8_t *a8, int a_stride,
+ const uint8_t *b8, int b_stride,
+ int w, int h,
+ unsigned int *sse, int *sum) {
+ uint64_t sse_long = 0;
+ uint64_t sum_long = 0;
+ encoder_highbd_variance64(a8, a_stride, b8, b_stride, w, h,
+ &sse_long, &sum_long);
+ *sse = (unsigned int)sse_long;
+ *sum = (int)sum_long;
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+static int64_t get_sse(const uint8_t *a, int a_stride,
+ const uint8_t *b, int b_stride,
+ int width, int height) {
+ const int dw = width % 16;
+ const int dh = height % 16;
+ int64_t total_sse = 0;
+ unsigned int sse = 0;
+ int sum = 0;
+ int x, y;
+
+ if (dw > 0) {
+ encoder_variance(&a[width - dw], a_stride, &b[width - dw], b_stride,
+ dw, height, &sse, &sum);
+ total_sse += sse;
+ }
+
+ if (dh > 0) {
+ encoder_variance(&a[(height - dh) * a_stride], a_stride,
+ &b[(height - dh) * b_stride], b_stride,
+ width - dw, dh, &sse, &sum);
+ total_sse += sse;
+ }
+
+ for (y = 0; y < height / 16; ++y) {
+ const uint8_t *pa = a;
+ const uint8_t *pb = b;
+ for (x = 0; x < width / 16; ++x) {
+ vpx_mse16x16(pa, a_stride, pb, b_stride, &sse);
+ total_sse += sse;
+
+ pa += 16;
+ pb += 16;
+ }
+
+ a += 16 * a_stride;
+ b += 16 * b_stride;
+ }
+
+ return total_sse;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static int64_t highbd_get_sse_shift(const uint8_t *a8, int a_stride,
+ const uint8_t *b8, int b_stride,
+ int width, int height,
+ unsigned int input_shift) {
+ const uint16_t *a = CONVERT_TO_SHORTPTR(a8);
+ const uint16_t *b = CONVERT_TO_SHORTPTR(b8);
+ int64_t total_sse = 0;
+ int x, y;
+ for (y = 0; y < height; ++y) {
+ for (x = 0; x < width; ++x) {
+ int64_t diff;
+ diff = (a[x] >> input_shift) - (b[x] >> input_shift);
+ total_sse += diff * diff;
+ }
+ a += a_stride;
+ b += b_stride;
+ }
+ return total_sse;
+}
+
+static int64_t highbd_get_sse(const uint8_t *a, int a_stride,
+ const uint8_t *b, int b_stride,
+ int width, int height) {
+ int64_t total_sse = 0;
+ int x, y;
+ const int dw = width % 16;
+ const int dh = height % 16;
+ unsigned int sse = 0;
+ int sum = 0;
+ if (dw > 0) {
+ encoder_highbd_8_variance(&a[width - dw], a_stride,
+ &b[width - dw], b_stride,
+ dw, height, &sse, &sum);
+ total_sse += sse;
+ }
+ if (dh > 0) {
+ encoder_highbd_8_variance(&a[(height - dh) * a_stride], a_stride,
+ &b[(height - dh) * b_stride], b_stride,
+ width - dw, dh, &sse, &sum);
+ total_sse += sse;
+ }
+ for (y = 0; y < height / 16; ++y) {
+ const uint8_t *pa = a;
+ const uint8_t *pb = b;
+ for (x = 0; x < width / 16; ++x) {
+ vpx_highbd_8_mse16x16(pa, a_stride, pb, b_stride, &sse);
+ total_sse += sse;
+ pa += 16;
+ pb += 16;
+ }
+ a += 16 * a_stride;
+ b += 16 * b_stride;
+ }
+ return total_sse;
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+typedef struct {
+ double psnr[4]; // total/y/u/v
+ uint64_t sse[4]; // total/y/u/v
+ uint32_t samples[4]; // total/y/u/v
+} PSNR_STATS;
+
+static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b,
+ PSNR_STATS *psnr) {
+ static const double peak = 255.0;
+ const int widths[3] = {
+ a->y_crop_width, a->uv_crop_width, a->uv_crop_width};
+ const int heights[3] = {
+ a->y_crop_height, a->uv_crop_height, a->uv_crop_height};
+ const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer};
+ const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride};
+ const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer};
+ const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride};
+ int i;
+ uint64_t total_sse = 0;
+ uint32_t total_samples = 0;
+
+ for (i = 0; i < 3; ++i) {
+ const int w = widths[i];
+ const int h = heights[i];
+ const uint32_t samples = w * h;
+ const uint64_t sse = get_sse(a_planes[i], a_strides[i],
+ b_planes[i], b_strides[i],
+ w, h);
+ psnr->sse[1 + i] = sse;
+ psnr->samples[1 + i] = samples;
+ psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, peak, (double)sse);
+
+ total_sse += sse;
+ total_samples += samples;
+ }
+
+ psnr->sse[0] = total_sse;
+ psnr->samples[0] = total_samples;
+ psnr->psnr[0] = vpx_sse_to_psnr((double)total_samples, peak,
+ (double)total_sse);
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void calc_highbd_psnr(const YV12_BUFFER_CONFIG *a,
+ const YV12_BUFFER_CONFIG *b,
+ PSNR_STATS *psnr,
+ unsigned int bit_depth,
+ unsigned int in_bit_depth) {
+ const int widths[3] =
+ {a->y_crop_width, a->uv_crop_width, a->uv_crop_width };
+ const int heights[3] =
+ {a->y_crop_height, a->uv_crop_height, a->uv_crop_height};
+ const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer };
+ const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride};
+ const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer };
+ const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride};
+ int i;
+ uint64_t total_sse = 0;
+ uint32_t total_samples = 0;
+ const double peak = (double)((1 << in_bit_depth) - 1);
+ const unsigned int input_shift = bit_depth - in_bit_depth;
+
+ for (i = 0; i < 3; ++i) {
+ const int w = widths[i];
+ const int h = heights[i];
+ const uint32_t samples = w * h;
+ uint64_t sse;
+ if (a->flags & YV12_FLAG_HIGHBITDEPTH) {
+ if (input_shift) {
+ sse = highbd_get_sse_shift(a_planes[i], a_strides[i],
+ b_planes[i], b_strides[i], w, h,
+ input_shift);
+ } else {
+ sse = highbd_get_sse(a_planes[i], a_strides[i],
+ b_planes[i], b_strides[i], w, h);
+ }
+ } else {
+ sse = get_sse(a_planes[i], a_strides[i],
+ b_planes[i], b_strides[i],
+ w, h);
+ }
+ psnr->sse[1 + i] = sse;
+ psnr->samples[1 + i] = samples;
+ psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, peak, (double)sse);
+
+ total_sse += sse;
+ total_samples += samples;
+ }
+
+ psnr->sse[0] = total_sse;
+ psnr->samples[0] = total_samples;
+ psnr->psnr[0] = vpx_sse_to_psnr((double)total_samples, peak,
+ (double)total_sse);
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+static void generate_psnr_packet(VP9_COMP *cpi) {
+ struct vpx_codec_cx_pkt pkt;
+ int i;
+ PSNR_STATS psnr;
+#if CONFIG_VP9_HIGHBITDEPTH
+ calc_highbd_psnr(cpi->Source, cpi->common.frame_to_show, &psnr,
+ cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
+#else
+ calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
+#endif
+
+ for (i = 0; i < 4; ++i) {
+ pkt.data.psnr.samples[i] = psnr.samples[i];
+ pkt.data.psnr.sse[i] = psnr.sse[i];
+ pkt.data.psnr.psnr[i] = psnr.psnr[i];
+ }
+ pkt.kind = VPX_CODEC_PSNR_PKT;
+ if (cpi->use_svc)
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id *
+ cpi->svc.number_temporal_layers].psnr_pkt = pkt.data.psnr;
+ else
+ vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
+}
+
+int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) {
+ if (ref_frame_flags > 7)
+ return -1;
+
+ cpi->ref_frame_flags = ref_frame_flags;
+ return 0;
+}
+
+void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) {
+ cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0;
+ cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0;
+ cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0;
+ cpi->ext_refresh_frame_flags_pending = 1;
+}
+
+static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(VP9_COMP *cpi,
+ VP9_REFFRAME ref_frame_flag) {
+ MV_REFERENCE_FRAME ref_frame = NONE;
+ if (ref_frame_flag == VP9_LAST_FLAG)
+ ref_frame = LAST_FRAME;
+ else if (ref_frame_flag == VP9_GOLD_FLAG)
+ ref_frame = GOLDEN_FRAME;
+ else if (ref_frame_flag == VP9_ALT_FLAG)
+ ref_frame = ALTREF_FRAME;
+
+ return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
+}
+
+int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
+ YV12_BUFFER_CONFIG *sd) {
+ YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
+ if (cfg) {
+ vp8_yv12_copy_frame(cfg, sd);
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
+ YV12_BUFFER_CONFIG *sd) {
+ YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
+ if (cfg) {
+ vp8_yv12_copy_frame(sd, cfg);
+ return 0;
+ } else {
+ return -1;
+ }
+}
+
+int vp9_update_entropy(VP9_COMP * cpi, int update) {
+ cpi->ext_refresh_frame_context = update;
+ cpi->ext_refresh_frame_context_pending = 1;
+ return 0;
+}
+
+#if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP)
+// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
+// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
+// not denoise the UV channels at this time. If ever we implement UV channel
+// denoising we will have to modify this.
+void vp9_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
+ uint8_t *src = s->y_buffer;
+ int h = s->y_height;
+
+ do {
+ fwrite(src, s->y_width, 1, f);
+ src += s->y_stride;
+ } while (--h);
+
+ src = s->u_buffer;
+ h = s->uv_height;
+
+ do {
+ fwrite(src, s->uv_width, 1, f);
+ src += s->uv_stride;
+ } while (--h);
+
+ src = s->v_buffer;
+ h = s->uv_height;
+
+ do {
+ fwrite(src, s->uv_width, 1, f);
+ src += s->uv_stride;
+ } while (--h);
+}
+#endif
+
+#ifdef OUTPUT_YUV_REC
+void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
+ YV12_BUFFER_CONFIG *s = cm->frame_to_show;
+ uint8_t *src = s->y_buffer;
+ int h = cm->height;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
+ uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
+
+ do {
+ fwrite(src16, s->y_width, 2, yuv_rec_file);
+ src16 += s->y_stride;
+ } while (--h);
+
+ src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
+ h = s->uv_height;
+
+ do {
+ fwrite(src16, s->uv_width, 2, yuv_rec_file);
+ src16 += s->uv_stride;
+ } while (--h);
+
+ src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
+ h = s->uv_height;
+
+ do {
+ fwrite(src16, s->uv_width, 2, yuv_rec_file);
+ src16 += s->uv_stride;
+ } while (--h);
+
+ fflush(yuv_rec_file);
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ do {
+ fwrite(src, s->y_width, 1, yuv_rec_file);
+ src += s->y_stride;
+ } while (--h);
+
+ src = s->u_buffer;
+ h = s->uv_height;
+
+ do {
+ fwrite(src, s->uv_width, 1, yuv_rec_file);
+ src += s->uv_stride;
+ } while (--h);
+
+ src = s->v_buffer;
+ h = s->uv_height;
+
+ do {
+ fwrite(src, s->uv_width, 1, yuv_rec_file);
+ src += s->uv_stride;
+ } while (--h);
+
+ fflush(yuv_rec_file);
+}
+#endif
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst,
+ int bd) {
+#else
+static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst) {
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ // TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t
+ int i;
+ const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
+ const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
+ const int src_widths[3] = {src->y_crop_width, src->uv_crop_width,
+ src->uv_crop_width };
+ const int src_heights[3] = {src->y_crop_height, src->uv_crop_height,
+ src->uv_crop_height};
+ uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
+ const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
+ const int dst_widths[3] = {dst->y_crop_width, dst->uv_crop_width,
+ dst->uv_crop_width};
+ const int dst_heights[3] = {dst->y_crop_height, dst->uv_crop_height,
+ dst->uv_crop_height};
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i],
+ src_strides[i], dsts[i], dst_heights[i],
+ dst_widths[i], dst_strides[i], bd);
+ } else {
+ vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
+ dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
+ }
+#else
+ vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
+ dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+ vp9_extend_frame_borders(dst);
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst, int bd) {
+#else
+static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst) {
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ const int src_w = src->y_crop_width;
+ const int src_h = src->y_crop_height;
+ const int dst_w = dst->y_crop_width;
+ const int dst_h = dst->y_crop_height;
+ const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
+ const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
+ uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
+ const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
+ const InterpKernel *const kernel = vp9_get_interp_kernel(EIGHTTAP);
+ int x, y, i;
+
+ for (y = 0; y < dst_h; y += 16) {
+ for (x = 0; x < dst_w; x += 16) {
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ const int factor = (i == 0 || i == 3 ? 1 : 2);
+ const int x_q4 = x * (16 / factor) * src_w / dst_w;
+ const int y_q4 = y * (16 / factor) * src_h / dst_h;
+ const int src_stride = src_strides[i];
+ const int dst_stride = dst_strides[i];
+ const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h *
+ src_stride + (x / factor) * src_w / dst_w;
+ uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
+ kernel[x_q4 & 0xf], 16 * src_w / dst_w,
+ kernel[y_q4 & 0xf], 16 * src_h / dst_h,
+ 16 / factor, 16 / factor, bd);
+ } else {
+ vp9_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
+ kernel[x_q4 & 0xf], 16 * src_w / dst_w,
+ kernel[y_q4 & 0xf], 16 * src_h / dst_h,
+ 16 / factor, 16 / factor);
+ }
+#else
+ vp9_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
+ kernel[x_q4 & 0xf], 16 * src_w / dst_w,
+ kernel[y_q4 & 0xf], 16 * src_h / dst_h,
+ 16 / factor, 16 / factor);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+ }
+ }
+
+ vp9_extend_frame_borders(dst);
+}
+
+static int scale_down(VP9_COMP *cpi, int q) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ int scale = 0;
+ assert(frame_is_kf_gf_arf(cpi));
+
+ if (rc->frame_size_selector == UNSCALED &&
+ q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
+ const int max_size_thresh = (int)(rate_thresh_mult[SCALE_STEP1]
+ * MAX(rc->this_frame_target, rc->avg_frame_bandwidth));
+ scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
+ }
+ return scale;
+}
+
+// Function to test for conditions that indicate we should loop
+// back and recode a frame.
+static int recode_loop_test(VP9_COMP *cpi,
+ int high_limit, int low_limit,
+ int q, int maxq, int minq) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
+ int force_recode = 0;
+
+ if ((cpi->sf.recode_loop == ALLOW_RECODE) ||
+ (frame_is_kfgfarf &&
+ (cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
+ if (frame_is_kfgfarf &&
+ (oxcf->resize_mode == RESIZE_DYNAMIC) &&
+ scale_down(cpi, q)) {
+ // Code this group at a lower resolution.
+ cpi->resize_pending = 1;
+ return 1;
+ }
+
+ // TODO(agrange) high_limit could be greater than the scale-down threshold.
+ if ((rc->projected_frame_size > high_limit && q < maxq) ||
+ (rc->projected_frame_size < low_limit && q > minq)) {
+ force_recode = 1;
+ } else if (cpi->oxcf.rc_mode == VPX_CQ) {
+ // Deal with frame undershoot and whether or not we are
+ // below the automatically set cq level.
+ if (q > oxcf->cq_level &&
+ rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
+ force_recode = 1;
+ }
+ }
+ }
+ return force_recode;
+}
+
+void vp9_update_reference_frames(VP9_COMP *cpi) {
+ VP9_COMMON * const cm = &cpi->common;
+ BufferPool *const pool = cm->buffer_pool;
+
+ // At this point the new frame has been encoded.
+ // If any buffer copy / swapping is signaled it should be done here.
+ if (cm->frame_type == KEY_FRAME) {
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
+ } else if (vp9_preserve_existing_gf(cpi)) {
+ // We have decided to preserve the previously existing golden frame as our
+ // new ARF frame. However, in the short term in function
+ // vp9_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
+ // we're updating the GF with the current decoded frame, we save it to the
+ // ARF slot instead.
+ // We now have to update the ARF with the current frame and swap gld_fb_idx
+ // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
+ // slot and, if we're updating the GF, the current frame becomes the new GF.
+ int tmp;
+
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
+
+ tmp = cpi->alt_fb_idx;
+ cpi->alt_fb_idx = cpi->gld_fb_idx;
+ cpi->gld_fb_idx = tmp;
+
+ if (is_two_pass_svc(cpi)) {
+ cpi->svc.layer_context[0].gold_ref_idx = cpi->gld_fb_idx;
+ cpi->svc.layer_context[0].alt_ref_idx = cpi->alt_fb_idx;
+ }
+ } else { /* For non key/golden frames */
+ if (cpi->refresh_alt_ref_frame) {
+ int arf_idx = cpi->alt_fb_idx;
+ if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ arf_idx = gf_group->arf_update_idx[gf_group->index];
+ }
+
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
+ memcpy(cpi->interp_filter_selected[ALTREF_FRAME],
+ cpi->interp_filter_selected[0],
+ sizeof(cpi->interp_filter_selected[0]));
+ }
+
+ if (cpi->refresh_golden_frame) {
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
+ if (!cpi->rc.is_src_frame_alt_ref)
+ memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
+ cpi->interp_filter_selected[0],
+ sizeof(cpi->interp_filter_selected[0]));
+ else
+ memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
+ cpi->interp_filter_selected[ALTREF_FRAME],
+ sizeof(cpi->interp_filter_selected[ALTREF_FRAME]));
+ }
+ }
+
+ if (cpi->refresh_last_frame) {
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
+ if (!cpi->rc.is_src_frame_alt_ref)
+ memcpy(cpi->interp_filter_selected[LAST_FRAME],
+ cpi->interp_filter_selected[0],
+ sizeof(cpi->interp_filter_selected[0]));
+ }
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ if (cpi->oxcf.noise_sensitivity > 0) {
+ vp9_denoiser_update_frame_info(&cpi->denoiser,
+ *cpi->Source,
+ cpi->common.frame_type,
+ cpi->refresh_alt_ref_frame,
+ cpi->refresh_golden_frame,
+ cpi->refresh_last_frame);
+ }
+#endif
+}
+
+static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
+ MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
+ struct loopfilter *lf = &cm->lf;
+ if (xd->lossless) {
+ lf->filter_level = 0;
+ } else {
+ struct vpx_usec_timer timer;
+
+ vp9_clear_system_state();
+
+ vpx_usec_timer_start(&timer);
+
+ vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
+
+ vpx_usec_timer_mark(&timer);
+ cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
+ }
+
+ if (lf->filter_level > 0) {
+ if (cpi->num_workers > 1)
+ vp9_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane,
+ lf->filter_level, 0, 0,
+ cpi->workers, cpi->num_workers,
+ &cpi->lf_row_sync);
+ else
+ vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
+ }
+
+ vp9_extend_frame_inner_borders(cm->frame_to_show);
+}
+
+static INLINE void alloc_frame_mvs(const VP9_COMMON *cm,
+ int buffer_idx) {
+ RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
+ if (new_fb_ptr->mvs == NULL ||
+ new_fb_ptr->mi_rows < cm->mi_rows ||
+ new_fb_ptr->mi_cols < cm->mi_cols) {
+ vpx_free(new_fb_ptr->mvs);
+ new_fb_ptr->mvs =
+ (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
+ sizeof(*new_fb_ptr->mvs));
+ new_fb_ptr->mi_rows = cm->mi_rows;
+ new_fb_ptr->mi_cols = cm->mi_cols;
+ }
+}
+
+void vp9_scale_references(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+ MV_REFERENCE_FRAME ref_frame;
+ const VP9_REFFRAME ref_mask[3] = {VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG};
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ // Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1).
+ if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
+ BufferPool *const pool = cm->buffer_pool;
+ const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi,
+ ref_frame);
+
+ if (ref == NULL) {
+ cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
+ continue;
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
+ const int new_fb = get_free_fb(cm);
+ RefCntBuffer *new_fb_ptr = NULL;
+ if (cm->new_fb_idx == INVALID_IDX)
+ return;
+ new_fb_ptr = &pool->frame_bufs[new_fb];
+ cm->cur_frame = &pool->frame_bufs[new_fb];
+ vp9_realloc_frame_buffer(&pool->frame_bufs[new_fb].buf,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ cm->use_highbitdepth,
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+ NULL, NULL, NULL);
+ scale_and_extend_frame(ref, &new_fb_ptr->buf, (int)cm->bit_depth);
+#else
+ if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
+ const int new_fb = get_free_fb(cm);
+ RefCntBuffer *new_fb_ptr = NULL;
+ if (cm->new_fb_idx == INVALID_IDX)
+ return;
+ new_fb_ptr = &pool->frame_bufs[new_fb];
+ vp9_realloc_frame_buffer(&new_fb_ptr->buf,
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+ NULL, NULL, NULL);
+ scale_and_extend_frame(ref, &new_fb_ptr->buf);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
+
+ alloc_frame_mvs(cm, new_fb);
+ } else {
+ const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+ cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
+ ++pool->frame_bufs[buf_idx].ref_count;
+ }
+ } else {
+ cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
+ }
+ }
+}
+
+static void release_scaled_references(VP9_COMP *cpi) {
+ VP9_COMMON *cm = &cpi->common;
+ int i;
+ for (i = 0; i < MAX_REF_FRAMES; ++i) {
+ const int idx = cpi->scaled_ref_idx[i];
+ RefCntBuffer *const buf = idx != INVALID_IDX ?
+ &cm->buffer_pool->frame_bufs[idx] : NULL;
+ if (buf != NULL) {
+ --buf->ref_count;
+ cpi->scaled_ref_idx[i] = INVALID_IDX;
+ }
+ }
+}
+
+static void full_to_model_count(unsigned int *model_count,
+ unsigned int *full_count) {
+ int n;
+ model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
+ model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
+ model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
+ for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
+ model_count[TWO_TOKEN] += full_count[n];
+ model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
+}
+
+static void full_to_model_counts(vp9_coeff_count_model *model_count,
+ vp9_coeff_count *full_count) {
+ int i, j, k, l;
+
+ for (i = 0; i < PLANE_TYPES; ++i)
+ for (j = 0; j < REF_TYPES; ++j)
+ for (k = 0; k < COEF_BANDS; ++k)
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
+ full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
+}
+
+#if 0 && CONFIG_INTERNAL_STATS
+static void output_frame_level_debug_stats(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
+ int64_t recon_err;
+
+ vp9_clear_system_state();
+
+ recon_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+
+ if (cpi->twopass.total_left_stats.coded_error != 0.0)
+ fprintf(f, "%10u %dx%d %d %d %10d %10d %10d %10d"
+ "%10"PRId64" %10"PRId64" %5d %5d %10"PRId64" "
+ "%10"PRId64" %10"PRId64" %10d "
+ "%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
+ "%6d %6d %5d %5d %5d "
+ "%10"PRId64" %10.3lf"
+ "%10lf %8u %10"PRId64" %10d %10d\n",
+ cpi->common.current_video_frame,
+ cm->width, cm->height,
+ cpi->rc.source_alt_ref_pending,
+ cpi->rc.source_alt_ref_active,
+ cpi->rc.this_frame_target,
+ cpi->rc.projected_frame_size,
+ cpi->rc.projected_frame_size / cpi->common.MBs,
+ (cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
+ cpi->rc.vbr_bits_off_target,
+ cpi->rc.vbr_bits_off_target_fast,
+ cpi->twopass.extend_minq,
+ cpi->twopass.extend_minq_fast,
+ cpi->rc.total_target_vs_actual,
+ (cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
+ cpi->rc.total_actual_bits, cm->base_qindex,
+ vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth),
+ (double)vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) / 4.0,
+ vp9_convert_qindex_to_q(cpi->twopass.active_worst_quality,
+ cm->bit_depth),
+ cpi->rc.avg_q,
+ vp9_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth),
+ cpi->refresh_last_frame, cpi->refresh_golden_frame,
+ cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
+ cpi->twopass.bits_left,
+ cpi->twopass.total_left_stats.coded_error,
+ cpi->twopass.bits_left /
+ (1 + cpi->twopass.total_left_stats.coded_error),
+ cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
+ cpi->twopass.kf_zeromotion_pct);
+
+ fclose(f);
+
+ if (0) {
+ FILE *const fmodes = fopen("Modes.stt", "a");
+ int i;
+
+ fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
+ cm->frame_type, cpi->refresh_golden_frame,
+ cpi->refresh_alt_ref_frame);
+
+ for (i = 0; i < MAX_MODES; ++i)
+ fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
+
+ fprintf(fmodes, "\n");
+
+ fclose(fmodes);
+ }
+}
+#endif
+
+static void set_mv_search_params(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const unsigned int max_mv_def = MIN(cm->width, cm->height);
+
+ // Default based on max resolution.
+ cpi->mv_step_param = vp9_init_search_range(max_mv_def);
+
+ if (cpi->sf.mv.auto_mv_step_size) {
+ if (frame_is_intra_only(cm)) {
+ // Initialize max_mv_magnitude for use in the first INTER frame
+ // after a key/intra-only frame.
+ cpi->max_mv_magnitude = max_mv_def;
+ } else {
+ if (cm->show_frame) {
+ // Allow mv_steps to correspond to twice the max mv magnitude found
+ // in the previous frame, capped by the default max_mv_magnitude based
+ // on resolution.
+ cpi->mv_step_param =
+ vp9_init_search_range(MIN(max_mv_def, 2 * cpi->max_mv_magnitude));
+ }
+ cpi->max_mv_magnitude = 0;
+ }
+ }
+}
+
+static void set_size_independent_vars(VP9_COMP *cpi) {
+ vp9_set_speed_features_framesize_independent(cpi);
+ vp9_set_rd_speed_thresholds(cpi);
+ vp9_set_rd_speed_thresholds_sub8x8(cpi);
+ cpi->common.interp_filter = cpi->sf.default_interp_filter;
+}
+
+static void set_size_dependent_vars(VP9_COMP *cpi, int *q,
+ int *bottom_index, int *top_index) {
+ VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+
+ // Setup variables that depend on the dimensions of the frame.
+ vp9_set_speed_features_framesize_dependent(cpi);
+
+ // Decide q and q bounds.
+ *q = vp9_rc_pick_q_and_bounds(cpi, bottom_index, top_index);
+
+ if (!frame_is_intra_only(cm)) {
+ vp9_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH);
+ }
+
+ // Configure experimental use of segmentation for enhanced coding of
+ // static regions if indicated.
+ // Only allowed in the second pass of a two pass encode, as it requires
+ // lagged coding, and if the relevant speed feature flag is set.
+ if (oxcf->pass == 2 && cpi->sf.static_segmentation)
+ configure_static_seg_features(cpi);
+
+#if CONFIG_VP9_POSTPROC
+ if (oxcf->noise_sensitivity > 0) {
+ int l = 0;
+ switch (oxcf->noise_sensitivity) {
+ case 1:
+ l = 20;
+ break;
+ case 2:
+ l = 40;
+ break;
+ case 3:
+ l = 60;
+ break;
+ case 4:
+ case 5:
+ l = 100;
+ break;
+ case 6:
+ l = 150;
+ break;
+ }
+ vp9_denoise(cpi->Source, cpi->Source, l);
+ }
+#endif // CONFIG_VP9_POSTPROC
+}
+
+static void init_motion_estimation(VP9_COMP *cpi) {
+ int y_stride = cpi->scaled_source.y_stride;
+
+ if (cpi->sf.mv.search_method == NSTEP) {
+ vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride);
+ } else if (cpi->sf.mv.search_method == DIAMOND) {
+ vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
+ }
+}
+
+static void set_frame_size(VP9_COMP *cpi) {
+ int ref_frame;
+ VP9_COMMON *const cm = &cpi->common;
+ VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+ if (oxcf->pass == 2 &&
+ oxcf->rc_mode == VPX_VBR &&
+ ((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) ||
+ (oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) {
+ calculate_coded_size(
+ cpi, &oxcf->scaled_frame_width, &oxcf->scaled_frame_height);
+
+ // There has been a change in frame size.
+ vp9_set_size_literal(cpi, oxcf->scaled_frame_width,
+ oxcf->scaled_frame_height);
+ }
+
+ if ((oxcf->pass == 2) &&
+ (!cpi->use_svc ||
+ (is_two_pass_svc(cpi) &&
+ cpi->svc.encode_empty_frame_state != ENCODING))) {
+ vp9_set_target_rate(cpi);
+ }
+
+ alloc_frame_mvs(cm, cm->new_fb_idx);
+
+ // Reset the frame pointers to the current frame size.
+ vp9_realloc_frame_buffer(get_frame_new_buffer(cm),
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
+ NULL, NULL, NULL);
+
+ alloc_util_frame_buffers(cpi);
+ init_motion_estimation(cpi);
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1];
+ const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+
+ ref_buf->idx = buf_idx;
+
+ if (buf_idx != INVALID_IDX) {
+ YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
+ ref_buf->buf = buf;
+#if CONFIG_VP9_HIGHBITDEPTH
+ vp9_setup_scale_factors_for_frame(&ref_buf->sf,
+ buf->y_crop_width, buf->y_crop_height,
+ cm->width, cm->height,
+ (buf->flags & YV12_FLAG_HIGHBITDEPTH) ?
+ 1 : 0);
+#else
+ vp9_setup_scale_factors_for_frame(&ref_buf->sf,
+ buf->y_crop_width, buf->y_crop_height,
+ cm->width, cm->height);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ if (vp9_is_scaled(&ref_buf->sf))
+ vp9_extend_frame_borders(buf);
+ } else {
+ ref_buf->buf = NULL;
+ }
+ }
+
+ set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
+}
+
+static void encode_without_recode_loop(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ int q = 0, bottom_index = 0, top_index = 0; // Dummy variables.
+
+ vp9_clear_system_state();
+
+ set_frame_size(cpi);
+
+ cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
+ &cpi->scaled_source);
+
+ if (cpi->unscaled_last_source != NULL)
+ cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source,
+ &cpi->scaled_last_source);
+
+ if (frame_is_intra_only(cm) == 0) {
+ vp9_scale_references(cpi);
+ }
+
+ set_size_independent_vars(cpi);
+ set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
+
+ vp9_set_quantizer(cm, q);
+ vp9_set_variance_partition_thresholds(cpi, q);
+
+ setup_frame(cpi);
+
+ suppress_active_map(cpi);
+ // Variance adaptive and in frame q adjustment experiments are mutually
+ // exclusive.
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_vaq_frame_setup(cpi);
+ } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+ vp9_setup_in_frame_q_adj(cpi);
+ } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
+ vp9_cyclic_refresh_setup(cpi);
+ }
+ apply_active_map(cpi);
+
+ // transform / motion compensation build reconstruction frame
+ vp9_encode_frame(cpi);
+
+ // Update some stats from cyclic refresh, and check if we should not update
+ // golden reference, for non-SVC 1 pass CBR.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
+ cm->frame_type != KEY_FRAME &&
+ !cpi->use_svc &&
+ (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR))
+ vp9_cyclic_refresh_check_golden_update(cpi);
+
+ // Update the skip mb flag probabilities based on the distribution
+ // seen in the last encoder iteration.
+ // update_base_skip_probs(cpi);
+ vp9_clear_system_state();
+}
+
+static void encode_with_recode_loop(VP9_COMP *cpi,
+ size_t *size,
+ uint8_t *dest) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int bottom_index, top_index;
+ int loop_count = 0;
+ int loop_at_this_size = 0;
+ int loop = 0;
+ int overshoot_seen = 0;
+ int undershoot_seen = 0;
+ int frame_over_shoot_limit;
+ int frame_under_shoot_limit;
+ int q = 0, q_low = 0, q_high = 0;
+
+ set_size_independent_vars(cpi);
+
+ do {
+ vp9_clear_system_state();
+
+ set_frame_size(cpi);
+
+ if (loop_count == 0 || cpi->resize_pending != 0) {
+ set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
+
+ // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
+ set_mv_search_params(cpi);
+
+ // Reset the loop state for new frame size.
+ overshoot_seen = 0;
+ undershoot_seen = 0;
+
+ // Reconfiguration for change in frame size has concluded.
+ cpi->resize_pending = 0;
+
+ q_low = bottom_index;
+ q_high = top_index;
+
+ loop_at_this_size = 0;
+ }
+
+ // Decide frame size bounds first time through.
+ if (loop_count == 0) {
+ vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
+ &frame_under_shoot_limit,
+ &frame_over_shoot_limit);
+ }
+
+ cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
+ &cpi->scaled_source);
+
+ if (cpi->unscaled_last_source != NULL)
+ cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source,
+ &cpi->scaled_last_source);
+
+ if (frame_is_intra_only(cm) == 0) {
+ if (loop_count > 0) {
+ release_scaled_references(cpi);
+ }
+ vp9_scale_references(cpi);
+ }
+
+ vp9_set_quantizer(cm, q);
+
+ if (loop_count == 0)
+ setup_frame(cpi);
+
+ // Variance adaptive and in frame q adjustment experiments are mutually
+ // exclusive.
+ if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
+ vp9_vaq_frame_setup(cpi);
+ } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
+ vp9_setup_in_frame_q_adj(cpi);
+ }
+
+ // transform / motion compensation build reconstruction frame
+ vp9_encode_frame(cpi);
+
+ // Update the skip mb flag probabilities based on the distribution
+ // seen in the last encoder iteration.
+ // update_base_skip_probs(cpi);
+
+ vp9_clear_system_state();
+
+ // Dummy pack of the bitstream using up to date stats to get an
+ // accurate estimate of output frame size to determine if we need
+ // to recode.
+ if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
+ save_coding_context(cpi);
+ if (!cpi->sf.use_nonrd_pick_mode)
+ vp9_pack_bitstream(cpi, dest, size);
+
+ rc->projected_frame_size = (int)(*size) << 3;
+ restore_coding_context(cpi);
+
+ if (frame_over_shoot_limit == 0)
+ frame_over_shoot_limit = 1;
+ }
+
+ if (cpi->oxcf.rc_mode == VPX_Q) {
+ loop = 0;
+ } else {
+ if ((cm->frame_type == KEY_FRAME) &&
+ rc->this_key_frame_forced &&
+ (rc->projected_frame_size < rc->max_frame_bandwidth)) {
+ int last_q = q;
+ int64_t kf_err;
+
+ int64_t high_err_target = cpi->ambient_err;
+ int64_t low_err_target = cpi->ambient_err >> 1;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) {
+ kf_err = vp9_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+ } else {
+ kf_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+ }
+#else
+ kf_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ // Prevent possible divide by zero error below for perfect KF
+ kf_err += !kf_err;
+
+ // The key frame is not good enough or we can afford
+ // to make it better without undue risk of popping.
+ if ((kf_err > high_err_target &&
+ rc->projected_frame_size <= frame_over_shoot_limit) ||
+ (kf_err > low_err_target &&
+ rc->projected_frame_size <= frame_under_shoot_limit)) {
+ // Lower q_high
+ q_high = q > q_low ? q - 1 : q_low;
+
+ // Adjust Q
+ q = (int)((q * high_err_target) / kf_err);
+ q = MIN(q, (q_high + q_low) >> 1);
+ } else if (kf_err < low_err_target &&
+ rc->projected_frame_size >= frame_under_shoot_limit) {
+ // The key frame is much better than the previous frame
+ // Raise q_low
+ q_low = q < q_high ? q + 1 : q_high;
+
+ // Adjust Q
+ q = (int)((q * low_err_target) / kf_err);
+ q = MIN(q, (q_high + q_low + 1) >> 1);
+ }
+
+ // Clamp Q to upper and lower limits:
+ q = clamp(q, q_low, q_high);
+
+ loop = q != last_q;
+ } else if (recode_loop_test(
+ cpi, frame_over_shoot_limit, frame_under_shoot_limit,
+ q, MAX(q_high, top_index), bottom_index)) {
+ // Is the projected frame size out of range and are we allowed
+ // to attempt to recode.
+ int last_q = q;
+ int retries = 0;
+
+ if (cpi->resize_pending == 1) {
+ // Change in frame size so go back around the recode loop.
+ cpi->rc.frame_size_selector =
+ SCALE_STEP1 - cpi->rc.frame_size_selector;
+ cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector;
+
+#if CONFIG_INTERNAL_STATS
+ ++cpi->tot_recode_hits;
+#endif
+ ++loop_count;
+ loop = 1;
+ continue;
+ }
+
+ // Frame size out of permitted range:
+ // Update correction factor & compute new Q to try...
+
+ // Frame is too large
+ if (rc->projected_frame_size > rc->this_frame_target) {
+ // Special case if the projected size is > the max allowed.
+ if (rc->projected_frame_size >= rc->max_frame_bandwidth)
+ q_high = rc->worst_quality;
+
+ // Raise Qlow as to at least the current value
+ q_low = q < q_high ? q + 1 : q_high;
+
+ if (undershoot_seen || loop_at_this_size > 1) {
+ // Update rate_correction_factor unless
+ vp9_rc_update_rate_correction_factors(cpi);
+
+ q = (q_high + q_low + 1) / 2;
+ } else {
+ // Update rate_correction_factor unless
+ vp9_rc_update_rate_correction_factors(cpi);
+
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ bottom_index, MAX(q_high, top_index));
+
+ while (q < q_low && retries < 10) {
+ vp9_rc_update_rate_correction_factors(cpi);
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ bottom_index, MAX(q_high, top_index));
+ retries++;
+ }
+ }
+
+ overshoot_seen = 1;
+ } else {
+ // Frame is too small
+ q_high = q > q_low ? q - 1 : q_low;
+
+ if (overshoot_seen || loop_at_this_size > 1) {
+ vp9_rc_update_rate_correction_factors(cpi);
+ q = (q_high + q_low) / 2;
+ } else {
+ vp9_rc_update_rate_correction_factors(cpi);
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ bottom_index, top_index);
+ // Special case reset for qlow for constrained quality.
+ // This should only trigger where there is very substantial
+ // undershoot on a frame and the auto cq level is above
+ // the user passsed in value.
+ if (cpi->oxcf.rc_mode == VPX_CQ &&
+ q < q_low) {
+ q_low = q;
+ }
+
+ while (q > q_high && retries < 10) {
+ vp9_rc_update_rate_correction_factors(cpi);
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ bottom_index, top_index);
+ retries++;
+ }
+ }
+
+ undershoot_seen = 1;
+ }
+
+ // Clamp Q to upper and lower limits:
+ q = clamp(q, q_low, q_high);
+
+ loop = (q != last_q);
+ } else {
+ loop = 0;
+ }
+ }
+
+ // Special case for overlay frame.
+ if (rc->is_src_frame_alt_ref &&
+ rc->projected_frame_size < rc->max_frame_bandwidth)
+ loop = 0;
+
+ if (loop) {
+ ++loop_count;
+ ++loop_at_this_size;
+
+#if CONFIG_INTERNAL_STATS
+ ++cpi->tot_recode_hits;
+#endif
+ }
+ } while (loop);
+}
+
+static int get_ref_frame_flags(const VP9_COMP *cpi) {
+ const int *const map = cpi->common.ref_frame_map;
+ const int gold_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx];
+ const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx];
+ const int gold_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
+ int flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
+
+ if (gold_is_last)
+ flags &= ~VP9_GOLD_FLAG;
+
+ if (cpi->rc.frames_till_gf_update_due == INT_MAX &&
+ (cpi->svc.number_temporal_layers == 1 &&
+ cpi->svc.number_spatial_layers == 1))
+ flags &= ~VP9_GOLD_FLAG;
+
+ if (alt_is_last)
+ flags &= ~VP9_ALT_FLAG;
+
+ if (gold_is_alt)
+ flags &= ~VP9_ALT_FLAG;
+
+ return flags;
+}
+
+static void set_ext_overrides(VP9_COMP *cpi) {
+ // Overrides the defaults with the externally supplied values with
+ // vp9_update_reference() and vp9_update_entropy() calls
+ // Note: The overrides are valid only for the next frame passed
+ // to encode_frame_to_data_rate() function
+ if (cpi->ext_refresh_frame_context_pending) {
+ cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
+ cpi->ext_refresh_frame_context_pending = 0;
+ }
+ if (cpi->ext_refresh_frame_flags_pending) {
+ cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
+ cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
+ cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
+ cpi->ext_refresh_frame_flags_pending = 0;
+ }
+}
+
+YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
+ YV12_BUFFER_CONFIG *unscaled,
+ YV12_BUFFER_CONFIG *scaled) {
+ if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
+ cm->mi_rows * MI_SIZE != unscaled->y_height) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth);
+#else
+ scale_and_extend_frame_nonnormative(unscaled, scaled);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ return scaled;
+ } else {
+ return unscaled;
+ }
+}
+
+static void set_arf_sign_bias(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ int arf_sign_bias;
+
+ if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ arf_sign_bias = cpi->rc.source_alt_ref_active &&
+ (!cpi->refresh_alt_ref_frame ||
+ (gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
+ } else {
+ arf_sign_bias =
+ (cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame);
+ }
+ cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias;
+}
+
+static int setup_interp_filter_search_mask(VP9_COMP *cpi) {
+ INTERP_FILTER ifilter;
+ int ref_total[MAX_REF_FRAMES] = {0};
+ MV_REFERENCE_FRAME ref;
+ int mask = 0;
+ if (cpi->common.last_frame_type == KEY_FRAME ||
+ cpi->refresh_alt_ref_frame)
+ return mask;
+ for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
+ for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter)
+ ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
+
+ for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) {
+ if ((ref_total[LAST_FRAME] &&
+ cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
+ (ref_total[GOLDEN_FRAME] == 0 ||
+ cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50
+ < ref_total[GOLDEN_FRAME]) &&
+ (ref_total[ALTREF_FRAME] == 0 ||
+ cpi->interp_filter_selected[ALTREF_FRAME][ifilter] * 50
+ < ref_total[ALTREF_FRAME]))
+ mask |= 1 << ifilter;
+ }
+ return mask;
+}
+
+static void encode_frame_to_data_rate(VP9_COMP *cpi,
+ size_t *size,
+ uint8_t *dest,
+ unsigned int *frame_flags) {
+ VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ struct segmentation *const seg = &cm->seg;
+ TX_SIZE t;
+
+ set_ext_overrides(cpi);
+ vp9_clear_system_state();
+
+ // Set the arf sign bias for this frame.
+ set_arf_sign_bias(cpi);
+
+ // Set default state for segment based loop filter update flags.
+ cm->lf.mode_ref_delta_update = 0;
+
+ if (cpi->oxcf.pass == 2 &&
+ cpi->sf.adaptive_interp_filter_search)
+ cpi->sf.interp_filter_search_mask =
+ setup_interp_filter_search_mask(cpi);
+
+ // Set various flags etc to special state if it is a key frame.
+ if (frame_is_intra_only(cm)) {
+ // Reset the loop filter deltas and segmentation map.
+ vp9_reset_segment_features(&cm->seg);
+
+ // If segmentation is enabled force a map update for key frames.
+ if (seg->enabled) {
+ seg->update_map = 1;
+ seg->update_data = 1;
+ }
+
+ // The alternate reference frame cannot be active for a key frame.
+ cpi->rc.source_alt_ref_active = 0;
+
+ cm->error_resilient_mode = oxcf->error_resilient_mode;
+ cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode;
+
+ // By default, encoder assumes decoder can use prev_mi.
+ if (cm->error_resilient_mode) {
+ cm->frame_parallel_decoding_mode = 1;
+ cm->reset_frame_context = 0;
+ cm->refresh_frame_context = 0;
+ } else if (cm->intra_only) {
+ // Only reset the current context.
+ cm->reset_frame_context = 2;
+ }
+ }
+ if (is_two_pass_svc(cpi) && cm->error_resilient_mode == 0) {
+ // Use context 0 for intra only empty frame, but the last frame context
+ // for other empty frames.
+ if (cpi->svc.encode_empty_frame_state == ENCODING) {
+ if (cpi->svc.encode_intra_empty_frame != 0)
+ cm->frame_context_idx = 0;
+ else
+ cm->frame_context_idx = FRAME_CONTEXTS - 1;
+ } else {
+ cm->frame_context_idx =
+ cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers +
+ cpi->svc.temporal_layer_id;
+ }
+
+ cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode;
+
+ // The probs will be updated based on the frame type of its previous
+ // frame if frame_parallel_decoding_mode is 0. The type may vary for
+ // the frame after a key frame in base layer since we may drop enhancement
+ // layers. So set frame_parallel_decoding_mode to 1 in this case.
+ if (cm->frame_parallel_decoding_mode == 0) {
+ if (cpi->svc.number_temporal_layers == 1) {
+ if (cpi->svc.spatial_layer_id == 0 &&
+ cpi->svc.layer_context[0].last_frame_type == KEY_FRAME)
+ cm->frame_parallel_decoding_mode = 1;
+ } else if (cpi->svc.spatial_layer_id == 0) {
+ // Find the 2nd frame in temporal base layer and 1st frame in temporal
+ // enhancement layers from the key frame.
+ int i;
+ for (i = 0; i < cpi->svc.number_temporal_layers; ++i) {
+ if (cpi->svc.layer_context[0].frames_from_key_frame == 1 << i) {
+ cm->frame_parallel_decoding_mode = 1;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // For 1 pass CBR, check if we are dropping this frame.
+ // Never drop on key frame.
+ if (oxcf->pass == 0 &&
+ oxcf->rc_mode == VPX_CBR &&
+ cm->frame_type != KEY_FRAME) {
+ if (vp9_rc_drop_frame(cpi)) {
+ vp9_rc_postencode_update_drop_frame(cpi);
+ ++cm->current_video_frame;
+ return;
+ }
+ }
+
+ vp9_clear_system_state();
+
+#if CONFIG_INTERNAL_STATS
+ memset(cpi->mode_chosen_counts, 0,
+ MAX_MODES * sizeof(*cpi->mode_chosen_counts));
+#endif
+
+ if (cpi->sf.recode_loop == DISALLOW_RECODE) {
+ encode_without_recode_loop(cpi);
+ } else {
+ encode_with_recode_loop(cpi, size, dest);
+ }
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+#ifdef OUTPUT_YUV_DENOISED
+ if (oxcf->noise_sensitivity > 0) {
+ vp9_write_yuv_frame_420(&cpi->denoiser.running_avg_y[INTRA_FRAME],
+ yuv_denoised_file);
+ }
+#endif
+#endif
+#ifdef OUTPUT_YUV_SKINMAP
+ if (cpi->common.current_video_frame > 1) {
+ vp9_compute_skin_map(cpi, yuv_skinmap_file);
+ }
+#endif
+
+ // Special case code to reduce pulsing when key frames are forced at a
+ // fixed interval. Note the reconstruction error if it is the frame before
+ // the force key frame
+ if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) {
+ cpi->ambient_err = vp9_highbd_get_y_sse(cpi->Source,
+ get_frame_new_buffer(cm));
+ } else {
+ cpi->ambient_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+ }
+#else
+ cpi->ambient_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+
+ // If the encoder forced a KEY_FRAME decision
+ if (cm->frame_type == KEY_FRAME)
+ cpi->refresh_last_frame = 1;
+
+ cm->frame_to_show = get_frame_new_buffer(cm);
+
+ // Pick the loop filter level for the frame.
+ loopfilter_frame(cpi, cm);
+
+ // build the bitstream
+ vp9_pack_bitstream(cpi, dest, size);
+
+ if (cm->seg.update_map)
+ update_reference_segmentation_map(cpi);
+
+ if (frame_is_intra_only(cm) == 0) {
+ release_scaled_references(cpi);
+ }
+ vp9_update_reference_frames(cpi);
+
+ for (t = TX_4X4; t <= TX_32X32; t++)
+ full_to_model_counts(cpi->td.counts->coef[t],
+ cpi->td.rd_counts.coef_counts[t]);
+
+ if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode)
+ vp9_adapt_coef_probs(cm);
+
+ if (!frame_is_intra_only(cm)) {
+ if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
+ vp9_adapt_mode_probs(cm);
+ vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
+ }
+ }
+
+ if (cpi->refresh_golden_frame == 1)
+ cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
+ else
+ cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
+
+ if (cpi->refresh_alt_ref_frame == 1)
+ cpi->frame_flags |= FRAMEFLAGS_ALTREF;
+ else
+ cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
+
+ cpi->ref_frame_flags = get_ref_frame_flags(cpi);
+
+ cm->last_frame_type = cm->frame_type;
+
+ if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING))
+ vp9_rc_postencode_update(cpi, *size);
+
+#if 0
+ output_frame_level_debug_stats(cpi);
+#endif
+
+ if (cm->frame_type == KEY_FRAME) {
+ // Tell the caller that the frame was coded as a key frame
+ *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
+ } else {
+ *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
+ }
+
+ // Clear the one shot update flags for segmentation map and mode/ref loop
+ // filter deltas.
+ cm->seg.update_map = 0;
+ cm->seg.update_data = 0;
+ cm->lf.mode_ref_delta_update = 0;
+
+ // keep track of the last coded dimensions
+ cm->last_width = cm->width;
+ cm->last_height = cm->height;
+
+ // reset to normal state now that we are done.
+ if (!cm->show_existing_frame)
+ cm->last_show_frame = cm->show_frame;
+
+ if (cm->show_frame) {
+ vp9_swap_mi_and_prev_mi(cm);
+ // Don't increment frame counters if this was an altref buffer
+ // update not a real frame
+ ++cm->current_video_frame;
+ if (cpi->use_svc)
+ vp9_inc_frame_in_layer(cpi);
+ }
+ cm->prev_frame = cm->cur_frame;
+
+ if (cpi->use_svc)
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id *
+ cpi->svc.number_temporal_layers +
+ cpi->svc.temporal_layer_id].last_frame_type =
+ cm->frame_type;
+}
+
+static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
+ unsigned int *frame_flags) {
+ vp9_rc_get_svc_params(cpi);
+ encode_frame_to_data_rate(cpi, size, dest, frame_flags);
+}
+
+static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
+ unsigned int *frame_flags) {
+ if (cpi->oxcf.rc_mode == VPX_CBR) {
+ vp9_rc_get_one_pass_cbr_params(cpi);
+ } else {
+ vp9_rc_get_one_pass_vbr_params(cpi);
+ }
+ encode_frame_to_data_rate(cpi, size, dest, frame_flags);
+}
+
+static void Pass2Encode(VP9_COMP *cpi, size_t *size,
+ uint8_t *dest, unsigned int *frame_flags) {
+ cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
+ encode_frame_to_data_rate(cpi, size, dest, frame_flags);
+
+ if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING))
+ vp9_twopass_postencode_update(cpi);
+}
+
+static void init_ref_frame_bufs(VP9_COMMON *cm) {
+ int i;
+ BufferPool *const pool = cm->buffer_pool;
+ cm->new_fb_idx = INVALID_IDX;
+ for (i = 0; i < REF_FRAMES; ++i) {
+ cm->ref_frame_map[i] = INVALID_IDX;
+ pool->frame_bufs[i].ref_count = 0;
+ }
+}
+
+static void check_initial_width(VP9_COMP *cpi,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int use_highbitdepth,
+#endif
+ int subsampling_x, int subsampling_y) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ if (!cpi->initial_width ||
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth != use_highbitdepth ||
+#endif
+ cm->subsampling_x != subsampling_x ||
+ cm->subsampling_y != subsampling_y) {
+ cm->subsampling_x = subsampling_x;
+ cm->subsampling_y = subsampling_y;
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth = use_highbitdepth;
+#endif
+
+ alloc_raw_frame_buffers(cpi);
+ init_ref_frame_bufs(cm);
+ alloc_util_frame_buffers(cpi);
+
+ init_motion_estimation(cpi); // TODO(agrange) This can be removed.
+
+ cpi->initial_width = cm->width;
+ cpi->initial_height = cm->height;
+ cpi->initial_mbs = cm->MBs;
+ }
+}
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+static void setup_denoiser_buffer(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ if (cpi->oxcf.noise_sensitivity > 0 &&
+ !cpi->denoiser.frame_buffer_initialized) {
+ vp9_denoiser_alloc(&(cpi->denoiser), cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS);
+ }
+}
+#endif
+
+int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags,
+ YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
+ int64_t end_time) {
+ VP9_COMMON *cm = &cpi->common;
+ struct vpx_usec_timer timer;
+ int res = 0;
+ const int subsampling_x = sd->subsampling_x;
+ const int subsampling_y = sd->subsampling_y;
+#if CONFIG_VP9_HIGHBITDEPTH
+ const int use_highbitdepth = sd->flags & YV12_FLAG_HIGHBITDEPTH;
+ check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
+#else
+ check_initial_width(cpi, subsampling_x, subsampling_y);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ setup_denoiser_buffer(cpi);
+#endif
+ vpx_usec_timer_start(&timer);
+
+ if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
+#if CONFIG_VP9_HIGHBITDEPTH
+ use_highbitdepth,
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ frame_flags))
+ res = -1;
+ vpx_usec_timer_mark(&timer);
+ cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
+
+ if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) &&
+ (subsampling_x != 1 || subsampling_y != 1)) {
+ vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
+ "Non-4:2:0 color format requires profile 1 or 3");
+ res = -1;
+ }
+ if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) &&
+ (subsampling_x == 1 && subsampling_y == 1)) {
+ vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
+ "4:2:0 color format requires profile 0 or 2");
+ res = -1;
+ }
+
+ return res;
+}
+
+
+static int frame_is_reference(const VP9_COMP *cpi) {
+ const VP9_COMMON *cm = &cpi->common;
+
+ return cm->frame_type == KEY_FRAME ||
+ cpi->refresh_last_frame ||
+ cpi->refresh_golden_frame ||
+ cpi->refresh_alt_ref_frame ||
+ cm->refresh_frame_context ||
+ cm->lf.mode_ref_delta_update ||
+ cm->seg.update_map ||
+ cm->seg.update_data;
+}
+
+static void adjust_frame_rate(VP9_COMP *cpi,
+ const struct lookahead_entry *source) {
+ int64_t this_duration;
+ int step = 0;
+
+ if (source->ts_start == cpi->first_time_stamp_ever) {
+ this_duration = source->ts_end - source->ts_start;
+ step = 1;
+ } else {
+ int64_t last_duration = cpi->last_end_time_stamp_seen
+ - cpi->last_time_stamp_seen;
+
+ this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
+
+ // do a step update if the duration changes by 10%
+ if (last_duration)
+ step = (int)((this_duration - last_duration) * 10 / last_duration);
+ }
+
+ if (this_duration) {
+ if (step) {
+ vp9_new_framerate(cpi, 10000000.0 / this_duration);
+ } else {
+ // Average this frame's rate into the last second's average
+ // frame rate. If we haven't seen 1 second yet, then average
+ // over the whole interval seen.
+ const double interval = MIN((double)(source->ts_end
+ - cpi->first_time_stamp_ever), 10000000.0);
+ double avg_duration = 10000000.0 / cpi->framerate;
+ avg_duration *= (interval - avg_duration + this_duration);
+ avg_duration /= interval;
+
+ vp9_new_framerate(cpi, 10000000.0 / avg_duration);
+ }
+ }
+ cpi->last_time_stamp_seen = source->ts_start;
+ cpi->last_end_time_stamp_seen = source->ts_end;
+}
+
+// Returns 0 if this is not an alt ref else the offset of the source frame
+// used as the arf midpoint.
+static int get_arf_src_index(VP9_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int arf_src_index = 0;
+ if (is_altref_enabled(cpi)) {
+ if (cpi->oxcf.pass == 2) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
+ arf_src_index = gf_group->arf_src_offset[gf_group->index];
+ }
+ } else if (rc->source_alt_ref_pending) {
+ arf_src_index = rc->frames_till_gf_update_due;
+ }
+ }
+ return arf_src_index;
+}
+
+static void check_src_altref(VP9_COMP *cpi,
+ const struct lookahead_entry *source) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ if (cpi->oxcf.pass == 2) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ rc->is_src_frame_alt_ref =
+ (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
+ } else {
+ rc->is_src_frame_alt_ref = cpi->alt_ref_source &&
+ (source == cpi->alt_ref_source);
+ }
+
+ if (rc->is_src_frame_alt_ref) {
+ // Current frame is an ARF overlay frame.
+ cpi->alt_ref_source = NULL;
+
+ // Don't refresh the last buffer for an ARF overlay frame. It will
+ // become the GF so preserve last as an alternative prediction option.
+ cpi->refresh_last_frame = 0;
+ }
+}
+
+#if CONFIG_INTERNAL_STATS
+extern double vp9_get_blockiness(const unsigned char *img1, int img1_pitch,
+ const unsigned char *img2, int img2_pitch,
+ int width, int height);
+#endif
+
+static void adjust_image_stat(double y, double u, double v, double all,
+ ImageStat *s) {
+ s->stat[Y] += y;
+ s->stat[U] += u;
+ s->stat[V] += v;
+ s->stat[ALL] += all;
+ s->worst = MIN(s->worst, all);
+}
+
+int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
+ size_t *size, uint8_t *dest,
+ int64_t *time_stamp, int64_t *time_end, int flush) {
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ VP9_COMMON *const cm = &cpi->common;
+ BufferPool *const pool = cm->buffer_pool;
+ RATE_CONTROL *const rc = &cpi->rc;
+ struct vpx_usec_timer cmptimer;
+ YV12_BUFFER_CONFIG *force_src_buffer = NULL;
+ struct lookahead_entry *last_source = NULL;
+ struct lookahead_entry *source = NULL;
+ int arf_src_index;
+ int i;
+
+ if (is_two_pass_svc(cpi)) {
+#if CONFIG_SPATIAL_SVC
+ vp9_svc_start_frame(cpi);
+ // Use a small empty frame instead of a real frame
+ if (cpi->svc.encode_empty_frame_state == ENCODING)
+ source = &cpi->svc.empty_frame;
+#endif
+ if (oxcf->pass == 2)
+ vp9_restore_layer_context(cpi);
+ } else if (is_one_pass_cbr_svc(cpi)) {
+ vp9_one_pass_cbr_svc_start_layer(cpi);
+ }
+
+ vpx_usec_timer_start(&cmptimer);
+
+ vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
+
+ // Is multi-arf enabled.
+ // Note that at the moment multi_arf is only configured for 2 pass VBR and
+ // will not work properly with svc.
+ if ((oxcf->pass == 2) && !cpi->use_svc &&
+ (cpi->oxcf.enable_auto_arf > 1))
+ cpi->multi_arf_allowed = 1;
+ else
+ cpi->multi_arf_allowed = 0;
+
+ // Normal defaults
+ cm->reset_frame_context = 0;
+ cm->refresh_frame_context = 1;
+ if (!is_one_pass_cbr_svc(cpi)) {
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+ }
+
+ // Should we encode an arf frame.
+ arf_src_index = get_arf_src_index(cpi);
+
+ // Skip alt frame if we encode the empty frame
+ if (is_two_pass_svc(cpi) && source != NULL)
+ arf_src_index = 0;
+
+ if (arf_src_index) {
+ assert(arf_src_index <= rc->frames_to_key);
+
+ if ((source = vp9_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
+ cpi->alt_ref_source = source;
+
+#if CONFIG_SPATIAL_SVC
+ if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0) {
+ int i;
+ // Reference a hidden frame from a lower layer
+ for (i = cpi->svc.spatial_layer_id - 1; i >= 0; --i) {
+ if (oxcf->ss_enable_auto_arf[i]) {
+ cpi->gld_fb_idx = cpi->svc.layer_context[i].alt_ref_idx;
+ break;
+ }
+ }
+ }
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id].has_alt_frame = 1;
+#endif
+
+ if (oxcf->arnr_max_frames > 0) {
+ // Produce the filtered ARF frame.
+ vp9_temporal_filter(cpi, arf_src_index);
+ vp9_extend_frame_borders(&cpi->alt_ref_buffer);
+ force_src_buffer = &cpi->alt_ref_buffer;
+ }
+
+ cm->show_frame = 0;
+ cm->intra_only = 0;
+ cpi->refresh_alt_ref_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_last_frame = 0;
+ rc->is_src_frame_alt_ref = 0;
+ rc->source_alt_ref_pending = 0;
+ } else {
+ rc->source_alt_ref_pending = 0;
+ }
+ }
+
+ if (!source) {
+ // Get last frame source.
+ if (cm->current_video_frame > 0) {
+ if ((last_source = vp9_lookahead_peek(cpi->lookahead, -1)) == NULL)
+ return -1;
+ }
+
+ // Read in the source frame.
+ if (cpi->use_svc)
+ source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush);
+ else
+ source = vp9_lookahead_pop(cpi->lookahead, flush);
+
+ if (source != NULL) {
+ cm->show_frame = 1;
+ cm->intra_only = 0;
+ // if the flags indicate intra frame, but if the current picture is for
+ // non-zero spatial layer, it should not be an intra picture.
+ // TODO(Won Kap): this needs to change if per-layer intra frame is
+ // allowed.
+ if ((source->flags & VPX_EFLAG_FORCE_KF) && cpi->svc.spatial_layer_id) {
+ source->flags &= ~(unsigned int)(VPX_EFLAG_FORCE_KF);
+ }
+
+ // Check to see if the frame should be encoded as an arf overlay.
+ check_src_altref(cpi, source);
+ }
+ }
+
+ if (source) {
+ cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
+ : &source->img;
+
+ cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
+
+ *time_stamp = source->ts_start;
+ *time_end = source->ts_end;
+ *frame_flags = (source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
+
+ } else {
+ *size = 0;
+ if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
+ vp9_end_first_pass(cpi); /* get last stats packet */
+ cpi->twopass.first_pass_done = 1;
+ }
+ return -1;
+ }
+
+ if (source->ts_start < cpi->first_time_stamp_ever) {
+ cpi->first_time_stamp_ever = source->ts_start;
+ cpi->last_end_time_stamp_seen = source->ts_start;
+ }
+
+ // Clear down mmx registers
+ vp9_clear_system_state();
+
+ // adjust frame rates based on timestamps given
+ if (cm->show_frame) {
+ adjust_frame_rate(cpi, source);
+ }
+
+ if (is_one_pass_cbr_svc(cpi)) {
+ vp9_update_temporal_layer_framerate(cpi);
+ vp9_restore_layer_context(cpi);
+ }
+
+ // Find a free buffer for the new frame, releasing the reference previously
+ // held.
+ if (cm->new_fb_idx != INVALID_IDX) {
+ --pool->frame_bufs[cm->new_fb_idx].ref_count;
+ }
+ cm->new_fb_idx = get_free_fb(cm);
+
+ if (cm->new_fb_idx == INVALID_IDX)
+ return -1;
+
+ cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
+
+ if (!cpi->use_svc && cpi->multi_arf_allowed) {
+ if (cm->frame_type == KEY_FRAME) {
+ init_buffer_indices(cpi);
+ } else if (oxcf->pass == 2) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
+ }
+ }
+
+ // Start with a 0 size frame.
+ *size = 0;
+
+ cpi->frame_flags = *frame_flags;
+
+ if ((oxcf->pass == 2) &&
+ (!cpi->use_svc ||
+ (is_two_pass_svc(cpi) &&
+ cpi->svc.encode_empty_frame_state != ENCODING))) {
+ vp9_rc_get_second_pass_params(cpi);
+ } else {
+ set_frame_size(cpi);
+ }
+
+ for (i = 0; i < MAX_REF_FRAMES; ++i)
+ cpi->scaled_ref_idx[i] = INVALID_IDX;
+
+ if (oxcf->pass == 1 &&
+ (!cpi->use_svc || is_two_pass_svc(cpi))) {
+ const int lossless = is_lossless_requested(oxcf);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cpi->oxcf.use_highbitdepth)
+ cpi->td.mb.fwd_txm4x4 = lossless ?
+ vp9_highbd_fwht4x4 : vp9_highbd_fdct4x4;
+ else
+ cpi->td.mb.fwd_txm4x4 = lossless ? vp9_fwht4x4 : vp9_fdct4x4;
+ cpi->td.mb.highbd_itxm_add = lossless ? vp9_highbd_iwht4x4_add :
+ vp9_highbd_idct4x4_add;
+#else
+ cpi->td.mb.fwd_txm4x4 = lossless ? vp9_fwht4x4 : vp9_fdct4x4;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ cpi->td.mb.itxm_add = lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
+ vp9_first_pass(cpi, source);
+ } else if (oxcf->pass == 2 &&
+ (!cpi->use_svc || is_two_pass_svc(cpi))) {
+ Pass2Encode(cpi, size, dest, frame_flags);
+ } else if (cpi->use_svc) {
+ SvcEncode(cpi, size, dest, frame_flags);
+ } else {
+ // One pass encode
+ Pass0Encode(cpi, size, dest, frame_flags);
+ }
+
+ if (cm->refresh_frame_context)
+ cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
+
+ // No frame encoded, or frame was dropped, release scaled references.
+ if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
+ release_scaled_references(cpi);
+ }
+
+ if (*size > 0) {
+ cpi->droppable = !frame_is_reference(cpi);
+ }
+
+ // Save layer specific state.
+ if (is_one_pass_cbr_svc(cpi) ||
+ ((cpi->svc.number_temporal_layers > 1 ||
+ cpi->svc.number_spatial_layers > 1) &&
+ oxcf->pass == 2)) {
+ vp9_save_layer_context(cpi);
+ }
+
+ vpx_usec_timer_mark(&cmptimer);
+ cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
+
+ if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
+ generate_psnr_packet(cpi);
+
+#if CONFIG_INTERNAL_STATS
+
+ if (oxcf->pass != 1) {
+ double samples;
+ cpi->bytes += (int)(*size);
+
+ if (cm->show_frame) {
+ cpi->count++;
+
+ if (cpi->b_calculate_psnr) {
+ YV12_BUFFER_CONFIG *orig = cpi->Source;
+ YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
+ YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
+ PSNR_STATS psnr;
+#if CONFIG_VP9_HIGHBITDEPTH
+ calc_highbd_psnr(orig, recon, &psnr, cpi->td.mb.e_mbd.bd,
+ cpi->oxcf.input_bit_depth);
+#else
+ calc_psnr(orig, recon, &psnr);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3],
+ psnr.psnr[0], &cpi->psnr);
+ cpi->total_sq_error += psnr.sse[0];
+ cpi->total_samples += psnr.samples[0];
+ samples = psnr.samples[0];
+
+ {
+ PSNR_STATS psnr2;
+ double frame_ssim2 = 0, weight = 0;
+#if CONFIG_VP9_POSTPROC
+ if (vp9_alloc_frame_buffer(&cm->post_proc_buffer,
+ recon->y_crop_width, recon->y_crop_height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS,
+ cm->byte_alignment) < 0) {
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate post processing buffer");
+ }
+
+ vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
+ cm->lf.filter_level * 10 / 6);
+#endif
+ vp9_clear_system_state();
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ calc_highbd_psnr(orig, pp, &psnr2, cpi->td.mb.e_mbd.bd,
+ cpi->oxcf.input_bit_depth);
+#else
+ calc_psnr(orig, pp, &psnr2);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ cpi->totalp_sq_error += psnr2.sse[0];
+ cpi->totalp_samples += psnr2.samples[0];
+ adjust_image_stat(psnr2.psnr[1], psnr2.psnr[2], psnr2.psnr[3],
+ psnr2.psnr[0], &cpi->psnrp);
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) {
+ frame_ssim2 = vp9_highbd_calc_ssim(orig, recon, &weight,
+ (int)cm->bit_depth);
+ } else {
+ frame_ssim2 = vp9_calc_ssim(orig, recon, &weight);
+ }
+#else
+ frame_ssim2 = vp9_calc_ssim(orig, recon, &weight);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ cpi->worst_ssim= MIN(cpi->worst_ssim, frame_ssim2);
+ cpi->summed_quality += frame_ssim2 * weight;
+ cpi->summed_weights += weight;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) {
+ frame_ssim2 = vp9_highbd_calc_ssim(
+ orig, &cm->post_proc_buffer, &weight, (int)cm->bit_depth);
+ } else {
+ frame_ssim2 = vp9_calc_ssim(orig, &cm->post_proc_buffer, &weight);
+ }
+#else
+ frame_ssim2 = vp9_calc_ssim(orig, &cm->post_proc_buffer, &weight);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ cpi->summedp_quality += frame_ssim2 * weight;
+ cpi->summedp_weights += weight;
+#if 0
+ {
+ FILE *f = fopen("q_used.stt", "a");
+ fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
+ cpi->common.current_video_frame, y2, u2, v2,
+ frame_psnr2, frame_ssim2);
+ fclose(f);
+ }
+#endif
+ }
+ }
+ if (cpi->b_calculate_blockiness) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (!cm->use_highbitdepth)
+#endif
+ {
+ double frame_blockiness = vp9_get_blockiness(
+ cpi->Source->y_buffer, cpi->Source->y_stride,
+ cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
+ cpi->Source->y_width, cpi->Source->y_height);
+ cpi->worst_blockiness = MAX(cpi->worst_blockiness, frame_blockiness);
+ cpi->total_blockiness += frame_blockiness;
+ }
+ }
+
+ if (cpi->b_calculate_consistency) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (!cm->use_highbitdepth)
+#endif
+ {
+ double this_inconsistency = vp9_get_ssim_metrics(
+ cpi->Source->y_buffer, cpi->Source->y_stride,
+ cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
+ cpi->Source->y_width, cpi->Source->y_height, cpi->ssim_vars,
+ &cpi->metrics, 1);
+
+ const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
+ double consistency = vpx_sse_to_psnr(samples, peak,
+ (double)cpi->total_inconsistency);
+ if (consistency > 0.0)
+ cpi->worst_consistency = MIN(cpi->worst_consistency,
+ consistency);
+ cpi->total_inconsistency += this_inconsistency;
+ }
+ }
+
+ if (cpi->b_calculate_ssimg) {
+ double y, u, v, frame_all;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) {
+ frame_all = vp9_highbd_calc_ssimg(cpi->Source, cm->frame_to_show, &y,
+ &u, &v, (int)cm->bit_depth);
+ } else {
+ frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u,
+ &v);
+ }
+#else
+ frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ adjust_image_stat(y, u, v, frame_all, &cpi->ssimg);
+ }
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (!cm->use_highbitdepth)
+#endif
+ {
+ double y, u, v, frame_all;
+ frame_all = vp9_calc_fastssim(cpi->Source, cm->frame_to_show, &y, &u,
+ &v);
+ adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
+ /* TODO(JBB): add 10/12 bit support */
+ }
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (!cm->use_highbitdepth)
+#endif
+ {
+ double y, u, v, frame_all;
+ frame_all = vp9_psnrhvs(cpi->Source, cm->frame_to_show, &y, &u, &v);
+ adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
+ }
+ }
+ }
+
+#endif
+
+ if (is_two_pass_svc(cpi)) {
+ if (cpi->svc.encode_empty_frame_state == ENCODING) {
+ cpi->svc.encode_empty_frame_state = ENCODED;
+ cpi->svc.encode_intra_empty_frame = 0;
+ }
+
+ if (cm->show_frame) {
+ ++cpi->svc.spatial_layer_to_encode;
+ if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
+ cpi->svc.spatial_layer_to_encode = 0;
+
+ // May need the empty frame after an visible frame.
+ cpi->svc.encode_empty_frame_state = NEED_TO_ENCODE;
+ }
+ } else if (is_one_pass_cbr_svc(cpi)) {
+ if (cm->show_frame) {
+ ++cpi->svc.spatial_layer_to_encode;
+ if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
+ cpi->svc.spatial_layer_to_encode = 0;
+ }
+ }
+ return 0;
+}
+
+int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
+ vp9_ppflags_t *flags) {
+ VP9_COMMON *cm = &cpi->common;
+#if !CONFIG_VP9_POSTPROC
+ (void)flags;
+#endif
+
+ if (!cm->show_frame) {
+ return -1;
+ } else {
+ int ret;
+#if CONFIG_VP9_POSTPROC
+ ret = vp9_post_proc_frame(cm, dest, flags);
+#else
+ if (cm->frame_to_show) {
+ *dest = *cm->frame_to_show;
+ dest->y_width = cm->width;
+ dest->y_height = cm->height;
+ dest->uv_width = cm->width >> cm->subsampling_x;
+ dest->uv_height = cm->height >> cm->subsampling_y;
+ ret = 0;
+ } else {
+ ret = -1;
+ }
+#endif // !CONFIG_VP9_POSTPROC
+ vp9_clear_system_state();
+ return ret;
+ }
+}
+
+int vp9_set_internal_size(VP9_COMP *cpi,
+ VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
+ VP9_COMMON *cm = &cpi->common;
+ int hr = 0, hs = 0, vr = 0, vs = 0;
+
+ if (horiz_mode > ONETWO || vert_mode > ONETWO)
+ return -1;
+
+ Scale2Ratio(horiz_mode, &hr, &hs);
+ Scale2Ratio(vert_mode, &vr, &vs);
+
+ // always go to the next whole number
+ cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
+ cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
+ assert(cm->width <= cpi->initial_width);
+ assert(cm->height <= cpi->initial_height);
+
+ update_frame_size(cpi);
+
+ return 0;
+}
+
+int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
+ unsigned int height) {
+ VP9_COMMON *cm = &cpi->common;
+#if CONFIG_VP9_HIGHBITDEPTH
+ check_initial_width(cpi, cm->use_highbitdepth, 1, 1);
+#else
+ check_initial_width(cpi, 1, 1);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ setup_denoiser_buffer(cpi);
+#endif
+
+ if (width) {
+ cm->width = width;
+ if (cm->width > cpi->initial_width) {
+ cm->width = cpi->initial_width;
+ printf("Warning: Desired width too large, changed to %d\n", cm->width);
+ }
+ }
+
+ if (height) {
+ cm->height = height;
+ if (cm->height > cpi->initial_height) {
+ cm->height = cpi->initial_height;
+ printf("Warning: Desired height too large, changed to %d\n", cm->height);
+ }
+ }
+ assert(cm->width <= cpi->initial_width);
+ assert(cm->height <= cpi->initial_height);
+
+ update_frame_size(cpi);
+
+ return 0;
+}
+
+void vp9_set_svc(VP9_COMP *cpi, int use_svc) {
+ cpi->use_svc = use_svc;
+ return;
+}
+
+int64_t vp9_get_y_sse(const YV12_BUFFER_CONFIG *a,
+ const YV12_BUFFER_CONFIG *b) {
+ assert(a->y_crop_width == b->y_crop_width);
+ assert(a->y_crop_height == b->y_crop_height);
+
+ return get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
+ a->y_crop_width, a->y_crop_height);
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+int64_t vp9_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a,
+ const YV12_BUFFER_CONFIG *b) {
+ assert(a->y_crop_width == b->y_crop_width);
+ assert(a->y_crop_height == b->y_crop_height);
+ assert((a->flags & YV12_FLAG_HIGHBITDEPTH) != 0);
+ assert((b->flags & YV12_FLAG_HIGHBITDEPTH) != 0);
+
+ return highbd_get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
+ a->y_crop_width, a->y_crop_height);
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+int vp9_get_quantizer(VP9_COMP *cpi) {
+ return cpi->common.base_qindex;
+}
+
+void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) {
+ if (flags & (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF |
+ VP8_EFLAG_NO_REF_ARF)) {
+ int ref = 7;
+
+ if (flags & VP8_EFLAG_NO_REF_LAST)
+ ref ^= VP9_LAST_FLAG;
+
+ if (flags & VP8_EFLAG_NO_REF_GF)
+ ref ^= VP9_GOLD_FLAG;
+
+ if (flags & VP8_EFLAG_NO_REF_ARF)
+ ref ^= VP9_ALT_FLAG;
+
+ vp9_use_as_reference(cpi, ref);
+ }
+
+ if (flags & (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
+ VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_FORCE_GF |
+ VP8_EFLAG_FORCE_ARF)) {
+ int upd = 7;
+
+ if (flags & VP8_EFLAG_NO_UPD_LAST)
+ upd ^= VP9_LAST_FLAG;
+
+ if (flags & VP8_EFLAG_NO_UPD_GF)
+ upd ^= VP9_GOLD_FLAG;
+
+ if (flags & VP8_EFLAG_NO_UPD_ARF)
+ upd ^= VP9_ALT_FLAG;
+
+ vp9_update_reference(cpi, upd);
+ }
+
+ if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
+ vp9_update_entropy(cpi, 0);
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_encoder.h b/media/libvpx/vp9/encoder/vp9_encoder.h
new file mode 100644
index 000000000..6ce4a67cd
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_encoder.h
@@ -0,0 +1,654 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_ENCODER_H_
+#define VP9_ENCODER_VP9_ENCODER_H_
+
+#include <stdio.h>
+
+#include "./vpx_config.h"
+#include "vpx/internal/vpx_codec_internal.h"
+#include "vpx/vp8cx.h"
+
+#include "vp9/common/vp9_alloccommon.h"
+#include "vp9/common/vp9_ppflags.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_thread_common.h"
+#include "vp9/common/vp9_onyxc_int.h"
+#include "vp9/common/vp9_thread.h"
+
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+#include "vp9/encoder/vp9_context_tree.h"
+#include "vp9/encoder/vp9_encodemb.h"
+#include "vp9/encoder/vp9_firstpass.h"
+#include "vp9/encoder/vp9_lookahead.h"
+#include "vp9/encoder/vp9_mbgraph.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rd.h"
+#if CONFIG_INTERNAL_STATS
+#include "vp9/encoder/vp9_ssim.h"
+#endif
+#include "vp9/encoder/vp9_speed_features.h"
+#include "vp9/encoder/vp9_svc_layercontext.h"
+#include "vp9/encoder/vp9_tokenize.h"
+#include "vp9/encoder/vp9_variance.h"
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+#include "vp9/encoder/vp9_denoiser.h"
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define DEFAULT_GF_INTERVAL 10
+
+typedef struct {
+ int nmvjointcost[MV_JOINTS];
+ int nmvcosts[2][MV_VALS];
+ int nmvcosts_hp[2][MV_VALS];
+
+ vp9_prob segment_pred_probs[PREDICTION_PROBS];
+
+ unsigned char *last_frame_seg_map_copy;
+
+ // 0 = Intra, Last, GF, ARF
+ signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
+ // 0 = ZERO_MV, MV
+ signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
+
+ FRAME_CONTEXT fc;
+} CODING_CONTEXT;
+
+
+typedef enum {
+ // encode_breakout is disabled.
+ ENCODE_BREAKOUT_DISABLED = 0,
+ // encode_breakout is enabled.
+ ENCODE_BREAKOUT_ENABLED = 1,
+ // encode_breakout is enabled with small max_thresh limit.
+ ENCODE_BREAKOUT_LIMITED = 2
+} ENCODE_BREAKOUT_TYPE;
+
+typedef enum {
+ NORMAL = 0,
+ FOURFIVE = 1,
+ THREEFIVE = 2,
+ ONETWO = 3
+} VPX_SCALING;
+
+typedef enum {
+ // Good Quality Fast Encoding. The encoder balances quality with the amount of
+ // time it takes to encode the output. Speed setting controls how fast.
+ GOOD,
+
+ // The encoder places priority on the quality of the output over encoding
+ // speed. The output is compressed at the highest possible quality. This
+ // option takes the longest amount of time to encode. Speed setting ignored.
+ BEST,
+
+ // Realtime/Live Encoding. This mode is optimized for realtime encoding (for
+ // example, capturing a television signal or feed from a live camera). Speed
+ // setting controls how fast.
+ REALTIME
+} MODE;
+
+typedef enum {
+ FRAMEFLAGS_KEY = 1 << 0,
+ FRAMEFLAGS_GOLDEN = 1 << 1,
+ FRAMEFLAGS_ALTREF = 1 << 2,
+} FRAMETYPE_FLAGS;
+
+typedef enum {
+ NO_AQ = 0,
+ VARIANCE_AQ = 1,
+ COMPLEXITY_AQ = 2,
+ CYCLIC_REFRESH_AQ = 3,
+ AQ_MODE_COUNT // This should always be the last member of the enum
+} AQ_MODE;
+
+typedef enum {
+ RESIZE_NONE = 0, // No frame resizing allowed (except for SVC).
+ RESIZE_FIXED = 1, // All frames are coded at the specified dimension.
+ RESIZE_DYNAMIC = 2 // Coded size of each frame is determined by the codec.
+} RESIZE_TYPE;
+
+typedef struct VP9EncoderConfig {
+ BITSTREAM_PROFILE profile;
+ vpx_bit_depth_t bit_depth; // Codec bit-depth.
+ int width; // width of data passed to the compressor
+ int height; // height of data passed to the compressor
+ unsigned int input_bit_depth; // Input bit depth.
+ double init_framerate; // set to passed in framerate
+ int64_t target_bandwidth; // bandwidth to be used in kilobits per second
+
+ int noise_sensitivity; // pre processing blur: recommendation 0
+ int sharpness; // sharpening output: recommendation 0:
+ int speed;
+ // maximum allowed bitrate for any intra frame in % of bitrate target.
+ unsigned int rc_max_intra_bitrate_pct;
+ // maximum allowed bitrate for any inter frame in % of bitrate target.
+ unsigned int rc_max_inter_bitrate_pct;
+ // percent of rate boost for golden frame in CBR mode.
+ unsigned int gf_cbr_boost_pct;
+
+ MODE mode;
+ int pass;
+
+ // Key Framing Operations
+ int auto_key; // autodetect cut scenes and set the keyframes
+ int key_freq; // maximum distance to key frame.
+
+ int lag_in_frames; // how many frames lag before we start encoding
+
+ // ----------------------------------------------------------------
+ // DATARATE CONTROL OPTIONS
+
+ // vbr, cbr, constrained quality or constant quality
+ enum vpx_rc_mode rc_mode;
+
+ // buffer targeting aggressiveness
+ int under_shoot_pct;
+ int over_shoot_pct;
+
+ // buffering parameters
+ int64_t starting_buffer_level_ms;
+ int64_t optimal_buffer_level_ms;
+ int64_t maximum_buffer_size_ms;
+
+ // Frame drop threshold.
+ int drop_frames_water_mark;
+
+ // controlling quality
+ int fixed_q;
+ int worst_allowed_q;
+ int best_allowed_q;
+ int cq_level;
+ AQ_MODE aq_mode; // Adaptive Quantization mode
+
+ // Internal frame size scaling.
+ RESIZE_TYPE resize_mode;
+ int scaled_frame_width;
+ int scaled_frame_height;
+
+ // Enable feature to reduce the frame quantization every x frames.
+ int frame_periodic_boost;
+
+ // two pass datarate control
+ int two_pass_vbrbias; // two pass datarate control tweaks
+ int two_pass_vbrmin_section;
+ int two_pass_vbrmax_section;
+ // END DATARATE CONTROL OPTIONS
+ // ----------------------------------------------------------------
+
+ // Spatial and temporal scalability.
+ int ss_number_layers; // Number of spatial layers.
+ int ts_number_layers; // Number of temporal layers.
+ // Bitrate allocation for spatial layers.
+ int layer_target_bitrate[VPX_MAX_LAYERS];
+ int ss_target_bitrate[VPX_SS_MAX_LAYERS];
+ int ss_enable_auto_arf[VPX_SS_MAX_LAYERS];
+ // Bitrate allocation (CBR mode) and framerate factor, for temporal layers.
+ int ts_rate_decimator[VPX_TS_MAX_LAYERS];
+
+ int enable_auto_arf;
+
+ int encode_breakout; // early breakout : for video conf recommend 800
+
+ /* Bitfield defining the error resiliency features to enable.
+ * Can provide decodable frames after losses in previous
+ * frames and decodable partitions after losses in the same frame.
+ */
+ unsigned int error_resilient_mode;
+
+ /* Bitfield defining the parallel decoding mode where the
+ * decoding in successive frames may be conducted in parallel
+ * just by decoding the frame headers.
+ */
+ unsigned int frame_parallel_decoding_mode;
+
+ int arnr_max_frames;
+ int arnr_strength;
+
+ int tile_columns;
+ int tile_rows;
+
+ int max_threads;
+
+ vpx_fixed_buf_t two_pass_stats_in;
+ struct vpx_codec_pkt_list *output_pkt_list;
+
+#if CONFIG_FP_MB_STATS
+ vpx_fixed_buf_t firstpass_mb_stats_in;
+#endif
+
+ vp8e_tuning tuning;
+ vp9e_tune_content content;
+#if CONFIG_VP9_HIGHBITDEPTH
+ int use_highbitdepth;
+#endif
+ vpx_color_space_t color_space;
+ VP9E_TEMPORAL_LAYERING_MODE temporal_layering_mode;
+} VP9EncoderConfig;
+
+static INLINE int is_lossless_requested(const VP9EncoderConfig *cfg) {
+ return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0;
+}
+
+// TODO(jingning) All spatially adaptive variables should go to TileDataEnc.
+typedef struct TileDataEnc {
+ TileInfo tile_info;
+ int thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
+ int mode_map[BLOCK_SIZES][MAX_MODES];
+} TileDataEnc;
+
+typedef struct RD_COUNTS {
+ vp9_coeff_count coef_counts[TX_SIZES][PLANE_TYPES];
+ int64_t comp_pred_diff[REFERENCE_MODES];
+ int64_t tx_select_diff[TX_MODES];
+ int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+} RD_COUNTS;
+
+typedef struct ThreadData {
+ MACROBLOCK mb;
+ RD_COUNTS rd_counts;
+ FRAME_COUNTS *counts;
+
+ PICK_MODE_CONTEXT *leaf_tree;
+ PC_TREE *pc_tree;
+ PC_TREE *pc_root;
+} ThreadData;
+
+struct EncWorkerData;
+
+typedef struct ActiveMap {
+ int enabled;
+ int update;
+ unsigned char *map;
+} ActiveMap;
+
+typedef enum {
+ Y,
+ U,
+ V,
+ ALL
+} STAT_TYPE;
+
+typedef struct IMAGE_STAT {
+ double stat[ALL+1];
+ double worst;
+} ImageStat;
+
+typedef struct VP9_COMP {
+ QUANTS quants;
+ ThreadData td;
+ DECLARE_ALIGNED(16, int16_t, y_dequant[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_dequant[QINDEX_RANGE][8]);
+ VP9_COMMON common;
+ VP9EncoderConfig oxcf;
+ struct lookahead_ctx *lookahead;
+ struct lookahead_entry *alt_ref_source;
+
+ YV12_BUFFER_CONFIG *Source;
+ YV12_BUFFER_CONFIG *Last_Source; // NULL for first frame and alt_ref frames
+ YV12_BUFFER_CONFIG *un_scaled_source;
+ YV12_BUFFER_CONFIG scaled_source;
+ YV12_BUFFER_CONFIG *unscaled_last_source;
+ YV12_BUFFER_CONFIG scaled_last_source;
+
+ TileDataEnc *tile_data;
+
+ // For a still frame, this flag is set to 1 to skip partition search.
+ int partition_search_skippable_frame;
+
+ int scaled_ref_idx[MAX_REF_FRAMES];
+ int lst_fb_idx;
+ int gld_fb_idx;
+ int alt_fb_idx;
+
+ int refresh_last_frame;
+ int refresh_golden_frame;
+ int refresh_alt_ref_frame;
+
+ int ext_refresh_frame_flags_pending;
+ int ext_refresh_last_frame;
+ int ext_refresh_golden_frame;
+ int ext_refresh_alt_ref_frame;
+
+ int ext_refresh_frame_context_pending;
+ int ext_refresh_frame_context;
+
+ YV12_BUFFER_CONFIG last_frame_uf;
+
+ TOKENEXTRA *tile_tok[4][1 << 6];
+ unsigned int tok_count[4][1 << 6];
+
+ // Ambient reconstruction err target for force key frames
+ int64_t ambient_err;
+
+ RD_OPT rd;
+
+ CODING_CONTEXT coding_context;
+
+ int *nmvcosts[2];
+ int *nmvcosts_hp[2];
+ int *nmvsadcosts[2];
+ int *nmvsadcosts_hp[2];
+
+ int64_t last_time_stamp_seen;
+ int64_t last_end_time_stamp_seen;
+ int64_t first_time_stamp_ever;
+
+ RATE_CONTROL rc;
+ double framerate;
+
+ int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE];
+
+ struct vpx_codec_pkt_list *output_pkt_list;
+
+ MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS];
+ int mbgraph_n_frames; // number of frames filled in the above
+ int static_mb_pct; // % forced skip mbs by segmentation
+ int ref_frame_flags;
+
+ SPEED_FEATURES sf;
+
+ unsigned int max_mv_magnitude;
+ int mv_step_param;
+
+ int allow_comp_inter_inter;
+
+ // Default value is 1. From first pass stats, encode_breakout may be disabled.
+ ENCODE_BREAKOUT_TYPE allow_encode_breakout;
+
+ // Get threshold from external input. A suggested threshold is 800 for HD
+ // clips, and 300 for < HD clips.
+ int encode_breakout;
+
+ unsigned char *segmentation_map;
+
+ // segment threashold for encode breakout
+ int segment_encode_breakout[MAX_SEGMENTS];
+
+ CYCLIC_REFRESH *cyclic_refresh;
+ ActiveMap active_map;
+
+ fractional_mv_step_fp *find_fractional_mv_step;
+ vp9_full_search_fn_t full_search_sad;
+ vp9_diamond_search_fn_t diamond_search_sad;
+ vp9_variance_fn_ptr_t fn_ptr[BLOCK_SIZES];
+ uint64_t time_receive_data;
+ uint64_t time_compress_data;
+ uint64_t time_pick_lpf;
+ uint64_t time_encode_sb_row;
+
+#if CONFIG_FP_MB_STATS
+ int use_fp_mb_stats;
+#endif
+
+ TWO_PASS twopass;
+
+ YV12_BUFFER_CONFIG alt_ref_buffer;
+
+
+#if CONFIG_INTERNAL_STATS
+ unsigned int mode_chosen_counts[MAX_MODES];
+
+ int count;
+ uint64_t total_sq_error;
+ uint64_t total_samples;
+ ImageStat psnr;
+
+ uint64_t totalp_sq_error;
+ uint64_t totalp_samples;
+ ImageStat psnrp;
+
+ double total_blockiness;
+ double worst_blockiness;
+
+ int bytes;
+ double summed_quality;
+ double summed_weights;
+ double summedp_quality;
+ double summedp_weights;
+ unsigned int tot_recode_hits;
+ double worst_ssim;
+
+ ImageStat ssimg;
+ ImageStat fastssim;
+ ImageStat psnrhvs;
+
+ int b_calculate_ssimg;
+ int b_calculate_blockiness;
+
+ int b_calculate_consistency;
+
+ double total_inconsistency;
+ double worst_consistency;
+ Ssimv *ssim_vars;
+ Metrics metrics;
+#endif
+ int b_calculate_psnr;
+
+ int droppable;
+
+ int initial_width;
+ int initial_height;
+ int initial_mbs; // Number of MBs in the full-size frame; to be used to
+ // normalize the firstpass stats. This will differ from the
+ // number of MBs in the current frame when the frame is
+ // scaled.
+
+ int use_svc;
+
+ SVC svc;
+
+ // Store frame variance info in SOURCE_VAR_BASED_PARTITION search type.
+ diff *source_diff_var;
+ // The threshold used in SOURCE_VAR_BASED_PARTITION search type.
+ unsigned int source_var_thresh;
+ int frames_till_next_var_check;
+
+ int frame_flags;
+
+ search_site_config ss_cfg;
+
+ int mbmode_cost[INTRA_MODES];
+ unsigned int inter_mode_cost[INTER_MODE_CONTEXTS][INTER_MODES];
+ int intra_uv_mode_cost[FRAME_TYPES][INTRA_MODES];
+ int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES];
+ int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
+ int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES];
+
+ int multi_arf_allowed;
+ int multi_arf_enabled;
+ int multi_arf_last_grp_enabled;
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ VP9_DENOISER denoiser;
+#endif
+
+ int resize_pending;
+
+ // VAR_BASED_PARTITION thresholds
+ // 0 - threshold_64x64; 1 - threshold_32x32;
+ // 2 - threshold_16x16; 3 - vbp_threshold_8x8;
+ int64_t vbp_thresholds[4];
+ int64_t vbp_threshold_minmax;
+ int64_t vbp_threshold_sad;
+ BLOCK_SIZE vbp_bsize_min;
+
+ // Multi-threading
+ int num_workers;
+ VP9Worker *workers;
+ struct EncWorkerData *tile_thr_data;
+ VP9LfSync lf_row_sync;
+} VP9_COMP;
+
+void vp9_initialize_enc(void);
+
+struct VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf,
+ BufferPool *const pool);
+void vp9_remove_compressor(VP9_COMP *cpi);
+
+void vp9_change_config(VP9_COMP *cpi, const VP9EncoderConfig *oxcf);
+
+ // receive a frames worth of data. caller can assume that a copy of this
+ // frame is made and not just a copy of the pointer..
+int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags,
+ YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
+ int64_t end_time_stamp);
+
+int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
+ size_t *size, uint8_t *dest,
+ int64_t *time_stamp, int64_t *time_end, int flush);
+
+int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
+ vp9_ppflags_t *flags);
+
+int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags);
+
+void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags);
+
+int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
+ YV12_BUFFER_CONFIG *sd);
+
+int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
+ YV12_BUFFER_CONFIG *sd);
+
+int vp9_update_entropy(VP9_COMP *cpi, int update);
+
+int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols);
+
+int vp9_get_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols);
+
+int vp9_set_internal_size(VP9_COMP *cpi,
+ VPX_SCALING horiz_mode, VPX_SCALING vert_mode);
+
+int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
+ unsigned int height);
+
+void vp9_set_svc(VP9_COMP *cpi, int use_svc);
+
+int vp9_get_quantizer(struct VP9_COMP *cpi);
+
+static INLINE int frame_is_kf_gf_arf(const VP9_COMP *cpi) {
+ return frame_is_intra_only(&cpi->common) ||
+ cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref);
+}
+
+static INLINE int get_ref_frame_map_idx(const VP9_COMP *cpi,
+ MV_REFERENCE_FRAME ref_frame) {
+ if (ref_frame == LAST_FRAME) {
+ return cpi->lst_fb_idx;
+ } else if (ref_frame == GOLDEN_FRAME) {
+ return cpi->gld_fb_idx;
+ } else {
+ return cpi->alt_fb_idx;
+ }
+}
+
+static INLINE int get_ref_frame_buf_idx(const VP9_COMP *const cpi,
+ int ref_frame) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const int map_idx = get_ref_frame_map_idx(cpi, ref_frame);
+ return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : INVALID_IDX;
+}
+
+static INLINE YV12_BUFFER_CONFIG *get_ref_frame_buffer(
+ VP9_COMP *cpi, MV_REFERENCE_FRAME ref_frame) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+ return
+ buf_idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[buf_idx].buf : NULL;
+}
+
+static INLINE int get_token_alloc(int mb_rows, int mb_cols) {
+ // TODO(JBB): double check we can't exceed this token count if we have a
+ // 32x32 transform crossing a boundary at a multiple of 16.
+ // mb_rows, cols are in units of 16 pixels. We assume 3 planes all at full
+ // resolution. We assume up to 1 token per pixel, and then allow
+ // a head room of 4.
+ return mb_rows * mb_cols * (16 * 16 * 3 + 4);
+}
+
+// Get the allocated token size for a tile. It does the same calculation as in
+// the frame token allocation.
+static INLINE int allocated_tokens(TileInfo tile) {
+ int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 1) >> 1;
+ int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 1) >> 1;
+
+ return get_token_alloc(tile_mb_rows, tile_mb_cols);
+}
+
+int64_t vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b);
+#if CONFIG_VP9_HIGHBITDEPTH
+int64_t vp9_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a,
+ const YV12_BUFFER_CONFIG *b);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+void vp9_alloc_compressor_data(VP9_COMP *cpi);
+
+void vp9_scale_references(VP9_COMP *cpi);
+
+void vp9_update_reference_frames(VP9_COMP *cpi);
+
+void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv);
+
+YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
+ YV12_BUFFER_CONFIG *unscaled,
+ YV12_BUFFER_CONFIG *scaled);
+
+void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags);
+
+static INLINE int is_two_pass_svc(const struct VP9_COMP *const cpi) {
+ return cpi->use_svc && cpi->oxcf.pass != 0;
+}
+
+static INLINE int is_one_pass_cbr_svc(const struct VP9_COMP *const cpi) {
+ return (cpi->use_svc && cpi->oxcf.pass == 0);
+}
+
+static INLINE int is_altref_enabled(const VP9_COMP *const cpi) {
+ return cpi->oxcf.mode != REALTIME && cpi->oxcf.lag_in_frames > 0 &&
+ (cpi->oxcf.enable_auto_arf &&
+ (!is_two_pass_svc(cpi) ||
+ cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id]));
+}
+
+static INLINE void set_ref_ptrs(VP9_COMMON *cm, MACROBLOCKD *xd,
+ MV_REFERENCE_FRAME ref0,
+ MV_REFERENCE_FRAME ref1) {
+ xd->block_refs[0] = &cm->frame_refs[ref0 >= LAST_FRAME ? ref0 - LAST_FRAME
+ : 0];
+ xd->block_refs[1] = &cm->frame_refs[ref1 >= LAST_FRAME ? ref1 - LAST_FRAME
+ : 0];
+}
+
+static INLINE int get_chessboard_index(const int frame_index) {
+ return frame_index & 0x1;
+}
+
+static INLINE int *cond_cost_list(const struct VP9_COMP *cpi, int *cost_list) {
+ return cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL;
+}
+
+void vp9_new_framerate(VP9_COMP *cpi, double framerate);
+
+#define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl))
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_ENCODER_H_
diff --git a/media/libvpx/vp9/encoder/vp9_ethread.c b/media/libvpx/vp9/encoder/vp9_ethread.c
new file mode 100644
index 000000000..8700ccdae
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_ethread.c
@@ -0,0 +1,179 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp9/encoder/vp9_encodeframe.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_ethread.h"
+
+static void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
+ int i, j, k, l, m, n;
+
+ for (i = 0; i < REFERENCE_MODES; i++)
+ td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i];
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+ td->rd_counts.filter_diff[i] += td_t->rd_counts.filter_diff[i];
+
+ for (i = 0; i < TX_MODES; i++)
+ td->rd_counts.tx_select_diff[i] += td_t->rd_counts.tx_select_diff[i];
+
+ for (i = 0; i < TX_SIZES; i++)
+ for (j = 0; j < PLANE_TYPES; j++)
+ for (k = 0; k < REF_TYPES; k++)
+ for (l = 0; l < COEF_BANDS; l++)
+ for (m = 0; m < COEFF_CONTEXTS; m++)
+ for (n = 0; n < ENTROPY_TOKENS; n++)
+ td->rd_counts.coef_counts[i][j][k][l][m][n] +=
+ td_t->rd_counts.coef_counts[i][j][k][l][m][n];
+}
+
+static int enc_worker_hook(EncWorkerData *const thread_data, void *unused) {
+ VP9_COMP *const cpi = thread_data->cpi;
+ const VP9_COMMON *const cm = &cpi->common;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ const int tile_rows = 1 << cm->log2_tile_rows;
+ int t;
+
+ (void) unused;
+
+ for (t = thread_data->start; t < tile_rows * tile_cols;
+ t += cpi->num_workers) {
+ int tile_row = t / tile_cols;
+ int tile_col = t % tile_cols;
+
+ vp9_encode_tile(cpi, thread_data->td, tile_row, tile_col);
+ }
+
+ return 0;
+}
+
+void vp9_encode_tiles_mt(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ const VP9WorkerInterface *const winterface = vp9_get_worker_interface();
+ const int num_workers = MIN(cpi->oxcf.max_threads, tile_cols);
+ int i;
+
+ vp9_init_tile_data(cpi);
+
+ // Only run once to create threads and allocate thread data.
+ if (cpi->num_workers == 0) {
+ CHECK_MEM_ERROR(cm, cpi->workers,
+ vpx_malloc(num_workers * sizeof(*cpi->workers)));
+
+ CHECK_MEM_ERROR(cm, cpi->tile_thr_data,
+ vpx_calloc(num_workers, sizeof(*cpi->tile_thr_data)));
+
+ for (i = 0; i < num_workers; i++) {
+ VP9Worker *const worker = &cpi->workers[i];
+ EncWorkerData *thread_data = &cpi->tile_thr_data[i];
+
+ ++cpi->num_workers;
+ winterface->init(worker);
+
+ if (i < num_workers - 1) {
+ thread_data->cpi = cpi;
+
+ // Allocate thread data.
+ CHECK_MEM_ERROR(cm, thread_data->td,
+ vpx_memalign(32, sizeof(*thread_data->td)));
+ vp9_zero(*thread_data->td);
+
+ // Set up pc_tree.
+ thread_data->td->leaf_tree = NULL;
+ thread_data->td->pc_tree = NULL;
+ vp9_setup_pc_tree(cm, thread_data->td);
+
+ // Allocate frame counters in thread data.
+ CHECK_MEM_ERROR(cm, thread_data->td->counts,
+ vpx_calloc(1, sizeof(*thread_data->td->counts)));
+
+ // Create threads
+ if (!winterface->reset(worker))
+ vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
+ "Tile encoder thread creation failed");
+ } else {
+ // Main thread acts as a worker and uses the thread data in cpi.
+ thread_data->cpi = cpi;
+ thread_data->td = &cpi->td;
+ }
+
+ winterface->sync(worker);
+ }
+ }
+
+ for (i = 0; i < num_workers; i++) {
+ VP9Worker *const worker = &cpi->workers[i];
+ EncWorkerData *thread_data;
+
+ worker->hook = (VP9WorkerHook)enc_worker_hook;
+ worker->data1 = &cpi->tile_thr_data[i];
+ worker->data2 = NULL;
+ thread_data = (EncWorkerData*)worker->data1;
+
+ // Before encoding a frame, copy the thread data from cpi.
+ if (thread_data->td != &cpi->td) {
+ thread_data->td->mb = cpi->td.mb;
+ thread_data->td->rd_counts = cpi->td.rd_counts;
+ }
+ if (thread_data->td->counts != &cpi->common.counts) {
+ memcpy(thread_data->td->counts, &cpi->common.counts,
+ sizeof(cpi->common.counts));
+ }
+
+ // Handle use_nonrd_pick_mode case.
+ if (cpi->sf.use_nonrd_pick_mode) {
+ MACROBLOCK *const x = &thread_data->td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ PICK_MODE_CONTEXT *ctx = &thread_data->td->pc_root->none;
+ int j;
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ p[j].coeff = ctx->coeff_pbuf[j][0];
+ p[j].qcoeff = ctx->qcoeff_pbuf[j][0];
+ pd[j].dqcoeff = ctx->dqcoeff_pbuf[j][0];
+ p[j].eobs = ctx->eobs_pbuf[j][0];
+ }
+ }
+ }
+
+ // Encode a frame
+ for (i = 0; i < num_workers; i++) {
+ VP9Worker *const worker = &cpi->workers[i];
+ EncWorkerData *const thread_data = (EncWorkerData*)worker->data1;
+
+ // Set the starting tile for each thread.
+ thread_data->start = i;
+
+ if (i == num_workers - 1)
+ winterface->execute(worker);
+ else
+ winterface->launch(worker);
+ }
+
+ // Encoding ends.
+ for (i = 0; i < num_workers; i++) {
+ VP9Worker *const worker = &cpi->workers[i];
+ winterface->sync(worker);
+ }
+
+ for (i = 0; i < num_workers; i++) {
+ VP9Worker *const worker = &cpi->workers[i];
+ EncWorkerData *const thread_data = (EncWorkerData*)worker->data1;
+
+ // Accumulate counters.
+ if (i < num_workers - 1) {
+ vp9_accumulate_frame_counts(cm, thread_data->td->counts, 0);
+ accumulate_rd_opt(&cpi->td, thread_data->td);
+ }
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_ethread.h b/media/libvpx/vp9/encoder/vp9_ethread.h
new file mode 100644
index 000000000..e87c50bc7
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_ethread.h
@@ -0,0 +1,25 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_ETHREAD_H_
+#define VP9_ENCODER_VP9_ETHREAD_H_
+
+struct VP9_COMP;
+struct ThreadData;
+
+typedef struct EncWorkerData {
+ struct VP9_COMP *cpi;
+ struct ThreadData *td;
+ int start;
+} EncWorkerData;
+
+void vp9_encode_tiles_mt(struct VP9_COMP *cpi);
+
+#endif // VP9_ENCODER_VP9_ETHREAD_H_
diff --git a/media/libvpx/vp9/encoder/vp9_extend.c b/media/libvpx/vp9/encoder/vp9_extend.c
new file mode 100644
index 000000000..6e1ed365d
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_extend.c
@@ -0,0 +1,198 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/encoder/vp9_extend.h"
+
+static void copy_and_extend_plane(const uint8_t *src, int src_pitch,
+ uint8_t *dst, int dst_pitch,
+ int w, int h,
+ int extend_top, int extend_left,
+ int extend_bottom, int extend_right) {
+ int i, linesize;
+
+ // copy the left and right most columns out
+ const uint8_t *src_ptr1 = src;
+ const uint8_t *src_ptr2 = src + w - 1;
+ uint8_t *dst_ptr1 = dst - extend_left;
+ uint8_t *dst_ptr2 = dst + w;
+
+ for (i = 0; i < h; i++) {
+ memset(dst_ptr1, src_ptr1[0], extend_left);
+ memcpy(dst_ptr1 + extend_left, src_ptr1, w);
+ memset(dst_ptr2, src_ptr2[0], extend_right);
+ src_ptr1 += src_pitch;
+ src_ptr2 += src_pitch;
+ dst_ptr1 += dst_pitch;
+ dst_ptr2 += dst_pitch;
+ }
+
+ // Now copy the top and bottom lines into each line of the respective
+ // borders
+ src_ptr1 = dst - extend_left;
+ src_ptr2 = dst + dst_pitch * (h - 1) - extend_left;
+ dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left;
+ dst_ptr2 = dst + dst_pitch * (h) - extend_left;
+ linesize = extend_left + extend_right + w;
+
+ for (i = 0; i < extend_top; i++) {
+ memcpy(dst_ptr1, src_ptr1, linesize);
+ dst_ptr1 += dst_pitch;
+ }
+
+ for (i = 0; i < extend_bottom; i++) {
+ memcpy(dst_ptr2, src_ptr2, linesize);
+ dst_ptr2 += dst_pitch;
+ }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void highbd_copy_and_extend_plane(const uint8_t *src8, int src_pitch,
+ uint8_t *dst8, int dst_pitch,
+ int w, int h,
+ int extend_top, int extend_left,
+ int extend_bottom, int extend_right) {
+ int i, linesize;
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
+
+ // copy the left and right most columns out
+ const uint16_t *src_ptr1 = src;
+ const uint16_t *src_ptr2 = src + w - 1;
+ uint16_t *dst_ptr1 = dst - extend_left;
+ uint16_t *dst_ptr2 = dst + w;
+
+ for (i = 0; i < h; i++) {
+ vpx_memset16(dst_ptr1, src_ptr1[0], extend_left);
+ memcpy(dst_ptr1 + extend_left, src_ptr1, w * sizeof(uint16_t));
+ vpx_memset16(dst_ptr2, src_ptr2[0], extend_right);
+ src_ptr1 += src_pitch;
+ src_ptr2 += src_pitch;
+ dst_ptr1 += dst_pitch;
+ dst_ptr2 += dst_pitch;
+ }
+
+ // Now copy the top and bottom lines into each line of the respective
+ // borders
+ src_ptr1 = dst - extend_left;
+ src_ptr2 = dst + dst_pitch * (h - 1) - extend_left;
+ dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left;
+ dst_ptr2 = dst + dst_pitch * (h) - extend_left;
+ linesize = extend_left + extend_right + w;
+
+ for (i = 0; i < extend_top; i++) {
+ memcpy(dst_ptr1, src_ptr1, linesize * sizeof(uint16_t));
+ dst_ptr1 += dst_pitch;
+ }
+
+ for (i = 0; i < extend_bottom; i++) {
+ memcpy(dst_ptr2, src_ptr2, linesize * sizeof(uint16_t));
+ dst_ptr2 += dst_pitch;
+ }
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+void vp9_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst) {
+ // Extend src frame in buffer
+ // Altref filtering assumes 16 pixel extension
+ const int et_y = 16;
+ const int el_y = 16;
+ // Motion estimation may use src block variance with the block size up
+ // to 64x64, so the right and bottom need to be extended to 64 multiple
+ // or up to 16, whichever is greater.
+ const int er_y = MAX(src->y_width + 16, ALIGN_POWER_OF_TWO(src->y_width, 6))
+ - src->y_crop_width;
+ const int eb_y = MAX(src->y_height + 16, ALIGN_POWER_OF_TWO(src->y_height, 6))
+ - src->y_crop_height;
+ const int uv_width_subsampling = (src->uv_width != src->y_width);
+ const int uv_height_subsampling = (src->uv_height != src->y_height);
+ const int et_uv = et_y >> uv_height_subsampling;
+ const int el_uv = el_y >> uv_width_subsampling;
+ const int eb_uv = eb_y >> uv_height_subsampling;
+ const int er_uv = er_y >> uv_width_subsampling;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
+ highbd_copy_and_extend_plane(src->y_buffer, src->y_stride,
+ dst->y_buffer, dst->y_stride,
+ src->y_crop_width, src->y_crop_height,
+ et_y, el_y, eb_y, er_y);
+
+ highbd_copy_and_extend_plane(src->u_buffer, src->uv_stride,
+ dst->u_buffer, dst->uv_stride,
+ src->uv_crop_width, src->uv_crop_height,
+ et_uv, el_uv, eb_uv, er_uv);
+
+ highbd_copy_and_extend_plane(src->v_buffer, src->uv_stride,
+ dst->v_buffer, dst->uv_stride,
+ src->uv_crop_width, src->uv_crop_height,
+ et_uv, el_uv, eb_uv, er_uv);
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ copy_and_extend_plane(src->y_buffer, src->y_stride,
+ dst->y_buffer, dst->y_stride,
+ src->y_crop_width, src->y_crop_height,
+ et_y, el_y, eb_y, er_y);
+
+ copy_and_extend_plane(src->u_buffer, src->uv_stride,
+ dst->u_buffer, dst->uv_stride,
+ src->uv_crop_width, src->uv_crop_height,
+ et_uv, el_uv, eb_uv, er_uv);
+
+ copy_and_extend_plane(src->v_buffer, src->uv_stride,
+ dst->v_buffer, dst->uv_stride,
+ src->uv_crop_width, src->uv_crop_height,
+ et_uv, el_uv, eb_uv, er_uv);
+}
+
+void vp9_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst,
+ int srcy, int srcx,
+ int srch, int srcw) {
+ // If the side is not touching the bounder then don't extend.
+ const int et_y = srcy ? 0 : dst->border;
+ const int el_y = srcx ? 0 : dst->border;
+ const int eb_y = srcy + srch != src->y_height ? 0 :
+ dst->border + dst->y_height - src->y_height;
+ const int er_y = srcx + srcw != src->y_width ? 0 :
+ dst->border + dst->y_width - src->y_width;
+ const int src_y_offset = srcy * src->y_stride + srcx;
+ const int dst_y_offset = srcy * dst->y_stride + srcx;
+
+ const int et_uv = ROUND_POWER_OF_TWO(et_y, 1);
+ const int el_uv = ROUND_POWER_OF_TWO(el_y, 1);
+ const int eb_uv = ROUND_POWER_OF_TWO(eb_y, 1);
+ const int er_uv = ROUND_POWER_OF_TWO(er_y, 1);
+ const int src_uv_offset = ((srcy * src->uv_stride) >> 1) + (srcx >> 1);
+ const int dst_uv_offset = ((srcy * dst->uv_stride) >> 1) + (srcx >> 1);
+ const int srch_uv = ROUND_POWER_OF_TWO(srch, 1);
+ const int srcw_uv = ROUND_POWER_OF_TWO(srcw, 1);
+
+ copy_and_extend_plane(src->y_buffer + src_y_offset, src->y_stride,
+ dst->y_buffer + dst_y_offset, dst->y_stride,
+ srcw, srch,
+ et_y, el_y, eb_y, er_y);
+
+ copy_and_extend_plane(src->u_buffer + src_uv_offset, src->uv_stride,
+ dst->u_buffer + dst_uv_offset, dst->uv_stride,
+ srcw_uv, srch_uv,
+ et_uv, el_uv, eb_uv, er_uv);
+
+ copy_and_extend_plane(src->v_buffer + src_uv_offset, src->uv_stride,
+ dst->v_buffer + dst_uv_offset, dst->uv_stride,
+ srcw_uv, srch_uv,
+ et_uv, el_uv, eb_uv, er_uv);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_extend.h b/media/libvpx/vp9/encoder/vp9_extend.h
new file mode 100644
index 000000000..058fe09cf
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_extend.h
@@ -0,0 +1,33 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_EXTEND_H_
+#define VP9_ENCODER_VP9_EXTEND_H_
+
+#include "vpx_scale/yv12config.h"
+#include "vpx/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+void vp9_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst);
+
+void vp9_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src,
+ YV12_BUFFER_CONFIG *dst,
+ int srcy, int srcx,
+ int srch, int srcw);
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_EXTEND_H_
diff --git a/media/libvpx/vp9/encoder/vp9_fastssim.c b/media/libvpx/vp9/encoder/vp9_fastssim.c
new file mode 100644
index 000000000..f1d408cbe
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_fastssim.c
@@ -0,0 +1,465 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ *
+ * This code was originally written by: Nathan E. Egge, at the Daala
+ * project.
+ */
+#include <math.h>
+#include <string.h>
+#include "./vpx_config.h"
+#include "./vp9_rtcd.h"
+#include "vp9/encoder/vp9_ssim.h"
+/* TODO(jbb): High bit depth version of this code needed */
+typedef struct fs_level fs_level;
+typedef struct fs_ctx fs_ctx;
+
+#define SSIM_C1 (255 * 255 * 0.01 * 0.01)
+#define SSIM_C2 (255 * 255 * 0.03 * 0.03)
+
+#define FS_MINI(_a, _b) ((_a) < (_b) ? (_a) : (_b))
+#define FS_MAXI(_a, _b) ((_a) > (_b) ? (_a) : (_b))
+
+struct fs_level {
+ uint16_t *im1;
+ uint16_t *im2;
+ double *ssim;
+ int w;
+ int h;
+};
+
+struct fs_ctx {
+ fs_level *level;
+ int nlevels;
+ unsigned *col_buf;
+};
+
+static void fs_ctx_init(fs_ctx *_ctx, int _w, int _h, int _nlevels) {
+ unsigned char *data;
+ size_t data_size;
+ int lw;
+ int lh;
+ int l;
+ lw = (_w + 1) >> 1;
+ lh = (_h + 1) >> 1;
+ data_size = _nlevels * sizeof(fs_level)
+ + 2 * (lw + 8) * 8 * sizeof(*_ctx->col_buf);
+ for (l = 0; l < _nlevels; l++) {
+ size_t im_size;
+ size_t level_size;
+ im_size = lw * (size_t) lh;
+ level_size = 2 * im_size * sizeof(*_ctx->level[l].im1);
+ level_size += sizeof(*_ctx->level[l].ssim) - 1;
+ level_size /= sizeof(*_ctx->level[l].ssim);
+ level_size += im_size;
+ level_size *= sizeof(*_ctx->level[l].ssim);
+ data_size += level_size;
+ lw = (lw + 1) >> 1;
+ lh = (lh + 1) >> 1;
+ }
+ data = (unsigned char *) malloc(data_size);
+ _ctx->level = (fs_level *) data;
+ _ctx->nlevels = _nlevels;
+ data += _nlevels * sizeof(*_ctx->level);
+ lw = (_w + 1) >> 1;
+ lh = (_h + 1) >> 1;
+ for (l = 0; l < _nlevels; l++) {
+ size_t im_size;
+ size_t level_size;
+ _ctx->level[l].w = lw;
+ _ctx->level[l].h = lh;
+ im_size = lw * (size_t) lh;
+ level_size = 2 * im_size * sizeof(*_ctx->level[l].im1);
+ level_size += sizeof(*_ctx->level[l].ssim) - 1;
+ level_size /= sizeof(*_ctx->level[l].ssim);
+ level_size *= sizeof(*_ctx->level[l].ssim);
+ _ctx->level[l].im1 = (uint16_t *) data;
+ _ctx->level[l].im2 = _ctx->level[l].im1 + im_size;
+ data += level_size;
+ _ctx->level[l].ssim = (double *) data;
+ data += im_size * sizeof(*_ctx->level[l].ssim);
+ lw = (lw + 1) >> 1;
+ lh = (lh + 1) >> 1;
+ }
+ _ctx->col_buf = (unsigned *) data;
+}
+
+static void fs_ctx_clear(fs_ctx *_ctx) {
+ free(_ctx->level);
+}
+
+static void fs_downsample_level(fs_ctx *_ctx, int _l) {
+ const uint16_t *src1;
+ const uint16_t *src2;
+ uint16_t *dst1;
+ uint16_t *dst2;
+ int w2;
+ int h2;
+ int w;
+ int h;
+ int i;
+ int j;
+ w = _ctx->level[_l].w;
+ h = _ctx->level[_l].h;
+ dst1 = _ctx->level[_l].im1;
+ dst2 = _ctx->level[_l].im2;
+ w2 = _ctx->level[_l - 1].w;
+ h2 = _ctx->level[_l - 1].h;
+ src1 = _ctx->level[_l - 1].im1;
+ src2 = _ctx->level[_l - 1].im2;
+ for (j = 0; j < h; j++) {
+ int j0offs;
+ int j1offs;
+ j0offs = 2 * j * w2;
+ j1offs = FS_MINI(2 * j + 1, h2) * w2;
+ for (i = 0; i < w; i++) {
+ int i0;
+ int i1;
+ i0 = 2 * i;
+ i1 = FS_MINI(i0 + 1, w2);
+ dst1[j * w + i] = src1[j0offs + i0] + src1[j0offs + i1]
+ + src1[j1offs + i0] + src1[j1offs + i1];
+ dst2[j * w + i] = src2[j0offs + i0] + src2[j0offs + i1]
+ + src2[j1offs + i0] + src2[j1offs + i1];
+ }
+ }
+}
+
+static void fs_downsample_level0(fs_ctx *_ctx, const unsigned char *_src1,
+ int _s1ystride, const unsigned char *_src2,
+ int _s2ystride, int _w, int _h) {
+ uint16_t *dst1;
+ uint16_t *dst2;
+ int w;
+ int h;
+ int i;
+ int j;
+ w = _ctx->level[0].w;
+ h = _ctx->level[0].h;
+ dst1 = _ctx->level[0].im1;
+ dst2 = _ctx->level[0].im2;
+ for (j = 0; j < h; j++) {
+ int j0;
+ int j1;
+ j0 = 2 * j;
+ j1 = FS_MINI(j0 + 1, _h);
+ for (i = 0; i < w; i++) {
+ int i0;
+ int i1;
+ i0 = 2 * i;
+ i1 = FS_MINI(i0 + 1, _w);
+ dst1[j * w + i] = _src1[j0 * _s1ystride + i0]
+ + _src1[j0 * _s1ystride + i1] + _src1[j1 * _s1ystride + i0]
+ + _src1[j1 * _s1ystride + i1];
+ dst2[j * w + i] = _src2[j0 * _s2ystride + i0]
+ + _src2[j0 * _s2ystride + i1] + _src2[j1 * _s2ystride + i0]
+ + _src2[j1 * _s2ystride + i1];
+ }
+ }
+}
+
+static void fs_apply_luminance(fs_ctx *_ctx, int _l) {
+ unsigned *col_sums_x;
+ unsigned *col_sums_y;
+ uint16_t *im1;
+ uint16_t *im2;
+ double *ssim;
+ double c1;
+ int w;
+ int h;
+ int j0offs;
+ int j1offs;
+ int i;
+ int j;
+ w = _ctx->level[_l].w;
+ h = _ctx->level[_l].h;
+ col_sums_x = _ctx->col_buf;
+ col_sums_y = col_sums_x + w;
+ im1 = _ctx->level[_l].im1;
+ im2 = _ctx->level[_l].im2;
+ for (i = 0; i < w; i++)
+ col_sums_x[i] = 5 * im1[i];
+ for (i = 0; i < w; i++)
+ col_sums_y[i] = 5 * im2[i];
+ for (j = 1; j < 4; j++) {
+ j1offs = FS_MINI(j, h - 1) * w;
+ for (i = 0; i < w; i++)
+ col_sums_x[i] += im1[j1offs + i];
+ for (i = 0; i < w; i++)
+ col_sums_y[i] += im2[j1offs + i];
+ }
+ ssim = _ctx->level[_l].ssim;
+ c1 = (double) (SSIM_C1 * 4096 * (1 << 4 * _l));
+ for (j = 0; j < h; j++) {
+ unsigned mux;
+ unsigned muy;
+ int i0;
+ int i1;
+ mux = 5 * col_sums_x[0];
+ muy = 5 * col_sums_y[0];
+ for (i = 1; i < 4; i++) {
+ i1 = FS_MINI(i, w - 1);
+ mux += col_sums_x[i1];
+ muy += col_sums_y[i1];
+ }
+ for (i = 0; i < w; i++) {
+ ssim[j * w + i] *= (2 * mux * (double) muy + c1)
+ / (mux * (double) mux + muy * (double) muy + c1);
+ if (i + 1 < w) {
+ i0 = FS_MAXI(0, i - 4);
+ i1 = FS_MINI(i + 4, w - 1);
+ mux += col_sums_x[i1] - col_sums_x[i0];
+ muy += col_sums_x[i1] - col_sums_x[i0];
+ }
+ }
+ if (j + 1 < h) {
+ j0offs = FS_MAXI(0, j - 4) * w;
+ for (i = 0; i < w; i++)
+ col_sums_x[i] -= im1[j0offs + i];
+ for (i = 0; i < w; i++)
+ col_sums_y[i] -= im2[j0offs + i];
+ j1offs = FS_MINI(j + 4, h - 1) * w;
+ for (i = 0; i < w; i++)
+ col_sums_x[i] += im1[j1offs + i];
+ for (i = 0; i < w; i++)
+ col_sums_y[i] += im2[j1offs + i];
+ }
+ }
+}
+
+#define FS_COL_SET(_col, _joffs, _ioffs) \
+ do { \
+ unsigned gx; \
+ unsigned gy; \
+ gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
+ gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
+ col_sums_gx2[(_col)] = gx * (double)gx; \
+ col_sums_gy2[(_col)] = gy * (double)gy; \
+ col_sums_gxgy[(_col)] = gx * (double)gy; \
+ } \
+ while (0)
+
+#define FS_COL_ADD(_col, _joffs, _ioffs) \
+ do { \
+ unsigned gx; \
+ unsigned gy; \
+ gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
+ gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
+ col_sums_gx2[(_col)] += gx * (double)gx; \
+ col_sums_gy2[(_col)] += gy * (double)gy; \
+ col_sums_gxgy[(_col)] += gx * (double)gy; \
+ } \
+ while (0)
+
+#define FS_COL_SUB(_col, _joffs, _ioffs) \
+ do { \
+ unsigned gx; \
+ unsigned gy; \
+ gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
+ gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
+ col_sums_gx2[(_col)] -= gx * (double)gx; \
+ col_sums_gy2[(_col)] -= gy * (double)gy; \
+ col_sums_gxgy[(_col)] -= gx * (double)gy; \
+ } \
+ while (0)
+
+#define FS_COL_COPY(_col1, _col2) \
+ do { \
+ col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)]; \
+ col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)]; \
+ col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)]; \
+ } \
+ while (0)
+
+#define FS_COL_HALVE(_col1, _col2) \
+ do { \
+ col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 0.5; \
+ col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 0.5; \
+ col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 0.5; \
+ } \
+ while (0)
+
+#define FS_COL_DOUBLE(_col1, _col2) \
+ do { \
+ col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 2; \
+ col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 2; \
+ col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 2; \
+ } \
+ while (0)
+
+static void fs_calc_structure(fs_ctx *_ctx, int _l) {
+ uint16_t *im1;
+ uint16_t *im2;
+ unsigned *gx_buf;
+ unsigned *gy_buf;
+ double *ssim;
+ double col_sums_gx2[8];
+ double col_sums_gy2[8];
+ double col_sums_gxgy[8];
+ double c2;
+ int stride;
+ int w;
+ int h;
+ int i;
+ int j;
+ w = _ctx->level[_l].w;
+ h = _ctx->level[_l].h;
+ im1 = _ctx->level[_l].im1;
+ im2 = _ctx->level[_l].im2;
+ ssim = _ctx->level[_l].ssim;
+ gx_buf = _ctx->col_buf;
+ stride = w + 8;
+ gy_buf = gx_buf + 8 * stride;
+ memset(gx_buf, 0, 2 * 8 * stride * sizeof(*gx_buf));
+ c2 = SSIM_C2 * (1 << 4 * _l) * 16 * 104;
+ for (j = 0; j < h + 4; j++) {
+ if (j < h - 1) {
+ for (i = 0; i < w - 1; i++) {
+ unsigned g1;
+ unsigned g2;
+ unsigned gx;
+ unsigned gy;
+ g1 = abs(im1[(j + 1) * w + i + 1] - im1[j * w + i]);
+ g2 = abs(im1[(j + 1) * w + i] - im1[j * w + i + 1]);
+ gx = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2);
+ g1 = abs(im2[(j + 1) * w + i + 1] - im2[j * w + i]);
+ g2 = abs(im2[(j + 1) * w + i] - im2[j * w + i + 1]);
+ gy = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2);
+ gx_buf[(j & 7) * stride + i + 4] = gx;
+ gy_buf[(j & 7) * stride + i + 4] = gy;
+ }
+ } else {
+ memset(gx_buf + (j & 7) * stride, 0, stride * sizeof(*gx_buf));
+ memset(gy_buf + (j & 7) * stride, 0, stride * sizeof(*gy_buf));
+ }
+ if (j >= 4) {
+ int k;
+ col_sums_gx2[3] = col_sums_gx2[2] = col_sums_gx2[1] = col_sums_gx2[0] = 0;
+ col_sums_gy2[3] = col_sums_gy2[2] = col_sums_gy2[1] = col_sums_gy2[0] = 0;
+ col_sums_gxgy[3] = col_sums_gxgy[2] = col_sums_gxgy[1] =
+ col_sums_gxgy[0] = 0;
+ for (i = 4; i < 8; i++) {
+ FS_COL_SET(i, -1, 0);
+ FS_COL_ADD(i, 0, 0);
+ for (k = 1; k < 8 - i; k++) {
+ FS_COL_DOUBLE(i, i);
+ FS_COL_ADD(i, -k - 1, 0);
+ FS_COL_ADD(i, k, 0);
+ }
+ }
+ for (i = 0; i < w; i++) {
+ double mugx2;
+ double mugy2;
+ double mugxgy;
+ mugx2 = col_sums_gx2[0];
+ for (k = 1; k < 8; k++)
+ mugx2 += col_sums_gx2[k];
+ mugy2 = col_sums_gy2[0];
+ for (k = 1; k < 8; k++)
+ mugy2 += col_sums_gy2[k];
+ mugxgy = col_sums_gxgy[0];
+ for (k = 1; k < 8; k++)
+ mugxgy += col_sums_gxgy[k];
+ ssim[(j - 4) * w + i] = (2 * mugxgy + c2) / (mugx2 + mugy2 + c2);
+ if (i + 1 < w) {
+ FS_COL_SET(0, -1, 1);
+ FS_COL_ADD(0, 0, 1);
+ FS_COL_SUB(2, -3, 2);
+ FS_COL_SUB(2, 2, 2);
+ FS_COL_HALVE(1, 2);
+ FS_COL_SUB(3, -4, 3);
+ FS_COL_SUB(3, 3, 3);
+ FS_COL_HALVE(2, 3);
+ FS_COL_COPY(3, 4);
+ FS_COL_DOUBLE(4, 5);
+ FS_COL_ADD(4, -4, 5);
+ FS_COL_ADD(4, 3, 5);
+ FS_COL_DOUBLE(5, 6);
+ FS_COL_ADD(5, -3, 6);
+ FS_COL_ADD(5, 2, 6);
+ FS_COL_DOUBLE(6, 7);
+ FS_COL_ADD(6, -2, 7);
+ FS_COL_ADD(6, 1, 7);
+ FS_COL_SET(7, -1, 8);
+ FS_COL_ADD(7, 0, 8);
+ }
+ }
+ }
+ }
+}
+
+#define FS_NLEVELS (4)
+
+/*These weights were derived from the default weights found in Wang's original
+ Matlab implementation: {0.0448, 0.2856, 0.2363, 0.1333}.
+ We drop the finest scale and renormalize the rest to sum to 1.*/
+
+static const double FS_WEIGHTS[FS_NLEVELS] = {0.2989654541015625,
+ 0.3141326904296875, 0.2473602294921875, 0.1395416259765625};
+
+static double fs_average(fs_ctx *_ctx, int _l) {
+ double *ssim;
+ double ret;
+ int w;
+ int h;
+ int i;
+ int j;
+ w = _ctx->level[_l].w;
+ h = _ctx->level[_l].h;
+ ssim = _ctx->level[_l].ssim;
+ ret = 0;
+ for (j = 0; j < h; j++)
+ for (i = 0; i < w; i++)
+ ret += ssim[j * w + i];
+ return pow(ret / (w * h), FS_WEIGHTS[_l]);
+}
+
+static double calc_ssim(const unsigned char *_src, int _systride,
+ const unsigned char *_dst, int _dystride, int _w, int _h) {
+ fs_ctx ctx;
+ double ret;
+ int l;
+ ret = 1;
+ fs_ctx_init(&ctx, _w, _h, FS_NLEVELS);
+ fs_downsample_level0(&ctx, _src, _systride, _dst, _dystride, _w, _h);
+ for (l = 0; l < FS_NLEVELS - 1; l++) {
+ fs_calc_structure(&ctx, l);
+ ret *= fs_average(&ctx, l);
+ fs_downsample_level(&ctx, l + 1);
+ }
+ fs_calc_structure(&ctx, l);
+ fs_apply_luminance(&ctx, l);
+ ret *= fs_average(&ctx, l);
+ fs_ctx_clear(&ctx);
+ return ret;
+}
+
+static double convert_ssim_db(double _ssim, double _weight) {
+ return 10 * (log10(_weight) - log10(_weight - _ssim));
+}
+
+double vp9_calc_fastssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
+ double *ssim_y, double *ssim_u, double *ssim_v) {
+ double ssimv;
+ vp9_clear_system_state();
+
+ *ssim_y = calc_ssim(source->y_buffer, source->y_stride, dest->y_buffer,
+ dest->y_stride, source->y_crop_width,
+ source->y_crop_height);
+
+ *ssim_u = calc_ssim(source->u_buffer, source->uv_stride, dest->u_buffer,
+ dest->uv_stride, source->uv_crop_width,
+ source->uv_crop_height);
+
+ *ssim_v = calc_ssim(source->v_buffer, source->uv_stride, dest->v_buffer,
+ dest->uv_stride, source->uv_crop_width,
+ source->uv_crop_height);
+ ssimv = (*ssim_y) * .8 + .1 * ((*ssim_u) + (*ssim_v));
+
+ return convert_ssim_db(ssimv, 1.0);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_firstpass.c b/media/libvpx/vp9/encoder/vp9_firstpass.c
new file mode 100644
index 000000000..856a6655c
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_firstpass.c
@@ -0,0 +1,2749 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vpx_dsp_rtcd.h"
+#include "./vpx_scale_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+#include "vpx_scale/vpx_scale.h"
+#include "vpx_scale/yv12config.h"
+
+#include "vp9/common/vp9_entropymv.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes()
+#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/encoder/vp9_aq_variance.h"
+#include "vp9/encoder/vp9_block.h"
+#include "vp9/encoder/vp9_encodeframe.h"
+#include "vp9/encoder/vp9_encodemb.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_extend.h"
+#include "vp9/encoder/vp9_firstpass.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_rd.h"
+#include "vp9/encoder/vp9_variance.h"
+
+#define OUTPUT_FPF 0
+#define ARF_STATS_OUTPUT 0
+
+#define GROUP_ADAPTIVE_MAXQ 1
+
+#define BOOST_BREAKOUT 12.5
+#define BOOST_FACTOR 12.5
+#define ERR_DIVISOR 128.0
+#define FACTOR_PT_LOW 0.70
+#define FACTOR_PT_HIGH 0.90
+#define FIRST_PASS_Q 10.0
+#define GF_MAX_BOOST 96.0
+#define INTRA_MODE_PENALTY 1024
+#define KF_MAX_BOOST 128.0
+#define MIN_ARF_GF_BOOST 240
+#define MIN_DECAY_FACTOR 0.01
+#define MIN_KF_BOOST 300
+#define NEW_MV_MODE_PENALTY 32
+#define SVC_FACTOR_PT_LOW 0.45
+#define DARK_THRESH 64
+#define DEFAULT_GRP_WEIGHT 1.0
+#define RC_FACTOR_MIN 0.75
+#define RC_FACTOR_MAX 1.75
+
+
+#define NCOUNT_INTRA_THRESH 8192
+#define NCOUNT_INTRA_FACTOR 3
+#define NCOUNT_FRAME_II_THRESH 5.0
+
+#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
+
+#if ARF_STATS_OUTPUT
+unsigned int arf_count = 0;
+#endif
+
+// Resets the first pass file to the given position using a relative seek from
+// the current position.
+static void reset_fpf_position(TWO_PASS *p,
+ const FIRSTPASS_STATS *position) {
+ p->stats_in = position;
+}
+
+// Read frame stats at an offset from the current position.
+static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
+ if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
+ (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
+ return NULL;
+ }
+
+ return &p->stats_in[offset];
+}
+
+static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
+ if (p->stats_in >= p->stats_in_end)
+ return EOF;
+
+ *fps = *p->stats_in;
+ ++p->stats_in;
+ return 1;
+}
+
+static void output_stats(FIRSTPASS_STATS *stats,
+ struct vpx_codec_pkt_list *pktlist) {
+ struct vpx_codec_cx_pkt pkt;
+ pkt.kind = VPX_CODEC_STATS_PKT;
+ pkt.data.twopass_stats.buf = stats;
+ pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
+ vpx_codec_pkt_list_add(pktlist, &pkt);
+
+// TEMP debug code
+#if OUTPUT_FPF
+ {
+ FILE *fpfile;
+ fpfile = fopen("firstpass.stt", "a");
+
+ fprintf(fpfile, "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
+ "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
+ "%12.4lf %12.0lf %12.0lf %12.0lf %12.4lf\n",
+ stats->frame,
+ stats->weight,
+ stats->intra_error,
+ stats->coded_error,
+ stats->sr_coded_error,
+ stats->pcnt_inter,
+ stats->pcnt_motion,
+ stats->pcnt_second_ref,
+ stats->pcnt_neutral,
+ stats->MVr,
+ stats->mvr_abs,
+ stats->MVc,
+ stats->mvc_abs,
+ stats->MVrv,
+ stats->MVcv,
+ stats->mv_in_out_count,
+ stats->new_mv_count,
+ stats->count,
+ stats->duration);
+ fclose(fpfile);
+ }
+#endif
+}
+
+#if CONFIG_FP_MB_STATS
+static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm,
+ struct vpx_codec_pkt_list *pktlist) {
+ struct vpx_codec_cx_pkt pkt;
+ pkt.kind = VPX_CODEC_FPMB_STATS_PKT;
+ pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
+ pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t);
+ vpx_codec_pkt_list_add(pktlist, &pkt);
+}
+#endif
+
+static void zero_stats(FIRSTPASS_STATS *section) {
+ section->frame = 0.0;
+ section->weight = 0.0;
+ section->intra_error = 0.0;
+ section->coded_error = 0.0;
+ section->sr_coded_error = 0.0;
+ section->pcnt_inter = 0.0;
+ section->pcnt_motion = 0.0;
+ section->pcnt_second_ref = 0.0;
+ section->pcnt_neutral = 0.0;
+ section->MVr = 0.0;
+ section->mvr_abs = 0.0;
+ section->MVc = 0.0;
+ section->mvc_abs = 0.0;
+ section->MVrv = 0.0;
+ section->MVcv = 0.0;
+ section->mv_in_out_count = 0.0;
+ section->new_mv_count = 0.0;
+ section->count = 0.0;
+ section->duration = 1.0;
+ section->spatial_layer_id = 0;
+}
+
+static void accumulate_stats(FIRSTPASS_STATS *section,
+ const FIRSTPASS_STATS *frame) {
+ section->frame += frame->frame;
+ section->weight += frame->weight;
+ section->spatial_layer_id = frame->spatial_layer_id;
+ section->intra_error += frame->intra_error;
+ section->coded_error += frame->coded_error;
+ section->sr_coded_error += frame->sr_coded_error;
+ section->pcnt_inter += frame->pcnt_inter;
+ section->pcnt_motion += frame->pcnt_motion;
+ section->pcnt_second_ref += frame->pcnt_second_ref;
+ section->pcnt_neutral += frame->pcnt_neutral;
+ section->MVr += frame->MVr;
+ section->mvr_abs += frame->mvr_abs;
+ section->MVc += frame->MVc;
+ section->mvc_abs += frame->mvc_abs;
+ section->MVrv += frame->MVrv;
+ section->MVcv += frame->MVcv;
+ section->mv_in_out_count += frame->mv_in_out_count;
+ section->new_mv_count += frame->new_mv_count;
+ section->count += frame->count;
+ section->duration += frame->duration;
+}
+
+static void subtract_stats(FIRSTPASS_STATS *section,
+ const FIRSTPASS_STATS *frame) {
+ section->frame -= frame->frame;
+ section->weight -= frame->weight;
+ section->intra_error -= frame->intra_error;
+ section->coded_error -= frame->coded_error;
+ section->sr_coded_error -= frame->sr_coded_error;
+ section->pcnt_inter -= frame->pcnt_inter;
+ section->pcnt_motion -= frame->pcnt_motion;
+ section->pcnt_second_ref -= frame->pcnt_second_ref;
+ section->pcnt_neutral -= frame->pcnt_neutral;
+ section->MVr -= frame->MVr;
+ section->mvr_abs -= frame->mvr_abs;
+ section->MVc -= frame->MVc;
+ section->mvc_abs -= frame->mvc_abs;
+ section->MVrv -= frame->MVrv;
+ section->MVcv -= frame->MVcv;
+ section->mv_in_out_count -= frame->mv_in_out_count;
+ section->new_mv_count -= frame->new_mv_count;
+ section->count -= frame->count;
+ section->duration -= frame->duration;
+}
+
+
+// Calculate a modified Error used in distributing bits between easier and
+// harder frames.
+static double calculate_modified_err(const TWO_PASS *twopass,
+ const VP9EncoderConfig *oxcf,
+ const FIRSTPASS_STATS *this_frame) {
+ const FIRSTPASS_STATS *const stats = &twopass->total_stats;
+ const double av_weight = stats->weight / stats->count;
+ const double av_err = (stats->coded_error * av_weight) / stats->count;
+ const double modified_error =
+ av_err * pow(this_frame->coded_error * this_frame->weight /
+ DOUBLE_DIVIDE_CHECK(av_err), oxcf->two_pass_vbrbias / 100.0);
+ return fclamp(modified_error,
+ twopass->modified_error_min, twopass->modified_error_max);
+}
+
+// This function returns the maximum target rate per frame.
+static int frame_max_bits(const RATE_CONTROL *rc,
+ const VP9EncoderConfig *oxcf) {
+ int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
+ (int64_t)oxcf->two_pass_vbrmax_section) / 100;
+ if (max_bits < 0)
+ max_bits = 0;
+ else if (max_bits > rc->max_frame_bandwidth)
+ max_bits = rc->max_frame_bandwidth;
+
+ return (int)max_bits;
+}
+
+void vp9_init_first_pass(VP9_COMP *cpi) {
+ zero_stats(&cpi->twopass.total_stats);
+}
+
+void vp9_end_first_pass(VP9_COMP *cpi) {
+ if (is_two_pass_svc(cpi)) {
+ int i;
+ for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
+ output_stats(&cpi->svc.layer_context[i].twopass.total_stats,
+ cpi->output_pkt_list);
+ }
+ } else {
+ output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
+ }
+}
+
+static vp9_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
+ switch (bsize) {
+ case BLOCK_8X8:
+ return vpx_mse8x8;
+ case BLOCK_16X8:
+ return vpx_mse16x8;
+ case BLOCK_8X16:
+ return vpx_mse8x16;
+ default:
+ return vpx_mse16x16;
+ }
+}
+
+static unsigned int get_prediction_error(BLOCK_SIZE bsize,
+ const struct buf_2d *src,
+ const struct buf_2d *ref) {
+ unsigned int sse;
+ const vp9_variance_fn_t fn = get_block_variance_fn(bsize);
+ fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
+ return sse;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static vp9_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
+ int bd) {
+ switch (bd) {
+ default:
+ switch (bsize) {
+ case BLOCK_8X8:
+ return vpx_highbd_8_mse8x8;
+ case BLOCK_16X8:
+ return vpx_highbd_8_mse16x8;
+ case BLOCK_8X16:
+ return vpx_highbd_8_mse8x16;
+ default:
+ return vpx_highbd_8_mse16x16;
+ }
+ break;
+ case 10:
+ switch (bsize) {
+ case BLOCK_8X8:
+ return vpx_highbd_10_mse8x8;
+ case BLOCK_16X8:
+ return vpx_highbd_10_mse16x8;
+ case BLOCK_8X16:
+ return vpx_highbd_10_mse8x16;
+ default:
+ return vpx_highbd_10_mse16x16;
+ }
+ break;
+ case 12:
+ switch (bsize) {
+ case BLOCK_8X8:
+ return vpx_highbd_12_mse8x8;
+ case BLOCK_16X8:
+ return vpx_highbd_12_mse16x8;
+ case BLOCK_8X16:
+ return vpx_highbd_12_mse8x16;
+ default:
+ return vpx_highbd_12_mse16x16;
+ }
+ break;
+ }
+}
+
+static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
+ const struct buf_2d *src,
+ const struct buf_2d *ref,
+ int bd) {
+ unsigned int sse;
+ const vp9_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
+ fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
+ return sse;
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+// Refine the motion search range according to the frame dimension
+// for first pass test.
+static int get_search_range(const VP9_COMP *cpi) {
+ int sr = 0;
+ const int dim = MIN(cpi->initial_width, cpi->initial_height);
+
+ while ((dim << sr) < MAX_FULL_PEL_VAL)
+ ++sr;
+ return sr;
+}
+
+static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
+ const MV *ref_mv, MV *best_mv,
+ int *best_motion_err) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MV tmp_mv = {0, 0};
+ MV ref_mv_full = {ref_mv->row >> 3, ref_mv->col >> 3};
+ int num00, tmp_err, n;
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+ vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
+ const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
+
+ int step_param = 3;
+ int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
+ const int sr = get_search_range(cpi);
+ step_param += sr;
+ further_steps -= sr;
+
+ // Override the default variance function to use MSE.
+ v_fn_ptr.vf = get_block_variance_fn(bsize);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ // Center the initial step/diamond search on best mv.
+ tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
+ step_param,
+ x->sadperbit16, &num00, &v_fn_ptr, ref_mv);
+ if (tmp_err < INT_MAX)
+ tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
+ if (tmp_err < INT_MAX - new_mv_mode_penalty)
+ tmp_err += new_mv_mode_penalty;
+
+ if (tmp_err < *best_motion_err) {
+ *best_motion_err = tmp_err;
+ *best_mv = tmp_mv;
+ }
+
+ // Carry out further step/diamond searches as necessary.
+ n = num00;
+ num00 = 0;
+
+ while (n < further_steps) {
+ ++n;
+
+ if (num00) {
+ --num00;
+ } else {
+ tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
+ step_param + n, x->sadperbit16,
+ &num00, &v_fn_ptr, ref_mv);
+ if (tmp_err < INT_MAX)
+ tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
+ if (tmp_err < INT_MAX - new_mv_mode_penalty)
+ tmp_err += new_mv_mode_penalty;
+
+ if (tmp_err < *best_motion_err) {
+ *best_motion_err = tmp_err;
+ *best_mv = tmp_mv;
+ }
+ }
+ }
+}
+
+static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
+ if (2 * mb_col + 1 < cm->mi_cols) {
+ return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16
+ : BLOCK_16X8;
+ } else {
+ return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16
+ : BLOCK_8X8;
+ }
+}
+
+static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
+ int i;
+
+ for (i = 0; i < QINDEX_RANGE; ++i)
+ if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q)
+ break;
+
+ if (i == QINDEX_RANGE)
+ i--;
+
+ return i;
+}
+
+static void set_first_pass_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ if (!cpi->refresh_alt_ref_frame &&
+ (cm->current_video_frame == 0 ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY))) {
+ cm->frame_type = KEY_FRAME;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ // Do not use periodic key frames.
+ cpi->rc.frames_to_key = INT_MAX;
+}
+
+void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
+ int mb_row, mb_col;
+ MACROBLOCK *const x = &cpi->td.mb;
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ TileInfo tile;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
+ int i;
+
+ int recon_yoffset, recon_uvoffset;
+ int64_t intra_error = 0;
+ int64_t coded_error = 0;
+ int64_t sr_coded_error = 0;
+
+ int sum_mvr = 0, sum_mvc = 0;
+ int sum_mvr_abs = 0, sum_mvc_abs = 0;
+ int64_t sum_mvrs = 0, sum_mvcs = 0;
+ int mvcount = 0;
+ int intercount = 0;
+ int second_ref_count = 0;
+ const int intrapenalty = INTRA_MODE_PENALTY;
+ double neutral_count;
+ int new_mv_count = 0;
+ int sum_in_vectors = 0;
+ MV lastmv = {0, 0};
+ TWO_PASS *twopass = &cpi->twopass;
+ const MV zero_mv = {0, 0};
+ int recon_y_stride, recon_uv_stride, uv_mb_height;
+
+ YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
+ YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
+ YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
+ const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
+
+ LAYER_CONTEXT *const lc = is_two_pass_svc(cpi) ?
+ &cpi->svc.layer_context[cpi->svc.spatial_layer_id] : NULL;
+ double intra_factor;
+ double brightness_factor;
+ BufferPool *const pool = cm->buffer_pool;
+
+ // First pass code requires valid last and new frame buffers.
+ assert(new_yv12 != NULL);
+ assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL));
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs);
+ }
+#endif
+
+ vp9_clear_system_state();
+
+ intra_factor = 0.0;
+ brightness_factor = 0.0;
+ neutral_count = 0.0;
+
+ set_first_pass_params(cpi);
+ vp9_set_quantizer(cm, find_fp_qindex(cm->bit_depth));
+
+ if (lc != NULL) {
+ twopass = &lc->twopass;
+
+ cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
+ cpi->ref_frame_flags = VP9_LAST_FLAG;
+
+ if (cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id <
+ REF_FRAMES) {
+ cpi->gld_fb_idx =
+ cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id;
+ cpi->ref_frame_flags |= VP9_GOLD_FLAG;
+ cpi->refresh_golden_frame = (lc->current_video_frame_in_layer == 0);
+ } else {
+ cpi->refresh_golden_frame = 0;
+ }
+
+ if (lc->current_video_frame_in_layer == 0)
+ cpi->ref_frame_flags = 0;
+
+ vp9_scale_references(cpi);
+
+ // Use either last frame or alt frame for motion search.
+ if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
+ first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
+ if (first_ref_buf == NULL)
+ first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME);
+ }
+
+ if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
+ gld_yv12 = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
+ if (gld_yv12 == NULL) {
+ gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
+ }
+ } else {
+ gld_yv12 = NULL;
+ }
+
+ set_ref_ptrs(cm, xd,
+ (cpi->ref_frame_flags & VP9_LAST_FLAG) ? LAST_FRAME: NONE,
+ (cpi->ref_frame_flags & VP9_GOLD_FLAG) ? GOLDEN_FRAME : NONE);
+
+ cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
+ &cpi->scaled_source);
+ }
+
+ vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
+
+ vp9_setup_src_planes(x, cpi->Source, 0, 0);
+ vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
+
+ if (!frame_is_intra_only(cm)) {
+ vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
+ }
+
+ xd->mi = cm->mi_grid_visible;
+ xd->mi[0] = cm->mi;
+
+ vp9_frame_init_quantizer(cpi);
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ p[i].coeff = ctx->coeff_pbuf[i][1];
+ p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
+ pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
+ p[i].eobs = ctx->eobs_pbuf[i][1];
+ }
+ x->skip_recode = 0;
+
+ vp9_init_mv_probs(cm);
+ vp9_initialize_rd_consts(cpi);
+
+ // Tiling is ignored in the first pass.
+ vp9_tile_init(&tile, cm, 0, 0);
+
+ recon_y_stride = new_yv12->y_stride;
+ recon_uv_stride = new_yv12->uv_stride;
+ uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
+
+ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
+ MV best_ref_mv = {0, 0};
+
+ // Reset above block coeffs.
+ xd->up_available = (mb_row != 0);
+ recon_yoffset = (mb_row * recon_y_stride * 16);
+ recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
+
+ // Set up limit values for motion vectors to prevent them extending
+ // outside the UMV borders.
+ x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
+ x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
+ + BORDER_MV_PIXELS_B16;
+
+ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
+ int this_error;
+ const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
+ const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
+ double log_intra;
+ int level_sample;
+
+#if CONFIG_FP_MB_STATS
+ const int mb_index = mb_row * cm->mb_cols + mb_col;
+#endif
+
+ vp9_clear_system_state();
+
+ xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
+ xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
+ xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
+ xd->left_available = (mb_col != 0);
+ xd->mi[0]->mbmi.sb_type = bsize;
+ xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
+ set_mi_row_col(xd, &tile,
+ mb_row << 1, num_8x8_blocks_high_lookup[bsize],
+ mb_col << 1, num_8x8_blocks_wide_lookup[bsize],
+ cm->mi_rows, cm->mi_cols);
+
+ // Do intra 16x16 prediction.
+ x->skip_encode = 0;
+ xd->mi[0]->mbmi.mode = DC_PRED;
+ xd->mi[0]->mbmi.tx_size = use_dc_pred ?
+ (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
+ vp9_encode_intra_block_plane(x, bsize, 0);
+ this_error = vpx_get_mb_ss(x->plane[0].src_diff);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) {
+ switch (cm->bit_depth) {
+ case VPX_BITS_8:
+ break;
+ case VPX_BITS_10:
+ this_error >>= 4;
+ break;
+ case VPX_BITS_12:
+ this_error >>= 8;
+ break;
+ default:
+ assert(0 && "cm->bit_depth should be VPX_BITS_8, "
+ "VPX_BITS_10 or VPX_BITS_12");
+ return;
+ }
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ vp9_clear_system_state();
+ log_intra = log(this_error + 1.0);
+ if (log_intra < 10.0)
+ intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
+ else
+ intra_factor += 1.0;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth)
+ level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
+ else
+ level_sample = x->plane[0].src.buf[0];
+#else
+ level_sample = x->plane[0].src.buf[0];
+#endif
+ if ((level_sample < DARK_THRESH) && (log_intra < 9.0))
+ brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
+ else
+ brightness_factor += 1.0;
+
+ // Intrapenalty below deals with situations where the intra and inter
+ // error scores are very low (e.g. a plain black frame).
+ // We do not have special cases in first pass for 0,0 and nearest etc so
+ // all inter modes carry an overhead cost estimate for the mv.
+ // When the error score is very low this causes us to pick all or lots of
+ // INTRA modes and throw lots of key frames.
+ // This penalty adds a cost matching that of a 0,0 mv to the intra case.
+ this_error += intrapenalty;
+
+ // Accumulate the intra error.
+ intra_error += (int64_t)this_error;
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ // initialization
+ cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+ }
+#endif
+
+ // Set up limit values for motion vectors to prevent them extending
+ // outside the UMV borders.
+ x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
+ x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
+
+ // Other than for the first frame do a motion search.
+ if ((lc == NULL && cm->current_video_frame > 0) ||
+ (lc != NULL && lc->current_video_frame_in_layer > 0)) {
+ int tmp_err, motion_error, raw_motion_error;
+ // Assume 0,0 motion with no mv overhead.
+ MV mv = {0, 0} , tmp_mv = {0, 0};
+ struct buf_2d unscaled_last_source_buf_2d;
+
+ xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ motion_error = highbd_get_prediction_error(
+ bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
+ } else {
+ motion_error = get_prediction_error(
+ bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
+ }
+#else
+ motion_error = get_prediction_error(
+ bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ // Compute the motion error of the 0,0 motion using the last source
+ // frame as the reference. Skip the further motion search on
+ // reconstructed frame if this error is small.
+ unscaled_last_source_buf_2d.buf =
+ cpi->unscaled_last_source->y_buffer + recon_yoffset;
+ unscaled_last_source_buf_2d.stride =
+ cpi->unscaled_last_source->y_stride;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ raw_motion_error = highbd_get_prediction_error(
+ bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
+ } else {
+ raw_motion_error = get_prediction_error(
+ bsize, &x->plane[0].src, &unscaled_last_source_buf_2d);
+ }
+#else
+ raw_motion_error = get_prediction_error(
+ bsize, &x->plane[0].src, &unscaled_last_source_buf_2d);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ // TODO(pengchong): Replace the hard-coded threshold
+ if (raw_motion_error > 25 || lc != NULL) {
+ // Test last reference frame using the previous best mv as the
+ // starting point (best reference) for the search.
+ first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
+
+ // If the current best reference mv is not centered on 0,0 then do a
+ // 0,0 based search as well.
+ if (!is_zero_mv(&best_ref_mv)) {
+ tmp_err = INT_MAX;
+ first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
+
+ if (tmp_err < motion_error) {
+ motion_error = tmp_err;
+ mv = tmp_mv;
+ }
+ }
+
+ // Search in an older reference frame.
+ if (((lc == NULL && cm->current_video_frame > 1) ||
+ (lc != NULL && lc->current_video_frame_in_layer > 1))
+ && gld_yv12 != NULL) {
+ // Assume 0,0 motion with no mv overhead.
+ int gf_motion_error;
+
+ xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ gf_motion_error = highbd_get_prediction_error(
+ bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
+ } else {
+ gf_motion_error = get_prediction_error(
+ bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
+ }
+#else
+ gf_motion_error = get_prediction_error(
+ bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv,
+ &gf_motion_error);
+
+ if (gf_motion_error < motion_error && gf_motion_error < this_error)
+ ++second_ref_count;
+
+ // Reset to last frame as reference buffer.
+ xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
+ xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
+ xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
+
+ // In accumulating a score for the older reference frame take the
+ // best of the motion predicted score and the intra coded error
+ // (just as will be done for) accumulation of "coded_error" for
+ // the last frame.
+ if (gf_motion_error < this_error)
+ sr_coded_error += gf_motion_error;
+ else
+ sr_coded_error += this_error;
+ } else {
+ sr_coded_error += motion_error;
+ }
+ } else {
+ sr_coded_error += motion_error;
+ }
+
+ // Start by assuming that intra mode is best.
+ best_ref_mv.row = 0;
+ best_ref_mv.col = 0;
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ // intra predication statistics
+ cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
+ if (this_error > FPMB_ERROR_LARGE_TH) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
+ } else if (this_error < FPMB_ERROR_SMALL_TH) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
+ }
+ }
+#endif
+
+ if (motion_error <= this_error) {
+ vp9_clear_system_state();
+
+ // Keep a count of cases where the inter and intra were very close
+ // and very low. This helps with scene cut detection for example in
+ // cropped clips with black bars at the sides or top and bottom.
+ if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
+ (this_error < (2 * intrapenalty))) {
+ neutral_count += 1.0;
+ // Also track cases where the intra is not much worse than the inter
+ // and use this in limiting the GF/arf group length.
+ } else if ((this_error > NCOUNT_INTRA_THRESH) &&
+ (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
+ neutral_count += (double)motion_error /
+ DOUBLE_DIVIDE_CHECK((double)this_error);
+ }
+
+ mv.row *= 8;
+ mv.col *= 8;
+ this_error = motion_error;
+ xd->mi[0]->mbmi.mode = NEWMV;
+ xd->mi[0]->mbmi.mv[0].as_mv = mv;
+ xd->mi[0]->mbmi.tx_size = TX_4X4;
+ xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
+ xd->mi[0]->mbmi.ref_frame[1] = NONE;
+ vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
+ vp9_encode_sby_pass1(x, bsize);
+ sum_mvr += mv.row;
+ sum_mvr_abs += abs(mv.row);
+ sum_mvc += mv.col;
+ sum_mvc_abs += abs(mv.col);
+ sum_mvrs += mv.row * mv.row;
+ sum_mvcs += mv.col * mv.col;
+ ++intercount;
+
+ best_ref_mv = mv;
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ // inter predication statistics
+ cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+ cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
+ if (this_error > FPMB_ERROR_LARGE_TH) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_ERROR_LARGE_MASK;
+ } else if (this_error < FPMB_ERROR_SMALL_TH) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_ERROR_SMALL_MASK;
+ }
+ }
+#endif
+
+ if (!is_zero_mv(&mv)) {
+ ++mvcount;
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] &=
+ ~FPMB_MOTION_ZERO_MASK;
+ // check estimated motion direction
+ if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) {
+ // right direction
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_MOTION_RIGHT_MASK;
+ } else if (mv.as_mv.row < 0 &&
+ abs(mv.as_mv.row) >= abs(mv.as_mv.col)) {
+ // up direction
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_MOTION_UP_MASK;
+ } else if (mv.as_mv.col < 0 &&
+ abs(mv.as_mv.col) >= abs(mv.as_mv.row)) {
+ // left direction
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_MOTION_LEFT_MASK;
+ } else {
+ // down direction
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_MOTION_DOWN_MASK;
+ }
+ }
+#endif
+
+ // Non-zero vector, was it different from the last non zero vector?
+ if (!is_equal_mv(&mv, &lastmv))
+ ++new_mv_count;
+ lastmv = mv;
+
+ // Does the row vector point inwards or outwards?
+ if (mb_row < cm->mb_rows / 2) {
+ if (mv.row > 0)
+ --sum_in_vectors;
+ else if (mv.row < 0)
+ ++sum_in_vectors;
+ } else if (mb_row > cm->mb_rows / 2) {
+ if (mv.row > 0)
+ ++sum_in_vectors;
+ else if (mv.row < 0)
+ --sum_in_vectors;
+ }
+
+ // Does the col vector point inwards or outwards?
+ if (mb_col < cm->mb_cols / 2) {
+ if (mv.col > 0)
+ --sum_in_vectors;
+ else if (mv.col < 0)
+ ++sum_in_vectors;
+ } else if (mb_col > cm->mb_cols / 2) {
+ if (mv.col > 0)
+ ++sum_in_vectors;
+ else if (mv.col < 0)
+ --sum_in_vectors;
+ }
+ }
+ }
+ } else {
+ sr_coded_error += (int64_t)this_error;
+ }
+ coded_error += (int64_t)this_error;
+
+ // Adjust to the next column of MBs.
+ x->plane[0].src.buf += 16;
+ x->plane[1].src.buf += uv_mb_height;
+ x->plane[2].src.buf += uv_mb_height;
+
+ recon_yoffset += 16;
+ recon_uvoffset += uv_mb_height;
+ }
+
+ // Adjust to the next row of MBs.
+ x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
+ x->plane[1].src.buf += uv_mb_height * x->plane[1].src.stride -
+ uv_mb_height * cm->mb_cols;
+ x->plane[2].src.buf += uv_mb_height * x->plane[1].src.stride -
+ uv_mb_height * cm->mb_cols;
+
+ vp9_clear_system_state();
+ }
+
+ {
+ FIRSTPASS_STATS fps;
+ // The minimum error here insures some bit allocation to frames even
+ // in static regions. The allocation per MB declines for larger formats
+ // where the typical "real" energy per MB also falls.
+ // Initial estimate here uses sqrt(mbs) to define the min_err, where the
+ // number of mbs is proportional to the image area.
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs : cpi->common.MBs;
+ const double min_err = 200 * sqrt(num_mbs);
+
+ intra_factor = intra_factor / (double)num_mbs;
+ brightness_factor = brightness_factor / (double)num_mbs;
+ fps.weight = intra_factor * brightness_factor;
+
+ fps.frame = cm->current_video_frame;
+ fps.spatial_layer_id = cpi->svc.spatial_layer_id;
+ fps.coded_error = (double)(coded_error >> 8) + min_err;
+ fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
+ fps.intra_error = (double)(intra_error >> 8) + min_err;
+ fps.count = 1.0;
+ fps.pcnt_inter = (double)intercount / num_mbs;
+ fps.pcnt_second_ref = (double)second_ref_count / num_mbs;
+ fps.pcnt_neutral = (double)neutral_count / num_mbs;
+
+ if (mvcount > 0) {
+ fps.MVr = (double)sum_mvr / mvcount;
+ fps.mvr_abs = (double)sum_mvr_abs / mvcount;
+ fps.MVc = (double)sum_mvc / mvcount;
+ fps.mvc_abs = (double)sum_mvc_abs / mvcount;
+ fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / mvcount)) / mvcount;
+ fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / mvcount)) / mvcount;
+ fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
+ fps.new_mv_count = new_mv_count;
+ fps.pcnt_motion = (double)mvcount / num_mbs;
+ } else {
+ fps.MVr = 0.0;
+ fps.mvr_abs = 0.0;
+ fps.MVc = 0.0;
+ fps.mvc_abs = 0.0;
+ fps.MVrv = 0.0;
+ fps.MVcv = 0.0;
+ fps.mv_in_out_count = 0.0;
+ fps.new_mv_count = 0.0;
+ fps.pcnt_motion = 0.0;
+ }
+
+ // TODO(paulwilkins): Handle the case when duration is set to 0, or
+ // something less than the full time between subsequent values of
+ // cpi->source_time_stamp.
+ fps.duration = (double)(source->ts_end - source->ts_start);
+
+ // Don't want to do output stats with a stack variable!
+ twopass->this_frame_stats = fps;
+ output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
+ accumulate_stats(&twopass->total_stats, &fps);
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list);
+ }
+#endif
+ }
+
+ // Copy the previous Last Frame back into gf and and arf buffers if
+ // the prediction is good enough... but also don't allow it to lag too far.
+ if ((twopass->sr_update_lag > 3) ||
+ ((cm->current_video_frame > 0) &&
+ (twopass->this_frame_stats.pcnt_inter > 0.20) &&
+ ((twopass->this_frame_stats.intra_error /
+ DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
+ if (gld_yv12 != NULL) {
+ ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
+ cm->ref_frame_map[cpi->lst_fb_idx]);
+ }
+ twopass->sr_update_lag = 1;
+ } else {
+ ++twopass->sr_update_lag;
+ }
+
+ vp9_extend_frame_borders(new_yv12);
+
+ if (lc != NULL) {
+ vp9_update_reference_frames(cpi);
+ } else {
+ // The frame we just compressed now becomes the last frame.
+ ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
+ cm->new_fb_idx);
+ }
+
+ // Special case for the first frame. Copy into the GF buffer as a second
+ // reference.
+ if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX &&
+ lc == NULL) {
+ ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
+ cm->ref_frame_map[cpi->lst_fb_idx]);
+ }
+
+ // Use this to see what the first pass reconstruction looks like.
+ if (0) {
+ char filename[512];
+ FILE *recon_file;
+ snprintf(filename, sizeof(filename), "enc%04d.yuv",
+ (int)cm->current_video_frame);
+
+ if (cm->current_video_frame == 0)
+ recon_file = fopen(filename, "wb");
+ else
+ recon_file = fopen(filename, "ab");
+
+ (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
+ fclose(recon_file);
+ }
+
+ ++cm->current_video_frame;
+ if (cpi->use_svc)
+ vp9_inc_frame_in_layer(cpi);
+}
+
+static double calc_correction_factor(double err_per_mb,
+ double err_divisor,
+ double pt_low,
+ double pt_high,
+ int q,
+ vpx_bit_depth_t bit_depth) {
+ const double error_term = err_per_mb / err_divisor;
+
+ // Adjustment based on actual quantizer to power term.
+ const double power_term =
+ MIN(vp9_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
+
+ // Calculate correction factor.
+ if (power_term < 1.0)
+ assert(error_term >= 0.0);
+
+ return fclamp(pow(error_term, power_term), 0.05, 5.0);
+}
+
+// Larger image formats are expected to be a little harder to code relatively
+// given the same prediction error score. This in part at least relates to the
+// increased size and hence coding cost of motion vectors.
+#define EDIV_SIZE_FACTOR 800
+
+static int get_twopass_worst_quality(const VP9_COMP *cpi,
+ const double section_err,
+ int section_target_bandwidth,
+ double group_weight_factor) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+
+ if (section_target_bandwidth <= 0) {
+ return rc->worst_quality; // Highest value allowed
+ } else {
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs : cpi->common.MBs;
+ const double err_per_mb = section_err / num_mbs;
+ const double speed_term = 1.0 + 0.04 * oxcf->speed;
+ const double ediv_size_correction = num_mbs / EDIV_SIZE_FACTOR;
+ const int target_norm_bits_per_mb = ((uint64_t)section_target_bandwidth <<
+ BPER_MB_NORMBITS) / num_mbs;
+
+ int q;
+ int is_svc_upper_layer = 0;
+
+ if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0)
+ is_svc_upper_layer = 1;
+
+
+ // Try and pick a max Q that will be high enough to encode the
+ // content at the given rate.
+ for (q = rc->best_quality; q < rc->worst_quality; ++q) {
+ const double factor =
+ calc_correction_factor(err_per_mb,
+ ERR_DIVISOR - ediv_size_correction,
+ is_svc_upper_layer ? SVC_FACTOR_PT_LOW :
+ FACTOR_PT_LOW, FACTOR_PT_HIGH, q,
+ cpi->common.bit_depth);
+ const int bits_per_mb =
+ vp9_rc_bits_per_mb(INTER_FRAME, q,
+ factor * speed_term * group_weight_factor,
+ cpi->common.bit_depth);
+ if (bits_per_mb <= target_norm_bits_per_mb)
+ break;
+ }
+
+ // Restriction on active max q for constrained quality mode.
+ if (cpi->oxcf.rc_mode == VPX_CQ)
+ q = MAX(q, oxcf->cq_level);
+ return q;
+ }
+}
+
+static void setup_rf_level_maxq(VP9_COMP *cpi) {
+ int i;
+ RATE_CONTROL *const rc = &cpi->rc;
+ for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
+ int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality);
+ rc->rf_level_maxq[i] = MAX(rc->worst_quality + qdelta, rc->best_quality);
+ }
+}
+
+void vp9_init_subsampling(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const int w = cm->width;
+ const int h = cm->height;
+ int i;
+
+ for (i = 0; i < FRAME_SCALE_STEPS; ++i) {
+ // Note: Frames with odd-sized dimensions may result from this scaling.
+ rc->frame_width[i] = (w * 16) / frame_scale_factor[i];
+ rc->frame_height[i] = (h * 16) / frame_scale_factor[i];
+ }
+
+ setup_rf_level_maxq(cpi);
+}
+
+void calculate_coded_size(VP9_COMP *cpi,
+ int *scaled_frame_width,
+ int *scaled_frame_height) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ *scaled_frame_width = rc->frame_width[rc->frame_size_selector];
+ *scaled_frame_height = rc->frame_height[rc->frame_size_selector];
+}
+
+void vp9_init_second_pass(VP9_COMP *cpi) {
+ SVC *const svc = &cpi->svc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const int is_two_pass_svc = (svc->number_spatial_layers > 1) ||
+ (svc->number_temporal_layers > 1);
+ TWO_PASS *const twopass = is_two_pass_svc ?
+ &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
+ double frame_rate;
+ FIRSTPASS_STATS *stats;
+
+ zero_stats(&twopass->total_stats);
+ zero_stats(&twopass->total_left_stats);
+
+ if (!twopass->stats_in_end)
+ return;
+
+ stats = &twopass->total_stats;
+
+ *stats = *twopass->stats_in_end;
+ twopass->total_left_stats = *stats;
+
+ frame_rate = 10000000.0 * stats->count / stats->duration;
+ // Each frame can have a different duration, as the frame rate in the source
+ // isn't guaranteed to be constant. The frame rate prior to the first frame
+ // encoded in the second pass is a guess. However, the sum duration is not.
+ // It is calculated based on the actual durations of all frames from the
+ // first pass.
+
+ if (is_two_pass_svc) {
+ vp9_update_spatial_layer_framerate(cpi, frame_rate);
+ twopass->bits_left = (int64_t)(stats->duration *
+ svc->layer_context[svc->spatial_layer_id].target_bandwidth /
+ 10000000.0);
+ } else {
+ vp9_new_framerate(cpi, frame_rate);
+ twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth /
+ 10000000.0);
+ }
+
+ // This variable monitors how far behind the second ref update is lagging.
+ twopass->sr_update_lag = 1;
+
+ // Scan the first pass file and calculate a modified total error based upon
+ // the bias/power function used to allocate bits.
+ {
+ const double avg_error = stats->coded_error /
+ DOUBLE_DIVIDE_CHECK(stats->count);
+ const FIRSTPASS_STATS *s = twopass->stats_in;
+ double modified_error_total = 0.0;
+ twopass->modified_error_min = (avg_error *
+ oxcf->two_pass_vbrmin_section) / 100;
+ twopass->modified_error_max = (avg_error *
+ oxcf->two_pass_vbrmax_section) / 100;
+ while (s < twopass->stats_in_end) {
+ modified_error_total += calculate_modified_err(twopass, oxcf, s);
+ ++s;
+ }
+ twopass->modified_error_left = modified_error_total;
+ }
+
+ // Reset the vbr bits off target counters
+ cpi->rc.vbr_bits_off_target = 0;
+ cpi->rc.vbr_bits_off_target_fast = 0;
+
+ cpi->rc.rate_error_estimate = 0;
+
+ // Static sequence monitor variables.
+ twopass->kf_zeromotion_pct = 100;
+ twopass->last_kfgroup_zeromotion_pct = 100;
+
+ if (oxcf->resize_mode != RESIZE_NONE) {
+ vp9_init_subsampling(cpi);
+ }
+}
+
+#define SR_DIFF_PART 0.0015
+#define MOTION_AMP_PART 0.003
+#define INTRA_PART 0.005
+#define DEFAULT_DECAY_LIMIT 0.75
+#define LOW_SR_DIFF_TRHESH 0.1
+#define SR_DIFF_MAX 128.0
+
+static double get_sr_decay_rate(const VP9_COMP *cpi,
+ const FIRSTPASS_STATS *frame) {
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs : cpi->common.MBs;
+ double sr_diff =
+ (frame->sr_coded_error - frame->coded_error) / num_mbs;
+ double sr_decay = 1.0;
+ double modified_pct_inter;
+ double modified_pcnt_intra;
+ const double motion_amplitude_factor =
+ frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
+
+ modified_pct_inter = frame->pcnt_inter;
+ if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
+ (double)NCOUNT_FRAME_II_THRESH) {
+ modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
+ }
+ modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
+
+
+ if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
+ sr_diff = MIN(sr_diff, SR_DIFF_MAX);
+ sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
+ (MOTION_AMP_PART * motion_amplitude_factor) -
+ (INTRA_PART * modified_pcnt_intra);
+ }
+ return MAX(sr_decay, MIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
+}
+
+// This function gives an estimate of how badly we believe the prediction
+// quality is decaying from frame to frame.
+static double get_zero_motion_factor(const VP9_COMP *cpi,
+ const FIRSTPASS_STATS *frame) {
+ const double zero_motion_pct = frame->pcnt_inter -
+ frame->pcnt_motion;
+ double sr_decay = get_sr_decay_rate(cpi, frame);
+ return MIN(sr_decay, zero_motion_pct);
+}
+
+#define ZM_POWER_FACTOR 0.75
+
+static double get_prediction_decay_rate(const VP9_COMP *cpi,
+ const FIRSTPASS_STATS *next_frame) {
+ const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
+ const double zero_motion_factor =
+ (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
+ ZM_POWER_FACTOR));
+
+ return MAX(zero_motion_factor,
+ (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
+}
+
+// Function to test for a condition where a complex transition is followed
+// by a static section. For example in slide shows where there is a fade
+// between slides. This is to help with more optimal kf and gf positioning.
+static int detect_transition_to_still(VP9_COMP *cpi,
+ int frame_interval, int still_interval,
+ double loop_decay_rate,
+ double last_decay_rate) {
+ TWO_PASS *const twopass = &cpi->twopass;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Break clause to detect very still sections after motion
+ // For example a static image after a fade or other transition
+ // instead of a clean scene cut.
+ if (frame_interval > rc->min_gf_interval &&
+ loop_decay_rate >= 0.999 &&
+ last_decay_rate < 0.9) {
+ int j;
+
+ // Look ahead a few frames to see if static condition persists...
+ for (j = 0; j < still_interval; ++j) {
+ const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
+ if (stats >= twopass->stats_in_end)
+ break;
+
+ if (stats->pcnt_inter - stats->pcnt_motion < 0.999)
+ break;
+ }
+
+ // Only if it does do we signal a transition to still.
+ return j == still_interval;
+ }
+
+ return 0;
+}
+
+// This function detects a flash through the high relative pcnt_second_ref
+// score in the frame following a flash frame. The offset passed in should
+// reflect this.
+static int detect_flash(const TWO_PASS *twopass, int offset) {
+ const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
+
+ // What we are looking for here is a situation where there is a
+ // brief break in prediction (such as a flash) but subsequent frames
+ // are reasonably well predicted by an earlier (pre flash) frame.
+ // The recovery after a flash is indicated by a high pcnt_second_ref
+ // compared to pcnt_inter.
+ return next_frame != NULL &&
+ next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
+ next_frame->pcnt_second_ref >= 0.5;
+}
+
+// Update the motion related elements to the GF arf boost calculation.
+static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
+ double *mv_in_out,
+ double *mv_in_out_accumulator,
+ double *abs_mv_in_out_accumulator,
+ double *mv_ratio_accumulator) {
+ const double pct = stats->pcnt_motion;
+
+ // Accumulate Motion In/Out of frame stats.
+ *mv_in_out = stats->mv_in_out_count * pct;
+ *mv_in_out_accumulator += *mv_in_out;
+ *abs_mv_in_out_accumulator += fabs(*mv_in_out);
+
+ // Accumulate a measure of how uniform (or conversely how random) the motion
+ // field is (a ratio of abs(mv) / mv).
+ if (pct > 0.05) {
+ const double mvr_ratio = fabs(stats->mvr_abs) /
+ DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
+ const double mvc_ratio = fabs(stats->mvc_abs) /
+ DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
+
+ *mv_ratio_accumulator += pct * (mvr_ratio < stats->mvr_abs ?
+ mvr_ratio : stats->mvr_abs);
+ *mv_ratio_accumulator += pct * (mvc_ratio < stats->mvc_abs ?
+ mvc_ratio : stats->mvc_abs);
+ }
+}
+
+#define BASELINE_ERR_PER_MB 1000.0
+static double calc_frame_boost(VP9_COMP *cpi,
+ const FIRSTPASS_STATS *this_frame,
+ double this_frame_mv_in_out,
+ double max_boost) {
+ double frame_boost;
+ const double lq =
+ vp9_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
+ cpi->common.bit_depth);
+ const double boost_q_correction = MIN((0.5 + (lq * 0.015)), 1.5);
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs : cpi->common.MBs;
+
+ // Underlying boost factor is based on inter error ratio.
+ frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
+ frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
+
+ // Increase boost for frames where new data coming into frame (e.g. zoom out).
+ // Slightly reduce boost if there is a net balance of motion out of the frame
+ // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
+ if (this_frame_mv_in_out > 0.0)
+ frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
+ // In the extreme case the boost is halved.
+ else
+ frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
+
+ return MIN(frame_boost, max_boost * boost_q_correction);
+}
+
+static int calc_arf_boost(VP9_COMP *cpi, int offset,
+ int f_frames, int b_frames,
+ int *f_boost, int *b_boost) {
+ TWO_PASS *const twopass = &cpi->twopass;
+ int i;
+ double boost_score = 0.0;
+ double mv_ratio_accumulator = 0.0;
+ double decay_accumulator = 1.0;
+ double this_frame_mv_in_out = 0.0;
+ double mv_in_out_accumulator = 0.0;
+ double abs_mv_in_out_accumulator = 0.0;
+ int arf_boost;
+ int flash_detected = 0;
+
+ // Search forward from the proposed arf/next gf position.
+ for (i = 0; i < f_frames; ++i) {
+ const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
+ if (this_frame == NULL)
+ break;
+
+ // Update the motion related elements to the boost calculation.
+ accumulate_frame_motion_stats(this_frame,
+ &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator,
+ &mv_ratio_accumulator);
+
+ // We want to discount the flash frame itself and the recovery
+ // frame that follows as both will have poor scores.
+ flash_detected = detect_flash(twopass, i + offset) ||
+ detect_flash(twopass, i + offset + 1);
+
+ // Accumulate the effect of prediction quality decay.
+ if (!flash_detected) {
+ decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
+ decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
+ ? MIN_DECAY_FACTOR : decay_accumulator;
+ }
+
+ boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame,
+ this_frame_mv_in_out,
+ GF_MAX_BOOST);
+ }
+
+ *f_boost = (int)boost_score;
+
+ // Reset for backward looking loop.
+ boost_score = 0.0;
+ mv_ratio_accumulator = 0.0;
+ decay_accumulator = 1.0;
+ this_frame_mv_in_out = 0.0;
+ mv_in_out_accumulator = 0.0;
+ abs_mv_in_out_accumulator = 0.0;
+
+ // Search backward towards last gf position.
+ for (i = -1; i >= -b_frames; --i) {
+ const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
+ if (this_frame == NULL)
+ break;
+
+ // Update the motion related elements to the boost calculation.
+ accumulate_frame_motion_stats(this_frame,
+ &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator,
+ &mv_ratio_accumulator);
+
+ // We want to discount the the flash frame itself and the recovery
+ // frame that follows as both will have poor scores.
+ flash_detected = detect_flash(twopass, i + offset) ||
+ detect_flash(twopass, i + offset + 1);
+
+ // Cumulative effect of prediction quality decay.
+ if (!flash_detected) {
+ decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
+ decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
+ ? MIN_DECAY_FACTOR : decay_accumulator;
+ }
+
+ boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame,
+ this_frame_mv_in_out,
+ GF_MAX_BOOST);
+ }
+ *b_boost = (int)boost_score;
+
+ arf_boost = (*f_boost + *b_boost);
+ if (arf_boost < ((b_frames + f_frames) * 20))
+ arf_boost = ((b_frames + f_frames) * 20);
+ arf_boost = MAX(arf_boost, MIN_ARF_GF_BOOST);
+
+ return arf_boost;
+}
+
+// Calculate a section intra ratio used in setting max loop filter.
+static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
+ const FIRSTPASS_STATS *end,
+ int section_length) {
+ const FIRSTPASS_STATS *s = begin;
+ double intra_error = 0.0;
+ double coded_error = 0.0;
+ int i = 0;
+
+ while (s < end && i < section_length) {
+ intra_error += s->intra_error;
+ coded_error += s->coded_error;
+ ++s;
+ ++i;
+ }
+
+ return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
+}
+
+// Calculate the total bits to allocate in this GF/ARF group.
+static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
+ double gf_group_err) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const TWO_PASS *const twopass = &cpi->twopass;
+ const int max_bits = frame_max_bits(rc, &cpi->oxcf);
+ int64_t total_group_bits;
+
+ // Calculate the bits to be allocated to the group as a whole.
+ if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
+ total_group_bits = (int64_t)(twopass->kf_group_bits *
+ (gf_group_err / twopass->kf_group_error_left));
+ } else {
+ total_group_bits = 0;
+ }
+
+ // Clamp odd edge cases.
+ total_group_bits = (total_group_bits < 0) ?
+ 0 : (total_group_bits > twopass->kf_group_bits) ?
+ twopass->kf_group_bits : total_group_bits;
+
+ // Clip based on user supplied data rate variability limit.
+ if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
+ total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
+
+ return total_group_bits;
+}
+
+// Calculate the number bits extra to assign to boosted frames in a group.
+static int calculate_boost_bits(int frame_count,
+ int boost, int64_t total_group_bits) {
+ int allocation_chunks;
+
+ // return 0 for invalid inputs (could arise e.g. through rounding errors)
+ if (!boost || (total_group_bits <= 0) || (frame_count <= 0) )
+ return 0;
+
+ allocation_chunks = (frame_count * 100) + boost;
+
+ // Prevent overflow.
+ if (boost > 1023) {
+ int divisor = boost >> 10;
+ boost /= divisor;
+ allocation_chunks /= divisor;
+ }
+
+ // Calculate the number of extra bits for use in the boosted frame or frames.
+ return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0);
+}
+
+// Current limit on maximum number of active arfs in a GF/ARF group.
+#define MAX_ACTIVE_ARFS 2
+#define ARF_SLOT1 2
+#define ARF_SLOT2 3
+// This function indirects the choice of buffers for arfs.
+// At the moment the values are fixed but this may change as part of
+// the integration process with other codec features that swap buffers around.
+static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
+ arf_buffer_indices[0] = ARF_SLOT1;
+ arf_buffer_indices[1] = ARF_SLOT2;
+}
+
+static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
+ double group_error, int gf_arf_bits) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ FIRSTPASS_STATS frame_stats;
+ int i;
+ int frame_index = 1;
+ int target_frame_size;
+ int key_frame;
+ const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
+ int64_t total_group_bits = gf_group_bits;
+ double modified_err = 0.0;
+ double err_fraction;
+ int mid_boost_bits = 0;
+ int mid_frame_idx;
+ unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
+ int alt_frame_index = frame_index;
+ int has_temporal_layers = is_two_pass_svc(cpi) &&
+ cpi->svc.number_temporal_layers > 1;
+
+ // Only encode alt reference frame in temporal base layer.
+ if (has_temporal_layers)
+ alt_frame_index = cpi->svc.number_temporal_layers;
+
+ key_frame = cpi->common.frame_type == KEY_FRAME ||
+ vp9_is_upper_layer_key_frame(cpi);
+
+ get_arf_buffer_indices(arf_buffer_indices);
+
+ // For key frames the frame target rate is already set and it
+ // is also the golden frame.
+ if (!key_frame) {
+ if (rc->source_alt_ref_active) {
+ gf_group->update_type[0] = OVERLAY_UPDATE;
+ gf_group->rf_level[0] = INTER_NORMAL;
+ gf_group->bit_allocation[0] = 0;
+ gf_group->arf_update_idx[0] = arf_buffer_indices[0];
+ gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
+ } else {
+ gf_group->update_type[0] = GF_UPDATE;
+ gf_group->rf_level[0] = GF_ARF_STD;
+ gf_group->bit_allocation[0] = gf_arf_bits;
+ gf_group->arf_update_idx[0] = arf_buffer_indices[0];
+ gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
+ }
+
+ // Step over the golden frame / overlay frame
+ if (EOF == input_stats(twopass, &frame_stats))
+ return;
+ }
+
+ // Deduct the boost bits for arf (or gf if it is not a key frame)
+ // from the group total.
+ if (rc->source_alt_ref_pending || !key_frame)
+ total_group_bits -= gf_arf_bits;
+
+ // Store the bits to spend on the ARF if there is one.
+ if (rc->source_alt_ref_pending) {
+ gf_group->update_type[alt_frame_index] = ARF_UPDATE;
+ gf_group->rf_level[alt_frame_index] = GF_ARF_STD;
+ gf_group->bit_allocation[alt_frame_index] = gf_arf_bits;
+
+ if (has_temporal_layers)
+ gf_group->arf_src_offset[alt_frame_index] =
+ (unsigned char)(rc->baseline_gf_interval -
+ cpi->svc.number_temporal_layers);
+ else
+ gf_group->arf_src_offset[alt_frame_index] =
+ (unsigned char)(rc->baseline_gf_interval - 1);
+
+ gf_group->arf_update_idx[alt_frame_index] = arf_buffer_indices[0];
+ gf_group->arf_ref_idx[alt_frame_index] =
+ arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
+ rc->source_alt_ref_active];
+ if (!has_temporal_layers)
+ ++frame_index;
+
+ if (cpi->multi_arf_enabled) {
+ // Set aside a slot for a level 1 arf.
+ gf_group->update_type[frame_index] = ARF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_LOW;
+ gf_group->arf_src_offset[frame_index] =
+ (unsigned char)((rc->baseline_gf_interval >> 1) - 1);
+ gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1];
+ gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
+ ++frame_index;
+ }
+ }
+
+ // Define middle frame
+ mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
+
+ // Allocate bits to the other frames in the group.
+ for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
+ int arf_idx = 0;
+ if (EOF == input_stats(twopass, &frame_stats))
+ break;
+
+ if (has_temporal_layers && frame_index == alt_frame_index) {
+ ++frame_index;
+ }
+
+ modified_err = calculate_modified_err(twopass, oxcf, &frame_stats);
+
+ if (group_error > 0)
+ err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
+ else
+ err_fraction = 0.0;
+
+ target_frame_size = (int)((double)total_group_bits * err_fraction);
+
+ if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
+ mid_boost_bits += (target_frame_size >> 4);
+ target_frame_size -= (target_frame_size >> 4);
+
+ if (frame_index <= mid_frame_idx)
+ arf_idx = 1;
+ }
+ gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
+ gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
+
+ target_frame_size = clamp(target_frame_size, 0,
+ MIN(max_bits, (int)total_group_bits));
+
+ gf_group->update_type[frame_index] = LF_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+
+ gf_group->bit_allocation[frame_index] = target_frame_size;
+ ++frame_index;
+ }
+
+ // Note:
+ // We need to configure the frame at the end of the sequence + 1 that will be
+ // the start frame for the next group. Otherwise prior to the call to
+ // vp9_rc_get_second_pass_params() the data will be undefined.
+ gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
+ gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
+
+ if (rc->source_alt_ref_pending) {
+ gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+
+ // Final setup for second arf and its overlay.
+ if (cpi->multi_arf_enabled) {
+ gf_group->bit_allocation[2] =
+ gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits;
+ gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE;
+ gf_group->bit_allocation[mid_frame_idx] = 0;
+ }
+ } else {
+ gf_group->update_type[frame_index] = GF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_STD;
+ }
+
+ // Note whether multi-arf was enabled this group for next time.
+ cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
+}
+
+// Analyse and define a gf/arf group.
+static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ TWO_PASS *const twopass = &cpi->twopass;
+ FIRSTPASS_STATS next_frame;
+ const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
+ int i;
+
+ double boost_score = 0.0;
+ double old_boost_score = 0.0;
+ double gf_group_err = 0.0;
+#if GROUP_ADAPTIVE_MAXQ
+ double gf_group_raw_error = 0.0;
+#endif
+ double gf_first_frame_err = 0.0;
+ double mod_frame_err = 0.0;
+
+ double mv_ratio_accumulator = 0.0;
+ double decay_accumulator = 1.0;
+ double zero_motion_accumulator = 1.0;
+
+ double loop_decay_rate = 1.00;
+ double last_loop_decay_rate = 1.00;
+
+ double this_frame_mv_in_out = 0.0;
+ double mv_in_out_accumulator = 0.0;
+ double abs_mv_in_out_accumulator = 0.0;
+ double mv_ratio_accumulator_thresh;
+ unsigned int allow_alt_ref = is_altref_enabled(cpi);
+
+ int f_boost = 0;
+ int b_boost = 0;
+ int flash_detected;
+ int active_max_gf_interval;
+ int active_min_gf_interval;
+ int64_t gf_group_bits;
+ double gf_group_error_left;
+ int gf_arf_bits;
+ int is_key_frame = frame_is_intra_only(cm);
+
+ // Reset the GF group data structures unless this is a key
+ // frame in which case it will already have been done.
+ if (is_key_frame == 0) {
+ vp9_zero(twopass->gf_group);
+ }
+
+ vp9_clear_system_state();
+ vp9_zero(next_frame);
+
+ // Load stats for the current frame.
+ mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame);
+
+ // Note the error of the frame at the start of the group. This will be
+ // the GF frame error if we code a normal gf.
+ gf_first_frame_err = mod_frame_err;
+
+ // If this is a key frame or the overlay from a previous arf then
+ // the error score / cost of this frame has already been accounted for.
+ if (is_key_frame || rc->source_alt_ref_active) {
+ gf_group_err -= gf_first_frame_err;
+#if GROUP_ADAPTIVE_MAXQ
+ gf_group_raw_error -= this_frame->coded_error;
+#endif
+ }
+
+ // Motion breakout threshold for loop below depends on image size.
+ mv_ratio_accumulator_thresh =
+ (cpi->initial_height + cpi->initial_width) / 4.0;
+
+ // Set a maximum and minimum interval for the GF group.
+ // If the image appears almost completely static we can extend beyond this.
+ {
+ int int_max_q =
+ (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality,
+ cpi->common.bit_depth));
+ int int_lbq =
+ (int)(vp9_convert_qindex_to_q(rc->last_boosted_qindex,
+ cpi->common.bit_depth));
+ active_min_gf_interval = rc->min_gf_interval + MIN(2, int_max_q / 200);
+ if (active_min_gf_interval > rc->max_gf_interval)
+ active_min_gf_interval = rc->max_gf_interval;
+
+ if (cpi->multi_arf_allowed) {
+ active_max_gf_interval = rc->max_gf_interval;
+ } else {
+ // The value chosen depends on the active Q range. At low Q we have
+ // bits to spare and are better with a smaller interval and smaller boost.
+ // At high Q when there are few bits to spare we are better with a longer
+ // interval to spread the cost of the GF.
+ active_max_gf_interval = 12 + MIN(4, (int_lbq / 6));
+ if (active_max_gf_interval > rc->max_gf_interval)
+ active_max_gf_interval = rc->max_gf_interval;
+ if (active_max_gf_interval < active_min_gf_interval)
+ active_max_gf_interval = active_min_gf_interval;
+ }
+ }
+
+ i = 0;
+ while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
+ ++i;
+
+ // Accumulate error score of frames in this gf group.
+ mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame);
+ gf_group_err += mod_frame_err;
+#if GROUP_ADAPTIVE_MAXQ
+ gf_group_raw_error += this_frame->coded_error;
+#endif
+
+ if (EOF == input_stats(twopass, &next_frame))
+ break;
+
+ // Test for the case where there is a brief flash but the prediction
+ // quality back to an earlier frame is then restored.
+ flash_detected = detect_flash(twopass, 0);
+
+ // Update the motion related elements to the boost calculation.
+ accumulate_frame_motion_stats(&next_frame,
+ &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator,
+ &mv_ratio_accumulator);
+
+ // Accumulate the effect of prediction quality decay.
+ if (!flash_detected) {
+ last_loop_decay_rate = loop_decay_rate;
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
+
+ decay_accumulator = decay_accumulator * loop_decay_rate;
+
+ // Monitor for static sections.
+ zero_motion_accumulator =
+ MIN(zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
+
+ // Break clause to detect very still sections after motion. For example,
+ // a static image after a fade or other transition.
+ if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
+ last_loop_decay_rate)) {
+ allow_alt_ref = 0;
+ break;
+ }
+ }
+
+ // Calculate a boost number for this frame.
+ boost_score += decay_accumulator * calc_frame_boost(cpi, &next_frame,
+ this_frame_mv_in_out,
+ GF_MAX_BOOST);
+
+ // Break out conditions.
+ if (
+ // Break at active_max_gf_interval unless almost totally static.
+ (i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) ||
+ (
+ // Don't break out with a very short interval.
+ (i > active_min_gf_interval) &&
+ (!flash_detected) &&
+ ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
+ (abs_mv_in_out_accumulator > 3.0) ||
+ (mv_in_out_accumulator < -2.0) ||
+ ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) {
+ boost_score = old_boost_score;
+ break;
+ }
+
+ *this_frame = next_frame;
+ old_boost_score = boost_score;
+ }
+
+ twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
+
+ // Was the group length constrained by the requirement for a new KF?
+ rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
+
+ // Should we use the alternate reference frame.
+ if (allow_alt_ref &&
+ (i < cpi->oxcf.lag_in_frames) &&
+ (i >= rc->min_gf_interval)) {
+ // Calculate the boost for alt ref.
+ rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
+ &b_boost);
+ rc->source_alt_ref_pending = 1;
+
+ // Test to see if multi arf is appropriate.
+ cpi->multi_arf_enabled =
+ (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
+ (zero_motion_accumulator < 0.995)) ? 1 : 0;
+ } else {
+ rc->gfu_boost = MAX((int)boost_score, MIN_ARF_GF_BOOST);
+ rc->source_alt_ref_pending = 0;
+ }
+
+ // Set the interval until the next gf.
+ if (is_key_frame || rc->source_alt_ref_pending)
+ rc->baseline_gf_interval = i - 1;
+ else
+ rc->baseline_gf_interval = i;
+
+ // Only encode alt reference frame in temporal base layer. So
+ // baseline_gf_interval should be multiple of a temporal layer group
+ // (typically the frame distance between two base layer frames)
+ if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
+ int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
+ int new_gf_interval = (rc->baseline_gf_interval + count) & (~count);
+ int j;
+ for (j = 0; j < new_gf_interval - rc->baseline_gf_interval; ++j) {
+ if (EOF == input_stats(twopass, this_frame))
+ break;
+ gf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
+#if GROUP_ADAPTIVE_MAXQ
+ gf_group_raw_error += this_frame->coded_error;
+#endif
+ }
+ rc->baseline_gf_interval = new_gf_interval;
+ }
+
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+
+ // Reset the file position.
+ reset_fpf_position(twopass, start_pos);
+
+ // Calculate the bits to be allocated to the gf/arf group as a whole
+ gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
+
+#if GROUP_ADAPTIVE_MAXQ
+ // Calculate an estimate of the maxq needed for the group.
+ // We are more agressive about correcting for sections
+ // where there could be significant overshoot than for easier
+ // sections where we do not wish to risk creating an overshoot
+ // of the allocated bit budget.
+ if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) {
+ const int vbr_group_bits_per_frame =
+ (int)(gf_group_bits / rc->baseline_gf_interval);
+ const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
+ int tmp_q;
+ // rc factor is a weight factor that corrects for local rate control drift.
+ double rc_factor = 1.0;
+ if (rc->rate_error_estimate > 0) {
+ rc_factor = MAX(RC_FACTOR_MIN,
+ (double)(100 - rc->rate_error_estimate) / 100.0);
+ } else {
+ rc_factor = MIN(RC_FACTOR_MAX,
+ (double)(100 - rc->rate_error_estimate) / 100.0);
+ }
+ tmp_q =
+ get_twopass_worst_quality(cpi, group_av_err, vbr_group_bits_per_frame,
+ twopass->kfgroup_inter_fraction * rc_factor);
+ twopass->active_worst_quality =
+ MAX(tmp_q, twopass->active_worst_quality >> 1);
+ }
+#endif
+
+ // Calculate the extra bits to be used for boosted frame(s)
+ gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval,
+ rc->gfu_boost, gf_group_bits);
+
+ // Adjust KF group bits and error remaining.
+ twopass->kf_group_error_left -= (int64_t)gf_group_err;
+
+ // If this is an arf update we want to remove the score for the overlay
+ // frame at the end which will usually be very cheap to code.
+ // The overlay frame has already, in effect, been coded so we want to spread
+ // the remaining bits among the other frames.
+ // For normal GFs remove the score for the GF itself unless this is
+ // also a key frame in which case it has already been accounted for.
+ if (rc->source_alt_ref_pending) {
+ gf_group_error_left = gf_group_err - mod_frame_err;
+ } else if (is_key_frame == 0) {
+ gf_group_error_left = gf_group_err - gf_first_frame_err;
+ } else {
+ gf_group_error_left = gf_group_err;
+ }
+
+ // Allocate bits to each of the frames in the GF group.
+ allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
+
+ // Reset the file position.
+ reset_fpf_position(twopass, start_pos);
+
+ // Calculate a section intra ratio used in setting max loop filter.
+ if (cpi->common.frame_type != KEY_FRAME) {
+ twopass->section_intra_rating =
+ calculate_section_intra_ratio(start_pos, twopass->stats_in_end,
+ rc->baseline_gf_interval);
+ }
+
+ if (oxcf->resize_mode == RESIZE_DYNAMIC) {
+ // Default to starting GF groups at normal frame size.
+ cpi->rc.next_frame_size_selector = UNSCALED;
+ }
+}
+
+// Threshold for use of the lagging second reference frame. High second ref
+// usage may point to a transient event like a flash or occlusion rather than
+// a real scene cut.
+#define SECOND_REF_USEAGE_THRESH 0.1
+// Minimum % intra coding observed in first pass (1.0 = 100%)
+#define MIN_INTRA_LEVEL 0.25
+// Minimum ratio between the % of intra coding and inter coding in the first
+// pass after discounting neutral blocks (discounting neutral blocks in this
+// way helps catch scene cuts in clips with very flat areas or letter box
+// format clips with image padding.
+#define INTRA_VS_INTER_THRESH 2.0
+// Hard threshold where the first pass chooses intra for almost all blocks.
+// In such a case even if the frame is not a scene cut coding a key frame
+// may be a good option.
+#define VERY_LOW_INTER_THRESH 0.05
+// Maximum threshold for the relative ratio of intra error score vs best
+// inter error score.
+#define KF_II_ERR_THRESHOLD 2.5
+// In real scene cuts there is almost always a sharp change in the intra
+// or inter error score.
+#define ERR_CHANGE_THRESHOLD 0.4
+// For real scene cuts we expect an improvment in the intra inter error
+// ratio in the next frame.
+#define II_IMPROVEMENT_THRESHOLD 3.5
+#define KF_II_MAX 128.0
+
+static int test_candidate_kf(TWO_PASS *twopass,
+ const FIRSTPASS_STATS *last_frame,
+ const FIRSTPASS_STATS *this_frame,
+ const FIRSTPASS_STATS *next_frame) {
+ int is_viable_kf = 0;
+ double pcnt_intra = 1.0 - this_frame->pcnt_inter;
+ double modified_pcnt_inter =
+ this_frame->pcnt_inter - this_frame->pcnt_neutral;
+
+ // Does the frame satisfy the primary criteria of a key frame?
+ // See above for an explanation of the test criteria.
+ // If so, then examine how well it predicts subsequent frames.
+ if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
+ (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
+ ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
+ ((pcnt_intra > MIN_INTRA_LEVEL) &&
+ (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
+ ((this_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
+ KF_II_ERR_THRESHOLD) &&
+ ((fabs(last_frame->coded_error - this_frame->coded_error) /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
+ ERR_CHANGE_THRESHOLD) ||
+ (fabs(last_frame->intra_error - this_frame->intra_error) /
+ DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
+ ERR_CHANGE_THRESHOLD) ||
+ ((next_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
+ II_IMPROVEMENT_THRESHOLD))))) {
+ int i;
+ const FIRSTPASS_STATS *start_pos = twopass->stats_in;
+ FIRSTPASS_STATS local_next_frame = *next_frame;
+ double boost_score = 0.0;
+ double old_boost_score = 0.0;
+ double decay_accumulator = 1.0;
+
+ // Examine how well the key frame predicts subsequent frames.
+ for (i = 0; i < 16; ++i) {
+ double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
+
+ if (next_iiratio > KF_II_MAX)
+ next_iiratio = KF_II_MAX;
+
+ // Cumulative effect of decay in prediction quality.
+ if (local_next_frame.pcnt_inter > 0.85)
+ decay_accumulator *= local_next_frame.pcnt_inter;
+ else
+ decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
+
+ // Keep a running total.
+ boost_score += (decay_accumulator * next_iiratio);
+
+ // Test various breakout clauses.
+ if ((local_next_frame.pcnt_inter < 0.05) ||
+ (next_iiratio < 1.5) ||
+ (((local_next_frame.pcnt_inter -
+ local_next_frame.pcnt_neutral) < 0.20) &&
+ (next_iiratio < 3.0)) ||
+ ((boost_score - old_boost_score) < 3.0) ||
+ (local_next_frame.intra_error < 200)) {
+ break;
+ }
+
+ old_boost_score = boost_score;
+
+ // Get the next frame details
+ if (EOF == input_stats(twopass, &local_next_frame))
+ break;
+ }
+
+ // If there is tolerable prediction for at least the next 3 frames then
+ // break out else discard this potential key frame and move on
+ if (boost_score > 30.0 && (i > 3)) {
+ is_viable_kf = 1;
+ } else {
+ // Reset the file position
+ reset_fpf_position(twopass, start_pos);
+
+ is_viable_kf = 0;
+ }
+ }
+
+ return is_viable_kf;
+}
+
+static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ int i, j;
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const FIRSTPASS_STATS first_frame = *this_frame;
+ const FIRSTPASS_STATS *const start_position = twopass->stats_in;
+ FIRSTPASS_STATS next_frame;
+ FIRSTPASS_STATS last_frame;
+ int kf_bits = 0;
+ int loop_decay_counter = 0;
+ double decay_accumulator = 1.0;
+ double av_decay_accumulator = 0.0;
+ double zero_motion_accumulator = 1.0;
+ double boost_score = 0.0;
+ double kf_mod_err = 0.0;
+ double kf_group_err = 0.0;
+ double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
+
+ vp9_zero(next_frame);
+
+ cpi->common.frame_type = KEY_FRAME;
+
+ // Reset the GF group data structures.
+ vp9_zero(*gf_group);
+
+ // Is this a forced key frame by interval.
+ rc->this_key_frame_forced = rc->next_key_frame_forced;
+
+ // Clear the alt ref active flag and last group multi arf flags as they
+ // can never be set for a key frame.
+ rc->source_alt_ref_active = 0;
+ cpi->multi_arf_last_grp_enabled = 0;
+
+ // KF is always a GF so clear frames till next gf counter.
+ rc->frames_till_gf_update_due = 0;
+
+ rc->frames_to_key = 1;
+
+ twopass->kf_group_bits = 0; // Total bits available to kf group
+ twopass->kf_group_error_left = 0; // Group modified error score.
+
+ kf_mod_err = calculate_modified_err(twopass, oxcf, this_frame);
+
+ // Find the next keyframe.
+ i = 0;
+ while (twopass->stats_in < twopass->stats_in_end &&
+ rc->frames_to_key < cpi->oxcf.key_freq) {
+ // Accumulate kf group error.
+ kf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
+
+ // Load the next frame's stats.
+ last_frame = *this_frame;
+ input_stats(twopass, this_frame);
+
+ // Provided that we are not at the end of the file...
+ if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
+ double loop_decay_rate;
+
+ // Check for a scene cut.
+ if (test_candidate_kf(twopass, &last_frame, this_frame,
+ twopass->stats_in))
+ break;
+
+ // How fast is the prediction quality decaying?
+ loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
+
+ // We want to know something about the recent past... rather than
+ // as used elsewhere where we are concerned with decay in prediction
+ // quality since the last GF or KF.
+ recent_loop_decay[i % 8] = loop_decay_rate;
+ decay_accumulator = 1.0;
+ for (j = 0; j < 8; ++j)
+ decay_accumulator *= recent_loop_decay[j];
+
+ // Special check for transition or high motion followed by a
+ // static scene.
+ if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
+ loop_decay_rate, decay_accumulator))
+ break;
+
+ // Step on to the next frame.
+ ++rc->frames_to_key;
+
+ // If we don't have a real key frame within the next two
+ // key_freq intervals then break out of the loop.
+ if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq)
+ break;
+ } else {
+ ++rc->frames_to_key;
+ }
+ ++i;
+ }
+
+ // If there is a max kf interval set by the user we must obey it.
+ // We already breakout of the loop above at 2x max.
+ // This code centers the extra kf if the actual natural interval
+ // is between 1x and 2x.
+ if (cpi->oxcf.auto_key &&
+ rc->frames_to_key > cpi->oxcf.key_freq) {
+ FIRSTPASS_STATS tmp_frame = first_frame;
+
+ rc->frames_to_key /= 2;
+
+ // Reset to the start of the group.
+ reset_fpf_position(twopass, start_position);
+
+ kf_group_err = 0.0;
+
+ // Rescan to get the correct error data for the forced kf group.
+ for (i = 0; i < rc->frames_to_key; ++i) {
+ kf_group_err += calculate_modified_err(twopass, oxcf, &tmp_frame);
+ input_stats(twopass, &tmp_frame);
+ }
+ rc->next_key_frame_forced = 1;
+ } else if (twopass->stats_in == twopass->stats_in_end ||
+ rc->frames_to_key >= cpi->oxcf.key_freq) {
+ rc->next_key_frame_forced = 1;
+ } else {
+ rc->next_key_frame_forced = 0;
+ }
+
+ if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
+ int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
+ int new_frame_to_key = (rc->frames_to_key + count) & (~count);
+ int j;
+ for (j = 0; j < new_frame_to_key - rc->frames_to_key; ++j) {
+ if (EOF == input_stats(twopass, this_frame))
+ break;
+ kf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
+ }
+ rc->frames_to_key = new_frame_to_key;
+ }
+
+ // Special case for the last key frame of the file.
+ if (twopass->stats_in >= twopass->stats_in_end) {
+ // Accumulate kf group error.
+ kf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
+ }
+
+ // Calculate the number of bits that should be assigned to the kf group.
+ if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
+ // Maximum number of bits for a single normal frame (not key frame).
+ const int max_bits = frame_max_bits(rc, &cpi->oxcf);
+
+ // Maximum number of bits allocated to the key frame group.
+ int64_t max_grp_bits;
+
+ // Default allocation based on bits left and relative
+ // complexity of the section.
+ twopass->kf_group_bits = (int64_t)(twopass->bits_left *
+ (kf_group_err / twopass->modified_error_left));
+
+ // Clip based on maximum per frame rate defined by the user.
+ max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
+ if (twopass->kf_group_bits > max_grp_bits)
+ twopass->kf_group_bits = max_grp_bits;
+ } else {
+ twopass->kf_group_bits = 0;
+ }
+ twopass->kf_group_bits = MAX(0, twopass->kf_group_bits);
+
+ // Reset the first pass file position.
+ reset_fpf_position(twopass, start_position);
+
+ // Scan through the kf group collating various stats used to determine
+ // how many bits to spend on it.
+ decay_accumulator = 1.0;
+ boost_score = 0.0;
+ for (i = 0; i < (rc->frames_to_key - 1); ++i) {
+ if (EOF == input_stats(twopass, &next_frame))
+ break;
+
+ // Monitor for static sections.
+ zero_motion_accumulator =
+ MIN(zero_motion_accumulator,
+ get_zero_motion_factor(cpi, &next_frame));
+
+ // Not all frames in the group are necessarily used in calculating boost.
+ if ((i <= rc->max_gf_interval) ||
+ ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
+ const double frame_boost =
+ calc_frame_boost(cpi, this_frame, 0, KF_MAX_BOOST);
+
+ // How fast is prediction quality decaying.
+ if (!detect_flash(twopass, 0)) {
+ const double loop_decay_rate =
+ get_prediction_decay_rate(cpi, &next_frame);
+ decay_accumulator *= loop_decay_rate;
+ decay_accumulator = MAX(decay_accumulator, MIN_DECAY_FACTOR);
+ av_decay_accumulator += decay_accumulator;
+ ++loop_decay_counter;
+ }
+ boost_score += (decay_accumulator * frame_boost);
+ }
+ }
+ av_decay_accumulator /= (double)loop_decay_counter;
+
+ reset_fpf_position(twopass, start_position);
+
+ // Store the zero motion percentage
+ twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
+
+ // Calculate a section intra ratio used in setting max loop filter.
+ twopass->section_intra_rating =
+ calculate_section_intra_ratio(start_position, twopass->stats_in_end,
+ rc->frames_to_key);
+
+ // Apply various clamps for min and max boost
+ rc->kf_boost = (int)(av_decay_accumulator * boost_score);
+ rc->kf_boost = MAX(rc->kf_boost, (rc->frames_to_key * 3));
+ rc->kf_boost = MAX(rc->kf_boost, MIN_KF_BOOST);
+
+ // Work out how many bits to allocate for the key frame itself.
+ kf_bits = calculate_boost_bits((rc->frames_to_key - 1),
+ rc->kf_boost, twopass->kf_group_bits);
+
+ // Work out the fraction of the kf group bits reserved for the inter frames
+ // within the group after discounting the bits for the kf itself.
+ if (twopass->kf_group_bits) {
+ twopass->kfgroup_inter_fraction =
+ (double)(twopass->kf_group_bits - kf_bits) /
+ (double)twopass->kf_group_bits;
+ } else {
+ twopass->kfgroup_inter_fraction = 1.0;
+ }
+
+ twopass->kf_group_bits -= kf_bits;
+
+ // Save the bits to spend on the key frame.
+ gf_group->bit_allocation[0] = kf_bits;
+ gf_group->update_type[0] = KF_UPDATE;
+ gf_group->rf_level[0] = KF_STD;
+
+ // Note the total error score of the kf group minus the key frame itself.
+ twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
+
+ // Adjust the count of total modified error left.
+ // The count of bits left is adjusted elsewhere based on real coded frame
+ // sizes.
+ twopass->modified_error_left -= kf_group_err;
+
+ if (oxcf->resize_mode == RESIZE_DYNAMIC) {
+ // Default to normal-sized frame on keyframes.
+ cpi->rc.next_frame_size_selector = UNSCALED;
+ }
+}
+
+// Define the reference buffers that will be updated post encode.
+static void configure_buffer_updates(VP9_COMP *cpi) {
+ TWO_PASS *const twopass = &cpi->twopass;
+
+ cpi->rc.is_src_frame_alt_ref = 0;
+ switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
+ case KF_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_alt_ref_frame = 1;
+ break;
+ case LF_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+ break;
+ case GF_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_alt_ref_frame = 0;
+ break;
+ case OVERLAY_UPDATE:
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_alt_ref_frame = 0;
+ cpi->rc.is_src_frame_alt_ref = 1;
+ break;
+ case ARF_UPDATE:
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt_ref_frame = 1;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ if (is_two_pass_svc(cpi)) {
+ if (cpi->svc.temporal_layer_id > 0) {
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ }
+ if (cpi->svc.layer_context[cpi->svc.spatial_layer_id].gold_ref_idx < 0)
+ cpi->refresh_golden_frame = 0;
+ if (cpi->alt_ref_source == NULL)
+ cpi->refresh_alt_ref_frame = 0;
+ }
+}
+
+static int is_skippable_frame(const VP9_COMP *cpi) {
+ // If the current frame does not have non-zero motion vector detected in the
+ // first pass, and so do its previous and forward frames, then this frame
+ // can be skipped for partition check, and the partition size is assigned
+ // according to the variance
+ const SVC *const svc = &cpi->svc;
+ const TWO_PASS *const twopass = is_two_pass_svc(cpi) ?
+ &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
+
+ return (!frame_is_intra_only(&cpi->common) &&
+ twopass->stats_in - 2 > twopass->stats_in_start &&
+ twopass->stats_in < twopass->stats_in_end &&
+ (twopass->stats_in - 1)->pcnt_inter - (twopass->stats_in - 1)->pcnt_motion
+ == 1 &&
+ (twopass->stats_in - 2)->pcnt_inter - (twopass->stats_in - 2)->pcnt_motion
+ == 1 &&
+ twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
+}
+
+void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ int frames_left;
+ FIRSTPASS_STATS this_frame;
+
+ int target_rate;
+ LAYER_CONTEXT *const lc = is_two_pass_svc(cpi) ?
+ &cpi->svc.layer_context[cpi->svc.spatial_layer_id] : 0;
+
+ if (lc != NULL) {
+ frames_left = (int)(twopass->total_stats.count -
+ lc->current_video_frame_in_layer);
+ } else {
+ frames_left = (int)(twopass->total_stats.count -
+ cm->current_video_frame);
+ }
+
+ if (!twopass->stats_in)
+ return;
+
+ // If this is an arf frame then we dont want to read the stats file or
+ // advance the input pointer as we already have what we need.
+ if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
+ int target_rate;
+ configure_buffer_updates(cpi);
+ target_rate = gf_group->bit_allocation[gf_group->index];
+ target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
+ rc->base_frame_target = target_rate;
+
+ cm->frame_type = INTER_FRAME;
+
+ if (lc != NULL) {
+ if (cpi->svc.spatial_layer_id == 0) {
+ lc->is_key_frame = 0;
+ } else {
+ lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
+
+ if (lc->is_key_frame)
+ cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
+ }
+ }
+
+ // Do the firstpass stats indicate that this frame is skippable for the
+ // partition search?
+ if (cpi->sf.allow_partition_search_skip &&
+ cpi->oxcf.pass == 2 && (!cpi->use_svc || is_two_pass_svc(cpi))) {
+ cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
+ }
+
+ return;
+ }
+
+ vp9_clear_system_state();
+
+ if (cpi->oxcf.rc_mode == VPX_Q) {
+ twopass->active_worst_quality = cpi->oxcf.cq_level;
+ } else if (cm->current_video_frame == 0 ||
+ (lc != NULL && lc->current_video_frame_in_layer == 0)) {
+ // Special case code for first frame.
+ const int section_target_bandwidth = (int)(twopass->bits_left /
+ frames_left);
+ const double section_error =
+ twopass->total_left_stats.coded_error / twopass->total_left_stats.count;
+ const int tmp_q =
+ get_twopass_worst_quality(cpi, section_error,
+ section_target_bandwidth, DEFAULT_GRP_WEIGHT);
+
+ twopass->active_worst_quality = tmp_q;
+ twopass->baseline_active_worst_quality = tmp_q;
+ rc->ni_av_qi = tmp_q;
+ rc->last_q[INTER_FRAME] = tmp_q;
+ rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth);
+ rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
+ rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
+ rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
+ }
+ vp9_zero(this_frame);
+ if (EOF == input_stats(twopass, &this_frame))
+ return;
+
+ // Keyframe and section processing.
+ if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
+ FIRSTPASS_STATS this_frame_copy;
+ this_frame_copy = this_frame;
+ // Define next KF group and assign bits to it.
+ find_next_key_frame(cpi, &this_frame);
+ this_frame = this_frame_copy;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+
+ if (lc != NULL) {
+ if (cpi->svc.spatial_layer_id == 0) {
+ lc->is_key_frame = (cm->frame_type == KEY_FRAME);
+ if (lc->is_key_frame) {
+ cpi->ref_frame_flags &=
+ (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
+ lc->frames_from_key_frame = 0;
+ // Encode an intra only empty frame since we have a key frame.
+ cpi->svc.encode_intra_empty_frame = 1;
+ }
+ } else {
+ cm->frame_type = INTER_FRAME;
+ lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
+
+ if (lc->is_key_frame) {
+ cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
+ lc->frames_from_key_frame = 0;
+ }
+ }
+ }
+
+ // Define a new GF/ARF group. (Should always enter here for key frames).
+ if (rc->frames_till_gf_update_due == 0) {
+ define_gf_group(cpi, &this_frame);
+
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ if (lc != NULL)
+ cpi->refresh_golden_frame = 1;
+
+#if ARF_STATS_OUTPUT
+ {
+ FILE *fpfile;
+ fpfile = fopen("arf.stt", "a");
+ ++arf_count;
+ fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n",
+ cm->current_video_frame, rc->frames_till_gf_update_due,
+ rc->kf_boost, arf_count, rc->gfu_boost);
+
+ fclose(fpfile);
+ }
+#endif
+ }
+
+ configure_buffer_updates(cpi);
+
+ // Do the firstpass stats indicate that this frame is skippable for the
+ // partition search?
+ if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 &&
+ (!cpi->use_svc || is_two_pass_svc(cpi))) {
+ cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
+ }
+
+ target_rate = gf_group->bit_allocation[gf_group->index];
+ if (cpi->common.frame_type == KEY_FRAME)
+ target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
+ else
+ target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
+
+ rc->base_frame_target = target_rate;
+
+ {
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs : cpi->common.MBs;
+ // The multiplication by 256 reverses a scaling factor of (>> 8)
+ // applied when combining MB error values for the frame.
+ twopass->mb_av_energy =
+ log(((this_frame.intra_error * 256.0) / num_mbs) + 1.0);
+ }
+
+ // Update the total stats remaining structure.
+ subtract_stats(&twopass->total_left_stats, &this_frame);
+}
+
+#define MINQ_ADJ_LIMIT 48
+#define MINQ_ADJ_LIMIT_CQ 20
+#define HIGH_UNDERSHOOT_RATIO 2
+void vp9_twopass_postencode_update(VP9_COMP *cpi) {
+ TWO_PASS *const twopass = &cpi->twopass;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const int bits_used = rc->base_frame_target;
+
+ // VBR correction is done through rc->vbr_bits_off_target. Based on the
+ // sign of this value, a limited % adjustment is made to the target rate
+ // of subsequent frames, to try and push it back towards 0. This method
+ // is designed to prevent extreme behaviour at the end of a clip
+ // or group of frames.
+ rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
+ twopass->bits_left = MAX(twopass->bits_left - bits_used, 0);
+
+ // Calculate the pct rc error.
+ if (rc->total_actual_bits) {
+ rc->rate_error_estimate =
+ (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
+ rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
+ } else {
+ rc->rate_error_estimate = 0;
+ }
+
+ if (cpi->common.frame_type != KEY_FRAME &&
+ !vp9_is_upper_layer_key_frame(cpi)) {
+ twopass->kf_group_bits -= bits_used;
+ twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
+ }
+ twopass->kf_group_bits = MAX(twopass->kf_group_bits, 0);
+
+ // Increment the gf group index ready for the next frame.
+ ++twopass->gf_group.index;
+
+ // If the rate control is drifting consider adjustment to min or maxq.
+ if ((cpi->oxcf.rc_mode != VPX_Q) &&
+ (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) &&
+ !cpi->rc.is_src_frame_alt_ref) {
+ const int maxq_adj_limit =
+ rc->worst_quality - twopass->active_worst_quality;
+ const int minq_adj_limit =
+ (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
+
+ // Undershoot.
+ if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
+ --twopass->extend_maxq;
+ if (rc->rolling_target_bits >= rc->rolling_actual_bits)
+ ++twopass->extend_minq;
+ // Overshoot.
+ } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
+ --twopass->extend_minq;
+ if (rc->rolling_target_bits < rc->rolling_actual_bits)
+ ++twopass->extend_maxq;
+ } else {
+ // Adjustment for extreme local overshoot.
+ if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
+ rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
+ ++twopass->extend_maxq;
+
+ // Unwind undershoot or overshoot adjustment.
+ if (rc->rolling_target_bits < rc->rolling_actual_bits)
+ --twopass->extend_minq;
+ else if (rc->rolling_target_bits > rc->rolling_actual_bits)
+ --twopass->extend_maxq;
+ }
+
+ twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit);
+ twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
+
+ // If there is a big and undexpected undershoot then feed the extra
+ // bits back in quickly. One situation where this may happen is if a
+ // frame is unexpectedly almost perfectly predicted by the ARF or GF
+ // but not very well predcited by the previous frame.
+ if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
+ int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
+ if (rc->projected_frame_size < fast_extra_thresh) {
+ rc->vbr_bits_off_target_fast +=
+ fast_extra_thresh - rc->projected_frame_size;
+ rc->vbr_bits_off_target_fast =
+ MIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
+
+ // Fast adaptation of minQ if necessary to use up the extra bits.
+ if (rc->avg_frame_bandwidth) {
+ twopass->extend_minq_fast =
+ (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
+ }
+ twopass->extend_minq_fast = MIN(twopass->extend_minq_fast,
+ minq_adj_limit - twopass->extend_minq);
+ } else if (rc->vbr_bits_off_target_fast) {
+ twopass->extend_minq_fast = MIN(twopass->extend_minq_fast,
+ minq_adj_limit - twopass->extend_minq);
+ } else {
+ twopass->extend_minq_fast = 0;
+ }
+ }
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_firstpass.h b/media/libvpx/vp9/encoder/vp9_firstpass.h
new file mode 100644
index 000000000..4a0385506
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_firstpass.h
@@ -0,0 +1,154 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_FIRSTPASS_H_
+#define VP9_ENCODER_VP9_FIRSTPASS_H_
+
+#include "vp9/encoder/vp9_lookahead.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#if CONFIG_FP_MB_STATS
+
+#define FPMB_DCINTRA_MASK 0x01
+
+#define FPMB_MOTION_ZERO_MASK 0x02
+#define FPMB_MOTION_LEFT_MASK 0x04
+#define FPMB_MOTION_RIGHT_MASK 0x08
+#define FPMB_MOTION_UP_MASK 0x10
+#define FPMB_MOTION_DOWN_MASK 0x20
+
+#define FPMB_ERROR_SMALL_MASK 0x40
+#define FPMB_ERROR_LARGE_MASK 0x80
+#define FPMB_ERROR_SMALL_TH 2000
+#define FPMB_ERROR_LARGE_TH 48000
+
+typedef struct {
+ uint8_t *mb_stats_start;
+ uint8_t *mb_stats_end;
+} FIRSTPASS_MB_STATS;
+#endif
+
+#define VLOW_MOTION_THRESHOLD 950
+
+typedef struct {
+ double frame;
+ double weight;
+ double intra_error;
+ double coded_error;
+ double sr_coded_error;
+ double pcnt_inter;
+ double pcnt_motion;
+ double pcnt_second_ref;
+ double pcnt_neutral;
+ double MVr;
+ double mvr_abs;
+ double MVc;
+ double mvc_abs;
+ double MVrv;
+ double MVcv;
+ double mv_in_out_count;
+ double new_mv_count;
+ double duration;
+ double count;
+ int64_t spatial_layer_id;
+} FIRSTPASS_STATS;
+
+typedef enum {
+ KF_UPDATE = 0,
+ LF_UPDATE = 1,
+ GF_UPDATE = 2,
+ ARF_UPDATE = 3,
+ OVERLAY_UPDATE = 4,
+ FRAME_UPDATE_TYPES = 5
+} FRAME_UPDATE_TYPE;
+
+typedef struct {
+ unsigned char index;
+ RATE_FACTOR_LEVEL rf_level[(MAX_LAG_BUFFERS * 2) + 1];
+ FRAME_UPDATE_TYPE update_type[(MAX_LAG_BUFFERS * 2) + 1];
+ unsigned char arf_src_offset[(MAX_LAG_BUFFERS * 2) + 1];
+ unsigned char arf_update_idx[(MAX_LAG_BUFFERS * 2) + 1];
+ unsigned char arf_ref_idx[(MAX_LAG_BUFFERS * 2) + 1];
+ int bit_allocation[(MAX_LAG_BUFFERS * 2) + 1];
+} GF_GROUP;
+
+typedef struct {
+ unsigned int section_intra_rating;
+ FIRSTPASS_STATS total_stats;
+ FIRSTPASS_STATS this_frame_stats;
+ const FIRSTPASS_STATS *stats_in;
+ const FIRSTPASS_STATS *stats_in_start;
+ const FIRSTPASS_STATS *stats_in_end;
+ FIRSTPASS_STATS total_left_stats;
+ int first_pass_done;
+ int64_t bits_left;
+ double modified_error_min;
+ double modified_error_max;
+ double modified_error_left;
+ double mb_av_energy;
+
+#if CONFIG_FP_MB_STATS
+ uint8_t *frame_mb_stats_buf;
+ uint8_t *this_frame_mb_stats;
+ FIRSTPASS_MB_STATS firstpass_mb_stats;
+#endif
+
+ // Projected total bits available for a key frame group of frames
+ int64_t kf_group_bits;
+
+ // Error score of frames still to be coded in kf group
+ int64_t kf_group_error_left;
+
+ // The fraction for a kf groups total bits allocated to the inter frames
+ double kfgroup_inter_fraction;
+
+ int sr_update_lag;
+
+ int kf_zeromotion_pct;
+ int last_kfgroup_zeromotion_pct;
+ int gf_zeromotion_pct;
+ int active_worst_quality;
+ int baseline_active_worst_quality;
+ int extend_minq;
+ int extend_maxq;
+ int extend_minq_fast;
+
+ GF_GROUP gf_group;
+} TWO_PASS;
+
+struct VP9_COMP;
+
+void vp9_init_first_pass(struct VP9_COMP *cpi);
+void vp9_rc_get_first_pass_params(struct VP9_COMP *cpi);
+void vp9_first_pass(struct VP9_COMP *cpi, const struct lookahead_entry *source);
+void vp9_end_first_pass(struct VP9_COMP *cpi);
+
+void vp9_init_second_pass(struct VP9_COMP *cpi);
+void vp9_rc_get_second_pass_params(struct VP9_COMP *cpi);
+void vp9_twopass_postencode_update(struct VP9_COMP *cpi);
+
+// Post encode update of the rate control parameters for 2-pass
+void vp9_twopass_postencode_update(struct VP9_COMP *cpi);
+
+void vp9_init_subsampling(struct VP9_COMP *cpi);
+
+void calculate_coded_size(struct VP9_COMP *cpi,
+ int *scaled_frame_width,
+ int *scaled_frame_height);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_FIRSTPASS_H_
diff --git a/media/libvpx/vp9/encoder/vp9_lookahead.c b/media/libvpx/vp9/encoder/vp9_lookahead.c
new file mode 100644
index 000000000..fd32a16b4
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_lookahead.c
@@ -0,0 +1,245 @@
+/*
+ * Copyright (c) 2011 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include <assert.h>
+#include <stdlib.h>
+
+#include "./vpx_config.h"
+
+#include "vp9/common/vp9_common.h"
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_extend.h"
+#include "vp9/encoder/vp9_lookahead.h"
+
+/* Return the buffer at the given absolute index and increment the index */
+static struct lookahead_entry *pop(struct lookahead_ctx *ctx,
+ unsigned int *idx) {
+ unsigned int index = *idx;
+ struct lookahead_entry *buf = ctx->buf + index;
+
+ assert(index < ctx->max_sz);
+ if (++index >= ctx->max_sz)
+ index -= ctx->max_sz;
+ *idx = index;
+ return buf;
+}
+
+
+void vp9_lookahead_destroy(struct lookahead_ctx *ctx) {
+ if (ctx) {
+ if (ctx->buf) {
+ unsigned int i;
+
+ for (i = 0; i < ctx->max_sz; i++)
+ vp9_free_frame_buffer(&ctx->buf[i].img);
+ free(ctx->buf);
+ }
+ free(ctx);
+ }
+}
+
+
+struct lookahead_ctx *vp9_lookahead_init(unsigned int width,
+ unsigned int height,
+ unsigned int subsampling_x,
+ unsigned int subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int use_highbitdepth,
+#endif
+ unsigned int depth) {
+ struct lookahead_ctx *ctx = NULL;
+
+ // Clamp the lookahead queue depth
+ depth = clamp(depth, 1, MAX_LAG_BUFFERS);
+
+ // Allocate memory to keep previous source frames available.
+ depth += MAX_PRE_FRAMES;
+
+ // Allocate the lookahead structures
+ ctx = calloc(1, sizeof(*ctx));
+ if (ctx) {
+ const int legacy_byte_alignment = 0;
+ unsigned int i;
+ ctx->max_sz = depth;
+ ctx->buf = calloc(depth, sizeof(*ctx->buf));
+ if (!ctx->buf)
+ goto bail;
+ for (i = 0; i < depth; i++)
+ if (vp9_alloc_frame_buffer(&ctx->buf[i].img,
+ width, height, subsampling_x, subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS,
+ legacy_byte_alignment))
+ goto bail;
+ }
+ return ctx;
+ bail:
+ vp9_lookahead_destroy(ctx);
+ return NULL;
+}
+
+#define USE_PARTIAL_COPY 0
+
+int vp9_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
+ int64_t ts_start, int64_t ts_end,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int use_highbitdepth,
+#endif
+ unsigned int flags) {
+ struct lookahead_entry *buf;
+#if USE_PARTIAL_COPY
+ int row, col, active_end;
+ int mb_rows = (src->y_height + 15) >> 4;
+ int mb_cols = (src->y_width + 15) >> 4;
+#endif
+ int width = src->y_crop_width;
+ int height = src->y_crop_height;
+ int uv_width = src->uv_crop_width;
+ int uv_height = src->uv_crop_height;
+ int subsampling_x = src->subsampling_x;
+ int subsampling_y = src->subsampling_y;
+ int larger_dimensions, new_dimensions;
+
+ if (ctx->sz + 1 + MAX_PRE_FRAMES > ctx->max_sz)
+ return 1;
+ ctx->sz++;
+ buf = pop(ctx, &ctx->write_idx);
+
+ new_dimensions = width != buf->img.y_crop_width ||
+ height != buf->img.y_crop_height ||
+ uv_width != buf->img.uv_crop_width ||
+ uv_height != buf->img.uv_crop_height;
+ larger_dimensions = width > buf->img.y_width ||
+ height > buf->img.y_height ||
+ uv_width > buf->img.uv_width ||
+ uv_height > buf->img.uv_height;
+ assert(!larger_dimensions || new_dimensions);
+
+#if USE_PARTIAL_COPY
+ // TODO(jkoleszar): This is disabled for now, as
+ // vp9_copy_and_extend_frame_with_rect is not subsampling/alpha aware.
+
+ // Only do this partial copy if the following conditions are all met:
+ // 1. Lookahead queue has has size of 1.
+ // 2. Active map is provided.
+ // 3. This is not a key frame, golden nor altref frame.
+ if (!new_dimensions && ctx->max_sz == 1 && active_map && !flags) {
+ for (row = 0; row < mb_rows; ++row) {
+ col = 0;
+
+ while (1) {
+ // Find the first active macroblock in this row.
+ for (; col < mb_cols; ++col) {
+ if (active_map[col])
+ break;
+ }
+
+ // No more active macroblock in this row.
+ if (col == mb_cols)
+ break;
+
+ // Find the end of active region in this row.
+ active_end = col;
+
+ for (; active_end < mb_cols; ++active_end) {
+ if (!active_map[active_end])
+ break;
+ }
+
+ // Only copy this active region.
+ vp9_copy_and_extend_frame_with_rect(src, &buf->img,
+ row << 4,
+ col << 4, 16,
+ (active_end - col) << 4);
+
+ // Start again from the end of this active region.
+ col = active_end;
+ }
+
+ active_map += mb_cols;
+ }
+ } else {
+#endif
+ if (larger_dimensions) {
+ YV12_BUFFER_CONFIG new_img;
+ memset(&new_img, 0, sizeof(new_img));
+ if (vp9_alloc_frame_buffer(&new_img,
+ width, height, subsampling_x, subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS,
+ 0))
+ return 1;
+ vp9_free_frame_buffer(&buf->img);
+ buf->img = new_img;
+ } else if (new_dimensions) {
+ buf->img.y_crop_width = src->y_crop_width;
+ buf->img.y_crop_height = src->y_crop_height;
+ buf->img.uv_crop_width = src->uv_crop_width;
+ buf->img.uv_crop_height = src->uv_crop_height;
+ buf->img.subsampling_x = src->subsampling_x;
+ buf->img.subsampling_y = src->subsampling_y;
+ }
+ // Partial copy not implemented yet
+ vp9_copy_and_extend_frame(src, &buf->img);
+#if USE_PARTIAL_COPY
+ }
+#endif
+
+ buf->ts_start = ts_start;
+ buf->ts_end = ts_end;
+ buf->flags = flags;
+ return 0;
+}
+
+
+struct lookahead_entry *vp9_lookahead_pop(struct lookahead_ctx *ctx,
+ int drain) {
+ struct lookahead_entry *buf = NULL;
+
+ if (ctx && ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
+ buf = pop(ctx, &ctx->read_idx);
+ ctx->sz--;
+ }
+ return buf;
+}
+
+
+struct lookahead_entry *vp9_lookahead_peek(struct lookahead_ctx *ctx,
+ int index) {
+ struct lookahead_entry *buf = NULL;
+
+ if (index >= 0) {
+ // Forward peek
+ if (index < (int)ctx->sz) {
+ index += ctx->read_idx;
+ if (index >= (int)ctx->max_sz)
+ index -= ctx->max_sz;
+ buf = ctx->buf + index;
+ }
+ } else if (index < 0) {
+ // Backward peek
+ if (-index <= MAX_PRE_FRAMES) {
+ index += ctx->read_idx;
+ if (index < 0)
+ index += ctx->max_sz;
+ buf = ctx->buf + index;
+ }
+ }
+
+ return buf;
+}
+
+unsigned int vp9_lookahead_depth(struct lookahead_ctx *ctx) {
+ return ctx->sz;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_lookahead.h b/media/libvpx/vp9/encoder/vp9_lookahead.h
new file mode 100644
index 000000000..13820380f
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_lookahead.h
@@ -0,0 +1,124 @@
+/*
+ * Copyright (c) 2011 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_LOOKAHEAD_H_
+#define VP9_ENCODER_VP9_LOOKAHEAD_H_
+
+#include "vpx_scale/yv12config.h"
+#include "vpx/vpx_integer.h"
+
+#if CONFIG_SPATIAL_SVC
+#include "vpx/vp8cx.h"
+#include "vpx/vpx_encoder.h"
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define MAX_LAG_BUFFERS 25
+
+struct lookahead_entry {
+ YV12_BUFFER_CONFIG img;
+ int64_t ts_start;
+ int64_t ts_end;
+ unsigned int flags;
+};
+
+// The max of past frames we want to keep in the queue.
+#define MAX_PRE_FRAMES 1
+
+struct lookahead_ctx {
+ unsigned int max_sz; /* Absolute size of the queue */
+ unsigned int sz; /* Number of buffers currently in the queue */
+ unsigned int read_idx; /* Read index */
+ unsigned int write_idx; /* Write index */
+ struct lookahead_entry *buf; /* Buffer list */
+};
+
+/**\brief Initializes the lookahead stage
+ *
+ * The lookahead stage is a queue of frame buffers on which some analysis
+ * may be done when buffers are enqueued.
+ */
+struct lookahead_ctx *vp9_lookahead_init(unsigned int width,
+ unsigned int height,
+ unsigned int subsampling_x,
+ unsigned int subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int use_highbitdepth,
+#endif
+ unsigned int depth);
+
+
+/**\brief Destroys the lookahead stage
+ */
+void vp9_lookahead_destroy(struct lookahead_ctx *ctx);
+
+
+/**\brief Enqueue a source buffer
+ *
+ * This function will copy the source image into a new framebuffer with
+ * the expected stride/border.
+ *
+ * If active_map is non-NULL and there is only one frame in the queue, then copy
+ * only active macroblocks.
+ *
+ * \param[in] ctx Pointer to the lookahead context
+ * \param[in] src Pointer to the image to enqueue
+ * \param[in] ts_start Timestamp for the start of this frame
+ * \param[in] ts_end Timestamp for the end of this frame
+ * \param[in] flags Flags set on this frame
+ * \param[in] active_map Map that specifies which macroblock is active
+ */
+int vp9_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
+ int64_t ts_start, int64_t ts_end,
+#if CONFIG_VP9_HIGHBITDEPTH
+ int use_highbitdepth,
+#endif
+ unsigned int flags);
+
+
+/**\brief Get the next source buffer to encode
+ *
+ *
+ * \param[in] ctx Pointer to the lookahead context
+ * \param[in] drain Flag indicating the buffer should be drained
+ * (return a buffer regardless of the current queue depth)
+ *
+ * \retval NULL, if drain set and queue is empty
+ * \retval NULL, if drain not set and queue not of the configured depth
+ */
+struct lookahead_entry *vp9_lookahead_pop(struct lookahead_ctx *ctx,
+ int drain);
+
+
+/**\brief Get a future source buffer to encode
+ *
+ * \param[in] ctx Pointer to the lookahead context
+ * \param[in] index Index of the frame to be returned, 0 == next frame
+ *
+ * \retval NULL, if no buffer exists at the specified index
+ */
+struct lookahead_entry *vp9_lookahead_peek(struct lookahead_ctx *ctx,
+ int index);
+
+
+/**\brief Get the number of frames currently in the lookahead queue
+ *
+ * \param[in] ctx Pointer to the lookahead context
+ */
+unsigned int vp9_lookahead_depth(struct lookahead_ctx *ctx);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_LOOKAHEAD_H_
diff --git a/media/libvpx/vp9/encoder/vp9_mbgraph.c b/media/libvpx/vp9/encoder/vp9_mbgraph.c
new file mode 100644
index 000000000..d5eeb9cc5
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_mbgraph.c
@@ -0,0 +1,416 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+
+#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+#include "vp9/encoder/vp9_segmentation.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/common/vp9_blockd.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_reconintra.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+
+static unsigned int do_16x16_motion_iteration(VP9_COMP *cpi,
+ const MV *ref_mv,
+ MV *dst_mv,
+ int mb_row,
+ int mb_col) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
+ const vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
+
+ const int tmp_col_min = x->mv_col_min;
+ const int tmp_col_max = x->mv_col_max;
+ const int tmp_row_min = x->mv_row_min;
+ const int tmp_row_max = x->mv_row_max;
+ MV ref_full;
+ int cost_list[5];
+
+ // Further step/diamond searches as necessary
+ int step_param = mv_sf->reduce_first_step_size;
+ step_param = MIN(step_param, MAX_MVSEARCH_STEPS - 2);
+
+ vp9_set_mv_search_range(x, ref_mv);
+
+ ref_full.col = ref_mv->col >> 3;
+ ref_full.row = ref_mv->row >> 3;
+
+ /*cpi->sf.search_method == HEX*/
+ vp9_hex_search(x, &ref_full, step_param, x->errorperbit, 0,
+ cond_cost_list(cpi, cost_list),
+ &v_fn_ptr, 0, ref_mv, dst_mv);
+
+ // Try sub-pixel MC
+ // if (bestsme > error_thresh && bestsme < INT_MAX)
+ {
+ int distortion;
+ unsigned int sse;
+ cpi->find_fractional_mv_step(
+ x, dst_mv, ref_mv, cpi->common.allow_high_precision_mv, x->errorperbit,
+ &v_fn_ptr, 0, mv_sf->subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list),
+ NULL, NULL,
+ &distortion, &sse, NULL, 0, 0);
+ }
+
+ xd->mi[0]->mbmi.mode = NEWMV;
+ xd->mi[0]->mbmi.mv[0].as_mv = *dst_mv;
+
+ vp9_build_inter_predictors_sby(xd, mb_row, mb_col, BLOCK_16X16);
+
+ /* restore UMV window */
+ x->mv_col_min = tmp_col_min;
+ x->mv_col_max = tmp_col_max;
+ x->mv_row_min = tmp_row_min;
+ x->mv_row_max = tmp_row_max;
+
+ return vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+ xd->plane[0].dst.buf, xd->plane[0].dst.stride);
+}
+
+static int do_16x16_motion_search(VP9_COMP *cpi, const MV *ref_mv,
+ int_mv *dst_mv, int mb_row, int mb_col) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ unsigned int err, tmp_err;
+ MV tmp_mv;
+
+ // Try zero MV first
+ // FIXME should really use something like near/nearest MV and/or MV prediction
+ err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+ xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride);
+ dst_mv->as_int = 0;
+
+ // Test last reference frame using the previous best mv as the
+ // starting point (best reference) for the search
+ tmp_err = do_16x16_motion_iteration(cpi, ref_mv, &tmp_mv, mb_row, mb_col);
+ if (tmp_err < err) {
+ err = tmp_err;
+ dst_mv->as_mv = tmp_mv;
+ }
+
+ // If the current best reference mv is not centered on 0,0 then do a 0,0
+ // based search as well.
+ if (ref_mv->row != 0 || ref_mv->col != 0) {
+ unsigned int tmp_err;
+ MV zero_ref_mv = {0, 0}, tmp_mv;
+
+ tmp_err = do_16x16_motion_iteration(cpi, &zero_ref_mv, &tmp_mv,
+ mb_row, mb_col);
+ if (tmp_err < err) {
+ dst_mv->as_mv = tmp_mv;
+ err = tmp_err;
+ }
+ }
+
+ return err;
+}
+
+static int do_16x16_zerozero_search(VP9_COMP *cpi, int_mv *dst_mv) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ unsigned int err;
+
+ // Try zero MV first
+ // FIXME should really use something like near/nearest MV and/or MV prediction
+ err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+ xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride);
+
+ dst_mv->as_int = 0;
+
+ return err;
+}
+static int find_best_16x16_intra(VP9_COMP *cpi, PREDICTION_MODE *pbest_mode) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ PREDICTION_MODE best_mode = -1, mode;
+ unsigned int best_err = INT_MAX;
+
+ // calculate SATD for each intra prediction mode;
+ // we're intentionally not doing 4x4, we just want a rough estimate
+ for (mode = DC_PRED; mode <= TM_PRED; mode++) {
+ unsigned int err;
+
+ xd->mi[0]->mbmi.mode = mode;
+ vp9_predict_intra_block(xd, 0, 2, TX_16X16, mode,
+ x->plane[0].src.buf, x->plane[0].src.stride,
+ xd->plane[0].dst.buf, xd->plane[0].dst.stride,
+ 0, 0, 0);
+ err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride,
+ xd->plane[0].dst.buf, xd->plane[0].dst.stride);
+
+ // find best
+ if (err < best_err) {
+ best_err = err;
+ best_mode = mode;
+ }
+ }
+
+ if (pbest_mode)
+ *pbest_mode = best_mode;
+
+ return best_err;
+}
+
+static void update_mbgraph_mb_stats
+(
+ VP9_COMP *cpi,
+ MBGRAPH_MB_STATS *stats,
+ YV12_BUFFER_CONFIG *buf,
+ int mb_y_offset,
+ YV12_BUFFER_CONFIG *golden_ref,
+ const MV *prev_golden_ref_mv,
+ YV12_BUFFER_CONFIG *alt_ref,
+ int mb_row,
+ int mb_col
+) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int intra_error;
+ VP9_COMMON *cm = &cpi->common;
+
+ // FIXME in practice we're completely ignoring chroma here
+ x->plane[0].src.buf = buf->y_buffer + mb_y_offset;
+ x->plane[0].src.stride = buf->y_stride;
+
+ xd->plane[0].dst.buf = get_frame_new_buffer(cm)->y_buffer + mb_y_offset;
+ xd->plane[0].dst.stride = get_frame_new_buffer(cm)->y_stride;
+
+ // do intra 16x16 prediction
+ intra_error = find_best_16x16_intra(cpi,
+ &stats->ref[INTRA_FRAME].m.mode);
+ if (intra_error <= 0)
+ intra_error = 1;
+ stats->ref[INTRA_FRAME].err = intra_error;
+
+ // Golden frame MV search, if it exists and is different than last frame
+ if (golden_ref) {
+ int g_motion_error;
+ xd->plane[0].pre[0].buf = golden_ref->y_buffer + mb_y_offset;
+ xd->plane[0].pre[0].stride = golden_ref->y_stride;
+ g_motion_error = do_16x16_motion_search(cpi,
+ prev_golden_ref_mv,
+ &stats->ref[GOLDEN_FRAME].m.mv,
+ mb_row, mb_col);
+ stats->ref[GOLDEN_FRAME].err = g_motion_error;
+ } else {
+ stats->ref[GOLDEN_FRAME].err = INT_MAX;
+ stats->ref[GOLDEN_FRAME].m.mv.as_int = 0;
+ }
+
+ // Do an Alt-ref frame MV search, if it exists and is different than
+ // last/golden frame.
+ if (alt_ref) {
+ int a_motion_error;
+ xd->plane[0].pre[0].buf = alt_ref->y_buffer + mb_y_offset;
+ xd->plane[0].pre[0].stride = alt_ref->y_stride;
+ a_motion_error = do_16x16_zerozero_search(cpi,
+ &stats->ref[ALTREF_FRAME].m.mv);
+
+ stats->ref[ALTREF_FRAME].err = a_motion_error;
+ } else {
+ stats->ref[ALTREF_FRAME].err = INT_MAX;
+ stats->ref[ALTREF_FRAME].m.mv.as_int = 0;
+ }
+}
+
+static void update_mbgraph_frame_stats(VP9_COMP *cpi,
+ MBGRAPH_FRAME_STATS *stats,
+ YV12_BUFFER_CONFIG *buf,
+ YV12_BUFFER_CONFIG *golden_ref,
+ YV12_BUFFER_CONFIG *alt_ref) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ VP9_COMMON *const cm = &cpi->common;
+
+ int mb_col, mb_row, offset = 0;
+ int mb_y_offset = 0, arf_y_offset = 0, gld_y_offset = 0;
+ MV gld_top_mv = {0, 0};
+ MODE_INFO mi_local;
+
+ vp9_zero(mi_local);
+ // Set up limit values for motion vectors to prevent them extending outside
+ // the UMV borders.
+ x->mv_row_min = -BORDER_MV_PIXELS_B16;
+ x->mv_row_max = (cm->mb_rows - 1) * 8 + BORDER_MV_PIXELS_B16;
+ xd->up_available = 0;
+ xd->plane[0].dst.stride = buf->y_stride;
+ xd->plane[0].pre[0].stride = buf->y_stride;
+ xd->plane[1].dst.stride = buf->uv_stride;
+ xd->mi[0] = &mi_local;
+ mi_local.mbmi.sb_type = BLOCK_16X16;
+ mi_local.mbmi.ref_frame[0] = LAST_FRAME;
+ mi_local.mbmi.ref_frame[1] = NONE;
+
+ for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
+ MV gld_left_mv = gld_top_mv;
+ int mb_y_in_offset = mb_y_offset;
+ int arf_y_in_offset = arf_y_offset;
+ int gld_y_in_offset = gld_y_offset;
+
+ // Set up limit values for motion vectors to prevent them extending outside
+ // the UMV borders.
+ x->mv_col_min = -BORDER_MV_PIXELS_B16;
+ x->mv_col_max = (cm->mb_cols - 1) * 8 + BORDER_MV_PIXELS_B16;
+ xd->left_available = 0;
+
+ for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
+ MBGRAPH_MB_STATS *mb_stats = &stats->mb_stats[offset + mb_col];
+
+ update_mbgraph_mb_stats(cpi, mb_stats, buf, mb_y_in_offset,
+ golden_ref, &gld_left_mv, alt_ref,
+ mb_row, mb_col);
+ gld_left_mv = mb_stats->ref[GOLDEN_FRAME].m.mv.as_mv;
+ if (mb_col == 0) {
+ gld_top_mv = gld_left_mv;
+ }
+ xd->left_available = 1;
+ mb_y_in_offset += 16;
+ gld_y_in_offset += 16;
+ arf_y_in_offset += 16;
+ x->mv_col_min -= 16;
+ x->mv_col_max -= 16;
+ }
+ xd->up_available = 1;
+ mb_y_offset += buf->y_stride * 16;
+ gld_y_offset += golden_ref->y_stride * 16;
+ if (alt_ref)
+ arf_y_offset += alt_ref->y_stride * 16;
+ x->mv_row_min -= 16;
+ x->mv_row_max -= 16;
+ offset += cm->mb_cols;
+ }
+}
+
+// void separate_arf_mbs_byzz
+static void separate_arf_mbs(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ int mb_col, mb_row, offset, i;
+ int mi_row, mi_col;
+ int ncnt[4] = { 0 };
+ int n_frames = cpi->mbgraph_n_frames;
+
+ int *arf_not_zz;
+
+ CHECK_MEM_ERROR(cm, arf_not_zz,
+ vpx_calloc(cm->mb_rows * cm->mb_cols * sizeof(*arf_not_zz),
+ 1));
+
+ // We are not interested in results beyond the alt ref itself.
+ if (n_frames > cpi->rc.frames_till_gf_update_due)
+ n_frames = cpi->rc.frames_till_gf_update_due;
+
+ // defer cost to reference frames
+ for (i = n_frames - 1; i >= 0; i--) {
+ MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i];
+
+ for (offset = 0, mb_row = 0; mb_row < cm->mb_rows;
+ offset += cm->mb_cols, mb_row++) {
+ for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
+ MBGRAPH_MB_STATS *mb_stats = &frame_stats->mb_stats[offset + mb_col];
+
+ int altref_err = mb_stats->ref[ALTREF_FRAME].err;
+ int intra_err = mb_stats->ref[INTRA_FRAME ].err;
+ int golden_err = mb_stats->ref[GOLDEN_FRAME].err;
+
+ // Test for altref vs intra and gf and that its mv was 0,0.
+ if (altref_err > 1000 ||
+ altref_err > intra_err ||
+ altref_err > golden_err) {
+ arf_not_zz[offset + mb_col]++;
+ }
+ }
+ }
+ }
+
+ // arf_not_zz is indexed by MB, but this loop is indexed by MI to avoid out
+ // of bound access in segmentation_map
+ for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
+ for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
+ // If any of the blocks in the sequence failed then the MB
+ // goes in segment 0
+ if (arf_not_zz[mi_row / 2 * cm->mb_cols + mi_col / 2]) {
+ ncnt[0]++;
+ cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 0;
+ } else {
+ cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 1;
+ ncnt[1]++;
+ }
+ }
+ }
+
+ // Only bother with segmentation if over 10% of the MBs in static segment
+ // if ( ncnt[1] && (ncnt[0] / ncnt[1] < 10) )
+ if (1) {
+ // Note % of blocks that are marked as static
+ if (cm->MBs)
+ cpi->static_mb_pct = (ncnt[1] * 100) / (cm->mi_rows * cm->mi_cols);
+
+ // This error case should not be reachable as this function should
+ // never be called with the common data structure uninitialized.
+ else
+ cpi->static_mb_pct = 0;
+
+ vp9_enable_segmentation(&cm->seg);
+ } else {
+ cpi->static_mb_pct = 0;
+ vp9_disable_segmentation(&cm->seg);
+ }
+
+ // Free localy allocated storage
+ vpx_free(arf_not_zz);
+}
+
+void vp9_update_mbgraph_stats(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ int i, n_frames = vp9_lookahead_depth(cpi->lookahead);
+ YV12_BUFFER_CONFIG *golden_ref = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
+
+ assert(golden_ref != NULL);
+
+ // we need to look ahead beyond where the ARF transitions into
+ // being a GF - so exit if we don't look ahead beyond that
+ if (n_frames <= cpi->rc.frames_till_gf_update_due)
+ return;
+
+ if (n_frames > MAX_LAG_BUFFERS)
+ n_frames = MAX_LAG_BUFFERS;
+
+ cpi->mbgraph_n_frames = n_frames;
+ for (i = 0; i < n_frames; i++) {
+ MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i];
+ memset(frame_stats->mb_stats, 0,
+ cm->mb_rows * cm->mb_cols * sizeof(*cpi->mbgraph_stats[i].mb_stats));
+ }
+
+ // do motion search to find contribution of each reference to data
+ // later on in this GF group
+ // FIXME really, the GF/last MC search should be done forward, and
+ // the ARF MC search backwards, to get optimal results for MV caching
+ for (i = 0; i < n_frames; i++) {
+ MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i];
+ struct lookahead_entry *q_cur = vp9_lookahead_peek(cpi->lookahead, i);
+
+ assert(q_cur != NULL);
+
+ update_mbgraph_frame_stats(cpi, frame_stats, &q_cur->img,
+ golden_ref, cpi->Source);
+ }
+
+ vp9_clear_system_state();
+
+ separate_arf_mbs(cpi);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_mbgraph.h b/media/libvpx/vp9/encoder/vp9_mbgraph.h
new file mode 100644
index 000000000..c3af972bc
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_mbgraph.h
@@ -0,0 +1,40 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_MBGRAPH_H_
+#define VP9_ENCODER_VP9_MBGRAPH_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+ struct {
+ int err;
+ union {
+ int_mv mv;
+ PREDICTION_MODE mode;
+ } m;
+ } ref[MAX_REF_FRAMES];
+} MBGRAPH_MB_STATS;
+
+typedef struct {
+ MBGRAPH_MB_STATS *mb_stats;
+} MBGRAPH_FRAME_STATS;
+
+struct VP9_COMP;
+
+void vp9_update_mbgraph_stats(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_MBGRAPH_H_
diff --git a/media/libvpx/vp9/encoder/vp9_mcomp.c b/media/libvpx/vp9/encoder/vp9_mcomp.c
new file mode 100644
index 000000000..234272697
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_mcomp.c
@@ -0,0 +1,2357 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vpx_config.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_reconinter.h"
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_mcomp.h"
+
+// #define NEW_DIAMOND_SEARCH
+
+static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf,
+ const MV *mv) {
+ return &buf->buf[mv->row * buf->stride + mv->col];
+}
+
+void vp9_set_mv_search_range(MACROBLOCK *x, const MV *mv) {
+ int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0);
+ int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0);
+ int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
+ int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
+
+ col_min = MAX(col_min, (MV_LOW >> 3) + 1);
+ row_min = MAX(row_min, (MV_LOW >> 3) + 1);
+ col_max = MIN(col_max, (MV_UPP >> 3) - 1);
+ row_max = MIN(row_max, (MV_UPP >> 3) - 1);
+
+ // Get intersection of UMV window and valid MV window to reduce # of checks
+ // in diamond search.
+ if (x->mv_col_min < col_min)
+ x->mv_col_min = col_min;
+ if (x->mv_col_max > col_max)
+ x->mv_col_max = col_max;
+ if (x->mv_row_min < row_min)
+ x->mv_row_min = row_min;
+ if (x->mv_row_max > row_max)
+ x->mv_row_max = row_max;
+}
+
+int vp9_init_search_range(int size) {
+ int sr = 0;
+ // Minimum search size no matter what the passed in value.
+ size = MAX(16, size);
+
+ while ((size << sr) < MAX_FULL_PEL_VAL)
+ sr++;
+
+ sr = MIN(sr, MAX_MVSEARCH_STEPS - 2);
+ return sr;
+}
+
+static INLINE int mv_cost(const MV *mv,
+ const int *joint_cost, int *const comp_cost[2]) {
+ return joint_cost[vp9_get_mv_joint(mv)] +
+ comp_cost[0][mv->row] + comp_cost[1][mv->col];
+}
+
+int vp9_mv_bit_cost(const MV *mv, const MV *ref,
+ const int *mvjcost, int *mvcost[2], int weight) {
+ const MV diff = { mv->row - ref->row,
+ mv->col - ref->col };
+ return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjcost, mvcost) * weight, 7);
+}
+
+static int mv_err_cost(const MV *mv, const MV *ref,
+ const int *mvjcost, int *mvcost[2],
+ int error_per_bit) {
+ if (mvcost) {
+ const MV diff = { mv->row - ref->row,
+ mv->col - ref->col };
+ return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjcost, mvcost) *
+ error_per_bit, 13);
+ }
+ return 0;
+}
+
+static int mvsad_err_cost(const MACROBLOCK *x, const MV *mv, const MV *ref,
+ int error_per_bit) {
+ const MV diff = { mv->row - ref->row,
+ mv->col - ref->col };
+ return ROUND_POWER_OF_TWO(mv_cost(&diff, x->nmvjointsadcost,
+ x->nmvsadcost) * error_per_bit, 8);
+}
+
+void vp9_init_dsmotion_compensation(search_site_config *cfg, int stride) {
+ int len, ss_count = 1;
+
+ cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0;
+ cfg->ss[0].offset = 0;
+
+ for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
+ // Generate offsets for 4 search sites per step.
+ const MV ss_mvs[] = {{-len, 0}, {len, 0}, {0, -len}, {0, len}};
+ int i;
+ for (i = 0; i < 4; ++i) {
+ search_site *const ss = &cfg->ss[ss_count++];
+ ss->mv = ss_mvs[i];
+ ss->offset = ss->mv.row * stride + ss->mv.col;
+ }
+ }
+
+ cfg->ss_count = ss_count;
+ cfg->searches_per_step = 4;
+}
+
+void vp9_init3smotion_compensation(search_site_config *cfg, int stride) {
+ int len, ss_count = 1;
+
+ cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0;
+ cfg->ss[0].offset = 0;
+
+ for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
+ // Generate offsets for 8 search sites per step.
+ const MV ss_mvs[8] = {
+ {-len, 0 }, {len, 0 }, { 0, -len}, {0, len},
+ {-len, -len}, {-len, len}, {len, -len}, {len, len}
+ };
+ int i;
+ for (i = 0; i < 8; ++i) {
+ search_site *const ss = &cfg->ss[ss_count++];
+ ss->mv = ss_mvs[i];
+ ss->offset = ss->mv.row * stride + ss->mv.col;
+ }
+ }
+
+ cfg->ss_count = ss_count;
+ cfg->searches_per_step = 8;
+}
+
+/*
+ * To avoid the penalty for crossing cache-line read, preload the reference
+ * area in a small buffer, which is aligned to make sure there won't be crossing
+ * cache-line read while reading from this buffer. This reduced the cpu
+ * cycles spent on reading ref data in sub-pixel filter functions.
+ * TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x
+ * 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we
+ * could reduce the area.
+ */
+
+/* estimated cost of a motion vector (r,c) */
+#define MVC(r, c) \
+ (mvcost ? \
+ ((mvjcost[((r) != rr) * 2 + ((c) != rc)] + \
+ mvcost[0][((r) - rr)] + mvcost[1][((c) - rc)]) * \
+ error_per_bit + 4096) >> 13 : 0)
+
+
+// convert motion vector component to offset for sv[a]f calc
+static INLINE int sp(int x) {
+ return x & 7;
+}
+
+static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) {
+ return &buf[(r >> 3) * stride + (c >> 3)];
+}
+
+/* checks if (r, c) has better score than previous best */
+#define CHECK_BETTER(v, r, c) \
+ if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \
+ if (second_pred == NULL) \
+ thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \
+ src_stride, &sse); \
+ else \
+ thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \
+ z, src_stride, &sse, second_pred); \
+ if ((v = MVC(r, c) + thismse) < besterr) { \
+ besterr = v; \
+ br = r; \
+ bc = c; \
+ *distortion = thismse; \
+ *sse1 = sse; \
+ } \
+ } else { \
+ v = INT_MAX; \
+ }
+
+#define FIRST_LEVEL_CHECKS \
+ { \
+ unsigned int left, right, up, down, diag; \
+ CHECK_BETTER(left, tr, tc - hstep); \
+ CHECK_BETTER(right, tr, tc + hstep); \
+ CHECK_BETTER(up, tr - hstep, tc); \
+ CHECK_BETTER(down, tr + hstep, tc); \
+ whichdir = (left < right ? 0 : 1) + \
+ (up < down ? 0 : 2); \
+ switch (whichdir) { \
+ case 0: \
+ CHECK_BETTER(diag, tr - hstep, tc - hstep); \
+ break; \
+ case 1: \
+ CHECK_BETTER(diag, tr - hstep, tc + hstep); \
+ break; \
+ case 2: \
+ CHECK_BETTER(diag, tr + hstep, tc - hstep); \
+ break; \
+ case 3: \
+ CHECK_BETTER(diag, tr + hstep, tc + hstep); \
+ break; \
+ } \
+ }
+
+#define SECOND_LEVEL_CHECKS \
+ { \
+ int kr, kc; \
+ unsigned int second; \
+ if (tr != br && tc != bc) { \
+ kr = br - tr; \
+ kc = bc - tc; \
+ CHECK_BETTER(second, tr + kr, tc + 2 * kc); \
+ CHECK_BETTER(second, tr + 2 * kr, tc + kc); \
+ } else if (tr == br && tc != bc) { \
+ kc = bc - tc; \
+ CHECK_BETTER(second, tr + hstep, tc + 2 * kc); \
+ CHECK_BETTER(second, tr - hstep, tc + 2 * kc); \
+ switch (whichdir) { \
+ case 0: \
+ case 1: \
+ CHECK_BETTER(second, tr + hstep, tc + kc); \
+ break; \
+ case 2: \
+ case 3: \
+ CHECK_BETTER(second, tr - hstep, tc + kc); \
+ break; \
+ } \
+ } else if (tr != br && tc == bc) { \
+ kr = br - tr; \
+ CHECK_BETTER(second, tr + 2 * kr, tc + hstep); \
+ CHECK_BETTER(second, tr + 2 * kr, tc - hstep); \
+ switch (whichdir) { \
+ case 0: \
+ case 2: \
+ CHECK_BETTER(second, tr + kr, tc + hstep); \
+ break; \
+ case 1: \
+ case 3: \
+ CHECK_BETTER(second, tr + kr, tc - hstep); \
+ break; \
+ } \
+ } \
+ }
+
+#define SETUP_SUBPEL_SEARCH \
+ const uint8_t *const z = x->plane[0].src.buf; \
+ const int src_stride = x->plane[0].src.stride; \
+ const MACROBLOCKD *xd = &x->e_mbd; \
+ unsigned int besterr = INT_MAX; \
+ unsigned int sse; \
+ unsigned int whichdir; \
+ int thismse; \
+ const unsigned int halfiters = iters_per_step; \
+ const unsigned int quarteriters = iters_per_step; \
+ const unsigned int eighthiters = iters_per_step; \
+ const int y_stride = xd->plane[0].pre[0].stride; \
+ const int offset = bestmv->row * y_stride + bestmv->col; \
+ const uint8_t *const y = xd->plane[0].pre[0].buf; \
+ \
+ int rr = ref_mv->row; \
+ int rc = ref_mv->col; \
+ int br = bestmv->row * 8; \
+ int bc = bestmv->col * 8; \
+ int hstep = 4; \
+ const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX); \
+ const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX); \
+ const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX); \
+ const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX); \
+ int tr = br; \
+ int tc = bc; \
+ \
+ bestmv->row *= 8; \
+ bestmv->col *= 8;
+
+static INLINE unsigned int setup_center_error(const MACROBLOCKD *xd,
+ const MV *bestmv,
+ const MV *ref_mv,
+ int error_per_bit,
+ const vp9_variance_fn_ptr_t *vfp,
+ const uint8_t *const src,
+ const int src_stride,
+ const uint8_t *const y,
+ int y_stride,
+ const uint8_t *second_pred,
+ int w, int h, int offset,
+ int *mvjcost, int *mvcost[2],
+ unsigned int *sse1,
+ int *distortion) {
+ unsigned int besterr;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (second_pred != NULL) {
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ DECLARE_ALIGNED(16, uint16_t, comp_pred16[64 * 64]);
+ vpx_highbd_comp_avg_pred(comp_pred16, second_pred, w, h, y + offset,
+ y_stride);
+ besterr = vfp->vf(CONVERT_TO_BYTEPTR(comp_pred16), w, src, src_stride,
+ sse1);
+ } else {
+ DECLARE_ALIGNED(16, uint8_t, comp_pred[64 * 64]);
+ vpx_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
+ besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
+ }
+ } else {
+ besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1);
+ }
+ *distortion = besterr;
+ besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
+#else
+ (void) xd;
+ if (second_pred != NULL) {
+ DECLARE_ALIGNED(16, uint8_t, comp_pred[64 * 64]);
+ vpx_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
+ besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
+ } else {
+ besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1);
+ }
+ *distortion = besterr;
+ besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ return besterr;
+}
+
+static INLINE int divide_and_round(const int n, const int d) {
+ return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d);
+}
+
+static INLINE int is_cost_list_wellbehaved(int *cost_list) {
+ return cost_list[0] < cost_list[1] &&
+ cost_list[0] < cost_list[2] &&
+ cost_list[0] < cost_list[3] &&
+ cost_list[0] < cost_list[4];
+}
+
+// Returns surface minima estimate at given precision in 1/2^n bits.
+// Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C
+// For a given set of costs S0, S1, S2, S3, S4 at points
+// (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively,
+// the solution for the location of the minima (x0, y0) is given by:
+// x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0),
+// y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0).
+// The code below is an integerized version of that.
+static void get_cost_surf_min(int *cost_list, int *ir, int *ic,
+ int bits) {
+ *ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)),
+ (cost_list[1] - 2 * cost_list[0] + cost_list[3]));
+ *ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)),
+ (cost_list[4] - 2 * cost_list[0] + cost_list[2]));
+}
+
+int vp9_find_best_sub_pixel_tree_pruned_evenmore(
+ const MACROBLOCK *x,
+ MV *bestmv, const MV *ref_mv,
+ int allow_hp,
+ int error_per_bit,
+ const vp9_variance_fn_ptr_t *vfp,
+ int forced_stop,
+ int iters_per_step,
+ int *cost_list,
+ int *mvjcost, int *mvcost[2],
+ int *distortion,
+ unsigned int *sse1,
+ const uint8_t *second_pred,
+ int w, int h) {
+ SETUP_SUBPEL_SEARCH;
+ besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp,
+ z, src_stride, y, y_stride, second_pred,
+ w, h, offset, mvjcost, mvcost,
+ sse1, distortion);
+ (void) halfiters;
+ (void) quarteriters;
+ (void) eighthiters;
+ (void) whichdir;
+ (void) allow_hp;
+ (void) forced_stop;
+ (void) hstep;
+
+ if (cost_list &&
+ cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
+ cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
+ cost_list[4] != INT_MAX &&
+ is_cost_list_wellbehaved(cost_list)) {
+ int ir, ic;
+ unsigned int minpt;
+ get_cost_surf_min(cost_list, &ir, &ic, 2);
+ if (ir != 0 || ic != 0) {
+ CHECK_BETTER(minpt, tr + 2 * ir, tc + 2 * ic);
+ }
+ } else {
+ FIRST_LEVEL_CHECKS;
+ if (halfiters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+
+ tr = br;
+ tc = bc;
+
+ // Each subsequent iteration checks at least one point in common with
+ // the last iteration could be 2 ( if diag selected) 1/4 pel
+ // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
+ if (forced_stop != 2) {
+ hstep >>= 1;
+ FIRST_LEVEL_CHECKS;
+ if (quarteriters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+ }
+ }
+
+ tr = br;
+ tc = bc;
+
+ if (allow_hp && vp9_use_mv_hp(ref_mv) && forced_stop == 0) {
+ hstep >>= 1;
+ FIRST_LEVEL_CHECKS;
+ if (eighthiters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+ }
+
+ bestmv->row = br;
+ bestmv->col = bc;
+
+ if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
+ (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
+ return INT_MAX;
+
+ return besterr;
+}
+
+int vp9_find_best_sub_pixel_tree_pruned_more(const MACROBLOCK *x,
+ MV *bestmv, const MV *ref_mv,
+ int allow_hp,
+ int error_per_bit,
+ const vp9_variance_fn_ptr_t *vfp,
+ int forced_stop,
+ int iters_per_step,
+ int *cost_list,
+ int *mvjcost, int *mvcost[2],
+ int *distortion,
+ unsigned int *sse1,
+ const uint8_t *second_pred,
+ int w, int h) {
+ SETUP_SUBPEL_SEARCH;
+ besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp,
+ z, src_stride, y, y_stride, second_pred,
+ w, h, offset, mvjcost, mvcost,
+ sse1, distortion);
+ if (cost_list &&
+ cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
+ cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
+ cost_list[4] != INT_MAX &&
+ is_cost_list_wellbehaved(cost_list)) {
+ unsigned int minpt;
+ int ir, ic;
+ get_cost_surf_min(cost_list, &ir, &ic, 1);
+ if (ir != 0 || ic != 0) {
+ CHECK_BETTER(minpt, tr + ir * hstep, tc + ic * hstep);
+ }
+ } else {
+ FIRST_LEVEL_CHECKS;
+ if (halfiters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+ }
+
+ // Each subsequent iteration checks at least one point in common with
+ // the last iteration could be 2 ( if diag selected) 1/4 pel
+
+ // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
+ if (forced_stop != 2) {
+ tr = br;
+ tc = bc;
+ hstep >>= 1;
+ FIRST_LEVEL_CHECKS;
+ if (quarteriters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+ }
+
+ if (allow_hp && vp9_use_mv_hp(ref_mv) && forced_stop == 0) {
+ tr = br;
+ tc = bc;
+ hstep >>= 1;
+ FIRST_LEVEL_CHECKS;
+ if (eighthiters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+ }
+ // These lines insure static analysis doesn't warn that
+ // tr and tc aren't used after the above point.
+ (void) tr;
+ (void) tc;
+
+ bestmv->row = br;
+ bestmv->col = bc;
+
+ if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
+ (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
+ return INT_MAX;
+
+ return besterr;
+}
+
+int vp9_find_best_sub_pixel_tree_pruned(const MACROBLOCK *x,
+ MV *bestmv, const MV *ref_mv,
+ int allow_hp,
+ int error_per_bit,
+ const vp9_variance_fn_ptr_t *vfp,
+ int forced_stop,
+ int iters_per_step,
+ int *cost_list,
+ int *mvjcost, int *mvcost[2],
+ int *distortion,
+ unsigned int *sse1,
+ const uint8_t *second_pred,
+ int w, int h) {
+ SETUP_SUBPEL_SEARCH;
+ besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp,
+ z, src_stride, y, y_stride, second_pred,
+ w, h, offset, mvjcost, mvcost,
+ sse1, distortion);
+ if (cost_list &&
+ cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
+ cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
+ cost_list[4] != INT_MAX) {
+ unsigned int left, right, up, down, diag;
+ whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) +
+ (cost_list[2] < cost_list[4] ? 0 : 2);
+ switch (whichdir) {
+ case 0:
+ CHECK_BETTER(left, tr, tc - hstep);
+ CHECK_BETTER(down, tr + hstep, tc);
+ CHECK_BETTER(diag, tr + hstep, tc - hstep);
+ break;
+ case 1:
+ CHECK_BETTER(right, tr, tc + hstep);
+ CHECK_BETTER(down, tr + hstep, tc);
+ CHECK_BETTER(diag, tr + hstep, tc + hstep);
+ break;
+ case 2:
+ CHECK_BETTER(left, tr, tc - hstep);
+ CHECK_BETTER(up, tr - hstep, tc);
+ CHECK_BETTER(diag, tr - hstep, tc - hstep);
+ break;
+ case 3:
+ CHECK_BETTER(right, tr, tc + hstep);
+ CHECK_BETTER(up, tr - hstep, tc);
+ CHECK_BETTER(diag, tr - hstep, tc + hstep);
+ break;
+ }
+ } else {
+ FIRST_LEVEL_CHECKS;
+ if (halfiters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+ }
+
+ tr = br;
+ tc = bc;
+
+ // Each subsequent iteration checks at least one point in common with
+ // the last iteration could be 2 ( if diag selected) 1/4 pel
+
+ // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
+ if (forced_stop != 2) {
+ hstep >>= 1;
+ FIRST_LEVEL_CHECKS;
+ if (quarteriters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+ tr = br;
+ tc = bc;
+ }
+
+ if (allow_hp && vp9_use_mv_hp(ref_mv) && forced_stop == 0) {
+ hstep >>= 1;
+ FIRST_LEVEL_CHECKS;
+ if (eighthiters > 1) {
+ SECOND_LEVEL_CHECKS;
+ }
+ tr = br;
+ tc = bc;
+ }
+ // These lines insure static analysis doesn't warn that
+ // tr and tc aren't used after the above point.
+ (void) tr;
+ (void) tc;
+
+ bestmv->row = br;
+ bestmv->col = bc;
+
+ if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
+ (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
+ return INT_MAX;
+
+ return besterr;
+}
+
+const MV search_step_table[12] = {
+ // left, right, up, down
+ {0, -4}, {0, 4}, {-4, 0}, {4, 0},
+ {0, -2}, {0, 2}, {-2, 0}, {2, 0},
+ {0, -1}, {0, 1}, {-1, 0}, {1, 0}
+};
+
+int vp9_find_best_sub_pixel_tree(const MACROBLOCK *x,
+ MV *bestmv, const MV *ref_mv,
+ int allow_hp,
+ int error_per_bit,
+ const vp9_variance_fn_ptr_t *vfp,
+ int forced_stop,
+ int iters_per_step,
+ int *cost_list,
+ int *mvjcost, int *mvcost[2],
+ int *distortion,
+ unsigned int *sse1,
+ const uint8_t *second_pred,
+ int w, int h) {
+ const uint8_t *const z = x->plane[0].src.buf;
+ const uint8_t *const src_address = z;
+ const int src_stride = x->plane[0].src.stride;
+ const MACROBLOCKD *xd = &x->e_mbd;
+ unsigned int besterr = INT_MAX;
+ unsigned int sse;
+ unsigned int whichdir = 0;
+ int thismse;
+ const int y_stride = xd->plane[0].pre[0].stride;
+ const int offset = bestmv->row * y_stride + bestmv->col;
+ const uint8_t *const y = xd->plane[0].pre[0].buf;
+
+ int rr = ref_mv->row;
+ int rc = ref_mv->col;
+ int br = bestmv->row * 8;
+ int bc = bestmv->col * 8;
+ int hstep = 4;
+ int iter, round = 3 - forced_stop;
+ const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
+ const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
+ const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
+ const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
+ int tr = br;
+ int tc = bc;
+ const MV *search_step = search_step_table;
+ int idx, best_idx = -1;
+ unsigned int cost_array[5];
+
+ if (!(allow_hp && vp9_use_mv_hp(ref_mv)))
+ if (round == 3)
+ round = 2;
+
+ bestmv->row *= 8;
+ bestmv->col *= 8;
+
+ besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp,
+ z, src_stride, y, y_stride, second_pred,
+ w, h, offset, mvjcost, mvcost,
+ sse1, distortion);
+
+ (void) cost_list; // to silence compiler warning
+
+ for (iter = 0; iter < round; ++iter) {
+ // Check vertical and horizontal sub-pixel positions.
+ for (idx = 0; idx < 4; ++idx) {
+ tr = br + search_step[idx].row;
+ tc = bc + search_step[idx].col;
+ if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) {
+ const uint8_t *const pre_address = y + (tr >> 3) * y_stride + (tc >> 3);
+ MV this_mv;
+ this_mv.row = tr;
+ this_mv.col = tc;
+ if (second_pred == NULL)
+ thismse = vfp->svf(pre_address, y_stride, sp(tc), sp(tr),
+ src_address, src_stride, &sse);
+ else
+ thismse = vfp->svaf(pre_address, y_stride, sp(tc), sp(tr),
+ src_address, src_stride, &sse, second_pred);
+ cost_array[idx] = thismse +
+ mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit);
+
+ if (cost_array[idx] < besterr) {
+ best_idx = idx;
+ besterr = cost_array[idx];
+ *distortion = thismse;
+ *sse1 = sse;
+ }
+ } else {
+ cost_array[idx] = INT_MAX;
+ }
+ }
+
+ // Check diagonal sub-pixel position
+ tc = bc + (cost_array[0] < cost_array[1] ? -hstep : hstep);
+ tr = br + (cost_array[2] < cost_array[3] ? -hstep : hstep);
+ if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) {
+ const uint8_t *const pre_address = y + (tr >> 3) * y_stride + (tc >> 3);
+ MV this_mv = {tr, tc};
+ if (second_pred == NULL)
+ thismse = vfp->svf(pre_address, y_stride, sp(tc), sp(tr),
+ src_address, src_stride, &sse);
+ else
+ thismse = vfp->svaf(pre_address, y_stride, sp(tc), sp(tr),
+ src_address, src_stride, &sse, second_pred);
+ cost_array[4] = thismse +
+ mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit);
+
+ if (cost_array[4] < besterr) {
+ best_idx = 4;
+ besterr = cost_array[4];
+ *distortion = thismse;
+ *sse1 = sse;
+ }
+ } else {
+ cost_array[idx] = INT_MAX;
+ }
+
+ if (best_idx < 4 && best_idx >= 0) {
+ br += search_step[best_idx].row;
+ bc += search_step[best_idx].col;
+ } else if (best_idx == 4) {
+ br = tr;
+ bc = tc;
+ }
+
+ if (iters_per_step > 1)
+ SECOND_LEVEL_CHECKS;
+
+ tr = br;
+ tc = bc;
+
+ search_step += 4;
+ hstep >>= 1;
+ best_idx = -1;
+ }
+
+ // Each subsequent iteration checks at least one point in common with
+ // the last iteration could be 2 ( if diag selected) 1/4 pel
+
+ // These lines insure static analysis doesn't warn that
+ // tr and tc aren't used after the above point.
+ (void) tr;
+ (void) tc;
+
+ bestmv->row = br;
+ bestmv->col = bc;
+
+ if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
+ (abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
+ return INT_MAX;
+
+ return besterr;
+}
+
+#undef MVC
+#undef PRE
+#undef CHECK_BETTER
+
+static INLINE int check_bounds(const MACROBLOCK *x, int row, int col,
+ int range) {
+ return ((row - range) >= x->mv_row_min) &
+ ((row + range) <= x->mv_row_max) &
+ ((col - range) >= x->mv_col_min) &
+ ((col + range) <= x->mv_col_max);
+}
+
+static INLINE int is_mv_in(const MACROBLOCK *x, const MV *mv) {
+ return (mv->col >= x->mv_col_min) && (mv->col <= x->mv_col_max) &&
+ (mv->row >= x->mv_row_min) && (mv->row <= x->mv_row_max);
+}
+
+#define CHECK_BETTER \
+ {\
+ if (thissad < bestsad) {\
+ if (use_mvcost) \
+ thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);\
+ if (thissad < bestsad) {\
+ bestsad = thissad;\
+ best_site = i;\
+ }\
+ }\
+ }
+
+#define MAX_PATTERN_SCALES 11
+#define MAX_PATTERN_CANDIDATES 8 // max number of canddiates per scale
+#define PATTERN_CANDIDATES_REF 3 // number of refinement candidates
+
+// Calculate and return a sad+mvcost list around an integer best pel.
+static INLINE void calc_int_cost_list(const MACROBLOCK *x,
+ const MV *ref_mv,
+ int sadpb,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *best_mv,
+ int *cost_list) {
+ static const MV neighbors[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}};
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0];
+ const MV fcenter_mv = {ref_mv->row >> 3, ref_mv->col >> 3};
+ int br = best_mv->row;
+ int bc = best_mv->col;
+ MV this_mv;
+ int i;
+ unsigned int sse;
+
+ this_mv.row = br;
+ this_mv.col = bc;
+ cost_list[0] = fn_ptr->vf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, &sse) +
+ mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb);
+ if (check_bounds(x, br, bc, 1)) {
+ for (i = 0; i < 4; i++) {
+ const MV this_mv = {br + neighbors[i].row,
+ bc + neighbors[i].col};
+ cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, &sse) +
+ // mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb);
+ mv_err_cost(&this_mv, &fcenter_mv, x->nmvjointcost, x->mvcost,
+ x->errorperbit);
+ }
+ } else {
+ for (i = 0; i < 4; i++) {
+ const MV this_mv = {br + neighbors[i].row,
+ bc + neighbors[i].col};
+ if (!is_mv_in(x, &this_mv))
+ cost_list[i + 1] = INT_MAX;
+ else
+ cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride, &sse) +
+ // mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb);
+ mv_err_cost(&this_mv, &fcenter_mv, x->nmvjointcost, x->mvcost,
+ x->errorperbit);
+ }
+ }
+}
+
+// Generic pattern search function that searches over multiple scales.
+// Each scale can have a different number of candidates and shape of
+// candidates as indicated in the num_candidates and candidates arrays
+// passed into this function
+//
+static int vp9_pattern_search(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv,
+ const int num_candidates[MAX_PATTERN_SCALES],
+ const MV candidates[MAX_PATTERN_SCALES]
+ [MAX_PATTERN_CANDIDATES]) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = {
+ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
+ };
+ int i, s, t;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ int br, bc;
+ int bestsad = INT_MAX;
+ int thissad;
+ int k = -1;
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ int best_init_s = search_param_to_steps[search_param];
+ // adjust ref_mv to make sure it is within MV range
+ clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+ br = ref_mv->row;
+ bc = ref_mv->col;
+
+ // Work out the start point for the search
+ bestsad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+
+ // Search all possible scales upto the search param around the center point
+ // pick the scale of the point that is best as the starting scale of
+ // further steps around it.
+ if (do_init_search) {
+ s = best_init_s;
+ best_init_s = -1;
+ for (t = 0; t <= s; ++t) {
+ int best_site = -1;
+ if (check_bounds(x, br, bc, 1 << t)) {
+ for (i = 0; i < num_candidates[t]; i++) {
+ const MV this_mv = {br + candidates[t][i].row,
+ bc + candidates[t][i].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ } else {
+ for (i = 0; i < num_candidates[t]; i++) {
+ const MV this_mv = {br + candidates[t][i].row,
+ bc + candidates[t][i].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ }
+ if (best_site == -1) {
+ continue;
+ } else {
+ best_init_s = t;
+ k = best_site;
+ }
+ }
+ if (best_init_s != -1) {
+ br += candidates[best_init_s][k].row;
+ bc += candidates[best_init_s][k].col;
+ }
+ }
+
+ // If the center point is still the best, just skip this and move to
+ // the refinement step.
+ if (best_init_s != -1) {
+ int best_site = -1;
+ s = best_init_s;
+
+ do {
+ // No need to search all 6 points the 1st time if initial search was used
+ if (!do_init_search || s != best_init_s) {
+ if (check_bounds(x, br, bc, 1 << s)) {
+ for (i = 0; i < num_candidates[s]; i++) {
+ const MV this_mv = {br + candidates[s][i].row,
+ bc + candidates[s][i].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ } else {
+ for (i = 0; i < num_candidates[s]; i++) {
+ const MV this_mv = {br + candidates[s][i].row,
+ bc + candidates[s][i].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ }
+
+ if (best_site == -1) {
+ continue;
+ } else {
+ br += candidates[s][best_site].row;
+ bc += candidates[s][best_site].col;
+ k = best_site;
+ }
+ }
+
+ do {
+ int next_chkpts_indices[PATTERN_CANDIDATES_REF];
+ best_site = -1;
+ next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
+ next_chkpts_indices[1] = k;
+ next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
+
+ if (check_bounds(x, br, bc, 1 << s)) {
+ for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+ const MV this_mv = {br + candidates[s][next_chkpts_indices[i]].row,
+ bc + candidates[s][next_chkpts_indices[i]].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ } else {
+ for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+ const MV this_mv = {br + candidates[s][next_chkpts_indices[i]].row,
+ bc + candidates[s][next_chkpts_indices[i]].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ }
+
+ if (best_site != -1) {
+ k = next_chkpts_indices[best_site];
+ br += candidates[s][k].row;
+ bc += candidates[s][k].col;
+ }
+ } while (best_site != -1);
+ } while (s--);
+ }
+
+ // Returns the one-away integer pel sad values around the best as follows:
+ // cost_list[0]: cost at the best integer pel
+ // cost_list[1]: cost at delta {0, -1} (left) from the best integer pel
+ // cost_list[2]: cost at delta { 1, 0} (bottom) from the best integer pel
+ // cost_list[3]: cost at delta { 0, 1} (right) from the best integer pel
+ // cost_list[4]: cost at delta {-1, 0} (top) from the best integer pel
+ if (cost_list) {
+ const MV best_mv = { br, bc };
+ calc_int_cost_list(x, &fcenter_mv, sad_per_bit, vfp, &best_mv, cost_list);
+ }
+ best_mv->row = br;
+ best_mv->col = bc;
+ return bestsad;
+}
+
+// A specialized function where the smallest scale search candidates
+// are 4 1-away neighbors, and cost_list is non-null
+// TODO(debargha): Merge this function with the one above. Also remove
+// use_mvcost option since it is always 1, to save unnecessary branches.
+static int vp9_pattern_search_sad(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv,
+ const int num_candidates[MAX_PATTERN_SCALES],
+ const MV candidates[MAX_PATTERN_SCALES]
+ [MAX_PATTERN_CANDIDATES]) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = {
+ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
+ };
+ int i, s, t;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ int br, bc;
+ int bestsad = INT_MAX;
+ int thissad;
+ int k = -1;
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ int best_init_s = search_param_to_steps[search_param];
+ // adjust ref_mv to make sure it is within MV range
+ clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+ br = ref_mv->row;
+ bc = ref_mv->col;
+ if (cost_list != NULL) {
+ cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] =
+ INT_MAX;
+ }
+
+ // Work out the start point for the search
+ bestsad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+
+ // Search all possible scales upto the search param around the center point
+ // pick the scale of the point that is best as the starting scale of
+ // further steps around it.
+ if (do_init_search) {
+ s = best_init_s;
+ best_init_s = -1;
+ for (t = 0; t <= s; ++t) {
+ int best_site = -1;
+ if (check_bounds(x, br, bc, 1 << t)) {
+ for (i = 0; i < num_candidates[t]; i++) {
+ const MV this_mv = {br + candidates[t][i].row,
+ bc + candidates[t][i].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ } else {
+ for (i = 0; i < num_candidates[t]; i++) {
+ const MV this_mv = {br + candidates[t][i].row,
+ bc + candidates[t][i].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ }
+ if (best_site == -1) {
+ continue;
+ } else {
+ best_init_s = t;
+ k = best_site;
+ }
+ }
+ if (best_init_s != -1) {
+ br += candidates[best_init_s][k].row;
+ bc += candidates[best_init_s][k].col;
+ }
+ }
+
+ // If the center point is still the best, just skip this and move to
+ // the refinement step.
+ if (best_init_s != -1) {
+ int do_sad = (num_candidates[0] == 4 && cost_list != NULL);
+ int best_site = -1;
+ s = best_init_s;
+
+ for (; s >= do_sad; s--) {
+ if (!do_init_search || s != best_init_s) {
+ if (check_bounds(x, br, bc, 1 << s)) {
+ for (i = 0; i < num_candidates[s]; i++) {
+ const MV this_mv = {br + candidates[s][i].row,
+ bc + candidates[s][i].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ } else {
+ for (i = 0; i < num_candidates[s]; i++) {
+ const MV this_mv = {br + candidates[s][i].row,
+ bc + candidates[s][i].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ }
+
+ if (best_site == -1) {
+ continue;
+ } else {
+ br += candidates[s][best_site].row;
+ bc += candidates[s][best_site].col;
+ k = best_site;
+ }
+ }
+
+ do {
+ int next_chkpts_indices[PATTERN_CANDIDATES_REF];
+ best_site = -1;
+ next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
+ next_chkpts_indices[1] = k;
+ next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
+
+ if (check_bounds(x, br, bc, 1 << s)) {
+ for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+ const MV this_mv = {br + candidates[s][next_chkpts_indices[i]].row,
+ bc + candidates[s][next_chkpts_indices[i]].col};
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ } else {
+ for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+ const MV this_mv = {br + candidates[s][next_chkpts_indices[i]].row,
+ bc + candidates[s][next_chkpts_indices[i]].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ }
+
+ if (best_site != -1) {
+ k = next_chkpts_indices[best_site];
+ br += candidates[s][k].row;
+ bc += candidates[s][k].col;
+ }
+ } while (best_site != -1);
+ }
+
+ // Note: If we enter the if below, then cost_list must be non-NULL.
+ if (s == 0) {
+ cost_list[0] = bestsad;
+ if (!do_init_search || s != best_init_s) {
+ if (check_bounds(x, br, bc, 1 << s)) {
+ for (i = 0; i < num_candidates[s]; i++) {
+ const MV this_mv = {br + candidates[s][i].row,
+ bc + candidates[s][i].col};
+ cost_list[i + 1] =
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ } else {
+ for (i = 0; i < num_candidates[s]; i++) {
+ const MV this_mv = {br + candidates[s][i].row,
+ bc + candidates[s][i].col};
+ if (!is_mv_in(x, &this_mv))
+ continue;
+ cost_list[i + 1] =
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ }
+
+ if (best_site != -1) {
+ br += candidates[s][best_site].row;
+ bc += candidates[s][best_site].col;
+ k = best_site;
+ }
+ }
+ while (best_site != -1) {
+ int next_chkpts_indices[PATTERN_CANDIDATES_REF];
+ best_site = -1;
+ next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
+ next_chkpts_indices[1] = k;
+ next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
+ cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX;
+ cost_list[((k + 2) % 4) + 1] = cost_list[0];
+ cost_list[0] = bestsad;
+
+ if (check_bounds(x, br, bc, 1 << s)) {
+ for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+ const MV this_mv = {br + candidates[s][next_chkpts_indices[i]].row,
+ bc + candidates[s][next_chkpts_indices[i]].col};
+ cost_list[next_chkpts_indices[i] + 1] =
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ } else {
+ for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
+ const MV this_mv = {br + candidates[s][next_chkpts_indices[i]].row,
+ bc + candidates[s][next_chkpts_indices[i]].col};
+ if (!is_mv_in(x, &this_mv)) {
+ cost_list[next_chkpts_indices[i] + 1] = INT_MAX;
+ continue;
+ }
+ cost_list[next_chkpts_indices[i] + 1] =
+ thissad = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ CHECK_BETTER
+ }
+ }
+
+ if (best_site != -1) {
+ k = next_chkpts_indices[best_site];
+ br += candidates[s][k].row;
+ bc += candidates[s][k].col;
+ }
+ }
+ }
+ }
+
+ // Returns the one-away integer pel sad values around the best as follows:
+ // cost_list[0]: sad at the best integer pel
+ // cost_list[1]: sad at delta {0, -1} (left) from the best integer pel
+ // cost_list[2]: sad at delta { 1, 0} (bottom) from the best integer pel
+ // cost_list[3]: sad at delta { 0, 1} (right) from the best integer pel
+ // cost_list[4]: sad at delta {-1, 0} (top) from the best integer pel
+ if (cost_list) {
+ static const MV neighbors[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}};
+ if (cost_list[0] == INT_MAX) {
+ cost_list[0] = bestsad;
+ if (check_bounds(x, br, bc, 1)) {
+ for (i = 0; i < 4; i++) {
+ const MV this_mv = { br + neighbors[i].row,
+ bc + neighbors[i].col };
+ cost_list[i + 1] = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ }
+ } else {
+ for (i = 0; i < 4; i++) {
+ const MV this_mv = {br + neighbors[i].row,
+ bc + neighbors[i].col};
+ if (!is_mv_in(x, &this_mv))
+ cost_list[i + 1] = INT_MAX;
+ else
+ cost_list[i + 1] = vfp->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &this_mv),
+ in_what->stride);
+ }
+ }
+ } else {
+ if (use_mvcost) {
+ for (i = 0; i < 4; i++) {
+ const MV this_mv = {br + neighbors[i].row,
+ bc + neighbors[i].col};
+ if (cost_list[i + 1] != INT_MAX) {
+ cost_list[i + 1] +=
+ mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
+ }
+ }
+ }
+ }
+ }
+ best_mv->row = br;
+ best_mv->col = bc;
+ return bestsad;
+}
+
+int vp9_get_mvpred_var(const MACROBLOCK *x,
+ const MV *best_mv, const MV *center_mv,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV mv = {best_mv->row * 8, best_mv->col * 8};
+ unsigned int unused;
+
+ return vfp->vf(what->buf, what->stride,
+ get_buf_from_mv(in_what, best_mv), in_what->stride, &unused) +
+ (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost,
+ x->mvcost, x->errorperbit) : 0);
+}
+
+int vp9_get_mvpred_av_var(const MACROBLOCK *x,
+ const MV *best_mv, const MV *center_mv,
+ const uint8_t *second_pred,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV mv = {best_mv->row * 8, best_mv->col * 8};
+ unsigned int unused;
+
+ return vfp->svaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0,
+ what->buf, what->stride, &unused, second_pred) +
+ (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost,
+ x->mvcost, x->errorperbit) : 0);
+}
+
+int vp9_hex_search(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv, MV *best_mv) {
+ // First scale has 8-closest points, the rest have 6 points in hex shape
+ // at increasing scales
+ static const int hex_num_candidates[MAX_PATTERN_SCALES] = {
+ 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
+ };
+ // Note that the largest candidate step at each scale is 2^scale
+ static const MV hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
+ {{-1, -1}, {0, -1}, {1, -1}, {1, 0}, {1, 1}, { 0, 1}, { -1, 1}, {-1, 0}},
+ {{-1, -2}, {1, -2}, {2, 0}, {1, 2}, { -1, 2}, { -2, 0}},
+ {{-2, -4}, {2, -4}, {4, 0}, {2, 4}, { -2, 4}, { -4, 0}},
+ {{-4, -8}, {4, -8}, {8, 0}, {4, 8}, { -4, 8}, { -8, 0}},
+ {{-8, -16}, {8, -16}, {16, 0}, {8, 16}, { -8, 16}, { -16, 0}},
+ {{-16, -32}, {16, -32}, {32, 0}, {16, 32}, { -16, 32}, { -32, 0}},
+ {{-32, -64}, {32, -64}, {64, 0}, {32, 64}, { -32, 64}, { -64, 0}},
+ {{-64, -128}, {64, -128}, {128, 0}, {64, 128}, { -64, 128}, { -128, 0}},
+ {{-128, -256}, {128, -256}, {256, 0}, {128, 256}, { -128, 256}, { -256, 0}},
+ {{-256, -512}, {256, -512}, {512, 0}, {256, 512}, { -256, 512}, { -512, 0}},
+ {{-512, -1024}, {512, -1024}, {1024, 0}, {512, 1024}, { -512, 1024},
+ { -1024, 0}},
+ };
+ return vp9_pattern_search(x, ref_mv, search_param, sad_per_bit,
+ do_init_search, cost_list, vfp, use_mvcost,
+ center_mv, best_mv,
+ hex_num_candidates, hex_candidates);
+}
+
+int vp9_bigdia_search(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv) {
+ // First scale has 4-closest points, the rest have 8 points in diamond
+ // shape at increasing scales
+ static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = {
+ 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ };
+ // Note that the largest candidate step at each scale is 2^scale
+ static const MV bigdia_candidates[MAX_PATTERN_SCALES]
+ [MAX_PATTERN_CANDIDATES] = {
+ {{0, -1}, {1, 0}, { 0, 1}, {-1, 0}},
+ {{-1, -1}, {0, -2}, {1, -1}, {2, 0}, {1, 1}, {0, 2}, {-1, 1}, {-2, 0}},
+ {{-2, -2}, {0, -4}, {2, -2}, {4, 0}, {2, 2}, {0, 4}, {-2, 2}, {-4, 0}},
+ {{-4, -4}, {0, -8}, {4, -4}, {8, 0}, {4, 4}, {0, 8}, {-4, 4}, {-8, 0}},
+ {{-8, -8}, {0, -16}, {8, -8}, {16, 0}, {8, 8}, {0, 16}, {-8, 8}, {-16, 0}},
+ {{-16, -16}, {0, -32}, {16, -16}, {32, 0}, {16, 16}, {0, 32},
+ {-16, 16}, {-32, 0}},
+ {{-32, -32}, {0, -64}, {32, -32}, {64, 0}, {32, 32}, {0, 64},
+ {-32, 32}, {-64, 0}},
+ {{-64, -64}, {0, -128}, {64, -64}, {128, 0}, {64, 64}, {0, 128},
+ {-64, 64}, {-128, 0}},
+ {{-128, -128}, {0, -256}, {128, -128}, {256, 0}, {128, 128}, {0, 256},
+ {-128, 128}, {-256, 0}},
+ {{-256, -256}, {0, -512}, {256, -256}, {512, 0}, {256, 256}, {0, 512},
+ {-256, 256}, {-512, 0}},
+ {{-512, -512}, {0, -1024}, {512, -512}, {1024, 0}, {512, 512}, {0, 1024},
+ {-512, 512}, {-1024, 0}},
+ };
+ return vp9_pattern_search_sad(x, ref_mv, search_param, sad_per_bit,
+ do_init_search, cost_list, vfp, use_mvcost,
+ center_mv, best_mv,
+ bigdia_num_candidates, bigdia_candidates);
+}
+
+int vp9_square_search(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv) {
+ // All scales have 8 closest points in square shape
+ static const int square_num_candidates[MAX_PATTERN_SCALES] = {
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ };
+ // Note that the largest candidate step at each scale is 2^scale
+ static const MV square_candidates[MAX_PATTERN_SCALES]
+ [MAX_PATTERN_CANDIDATES] = {
+ {{-1, -1}, {0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}},
+ {{-2, -2}, {0, -2}, {2, -2}, {2, 0}, {2, 2}, {0, 2}, {-2, 2}, {-2, 0}},
+ {{-4, -4}, {0, -4}, {4, -4}, {4, 0}, {4, 4}, {0, 4}, {-4, 4}, {-4, 0}},
+ {{-8, -8}, {0, -8}, {8, -8}, {8, 0}, {8, 8}, {0, 8}, {-8, 8}, {-8, 0}},
+ {{-16, -16}, {0, -16}, {16, -16}, {16, 0}, {16, 16}, {0, 16},
+ {-16, 16}, {-16, 0}},
+ {{-32, -32}, {0, -32}, {32, -32}, {32, 0}, {32, 32}, {0, 32},
+ {-32, 32}, {-32, 0}},
+ {{-64, -64}, {0, -64}, {64, -64}, {64, 0}, {64, 64}, {0, 64},
+ {-64, 64}, {-64, 0}},
+ {{-128, -128}, {0, -128}, {128, -128}, {128, 0}, {128, 128}, {0, 128},
+ {-128, 128}, {-128, 0}},
+ {{-256, -256}, {0, -256}, {256, -256}, {256, 0}, {256, 256}, {0, 256},
+ {-256, 256}, {-256, 0}},
+ {{-512, -512}, {0, -512}, {512, -512}, {512, 0}, {512, 512}, {0, 512},
+ {-512, 512}, {-512, 0}},
+ {{-1024, -1024}, {0, -1024}, {1024, -1024}, {1024, 0}, {1024, 1024},
+ {0, 1024}, {-1024, 1024}, {-1024, 0}},
+ };
+ return vp9_pattern_search(x, ref_mv, search_param, sad_per_bit,
+ do_init_search, cost_list, vfp, use_mvcost,
+ center_mv, best_mv,
+ square_num_candidates, square_candidates);
+}
+
+int vp9_fast_hex_search(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search, // must be zero for fast_hex
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv) {
+ return vp9_hex_search(x, ref_mv, MAX(MAX_MVSEARCH_STEPS - 2, search_param),
+ sad_per_bit, do_init_search, cost_list, vfp, use_mvcost,
+ center_mv, best_mv);
+}
+
+int vp9_fast_dia_search(const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int sad_per_bit,
+ int do_init_search,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv) {
+ return vp9_bigdia_search(x, ref_mv, MAX(MAX_MVSEARCH_STEPS - 2, search_param),
+ sad_per_bit, do_init_search, cost_list, vfp,
+ use_mvcost, center_mv, best_mv);
+}
+
+#undef CHECK_BETTER
+
+int vp9_full_range_search_c(const MACROBLOCK *x,
+ const search_site_config *cfg,
+ MV *ref_mv, MV *best_mv,
+ int search_param, int sad_per_bit, int *num00,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const int range = 64;
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = INT_MAX;
+ int r, c, i;
+ int start_col, end_col, start_row, end_row;
+
+ // The cfg and search_param parameters are not used in this search variant
+ (void)cfg;
+ (void)search_param;
+
+ clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+ *best_mv = *ref_mv;
+ *num00 = 11;
+ best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+ start_row = MAX(-range, x->mv_row_min - ref_mv->row);
+ start_col = MAX(-range, x->mv_col_min - ref_mv->col);
+ end_row = MIN(range, x->mv_row_max - ref_mv->row);
+ end_col = MIN(range, x->mv_col_max - ref_mv->col);
+
+ for (r = start_row; r <= end_row; ++r) {
+ for (c = start_col; c <= end_col; c += 4) {
+ if (c + 3 <= end_col) {
+ unsigned int sads[4];
+ const uint8_t *addrs[4];
+ for (i = 0; i < 4; ++i) {
+ const MV mv = {ref_mv->row + r, ref_mv->col + c + i};
+ addrs[i] = get_buf_from_mv(in_what, &mv);
+ }
+
+ fn_ptr->sdx4df(what->buf, what->stride, addrs, in_what->stride, sads);
+
+ for (i = 0; i < 4; ++i) {
+ if (sads[i] < best_sad) {
+ const MV mv = {ref_mv->row + r, ref_mv->col + c + i};
+ const unsigned int sad = sads[i] +
+ mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ }
+ } else {
+ for (i = 0; i < end_col - c; ++i) {
+ const MV mv = {ref_mv->row + r, ref_mv->col + c + i};
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv), in_what->stride);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return best_sad;
+}
+
+int vp9_diamond_search_sad_c(const MACROBLOCK *x,
+ const search_site_config *cfg,
+ MV *ref_mv, MV *best_mv, int search_param,
+ int sad_per_bit, int *num00,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv) {
+ int i, j, step;
+
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ uint8_t *what = x->plane[0].src.buf;
+ const int what_stride = x->plane[0].src.stride;
+ const uint8_t *in_what;
+ const int in_what_stride = xd->plane[0].pre[0].stride;
+ const uint8_t *best_address;
+
+ unsigned int bestsad = INT_MAX;
+ int best_site = 0;
+ int last_site = 0;
+
+ int ref_row;
+ int ref_col;
+
+ // search_param determines the length of the initial step and hence the number
+ // of iterations.
+ // 0 = initial step (MAX_FIRST_STEP) pel
+ // 1 = (MAX_FIRST_STEP/2) pel,
+ // 2 = (MAX_FIRST_STEP/4) pel...
+ const search_site *ss = &cfg->ss[search_param * cfg->searches_per_step];
+ const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param;
+
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
+ ref_row = ref_mv->row;
+ ref_col = ref_mv->col;
+ *num00 = 0;
+ best_mv->row = ref_row;
+ best_mv->col = ref_col;
+
+ // Work out the start point for the search
+ in_what = xd->plane[0].pre[0].buf + ref_row * in_what_stride + ref_col;
+ best_address = in_what;
+
+ // Check the starting position
+ bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride)
+ + mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit);
+
+ i = 1;
+
+ for (step = 0; step < tot_steps; step++) {
+ int all_in = 1, t;
+
+ // All_in is true if every one of the points we are checking are within
+ // the bounds of the image.
+ all_in &= ((best_mv->row + ss[i].mv.row) > x->mv_row_min);
+ all_in &= ((best_mv->row + ss[i + 1].mv.row) < x->mv_row_max);
+ all_in &= ((best_mv->col + ss[i + 2].mv.col) > x->mv_col_min);
+ all_in &= ((best_mv->col + ss[i + 3].mv.col) < x->mv_col_max);
+
+ // If all the pixels are within the bounds we don't check whether the
+ // search point is valid in this loop, otherwise we check each point
+ // for validity..
+ if (all_in) {
+ unsigned int sad_array[4];
+
+ for (j = 0; j < cfg->searches_per_step; j += 4) {
+ unsigned char const *block_offset[4];
+
+ for (t = 0; t < 4; t++)
+ block_offset[t] = ss[i + t].offset + best_address;
+
+ fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride,
+ sad_array);
+
+ for (t = 0; t < 4; t++, i++) {
+ if (sad_array[t] < bestsad) {
+ const MV this_mv = {best_mv->row + ss[i].mv.row,
+ best_mv->col + ss[i].mv.col};
+ sad_array[t] += mvsad_err_cost(x, &this_mv, &fcenter_mv,
+ sad_per_bit);
+ if (sad_array[t] < bestsad) {
+ bestsad = sad_array[t];
+ best_site = i;
+ }
+ }
+ }
+ }
+ } else {
+ for (j = 0; j < cfg->searches_per_step; j++) {
+ // Trap illegal vectors
+ const MV this_mv = {best_mv->row + ss[i].mv.row,
+ best_mv->col + ss[i].mv.col};
+
+ if (is_mv_in(x, &this_mv)) {
+ const uint8_t *const check_here = ss[i].offset + best_address;
+ unsigned int thissad = fn_ptr->sdf(what, what_stride, check_here,
+ in_what_stride);
+
+ if (thissad < bestsad) {
+ thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
+ if (thissad < bestsad) {
+ bestsad = thissad;
+ best_site = i;
+ }
+ }
+ }
+ i++;
+ }
+ }
+ if (best_site != last_site) {
+ best_mv->row += ss[best_site].mv.row;
+ best_mv->col += ss[best_site].mv.col;
+ best_address += ss[best_site].offset;
+ last_site = best_site;
+#if defined(NEW_DIAMOND_SEARCH)
+ while (1) {
+ const MV this_mv = {best_mv->row + ss[best_site].mv.row,
+ best_mv->col + ss[best_site].mv.col};
+ if (is_mv_in(x, &this_mv)) {
+ const uint8_t *const check_here = ss[best_site].offset + best_address;
+ unsigned int thissad = fn_ptr->sdf(what, what_stride, check_here,
+ in_what_stride);
+ if (thissad < bestsad) {
+ thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
+ if (thissad < bestsad) {
+ bestsad = thissad;
+ best_mv->row += ss[best_site].mv.row;
+ best_mv->col += ss[best_site].mv.col;
+ best_address += ss[best_site].offset;
+ continue;
+ }
+ }
+ }
+ break;
+ };
+#endif
+ } else if (best_address == in_what) {
+ (*num00)++;
+ }
+ }
+ return bestsad;
+}
+
+static int vector_match(int16_t *ref, int16_t *src, int bwl) {
+ int best_sad = INT_MAX;
+ int this_sad;
+ int d;
+ int center, offset = 0;
+ int bw = 4 << bwl; // redundant variable, to be changed in the experiments.
+ for (d = 0; d <= bw; d += 16) {
+ this_sad = vp9_vector_var(&ref[d], src, bwl);
+ if (this_sad < best_sad) {
+ best_sad = this_sad;
+ offset = d;
+ }
+ }
+ center = offset;
+
+ for (d = -8; d <= 8; d += 16) {
+ int this_pos = offset + d;
+ // check limit
+ if (this_pos < 0 || this_pos > bw)
+ continue;
+ this_sad = vp9_vector_var(&ref[this_pos], src, bwl);
+ if (this_sad < best_sad) {
+ best_sad = this_sad;
+ center = this_pos;
+ }
+ }
+ offset = center;
+
+ for (d = -4; d <= 4; d += 8) {
+ int this_pos = offset + d;
+ // check limit
+ if (this_pos < 0 || this_pos > bw)
+ continue;
+ this_sad = vp9_vector_var(&ref[this_pos], src, bwl);
+ if (this_sad < best_sad) {
+ best_sad = this_sad;
+ center = this_pos;
+ }
+ }
+ offset = center;
+
+ for (d = -2; d <= 2; d += 4) {
+ int this_pos = offset + d;
+ // check limit
+ if (this_pos < 0 || this_pos > bw)
+ continue;
+ this_sad = vp9_vector_var(&ref[this_pos], src, bwl);
+ if (this_sad < best_sad) {
+ best_sad = this_sad;
+ center = this_pos;
+ }
+ }
+ offset = center;
+
+ for (d = -1; d <= 1; d += 2) {
+ int this_pos = offset + d;
+ // check limit
+ if (this_pos < 0 || this_pos > bw)
+ continue;
+ this_sad = vp9_vector_var(&ref[this_pos], src, bwl);
+ if (this_sad < best_sad) {
+ best_sad = this_sad;
+ center = this_pos;
+ }
+ }
+
+ return (center - (bw >> 1));
+}
+
+static const MV search_pos[4] = {
+ {-1, 0}, {0, -1}, {0, 1}, {1, 0},
+};
+
+unsigned int vp9_int_pro_motion_estimation(const VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize,
+ int mi_row, int mi_col) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
+ DECLARE_ALIGNED(16, int16_t, hbuf[128]);
+ DECLARE_ALIGNED(16, int16_t, vbuf[128]);
+ DECLARE_ALIGNED(16, int16_t, src_hbuf[64]);
+ DECLARE_ALIGNED(16, int16_t, src_vbuf[64]);
+ int idx;
+ const int bw = 4 << b_width_log2_lookup[bsize];
+ const int bh = 4 << b_height_log2_lookup[bsize];
+ const int search_width = bw << 1;
+ const int search_height = bh << 1;
+ const int src_stride = x->plane[0].src.stride;
+ const int ref_stride = xd->plane[0].pre[0].stride;
+ uint8_t const *ref_buf, *src_buf;
+ MV *tmp_mv = &xd->mi[0]->mbmi.mv[0].as_mv;
+ unsigned int best_sad, tmp_sad, this_sad[4];
+ MV this_mv;
+ const int norm_factor = 3 + (bw >> 5);
+ const YV12_BUFFER_CONFIG *scaled_ref_frame =
+ vp9_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]);
+
+ if (scaled_ref_frame) {
+ int i;
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // motion search code to be used without additional modifications.
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ backup_yv12[i] = xd->plane[i].pre[0];
+ vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ {
+ unsigned int this_sad;
+ tmp_mv->row = 0;
+ tmp_mv->col = 0;
+ this_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, src_stride,
+ xd->plane[0].pre[0].buf, ref_stride);
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+ return this_sad;
+ }
+#endif
+
+ // Set up prediction 1-D reference set
+ ref_buf = xd->plane[0].pre[0].buf - (bw >> 1);
+ for (idx = 0; idx < search_width; idx += 16) {
+ vp9_int_pro_row(&hbuf[idx], ref_buf, ref_stride, bh);
+ ref_buf += 16;
+ }
+
+ ref_buf = xd->plane[0].pre[0].buf - (bh >> 1) * ref_stride;
+ for (idx = 0; idx < search_height; ++idx) {
+ vbuf[idx] = vp9_int_pro_col(ref_buf, bw) >> norm_factor;
+ ref_buf += ref_stride;
+ }
+
+ // Set up src 1-D reference set
+ for (idx = 0; idx < bw; idx += 16) {
+ src_buf = x->plane[0].src.buf + idx;
+ vp9_int_pro_row(&src_hbuf[idx], src_buf, src_stride, bh);
+ }
+
+ src_buf = x->plane[0].src.buf;
+ for (idx = 0; idx < bh; ++idx) {
+ src_vbuf[idx] = vp9_int_pro_col(src_buf, bw) >> norm_factor;
+ src_buf += src_stride;
+ }
+
+ // Find the best match per 1-D search
+ tmp_mv->col = vector_match(hbuf, src_hbuf, b_width_log2_lookup[bsize]);
+ tmp_mv->row = vector_match(vbuf, src_vbuf, b_height_log2_lookup[bsize]);
+
+ this_mv = *tmp_mv;
+ src_buf = x->plane[0].src.buf;
+ ref_buf = xd->plane[0].pre[0].buf + this_mv.row * ref_stride + this_mv.col;
+ best_sad = cpi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride);
+
+ {
+ const uint8_t * const pos[4] = {
+ ref_buf - ref_stride,
+ ref_buf - 1,
+ ref_buf + 1,
+ ref_buf + ref_stride,
+ };
+
+ cpi->fn_ptr[bsize].sdx4df(src_buf, src_stride, pos, ref_stride, this_sad);
+ }
+
+ for (idx = 0; idx < 4; ++idx) {
+ if (this_sad[idx] < best_sad) {
+ best_sad = this_sad[idx];
+ tmp_mv->row = search_pos[idx].row + this_mv.row;
+ tmp_mv->col = search_pos[idx].col + this_mv.col;
+ }
+ }
+
+ if (this_sad[0] < this_sad[3])
+ this_mv.row -= 1;
+ else
+ this_mv.row += 1;
+
+ if (this_sad[1] < this_sad[2])
+ this_mv.col -= 1;
+ else
+ this_mv.col += 1;
+
+ ref_buf = xd->plane[0].pre[0].buf + this_mv.row * ref_stride + this_mv.col;
+
+ tmp_sad = cpi->fn_ptr[bsize].sdf(src_buf, src_stride,
+ ref_buf, ref_stride);
+ if (best_sad > tmp_sad) {
+ *tmp_mv = this_mv;
+ best_sad = tmp_sad;
+ }
+
+ tmp_mv->row *= 8;
+ tmp_mv->col *= 8;
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+
+ return best_sad;
+}
+
+/* do_refine: If last step (1-away) of n-step search doesn't pick the center
+ point as the best match, we will do a final 1-away diamond
+ refining search */
+int vp9_full_pixel_diamond(const VP9_COMP *cpi, MACROBLOCK *x,
+ MV *mvp_full, int step_param,
+ int sadpb, int further_steps, int do_refine,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *ref_mv, MV *dst_mv) {
+ MV temp_mv;
+ int thissme, n, num00 = 0;
+ int bestsme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv,
+ step_param, sadpb, &n,
+ fn_ptr, ref_mv);
+ if (bestsme < INT_MAX)
+ bestsme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
+ *dst_mv = temp_mv;
+
+ // If there won't be more n-step search, check to see if refining search is
+ // needed.
+ if (n > further_steps)
+ do_refine = 0;
+
+ while (n < further_steps) {
+ ++n;
+
+ if (num00) {
+ num00--;
+ } else {
+ thissme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv,
+ step_param + n, sadpb, &num00,
+ fn_ptr, ref_mv);
+ if (thissme < INT_MAX)
+ thissme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
+
+ // check to see if refining search is needed.
+ if (num00 > further_steps - n)
+ do_refine = 0;
+
+ if (thissme < bestsme) {
+ bestsme = thissme;
+ *dst_mv = temp_mv;
+ }
+ }
+ }
+
+ // final 1-away diamond refining search
+ if (do_refine) {
+ const int search_range = 8;
+ MV best_mv = *dst_mv;
+ thissme = vp9_refining_search_sad(x, &best_mv, sadpb, search_range,
+ fn_ptr, ref_mv);
+ if (thissme < INT_MAX)
+ thissme = vp9_get_mvpred_var(x, &best_mv, ref_mv, fn_ptr, 1);
+ if (thissme < bestsme) {
+ bestsme = thissme;
+ *dst_mv = best_mv;
+ }
+ }
+
+ // Return cost list.
+ if (cost_list) {
+ calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list);
+ }
+ return bestsme;
+}
+
+int vp9_full_search_sad_c(const MACROBLOCK *x, const MV *ref_mv,
+ int sad_per_bit, int distance,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, MV *best_mv) {
+ int r, c;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
+ const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
+ const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
+ const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ int best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+ *best_mv = *ref_mv;
+
+ for (r = row_min; r < row_max; ++r) {
+ for (c = col_min; c < col_max; ++c) {
+ const MV mv = {r, c};
+ const int sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv), in_what->stride) +
+ mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ }
+ return best_sad;
+}
+
+int vp9_full_search_sadx3(const MACROBLOCK *x, const MV *ref_mv,
+ int sad_per_bit, int distance,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, MV *best_mv) {
+ int r;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
+ const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
+ const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
+ const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+ *best_mv = *ref_mv;
+
+ for (r = row_min; r < row_max; ++r) {
+ int c = col_min;
+ const uint8_t *check_here = &in_what->buf[r * in_what->stride + c];
+
+ if (fn_ptr->sdx3f != NULL) {
+ while ((c + 2) < col_max) {
+ int i;
+ DECLARE_ALIGNED(16, uint32_t, sads[3]);
+
+ fn_ptr->sdx3f(what->buf, what->stride, check_here, in_what->stride,
+ sads);
+
+ for (i = 0; i < 3; ++i) {
+ unsigned int sad = sads[i];
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ ++check_here;
+ ++c;
+ }
+ }
+ }
+
+ while (c < col_max) {
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ check_here, in_what->stride);
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ ++check_here;
+ ++c;
+ }
+ }
+
+ return best_sad;
+}
+
+int vp9_full_search_sadx8(const MACROBLOCK *x, const MV *ref_mv,
+ int sad_per_bit, int distance,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, MV *best_mv) {
+ int r;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const int row_min = MAX(ref_mv->row - distance, x->mv_row_min);
+ const int row_max = MIN(ref_mv->row + distance, x->mv_row_max);
+ const int col_min = MAX(ref_mv->col - distance, x->mv_col_min);
+ const int col_max = MIN(ref_mv->col + distance, x->mv_col_max);
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
+ *best_mv = *ref_mv;
+
+ for (r = row_min; r < row_max; ++r) {
+ int c = col_min;
+ const uint8_t *check_here = &in_what->buf[r * in_what->stride + c];
+
+ if (fn_ptr->sdx8f != NULL) {
+ while ((c + 7) < col_max) {
+ int i;
+ DECLARE_ALIGNED(16, uint32_t, sads[8]);
+
+ fn_ptr->sdx8f(what->buf, what->stride, check_here, in_what->stride,
+ sads);
+
+ for (i = 0; i < 8; ++i) {
+ unsigned int sad = sads[i];
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ ++check_here;
+ ++c;
+ }
+ }
+ }
+
+ if (fn_ptr->sdx3f != NULL) {
+ while ((c + 2) < col_max) {
+ int i;
+ DECLARE_ALIGNED(16, uint32_t, sads[3]);
+
+ fn_ptr->sdx3f(what->buf, what->stride, check_here, in_what->stride,
+ sads);
+
+ for (i = 0; i < 3; ++i) {
+ unsigned int sad = sads[i];
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ ++check_here;
+ ++c;
+ }
+ }
+ }
+
+ while (c < col_max) {
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ check_here, in_what->stride);
+ if (sad < best_sad) {
+ const MV mv = {r, c};
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ *best_mv = mv;
+ }
+ }
+ ++check_here;
+ ++c;
+ }
+ }
+
+ return best_sad;
+}
+
+int vp9_refining_search_sad(const MACROBLOCK *x,
+ MV *ref_mv, int error_per_bit,
+ int search_range,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MV neighbors[4] = {{ -1, 0}, {0, -1}, {0, 1}, {1, 0}};
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ const uint8_t *best_address = get_buf_from_mv(in_what, ref_mv);
+ unsigned int best_sad = fn_ptr->sdf(what->buf, what->stride, best_address,
+ in_what->stride) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
+ int i, j;
+
+ for (i = 0; i < search_range; i++) {
+ int best_site = -1;
+ const int all_in = ((ref_mv->row - 1) > x->mv_row_min) &
+ ((ref_mv->row + 1) < x->mv_row_max) &
+ ((ref_mv->col - 1) > x->mv_col_min) &
+ ((ref_mv->col + 1) < x->mv_col_max);
+
+ if (all_in) {
+ unsigned int sads[4];
+ const uint8_t *const positions[4] = {
+ best_address - in_what->stride,
+ best_address - 1,
+ best_address + 1,
+ best_address + in_what->stride
+ };
+
+ fn_ptr->sdx4df(what->buf, what->stride, positions, in_what->stride, sads);
+
+ for (j = 0; j < 4; ++j) {
+ if (sads[j] < best_sad) {
+ const MV mv = {ref_mv->row + neighbors[j].row,
+ ref_mv->col + neighbors[j].col};
+ sads[j] += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+ if (sads[j] < best_sad) {
+ best_sad = sads[j];
+ best_site = j;
+ }
+ }
+ }
+ } else {
+ for (j = 0; j < 4; ++j) {
+ const MV mv = {ref_mv->row + neighbors[j].row,
+ ref_mv->col + neighbors[j].col};
+
+ if (is_mv_in(x, &mv)) {
+ unsigned int sad = fn_ptr->sdf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv),
+ in_what->stride);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ best_site = j;
+ }
+ }
+ }
+ }
+ }
+
+ if (best_site == -1) {
+ break;
+ } else {
+ ref_mv->row += neighbors[best_site].row;
+ ref_mv->col += neighbors[best_site].col;
+ best_address = get_buf_from_mv(in_what, ref_mv);
+ }
+ }
+
+ return best_sad;
+}
+
+// This function is called when we do joint motion search in comp_inter_inter
+// mode.
+int vp9_refining_search_8p_c(const MACROBLOCK *x,
+ MV *ref_mv, int error_per_bit,
+ int search_range,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv,
+ const uint8_t *second_pred) {
+ const MV neighbors[8] = {{-1, 0}, {0, -1}, {0, 1}, {1, 0},
+ {-1, -1}, {1, -1}, {-1, 1}, {1, 1}};
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const what = &x->plane[0].src;
+ const struct buf_2d *const in_what = &xd->plane[0].pre[0];
+ const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
+ unsigned int best_sad = fn_ptr->sdaf(what->buf, what->stride,
+ get_buf_from_mv(in_what, ref_mv), in_what->stride, second_pred) +
+ mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
+ int i, j;
+
+ for (i = 0; i < search_range; ++i) {
+ int best_site = -1;
+
+ for (j = 0; j < 8; ++j) {
+ const MV mv = {ref_mv->row + neighbors[j].row,
+ ref_mv->col + neighbors[j].col};
+
+ if (is_mv_in(x, &mv)) {
+ unsigned int sad = fn_ptr->sdaf(what->buf, what->stride,
+ get_buf_from_mv(in_what, &mv), in_what->stride, second_pred);
+ if (sad < best_sad) {
+ sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
+ if (sad < best_sad) {
+ best_sad = sad;
+ best_site = j;
+ }
+ }
+ }
+ }
+
+ if (best_site == -1) {
+ break;
+ } else {
+ ref_mv->row += neighbors[best_site].row;
+ ref_mv->col += neighbors[best_site].col;
+ }
+ }
+ return best_sad;
+}
+
+int vp9_full_pixel_search(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, MV *mvp_full,
+ int step_param, int error_per_bit,
+ int *cost_list,
+ const MV *ref_mv, MV *tmp_mv,
+ int var_max, int rd) {
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ const SEARCH_METHODS method = sf->mv.search_method;
+ vp9_variance_fn_ptr_t *fn_ptr = &cpi->fn_ptr[bsize];
+ int var = 0;
+ if (cost_list) {
+ cost_list[0] = INT_MAX;
+ cost_list[1] = INT_MAX;
+ cost_list[2] = INT_MAX;
+ cost_list[3] = INT_MAX;
+ cost_list[4] = INT_MAX;
+ }
+
+ switch (method) {
+ case FAST_DIAMOND:
+ var = vp9_fast_dia_search(x, mvp_full, step_param, error_per_bit, 0,
+ cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+ break;
+ case FAST_HEX:
+ var = vp9_fast_hex_search(x, mvp_full, step_param, error_per_bit, 0,
+ cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+ break;
+ case HEX:
+ var = vp9_hex_search(x, mvp_full, step_param, error_per_bit, 1,
+ cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+ break;
+ case SQUARE:
+ var = vp9_square_search(x, mvp_full, step_param, error_per_bit, 1,
+ cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+ break;
+ case BIGDIA:
+ var = vp9_bigdia_search(x, mvp_full, step_param, error_per_bit, 1,
+ cost_list, fn_ptr, 1, ref_mv, tmp_mv);
+ break;
+ case NSTEP:
+ var = vp9_full_pixel_diamond(cpi, x, mvp_full, step_param, error_per_bit,
+ MAX_MVSEARCH_STEPS - 1 - step_param,
+ 1, cost_list, fn_ptr, ref_mv, tmp_mv);
+ break;
+ default:
+ assert(0 && "Invalid search method.");
+ }
+
+ if (method != NSTEP && rd && var < var_max)
+ var = vp9_get_mvpred_var(x, tmp_mv, ref_mv, fn_ptr, 1);
+
+ return var;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_mcomp.h b/media/libvpx/vp9/encoder/vp9_mcomp.h
new file mode 100644
index 000000000..99c1afa28
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_mcomp.h
@@ -0,0 +1,165 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_MCOMP_H_
+#define VP9_ENCODER_VP9_MCOMP_H_
+
+#include "vp9/encoder/vp9_block.h"
+#include "vp9/encoder/vp9_variance.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// The maximum number of steps in a step search given the largest
+// allowed initial step
+#define MAX_MVSEARCH_STEPS 11
+// Max full pel mv specified in the unit of full pixel
+// Enable the use of motion vector in range [-1023, 1023].
+#define MAX_FULL_PEL_VAL ((1 << (MAX_MVSEARCH_STEPS - 1)) - 1)
+// Maximum size of the first step in full pel units
+#define MAX_FIRST_STEP (1 << (MAX_MVSEARCH_STEPS-1))
+// Allowed motion vector pixel distance outside image border
+// for Block_16x16
+#define BORDER_MV_PIXELS_B16 (16 + VP9_INTERP_EXTEND)
+
+// motion search site
+typedef struct search_site {
+ MV mv;
+ int offset;
+} search_site;
+
+typedef struct search_site_config {
+ search_site ss[8 * MAX_MVSEARCH_STEPS + 1];
+ int ss_count;
+ int searches_per_step;
+} search_site_config;
+
+void vp9_init_dsmotion_compensation(search_site_config *cfg, int stride);
+void vp9_init3smotion_compensation(search_site_config *cfg, int stride);
+
+void vp9_set_mv_search_range(MACROBLOCK *x, const MV *mv);
+int vp9_mv_bit_cost(const MV *mv, const MV *ref,
+ const int *mvjcost, int *mvcost[2], int weight);
+
+// Utility to compute variance + MV rate cost for a given MV
+int vp9_get_mvpred_var(const MACROBLOCK *x,
+ const MV *best_mv, const MV *center_mv,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost);
+int vp9_get_mvpred_av_var(const MACROBLOCK *x,
+ const MV *best_mv, const MV *center_mv,
+ const uint8_t *second_pred,
+ const vp9_variance_fn_ptr_t *vfp,
+ int use_mvcost);
+
+struct VP9_COMP;
+struct SPEED_FEATURES;
+
+int vp9_init_search_range(int size);
+
+int vp9_refining_search_sad(const struct macroblock *x,
+ struct mv *ref_mv,
+ int sad_per_bit, int distance,
+ const struct vp9_variance_vtable *fn_ptr,
+ const struct mv *center_mv);
+
+// Runs sequence of diamond searches in smaller steps for RD.
+int vp9_full_pixel_diamond(const struct VP9_COMP *cpi, MACROBLOCK *x,
+ MV *mvp_full, int step_param,
+ int sadpb, int further_steps, int do_refine,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *ref_mv, MV *dst_mv);
+
+// Perform integral projection based motion estimation.
+unsigned int vp9_int_pro_motion_estimation(const struct VP9_COMP *cpi,
+ MACROBLOCK *x,
+ BLOCK_SIZE bsize,
+ int mi_row, int mi_col);
+
+typedef int (integer_mv_pattern_search_fn) (
+ const MACROBLOCK *x,
+ MV *ref_mv,
+ int search_param,
+ int error_per_bit,
+ int do_init_search,
+ int *cost_list,
+ const vp9_variance_fn_ptr_t *vf,
+ int use_mvcost,
+ const MV *center_mv,
+ MV *best_mv);
+
+integer_mv_pattern_search_fn vp9_hex_search;
+integer_mv_pattern_search_fn vp9_bigdia_search;
+integer_mv_pattern_search_fn vp9_square_search;
+integer_mv_pattern_search_fn vp9_fast_hex_search;
+integer_mv_pattern_search_fn vp9_fast_dia_search;
+
+typedef int (fractional_mv_step_fp) (
+ const MACROBLOCK *x,
+ MV *bestmv, const MV *ref_mv,
+ int allow_hp,
+ int error_per_bit,
+ const vp9_variance_fn_ptr_t *vfp,
+ int forced_stop, // 0 - full, 1 - qtr only, 2 - half only
+ int iters_per_step,
+ int *cost_list,
+ int *mvjcost, int *mvcost[2],
+ int *distortion, unsigned int *sse1,
+ const uint8_t *second_pred,
+ int w, int h);
+
+extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree;
+extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree_pruned;
+extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree_pruned_more;
+extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree_pruned_evenmore;
+
+typedef int (*vp9_full_search_fn_t)(const MACROBLOCK *x,
+ const MV *ref_mv, int sad_per_bit,
+ int distance,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, MV *best_mv);
+
+typedef int (*vp9_refining_search_fn_t)(const MACROBLOCK *x,
+ MV *ref_mv, int sad_per_bit,
+ int distance,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv);
+
+typedef int (*vp9_diamond_search_fn_t)(const MACROBLOCK *x,
+ const search_site_config *cfg,
+ MV *ref_mv, MV *best_mv,
+ int search_param, int sad_per_bit,
+ int *num00,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv);
+
+int vp9_refining_search_8p_c(const MACROBLOCK *x,
+ MV *ref_mv, int error_per_bit,
+ int search_range,
+ const vp9_variance_fn_ptr_t *fn_ptr,
+ const MV *center_mv, const uint8_t *second_pred);
+
+struct VP9_COMP;
+
+int vp9_full_pixel_search(struct VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, MV *mvp_full,
+ int step_param, int error_per_bit,
+ int *cost_list,
+ const MV *ref_mv, MV *tmp_mv,
+ int var_max, int rd);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_MCOMP_H_
diff --git a/media/libvpx/vp9/encoder/vp9_picklpf.c b/media/libvpx/vp9/encoder/vp9_picklpf.c
new file mode 100644
index 000000000..8e1910385
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_picklpf.c
@@ -0,0 +1,192 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+
+#include "./vpx_scale_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_loopfilter.h"
+#include "vp9/common/vp9_onyxc_int.h"
+#include "vp9/common/vp9_quant_common.h"
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_picklpf.h"
+#include "vp9/encoder/vp9_quantize.h"
+
+static int get_max_filter_level(const VP9_COMP *cpi) {
+ if (cpi->oxcf.pass == 2) {
+ return cpi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4
+ : MAX_LOOP_FILTER;
+ } else {
+ return MAX_LOOP_FILTER;
+ }
+}
+
+
+static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd,
+ VP9_COMP *const cpi,
+ int filt_level, int partial_frame) {
+ VP9_COMMON *const cm = &cpi->common;
+ int64_t filt_err;
+
+ if (cpi->num_workers > 1)
+ vp9_loop_filter_frame_mt(cm->frame_to_show, cm, cpi->td.mb.e_mbd.plane,
+ filt_level, 1, partial_frame,
+ cpi->workers, cpi->num_workers, &cpi->lf_row_sync);
+ else
+ vp9_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level,
+ 1, partial_frame);
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) {
+ filt_err = vp9_highbd_get_y_sse(sd, cm->frame_to_show);
+ } else {
+ filt_err = vp9_get_y_sse(sd, cm->frame_to_show);
+ }
+#else
+ filt_err = vp9_get_y_sse(sd, cm->frame_to_show);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ // Re-instate the unfiltered frame
+ vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
+
+ return filt_err;
+}
+
+static int search_filter_level(const YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi,
+ int partial_frame) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const struct loopfilter *const lf = &cm->lf;
+ const int min_filter_level = 0;
+ const int max_filter_level = get_max_filter_level(cpi);
+ int filt_direction = 0;
+ int64_t best_err;
+ int filt_best;
+
+ // Start the search at the previous frame filter level unless it is now out of
+ // range.
+ int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
+ int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
+ // Sum squared error at each filter level
+ int64_t ss_err[MAX_LOOP_FILTER + 1];
+
+ // Set each entry to -1
+ memset(ss_err, 0xFF, sizeof(ss_err));
+
+ // Make a copy of the unfiltered / processed recon buffer
+ vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
+
+ best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame);
+ filt_best = filt_mid;
+ ss_err[filt_mid] = best_err;
+
+ while (filter_step > 0) {
+ const int filt_high = MIN(filt_mid + filter_step, max_filter_level);
+ const int filt_low = MAX(filt_mid - filter_step, min_filter_level);
+
+ // Bias against raising loop filter in favor of lowering it.
+ int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
+
+ if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20))
+ bias = (bias * cpi->twopass.section_intra_rating) / 20;
+
+ // yx, bias less for large block size
+ if (cm->tx_mode != ONLY_4X4)
+ bias >>= 1;
+
+ if (filt_direction <= 0 && filt_low != filt_mid) {
+ // Get Low filter error score
+ if (ss_err[filt_low] < 0) {
+ ss_err[filt_low] = try_filter_frame(sd, cpi, filt_low, partial_frame);
+ }
+ // If value is close to the best so far then bias towards a lower loop
+ // filter value.
+ if ((ss_err[filt_low] - bias) < best_err) {
+ // Was it actually better than the previous best?
+ if (ss_err[filt_low] < best_err)
+ best_err = ss_err[filt_low];
+
+ filt_best = filt_low;
+ }
+ }
+
+ // Now look at filt_high
+ if (filt_direction >= 0 && filt_high != filt_mid) {
+ if (ss_err[filt_high] < 0) {
+ ss_err[filt_high] = try_filter_frame(sd, cpi, filt_high, partial_frame);
+ }
+ // Was it better than the previous best?
+ if (ss_err[filt_high] < (best_err - bias)) {
+ best_err = ss_err[filt_high];
+ filt_best = filt_high;
+ }
+ }
+
+ // Half the step distance if the best filter value was the same as last time
+ if (filt_best == filt_mid) {
+ filter_step /= 2;
+ filt_direction = 0;
+ } else {
+ filt_direction = (filt_best < filt_mid) ? -1 : 1;
+ filt_mid = filt_best;
+ }
+ }
+
+ return filt_best;
+}
+
+void vp9_pick_filter_level(const YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi,
+ LPF_PICK_METHOD method) {
+ VP9_COMMON *const cm = &cpi->common;
+ struct loopfilter *const lf = &cm->lf;
+
+ lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0
+ : cpi->oxcf.sharpness;
+
+ if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) {
+ lf->filter_level = 0;
+ } else if (method >= LPF_PICK_FROM_Q) {
+ const int min_filter_level = 0;
+ const int max_filter_level = get_max_filter_level(cpi);
+ const int q = vp9_ac_quant(cm->base_qindex, 0, cm->bit_depth);
+ // These values were determined by linear fitting the result of the
+ // searched level, filt_guess = q * 0.316206 + 3.87252
+#if CONFIG_VP9_HIGHBITDEPTH
+ int filt_guess;
+ switch (cm->bit_depth) {
+ case VPX_BITS_8:
+ filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
+ break;
+ case VPX_BITS_10:
+ filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
+ break;
+ case VPX_BITS_12:
+ filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
+ break;
+ default:
+ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 "
+ "or VPX_BITS_12");
+ return;
+ }
+#else
+ int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ if (cm->frame_type == KEY_FRAME)
+ filt_guess -= 4;
+ lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
+ } else {
+ lf->filter_level = search_filter_level(sd, cpi,
+ method == LPF_PICK_FROM_SUBIMAGE);
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_picklpf.h b/media/libvpx/vp9/encoder/vp9_picklpf.h
new file mode 100644
index 000000000..33c490f69
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_picklpf.h
@@ -0,0 +1,30 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_PICKLPF_H_
+#define VP9_ENCODER_VP9_PICKLPF_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "vp9/encoder/vp9_encoder.h"
+
+struct yv12_buffer_config;
+struct VP9_COMP;
+
+void vp9_pick_filter_level(const struct yv12_buffer_config *sd,
+ struct VP9_COMP *cpi, LPF_PICK_METHOD method);
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_PICKLPF_H_
diff --git a/media/libvpx/vp9/encoder/vp9_pickmode.c b/media/libvpx/vp9/encoder/vp9_pickmode.c
new file mode 100644
index 000000000..2c7883183
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_pickmode.c
@@ -0,0 +1,1885 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_blockd.h"
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_reconintra.h"
+#include "vp9/common/vp9_scan.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_pickmode.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rd.h"
+
+typedef struct {
+ uint8_t *data;
+ int stride;
+ int in_use;
+} PRED_BUFFER;
+
+static int mv_refs_rt(const VP9_COMMON *cm, const MACROBLOCKD *xd,
+ const TileInfo *const tile,
+ MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
+ int_mv *mv_ref_list,
+ int mi_row, int mi_col) {
+ const int *ref_sign_bias = cm->ref_frame_sign_bias;
+ int i, refmv_count = 0;
+
+ const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type];
+
+ int different_ref_found = 0;
+ int context_counter = 0;
+ int const_motion = 0;
+
+ // Blank the reference vector list
+ memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
+
+ // The nearest 2 blocks are treated differently
+ // if the size < 8x8 we get the mv from the bmi substructure,
+ // and we also need to keep a mode count.
+ for (i = 0; i < 2; ++i) {
+ const POSITION *const mv_ref = &mv_ref_search[i];
+ if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
+ const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row *
+ xd->mi_stride];
+ const MB_MODE_INFO *const candidate = &candidate_mi->mbmi;
+ // Keep counts for entropy encoding.
+ context_counter += mode_2_counter[candidate->mode];
+ different_ref_found = 1;
+
+ if (candidate->ref_frame[0] == ref_frame)
+ ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1),
+ refmv_count, mv_ref_list, Done);
+ }
+ }
+
+ const_motion = 1;
+
+ // Check the rest of the neighbors in much the same way
+ // as before except we don't need to keep track of sub blocks or
+ // mode counts.
+ for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
+ const POSITION *const mv_ref = &mv_ref_search[i];
+ if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
+ const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row *
+ xd->mi_stride]->mbmi;
+ different_ref_found = 1;
+
+ if (candidate->ref_frame[0] == ref_frame)
+ ADD_MV_REF_LIST(candidate->mv[0], refmv_count, mv_ref_list, Done);
+ }
+ }
+
+ // Since we couldn't find 2 mvs from the same reference frame
+ // go back through the neighbors and find motion vectors from
+ // different reference frames.
+ if (different_ref_found && !refmv_count) {
+ for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
+ const POSITION *mv_ref = &mv_ref_search[i];
+ if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
+ const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row
+ * xd->mi_stride]->mbmi;
+
+ // If the candidate is INTRA we don't want to consider its mv.
+ IF_DIFF_REF_FRAME_ADD_MV(candidate, ref_frame, ref_sign_bias,
+ refmv_count, mv_ref_list, Done);
+ }
+ }
+ }
+
+ Done:
+
+ mi->mbmi.mode_context[ref_frame] = counter_to_context[context_counter];
+
+ // Clamp vectors
+ for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
+ clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
+
+ return const_motion;
+}
+
+static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ int_mv *tmp_mv, int *rate_mv,
+ int64_t best_rd_sofar) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
+ const int step_param = cpi->sf.mv.fullpel_search_step_param;
+ const int sadpb = x->sadperbit16;
+ MV mvp_full;
+ const int ref = mbmi->ref_frame[0];
+ const MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
+ int dis;
+ int rate_mode;
+ const int tmp_col_min = x->mv_col_min;
+ const int tmp_col_max = x->mv_col_max;
+ const int tmp_row_min = x->mv_row_min;
+ const int tmp_row_max = x->mv_row_max;
+ int rv = 0;
+ int cost_list[5];
+ const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
+ ref);
+ if (scaled_ref_frame) {
+ int i;
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // motion search code to be used without additional modifications.
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ backup_yv12[i] = xd->plane[i].pre[0];
+ vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
+ }
+ vp9_set_mv_search_range(x, &ref_mv);
+
+ assert(x->mv_best_ref_index[ref] <= 2);
+ if (x->mv_best_ref_index[ref] < 2)
+ mvp_full = mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
+ else
+ mvp_full = x->pred_mv[ref];
+
+ mvp_full.col >>= 3;
+ mvp_full.row >>= 3;
+
+ vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
+ cond_cost_list(cpi, cost_list),
+ &ref_mv, &tmp_mv->as_mv, INT_MAX, 0);
+
+ x->mv_col_min = tmp_col_min;
+ x->mv_col_max = tmp_col_max;
+ x->mv_row_min = tmp_row_min;
+ x->mv_row_max = tmp_row_max;
+
+ // calculate the bit cost on motion vector
+ mvp_full.row = tmp_mv->as_mv.row * 8;
+ mvp_full.col = tmp_mv->as_mv.col * 8;
+
+ *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+
+ rate_mode = cpi->inter_mode_cost[mbmi->mode_context[ref]]
+ [INTER_OFFSET(NEWMV)];
+ rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) >
+ best_rd_sofar);
+
+ if (rv) {
+ cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
+ cpi->common.allow_high_precision_mv,
+ x->errorperbit,
+ &cpi->fn_ptr[bsize],
+ cpi->sf.mv.subpel_force_stop,
+ cpi->sf.mv.subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list),
+ x->nmvjointcost, x->mvcost,
+ &dis, &x->pred_sse[ref], NULL, 0, 0);
+ *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+ }
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+ return rv;
+}
+
+static void block_variance(const uint8_t *src, int src_stride,
+ const uint8_t *ref, int ref_stride,
+ int w, int h, unsigned int *sse, int *sum,
+ int block_size, unsigned int *sse8x8,
+ int *sum8x8, unsigned int *var8x8) {
+ int i, j, k = 0;
+
+ *sse = 0;
+ *sum = 0;
+
+ for (i = 0; i < h; i += block_size) {
+ for (j = 0; j < w; j += block_size) {
+ vpx_get8x8var(src + src_stride * i + j, src_stride,
+ ref + ref_stride * i + j, ref_stride,
+ &sse8x8[k], &sum8x8[k]);
+ *sse += sse8x8[k];
+ *sum += sum8x8[k];
+ var8x8[k] = sse8x8[k] - (((unsigned int)sum8x8[k] * sum8x8[k]) >> 6);
+ k++;
+ }
+ }
+}
+
+static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
+ unsigned int *sse_i, int *sum_i,
+ unsigned int *var_o, unsigned int *sse_o,
+ int *sum_o) {
+ const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
+ const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
+ const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
+ int i, j, k = 0;
+
+ for (i = 0; i < nh; i += 2) {
+ for (j = 0; j < nw; j += 2) {
+ sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
+ sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
+ sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
+ sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
+ var_o[k] = sse_o[k] - (((unsigned int)sum_o[k] * sum_o[k]) >>
+ (b_width_log2_lookup[unit_size] +
+ b_height_log2_lookup[unit_size] + 6));
+ k++;
+ }
+ }
+}
+
+static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd,
+ int *out_rate_sum, int64_t *out_dist_sum,
+ unsigned int *var_y, unsigned int *sse_y,
+ int mi_row, int mi_col, int *early_term) {
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ unsigned int sse;
+ int rate;
+ int64_t dist;
+ struct macroblock_plane *const p = &x->plane[0];
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ const uint32_t dc_quant = pd->dequant[0];
+ const uint32_t ac_quant = pd->dequant[1];
+ const int64_t dc_thr = dc_quant * dc_quant >> 6;
+ const int64_t ac_thr = ac_quant * ac_quant >> 6;
+ unsigned int var;
+ int sum;
+ int skip_dc = 0;
+
+ const int bw = b_width_log2_lookup[bsize];
+ const int bh = b_height_log2_lookup[bsize];
+ const int num8x8 = 1 << (bw + bh - 2);
+ unsigned int sse8x8[64] = {0};
+ int sum8x8[64] = {0};
+ unsigned int var8x8[64] = {0};
+ TX_SIZE tx_size;
+ int i, k;
+
+ // Calculate variance for whole partition, and also save 8x8 blocks' variance
+ // to be used in following transform skipping test.
+ block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
+ 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
+ var = sse - (((int64_t)sum * sum) >> (bw + bh + 4));
+
+ *var_y = var;
+ *sse_y = sse;
+
+ if (cpi->common.tx_mode == TX_MODE_SELECT) {
+ if (sse > (var << 2))
+ tx_size = MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
+ else
+ tx_size = TX_8X8;
+
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
+ cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id))
+ tx_size = TX_8X8;
+ else if (tx_size > TX_16X16)
+ tx_size = TX_16X16;
+ } else {
+ tx_size = MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
+ }
+
+ assert(tx_size >= TX_8X8);
+ xd->mi[0]->mbmi.tx_size = tx_size;
+
+ // Evaluate if the partition block is a skippable block in Y plane.
+ {
+ unsigned int sse16x16[16] = {0};
+ int sum16x16[16] = {0};
+ unsigned int var16x16[16] = {0};
+ const int num16x16 = num8x8 >> 2;
+
+ unsigned int sse32x32[4] = {0};
+ int sum32x32[4] = {0};
+ unsigned int var32x32[4] = {0};
+ const int num32x32 = num8x8 >> 4;
+
+ int ac_test = 1;
+ int dc_test = 1;
+ const int num = (tx_size == TX_8X8) ? num8x8 :
+ ((tx_size == TX_16X16) ? num16x16 : num32x32);
+ const unsigned int *sse_tx = (tx_size == TX_8X8) ? sse8x8 :
+ ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
+ const unsigned int *var_tx = (tx_size == TX_8X8) ? var8x8 :
+ ((tx_size == TX_16X16) ? var16x16 : var32x32);
+
+ // Calculate variance if tx_size > TX_8X8
+ if (tx_size >= TX_16X16)
+ calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
+ sum16x16);
+ if (tx_size == TX_32X32)
+ calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
+ sse32x32, sum32x32);
+
+ // Skipping test
+ x->skip_txfm[0] = 0;
+ for (k = 0; k < num; k++)
+ // Check if all ac coefficients can be quantized to zero.
+ if (!(var_tx[k] < ac_thr || var == 0)) {
+ ac_test = 0;
+ break;
+ }
+
+ for (k = 0; k < num; k++)
+ // Check if dc coefficient can be quantized to zero.
+ if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
+ dc_test = 0;
+ break;
+ }
+
+ if (ac_test) {
+ x->skip_txfm[0] = 2;
+
+ if (dc_test)
+ x->skip_txfm[0] = 1;
+ } else if (dc_test) {
+ skip_dc = 1;
+ }
+ }
+
+ if (x->skip_txfm[0] == 1) {
+ int skip_uv[2] = {0};
+ unsigned int var_uv[2];
+ unsigned int sse_uv[2];
+
+ *out_rate_sum = 0;
+ *out_dist_sum = sse << 4;
+
+ // Transform skipping test in UV planes.
+ for (i = 1; i <= 2; i++) {
+ struct macroblock_plane *const p = &x->plane[i];
+ struct macroblockd_plane *const pd = &xd->plane[i];
+ const TX_SIZE uv_tx_size = get_uv_tx_size(&xd->mi[0]->mbmi, pd);
+ const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size];
+ const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd);
+ const int uv_bw = b_width_log2_lookup[uv_bsize];
+ const int uv_bh = b_height_log2_lookup[uv_bsize];
+ const int sf = (uv_bw - b_width_log2_lookup[unit_size]) +
+ (uv_bh - b_height_log2_lookup[unit_size]);
+ const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf);
+ const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf);
+ int j = i - 1;
+
+ vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i);
+ var_uv[j] = cpi->fn_ptr[uv_bsize].vf(p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride, &sse_uv[j]);
+
+ if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
+ (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
+ skip_uv[j] = 1;
+ else
+ break;
+ }
+
+ // If the transform in YUV planes are skippable, the mode search checks
+ // fewer inter modes and doesn't check intra modes.
+ if (skip_uv[0] & skip_uv[1]) {
+ *early_term = 1;
+ }
+
+ return;
+ }
+
+ if (!skip_dc) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
+ dc_quant >> (xd->bd - 5), &rate, &dist);
+ } else {
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
+ dc_quant >> 3, &rate, &dist);
+ }
+#else
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
+ dc_quant >> 3, &rate, &dist);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+
+ if (!skip_dc) {
+ *out_rate_sum = rate >> 1;
+ *out_dist_sum = dist << 3;
+ } else {
+ *out_rate_sum = 0;
+ *out_dist_sum = (sse - var) << 4;
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
+ ac_quant >> (xd->bd - 5), &rate, &dist);
+ } else {
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
+ ac_quant >> 3, &rate, &dist);
+ }
+#else
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
+ ac_quant >> 3, &rate, &dist);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ *out_rate_sum += rate;
+ *out_dist_sum += dist << 4;
+}
+
+static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd,
+ int *out_rate_sum, int64_t *out_dist_sum,
+ unsigned int *var_y, unsigned int *sse_y) {
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ unsigned int sse;
+ int rate;
+ int64_t dist;
+ struct macroblock_plane *const p = &x->plane[0];
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ const int64_t dc_thr = p->quant_thred[0] >> 6;
+ const int64_t ac_thr = p->quant_thred[1] >> 6;
+ const uint32_t dc_quant = pd->dequant[0];
+ const uint32_t ac_quant = pd->dequant[1];
+ unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride, &sse);
+ int skip_dc = 0;
+
+ *var_y = var;
+ *sse_y = sse;
+
+ if (cpi->common.tx_mode == TX_MODE_SELECT) {
+ if (sse > (var << 2))
+ xd->mi[0]->mbmi.tx_size =
+ MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
+ else
+ xd->mi[0]->mbmi.tx_size = TX_8X8;
+
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
+ cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id))
+ xd->mi[0]->mbmi.tx_size = TX_8X8;
+ else if (xd->mi[0]->mbmi.tx_size > TX_16X16)
+ xd->mi[0]->mbmi.tx_size = TX_16X16;
+ } else {
+ xd->mi[0]->mbmi.tx_size =
+ MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
+ }
+
+ // Evaluate if the partition block is a skippable block in Y plane.
+ {
+ const BLOCK_SIZE unit_size =
+ txsize_to_bsize[xd->mi[0]->mbmi.tx_size];
+ const unsigned int num_blk_log2 =
+ (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) +
+ (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]);
+ const unsigned int sse_tx = sse >> num_blk_log2;
+ const unsigned int var_tx = var >> num_blk_log2;
+
+ x->skip_txfm[0] = 0;
+ // Check if all ac coefficients can be quantized to zero.
+ if (var_tx < ac_thr || var == 0) {
+ x->skip_txfm[0] = 2;
+ // Check if dc coefficient can be quantized to zero.
+ if (sse_tx - var_tx < dc_thr || sse == var)
+ x->skip_txfm[0] = 1;
+ } else {
+ if (sse_tx - var_tx < dc_thr || sse == var)
+ skip_dc = 1;
+ }
+ }
+
+ if (x->skip_txfm[0] == 1) {
+ *out_rate_sum = 0;
+ *out_dist_sum = sse << 4;
+ return;
+ }
+
+ if (!skip_dc) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
+ dc_quant >> (xd->bd - 5), &rate, &dist);
+ } else {
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
+ dc_quant >> 3, &rate, &dist);
+ }
+#else
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
+ dc_quant >> 3, &rate, &dist);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+
+ if (!skip_dc) {
+ *out_rate_sum = rate >> 1;
+ *out_dist_sum = dist << 3;
+ } else {
+ *out_rate_sum = 0;
+ *out_dist_sum = (sse - var) << 4;
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
+ ac_quant >> (xd->bd - 5), &rate, &dist);
+ } else {
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
+ ac_quant >> 3, &rate, &dist);
+ }
+#else
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
+ ac_quant >> 3, &rate, &dist);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ *out_rate_sum += rate;
+ *out_dist_sum += dist << 4;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist,
+ int *skippable, int64_t *sse, int plane,
+ BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ unsigned int var_y, sse_y;
+ (void)plane;
+ (void)tx_size;
+ model_rd_for_sb_y(cpi, bsize, x, xd, rate, dist, &var_y, &sse_y);
+ *sse = INT_MAX;
+ *skippable = 0;
+ return;
+}
+#else
+static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist,
+ int *skippable, int64_t *sse, int plane,
+ BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ const int step = 1 << (tx_size << 1);
+ const int block_step = (1 << tx_size);
+ int block = 0, r, c;
+ int shift = tx_size == TX_32X32 ? 0 : 2;
+ const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 :
+ xd->mb_to_right_edge >> (5 + pd->subsampling_x));
+ const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 :
+ xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
+ int eob_cost = 0;
+
+ (void)cpi;
+ vp9_subtract_plane(x, bsize, plane);
+ *skippable = 1;
+ // Keep track of the row and column of the blocks we use so that we know
+ // if we are in the unrestricted motion border.
+ for (r = 0; r < max_blocks_high; r += block_step) {
+ for (c = 0; c < num_4x4_w; c += block_step) {
+ if (c < max_blocks_wide) {
+ const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
+ tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint16_t *const eob = &p->eobs[block];
+ const int diff_stride = 4 * num_4x4_blocks_wide_lookup[bsize];
+ const int16_t *src_diff;
+ src_diff = &p->src_diff[(r * diff_stride + c) << 2];
+
+ switch (tx_size) {
+ case TX_32X32:
+ vp9_fdct32x32_rd(src_diff, coeff, diff_stride);
+ vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin,
+ p->round_fp, p->quant_fp, p->quant_shift,
+ qcoeff, dqcoeff, pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_16X16:
+ vp9_hadamard_16x16(src_diff, diff_stride, (int16_t *)coeff);
+ vp9_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_8X8:
+ vp9_hadamard_8x8(src_diff, diff_stride, (int16_t *)coeff);
+ vp9_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ case TX_4X4:
+ x->fwd_txm4x4(src_diff, coeff, diff_stride);
+ vp9_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
+ p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
+ pd->dequant, eob,
+ scan_order->scan, scan_order->iscan);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ *skippable &= (*eob == 0);
+ eob_cost += 1;
+ }
+ block += step;
+ }
+ }
+
+ if (*skippable && *sse < INT64_MAX) {
+ *rate = 0;
+ *dist = (*sse << 6) >> shift;
+ *sse = *dist;
+ return;
+ }
+
+ block = 0;
+ *rate = 0;
+ *dist = 0;
+ *sse = (*sse << 6) >> shift;
+ for (r = 0; r < max_blocks_high; r += block_step) {
+ for (c = 0; c < num_4x4_w; c += block_step) {
+ if (c < max_blocks_wide) {
+ tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ uint16_t *const eob = &p->eobs[block];
+
+ if (*eob == 1)
+ *rate += (int)abs(qcoeff[0]);
+ else if (*eob > 1)
+ *rate += (int)vp9_satd((const int16_t *)qcoeff, step << 4);
+
+ *dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> shift;
+ }
+ block += step;
+ }
+ }
+
+ if (*skippable == 0) {
+ *rate <<= 10;
+ *rate += (eob_cost << 8);
+ }
+}
+#endif
+
+static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd,
+ int *out_rate_sum, int64_t *out_dist_sum,
+ unsigned int *var_y, unsigned int *sse_y) {
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ unsigned int sse;
+ int rate;
+ int64_t dist;
+ int i;
+
+ *out_rate_sum = 0;
+ *out_dist_sum = 0;
+
+ for (i = 1; i <= 2; ++i) {
+ struct macroblock_plane *const p = &x->plane[i];
+ struct macroblockd_plane *const pd = &xd->plane[i];
+ const uint32_t dc_quant = pd->dequant[0];
+ const uint32_t ac_quant = pd->dequant[1];
+ const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
+ unsigned int var;
+
+ if (!x->color_sensitivity[i - 1])
+ continue;
+
+ var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride, &sse);
+ *var_y += var;
+ *sse_y += sse;
+
+ #if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
+ dc_quant >> (xd->bd - 5), &rate, &dist);
+ } else {
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
+ dc_quant >> 3, &rate, &dist);
+ }
+ #else
+ vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
+ dc_quant >> 3, &rate, &dist);
+ #endif // CONFIG_VP9_HIGHBITDEPTH
+
+ *out_rate_sum += rate >> 1;
+ *out_dist_sum += dist << 3;
+
+ #if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
+ ac_quant >> (xd->bd - 5), &rate, &dist);
+ } else {
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
+ ac_quant >> 3, &rate, &dist);
+ }
+ #else
+ vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
+ ac_quant >> 3, &rate, &dist);
+ #endif // CONFIG_VP9_HIGHBITDEPTH
+
+ *out_rate_sum += rate;
+ *out_dist_sum += dist << 4;
+ }
+}
+
+static int get_pred_buffer(PRED_BUFFER *p, int len) {
+ int i;
+
+ for (i = 0; i < len; i++) {
+ if (!p[i].in_use) {
+ p[i].in_use = 1;
+ return i;
+ }
+ }
+ return -1;
+}
+
+static void free_pred_buffer(PRED_BUFFER *p) {
+ if (p != NULL)
+ p->in_use = 0;
+}
+
+static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ MV_REFERENCE_FRAME ref_frame,
+ PREDICTION_MODE this_mode,
+ unsigned int var_y, unsigned int sse_y,
+ struct buf_2d yv12_mb[][MAX_MB_PLANE],
+ int *rate, int64_t *dist) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+
+ const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
+ unsigned int var = var_y, sse = sse_y;
+ // Skipping threshold for ac.
+ unsigned int thresh_ac;
+ // Skipping threshold for dc.
+ unsigned int thresh_dc;
+ if (x->encode_breakout > 0) {
+ // Set a maximum for threshold to avoid big PSNR loss in low bit rate
+ // case. Use extreme low threshold for static frames to limit
+ // skipping.
+ const unsigned int max_thresh = 36000;
+ // The encode_breakout input
+ const unsigned int min_thresh =
+ MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
+#if CONFIG_VP9_HIGHBITDEPTH
+ const int shift = (xd->bd << 1) - 16;
+#endif
+
+ // Calculate threshold according to dequant value.
+ thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
+ thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift);
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
+
+ // Adjust ac threshold according to partition size.
+ thresh_ac >>=
+ 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
+
+ thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
+ thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift);
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ } else {
+ thresh_ac = 0;
+ thresh_dc = 0;
+ }
+
+ // Y skipping condition checking for ac and dc.
+ if (var <= thresh_ac && (sse - var) <= thresh_dc) {
+ unsigned int sse_u, sse_v;
+ unsigned int var_u, var_v;
+
+ // Skip UV prediction unless breakout is zero (lossless) to save
+ // computation with low impact on the result
+ if (x->encode_breakout == 0) {
+ xd->plane[1].pre[0] = yv12_mb[ref_frame][1];
+ xd->plane[2].pre[0] = yv12_mb[ref_frame][2];
+ vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
+ }
+
+ var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf,
+ x->plane[1].src.stride,
+ xd->plane[1].dst.buf,
+ xd->plane[1].dst.stride, &sse_u);
+
+ // U skipping condition checking
+ if (((var_u << 2) <= thresh_ac) && (sse_u - var_u <= thresh_dc)) {
+ var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf,
+ x->plane[2].src.stride,
+ xd->plane[2].dst.buf,
+ xd->plane[2].dst.stride, &sse_v);
+
+ // V skipping condition checking
+ if (((var_v << 2) <= thresh_ac) && (sse_v - var_v <= thresh_dc)) {
+ x->skip = 1;
+
+ // The cost of skip bit needs to be added.
+ *rate = cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
+ [INTER_OFFSET(this_mode)];
+
+ // More on this part of rate
+ // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+
+ // Scaling factor for SSE from spatial domain to frequency
+ // domain is 16. Adjust distortion accordingly.
+ // TODO(yunqingwang): In this function, only y-plane dist is
+ // calculated.
+ *dist = (sse << 4); // + ((sse_u + sse_v) << 4);
+
+ // *disable_skip = 1;
+ }
+ }
+ }
+}
+
+struct estimate_block_intra_args {
+ VP9_COMP *cpi;
+ MACROBLOCK *x;
+ PREDICTION_MODE mode;
+ int rate;
+ int64_t dist;
+};
+
+static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
+ struct estimate_block_intra_args* const args = arg;
+ VP9_COMP *const cpi = args->cpi;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *const p = &x->plane[0];
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
+ uint8_t *const src_buf_base = p->src.buf;
+ uint8_t *const dst_buf_base = pd->dst.buf;
+ const int src_stride = p->src.stride;
+ const int dst_stride = pd->dst.stride;
+ int i, j;
+ int rate;
+ int64_t dist;
+ int64_t this_sse = INT64_MAX;
+ int is_skippable;
+
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
+ assert(plane == 0);
+ (void) plane;
+
+ p->src.buf = &src_buf_base[4 * (j * src_stride + i)];
+ pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)];
+ // Use source buffer as an approximation for the fully reconstructed buffer.
+ vp9_predict_intra_block(xd, block >> (2 * tx_size),
+ b_width_log2_lookup[plane_bsize],
+ tx_size, args->mode,
+ x->skip_encode ? p->src.buf : pd->dst.buf,
+ x->skip_encode ? src_stride : dst_stride,
+ pd->dst.buf, dst_stride,
+ i, j, 0);
+
+ // TODO(jingning): This needs further refactoring.
+ block_yrd(cpi, x, &rate, &dist, &is_skippable, &this_sse, 0,
+ bsize_tx, MIN(tx_size, TX_16X16));
+ x->skip_txfm[0] = is_skippable;
+ rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), is_skippable);
+
+ p->src.buf = src_buf_base;
+ pd->dst.buf = dst_buf_base;
+ args->rate += rate;
+ args->dist += dist;
+}
+
+static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][4] = {
+ {THR_DC, THR_V_PRED, THR_H_PRED, THR_TM},
+ {THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV},
+ {THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG},
+};
+
+static const PREDICTION_MODE intra_mode_list[] = {
+ DC_PRED, V_PRED, H_PRED, TM_PRED
+};
+
+static int mode_offset(const PREDICTION_MODE mode) {
+ if (mode >= NEARESTMV) {
+ return INTER_OFFSET(mode);
+ } else {
+ switch (mode) {
+ case DC_PRED:
+ return 0;
+ case V_PRED:
+ return 1;
+ case H_PRED:
+ return 2;
+ case TM_PRED:
+ return 3;
+ default:
+ return -1;
+ }
+ }
+}
+
+static INLINE void update_thresh_freq_fact(VP9_COMP *cpi,
+ TileDataEnc *tile_data,
+ BLOCK_SIZE bsize,
+ MV_REFERENCE_FRAME ref_frame,
+ THR_MODES best_mode_idx,
+ PREDICTION_MODE mode) {
+ THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
+ int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx];
+ if (thr_mode_idx == best_mode_idx)
+ *freq_fact -= (*freq_fact >> 4);
+ else
+ *freq_fact = MIN(*freq_fact + RD_THRESH_INC,
+ cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
+}
+
+void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ RD_COST this_rdc, best_rdc;
+ PREDICTION_MODE this_mode;
+ struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
+ const TX_SIZE intra_tx_size =
+ MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
+ MODE_INFO *const mic = xd->mi[0];
+ int *bmode_costs;
+ const MODE_INFO *above_mi = xd->mi[-xd->mi_stride];
+ const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL;
+ const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
+ const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
+ bmode_costs = cpi->y_mode_costs[A][L];
+
+ (void) ctx;
+ vp9_rd_cost_reset(&best_rdc);
+ vp9_rd_cost_reset(&this_rdc);
+
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ mbmi->mv[0].as_int = INVALID_MV;
+ mbmi->uv_mode = DC_PRED;
+ memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+
+ // Change the limit of this loop to add other intra prediction
+ // mode tests.
+ for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) {
+ args.mode = this_mode;
+ args.rate = 0;
+ args.dist = 0;
+ mbmi->tx_size = intra_tx_size;
+ vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
+ estimate_block_intra, &args);
+ this_rdc.rate = args.rate;
+ this_rdc.dist = args.dist;
+ this_rdc.rate += bmode_costs[this_mode];
+ this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ this_rdc.rate, this_rdc.dist);
+
+ if (this_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = this_rdc;
+ mbmi->mode = this_mode;
+ }
+ }
+
+ *rd_cost = best_rdc;
+}
+
+static void init_ref_frame_cost(VP9_COMMON *const cm,
+ MACROBLOCKD *const xd,
+ int ref_frame_cost[MAX_REF_FRAMES]) {
+ vp9_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
+ vp9_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
+ vp9_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
+
+ ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
+ ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] =
+ ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1);
+
+ ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
+ ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
+ ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
+ ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
+ ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
+}
+
+typedef struct {
+ MV_REFERENCE_FRAME ref_frame;
+ PREDICTION_MODE pred_mode;
+} REF_MODE;
+
+#define RT_INTER_MODES 8
+static const REF_MODE ref_mode_set[RT_INTER_MODES] = {
+ {LAST_FRAME, ZEROMV},
+ {LAST_FRAME, NEARESTMV},
+ {GOLDEN_FRAME, ZEROMV},
+ {LAST_FRAME, NEARMV},
+ {LAST_FRAME, NEWMV},
+ {GOLDEN_FRAME, NEARESTMV},
+ {GOLDEN_FRAME, NEARMV},
+ {GOLDEN_FRAME, NEWMV}
+};
+
+// TODO(jingning) placeholder for inter-frame non-RD mode decision.
+// this needs various further optimizations. to be continued..
+void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ TileDataEnc *tile_data,
+ int mi_row, int mi_col, RD_COST *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
+ VP9_COMMON *const cm = &cpi->common;
+ SPEED_FEATURES *const sf = &cpi->sf;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ PREDICTION_MODE best_mode = ZEROMV;
+ MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
+ MV_REFERENCE_FRAME usable_ref_frame;
+ TX_SIZE best_tx_size = TX_SIZES;
+ INTERP_FILTER best_pred_filter = EIGHTTAP;
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
+ struct buf_2d yv12_mb[4][MAX_MB_PLANE];
+ static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
+ VP9_ALT_FLAG };
+ RD_COST this_rdc, best_rdc;
+ uint8_t skip_txfm = 0, best_mode_skip_txfm = 0;
+ // var_y and sse_y are saved to be used in skipping checking
+ unsigned int var_y = UINT_MAX;
+ unsigned int sse_y = UINT_MAX;
+ // Reduce the intra cost penalty for small blocks (<=16x16).
+ const int reduction_fac = (bsize <= BLOCK_16X16) ?
+ ((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
+ const int intra_cost_penalty = vp9_get_intra_cost_penalty(
+ cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) >> reduction_fac;
+ const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
+ intra_cost_penalty, 0);
+ const int *const rd_threshes = cpi->rd.threshes[mbmi->segment_id][bsize];
+ const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
+ INTERP_FILTER filter_ref;
+ const int bsl = mi_width_log2_lookup[bsize];
+ const int pred_filter_search = cm->interp_filter == SWITCHABLE ?
+ (((mi_row + mi_col) >> bsl) +
+ get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
+ int const_motion[MAX_REF_FRAMES] = { 0 };
+ const int bh = num_4x4_blocks_high_lookup[bsize] << 2;
+ const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
+ // For speed 6, the result of interp filter is reused later in actual encoding
+ // process.
+ // tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
+ PRED_BUFFER tmp[4];
+ DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]);
+#if CONFIG_VP9_HIGHBITDEPTH
+ DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]);
+#endif
+ struct buf_2d orig_dst = pd->dst;
+ PRED_BUFFER *best_pred = NULL;
+ PRED_BUFFER *this_mode_pred = NULL;
+ const int pixels_in_block = bh * bw;
+ int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready;
+ int ref_frame_skip_mask = 0;
+ int idx;
+ int best_pred_sad = INT_MAX;
+ int best_early_term = 0;
+ int ref_frame_cost[MAX_REF_FRAMES];
+
+ init_ref_frame_cost(cm, xd, ref_frame_cost);
+
+ if (reuse_inter_pred) {
+ int i;
+ for (i = 0; i < 3; i++) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth)
+ tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]);
+ else
+ tmp[i].data = &pred_buf[pixels_in_block * i];
+#else
+ tmp[i].data = &pred_buf[pixels_in_block * i];
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ tmp[i].stride = bw;
+ tmp[i].in_use = 0;
+ }
+ tmp[3].data = pd->dst.buf;
+ tmp[3].stride = pd->dst.stride;
+ tmp[3].in_use = 0;
+ }
+
+ x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
+ x->skip = 0;
+
+ if (xd->up_available)
+ filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
+ else if (xd->left_available)
+ filter_ref = xd->mi[-1]->mbmi.interp_filter;
+ else
+ filter_ref = cm->interp_filter;
+
+ // initialize mode decisions
+ vp9_rd_cost_reset(&best_rdc);
+ vp9_rd_cost_reset(rd_cost);
+ mbmi->sb_type = bsize;
+ mbmi->ref_frame[0] = NONE;
+ mbmi->ref_frame[1] = NONE;
+ mbmi->tx_size = MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[cm->tx_mode]);
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ vp9_denoiser_reset_frame_stats(ctx);
+#endif
+
+ if (cpi->rc.frames_since_golden == 0) {
+ usable_ref_frame = LAST_FRAME;
+ } else {
+ usable_ref_frame = GOLDEN_FRAME;
+ }
+
+ for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) {
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
+
+ x->pred_mv_sad[ref_frame] = INT_MAX;
+ frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
+ frame_mv[ZEROMV][ref_frame].as_int = 0;
+
+ if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
+ int_mv *const candidates = mbmi->ref_mvs[ref_frame];
+ const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
+
+ vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
+ sf, sf);
+
+ if (cm->use_prev_frame_mvs)
+ vp9_find_mv_refs(cm, xd, tile_info, xd->mi[0], ref_frame,
+ candidates, mi_row, mi_col, NULL, NULL);
+ else
+ const_motion[ref_frame] = mv_refs_rt(cm, xd, tile_info,
+ xd->mi[0],
+ ref_frame, candidates,
+ mi_row, mi_col);
+
+ vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
+ &frame_mv[NEARESTMV][ref_frame],
+ &frame_mv[NEARMV][ref_frame]);
+
+ if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8)
+ vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
+ ref_frame, bsize);
+ } else {
+ ref_frame_skip_mask |= (1 << ref_frame);
+ }
+ }
+
+ for (idx = 0; idx < RT_INTER_MODES; ++idx) {
+ int rate_mv = 0;
+ int mode_rd_thresh;
+ int mode_index;
+ int i;
+ PREDICTION_MODE this_mode = ref_mode_set[idx].pred_mode;
+ int64_t this_sse;
+ int is_skippable;
+ int this_early_term = 0;
+
+ if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode)))
+ continue;
+
+ ref_frame = ref_mode_set[idx].ref_frame;
+ if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
+ continue;
+ if (const_motion[ref_frame] && this_mode == NEARMV)
+ continue;
+
+ i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME;
+ if ((cpi->ref_frame_flags & flag_list[i]) && sf->reference_masking)
+ if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1))
+ ref_frame_skip_mask |= (1 << ref_frame);
+ if (ref_frame_skip_mask & (1 << ref_frame))
+ continue;
+
+ // Select prediction reference frames.
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+
+ mbmi->ref_frame[0] = ref_frame;
+ set_ref_ptrs(cm, xd, ref_frame, NONE);
+
+ mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
+ mode_rd_thresh = best_mode_skip_txfm ?
+ rd_threshes[mode_index] << 1 : rd_threshes[mode_index];
+ if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
+ rd_thresh_freq_fact[mode_index]))
+ continue;
+
+ if (this_mode == NEWMV) {
+ if (ref_frame > LAST_FRAME) {
+ int tmp_sad;
+ int dis, cost_list[5];
+
+ if (bsize < BLOCK_16X16)
+ continue;
+
+ tmp_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
+
+ if (tmp_sad > x->pred_mv_sad[LAST_FRAME])
+ continue;
+ if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad)
+ continue;
+
+ frame_mv[NEWMV][ref_frame].as_int = mbmi->mv[0].as_int;
+ rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv,
+ &mbmi->ref_mvs[ref_frame][0].as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+ frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
+ frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
+
+ cpi->find_fractional_mv_step(x, &frame_mv[NEWMV][ref_frame].as_mv,
+ &mbmi->ref_mvs[ref_frame][0].as_mv,
+ cpi->common.allow_high_precision_mv,
+ x->errorperbit,
+ &cpi->fn_ptr[bsize],
+ cpi->sf.mv.subpel_force_stop,
+ cpi->sf.mv.subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list),
+ x->nmvjointcost, x->mvcost, &dis,
+ &x->pred_sse[ref_frame], NULL, 0, 0);
+ } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
+ &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost)) {
+ continue;
+ }
+ }
+
+ if (this_mode == NEWMV && ref_frame == LAST_FRAME &&
+ frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) {
+ const int pre_stride = xd->plane[0].pre[0].stride;
+ const uint8_t * const pre_buf = xd->plane[0].pre[0].buf +
+ (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride +
+ (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3);
+ best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
+ x->plane[0].src.stride,
+ pre_buf, pre_stride);
+ x->pred_mv_sad[LAST_FRAME] = best_pred_sad;
+ }
+
+ if (this_mode != NEARESTMV &&
+ frame_mv[this_mode][ref_frame].as_int ==
+ frame_mv[NEARESTMV][ref_frame].as_int)
+ continue;
+
+ mbmi->mode = this_mode;
+ mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
+
+ // Search for the best prediction filter type, when the resulting
+ // motion vector is at sub-pixel accuracy level for luma component, i.e.,
+ // the last three bits are all zeros.
+ if (reuse_inter_pred) {
+ if (!this_mode_pred) {
+ this_mode_pred = &tmp[3];
+ } else {
+ this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
+ pd->dst.buf = this_mode_pred->data;
+ pd->dst.stride = bw;
+ }
+ }
+
+ if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && pred_filter_search
+ && (ref_frame == LAST_FRAME)
+ && (((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07) != 0)) {
+ int pf_rate[3];
+ int64_t pf_dist[3];
+ unsigned int pf_var[3];
+ unsigned int pf_sse[3];
+ TX_SIZE pf_tx_size[3];
+ int64_t best_cost = INT64_MAX;
+ INTERP_FILTER best_filter = SWITCHABLE, filter;
+ PRED_BUFFER *current_pred = this_mode_pred;
+
+ for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) {
+ int64_t cost;
+ mbmi->interp_filter = filter;
+ vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
+ model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter],
+ &pf_var[filter], &pf_sse[filter]);
+ pf_rate[filter] += vp9_get_switchable_rate(cpi, xd);
+ cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]);
+ pf_tx_size[filter] = mbmi->tx_size;
+ if (cost < best_cost) {
+ best_filter = filter;
+ best_cost = cost;
+ skip_txfm = x->skip_txfm[0];
+
+ if (reuse_inter_pred) {
+ if (this_mode_pred != current_pred) {
+ free_pred_buffer(this_mode_pred);
+ this_mode_pred = current_pred;
+ }
+
+ if (filter < EIGHTTAP_SHARP) {
+ current_pred = &tmp[get_pred_buffer(tmp, 3)];
+ pd->dst.buf = current_pred->data;
+ pd->dst.stride = bw;
+ }
+ }
+ }
+ }
+
+ if (reuse_inter_pred && this_mode_pred != current_pred)
+ free_pred_buffer(current_pred);
+
+ mbmi->interp_filter = best_filter;
+ mbmi->tx_size = pf_tx_size[best_filter];
+ this_rdc.rate = pf_rate[best_filter];
+ this_rdc.dist = pf_dist[best_filter];
+ var_y = pf_var[best_filter];
+ sse_y = pf_sse[best_filter];
+ x->skip_txfm[0] = skip_txfm;
+ if (reuse_inter_pred) {
+ pd->dst.buf = this_mode_pred->data;
+ pd->dst.stride = this_mode_pred->stride;
+ }
+ } else {
+ mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref;
+ vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
+
+ // For large partition blocks, extra testing is done.
+ if (bsize > BLOCK_32X32 &&
+ !cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id) &&
+ cm->base_qindex) {
+ model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate,
+ &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col,
+ &this_early_term);
+ } else {
+ model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
+ &var_y, &sse_y);
+ }
+ }
+
+ if (!this_early_term) {
+ this_sse = (int64_t)sse_y;
+ block_yrd(cpi, x, &this_rdc.rate, &this_rdc.dist, &is_skippable,
+ &this_sse, 0, bsize, MIN(mbmi->tx_size, TX_16X16));
+ x->skip_txfm[0] = is_skippable;
+ if (is_skippable) {
+ this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+ } else {
+ if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) <
+ RDCOST(x->rdmult, x->rddiv, 0, this_sse)) {
+ this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
+ } else {
+ this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+ this_rdc.dist = this_sse;
+ x->skip_txfm[0] = 1;
+ }
+ }
+
+ if (cm->interp_filter == SWITCHABLE) {
+ if ((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07)
+ this_rdc.rate += vp9_get_switchable_rate(cpi, xd);
+ }
+ } else {
+ this_rdc.rate += cm->interp_filter == SWITCHABLE ?
+ vp9_get_switchable_rate(cpi, xd) : 0;
+ this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+ }
+
+ if (x->color_sensitivity[0] || x->color_sensitivity[1]) {
+ int uv_rate = 0;
+ int64_t uv_dist = 0;
+ if (x->color_sensitivity[0])
+ vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1);
+ if (x->color_sensitivity[1])
+ vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2);
+ model_rd_for_sb_uv(cpi, bsize, x, xd, &uv_rate, &uv_dist,
+ &var_y, &sse_y);
+ this_rdc.rate += uv_rate;
+ this_rdc.dist += uv_dist;
+ }
+
+ this_rdc.rate += rate_mv;
+ this_rdc.rate +=
+ cpi->inter_mode_cost[mbmi->mode_context[ref_frame]][INTER_OFFSET(
+ this_mode)];
+ this_rdc.rate += ref_frame_cost[ref_frame];
+ this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
+
+ // Skipping checking: test to see if this block can be reconstructed by
+ // prediction only.
+ if (cpi->allow_encode_breakout) {
+ encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode,
+ var_y, sse_y, yv12_mb, &this_rdc.rate,
+ &this_rdc.dist);
+ if (x->skip) {
+ this_rdc.rate += rate_mv;
+ this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate,
+ this_rdc.dist);
+ }
+ }
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ if (cpi->oxcf.noise_sensitivity > 0)
+ vp9_denoiser_update_frame_stats(mbmi, sse_y, this_mode, ctx);
+#else
+ (void)ctx;
+#endif
+
+ if (this_rdc.rdcost < best_rdc.rdcost || x->skip) {
+ best_rdc = this_rdc;
+ best_mode = this_mode;
+ best_pred_filter = mbmi->interp_filter;
+ best_tx_size = mbmi->tx_size;
+ best_ref_frame = ref_frame;
+ best_mode_skip_txfm = x->skip_txfm[0];
+ best_early_term = this_early_term;
+
+ if (reuse_inter_pred) {
+ free_pred_buffer(best_pred);
+ best_pred = this_mode_pred;
+ }
+ } else {
+ if (reuse_inter_pred)
+ free_pred_buffer(this_mode_pred);
+ }
+
+ if (x->skip)
+ break;
+
+ // If early termination flag is 1 and at least 2 modes are checked,
+ // the mode search is terminated.
+ if (best_early_term && idx > 0) {
+ x->skip = 1;
+ break;
+ }
+ }
+
+ mbmi->mode = best_mode;
+ mbmi->interp_filter = best_pred_filter;
+ mbmi->tx_size = best_tx_size;
+ mbmi->ref_frame[0] = best_ref_frame;
+ mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int;
+ xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
+ x->skip_txfm[0] = best_mode_skip_txfm;
+
+ // Perform intra prediction search, if the best SAD is above a certain
+ // threshold.
+ if (best_rdc.rdcost == INT64_MAX ||
+ (!x->skip && best_rdc.rdcost > inter_mode_thresh &&
+ bsize <= cpi->sf.max_intra_bsize)) {
+ struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
+ const TX_SIZE intra_tx_size =
+ MIN(max_txsize_lookup[bsize],
+ tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
+ int i;
+ TX_SIZE best_intra_tx_size = TX_SIZES;
+
+ if (reuse_inter_pred && best_pred != NULL) {
+ if (best_pred->data == orig_dst.buf) {
+ this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth)
+ vp9_highbd_convolve_copy(best_pred->data, best_pred->stride,
+ this_mode_pred->data, this_mode_pred->stride,
+ NULL, 0, NULL, 0, bw, bh, xd->bd);
+ else
+ vp9_convolve_copy(best_pred->data, best_pred->stride,
+ this_mode_pred->data, this_mode_pred->stride,
+ NULL, 0, NULL, 0, bw, bh);
+#else
+ vp9_convolve_copy(best_pred->data, best_pred->stride,
+ this_mode_pred->data, this_mode_pred->stride,
+ NULL, 0, NULL, 0, bw, bh);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ best_pred = this_mode_pred;
+ }
+ }
+ pd->dst = orig_dst;
+
+ for (i = 0; i < 4; ++i) {
+ const PREDICTION_MODE this_mode = intra_mode_list[i];
+ THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
+ int mode_rd_thresh = rd_threshes[mode_index];
+
+ if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize]))
+ continue;
+
+ if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
+ rd_thresh_freq_fact[mode_index]))
+ continue;
+
+ mbmi->mode = this_mode;
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ args.mode = this_mode;
+ args.rate = 0;
+ args.dist = 0;
+ mbmi->tx_size = intra_tx_size;
+ vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
+ estimate_block_intra, &args);
+ this_rdc.rate = args.rate;
+ this_rdc.dist = args.dist;
+ this_rdc.rate += cpi->mbmode_cost[this_mode];
+ this_rdc.rate += ref_frame_cost[INTRA_FRAME];
+ this_rdc.rate += intra_cost_penalty;
+ this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ this_rdc.rate, this_rdc.dist);
+
+ if (this_rdc.rdcost < best_rdc.rdcost) {
+ best_rdc = this_rdc;
+ best_mode = this_mode;
+ best_intra_tx_size = mbmi->tx_size;
+ best_ref_frame = INTRA_FRAME;
+ mbmi->uv_mode = this_mode;
+ mbmi->mv[0].as_int = INVALID_MV;
+ best_mode_skip_txfm = x->skip_txfm[0];
+ }
+ }
+
+ // Reset mb_mode_info to the best inter mode.
+ if (best_ref_frame != INTRA_FRAME) {
+ mbmi->tx_size = best_tx_size;
+ } else {
+ mbmi->tx_size = best_intra_tx_size;
+ }
+ }
+
+ pd->dst = orig_dst;
+ mbmi->mode = best_mode;
+ mbmi->ref_frame[0] = best_ref_frame;
+ x->skip_txfm[0] = best_mode_skip_txfm;
+
+ if (reuse_inter_pred && best_pred != NULL) {
+ if (best_pred->data != orig_dst.buf && is_inter_mode(mbmi->mode)) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth)
+ vp9_highbd_convolve_copy(best_pred->data, best_pred->stride,
+ pd->dst.buf, pd->dst.stride, NULL, 0,
+ NULL, 0, bw, bh, xd->bd);
+ else
+ vp9_convolve_copy(best_pred->data, best_pred->stride,
+ pd->dst.buf, pd->dst.stride, NULL, 0,
+ NULL, 0, bw, bh);
+#else
+ vp9_convolve_copy(best_pred->data, best_pred->stride,
+ pd->dst.buf, pd->dst.stride, NULL, 0,
+ NULL, 0, bw, bh);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+ }
+
+ if (cpi->sf.adaptive_rd_thresh) {
+ THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mbmi->mode)];
+
+ if (best_ref_frame == INTRA_FRAME) {
+ // Only consider the modes that are included in the intra_mode_list.
+ int intra_modes = sizeof(intra_mode_list)/sizeof(PREDICTION_MODE);
+ int i;
+
+ // TODO(yunqingwang): Check intra mode mask and only update freq_fact
+ // for those valid modes.
+ for (i = 0; i < intra_modes; i++) {
+ update_thresh_freq_fact(cpi, tile_data, bsize, INTRA_FRAME,
+ best_mode_idx, intra_mode_list[i]);
+ }
+ } else {
+ for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
+ PREDICTION_MODE this_mode;
+ if (best_ref_frame != ref_frame) continue;
+ for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
+ update_thresh_freq_fact(cpi, tile_data, bsize, ref_frame,
+ best_mode_idx, this_mode);
+ }
+ }
+ }
+ }
+
+ *rd_cost = best_rdc;
+}
+
+void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
+ TileDataEnc *tile_data,
+ int mi_row, int mi_col, RD_COST *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ SPEED_FEATURES *const sf = &cpi->sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const struct segmentation *const seg = &cm->seg;
+ MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE;
+ MV_REFERENCE_FRAME best_ref_frame = NONE;
+ unsigned char segment_id = mbmi->segment_id;
+ struct buf_2d yv12_mb[4][MAX_MB_PLANE];
+ static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
+ VP9_ALT_FLAG };
+ int64_t best_rd = INT64_MAX;
+ b_mode_info bsi[MAX_REF_FRAMES][4];
+ int ref_frame_skip_mask = 0;
+ const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+ int idx, idy;
+
+ x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
+ ctx->pred_pixel_ready = 0;
+
+ for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
+ int_mv dummy_mv[2];
+ x->pred_mv_sad[ref_frame] = INT_MAX;
+
+ if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
+ int_mv *const candidates = mbmi->ref_mvs[ref_frame];
+ const struct scale_factors *const sf =
+ &cm->frame_refs[ref_frame - 1].sf;
+ vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
+ sf, sf);
+ vp9_find_mv_refs(cm, xd, tile_info, xd->mi[0], ref_frame,
+ candidates, mi_row, mi_col, NULL, NULL);
+
+ vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
+ &dummy_mv[0], &dummy_mv[1]);
+ } else {
+ ref_frame_skip_mask |= (1 << ref_frame);
+ }
+ }
+
+ mbmi->sb_type = bsize;
+ mbmi->tx_size = TX_4X4;
+ mbmi->uv_mode = DC_PRED;
+ mbmi->ref_frame[0] = LAST_FRAME;
+ mbmi->ref_frame[1] = NONE;
+ mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
+ : cm->interp_filter;
+
+ for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
+ int64_t this_rd = 0;
+ int plane;
+
+ if (ref_frame_skip_mask & (1 << ref_frame))
+ continue;
+
+ // TODO(jingning, agrange): Scaling reference frame not supported for
+ // sub8x8 blocks. Is this supported now?
+ if (ref_frame > INTRA_FRAME &&
+ vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
+ continue;
+
+ // If the segment reference frame feature is enabled....
+ // then do nothing if the current ref frame is not allowed..
+ if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+ vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
+ continue;
+
+ mbmi->ref_frame[0] = ref_frame;
+ x->skip = 0;
+ set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
+
+ // Select prediction reference frames.
+ for (plane = 0; plane < MAX_MB_PLANE; plane++)
+ xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane];
+
+ for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
+ for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
+ int_mv b_mv[MB_MODE_COUNT];
+ int64_t b_best_rd = INT64_MAX;
+ const int i = idy * 2 + idx;
+ PREDICTION_MODE this_mode;
+ RD_COST this_rdc;
+ unsigned int var_y, sse_y;
+
+ struct macroblock_plane *p = &x->plane[0];
+ struct macroblockd_plane *pd = &xd->plane[0];
+
+ const struct buf_2d orig_src = p->src;
+ const struct buf_2d orig_dst = pd->dst;
+ struct buf_2d orig_pre[2];
+ memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre));
+
+ // set buffer pointers for sub8x8 motion search.
+ p->src.buf =
+ &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
+ pd->dst.buf =
+ &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
+ pd->pre[0].buf =
+ &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8,
+ i, pd->pre[0].stride)];
+
+ b_mv[ZEROMV].as_int = 0;
+ b_mv[NEWMV].as_int = INVALID_MV;
+ vp9_append_sub8x8_mvs_for_idx(cm, xd, tile_info, i, 0, mi_row, mi_col,
+ &b_mv[NEARESTMV],
+ &b_mv[NEARMV]);
+
+ for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
+ int b_rate = 0;
+ xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int;
+
+ if (this_mode == NEWMV) {
+ const int step_param = cpi->sf.mv.fullpel_search_step_param;
+ MV mvp_full;
+ MV tmp_mv;
+ int cost_list[5];
+ const int tmp_col_min = x->mv_col_min;
+ const int tmp_col_max = x->mv_col_max;
+ const int tmp_row_min = x->mv_row_min;
+ const int tmp_row_max = x->mv_row_max;
+ int dummy_dist;
+
+ if (i == 0) {
+ mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3;
+ mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3;
+ } else {
+ mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3;
+ mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3;
+ }
+
+ vp9_set_mv_search_range(x, &mbmi->ref_mvs[0]->as_mv);
+
+ vp9_full_pixel_search(
+ cpi, x, bsize, &mvp_full, step_param, x->sadperbit4,
+ cond_cost_list(cpi, cost_list),
+ &mbmi->ref_mvs[ref_frame][0].as_mv, &tmp_mv,
+ INT_MAX, 0);
+
+ x->mv_col_min = tmp_col_min;
+ x->mv_col_max = tmp_col_max;
+ x->mv_row_min = tmp_row_min;
+ x->mv_row_max = tmp_row_max;
+
+ // calculate the bit cost on motion vector
+ mvp_full.row = tmp_mv.row * 8;
+ mvp_full.col = tmp_mv.col * 8;
+
+ b_rate += vp9_mv_bit_cost(&mvp_full,
+ &mbmi->ref_mvs[ref_frame][0].as_mv,
+ x->nmvjointcost, x->mvcost,
+ MV_COST_WEIGHT);
+
+ b_rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
+ [INTER_OFFSET(NEWMV)];
+ if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd)
+ continue;
+
+ cpi->find_fractional_mv_step(x, &tmp_mv,
+ &mbmi->ref_mvs[ref_frame][0].as_mv,
+ cpi->common.allow_high_precision_mv,
+ x->errorperbit,
+ &cpi->fn_ptr[bsize],
+ cpi->sf.mv.subpel_force_stop,
+ cpi->sf.mv.subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list),
+ x->nmvjointcost, x->mvcost,
+ &dummy_dist,
+ &x->pred_sse[ref_frame], NULL, 0, 0);
+
+ xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv;
+ } else {
+ b_rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
+ [INTER_OFFSET(this_mode)];
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
+ pd->dst.buf, pd->dst.stride,
+ &xd->mi[0]->bmi[i].as_mv[0].as_mv,
+ &xd->block_refs[0]->sf,
+ 4 * num_4x4_blocks_wide,
+ 4 * num_4x4_blocks_high, 0,
+ vp9_get_interp_kernel(mbmi->interp_filter),
+ MV_PRECISION_Q3,
+ mi_col * MI_SIZE + 4 * (i & 0x01),
+ mi_row * MI_SIZE + 4 * (i >> 1), xd->bd);
+ } else {
+#endif
+ vp9_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
+ pd->dst.buf, pd->dst.stride,
+ &xd->mi[0]->bmi[i].as_mv[0].as_mv,
+ &xd->block_refs[0]->sf,
+ 4 * num_4x4_blocks_wide,
+ 4 * num_4x4_blocks_high, 0,
+ vp9_get_interp_kernel(mbmi->interp_filter),
+ MV_PRECISION_Q3,
+ mi_col * MI_SIZE + 4 * (i & 0x01),
+ mi_row * MI_SIZE + 4 * (i >> 1));
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ }
+#endif
+
+ model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
+ &var_y, &sse_y);
+
+ this_rdc.rate += b_rate;
+ this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
+ this_rdc.rate, this_rdc.dist);
+ if (this_rdc.rdcost < b_best_rd) {
+ b_best_rd = this_rdc.rdcost;
+ bsi[ref_frame][i].as_mode = this_mode;
+ bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv;
+ }
+ } // mode search
+
+ // restore source and prediction buffer pointers.
+ p->src = orig_src;
+ pd->pre[0] = orig_pre[0];
+ pd->dst = orig_dst;
+ this_rd += b_best_rd;
+
+ xd->mi[0]->bmi[i] = bsi[ref_frame][i];
+ if (num_4x4_blocks_wide > 1)
+ xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i];
+ if (num_4x4_blocks_high > 1)
+ xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i];
+ }
+ } // loop through sub8x8 blocks
+
+ if (this_rd < best_rd) {
+ best_rd = this_rd;
+ best_ref_frame = ref_frame;
+ }
+ } // reference frames
+
+ mbmi->tx_size = TX_4X4;
+ mbmi->ref_frame[0] = best_ref_frame;
+ for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
+ for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
+ const int block = idy * 2 + idx;
+ xd->mi[0]->bmi[block] = bsi[best_ref_frame][block];
+ if (num_4x4_blocks_wide > 1)
+ xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block];
+ if (num_4x4_blocks_high > 1)
+ xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block];
+ }
+ }
+ mbmi->mode = xd->mi[0]->bmi[3].as_mode;
+ ctx->mic = *(xd->mi[0]);
+ ctx->skip_txfm[0] = 0;
+ ctx->skip = 0;
+ // Dummy assignment for speed -5. No effect in speed -6.
+ rd_cost->rdcost = best_rd;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_pickmode.h b/media/libvpx/vp9/encoder/vp9_pickmode.h
new file mode 100644
index 000000000..11f44099c
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_pickmode.h
@@ -0,0 +1,39 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_PICKMODE_H_
+#define VP9_ENCODER_VP9_PICKMODE_H_
+
+#include "vp9/encoder/vp9_encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
+
+void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ TileDataEnc *tile_data,
+ int mi_row, int mi_col, RD_COST *rd_cost,
+ BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx);
+
+void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
+ TileDataEnc *tile_data,
+ int mi_row, int mi_col, RD_COST *rd_cost,
+ BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_PICKMODE_H_
diff --git a/media/libvpx/vp9/encoder/vp9_psnrhvs.c b/media/libvpx/vp9/encoder/vp9_psnrhvs.c
new file mode 100644
index 000000000..e10e0284c
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_psnrhvs.c
@@ -0,0 +1,223 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ *
+ * This code was originally written by: Gregory Maxwell, at the Daala
+ * project.
+ */
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include "./vpx_config.h"
+#include "./vp9_rtcd.h"
+#include "vp9/encoder/vp9_ssim.h"
+
+#if !defined(M_PI)
+# define M_PI (3.141592653589793238462643)
+#endif
+#include <string.h>
+
+void od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x, int xstride) {
+ (void) xstride;
+ vp9_fdct8x8_c(x, y, ystride);
+}
+
+/* Normalized inverse quantization matrix for 8x8 DCT at the point of
+ * transparency. This is not the JPEG based matrix from the paper,
+ this one gives a slightly higher MOS agreement.*/
+float csf_y[8][8] = {{1.6193873005, 2.2901594831, 2.08509755623, 1.48366094411,
+ 1.00227514334, 0.678296995242, 0.466224900598, 0.3265091542}, {2.2901594831,
+ 1.94321815382, 2.04793073064, 1.68731108984, 1.2305666963, 0.868920337363,
+ 0.61280991668, 0.436405793551}, {2.08509755623, 2.04793073064,
+ 1.34329019223, 1.09205635862, 0.875748795257, 0.670882927016,
+ 0.501731932449, 0.372504254596}, {1.48366094411, 1.68731108984,
+ 1.09205635862, 0.772819797575, 0.605636379554, 0.48309405692,
+ 0.380429446972, 0.295774038565}, {1.00227514334, 1.2305666963,
+ 0.875748795257, 0.605636379554, 0.448996256676, 0.352889268808,
+ 0.283006984131, 0.226951348204}, {0.678296995242, 0.868920337363,
+ 0.670882927016, 0.48309405692, 0.352889268808, 0.27032073436,
+ 0.215017739696, 0.17408067321}, {0.466224900598, 0.61280991668,
+ 0.501731932449, 0.380429446972, 0.283006984131, 0.215017739696,
+ 0.168869545842, 0.136153931001}, {0.3265091542, 0.436405793551,
+ 0.372504254596, 0.295774038565, 0.226951348204, 0.17408067321,
+ 0.136153931001, 0.109083846276}};
+float csf_cb420[8][8] = {
+ {1.91113096927, 2.46074210438, 1.18284184739, 1.14982565193, 1.05017074788,
+ 0.898018824055, 0.74725392039, 0.615105596242}, {2.46074210438,
+ 1.58529308355, 1.21363250036, 1.38190029285, 1.33100189972,
+ 1.17428548929, 0.996404342439, 0.830890433625}, {1.18284184739,
+ 1.21363250036, 0.978712413627, 1.02624506078, 1.03145147362,
+ 0.960060382087, 0.849823426169, 0.731221236837}, {1.14982565193,
+ 1.38190029285, 1.02624506078, 0.861317501629, 0.801821139099,
+ 0.751437590932, 0.685398513368, 0.608694761374}, {1.05017074788,
+ 1.33100189972, 1.03145147362, 0.801821139099, 0.676555426187,
+ 0.605503172737, 0.55002013668, 0.495804539034}, {0.898018824055,
+ 1.17428548929, 0.960060382087, 0.751437590932, 0.605503172737,
+ 0.514674450957, 0.454353482512, 0.407050308965}, {0.74725392039,
+ 0.996404342439, 0.849823426169, 0.685398513368, 0.55002013668,
+ 0.454353482512, 0.389234902883, 0.342353999733}, {0.615105596242,
+ 0.830890433625, 0.731221236837, 0.608694761374, 0.495804539034,
+ 0.407050308965, 0.342353999733, 0.295530605237}};
+float csf_cr420[8][8] = {
+ {2.03871978502, 2.62502345193, 1.26180942886, 1.11019789803, 1.01397751469,
+ 0.867069376285, 0.721500455585, 0.593906509971}, {2.62502345193,
+ 1.69112867013, 1.17180569821, 1.3342742857, 1.28513006198,
+ 1.13381474809, 0.962064122248, 0.802254508198}, {1.26180942886,
+ 1.17180569821, 0.944981930573, 0.990876405848, 0.995903384143,
+ 0.926972725286, 0.820534991409, 0.706020324706}, {1.11019789803,
+ 1.3342742857, 0.990876405848, 0.831632933426, 0.77418706195,
+ 0.725539939514, 0.661776842059, 0.587716619023}, {1.01397751469,
+ 1.28513006198, 0.995903384143, 0.77418706195, 0.653238524286,
+ 0.584635025748, 0.531064164893, 0.478717061273}, {0.867069376285,
+ 1.13381474809, 0.926972725286, 0.725539939514, 0.584635025748,
+ 0.496936637883, 0.438694579826, 0.393021669543}, {0.721500455585,
+ 0.962064122248, 0.820534991409, 0.661776842059, 0.531064164893,
+ 0.438694579826, 0.375820256136, 0.330555063063}, {0.593906509971,
+ 0.802254508198, 0.706020324706, 0.587716619023, 0.478717061273,
+ 0.393021669543, 0.330555063063, 0.285345396658}};
+
+static double convert_score_db(double _score, double _weight) {
+ return 10 * (log10(255 * 255) - log10(_weight * _score));
+}
+
+static double calc_psnrhvs(const unsigned char *_src, int _systride,
+ const unsigned char *_dst, int _dystride,
+ double _par, int _w, int _h, int _step,
+ float _csf[8][8]) {
+ float ret;
+ int16_t dct_s[8 * 8], dct_d[8 * 8];
+ tran_low_t dct_s_coef[8 * 8], dct_d_coef[8 * 8];
+ float mask[8][8];
+ int pixels;
+ int x;
+ int y;
+ (void) _par;
+ ret = pixels = 0;
+ /*In the PSNR-HVS-M paper[1] the authors describe the construction of
+ their masking table as "we have used the quantization table for the
+ color component Y of JPEG [6] that has been also obtained on the
+ basis of CSF. Note that the values in quantization table JPEG have
+ been normalized and then squared." Their CSF matrix (from PSNR-HVS)
+ was also constructed from the JPEG matrices. I can not find any obvious
+ scheme of normalizing to produce their table, but if I multiply their
+ CSF by 0.38857 and square the result I get their masking table.
+ I have no idea where this constant comes from, but deviating from it
+ too greatly hurts MOS agreement.
+
+ [1] Nikolay Ponomarenko, Flavia Silvestri, Karen Egiazarian, Marco Carli,
+ Jaakko Astola, Vladimir Lukin, "On between-coefficient contrast masking
+ of DCT basis functions", CD-ROM Proceedings of the Third
+ International Workshop on Video Processing and Quality Metrics for Consumer
+ Electronics VPQM-07, Scottsdale, Arizona, USA, 25-26 January, 2007, 4 p.*/
+ for (x = 0; x < 8; x++)
+ for (y = 0; y < 8; y++)
+ mask[x][y] = (_csf[x][y] * 0.3885746225901003)
+ * (_csf[x][y] * 0.3885746225901003);
+ for (y = 0; y < _h - 7; y += _step) {
+ for (x = 0; x < _w - 7; x += _step) {
+ int i;
+ int j;
+ float s_means[4];
+ float d_means[4];
+ float s_vars[4];
+ float d_vars[4];
+ float s_gmean = 0;
+ float d_gmean = 0;
+ float s_gvar = 0;
+ float d_gvar = 0;
+ float s_mask = 0;
+ float d_mask = 0;
+ for (i = 0; i < 4; i++)
+ s_means[i] = d_means[i] = s_vars[i] = d_vars[i] = 0;
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 8; j++) {
+ int sub = ((i & 12) >> 2) + ((j & 12) >> 1);
+ dct_s[i * 8 + j] = _src[(y + i) * _systride + (j + x)];
+ dct_d[i * 8 + j] = _dst[(y + i) * _dystride + (j + x)];
+ s_gmean += dct_s[i * 8 + j];
+ d_gmean += dct_d[i * 8 + j];
+ s_means[sub] += dct_s[i * 8 + j];
+ d_means[sub] += dct_d[i * 8 + j];
+ }
+ }
+ s_gmean /= 64.f;
+ d_gmean /= 64.f;
+ for (i = 0; i < 4; i++)
+ s_means[i] /= 16.f;
+ for (i = 0; i < 4; i++)
+ d_means[i] /= 16.f;
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 8; j++) {
+ int sub = ((i & 12) >> 2) + ((j & 12) >> 1);
+ s_gvar += (dct_s[i * 8 + j] - s_gmean) * (dct_s[i * 8 + j] - s_gmean);
+ d_gvar += (dct_d[i * 8 + j] - d_gmean) * (dct_d[i * 8 + j] - d_gmean);
+ s_vars[sub] += (dct_s[i * 8 + j] - s_means[sub])
+ * (dct_s[i * 8 + j] - s_means[sub]);
+ d_vars[sub] += (dct_d[i * 8 + j] - d_means[sub])
+ * (dct_d[i * 8 + j] - d_means[sub]);
+ }
+ }
+ s_gvar *= 1 / 63.f * 64;
+ d_gvar *= 1 / 63.f * 64;
+ for (i = 0; i < 4; i++)
+ s_vars[i] *= 1 / 15.f * 16;
+ for (i = 0; i < 4; i++)
+ d_vars[i] *= 1 / 15.f * 16;
+ if (s_gvar > 0)
+ s_gvar = (s_vars[0] + s_vars[1] + s_vars[2] + s_vars[3]) / s_gvar;
+ if (d_gvar > 0)
+ d_gvar = (d_vars[0] + d_vars[1] + d_vars[2] + d_vars[3]) / d_gvar;
+ od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8);
+ od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8);
+ for (i = 0; i < 8; i++)
+ for (j = (i == 0); j < 8; j++)
+ s_mask += dct_s_coef[i * 8 + j] * dct_s_coef[i * 8 + j] * mask[i][j];
+ for (i = 0; i < 8; i++)
+ for (j = (i == 0); j < 8; j++)
+ d_mask += dct_d_coef[i * 8 + j] * dct_d_coef[i * 8 + j] * mask[i][j];
+ s_mask = sqrt(s_mask * s_gvar) / 32.f;
+ d_mask = sqrt(d_mask * d_gvar) / 32.f;
+ if (d_mask > s_mask)
+ s_mask = d_mask;
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 8; j++) {
+ float err;
+ err = fabs(dct_s_coef[i * 8 + j] - dct_d_coef[i * 8 + j]);
+ if (i != 0 || j != 0)
+ err = err < s_mask / mask[i][j] ? 0 : err - s_mask / mask[i][j];
+ ret += (err * _csf[i][j]) * (err * _csf[i][j]);
+ pixels++;
+ }
+ }
+ }
+ }
+ ret /= pixels;
+ return ret;
+}
+double vp9_psnrhvs(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
+ double *y_psnrhvs, double *u_psnrhvs, double *v_psnrhvs) {
+ double psnrhvs;
+ double par = 1.0;
+ int step = 7;
+ vp9_clear_system_state();
+ *y_psnrhvs = calc_psnrhvs(source->y_buffer, source->y_stride, dest->y_buffer,
+ dest->y_stride, par, source->y_crop_width,
+ source->y_crop_height, step, csf_y);
+
+ *u_psnrhvs = calc_psnrhvs(source->u_buffer, source->uv_stride, dest->u_buffer,
+ dest->uv_stride, par, source->uv_crop_width,
+ source->uv_crop_height, step, csf_cb420);
+
+ *v_psnrhvs = calc_psnrhvs(source->v_buffer, source->uv_stride, dest->v_buffer,
+ dest->uv_stride, par, source->uv_crop_width,
+ source->uv_crop_height, step, csf_cr420);
+ psnrhvs = (*y_psnrhvs) * .8 + .1 * ((*u_psnrhvs) + (*v_psnrhvs));
+
+ return convert_score_db(psnrhvs, 1.0);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_quantize.c b/media/libvpx/vp9/encoder/vp9_quantize.c
new file mode 100644
index 000000000..db5460b6c
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_quantize.c
@@ -0,0 +1,728 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_rd.h"
+
+void vp9_quantize_dc(const tran_low_t *coeff_ptr,
+ int n_coeffs, int skip_block,
+ const int16_t *round_ptr, const int16_t quant,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t dequant_ptr, uint16_t *eob_ptr) {
+ const int rc = 0;
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+ int tmp, eob = -1;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
+ tmp = (tmp * quant) >> 16;
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr;
+ if (tmp)
+ eob = 0;
+ }
+ *eob_ptr = eob + 1;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_quantize_dc(const tran_low_t *coeff_ptr,
+ int n_coeffs, int skip_block,
+ const int16_t *round_ptr, const int16_t quant,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t dequant_ptr, uint16_t *eob_ptr) {
+ int eob = -1;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ const int rc = 0;
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ const int64_t tmp =
+ (clamp(abs_coeff + round_ptr[rc != 0], INT32_MIN, INT32_MAX) *
+ quant) >> 16;
+ qcoeff_ptr[rc] = (tran_low_t)((tmp ^ coeff_sign) - coeff_sign);
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr;
+ if (tmp)
+ eob = 0;
+ }
+ *eob_ptr = eob + 1;
+}
+#endif
+
+void vp9_quantize_dc_32x32(const tran_low_t *coeff_ptr, int skip_block,
+ const int16_t *round_ptr, const int16_t quant,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t dequant_ptr, uint16_t *eob_ptr) {
+ const int n_coeffs = 1024;
+ const int rc = 0;
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+ int tmp, eob = -1;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+
+ tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1),
+ INT16_MIN, INT16_MAX);
+ tmp = (tmp * quant) >> 15;
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr / 2;
+ if (tmp)
+ eob = 0;
+ }
+ *eob_ptr = eob + 1;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_quantize_dc_32x32(const tran_low_t *coeff_ptr,
+ int skip_block,
+ const int16_t *round_ptr,
+ const int16_t quant,
+ tran_low_t *qcoeff_ptr,
+ tran_low_t *dqcoeff_ptr,
+ const int16_t dequant_ptr,
+ uint16_t *eob_ptr) {
+ const int n_coeffs = 1024;
+ int eob = -1;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ const int rc = 0;
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ const int64_t tmp =
+ (clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1),
+ INT32_MIN, INT32_MAX) * quant) >> 15;
+ qcoeff_ptr[rc] = (tran_low_t)((tmp ^ coeff_sign) - coeff_sign);
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr / 2;
+ if (tmp)
+ eob = 0;
+ }
+ *eob_ptr = eob + 1;
+}
+#endif
+
+void vp9_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
+ int skip_block,
+ const int16_t *zbin_ptr, const int16_t *round_ptr,
+ const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan, const int16_t *iscan) {
+ int i, eob = -1;
+ // TODO(jingning) Decide the need of these arguments after the
+ // quantization process is completed.
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Quantization pass: All coefficients with index >= zero_flag are
+ // skippable. Note: zero_flag can be zero.
+ for (i = 0; i < n_coeffs; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
+ tmp = (tmp * quant_ptr[rc != 0]) >> 16;
+
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+
+ if (tmp)
+ eob = i;
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_quantize_fp_c(const tran_low_t *coeff_ptr,
+ intptr_t count,
+ int skip_block,
+ const int16_t *zbin_ptr,
+ const int16_t *round_ptr,
+ const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr,
+ tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan,
+ const int16_t *iscan) {
+ int i;
+ int eob = -1;
+ // TODO(jingning) Decide the need of these arguments after the
+ // quantization process is completed.
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, count * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, count * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Quantization pass: All coefficients with index >= zero_flag are
+ // skippable. Note: zero_flag can be zero.
+ for (i = 0; i < count; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ const int64_t tmp =
+ (clamp(abs_coeff + round_ptr[rc != 0], INT32_MIN, INT32_MAX) *
+ quant_ptr[rc != 0]) >> 16;
+
+ qcoeff_ptr[rc] = (tran_low_t)((tmp ^ coeff_sign) - coeff_sign);
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+
+ if (tmp)
+ eob = i;
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+#endif
+
+// TODO(jingning) Refactor this file and combine functions with similar
+// operations.
+void vp9_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
+ int skip_block,
+ const int16_t *zbin_ptr, const int16_t *round_ptr,
+ const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan, const int16_t *iscan) {
+ int i, eob = -1;
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ for (i = 0; i < n_coeffs; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ int tmp = 0;
+ int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ if (abs_coeff >= (dequant_ptr[rc != 0] >> 2)) {
+ abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
+ abs_coeff = clamp(abs_coeff, INT16_MIN, INT16_MAX);
+ tmp = (abs_coeff * quant_ptr[rc != 0]) >> 15;
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2;
+ }
+
+ if (tmp)
+ eob = i;
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_quantize_fp_32x32_c(const tran_low_t *coeff_ptr,
+ intptr_t n_coeffs, int skip_block,
+ const int16_t *zbin_ptr,
+ const int16_t *round_ptr,
+ const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr,
+ tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan, const int16_t *iscan) {
+ int i, eob = -1;
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ for (i = 0; i < n_coeffs; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ int64_t tmp = 0;
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ if (abs_coeff >= (dequant_ptr[rc != 0] >> 2)) {
+ tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1),
+ INT32_MIN, INT32_MAX);
+ tmp = (tmp * quant_ptr[rc != 0]) >> 15;
+ qcoeff_ptr[rc] = (tran_low_t)((tmp ^ coeff_sign) - coeff_sign);
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2;
+ }
+
+ if (tmp)
+ eob = i;
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+#endif
+
+void vp9_quantize_b_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
+ int skip_block,
+ const int16_t *zbin_ptr, const int16_t *round_ptr,
+ const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan, const int16_t *iscan) {
+ int i, non_zero_count = (int)n_coeffs, eob = -1;
+ const int zbins[2] = {zbin_ptr[0], zbin_ptr[1]};
+ const int nzbins[2] = {zbins[0] * -1, zbins[1] * -1};
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Pre-scan pass
+ for (i = (int)n_coeffs - 1; i >= 0; i--) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+
+ if (coeff < zbins[rc != 0] && coeff > nzbins[rc != 0])
+ non_zero_count--;
+ else
+ break;
+ }
+
+ // Quantization pass: All coefficients with index >= zero_flag are
+ // skippable. Note: zero_flag can be zero.
+ for (i = 0; i < non_zero_count; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ if (abs_coeff >= zbins[rc != 0]) {
+ int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
+ tmp = ((((tmp * quant_ptr[rc != 0]) >> 16) + tmp) *
+ quant_shift_ptr[rc != 0]) >> 16; // quantization
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+
+ if (tmp)
+ eob = i;
+ }
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_quantize_b_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
+ int skip_block, const int16_t *zbin_ptr,
+ const int16_t *round_ptr, const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr, const int16_t *scan,
+ const int16_t *iscan) {
+ int i, non_zero_count = (int)n_coeffs, eob = -1;
+ const int zbins[2] = {zbin_ptr[0], zbin_ptr[1]};
+ const int nzbins[2] = {zbins[0] * -1, zbins[1] * -1};
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Pre-scan pass
+ for (i = (int)n_coeffs - 1; i >= 0; i--) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+
+ if (coeff < zbins[rc != 0] && coeff > nzbins[rc != 0])
+ non_zero_count--;
+ else
+ break;
+ }
+
+ // Quantization pass: All coefficients with index >= zero_flag are
+ // skippable. Note: zero_flag can be zero.
+ for (i = 0; i < non_zero_count; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+
+ if (abs_coeff >= zbins[rc != 0]) {
+ int64_t tmp = clamp(abs_coeff + round_ptr[rc != 0],
+ INT32_MIN, INT32_MAX);
+ tmp = ((((tmp * quant_ptr[rc != 0]) >> 16) + tmp) *
+ quant_shift_ptr[rc != 0]) >> 16; // quantization
+ qcoeff_ptr[rc] = (tran_low_t)((tmp ^ coeff_sign) - coeff_sign);
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
+
+ if (tmp)
+ eob = i;
+ }
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+#endif
+
+void vp9_quantize_b_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
+ int skip_block,
+ const int16_t *zbin_ptr, const int16_t *round_ptr,
+ const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan, const int16_t *iscan) {
+ const int zbins[2] = {ROUND_POWER_OF_TWO(zbin_ptr[0], 1),
+ ROUND_POWER_OF_TWO(zbin_ptr[1], 1)};
+ const int nzbins[2] = {zbins[0] * -1, zbins[1] * -1};
+
+ int idx = 0;
+ int idx_arr[1024];
+ int i, eob = -1;
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Pre-scan pass
+ for (i = 0; i < n_coeffs; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+
+ // If the coefficient is out of the base ZBIN range, keep it for
+ // quantization.
+ if (coeff >= zbins[rc != 0] || coeff <= nzbins[rc != 0])
+ idx_arr[idx++] = i;
+ }
+
+ // Quantization pass: only process the coefficients selected in
+ // pre-scan pass. Note: idx can be zero.
+ for (i = 0; i < idx; i++) {
+ const int rc = scan[idx_arr[i]];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ int tmp;
+ int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+ abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
+ abs_coeff = clamp(abs_coeff, INT16_MIN, INT16_MAX);
+ tmp = ((((abs_coeff * quant_ptr[rc != 0]) >> 16) + abs_coeff) *
+ quant_shift_ptr[rc != 0]) >> 15;
+
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2;
+
+ if (tmp)
+ eob = idx_arr[i];
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_quantize_b_32x32_c(const tran_low_t *coeff_ptr,
+ intptr_t n_coeffs, int skip_block,
+ const int16_t *zbin_ptr,
+ const int16_t *round_ptr,
+ const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr,
+ tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan, const int16_t *iscan) {
+ const int zbins[2] = {ROUND_POWER_OF_TWO(zbin_ptr[0], 1),
+ ROUND_POWER_OF_TWO(zbin_ptr[1], 1)};
+ const int nzbins[2] = {zbins[0] * -1, zbins[1] * -1};
+
+ int idx = 0;
+ int idx_arr[1024];
+ int i, eob = -1;
+ (void)iscan;
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Pre-scan pass
+ for (i = 0; i < n_coeffs; i++) {
+ const int rc = scan[i];
+ const int coeff = coeff_ptr[rc];
+
+ // If the coefficient is out of the base ZBIN range, keep it for
+ // quantization.
+ if (coeff >= zbins[rc != 0] || coeff <= nzbins[rc != 0])
+ idx_arr[idx++] = i;
+ }
+
+ // Quantization pass: only process the coefficients selected in
+ // pre-scan pass. Note: idx can be zero.
+ for (i = 0; i < idx; i++) {
+ const int rc = scan[idx_arr[i]];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+ int64_t tmp = clamp(abs_coeff +
+ ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1),
+ INT32_MIN, INT32_MAX);
+ tmp = ((((tmp * quant_ptr[rc != 0]) >> 16) + tmp) *
+ quant_shift_ptr[rc != 0]) >> 15;
+
+ qcoeff_ptr[rc] = (tran_low_t)((tmp ^ coeff_sign) - coeff_sign);
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2;
+
+ if (tmp)
+ eob = idx_arr[i];
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+#endif
+
+void vp9_regular_quantize_b_4x4(MACROBLOCK *x, int plane, int block,
+ const int16_t *scan, const int16_t *iscan) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *p = &x->plane[plane];
+ struct macroblockd_plane *pd = &xd->plane[plane];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_quantize_b(BLOCK_OFFSET(p->coeff, block),
+ 16, x->skip_block,
+ p->zbin, p->round, p->quant, p->quant_shift,
+ BLOCK_OFFSET(p->qcoeff, block),
+ BLOCK_OFFSET(pd->dqcoeff, block),
+ pd->dequant, &p->eobs[block],
+ scan, iscan);
+ return;
+ }
+#endif
+ vp9_quantize_b(BLOCK_OFFSET(p->coeff, block),
+ 16, x->skip_block,
+ p->zbin, p->round, p->quant, p->quant_shift,
+ BLOCK_OFFSET(p->qcoeff, block),
+ BLOCK_OFFSET(pd->dqcoeff, block),
+ pd->dequant, &p->eobs[block], scan, iscan);
+}
+
+static void invert_quant(int16_t *quant, int16_t *shift, int d) {
+ unsigned t;
+ int l;
+ t = d;
+ for (l = 0; t > 1; l++)
+ t >>= 1;
+ t = 1 + (1 << (16 + l)) / d;
+ *quant = (int16_t)(t - (1 << 16));
+ *shift = 1 << (16 - l);
+}
+
+static int get_qzbin_factor(int q, vpx_bit_depth_t bit_depth) {
+ const int quant = vp9_dc_quant(q, 0, bit_depth);
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (bit_depth) {
+ case VPX_BITS_8:
+ return q == 0 ? 64 : (quant < 148 ? 84 : 80);
+ case VPX_BITS_10:
+ return q == 0 ? 64 : (quant < 592 ? 84 : 80);
+ case VPX_BITS_12:
+ return q == 0 ? 64 : (quant < 2368 ? 84 : 80);
+ default:
+ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+ return -1;
+ }
+#else
+ (void) bit_depth;
+ return q == 0 ? 64 : (quant < 148 ? 84 : 80);
+#endif
+}
+
+void vp9_init_quantizer(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ QUANTS *const quants = &cpi->quants;
+ int i, q, quant;
+
+ for (q = 0; q < QINDEX_RANGE; q++) {
+ const int qzbin_factor = get_qzbin_factor(q, cm->bit_depth);
+ const int qrounding_factor = q == 0 ? 64 : 48;
+
+ for (i = 0; i < 2; ++i) {
+ int qrounding_factor_fp = i == 0 ? 48 : 42;
+ if (q == 0)
+ qrounding_factor_fp = 64;
+
+ // y
+ quant = i == 0 ? vp9_dc_quant(q, cm->y_dc_delta_q, cm->bit_depth)
+ : vp9_ac_quant(q, 0, cm->bit_depth);
+ invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i], quant);
+ quants->y_quant_fp[q][i] = (1 << 16) / quant;
+ quants->y_round_fp[q][i] = (qrounding_factor_fp * quant) >> 7;
+ quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
+ quants->y_round[q][i] = (qrounding_factor * quant) >> 7;
+ cpi->y_dequant[q][i] = quant;
+
+ // uv
+ quant = i == 0 ? vp9_dc_quant(q, cm->uv_dc_delta_q, cm->bit_depth)
+ : vp9_ac_quant(q, cm->uv_ac_delta_q, cm->bit_depth);
+ invert_quant(&quants->uv_quant[q][i],
+ &quants->uv_quant_shift[q][i], quant);
+ quants->uv_quant_fp[q][i] = (1 << 16) / quant;
+ quants->uv_round_fp[q][i] = (qrounding_factor_fp * quant) >> 7;
+ quants->uv_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7);
+ quants->uv_round[q][i] = (qrounding_factor * quant) >> 7;
+ cpi->uv_dequant[q][i] = quant;
+ }
+
+ for (i = 2; i < 8; i++) {
+ quants->y_quant[q][i] = quants->y_quant[q][1];
+ quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1];
+ quants->y_round_fp[q][i] = quants->y_round_fp[q][1];
+ quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
+ quants->y_zbin[q][i] = quants->y_zbin[q][1];
+ quants->y_round[q][i] = quants->y_round[q][1];
+ cpi->y_dequant[q][i] = cpi->y_dequant[q][1];
+
+ quants->uv_quant[q][i] = quants->uv_quant[q][1];
+ quants->uv_quant_fp[q][i] = quants->uv_quant_fp[q][1];
+ quants->uv_round_fp[q][i] = quants->uv_round_fp[q][1];
+ quants->uv_quant_shift[q][i] = quants->uv_quant_shift[q][1];
+ quants->uv_zbin[q][i] = quants->uv_zbin[q][1];
+ quants->uv_round[q][i] = quants->uv_round[q][1];
+ cpi->uv_dequant[q][i] = cpi->uv_dequant[q][1];
+ }
+ }
+}
+
+void vp9_init_plane_quantizers(VP9_COMP *cpi, MACROBLOCK *x) {
+ const VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ QUANTS *const quants = &cpi->quants;
+ const int segment_id = xd->mi[0]->mbmi.segment_id;
+ const int qindex = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
+ const int rdmult = vp9_compute_rd_mult(cpi, qindex + cm->y_dc_delta_q);
+ int i;
+
+ // Y
+ x->plane[0].quant = quants->y_quant[qindex];
+ x->plane[0].quant_fp = quants->y_quant_fp[qindex];
+ x->plane[0].round_fp = quants->y_round_fp[qindex];
+ x->plane[0].quant_shift = quants->y_quant_shift[qindex];
+ x->plane[0].zbin = quants->y_zbin[qindex];
+ x->plane[0].round = quants->y_round[qindex];
+ xd->plane[0].dequant = cpi->y_dequant[qindex];
+
+ x->plane[0].quant_thred[0] = x->plane[0].zbin[0] * x->plane[0].zbin[0];
+ x->plane[0].quant_thred[1] = x->plane[0].zbin[1] * x->plane[0].zbin[1];
+
+ // UV
+ for (i = 1; i < 3; i++) {
+ x->plane[i].quant = quants->uv_quant[qindex];
+ x->plane[i].quant_fp = quants->uv_quant_fp[qindex];
+ x->plane[i].round_fp = quants->uv_round_fp[qindex];
+ x->plane[i].quant_shift = quants->uv_quant_shift[qindex];
+ x->plane[i].zbin = quants->uv_zbin[qindex];
+ x->plane[i].round = quants->uv_round[qindex];
+ xd->plane[i].dequant = cpi->uv_dequant[qindex];
+
+ x->plane[i].quant_thred[0] = x->plane[i].zbin[0] * x->plane[i].zbin[0];
+ x->plane[i].quant_thred[1] = x->plane[i].zbin[1] * x->plane[i].zbin[1];
+ }
+
+ x->skip_block = vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
+ x->q_index = qindex;
+
+ x->errorperbit = rdmult >> 6;
+ x->errorperbit += (x->errorperbit == 0);
+
+ vp9_initialize_me_consts(cpi, x, x->q_index);
+}
+
+void vp9_frame_init_quantizer(VP9_COMP *cpi) {
+ vp9_init_plane_quantizers(cpi, &cpi->td.mb);
+}
+
+void vp9_set_quantizer(VP9_COMMON *cm, int q) {
+ // quantizer has to be reinitialized with vp9_init_quantizer() if any
+ // delta_q changes.
+ cm->base_qindex = q;
+ cm->y_dc_delta_q = 0;
+ cm->uv_dc_delta_q = 0;
+ cm->uv_ac_delta_q = 0;
+}
+
+// Table that converts 0-63 Q-range values passed in outside to the Qindex
+// range used internally.
+static const int quantizer_to_qindex[] = {
+ 0, 4, 8, 12, 16, 20, 24, 28,
+ 32, 36, 40, 44, 48, 52, 56, 60,
+ 64, 68, 72, 76, 80, 84, 88, 92,
+ 96, 100, 104, 108, 112, 116, 120, 124,
+ 128, 132, 136, 140, 144, 148, 152, 156,
+ 160, 164, 168, 172, 176, 180, 184, 188,
+ 192, 196, 200, 204, 208, 212, 216, 220,
+ 224, 228, 232, 236, 240, 244, 249, 255,
+};
+
+int vp9_quantizer_to_qindex(int quantizer) {
+ return quantizer_to_qindex[quantizer];
+}
+
+int vp9_qindex_to_quantizer(int qindex) {
+ int quantizer;
+
+ for (quantizer = 0; quantizer < 64; ++quantizer)
+ if (quantizer_to_qindex[quantizer] >= qindex)
+ return quantizer;
+
+ return 63;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_quantize.h b/media/libvpx/vp9/encoder/vp9_quantize.h
new file mode 100644
index 000000000..55e546944
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_quantize.h
@@ -0,0 +1,87 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_QUANTIZE_H_
+#define VP9_ENCODER_VP9_QUANTIZE_H_
+
+#include "./vpx_config.h"
+#include "vp9/encoder/vp9_block.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+ DECLARE_ALIGNED(16, int16_t, y_quant[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, y_quant_shift[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, y_zbin[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, y_round[QINDEX_RANGE][8]);
+
+ // TODO(jingning): in progress of re-working the quantization. will decide
+ // if we want to deprecate the current use of y_quant.
+ DECLARE_ALIGNED(16, int16_t, y_quant_fp[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_quant_fp[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, y_round_fp[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_round_fp[QINDEX_RANGE][8]);
+
+ DECLARE_ALIGNED(16, int16_t, uv_quant[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_quant_shift[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_zbin[QINDEX_RANGE][8]);
+ DECLARE_ALIGNED(16, int16_t, uv_round[QINDEX_RANGE][8]);
+} QUANTS;
+
+void vp9_quantize_dc(const tran_low_t *coeff_ptr,
+ int n_coeffs, int skip_block,
+ const int16_t *round_ptr, const int16_t quant_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t dequant_ptr, uint16_t *eob_ptr);
+void vp9_quantize_dc_32x32(const tran_low_t *coeff_ptr, int skip_block,
+ const int16_t *round_ptr, const int16_t quant_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t dequant_ptr, uint16_t *eob_ptr);
+void vp9_regular_quantize_b_4x4(MACROBLOCK *x, int plane, int block,
+ const int16_t *scan, const int16_t *iscan);
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_quantize_dc(const tran_low_t *coeff_ptr,
+ int n_coeffs, int skip_block,
+ const int16_t *round_ptr, const int16_t quant_ptr,
+ tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
+ const int16_t dequant_ptr, uint16_t *eob_ptr);
+void vp9_highbd_quantize_dc_32x32(const tran_low_t *coeff_ptr,
+ int skip_block,
+ const int16_t *round_ptr,
+ const int16_t quant_ptr,
+ tran_low_t *qcoeff_ptr,
+ tran_low_t *dqcoeff_ptr,
+ const int16_t dequant_ptr,
+ uint16_t *eob_ptr);
+#endif
+
+struct VP9_COMP;
+struct VP9Common;
+
+void vp9_frame_init_quantizer(struct VP9_COMP *cpi);
+
+void vp9_init_plane_quantizers(struct VP9_COMP *cpi, MACROBLOCK *x);
+
+void vp9_init_quantizer(struct VP9_COMP *cpi);
+
+void vp9_set_quantizer(struct VP9Common *cm, int q);
+
+int vp9_quantizer_to_qindex(int quantizer);
+
+int vp9_qindex_to_quantizer(int qindex);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_QUANTIZE_H_
diff --git a/media/libvpx/vp9/encoder/vp9_ratectrl.c b/media/libvpx/vp9/encoder/vp9_ratectrl.c
new file mode 100644
index 000000000..32682fe74
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_ratectrl.c
@@ -0,0 +1,1758 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_alloccommon.h"
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+
+// Max rate target for 1080P and below encodes under normal circumstances
+// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
+#define MAX_MB_RATE 250
+#define MAXRATE_1080P 2025000
+
+#define DEFAULT_KF_BOOST 2000
+#define DEFAULT_GF_BOOST 2000
+
+#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
+
+#define MIN_BPB_FACTOR 0.005
+#define MAX_BPB_FACTOR 50
+
+#define FRAME_OVERHEAD_BITS 200
+
+#if CONFIG_VP9_HIGHBITDEPTH
+#define ASSIGN_MINQ_TABLE(bit_depth, name) \
+ do { \
+ switch (bit_depth) { \
+ case VPX_BITS_8: \
+ name = name##_8; \
+ break; \
+ case VPX_BITS_10: \
+ name = name##_10; \
+ break; \
+ case VPX_BITS_12: \
+ name = name##_12; \
+ break; \
+ default: \
+ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \
+ " or VPX_BITS_12"); \
+ name = NULL; \
+ } \
+ } while (0)
+#else
+#define ASSIGN_MINQ_TABLE(bit_depth, name) \
+ do { \
+ (void) bit_depth; \
+ name = name##_8; \
+ } while (0)
+#endif
+
+// Tables relating active max Q to active min Q
+static int kf_low_motion_minq_8[QINDEX_RANGE];
+static int kf_high_motion_minq_8[QINDEX_RANGE];
+static int arfgf_low_motion_minq_8[QINDEX_RANGE];
+static int arfgf_high_motion_minq_8[QINDEX_RANGE];
+static int inter_minq_8[QINDEX_RANGE];
+static int rtc_minq_8[QINDEX_RANGE];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static int kf_low_motion_minq_10[QINDEX_RANGE];
+static int kf_high_motion_minq_10[QINDEX_RANGE];
+static int arfgf_low_motion_minq_10[QINDEX_RANGE];
+static int arfgf_high_motion_minq_10[QINDEX_RANGE];
+static int inter_minq_10[QINDEX_RANGE];
+static int rtc_minq_10[QINDEX_RANGE];
+static int kf_low_motion_minq_12[QINDEX_RANGE];
+static int kf_high_motion_minq_12[QINDEX_RANGE];
+static int arfgf_low_motion_minq_12[QINDEX_RANGE];
+static int arfgf_high_motion_minq_12[QINDEX_RANGE];
+static int inter_minq_12[QINDEX_RANGE];
+static int rtc_minq_12[QINDEX_RANGE];
+#endif
+
+static int gf_high = 2000;
+static int gf_low = 400;
+static int kf_high = 5000;
+static int kf_low = 400;
+
+// Functions to compute the active minq lookup table entries based on a
+// formulaic approach to facilitate easier adjustment of the Q tables.
+// The formulae were derived from computing a 3rd order polynomial best
+// fit to the original data (after plotting real maxq vs minq (not q index))
+static int get_minq_index(double maxq, double x3, double x2, double x1,
+ vpx_bit_depth_t bit_depth) {
+ int i;
+ const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq,
+ maxq);
+
+ // Special case handling to deal with the step from q2.0
+ // down to lossless mode represented by q 1.0.
+ if (minqtarget <= 2.0)
+ return 0;
+
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth))
+ return i;
+ }
+
+ return QINDEX_RANGE - 1;
+}
+
+static void init_minq_luts(int *kf_low_m, int *kf_high_m,
+ int *arfgf_low, int *arfgf_high,
+ int *inter, int *rtc, vpx_bit_depth_t bit_depth) {
+ int i;
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
+ kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
+ kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
+ arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
+ arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
+ inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
+ rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
+ }
+}
+
+void vp9_rc_init_minq_luts(void) {
+ init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
+ arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
+ inter_minq_8, rtc_minq_8, VPX_BITS_8);
+#if CONFIG_VP9_HIGHBITDEPTH
+ init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
+ arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
+ inter_minq_10, rtc_minq_10, VPX_BITS_10);
+ init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
+ arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
+ inter_minq_12, rtc_minq_12, VPX_BITS_12);
+#endif
+}
+
+// These functions use formulaic calculations to make playing with the
+// quantizer tables easier. If necessary they can be replaced by lookup
+// tables if and when things settle down in the experimental bitstream
+double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
+ // Convert the index to a real Q value (scaled down to match old Q values)
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (bit_depth) {
+ case VPX_BITS_8:
+ return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
+ case VPX_BITS_10:
+ return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
+ case VPX_BITS_12:
+ return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
+ default:
+ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+ return -1.0;
+ }
+#else
+ return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
+#endif
+}
+
+int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+ double correction_factor,
+ vpx_bit_depth_t bit_depth) {
+ const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
+ int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
+
+ assert(correction_factor <= MAX_BPB_FACTOR &&
+ correction_factor >= MIN_BPB_FACTOR);
+
+ // q based adjustment to baseline enumerator
+ enumerator += (int)(enumerator * q) >> 12;
+ return (int)(enumerator * correction_factor / q);
+}
+
+int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
+ double correction_factor,
+ vpx_bit_depth_t bit_depth) {
+ const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor,
+ bit_depth));
+ return MAX(FRAME_OVERHEAD_BITS,
+ (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
+}
+
+int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ const int min_frame_target = MAX(rc->min_frame_bandwidth,
+ rc->avg_frame_bandwidth >> 5);
+ if (target < min_frame_target)
+ target = min_frame_target;
+ if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
+ // If there is an active ARF at this location use the minimum
+ // bits on this frame even if it is a constructed arf.
+ // The active maximum quantizer insures that an appropriate
+ // number of bits will be spent if needed for constructed ARFs.
+ target = min_frame_target;
+ }
+ // Clip the frame target to the maximum allowed value.
+ if (target > rc->max_frame_bandwidth)
+ target = rc->max_frame_bandwidth;
+ if (oxcf->rc_max_inter_bitrate_pct) {
+ const int max_rate = rc->avg_frame_bandwidth *
+ oxcf->rc_max_inter_bitrate_pct / 100;
+ target = MIN(target, max_rate);
+ }
+ return target;
+}
+
+int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ if (oxcf->rc_max_intra_bitrate_pct) {
+ const int max_rate = rc->avg_frame_bandwidth *
+ oxcf->rc_max_intra_bitrate_pct / 100;
+ target = MIN(target, max_rate);
+ }
+ if (target > rc->max_frame_bandwidth)
+ target = rc->max_frame_bandwidth;
+ return target;
+}
+
+// Update the buffer level for higher temporal layers, given the encoded current
+// temporal layer.
+static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
+ int i = 0;
+ int current_temporal_layer = svc->temporal_layer_id;
+ for (i = current_temporal_layer + 1;
+ i < svc->number_temporal_layers; ++i) {
+ const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
+ svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
+ encoded_frame_size);
+ lrc->bits_off_target += bits_off_for_this_layer;
+
+ // Clip buffer level to maximum buffer size for the layer.
+ lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
+ lrc->buffer_level = lrc->bits_off_target;
+ }
+}
+
+// Update the buffer level: leaky bucket model.
+static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
+ const VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Non-viewable frames are a special case and are treated as pure overhead.
+ if (!cm->show_frame) {
+ rc->bits_off_target -= encoded_frame_size;
+ } else {
+ rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
+ }
+
+ // Clip the buffer level to the maximum specified buffer size.
+ rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
+ rc->buffer_level = rc->bits_off_target;
+
+ if (is_one_pass_cbr_svc(cpi)) {
+ update_layer_buffer_level(&cpi->svc, encoded_frame_size);
+ }
+}
+
+void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
+ int i;
+
+ if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
+ rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
+ rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
+ } else {
+ rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
+ oxcf->best_allowed_q) / 2;
+ rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
+ oxcf->best_allowed_q) / 2;
+ }
+
+ rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
+ rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
+
+ rc->buffer_level = rc->starting_buffer_level;
+ rc->bits_off_target = rc->starting_buffer_level;
+
+ rc->rolling_target_bits = rc->avg_frame_bandwidth;
+ rc->rolling_actual_bits = rc->avg_frame_bandwidth;
+ rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
+ rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
+
+ rc->total_actual_bits = 0;
+ rc->total_target_bits = 0;
+ rc->total_target_vs_actual = 0;
+
+ rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
+ rc->frames_since_key = 8; // Sensible default for first frame.
+ rc->this_key_frame_forced = 0;
+ rc->next_key_frame_forced = 0;
+ rc->source_alt_ref_pending = 0;
+ rc->source_alt_ref_active = 0;
+
+ rc->frames_till_gf_update_due = 0;
+ rc->ni_av_qi = oxcf->worst_allowed_q;
+ rc->ni_tot_qi = 0;
+ rc->ni_frames = 0;
+
+ rc->tot_q = 0.0;
+ rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
+
+ for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
+ rc->rate_correction_factors[i] = 1.0;
+ }
+}
+
+int vp9_rc_drop_frame(VP9_COMP *cpi) {
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ if (!oxcf->drop_frames_water_mark) {
+ return 0;
+ } else {
+ if (rc->buffer_level < 0) {
+ // Always drop if buffer is below 0.
+ return 1;
+ } else {
+ // If buffer is below drop_mark, for now just drop every other frame
+ // (starting with the next frame) until it increases back over drop_mark.
+ int drop_mark = (int)(oxcf->drop_frames_water_mark *
+ rc->optimal_buffer_level / 100);
+ if ((rc->buffer_level > drop_mark) &&
+ (rc->decimation_factor > 0)) {
+ --rc->decimation_factor;
+ } else if (rc->buffer_level <= drop_mark &&
+ rc->decimation_factor == 0) {
+ rc->decimation_factor = 1;
+ }
+ if (rc->decimation_factor > 0) {
+ if (rc->decimation_count > 0) {
+ --rc->decimation_count;
+ return 1;
+ } else {
+ rc->decimation_count = rc->decimation_factor;
+ return 0;
+ }
+ } else {
+ rc->decimation_count = 0;
+ return 0;
+ }
+ }
+ }
+}
+
+static double get_rate_correction_factor(const VP9_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ double rcf;
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ rcf = rc->rate_correction_factors[KF_STD];
+ } else if (cpi->oxcf.pass == 2) {
+ RATE_FACTOR_LEVEL rf_lvl =
+ cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+ rcf = rc->rate_correction_factors[rf_lvl];
+ } else {
+ if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+ !rc->is_src_frame_alt_ref && !cpi->use_svc &&
+ (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
+ rcf = rc->rate_correction_factors[GF_ARF_STD];
+ else
+ rcf = rc->rate_correction_factors[INTER_NORMAL];
+ }
+ rcf *= rcf_mult[rc->frame_size_selector];
+ return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+}
+
+static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Normalize RCF to account for the size-dependent scaling factor.
+ factor /= rcf_mult[cpi->rc.frame_size_selector];
+
+ factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ rc->rate_correction_factors[KF_STD] = factor;
+ } else if (cpi->oxcf.pass == 2) {
+ RATE_FACTOR_LEVEL rf_lvl =
+ cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+ rc->rate_correction_factors[rf_lvl] = factor;
+ } else {
+ if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+ !rc->is_src_frame_alt_ref && !cpi->use_svc &&
+ (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
+ rc->rate_correction_factors[GF_ARF_STD] = factor;
+ else
+ rc->rate_correction_factors[INTER_NORMAL] = factor;
+ }
+}
+
+void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ int correction_factor = 100;
+ double rate_correction_factor = get_rate_correction_factor(cpi);
+ double adjustment_limit;
+
+ int projected_size_based_on_q = 0;
+
+ // Do not update the rate factors for arf overlay frames.
+ if (cpi->rc.is_src_frame_alt_ref)
+ return;
+
+ // Clear down mmx registers to allow floating point in what follows
+ vp9_clear_system_state();
+
+ // Work out how big we would have expected the frame to be at this Q given
+ // the current correction factor.
+ // Stay in double to avoid int overflow when values are large
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
+ projected_size_based_on_q =
+ vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
+ } else {
+ projected_size_based_on_q = vp9_estimate_bits_at_q(cpi->common.frame_type,
+ cm->base_qindex,
+ cm->MBs,
+ rate_correction_factor,
+ cm->bit_depth);
+ }
+ // Work out a size correction factor.
+ if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
+ correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
+ projected_size_based_on_q);
+
+ // More heavily damped adjustment used if we have been oscillating either side
+ // of target.
+ adjustment_limit = 0.25 +
+ 0.5 * MIN(1, fabs(log10(0.01 * correction_factor)));
+
+ cpi->rc.q_2_frame = cpi->rc.q_1_frame;
+ cpi->rc.q_1_frame = cm->base_qindex;
+ cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
+ if (correction_factor > 110)
+ cpi->rc.rc_1_frame = -1;
+ else if (correction_factor < 90)
+ cpi->rc.rc_1_frame = 1;
+ else
+ cpi->rc.rc_1_frame = 0;
+
+ if (correction_factor > 102) {
+ // We are not already at the worst allowable quality
+ correction_factor = (int)(100 + ((correction_factor - 100) *
+ adjustment_limit));
+ rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
+ // Keep rate_correction_factor within limits
+ if (rate_correction_factor > MAX_BPB_FACTOR)
+ rate_correction_factor = MAX_BPB_FACTOR;
+ } else if (correction_factor < 99) {
+ // We are not already at the best allowable quality
+ correction_factor = (int)(100 - ((100 - correction_factor) *
+ adjustment_limit));
+ rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
+
+ // Keep rate_correction_factor within limits
+ if (rate_correction_factor < MIN_BPB_FACTOR)
+ rate_correction_factor = MIN_BPB_FACTOR;
+ }
+
+ set_rate_correction_factor(cpi, rate_correction_factor);
+}
+
+
+int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
+ int active_best_quality, int active_worst_quality) {
+ const VP9_COMMON *const cm = &cpi->common;
+ int q = active_worst_quality;
+ int last_error = INT_MAX;
+ int i, target_bits_per_mb, bits_per_mb_at_this_q;
+ const double correction_factor = get_rate_correction_factor(cpi);
+
+ // Calculate required scaling factor based on target frame size and size of
+ // frame produced using previous Q.
+ target_bits_per_mb =
+ ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
+
+ i = active_best_quality;
+
+ do {
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
+ cm->seg.enabled &&
+ cpi->svc.temporal_layer_id == 0 &&
+ cpi->svc.spatial_layer_id == 0) {
+ bits_per_mb_at_this_q =
+ (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
+ } else {
+ bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i,
+ correction_factor,
+ cm->bit_depth);
+ }
+
+ if (bits_per_mb_at_this_q <= target_bits_per_mb) {
+ if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
+ q = i;
+ else
+ q = i - 1;
+
+ break;
+ } else {
+ last_error = bits_per_mb_at_this_q - target_bits_per_mb;
+ }
+ } while (++i <= active_worst_quality);
+
+ // In CBR mode, this makes sure q is between oscillating Qs to prevent
+ // resonance.
+ if (cpi->oxcf.rc_mode == VPX_CBR &&
+ (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
+ cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
+ q = clamp(q, MIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
+ MAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
+ }
+ return q;
+}
+
+static int get_active_quality(int q, int gfu_boost, int low, int high,
+ int *low_motion_minq, int *high_motion_minq) {
+ if (gfu_boost > high) {
+ return low_motion_minq[q];
+ } else if (gfu_boost < low) {
+ return high_motion_minq[q];
+ } else {
+ const int gap = high - low;
+ const int offset = high - gfu_boost;
+ const int qdiff = high_motion_minq[q] - low_motion_minq[q];
+ const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
+ return low_motion_minq[q] + adjustment;
+ }
+}
+
+static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
+ vpx_bit_depth_t bit_depth) {
+ int *kf_low_motion_minq;
+ int *kf_high_motion_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
+ ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
+ return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
+ kf_low_motion_minq, kf_high_motion_minq);
+}
+
+static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
+ vpx_bit_depth_t bit_depth) {
+ int *arfgf_low_motion_minq;
+ int *arfgf_high_motion_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
+ return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
+}
+
+static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const unsigned int curr_frame = cpi->common.current_video_frame;
+ int active_worst_quality;
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ active_worst_quality = curr_frame == 0 ? rc->worst_quality
+ : rc->last_q[KEY_FRAME] * 2;
+ } else {
+ if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
+ : rc->last_q[INTER_FRAME];
+ } else {
+ active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
+ : rc->last_q[INTER_FRAME] * 2;
+ }
+ }
+ return MIN(active_worst_quality, rc->worst_quality);
+}
+
+// Adjust active_worst_quality level based on buffer level.
+static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
+ // Adjust active_worst_quality: If buffer is above the optimal/target level,
+ // bring active_worst_quality down depending on fullness of buffer.
+ // If buffer is below the optimal level, let the active_worst_quality go from
+ // ambient Q (at buffer = optimal level) to worst_quality level
+ // (at buffer = critical level).
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *rc = &cpi->rc;
+ // Buffer level below which we push active_worst to worst_quality.
+ int64_t critical_level = rc->optimal_buffer_level >> 3;
+ int64_t buff_lvl_step = 0;
+ int adjustment = 0;
+ int active_worst_quality;
+ int ambient_qp;
+ if (cm->frame_type == KEY_FRAME)
+ return rc->worst_quality;
+ // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
+ // for the first few frames following key frame. These are both initialized
+ // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
+ // So for first few frames following key, the qp of that key frame is weighted
+ // into the active_worst_quality setting.
+ ambient_qp = (cm->current_video_frame < 5) ?
+ MIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) :
+ rc->avg_frame_qindex[INTER_FRAME];
+ active_worst_quality = MIN(rc->worst_quality,
+ ambient_qp * 5 / 4);
+ if (rc->buffer_level > rc->optimal_buffer_level) {
+ // Adjust down.
+ // Maximum limit for down adjustment, ~30%.
+ int max_adjustment_down = active_worst_quality / 3;
+ if (max_adjustment_down) {
+ buff_lvl_step = ((rc->maximum_buffer_size -
+ rc->optimal_buffer_level) / max_adjustment_down);
+ if (buff_lvl_step)
+ adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
+ buff_lvl_step);
+ active_worst_quality -= adjustment;
+ }
+ } else if (rc->buffer_level > critical_level) {
+ // Adjust up from ambient Q.
+ if (critical_level) {
+ buff_lvl_step = (rc->optimal_buffer_level - critical_level);
+ if (buff_lvl_step) {
+ adjustment = (int)((rc->worst_quality - ambient_qp) *
+ (rc->optimal_buffer_level - rc->buffer_level) /
+ buff_lvl_step);
+ }
+ active_worst_quality = ambient_qp + adjustment;
+ }
+ } else {
+ // Set to worst_quality if buffer is below critical level.
+ active_worst_quality = rc->worst_quality;
+ }
+ return active_worst_quality;
+}
+
+static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
+ int q;
+ int *rtc_minq;
+ ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
+
+ if (frame_is_intra_only(cm)) {
+ active_best_quality = rc->best_quality;
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ int qindex = rc->last_boosted_qindex;
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ (last_boosted_q * 0.75),
+ cm->bit_depth);
+ active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
+ } else if (cm->current_video_frame > 0) {
+ // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ active_best_quality =
+ get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
+ cm->bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality += vp9_compute_qdelta(rc, q_val,
+ q_val * q_adj_factor,
+ cm->bit_depth);
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ !cpi->use_svc &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = active_worst_quality;
+ }
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+ } else {
+ // Use the lower of active_worst_quality and recent/average Q.
+ if (cm->current_video_frame > 1) {
+ if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
+ active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
+ else
+ active_best_quality = rtc_minq[active_worst_quality];
+ } else {
+ if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
+ active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
+ else
+ active_best_quality = rtc_minq[active_worst_quality];
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality = clamp(active_best_quality,
+ rc->best_quality, rc->worst_quality);
+ active_worst_quality = clamp(active_worst_quality,
+ active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ // Limit Q range for the adaptive loop.
+ if (cm->frame_type == KEY_FRAME &&
+ !rc->this_key_frame_forced &&
+ !(cm->current_video_frame == 0)) {
+ int qdelta = 0;
+ vp9_clear_system_state();
+ qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
+ active_worst_quality, 2.0,
+ cm->bit_depth);
+ *top_index = active_worst_quality + qdelta;
+ *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
+ }
+#endif
+
+ // Special case code to try and match quality with forced key frames
+ if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ active_best_quality, active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+ assert(*top_index <= rc->worst_quality &&
+ *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+static int get_active_cq_level(const RATE_CONTROL *rc,
+ const VP9EncoderConfig *const oxcf) {
+ static const double cq_adjust_threshold = 0.1;
+ int active_cq_level = oxcf->cq_level;
+ if (oxcf->rc_mode == VPX_CQ &&
+ rc->total_target_bits > 0) {
+ const double x = (double)rc->total_actual_bits / rc->total_target_bits;
+ if (x < cq_adjust_threshold) {
+ active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
+ }
+ }
+ return active_cq_level;
+}
+
+static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const int cq_level = get_active_cq_level(rc, oxcf);
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
+ int q;
+ int *inter_minq;
+ ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
+
+ if (frame_is_intra_only(cm)) {
+
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ int qindex = rc->last_boosted_qindex;
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 0.75,
+ cm->bit_depth);
+ active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ active_best_quality =
+ get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
+ cm->bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality += vp9_compute_qdelta(rc, q_val,
+ q_val * q_adj_factor,
+ cm->bit_depth);
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = rc->avg_frame_qindex[KEY_FRAME];
+ }
+ // For constrained quality dont allow Q less than the cq level
+ if (oxcf->rc_mode == VPX_CQ) {
+ if (q < cq_level)
+ q = cq_level;
+
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+
+ } else if (oxcf->rc_mode == VPX_Q) {
+ if (!cpi->refresh_alt_ref_frame) {
+ active_best_quality = cq_level;
+ } else {
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+ }
+ } else {
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+ }
+ } else {
+ if (oxcf->rc_mode == VPX_Q) {
+ active_best_quality = cq_level;
+ } else {
+ // Use the lower of active_worst_quality and recent/average Q.
+ if (cm->current_video_frame > 1)
+ active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]];
+ else
+ active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((oxcf->rc_mode == VPX_CQ) &&
+ (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality = clamp(active_best_quality,
+ rc->best_quality, rc->worst_quality);
+ active_worst_quality = clamp(active_worst_quality,
+ active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ {
+ int qdelta = 0;
+ vp9_clear_system_state();
+
+ // Limit Q range for the adaptive loop.
+ if (cm->frame_type == KEY_FRAME &&
+ !rc->this_key_frame_forced &&
+ !(cm->current_video_frame == 0)) {
+ qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
+ active_worst_quality, 2.0,
+ cm->bit_depth);
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
+ active_worst_quality, 1.75,
+ cm->bit_depth);
+ }
+ *top_index = active_worst_quality + qdelta;
+ *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
+ }
+#endif
+
+ if (oxcf->rc_mode == VPX_Q) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames
+ } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ active_best_quality, active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+
+ assert(*top_index <= rc->worst_quality &&
+ *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
+ static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
+ 1.00, // INTER_NORMAL
+ 1.00, // INTER_HIGH
+ 1.50, // GF_ARF_LOW
+ 1.75, // GF_ARF_STD
+ 2.00, // KF_STD
+ };
+ static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] =
+ {INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME};
+ const VP9_COMMON *const cm = &cpi->common;
+ int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level],
+ q, rate_factor_deltas[rf_level],
+ cm->bit_depth);
+ return qdelta;
+}
+
+#define STATIC_MOTION_THRESH 95
+static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const GF_GROUP *gf_group = &cpi->twopass.gf_group;
+ const int cq_level = get_active_cq_level(rc, oxcf);
+ int active_best_quality;
+ int active_worst_quality = cpi->twopass.active_worst_quality;
+ int q;
+ int *inter_minq;
+ ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
+
+ if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ double last_boosted_q;
+ int delta_qindex;
+ int qindex;
+
+ if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+ qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
+ active_best_quality = qindex;
+ last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 1.25,
+ cm->bit_depth);
+ active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality);
+
+ } else {
+ qindex = rc->last_boosted_qindex;
+ last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 0.75,
+ cm->bit_depth);
+ active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
+ }
+ } else {
+ // Not forced keyframe.
+ double q_adj_factor = 1.0;
+ double q_val;
+ // Baseline value derived from cpi->active_worst_quality and kf boost.
+ active_best_quality = get_kf_active_quality(rc, active_worst_quality,
+ cm->bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Make a further adjustment based on the kf zero motion measure.
+ q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality += vp9_compute_qdelta(rc, q_val,
+ q_val * q_adj_factor,
+ cm->bit_depth);
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = active_worst_quality;
+ }
+ // For constrained quality dont allow Q less than the cq level
+ if (oxcf->rc_mode == VPX_CQ) {
+ if (q < cq_level)
+ q = cq_level;
+
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+
+ } else if (oxcf->rc_mode == VPX_Q) {
+ if (!cpi->refresh_alt_ref_frame) {
+ active_best_quality = cq_level;
+ } else {
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+
+ // Modify best quality for second level arfs. For mode VPX_Q this
+ // becomes the baseline frame q.
+ if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
+ active_best_quality = (active_best_quality + cq_level + 1) / 2;
+ }
+ } else {
+ active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
+ }
+ } else {
+ if (oxcf->rc_mode == VPX_Q) {
+ active_best_quality = cq_level;
+ } else {
+ active_best_quality = inter_minq[active_worst_quality];
+
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((oxcf->rc_mode == VPX_CQ) &&
+ (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+ }
+
+ // Extension to max or min Q if undershoot or overshoot is outside
+ // the permitted range.
+ if ((cpi->oxcf.rc_mode != VPX_Q) &&
+ (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) {
+ if (frame_is_intra_only(cm) ||
+ (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
+ active_best_quality -=
+ (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
+ active_worst_quality += (cpi->twopass.extend_maxq / 2);
+ } else {
+ active_best_quality -=
+ (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
+ active_worst_quality += cpi->twopass.extend_maxq;
+ }
+ }
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ vp9_clear_system_state();
+ // Static forced key frames Q restrictions dealt with elsewhere.
+ if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) ||
+ !rc->this_key_frame_forced ||
+ (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
+ int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index],
+ active_worst_quality);
+ active_worst_quality = MAX(active_worst_quality + qdelta,
+ active_best_quality);
+ }
+#endif
+
+ // Modify active_best_quality for downscaled normal frames.
+ if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
+ int qdelta = vp9_compute_qdelta_by_rate(rc, cm->frame_type,
+ active_best_quality, 2.0,
+ cm->bit_depth);
+ active_best_quality = MAX(active_best_quality + qdelta, rc->best_quality);
+ }
+
+ active_best_quality = clamp(active_best_quality,
+ rc->best_quality, rc->worst_quality);
+ active_worst_quality = clamp(active_worst_quality,
+ active_best_quality, rc->worst_quality);
+
+ if (oxcf->rc_mode == VPX_Q) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames.
+ } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) &&
+ rc->this_key_frame_forced) {
+ // If static since last kf use better of last boosted and last kf q.
+ if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+ q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
+ } else {
+ q = rc->last_boosted_qindex;
+ }
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
+ active_best_quality, active_worst_quality);
+ if (q > active_worst_quality) {
+ // Special case when we are targeting the max allowed rate.
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ active_worst_quality = q;
+ else
+ q = active_worst_quality;
+ }
+ }
+ clamp(q, active_best_quality, active_worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ assert(*top_index <= rc->worst_quality &&
+ *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi,
+ int *bottom_index, int *top_index) {
+ int q;
+ if (cpi->oxcf.pass == 0) {
+ if (cpi->oxcf.rc_mode == VPX_CBR)
+ q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
+ else
+ q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
+ } else {
+ q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
+ }
+ if (cpi->sf.use_nonrd_pick_mode) {
+ if (cpi->sf.force_frame_boost == 1)
+ q -= cpi->sf.max_delta_qindex;
+
+ if (q < *bottom_index)
+ *bottom_index = q;
+ else if (q > *top_index)
+ *top_index = q;
+ }
+ return q;
+}
+
+void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
+ int frame_target,
+ int *frame_under_shoot_limit,
+ int *frame_over_shoot_limit) {
+ if (cpi->oxcf.rc_mode == VPX_Q) {
+ *frame_under_shoot_limit = 0;
+ *frame_over_shoot_limit = INT_MAX;
+ } else {
+ // For very small rate targets where the fractional adjustment
+ // may be tiny make sure there is at least a minimum range.
+ const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
+ *frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0);
+ *frame_over_shoot_limit = MIN(frame_target + tolerance + 200,
+ cpi->rc.max_frame_bandwidth);
+ }
+}
+
+void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
+ const VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ rc->this_frame_target = target;
+
+ // Modify frame size target when down-scaling.
+ if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
+ rc->frame_size_selector != UNSCALED)
+ rc->this_frame_target = (int)(rc->this_frame_target
+ * rate_thresh_mult[rc->frame_size_selector]);
+
+ // Target rate per SB64 (including partial SB64s.
+ rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
+ (cm->width * cm->height);
+}
+
+static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
+ // this frame refreshes means next frames don't unless specified by user
+ RATE_CONTROL *const rc = &cpi->rc;
+ rc->frames_since_golden = 0;
+
+ // Mark the alt ref as done (setting to 0 means no further alt refs pending).
+ rc->source_alt_ref_pending = 0;
+
+ // Set the alternate reference frame active flag
+ rc->source_alt_ref_active = 1;
+}
+
+static void update_golden_frame_stats(VP9_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Update the Golden frame usage counts.
+ if (cpi->refresh_golden_frame) {
+ // this frame refreshes means next frames don't unless specified by user
+ rc->frames_since_golden = 0;
+
+ // If we are not using alt ref in the up and coming group clear the arf
+ // active flag.
+ if (!rc->source_alt_ref_pending) {
+ rc->source_alt_ref_active = 0;
+ }
+
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0)
+ rc->frames_till_gf_update_due--;
+
+ } else if (!cpi->refresh_alt_ref_frame) {
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0)
+ rc->frames_till_gf_update_due--;
+
+ rc->frames_since_golden++;
+ }
+}
+
+void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const int qindex = cm->base_qindex;
+
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
+ vp9_cyclic_refresh_postencode(cpi);
+ }
+
+ // Update rate control heuristics
+ rc->projected_frame_size = (int)(bytes_used << 3);
+
+ // Post encode loop adjustment of Q prediction.
+ vp9_rc_update_rate_correction_factors(cpi);
+
+ // Keep a record of last Q and ambient average Q.
+ if (cm->frame_type == KEY_FRAME) {
+ rc->last_q[KEY_FRAME] = qindex;
+ rc->avg_frame_qindex[KEY_FRAME] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
+ } else {
+ if (rc->is_src_frame_alt_ref ||
+ !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) ||
+ (cpi->use_svc && oxcf->rc_mode == VPX_CBR)) {
+ rc->last_q[INTER_FRAME] = qindex;
+ rc->avg_frame_qindex[INTER_FRAME] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
+ rc->ni_frames++;
+ rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ rc->avg_q = rc->tot_q / rc->ni_frames;
+ // Calculate the average Q for normal inter frames (not key or GFU
+ // frames).
+ rc->ni_tot_qi += qindex;
+ rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
+ }
+ }
+
+ // Keep record of last boosted (KF/KF/ARF) Q value.
+ // If the current frame is coded at a lower Q then we also update it.
+ // If all mbs in this group are skipped only update if the Q value is
+ // better than that already stored.
+ // This is used to help set quality in forced key frames to reduce popping
+ if ((qindex < rc->last_boosted_qindex) ||
+ (cm->frame_type == KEY_FRAME) ||
+ (!rc->constrained_gf_group &&
+ (cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
+ rc->last_boosted_qindex = qindex;
+ }
+ if (cm->frame_type == KEY_FRAME)
+ rc->last_kf_qindex = qindex;
+
+ update_buffer_level(cpi, rc->projected_frame_size);
+
+ // Rolling monitors of whether we are over or underspending used to help
+ // regulate min and Max Q in two pass.
+ if (cm->frame_type != KEY_FRAME) {
+ rc->rolling_target_bits = ROUND_POWER_OF_TWO(
+ rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
+ rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
+ rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
+ rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
+ rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
+ rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
+ rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
+ }
+
+ // Actual bits spent
+ rc->total_actual_bits += rc->projected_frame_size;
+ rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
+
+ rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
+
+ if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
+ (cm->frame_type != KEY_FRAME))
+ // Update the alternate reference frame stats as appropriate.
+ update_alt_ref_frame_stats(cpi);
+ else
+ // Update the Golden frame stats as appropriate.
+ update_golden_frame_stats(cpi);
+
+ if (cm->frame_type == KEY_FRAME)
+ rc->frames_since_key = 0;
+ if (cm->show_frame) {
+ rc->frames_since_key++;
+ rc->frames_to_key--;
+ }
+
+ // Trigger the resizing of the next frame if it is scaled.
+ cpi->resize_pending =
+ rc->next_frame_size_selector != rc->frame_size_selector;
+ rc->frame_size_selector = rc->next_frame_size_selector;
+}
+
+void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
+ // Update buffer level with zero size, update frame counters, and return.
+ update_buffer_level(cpi, 0);
+ cpi->rc.frames_since_key++;
+ cpi->rc.frames_to_key--;
+ cpi->rc.rc_2_frame = 0;
+ cpi->rc.rc_1_frame = 0;
+}
+
+// Use this macro to turn on/off use of alt-refs in one-pass mode.
+#define USE_ALTREF_FOR_ONE_PASS 1
+
+static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
+ static const int af_ratio = 10;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+#if USE_ALTREF_FOR_ONE_PASS
+ target = (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ?
+ (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
+ (rc->baseline_gf_interval + af_ratio - 1) :
+ (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
+ (rc->baseline_gf_interval + af_ratio - 1);
+#else
+ target = rc->avg_frame_bandwidth;
+#endif
+ return vp9_rc_clamp_pframe_target_size(cpi, target);
+}
+
+static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
+ static const int kf_ratio = 25;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const int target = rc->avg_frame_bandwidth * kf_ratio;
+ return vp9_rc_clamp_iframe_target_size(cpi, target);
+}
+
+void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
+ if (!cpi->refresh_alt_ref_frame &&
+ (cm->current_video_frame == 0 ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ rc->frames_to_key == 0 ||
+ (cpi->oxcf.auto_key && 0))) {
+ cm->frame_type = KEY_FRAME;
+ rc->this_key_frame_forced = cm->current_video_frame != 0 &&
+ rc->frames_to_key == 0;
+ rc->frames_to_key = cpi->oxcf.key_freq;
+ rc->kf_boost = DEFAULT_KF_BOOST;
+ rc->source_alt_ref_active = 0;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ if (rc->frames_till_gf_update_due == 0) {
+ rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ // NOTE: frames_till_gf_update_due must be <= frames_to_key.
+ if (rc->frames_till_gf_update_due > rc->frames_to_key) {
+ rc->frames_till_gf_update_due = rc->frames_to_key;
+ rc->constrained_gf_group = 1;
+ } else {
+ rc->constrained_gf_group = 0;
+ }
+ cpi->refresh_golden_frame = 1;
+ rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ }
+ if (cm->frame_type == KEY_FRAME)
+ target = calc_iframe_target_size_one_pass_vbr(cpi);
+ else
+ target = calc_pframe_target_size_one_pass_vbr(cpi);
+ vp9_rc_set_frame_target(cpi, target);
+}
+
+static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const SVC *const svc = &cpi->svc;
+ const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
+ const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
+ int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
+ int target;
+
+ if (oxcf->gf_cbr_boost_pct) {
+ const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
+ target = cpi->refresh_golden_frame ?
+ (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
+ (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) :
+ (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
+ (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
+ } else {
+ target = rc->avg_frame_bandwidth;
+ }
+ if (is_one_pass_cbr_svc(cpi)) {
+ // Note that for layers, avg_frame_bandwidth is the cumulative
+ // per-frame-bandwidth. For the target size of this frame, use the
+ // layer average frame size (i.e., non-cumulative per-frame-bw).
+ int layer =
+ LAYER_IDS_TO_IDX(svc->spatial_layer_id,
+ svc->temporal_layer_id, svc->number_temporal_layers);
+ const LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ target = lc->avg_frame_size;
+ min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
+ }
+ if (diff > 0) {
+ // Lower the target bandwidth for this frame.
+ const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
+ target -= (target * pct_low) / 200;
+ } else if (diff < 0) {
+ // Increase the target bandwidth for this frame.
+ const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
+ target += (target * pct_high) / 200;
+ }
+ if (oxcf->rc_max_inter_bitrate_pct) {
+ const int max_rate = rc->avg_frame_bandwidth *
+ oxcf->rc_max_inter_bitrate_pct / 100;
+ target = MIN(target, max_rate);
+ }
+ return MAX(min_frame_target, target);
+}
+
+static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ const SVC *const svc = &cpi->svc;
+ int target;
+ if (cpi->common.current_video_frame == 0) {
+ target = ((rc->starting_buffer_level / 2) > INT_MAX)
+ ? INT_MAX : (int)(rc->starting_buffer_level / 2);
+ } else {
+ int kf_boost = 32;
+ double framerate = cpi->framerate;
+ if (svc->number_temporal_layers > 1 &&
+ oxcf->rc_mode == VPX_CBR) {
+ // Use the layer framerate for temporal layers CBR mode.
+ const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id,
+ svc->temporal_layer_id, svc->number_temporal_layers);
+ const LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ framerate = lc->framerate;
+ }
+ kf_boost = MAX(kf_boost, (int)(2 * framerate - 16));
+ if (rc->frames_since_key < framerate / 2) {
+ kf_boost = (int)(kf_boost * rc->frames_since_key /
+ (framerate / 2));
+ }
+ target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
+ }
+ return vp9_rc_clamp_iframe_target_size(cpi, target);
+}
+
+// Reset information needed to set proper reference frames and buffer updates
+// for temporal layering. This is called when a key frame is encoded.
+static void reset_temporal_layer_to_zero(VP9_COMP *cpi) {
+ int sl;
+ LAYER_CONTEXT *lc = NULL;
+ cpi->svc.temporal_layer_id = 0;
+
+ for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) {
+ lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers];
+ lc->current_video_frame_in_layer = 0;
+ lc->frames_from_key_frame = 0;
+ }
+}
+
+void vp9_rc_get_svc_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target = rc->avg_frame_bandwidth;
+ const int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id,
+ cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers);
+
+ if ((cm->current_video_frame == 0) ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ (cpi->oxcf.auto_key && (rc->frames_since_key %
+ cpi->oxcf.key_freq == 0))) {
+ cm->frame_type = KEY_FRAME;
+ rc->source_alt_ref_active = 0;
+
+ if (is_two_pass_svc(cpi)) {
+ cpi->svc.layer_context[layer].is_key_frame = 1;
+ cpi->ref_frame_flags &=
+ (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
+ } else if (is_one_pass_cbr_svc(cpi)) {
+ cpi->svc.layer_context[layer].is_key_frame = 1;
+ reset_temporal_layer_to_zero(cpi);
+ cpi->ref_frame_flags &=
+ (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
+ // Assumption here is that LAST_FRAME is being updated for a keyframe.
+ // Thus no change in update flags.
+ target = calc_iframe_target_size_one_pass_cbr(cpi);
+ }
+ } else {
+ cm->frame_type = INTER_FRAME;
+ if (is_two_pass_svc(cpi)) {
+ LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
+ if (cpi->svc.spatial_layer_id == 0) {
+ lc->is_key_frame = 0;
+ } else {
+ lc->is_key_frame =
+ cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
+ if (lc->is_key_frame)
+ cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
+ }
+ cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
+ } else if (is_one_pass_cbr_svc(cpi)) {
+ LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
+ if (cpi->svc.spatial_layer_id == 0) {
+ lc->is_key_frame = 0;
+ } else {
+ lc->is_key_frame =
+ cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame;
+ }
+ target = calc_pframe_target_size_one_pass_cbr(cpi);
+ }
+ }
+
+ // Any update/change of global cyclic refresh parameters (amount/delta-qp)
+ // should be done here, before the frame qp is selected.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_update_parameters(cpi);
+
+ vp9_rc_set_frame_target(cpi, target);
+ rc->frames_till_gf_update_due = INT_MAX;
+ rc->baseline_gf_interval = INT_MAX;
+}
+
+void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
+ if ((cm->current_video_frame == 0 ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ rc->frames_to_key == 0 ||
+ (cpi->oxcf.auto_key && 0))) {
+ cm->frame_type = KEY_FRAME;
+ rc->this_key_frame_forced = cm->current_video_frame != 0 &&
+ rc->frames_to_key == 0;
+ rc->frames_to_key = cpi->oxcf.key_freq;
+ rc->kf_boost = DEFAULT_KF_BOOST;
+ rc->source_alt_ref_active = 0;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ if (rc->frames_till_gf_update_due == 0) {
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_set_golden_update(cpi);
+ else
+ rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ // NOTE: frames_till_gf_update_due must be <= frames_to_key.
+ if (rc->frames_till_gf_update_due > rc->frames_to_key)
+ rc->frames_till_gf_update_due = rc->frames_to_key;
+ cpi->refresh_golden_frame = 1;
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ }
+
+ // Any update/change of global cyclic refresh parameters (amount/delta-qp)
+ // should be done here, before the frame qp is selected.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_update_parameters(cpi);
+
+ if (cm->frame_type == KEY_FRAME)
+ target = calc_iframe_target_size_one_pass_cbr(cpi);
+ else
+ target = calc_pframe_target_size_one_pass_cbr(cpi);
+
+ vp9_rc_set_frame_target(cpi, target);
+}
+
+int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
+ vpx_bit_depth_t bit_depth) {
+ int start_index = rc->worst_quality;
+ int target_index = rc->worst_quality;
+ int i;
+
+ // Convert the average q value to an index.
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ start_index = i;
+ if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart)
+ break;
+ }
+
+ // Convert the q target to an index
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ target_index = i;
+ if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget)
+ break;
+ }
+
+ return target_index - start_index;
+}
+
+int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
+ int qindex, double rate_target_ratio,
+ vpx_bit_depth_t bit_depth) {
+ int target_index = rc->worst_quality;
+ int i;
+
+ // Look up the current projected bits per block for the base index
+ const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0,
+ bit_depth);
+
+ // Find the target bits per mb based on the base value and given ratio.
+ const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
+
+ // Convert the q target to an index
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
+ target_bits_per_mb) {
+ target_index = i;
+ break;
+ }
+ }
+ return target_index - qindex;
+}
+
+#define MIN_GF_INTERVAL 4
+#define MAX_GF_INTERVAL 16
+void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
+ RATE_CONTROL *const rc) {
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+
+ // Set a minimum interval.
+ rc->min_gf_interval =
+ MIN(MAX_GF_INTERVAL, MAX(MIN_GF_INTERVAL, (int)(cpi->framerate * 0.125)));
+
+ // Set Maximum gf/arf interval.
+ rc->max_gf_interval =
+ MIN(MAX_GF_INTERVAL, (int)(cpi->framerate * 0.75));
+ // Round up to next even number if odd.
+ rc->max_gf_interval += (rc->max_gf_interval & 0x01);
+
+ // Extended interval for genuinely static scenes
+ rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
+
+ if (is_altref_enabled(cpi)) {
+ if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
+ rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
+ }
+
+ if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
+ rc->max_gf_interval = rc->static_scene_max_gf_interval;
+
+ // Clamp min to max
+ rc->min_gf_interval = MIN(rc->min_gf_interval, rc->max_gf_interval);
+}
+
+void vp9_rc_update_framerate(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int vbr_max_bits;
+
+ rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
+ rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
+ oxcf->two_pass_vbrmin_section / 100);
+
+ rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
+
+ // A maximum bitrate for a frame is defined.
+ // The baseline for this aligns with HW implementations that
+ // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
+ // per 16x16 MB (averaged over a frame). However this limit is extended if
+ // a very high rate is given on the command line or the the rate cannnot
+ // be acheived because of a user specificed max q (e.g. when the user
+ // specifies lossless encode.
+ vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
+ oxcf->two_pass_vbrmax_section) / 100);
+ rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P),
+ vbr_max_bits);
+
+ vp9_rc_set_gf_interval_range(cpi, rc);
+}
+
+#define VBR_PCT_ADJUSTMENT_LIMIT 50
+// For VBR...adjustment to the frame target based on error from previous frames
+static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
+ int max_delta;
+ double position_factor = 1.0;
+
+ // How far through the clip are we.
+ // This number is used to damp the per frame rate correction.
+ // Range 0 - 1.0
+ if (cpi->twopass.total_stats.count) {
+ position_factor = sqrt((double)cpi->common.current_video_frame /
+ cpi->twopass.total_stats.count);
+ }
+ max_delta = (int)(position_factor *
+ ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
+
+ // vbr_bits_off_target > 0 means we have extra bits to spend
+ if (vbr_bits_off_target > 0) {
+ *this_frame_target +=
+ (vbr_bits_off_target > max_delta) ? max_delta
+ : (int)vbr_bits_off_target;
+ } else {
+ *this_frame_target -=
+ (vbr_bits_off_target < -max_delta) ? max_delta
+ : (int)-vbr_bits_off_target;
+ }
+
+ // Fast redistribution of bits arising from massive local undershoot.
+ // Dont do it for kf,arf,gf or overlay frames.
+ if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
+ rc->vbr_bits_off_target_fast) {
+ int one_frame_bits = MAX(rc->avg_frame_bandwidth, *this_frame_target);
+ int fast_extra_bits;
+ fast_extra_bits =
+ (int)MIN(rc->vbr_bits_off_target_fast, one_frame_bits);
+ fast_extra_bits = (int)MIN(fast_extra_bits,
+ MAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
+ *this_frame_target += (int)fast_extra_bits;
+ rc->vbr_bits_off_target_fast -= fast_extra_bits;
+ }
+}
+
+void vp9_set_target_rate(VP9_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target_rate = rc->base_frame_target;
+
+ // Correction to rate target based on prior over or under shoot.
+ if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
+ vbr_rate_correction(cpi, &target_rate);
+ vp9_rc_set_frame_target(cpi, target_rate);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_ratectrl.h b/media/libvpx/vp9/encoder/vp9_ratectrl.h
new file mode 100644
index 000000000..e12d200be
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_ratectrl.h
@@ -0,0 +1,252 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_RATECTRL_H_
+#define VP9_ENCODER_VP9_RATECTRL_H_
+
+#include "vpx/vpx_codec.h"
+#include "vpx/vpx_integer.h"
+
+#include "vp9/common/vp9_blockd.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// Bits Per MB at different Q (Multiplied by 512)
+#define BPER_MB_NORMBITS 9
+
+typedef enum {
+ INTER_NORMAL = 0,
+ INTER_HIGH = 1,
+ GF_ARF_LOW = 2,
+ GF_ARF_STD = 3,
+ KF_STD = 4,
+ RATE_FACTOR_LEVELS = 5
+} RATE_FACTOR_LEVEL;
+
+// Internal frame scaling level.
+typedef enum {
+ UNSCALED = 0, // Frame is unscaled.
+ SCALE_STEP1 = 1, // First-level down-scaling.
+ FRAME_SCALE_STEPS
+} FRAME_SCALE_LEVEL;
+
+// Frame dimensions multiplier wrt the native frame size, in 1/16ths,
+// specified for the scale-up case.
+// e.g. 24 => 16/24 = 2/3 of native size. The restriction to 1/16th is
+// intended to match the capabilities of the normative scaling filters,
+// giving precedence to the up-scaling accuracy.
+static const int frame_scale_factor[FRAME_SCALE_STEPS] = {16, 24};
+
+// Multiplier of the target rate to be used as threshold for triggering scaling.
+static const double rate_thresh_mult[FRAME_SCALE_STEPS] = {1.0, 2.0};
+
+// Scale dependent Rate Correction Factor multipliers. Compensates for the
+// greater number of bits per pixel generated in down-scaled frames.
+static const double rcf_mult[FRAME_SCALE_STEPS] = {1.0, 2.0};
+
+typedef struct {
+ // Rate targetting variables
+ int base_frame_target; // A baseline frame target before adjustment
+ // for previous under or over shoot.
+ int this_frame_target; // Actual frame target after rc adjustment.
+ int projected_frame_size;
+ int sb64_target_rate;
+ int last_q[FRAME_TYPES]; // Separate values for Intra/Inter
+ int last_boosted_qindex; // Last boosted GF/KF/ARF q
+ int last_kf_qindex; // Q index of the last key frame coded.
+
+ int gfu_boost;
+ int last_boost;
+ int kf_boost;
+
+ double rate_correction_factors[RATE_FACTOR_LEVELS];
+
+ int frames_since_golden;
+ int frames_till_gf_update_due;
+ int min_gf_interval;
+ int max_gf_interval;
+ int static_scene_max_gf_interval;
+ int baseline_gf_interval;
+ int constrained_gf_group;
+ int frames_to_key;
+ int frames_since_key;
+ int this_key_frame_forced;
+ int next_key_frame_forced;
+ int source_alt_ref_pending;
+ int source_alt_ref_active;
+ int is_src_frame_alt_ref;
+
+ int avg_frame_bandwidth; // Average frame size target for clip
+ int min_frame_bandwidth; // Minimum allocation used for any frame
+ int max_frame_bandwidth; // Maximum burst rate allowed for a frame.
+
+ int ni_av_qi;
+ int ni_tot_qi;
+ int ni_frames;
+ int avg_frame_qindex[FRAME_TYPES];
+ double tot_q;
+ double avg_q;
+
+ int64_t buffer_level;
+ int64_t bits_off_target;
+ int64_t vbr_bits_off_target;
+ int64_t vbr_bits_off_target_fast;
+
+ int decimation_factor;
+ int decimation_count;
+
+ int rolling_target_bits;
+ int rolling_actual_bits;
+
+ int long_rolling_target_bits;
+ int long_rolling_actual_bits;
+
+ int rate_error_estimate;
+
+ int64_t total_actual_bits;
+ int64_t total_target_bits;
+ int64_t total_target_vs_actual;
+
+ int worst_quality;
+ int best_quality;
+
+ int64_t starting_buffer_level;
+ int64_t optimal_buffer_level;
+ int64_t maximum_buffer_size;
+
+ // rate control history for last frame(1) and the frame before(2).
+ // -1: undershot
+ // 1: overshoot
+ // 0: not initialized.
+ int rc_1_frame;
+ int rc_2_frame;
+ int q_1_frame;
+ int q_2_frame;
+
+ // Auto frame-scaling variables.
+ FRAME_SCALE_LEVEL frame_size_selector;
+ FRAME_SCALE_LEVEL next_frame_size_selector;
+ int frame_width[FRAME_SCALE_STEPS];
+ int frame_height[FRAME_SCALE_STEPS];
+ int rf_level_maxq[RATE_FACTOR_LEVELS];
+} RATE_CONTROL;
+
+struct VP9_COMP;
+struct VP9EncoderConfig;
+
+void vp9_rc_init(const struct VP9EncoderConfig *oxcf, int pass,
+ RATE_CONTROL *rc);
+
+int vp9_estimate_bits_at_q(FRAME_TYPE frame_kind, int q, int mbs,
+ double correction_factor,
+ vpx_bit_depth_t bit_depth);
+
+double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth);
+
+void vp9_rc_init_minq_luts(void);
+
+// Generally at the high level, the following flow is expected
+// to be enforced for rate control:
+// First call per frame, one of:
+// vp9_rc_get_one_pass_vbr_params()
+// vp9_rc_get_one_pass_cbr_params()
+// vp9_rc_get_svc_params()
+// vp9_rc_get_first_pass_params()
+// vp9_rc_get_second_pass_params()
+// depending on the usage to set the rate control encode parameters desired.
+//
+// Then, call encode_frame_to_data_rate() to perform the
+// actual encode. This function will in turn call encode_frame()
+// one or more times, followed by one of:
+// vp9_rc_postencode_update()
+// vp9_rc_postencode_update_drop_frame()
+//
+// The majority of rate control parameters are only expected
+// to be set in the vp9_rc_get_..._params() functions and
+// updated during the vp9_rc_postencode_update...() functions.
+// The only exceptions are vp9_rc_drop_frame() and
+// vp9_rc_update_rate_correction_factors() functions.
+
+// Functions to set parameters for encoding before the actual
+// encode_frame_to_data_rate() function.
+void vp9_rc_get_one_pass_vbr_params(struct VP9_COMP *cpi);
+void vp9_rc_get_one_pass_cbr_params(struct VP9_COMP *cpi);
+void vp9_rc_get_svc_params(struct VP9_COMP *cpi);
+
+// Post encode update of the rate control parameters based
+// on bytes used
+void vp9_rc_postencode_update(struct VP9_COMP *cpi, uint64_t bytes_used);
+// Post encode update of the rate control parameters for dropped frames
+void vp9_rc_postencode_update_drop_frame(struct VP9_COMP *cpi);
+
+// Updates rate correction factors
+// Changes only the rate correction factors in the rate control structure.
+void vp9_rc_update_rate_correction_factors(struct VP9_COMP *cpi);
+
+// Decide if we should drop this frame: For 1-pass CBR.
+// Changes only the decimation count in the rate control structure
+int vp9_rc_drop_frame(struct VP9_COMP *cpi);
+
+// Computes frame size bounds.
+void vp9_rc_compute_frame_size_bounds(const struct VP9_COMP *cpi,
+ int this_frame_target,
+ int *frame_under_shoot_limit,
+ int *frame_over_shoot_limit);
+
+// Picks q and q bounds given the target for bits
+int vp9_rc_pick_q_and_bounds(const struct VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index);
+
+// Estimates q to achieve a target bits per frame
+int vp9_rc_regulate_q(const struct VP9_COMP *cpi, int target_bits_per_frame,
+ int active_best_quality, int active_worst_quality);
+
+// Estimates bits per mb for a given qindex and correction factor.
+int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+ double correction_factor, vpx_bit_depth_t bit_depth);
+
+// Clamping utilities for bitrate targets for iframes and pframes.
+int vp9_rc_clamp_iframe_target_size(const struct VP9_COMP *const cpi,
+ int target);
+int vp9_rc_clamp_pframe_target_size(const struct VP9_COMP *const cpi,
+ int target);
+// Utility to set frame_target into the RATE_CONTROL structure
+// This function is called only from the vp9_rc_get_..._params() functions.
+void vp9_rc_set_frame_target(struct VP9_COMP *cpi, int target);
+
+// Computes a q delta (in "q index" terms) to get from a starting q value
+// to a target q value
+int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
+ vpx_bit_depth_t bit_depth);
+
+// Computes a q delta (in "q index" terms) to get from a starting q value
+// to a value that should equate to the given rate ratio.
+int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
+ int qindex, double rate_target_ratio,
+ vpx_bit_depth_t bit_depth);
+
+int vp9_frame_type_qdelta(const struct VP9_COMP *cpi, int rf_level, int q);
+
+void vp9_rc_update_framerate(struct VP9_COMP *cpi);
+
+void vp9_rc_set_gf_interval_range(const struct VP9_COMP *const cpi,
+ RATE_CONTROL *const rc);
+
+void vp9_set_target_rate(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_RATECTRL_H_
diff --git a/media/libvpx/vp9/encoder/vp9_rd.c b/media/libvpx/vp9/encoder/vp9_rd.c
new file mode 100644
index 000000000..bbcbfe929
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_rd.c
@@ -0,0 +1,664 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vp9_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropy.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_reconintra.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_encodemb.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rd.h"
+#include "vp9/encoder/vp9_tokenize.h"
+#include "vp9/encoder/vp9_variance.h"
+
+#define RD_THRESH_POW 1.25
+#define RD_MULT_EPB_RATIO 64
+
+// Factor to weigh the rate for switchable interp filters.
+#define SWITCHABLE_INTERP_RATE_FACTOR 1
+
+void vp9_rd_cost_reset(RD_COST *rd_cost) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->dist = INT64_MAX;
+ rd_cost->rdcost = INT64_MAX;
+}
+
+void vp9_rd_cost_init(RD_COST *rd_cost) {
+ rd_cost->rate = 0;
+ rd_cost->dist = 0;
+ rd_cost->rdcost = 0;
+}
+
+// The baseline rd thresholds for breaking out of the rd loop for
+// certain modes are assumed to be based on 8x8 blocks.
+// This table is used to correct for block size.
+// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
+static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
+ 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32
+};
+
+static void fill_mode_costs(VP9_COMP *cpi) {
+ const FRAME_CONTEXT *const fc = cpi->common.fc;
+ int i, j;
+
+ for (i = 0; i < INTRA_MODES; ++i)
+ for (j = 0; j < INTRA_MODES; ++j)
+ vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j],
+ vp9_intra_mode_tree);
+
+ vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree);
+ vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME],
+ vp9_kf_uv_mode_prob[TM_PRED], vp9_intra_mode_tree);
+ vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME],
+ fc->uv_mode_prob[TM_PRED], vp9_intra_mode_tree);
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ vp9_cost_tokens(cpi->switchable_interp_costs[i],
+ fc->switchable_interp_prob[i], vp9_switchable_interp_tree);
+}
+
+static void fill_token_costs(vp9_coeff_cost *c,
+ vp9_coeff_probs_model (*p)[PLANE_TYPES]) {
+ int i, j, k, l;
+ TX_SIZE t;
+ for (t = TX_4X4; t <= TX_32X32; ++t)
+ for (i = 0; i < PLANE_TYPES; ++i)
+ for (j = 0; j < REF_TYPES; ++j)
+ for (k = 0; k < COEF_BANDS; ++k)
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ vp9_prob probs[ENTROPY_NODES];
+ vp9_model_to_full_probs(p[t][i][j][k][l], probs);
+ vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs,
+ vp9_coef_tree);
+ vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
+ vp9_coef_tree);
+ assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
+ c[t][i][j][k][1][l][EOB_TOKEN]);
+ }
+}
+
+// Values are now correlated to quantizer.
+static int sad_per_bit16lut_8[QINDEX_RANGE];
+static int sad_per_bit4lut_8[QINDEX_RANGE];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static int sad_per_bit16lut_10[QINDEX_RANGE];
+static int sad_per_bit4lut_10[QINDEX_RANGE];
+static int sad_per_bit16lut_12[QINDEX_RANGE];
+static int sad_per_bit4lut_12[QINDEX_RANGE];
+#endif
+
+static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range,
+ vpx_bit_depth_t bit_depth) {
+ int i;
+ // Initialize the sad lut tables using a formulaic calculation for now.
+ // This is to make it easier to resolve the impact of experimental changes
+ // to the quantizer tables.
+ for (i = 0; i < range; i++) {
+ const double q = vp9_convert_qindex_to_q(i, bit_depth);
+ bit16lut[i] = (int)(0.0418 * q + 2.4107);
+ bit4lut[i] = (int)(0.063 * q + 2.742);
+ }
+}
+
+void vp9_init_me_luts(void) {
+ init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE,
+ VPX_BITS_8);
+#if CONFIG_VP9_HIGHBITDEPTH
+ init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE,
+ VPX_BITS_10);
+ init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE,
+ VPX_BITS_12);
+#endif
+}
+
+static const int rd_boost_factor[16] = {
+ 64, 32, 32, 32, 24, 16, 12, 12,
+ 8, 8, 4, 4, 2, 2, 1, 0
+};
+static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = {
+ 128, 144, 128, 128, 144
+};
+
+int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) {
+ const int64_t q = vp9_dc_quant(qindex, 0, cpi->common.bit_depth);
+#if CONFIG_VP9_HIGHBITDEPTH
+ int64_t rdmult = 0;
+ switch (cpi->common.bit_depth) {
+ case VPX_BITS_8:
+ rdmult = 88 * q * q / 24;
+ break;
+ case VPX_BITS_10:
+ rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4);
+ break;
+ case VPX_BITS_12:
+ rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8);
+ break;
+ default:
+ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+ return -1;
+ }
+#else
+ int64_t rdmult = 88 * q * q / 24;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
+ const int boost_index = MIN(15, (cpi->rc.gfu_boost / 100));
+
+ rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7;
+ rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
+ }
+ return (int)rdmult;
+}
+
+static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
+ double q;
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (bit_depth) {
+ case VPX_BITS_8:
+ q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
+ break;
+ case VPX_BITS_10:
+ q = vp9_dc_quant(qindex, 0, VPX_BITS_10) / 16.0;
+ break;
+ case VPX_BITS_12:
+ q = vp9_dc_quant(qindex, 0, VPX_BITS_12) / 64.0;
+ break;
+ default:
+ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+ return -1;
+ }
+#else
+ (void) bit_depth;
+ q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ // TODO(debargha): Adjust the function below.
+ return MAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
+}
+
+void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (cpi->common.bit_depth) {
+ case VPX_BITS_8:
+ x->sadperbit16 = sad_per_bit16lut_8[qindex];
+ x->sadperbit4 = sad_per_bit4lut_8[qindex];
+ break;
+ case VPX_BITS_10:
+ x->sadperbit16 = sad_per_bit16lut_10[qindex];
+ x->sadperbit4 = sad_per_bit4lut_10[qindex];
+ break;
+ case VPX_BITS_12:
+ x->sadperbit16 = sad_per_bit16lut_12[qindex];
+ x->sadperbit4 = sad_per_bit4lut_12[qindex];
+ break;
+ default:
+ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+ }
+#else
+ (void)cpi;
+ x->sadperbit16 = sad_per_bit16lut_8[qindex];
+ x->sadperbit4 = sad_per_bit4lut_8[qindex];
+#endif // CONFIG_VP9_HIGHBITDEPTH
+}
+
+static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) {
+ int i, bsize, segment_id;
+
+ for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
+ const int qindex =
+ clamp(vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex) +
+ cm->y_dc_delta_q, 0, MAXQ);
+ const int q = compute_rd_thresh_factor(qindex, cm->bit_depth);
+
+ for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
+ // Threshold here seems unnecessarily harsh but fine given actual
+ // range of values used for cpi->sf.thresh_mult[].
+ const int t = q * rd_thresh_block_size_factor[bsize];
+ const int thresh_max = INT_MAX / t;
+
+ if (bsize >= BLOCK_8X8) {
+ for (i = 0; i < MAX_MODES; ++i)
+ rd->threshes[segment_id][bsize][i] =
+ rd->thresh_mult[i] < thresh_max
+ ? rd->thresh_mult[i] * t / 4
+ : INT_MAX;
+ } else {
+ for (i = 0; i < MAX_REFS; ++i)
+ rd->threshes[segment_id][bsize][i] =
+ rd->thresh_mult_sub8x8[i] < thresh_max
+ ? rd->thresh_mult_sub8x8[i] * t / 4
+ : INT_MAX;
+ }
+ }
+ }
+}
+
+void vp9_initialize_rd_consts(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->td.mb;
+ RD_OPT *const rd = &cpi->rd;
+ int i;
+
+ vp9_clear_system_state();
+
+ rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128).
+ rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
+
+ x->errorperbit = rd->RDMULT / RD_MULT_EPB_RATIO;
+ x->errorperbit += (x->errorperbit == 0);
+
+ x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
+ cm->frame_type != KEY_FRAME) ? 0 : 1;
+
+ set_block_thresholds(cm, rd);
+
+ if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME)
+ fill_token_costs(x->token_costs, cm->fc->coef_probs);
+
+ if (cpi->sf.partition_search_type != VAR_BASED_PARTITION ||
+ cm->frame_type == KEY_FRAME) {
+ for (i = 0; i < PARTITION_CONTEXTS; ++i)
+ vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(cm, i),
+ vp9_partition_tree);
+ }
+
+ if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 ||
+ cm->frame_type == KEY_FRAME) {
+ fill_mode_costs(cpi);
+
+ if (!frame_is_intra_only(cm)) {
+ vp9_build_nmv_cost_table(x->nmvjointcost,
+ cm->allow_high_precision_mv ? x->nmvcost_hp
+ : x->nmvcost,
+ &cm->fc->nmvc, cm->allow_high_precision_mv);
+
+ for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
+ vp9_cost_tokens((int *)cpi->inter_mode_cost[i],
+ cm->fc->inter_mode_probs[i], vp9_inter_mode_tree);
+ }
+ }
+}
+
+static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
+ // NOTE: The tables below must be of the same size.
+
+ // The functions described below are sampled at the four most significant
+ // bits of x^2 + 8 / 256.
+
+ // Normalized rate:
+ // This table models the rate for a Laplacian source with given variance
+ // when quantized with a uniform quantizer with given stepsize. The
+ // closed form expression is:
+ // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
+ // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
+ // and H(x) is the binary entropy function.
+ static const int rate_tab_q10[] = {
+ 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651,
+ 4553, 4389, 4255, 4142, 4044, 3958, 3881, 3811,
+ 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186,
+ 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638,
+ 2589, 2501, 2423, 2353, 2290, 2232, 2179, 2130,
+ 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651,
+ 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199,
+ 1159, 1086, 1021, 963, 911, 864, 821, 781,
+ 745, 680, 623, 574, 530, 490, 455, 424,
+ 395, 345, 304, 269, 239, 213, 190, 171,
+ 154, 126, 104, 87, 73, 61, 52, 44,
+ 38, 28, 21, 16, 12, 10, 8, 6,
+ 5, 3, 2, 1, 1, 1, 0, 0,
+ };
+ // Normalized distortion:
+ // This table models the normalized distortion for a Laplacian source
+ // with given variance when quantized with a uniform quantizer
+ // with given stepsize. The closed form expression is:
+ // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
+ // where x = qpstep / sqrt(variance).
+ // Note the actual distortion is Dn * variance.
+ static const int dist_tab_q10[] = {
+ 0, 0, 1, 1, 1, 2, 2, 2,
+ 3, 3, 4, 5, 5, 6, 7, 7,
+ 8, 9, 11, 12, 13, 15, 16, 17,
+ 18, 21, 24, 26, 29, 31, 34, 36,
+ 39, 44, 49, 54, 59, 64, 69, 73,
+ 78, 88, 97, 106, 115, 124, 133, 142,
+ 151, 167, 184, 200, 215, 231, 245, 260,
+ 274, 301, 327, 351, 375, 397, 418, 439,
+ 458, 495, 528, 559, 587, 613, 637, 659,
+ 680, 717, 749, 777, 801, 823, 842, 859,
+ 874, 899, 919, 936, 949, 960, 969, 977,
+ 983, 994, 1001, 1006, 1010, 1013, 1015, 1017,
+ 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
+ };
+ static const int xsq_iq_q10[] = {
+ 0, 4, 8, 12, 16, 20, 24, 28,
+ 32, 40, 48, 56, 64, 72, 80, 88,
+ 96, 112, 128, 144, 160, 176, 192, 208,
+ 224, 256, 288, 320, 352, 384, 416, 448,
+ 480, 544, 608, 672, 736, 800, 864, 928,
+ 992, 1120, 1248, 1376, 1504, 1632, 1760, 1888,
+ 2016, 2272, 2528, 2784, 3040, 3296, 3552, 3808,
+ 4064, 4576, 5088, 5600, 6112, 6624, 7136, 7648,
+ 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
+ 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688,
+ 32736, 36832, 40928, 45024, 49120, 53216, 57312, 61408,
+ 65504, 73696, 81888, 90080, 98272, 106464, 114656, 122848,
+ 131040, 147424, 163808, 180192, 196576, 212960, 229344, 245728,
+ };
+ const int tmp = (xsq_q10 >> 2) + 8;
+ const int k = get_msb(tmp) - 3;
+ const int xq = (k << 3) + ((tmp >> k) & 0x7);
+ const int one_q10 = 1 << 10;
+ const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
+ const int b_q10 = one_q10 - a_q10;
+ *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
+ *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
+}
+
+void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
+ unsigned int qstep, int *rate,
+ int64_t *dist) {
+ // This function models the rate and distortion for a Laplacian
+ // source with given variance when quantized with a uniform quantizer
+ // with given stepsize. The closed form expressions are in:
+ // Hang and Chen, "Source Model for transform video coder and its
+ // application - Part I: Fundamental Theory", IEEE Trans. Circ.
+ // Sys. for Video Tech., April 1997.
+ if (var == 0) {
+ *rate = 0;
+ *dist = 0;
+ } else {
+ int d_q10, r_q10;
+ static const uint32_t MAX_XSQ_Q10 = 245727;
+ const uint64_t xsq_q10_64 =
+ (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
+ const int xsq_q10 = (int)MIN(xsq_q10_64, MAX_XSQ_Q10);
+ model_rd_norm(xsq_q10, &r_q10, &d_q10);
+ *rate = ((r_q10 << n_log2) + 2) >> 2;
+ *dist = (var * (int64_t)d_q10 + 512) >> 10;
+ }
+}
+
+void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
+ const struct macroblockd_plane *pd,
+ ENTROPY_CONTEXT t_above[16],
+ ENTROPY_CONTEXT t_left[16]) {
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
+ const ENTROPY_CONTEXT *const above = pd->above_context;
+ const ENTROPY_CONTEXT *const left = pd->left_context;
+
+ int i;
+ switch (tx_size) {
+ case TX_4X4:
+ memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
+ memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
+ break;
+ case TX_8X8:
+ for (i = 0; i < num_4x4_w; i += 2)
+ t_above[i] = !!*(const uint16_t *)&above[i];
+ for (i = 0; i < num_4x4_h; i += 2)
+ t_left[i] = !!*(const uint16_t *)&left[i];
+ break;
+ case TX_16X16:
+ for (i = 0; i < num_4x4_w; i += 4)
+ t_above[i] = !!*(const uint32_t *)&above[i];
+ for (i = 0; i < num_4x4_h; i += 4)
+ t_left[i] = !!*(const uint32_t *)&left[i];
+ break;
+ case TX_32X32:
+ for (i = 0; i < num_4x4_w; i += 8)
+ t_above[i] = !!*(const uint64_t *)&above[i];
+ for (i = 0; i < num_4x4_h; i += 8)
+ t_left[i] = !!*(const uint64_t *)&left[i];
+ break;
+ default:
+ assert(0 && "Invalid transform size.");
+ break;
+ }
+}
+
+void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
+ uint8_t *ref_y_buffer, int ref_y_stride,
+ int ref_frame, BLOCK_SIZE block_size) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ int i;
+ int zero_seen = 0;
+ int best_index = 0;
+ int best_sad = INT_MAX;
+ int this_sad = INT_MAX;
+ int max_mv = 0;
+ int near_same_nearest;
+ uint8_t *src_y_ptr = x->plane[0].src.buf;
+ uint8_t *ref_y_ptr;
+ const int num_mv_refs = MAX_MV_REF_CANDIDATES +
+ (cpi->sf.adaptive_motion_search &&
+ block_size < x->max_partition_size);
+
+ MV pred_mv[3];
+ pred_mv[0] = mbmi->ref_mvs[ref_frame][0].as_mv;
+ pred_mv[1] = mbmi->ref_mvs[ref_frame][1].as_mv;
+ pred_mv[2] = x->pred_mv[ref_frame];
+ assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
+
+ near_same_nearest =
+ mbmi->ref_mvs[ref_frame][0].as_int == mbmi->ref_mvs[ref_frame][1].as_int;
+ // Get the sad for each candidate reference mv.
+ for (i = 0; i < num_mv_refs; ++i) {
+ const MV *this_mv = &pred_mv[i];
+ int fp_row, fp_col;
+
+ if (i == 1 && near_same_nearest)
+ continue;
+ fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
+ fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
+ max_mv = MAX(max_mv, MAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
+
+ if (fp_row ==0 && fp_col == 0 && zero_seen)
+ continue;
+ zero_seen |= (fp_row ==0 && fp_col == 0);
+
+ ref_y_ptr =&ref_y_buffer[ref_y_stride * fp_row + fp_col];
+ // Find sad for current vector.
+ this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
+ ref_y_ptr, ref_y_stride);
+ // Note if it is the best so far.
+ if (this_sad < best_sad) {
+ best_sad = this_sad;
+ best_index = i;
+ }
+ }
+
+ // Note the index of the mv that worked best in the reference list.
+ x->mv_best_ref_index[ref_frame] = best_index;
+ x->max_mv_context[ref_frame] = max_mv;
+ x->pred_mv_sad[ref_frame] = best_sad;
+}
+
+void vp9_setup_pred_block(const MACROBLOCKD *xd,
+ struct buf_2d dst[MAX_MB_PLANE],
+ const YV12_BUFFER_CONFIG *src,
+ int mi_row, int mi_col,
+ const struct scale_factors *scale,
+ const struct scale_factors *scale_uv) {
+ int i;
+
+ dst[0].buf = src->y_buffer;
+ dst[0].stride = src->y_stride;
+ dst[1].buf = src->u_buffer;
+ dst[2].buf = src->v_buffer;
+ dst[1].stride = dst[2].stride = src->uv_stride;
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
+ i ? scale_uv : scale,
+ xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
+ }
+}
+
+int vp9_raster_block_offset(BLOCK_SIZE plane_bsize,
+ int raster_block, int stride) {
+ const int bw = b_width_log2_lookup[plane_bsize];
+ const int y = 4 * (raster_block >> bw);
+ const int x = 4 * (raster_block & ((1 << bw) - 1));
+ return y * stride + x;
+}
+
+int16_t* vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize,
+ int raster_block, int16_t *base) {
+ const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ return base + vp9_raster_block_offset(plane_bsize, raster_block, stride);
+}
+
+YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
+ int ref_frame) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
+ const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+ return
+ (scaled_idx != ref_idx && scaled_idx != INVALID_IDX) ?
+ &cm->buffer_pool->frame_bufs[scaled_idx].buf : NULL;
+}
+
+int vp9_get_switchable_rate(const VP9_COMP *cpi, const MACROBLOCKD *const xd) {
+ const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const int ctx = vp9_get_pred_context_switchable_interp(xd);
+ return SWITCHABLE_INTERP_RATE_FACTOR *
+ cpi->switchable_interp_costs[ctx][mbmi->interp_filter];
+}
+
+void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) {
+ int i;
+ RD_OPT *const rd = &cpi->rd;
+ SPEED_FEATURES *const sf = &cpi->sf;
+
+ // Set baseline threshold values.
+ for (i = 0; i < MAX_MODES; ++i)
+ rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0;
+
+ if (sf->adaptive_rd_thresh) {
+ rd->thresh_mult[THR_NEARESTMV] = 300;
+ rd->thresh_mult[THR_NEARESTG] = 300;
+ rd->thresh_mult[THR_NEARESTA] = 300;
+ } else {
+ rd->thresh_mult[THR_NEARESTMV] = 0;
+ rd->thresh_mult[THR_NEARESTG] = 0;
+ rd->thresh_mult[THR_NEARESTA] = 0;
+ }
+
+ rd->thresh_mult[THR_DC] += 1000;
+
+ rd->thresh_mult[THR_NEWMV] += 1000;
+ rd->thresh_mult[THR_NEWA] += 1000;
+ rd->thresh_mult[THR_NEWG] += 1000;
+
+ rd->thresh_mult[THR_NEARMV] += 1000;
+ rd->thresh_mult[THR_NEARA] += 1000;
+ rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
+ rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
+
+ rd->thresh_mult[THR_TM] += 1000;
+
+ rd->thresh_mult[THR_COMP_NEARLA] += 1500;
+ rd->thresh_mult[THR_COMP_NEWLA] += 2000;
+ rd->thresh_mult[THR_NEARG] += 1000;
+ rd->thresh_mult[THR_COMP_NEARGA] += 1500;
+ rd->thresh_mult[THR_COMP_NEWGA] += 2000;
+
+ rd->thresh_mult[THR_ZEROMV] += 2000;
+ rd->thresh_mult[THR_ZEROG] += 2000;
+ rd->thresh_mult[THR_ZEROA] += 2000;
+ rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
+ rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
+
+ rd->thresh_mult[THR_H_PRED] += 2000;
+ rd->thresh_mult[THR_V_PRED] += 2000;
+ rd->thresh_mult[THR_D45_PRED ] += 2500;
+ rd->thresh_mult[THR_D135_PRED] += 2500;
+ rd->thresh_mult[THR_D117_PRED] += 2500;
+ rd->thresh_mult[THR_D153_PRED] += 2500;
+ rd->thresh_mult[THR_D207_PRED] += 2500;
+ rd->thresh_mult[THR_D63_PRED] += 2500;
+}
+
+void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) {
+ static const int thresh_mult[2][MAX_REFS] =
+ {{2500, 2500, 2500, 4500, 4500, 2500},
+ {2000, 2000, 2000, 4000, 4000, 2000}};
+ RD_OPT *const rd = &cpi->rd;
+ const int idx = cpi->oxcf.mode == BEST;
+ memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx]));
+}
+
+void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
+ int bsize, int best_mode_index) {
+ if (rd_thresh > 0) {
+ const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
+ int mode;
+ for (mode = 0; mode < top_mode; ++mode) {
+ const BLOCK_SIZE min_size = MAX(bsize - 1, BLOCK_4X4);
+ const BLOCK_SIZE max_size = MIN(bsize + 2, BLOCK_64X64);
+ BLOCK_SIZE bs;
+ for (bs = min_size; bs <= max_size; ++bs) {
+ int *const fact = &factor_buf[bs][mode];
+ if (mode == best_mode_index) {
+ *fact -= (*fact >> 4);
+ } else {
+ *fact = MIN(*fact + RD_THRESH_INC,
+ rd_thresh * RD_THRESH_MAX_FACT);
+ }
+ }
+ }
+ }
+}
+
+int vp9_get_intra_cost_penalty(int qindex, int qdelta,
+ vpx_bit_depth_t bit_depth) {
+ const int q = vp9_dc_quant(qindex, qdelta, bit_depth);
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (bit_depth) {
+ case VPX_BITS_8:
+ return 20 * q;
+ case VPX_BITS_10:
+ return 5 * q;
+ case VPX_BITS_12:
+ return ROUND_POWER_OF_TWO(5 * q, 2);
+ default:
+ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
+ return -1;
+ }
+#else
+ return 20 * q;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+}
+
diff --git a/media/libvpx/vp9/encoder/vp9_rd.h b/media/libvpx/vp9/encoder/vp9_rd.h
new file mode 100644
index 000000000..7ba2568fe
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_rd.h
@@ -0,0 +1,190 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_RD_H_
+#define VP9_ENCODER_VP9_RD_H_
+
+#include <limits.h>
+
+#include "vp9/common/vp9_blockd.h"
+
+#include "vp9/encoder/vp9_block.h"
+#include "vp9/encoder/vp9_context_tree.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define RDDIV_BITS 7
+
+#define RDCOST(RM, DM, R, D) \
+ (((128 + ((int64_t)R) * (RM)) >> 8) + (D << DM))
+#define QIDX_SKIP_THRESH 115
+
+#define MV_COST_WEIGHT 108
+#define MV_COST_WEIGHT_SUB 120
+
+#define INVALID_MV 0x80008000
+
+#define MAX_MODES 30
+#define MAX_REFS 6
+
+#define RD_THRESH_MAX_FACT 64
+#define RD_THRESH_INC 1
+
+// This enumerator type needs to be kept aligned with the mode order in
+// const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code.
+typedef enum {
+ THR_NEARESTMV,
+ THR_NEARESTA,
+ THR_NEARESTG,
+
+ THR_DC,
+
+ THR_NEWMV,
+ THR_NEWA,
+ THR_NEWG,
+
+ THR_NEARMV,
+ THR_NEARA,
+ THR_NEARG,
+
+ THR_ZEROMV,
+ THR_ZEROG,
+ THR_ZEROA,
+
+ THR_COMP_NEARESTLA,
+ THR_COMP_NEARESTGA,
+
+ THR_TM,
+
+ THR_COMP_NEARLA,
+ THR_COMP_NEWLA,
+ THR_COMP_NEARGA,
+ THR_COMP_NEWGA,
+
+ THR_COMP_ZEROLA,
+ THR_COMP_ZEROGA,
+
+ THR_H_PRED,
+ THR_V_PRED,
+ THR_D135_PRED,
+ THR_D207_PRED,
+ THR_D153_PRED,
+ THR_D63_PRED,
+ THR_D117_PRED,
+ THR_D45_PRED,
+} THR_MODES;
+
+typedef enum {
+ THR_LAST,
+ THR_GOLD,
+ THR_ALTR,
+ THR_COMP_LA,
+ THR_COMP_GA,
+ THR_INTRA,
+} THR_MODES_SUB8X8;
+
+typedef struct RD_OPT {
+ // Thresh_mult is used to set a threshold for the rd score. A higher value
+ // means that we will accept the best mode so far more often. This number
+ // is used in combination with the current block size, and thresh_freq_fact
+ // to pick a threshold.
+ int thresh_mult[MAX_MODES];
+ int thresh_mult_sub8x8[MAX_REFS];
+
+ int threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES];
+
+ int64_t prediction_type_threshes[MAX_REF_FRAMES][REFERENCE_MODES];
+ // TODO(agrange): can this overflow?
+ int tx_select_threshes[MAX_REF_FRAMES][TX_MODES];
+
+ int64_t filter_threshes[MAX_REF_FRAMES][SWITCHABLE_FILTER_CONTEXTS];
+
+ int RDMULT;
+ int RDDIV;
+} RD_OPT;
+
+typedef struct RD_COST {
+ int rate;
+ int64_t dist;
+ int64_t rdcost;
+} RD_COST;
+
+// Reset the rate distortion cost values to maximum (invalid) value.
+void vp9_rd_cost_reset(RD_COST *rd_cost);
+// Initialize the rate distortion cost values to zero.
+void vp9_rd_cost_init(RD_COST *rd_cost);
+
+struct TileInfo;
+struct TileDataEnc;
+struct VP9_COMP;
+struct macroblock;
+
+int vp9_compute_rd_mult(const struct VP9_COMP *cpi, int qindex);
+
+void vp9_initialize_rd_consts(struct VP9_COMP *cpi);
+
+void vp9_initialize_me_consts(struct VP9_COMP *cpi, MACROBLOCK *x, int qindex);
+
+void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n,
+ unsigned int qstep, int *rate,
+ int64_t *dist);
+
+int vp9_get_switchable_rate(const struct VP9_COMP *cpi,
+ const MACROBLOCKD *const xd);
+
+int vp9_raster_block_offset(BLOCK_SIZE plane_bsize,
+ int raster_block, int stride);
+
+int16_t* vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize,
+ int raster_block, int16_t *base);
+
+YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const struct VP9_COMP *cpi,
+ int ref_frame);
+
+void vp9_init_me_luts(void);
+
+void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
+ const struct macroblockd_plane *pd,
+ ENTROPY_CONTEXT t_above[16],
+ ENTROPY_CONTEXT t_left[16]);
+
+void vp9_set_rd_speed_thresholds(struct VP9_COMP *cpi);
+
+void vp9_set_rd_speed_thresholds_sub8x8(struct VP9_COMP *cpi);
+
+void vp9_update_rd_thresh_fact(int (*fact)[MAX_MODES], int rd_thresh,
+ int bsize, int best_mode_index);
+
+static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh,
+ int thresh_fact) {
+ return best_rd < ((int64_t)thresh * thresh_fact >> 5) || thresh == INT_MAX;
+}
+
+void vp9_mv_pred(struct VP9_COMP *cpi, MACROBLOCK *x,
+ uint8_t *ref_y_buffer, int ref_y_stride,
+ int ref_frame, BLOCK_SIZE block_size);
+
+void vp9_setup_pred_block(const MACROBLOCKD *xd,
+ struct buf_2d dst[MAX_MB_PLANE],
+ const YV12_BUFFER_CONFIG *src,
+ int mi_row, int mi_col,
+ const struct scale_factors *scale,
+ const struct scale_factors *scale_uv);
+
+int vp9_get_intra_cost_penalty(int qindex, int qdelta,
+ vpx_bit_depth_t bit_depth);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_RD_H_
diff --git a/media/libvpx/vp9/encoder/vp9_rdopt.c b/media/libvpx/vp9/encoder/vp9_rdopt.c
new file mode 100644
index 000000000..9fa258c61
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_rdopt.c
@@ -0,0 +1,4313 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+
+#include "./vp9_rtcd.h"
+
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropy.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_idct.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_reconintra.h"
+#include "vp9/common/vp9_scan.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_systemdependent.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_encodemb.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rd.h"
+#include "vp9/encoder/vp9_rdopt.h"
+#include "vp9/encoder/vp9_variance.h"
+#include "vp9/encoder/vp9_aq_variance.h"
+
+#define LAST_FRAME_MODE_MASK ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | \
+ (1 << INTRA_FRAME))
+#define GOLDEN_FRAME_MODE_MASK ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | \
+ (1 << INTRA_FRAME))
+#define ALT_REF_MODE_MASK ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | \
+ (1 << INTRA_FRAME))
+
+#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01)
+
+#define MIN_EARLY_TERM_INDEX 3
+#define NEW_MV_DISCOUNT_FACTOR 8
+
+typedef struct {
+ PREDICTION_MODE mode;
+ MV_REFERENCE_FRAME ref_frame[2];
+} MODE_DEFINITION;
+
+typedef struct {
+ MV_REFERENCE_FRAME ref_frame[2];
+} REF_DEFINITION;
+
+struct rdcost_block_args {
+ MACROBLOCK *x;
+ ENTROPY_CONTEXT t_above[16];
+ ENTROPY_CONTEXT t_left[16];
+ int rate;
+ int64_t dist;
+ int64_t sse;
+ int this_rate;
+ int64_t this_dist;
+ int64_t this_sse;
+ int64_t this_rd;
+ int64_t best_rd;
+ int skip;
+ int use_fast_coef_costing;
+ const scan_order *so;
+};
+
+#define LAST_NEW_MV_INDEX 6
+static const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
+ {NEARESTMV, {LAST_FRAME, NONE}},
+ {NEARESTMV, {ALTREF_FRAME, NONE}},
+ {NEARESTMV, {GOLDEN_FRAME, NONE}},
+
+ {DC_PRED, {INTRA_FRAME, NONE}},
+
+ {NEWMV, {LAST_FRAME, NONE}},
+ {NEWMV, {ALTREF_FRAME, NONE}},
+ {NEWMV, {GOLDEN_FRAME, NONE}},
+
+ {NEARMV, {LAST_FRAME, NONE}},
+ {NEARMV, {ALTREF_FRAME, NONE}},
+ {NEARMV, {GOLDEN_FRAME, NONE}},
+
+ {ZEROMV, {LAST_FRAME, NONE}},
+ {ZEROMV, {GOLDEN_FRAME, NONE}},
+ {ZEROMV, {ALTREF_FRAME, NONE}},
+
+ {NEARESTMV, {LAST_FRAME, ALTREF_FRAME}},
+ {NEARESTMV, {GOLDEN_FRAME, ALTREF_FRAME}},
+
+ {TM_PRED, {INTRA_FRAME, NONE}},
+
+ {NEARMV, {LAST_FRAME, ALTREF_FRAME}},
+ {NEWMV, {LAST_FRAME, ALTREF_FRAME}},
+ {NEARMV, {GOLDEN_FRAME, ALTREF_FRAME}},
+ {NEWMV, {GOLDEN_FRAME, ALTREF_FRAME}},
+
+ {ZEROMV, {LAST_FRAME, ALTREF_FRAME}},
+ {ZEROMV, {GOLDEN_FRAME, ALTREF_FRAME}},
+
+ {H_PRED, {INTRA_FRAME, NONE}},
+ {V_PRED, {INTRA_FRAME, NONE}},
+ {D135_PRED, {INTRA_FRAME, NONE}},
+ {D207_PRED, {INTRA_FRAME, NONE}},
+ {D153_PRED, {INTRA_FRAME, NONE}},
+ {D63_PRED, {INTRA_FRAME, NONE}},
+ {D117_PRED, {INTRA_FRAME, NONE}},
+ {D45_PRED, {INTRA_FRAME, NONE}},
+};
+
+static const REF_DEFINITION vp9_ref_order[MAX_REFS] = {
+ {{LAST_FRAME, NONE}},
+ {{GOLDEN_FRAME, NONE}},
+ {{ALTREF_FRAME, NONE}},
+ {{LAST_FRAME, ALTREF_FRAME}},
+ {{GOLDEN_FRAME, ALTREF_FRAME}},
+ {{INTRA_FRAME, NONE}},
+};
+
+static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
+ int m, int n, int min_plane, int max_plane) {
+ int i;
+
+ for (i = min_plane; i < max_plane; ++i) {
+ struct macroblock_plane *const p = &x->plane[i];
+ struct macroblockd_plane *const pd = &x->e_mbd.plane[i];
+
+ p->coeff = ctx->coeff_pbuf[i][m];
+ p->qcoeff = ctx->qcoeff_pbuf[i][m];
+ pd->dqcoeff = ctx->dqcoeff_pbuf[i][m];
+ p->eobs = ctx->eobs_pbuf[i][m];
+
+ ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n];
+ ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n];
+ ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n];
+ ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n];
+
+ ctx->coeff_pbuf[i][n] = p->coeff;
+ ctx->qcoeff_pbuf[i][n] = p->qcoeff;
+ ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff;
+ ctx->eobs_pbuf[i][n] = p->eobs;
+ }
+}
+
+static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd,
+ int *out_rate_sum, int64_t *out_dist_sum,
+ int *skip_txfm_sb, int64_t *skip_sse_sb) {
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ int i;
+ int64_t rate_sum = 0;
+ int64_t dist_sum = 0;
+ const int ref = xd->mi[0]->mbmi.ref_frame[0];
+ unsigned int sse;
+ unsigned int var = 0;
+ unsigned int sum_sse = 0;
+ int64_t total_sse = 0;
+ int skip_flag = 1;
+ const int shift = 6;
+ int rate;
+ int64_t dist;
+
+ x->pred_sse[ref] = 0;
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ struct macroblock_plane *const p = &x->plane[i];
+ struct macroblockd_plane *const pd = &xd->plane[i];
+ const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
+ const TX_SIZE max_tx_size = max_txsize_lookup[bs];
+ const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size];
+ const int64_t dc_thr = p->quant_thred[0] >> shift;
+ const int64_t ac_thr = p->quant_thred[1] >> shift;
+ // The low thresholds are used to measure if the prediction errors are
+ // low enough so that we can skip the mode search.
+ const int64_t low_dc_thr = MIN(50, dc_thr >> 2);
+ const int64_t low_ac_thr = MIN(80, ac_thr >> 2);
+ int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
+ int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
+ int idx, idy;
+ int lw = b_width_log2_lookup[unit_size] + 2;
+ int lh = b_height_log2_lookup[unit_size] + 2;
+
+ sum_sse = 0;
+
+ for (idy = 0; idy < bh; ++idy) {
+ for (idx = 0; idx < bw; ++idx) {
+ uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw);
+ uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh);
+ int block_idx = (idy << 1) + idx;
+ int low_err_skip = 0;
+
+ var = cpi->fn_ptr[unit_size].vf(src, p->src.stride,
+ dst, pd->dst.stride, &sse);
+ x->bsse[(i << 2) + block_idx] = sse;
+ sum_sse += sse;
+
+ x->skip_txfm[(i << 2) + block_idx] = 0;
+ if (!x->select_tx_size) {
+ // Check if all ac coefficients can be quantized to zero.
+ if (var < ac_thr || var == 0) {
+ x->skip_txfm[(i << 2) + block_idx] = 2;
+
+ // Check if dc coefficient can be quantized to zero.
+ if (sse - var < dc_thr || sse == var) {
+ x->skip_txfm[(i << 2) + block_idx] = 1;
+
+ if (!sse || (var < low_ac_thr && sse - var < low_dc_thr))
+ low_err_skip = 1;
+ }
+ }
+ }
+
+ if (skip_flag && !low_err_skip)
+ skip_flag = 0;
+
+ if (i == 0)
+ x->pred_sse[ref] += sse;
+ }
+ }
+
+ total_sse += sum_sse;
+
+ // Fast approximate the modelling function.
+ if (cpi->oxcf.speed > 4) {
+ int64_t rate;
+ const int64_t square_error = sum_sse;
+ int quantizer = (pd->dequant[1] >> 3);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ quantizer >>= (xd->bd - 8);
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ if (quantizer < 120)
+ rate = (square_error * (280 - quantizer)) >> 8;
+ else
+ rate = 0;
+ dist = (square_error * quantizer) >> 8;
+ rate_sum += rate;
+ dist_sum += dist;
+ } else {
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_model_rd_from_var_lapndz(sum_sse, num_pels_log2_lookup[bs],
+ pd->dequant[1] >> (xd->bd - 5),
+ &rate, &dist);
+ } else {
+ vp9_model_rd_from_var_lapndz(sum_sse, num_pels_log2_lookup[bs],
+ pd->dequant[1] >> 3, &rate, &dist);
+ }
+#else
+ vp9_model_rd_from_var_lapndz(sum_sse, num_pels_log2_lookup[bs],
+ pd->dequant[1] >> 3, &rate, &dist);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ rate_sum += rate;
+ dist_sum += dist;
+ }
+ }
+
+ *skip_txfm_sb = skip_flag;
+ *skip_sse_sb = total_sse << 4;
+ *out_rate_sum = (int)rate_sum;
+ *out_dist_sum = dist_sum << 4;
+}
+
+int64_t vp9_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
+ intptr_t block_size, int64_t *ssz) {
+ int i;
+ int64_t error = 0, sqcoeff = 0;
+
+ for (i = 0; i < block_size; i++) {
+ const int diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ sqcoeff += coeff[i] * coeff[i];
+ }
+
+ *ssz = sqcoeff;
+ return error;
+}
+
+int64_t vp9_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff,
+ int block_size) {
+ int i;
+ int64_t error = 0;
+
+ for (i = 0; i < block_size; i++) {
+ const int diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ }
+
+ return error;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+int64_t vp9_highbd_block_error_c(const tran_low_t *coeff,
+ const tran_low_t *dqcoeff,
+ intptr_t block_size,
+ int64_t *ssz, int bd) {
+ int i;
+ int64_t error = 0, sqcoeff = 0;
+ int shift = 2 * (bd - 8);
+ int rounding = shift > 0 ? 1 << (shift - 1) : 0;
+
+ for (i = 0; i < block_size; i++) {
+ const int64_t diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
+ }
+ assert(error >= 0 && sqcoeff >= 0);
+ error = (error + rounding) >> shift;
+ sqcoeff = (sqcoeff + rounding) >> shift;
+
+ *ssz = sqcoeff;
+ return error;
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+/* The trailing '0' is a terminator which is used inside cost_coeffs() to
+ * decide whether to include cost of a trailing EOB node or not (i.e. we
+ * can skip this if the last coefficient in this transform block, e.g. the
+ * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block,
+ * were non-zero). */
+static const int16_t band_counts[TX_SIZES][8] = {
+ { 1, 2, 3, 4, 3, 16 - 13, 0 },
+ { 1, 2, 3, 4, 11, 64 - 21, 0 },
+ { 1, 2, 3, 4, 11, 256 - 21, 0 },
+ { 1, 2, 3, 4, 11, 1024 - 21, 0 },
+};
+static int cost_coeffs(MACROBLOCK *x,
+ int plane, int block,
+ ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L,
+ TX_SIZE tx_size,
+ const int16_t *scan, const int16_t *nb,
+ int use_fast_coef_costing) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ const struct macroblock_plane *p = &x->plane[plane];
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+ const PLANE_TYPE type = pd->plane_type;
+ const int16_t *band_count = &band_counts[tx_size][1];
+ const int eob = p->eobs[block];
+ const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ unsigned int (*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
+ x->token_costs[tx_size][type][is_inter_block(mbmi)];
+ uint8_t token_cache[32 * 32];
+ int pt = combine_entropy_contexts(*A, *L);
+ int c, cost;
+#if CONFIG_VP9_HIGHBITDEPTH
+ const int16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd);
+#else
+ const int16_t *cat6_high_cost = vp9_get_high_cost_table(8);
+#endif
+
+ // Check for consistency of tx_size with mode info
+ assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size
+ : get_uv_tx_size(mbmi, pd) == tx_size);
+
+ if (eob == 0) {
+ // single eob token
+ cost = token_costs[0][0][pt][EOB_TOKEN];
+ c = 0;
+ } else {
+ int band_left = *band_count++;
+
+ // dc token
+ int v = qcoeff[0];
+ int16_t prev_t;
+ EXTRABIT e;
+ vp9_get_token_extra(v, &prev_t, &e);
+ cost = (*token_costs)[0][pt][prev_t] +
+ vp9_get_cost(prev_t, e, cat6_high_cost);
+
+ token_cache[0] = vp9_pt_energy_class[prev_t];
+ ++token_costs;
+
+ // ac tokens
+ for (c = 1; c < eob; c++) {
+ const int rc = scan[c];
+ int16_t t;
+
+ v = qcoeff[rc];
+ vp9_get_token_extra(v, &t, &e);
+ if (use_fast_coef_costing) {
+ cost += (*token_costs)[!prev_t][!prev_t][t] +
+ vp9_get_cost(t, e, cat6_high_cost);
+ } else {
+ pt = get_coef_context(nb, token_cache, c);
+ cost += (*token_costs)[!prev_t][pt][t] +
+ vp9_get_cost(t, e, cat6_high_cost);
+ token_cache[rc] = vp9_pt_energy_class[t];
+ }
+ prev_t = t;
+ if (!--band_left) {
+ band_left = *band_count++;
+ ++token_costs;
+ }
+ }
+
+ // eob token
+ if (band_left) {
+ if (use_fast_coef_costing) {
+ cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
+ } else {
+ pt = get_coef_context(nb, token_cache, c);
+ cost += (*token_costs)[0][pt][EOB_TOKEN];
+ }
+ }
+ }
+
+ // is eob first coefficient;
+ *A = *L = (c > 0);
+
+ return cost;
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void dist_block(int plane, int block, TX_SIZE tx_size,
+ struct rdcost_block_args* args, int bd) {
+#else
+static void dist_block(int plane, int block, TX_SIZE tx_size,
+ struct rdcost_block_args* args) {
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ const int ss_txfrm_size = tx_size << 1;
+ MACROBLOCK* const x = args->x;
+ MACROBLOCKD* const xd = &x->e_mbd;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ int64_t this_sse;
+ int shift = tx_size == TX_32X32 ? 0 : 2;
+ tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+#if CONFIG_VP9_HIGHBITDEPTH
+ args->dist = vp9_highbd_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
+ &this_sse, bd) >> shift;
+#else
+ args->dist = vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
+ &this_sse) >> shift;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ args->sse = this_sse >> shift;
+
+ if (x->skip_encode && !is_inter_block(&xd->mi[0]->mbmi)) {
+ // TODO(jingning): tune the model to better capture the distortion.
+ int64_t p = (pd->dequant[1] * pd->dequant[1] *
+ (1 << ss_txfrm_size)) >> (shift + 2);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ p >>= ((xd->bd - 8) * 2);
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ args->dist += (p >> 4);
+ args->sse += p;
+ }
+}
+
+static void rate_block(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, struct rdcost_block_args* args) {
+ int x_idx, y_idx;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x_idx, &y_idx);
+
+ args->rate = cost_coeffs(args->x, plane, block, args->t_above + x_idx,
+ args->t_left + y_idx, tx_size,
+ args->so->scan, args->so->neighbors,
+ args->use_fast_coef_costing);
+}
+
+static void block_rd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
+ struct rdcost_block_args *args = arg;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ int64_t rd1, rd2, rd;
+
+ if (args->skip)
+ return;
+
+ if (!is_inter_block(mbmi)) {
+ struct encode_b_args arg = {x, NULL, &mbmi->skip};
+ vp9_encode_block_intra(plane, block, plane_bsize, tx_size, &arg);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dist_block(plane, block, tx_size, args, xd->bd);
+ } else {
+ dist_block(plane, block, tx_size, args, 8);
+ }
+#else
+ dist_block(plane, block, tx_size, args);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ } else if (max_txsize_lookup[plane_bsize] == tx_size) {
+ if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] == 0) {
+ // full forward transform and quantization
+ vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dist_block(plane, block, tx_size, args, xd->bd);
+ } else {
+ dist_block(plane, block, tx_size, args, 8);
+ }
+#else
+ dist_block(plane, block, tx_size, args);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ } else if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] == 2) {
+ // compute DC coefficient
+ tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block);
+ vp9_xform_quant_dc(x, plane, block, plane_bsize, tx_size);
+ args->sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
+ args->dist = args->sse;
+ if (x->plane[plane].eobs[block]) {
+ const int64_t orig_sse = (int64_t)coeff[0] * coeff[0];
+ const int64_t resd_sse = coeff[0] - dqcoeff[0];
+ int64_t dc_correct = orig_sse - resd_sse * resd_sse;
+#if CONFIG_VP9_HIGHBITDEPTH
+ dc_correct >>= ((xd->bd - 8) * 2);
+#endif
+ if (tx_size != TX_32X32)
+ dc_correct >>= 2;
+
+ args->dist = MAX(0, args->sse - dc_correct);
+ }
+ } else {
+ // skip forward transform
+ x->plane[plane].eobs[block] = 0;
+ args->sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
+ args->dist = args->sse;
+ }
+ } else {
+ // full forward transform and quantization
+ vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ dist_block(plane, block, tx_size, args, xd->bd);
+ } else {
+ dist_block(plane, block, tx_size, args, 8);
+ }
+#else
+ dist_block(plane, block, tx_size, args);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+
+ rate_block(plane, block, plane_bsize, tx_size, args);
+ rd1 = RDCOST(x->rdmult, x->rddiv, args->rate, args->dist);
+ rd2 = RDCOST(x->rdmult, x->rddiv, 0, args->sse);
+
+ // TODO(jingning): temporarily enabled only for luma component
+ rd = MIN(rd1, rd2);
+ if (plane == 0)
+ x->zcoeff_blk[tx_size][block] = !x->plane[plane].eobs[block] ||
+ (rd1 > rd2 && !xd->lossless);
+
+ args->this_rate += args->rate;
+ args->this_dist += args->dist;
+ args->this_sse += args->sse;
+ args->this_rd += rd;
+
+ if (args->this_rd > args->best_rd) {
+ args->skip = 1;
+ return;
+ }
+}
+
+static void txfm_rd_in_plane(MACROBLOCK *x,
+ int *rate, int64_t *distortion,
+ int *skippable, int64_t *sse,
+ int64_t ref_best_rd, int plane,
+ BLOCK_SIZE bsize, TX_SIZE tx_size,
+ int use_fast_coef_casting) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ struct rdcost_block_args args;
+ vp9_zero(args);
+ args.x = x;
+ args.best_rd = ref_best_rd;
+ args.use_fast_coef_costing = use_fast_coef_casting;
+
+ if (plane == 0)
+ xd->mi[0]->mbmi.tx_size = tx_size;
+
+ vp9_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
+
+ args.so = get_scan(xd, tx_size, pd->plane_type, 0);
+
+ vp9_foreach_transformed_block_in_plane(xd, bsize, plane,
+ block_rd_txfm, &args);
+ if (args.skip) {
+ *rate = INT_MAX;
+ *distortion = INT64_MAX;
+ *sse = INT64_MAX;
+ *skippable = 0;
+ } else {
+ *distortion = args.this_dist;
+ *rate = args.this_rate;
+ *sse = args.this_sse;
+ *skippable = vp9_is_skippable_in_plane(x, bsize, plane);
+ }
+}
+
+static void choose_largest_tx_size(VP9_COMP *cpi, MACROBLOCK *x,
+ int *rate, int64_t *distortion,
+ int *skip, int64_t *sse,
+ int64_t ref_best_rd,
+ BLOCK_SIZE bs) {
+ const TX_SIZE max_tx_size = max_txsize_lookup[bs];
+ VP9_COMMON *const cm = &cpi->common;
+ const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+
+ mbmi->tx_size = MIN(max_tx_size, largest_tx_size);
+
+ txfm_rd_in_plane(x, rate, distortion, skip,
+ sse, ref_best_rd, 0, bs,
+ mbmi->tx_size, cpi->sf.use_fast_coef_costing);
+}
+
+static void choose_tx_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
+ int *rate,
+ int64_t *distortion,
+ int *skip,
+ int64_t *psse,
+ int64_t tx_cache[TX_MODES],
+ int64_t ref_best_rd,
+ BLOCK_SIZE bs) {
+ const TX_SIZE max_tx_size = max_txsize_lookup[bs];
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ vp9_prob skip_prob = vp9_get_skip_prob(cm, xd);
+ int r[TX_SIZES][2], s[TX_SIZES];
+ int64_t d[TX_SIZES], sse[TX_SIZES];
+ int64_t rd[TX_SIZES][2] = {{INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX},
+ {INT64_MAX, INT64_MAX}};
+ int n, m;
+ int s0, s1;
+ const TX_SIZE max_mode_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
+ int64_t best_rd = INT64_MAX;
+ TX_SIZE best_tx = max_tx_size;
+
+ const vp9_prob *tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs);
+ assert(skip_prob > 0);
+ s0 = vp9_cost_bit(skip_prob, 0);
+ s1 = vp9_cost_bit(skip_prob, 1);
+
+ for (n = max_tx_size; n >= 0; n--) {
+ txfm_rd_in_plane(x, &r[n][0], &d[n], &s[n],
+ &sse[n], ref_best_rd, 0, bs, n,
+ cpi->sf.use_fast_coef_costing);
+ r[n][1] = r[n][0];
+ if (r[n][0] < INT_MAX) {
+ for (m = 0; m <= n - (n == (int) max_tx_size); m++) {
+ if (m == n)
+ r[n][1] += vp9_cost_zero(tx_probs[m]);
+ else
+ r[n][1] += vp9_cost_one(tx_probs[m]);
+ }
+ }
+ if (d[n] == INT64_MAX) {
+ rd[n][0] = rd[n][1] = INT64_MAX;
+ } else if (s[n]) {
+ rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
+ } else {
+ rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
+ rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
+ }
+
+ // Early termination in transform size search.
+ if (cpi->sf.tx_size_search_breakout &&
+ (rd[n][1] == INT64_MAX ||
+ (n < (int) max_tx_size && rd[n][1] > rd[n + 1][1]) ||
+ s[n] == 1))
+ break;
+
+ if (rd[n][1] < best_rd) {
+ best_tx = n;
+ best_rd = rd[n][1];
+ }
+ }
+ mbmi->tx_size = cm->tx_mode == TX_MODE_SELECT ?
+ best_tx : MIN(max_tx_size, max_mode_tx_size);
+
+
+ *distortion = d[mbmi->tx_size];
+ *rate = r[mbmi->tx_size][cm->tx_mode == TX_MODE_SELECT];
+ *skip = s[mbmi->tx_size];
+ *psse = sse[mbmi->tx_size];
+
+ tx_cache[ONLY_4X4] = rd[TX_4X4][0];
+ tx_cache[ALLOW_8X8] = rd[TX_8X8][0];
+ tx_cache[ALLOW_16X16] = rd[MIN(max_tx_size, TX_16X16)][0];
+ tx_cache[ALLOW_32X32] = rd[MIN(max_tx_size, TX_32X32)][0];
+
+ if (max_tx_size == TX_32X32 && best_tx == TX_32X32) {
+ tx_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
+ } else if (max_tx_size >= TX_16X16 && best_tx == TX_16X16) {
+ tx_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
+ } else if (rd[TX_8X8][1] < rd[TX_4X4][1]) {
+ tx_cache[TX_MODE_SELECT] = rd[TX_8X8][1];
+ } else {
+ tx_cache[TX_MODE_SELECT] = rd[TX_4X4][1];
+ }
+}
+
+static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
+ int64_t *distortion, int *skip,
+ int64_t *psse, BLOCK_SIZE bs,
+ int64_t txfm_cache[TX_MODES],
+ int64_t ref_best_rd) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ int64_t sse;
+ int64_t *ret_sse = psse ? psse : &sse;
+
+ assert(bs == xd->mi[0]->mbmi.sb_type);
+
+ if (cpi->sf.tx_size_search_method == USE_LARGESTALL || xd->lossless) {
+ memset(txfm_cache, 0, TX_MODES * sizeof(int64_t));
+ choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
+ bs);
+ } else {
+ choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse,
+ txfm_cache, ref_best_rd, bs);
+ }
+}
+
+static int conditional_skipintra(PREDICTION_MODE mode,
+ PREDICTION_MODE best_intra_mode) {
+ if (mode == D117_PRED &&
+ best_intra_mode != V_PRED &&
+ best_intra_mode != D135_PRED)
+ return 1;
+ if (mode == D63_PRED &&
+ best_intra_mode != V_PRED &&
+ best_intra_mode != D45_PRED)
+ return 1;
+ if (mode == D207_PRED &&
+ best_intra_mode != H_PRED &&
+ best_intra_mode != D45_PRED)
+ return 1;
+ if (mode == D153_PRED &&
+ best_intra_mode != H_PRED &&
+ best_intra_mode != D135_PRED)
+ return 1;
+ return 0;
+}
+
+static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
+ PREDICTION_MODE *best_mode,
+ const int *bmode_costs,
+ ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
+ int *bestrate, int *bestratey,
+ int64_t *bestdistortion,
+ BLOCK_SIZE bsize, int64_t rd_thresh) {
+ PREDICTION_MODE mode;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int64_t best_rd = rd_thresh;
+
+ struct macroblock_plane *p = &x->plane[0];
+ struct macroblockd_plane *pd = &xd->plane[0];
+ const int src_stride = p->src.stride;
+ const int dst_stride = pd->dst.stride;
+ const uint8_t *src_init = &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, ib,
+ src_stride)];
+ uint8_t *dst_init = &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, ib,
+ dst_stride)];
+ ENTROPY_CONTEXT ta[2], tempa[2];
+ ENTROPY_CONTEXT tl[2], templ[2];
+
+ const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+ int idx, idy;
+ uint8_t best_dst[8 * 8];
+#if CONFIG_VP9_HIGHBITDEPTH
+ uint16_t best_dst16[8 * 8];
+#endif
+
+ assert(ib < 4);
+
+ memcpy(ta, a, sizeof(ta));
+ memcpy(tl, l, sizeof(tl));
+ xd->mi[0]->mbmi.tx_size = TX_4X4;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
+ int64_t this_rd;
+ int ratey = 0;
+ int64_t distortion = 0;
+ int rate = bmode_costs[mode];
+
+ if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode)))
+ continue;
+
+ // Only do the oblique modes if the best so far is
+ // one of the neighboring directional modes
+ if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+ if (conditional_skipintra(mode, *best_mode))
+ continue;
+ }
+
+ memcpy(tempa, ta, sizeof(ta));
+ memcpy(templ, tl, sizeof(tl));
+
+ for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
+ for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
+ const int block = ib + idy * 2 + idx;
+ const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
+ uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
+ int16_t *const src_diff = vp9_raster_block_offset_int16(BLOCK_8X8,
+ block,
+ p->src_diff);
+ tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
+ xd->mi[0]->bmi[block].as_mode = mode;
+ vp9_predict_intra_block(xd, block, 1,
+ TX_4X4, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, idx, idy, 0);
+ vp9_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride,
+ dst, dst_stride, xd->bd);
+ if (xd->lossless) {
+ const scan_order *so = &vp9_default_scan_orders[TX_4X4];
+ vp9_highbd_fwht4x4(src_diff, coeff, 8);
+ vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+ ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+ so->scan, so->neighbors,
+ cpi->sf.use_fast_coef_costing);
+ if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+ goto next_highbd;
+ vp9_highbd_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block),
+ dst, dst_stride,
+ p->eobs[block], xd->bd);
+ } else {
+ int64_t unused;
+ const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block);
+ const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type];
+ vp9_highbd_fht4x4(src_diff, coeff, 8, tx_type);
+ vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+ ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+ so->scan, so->neighbors,
+ cpi->sf.use_fast_coef_costing);
+ distortion += vp9_highbd_block_error(
+ coeff, BLOCK_OFFSET(pd->dqcoeff, block),
+ 16, &unused, xd->bd) >> 2;
+ if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+ goto next_highbd;
+ vp9_highbd_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block),
+ dst, dst_stride, p->eobs[block], xd->bd);
+ }
+ }
+ }
+
+ rate += ratey;
+ this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
+
+ if (this_rd < best_rd) {
+ *bestrate = rate;
+ *bestratey = ratey;
+ *bestdistortion = distortion;
+ best_rd = this_rd;
+ *best_mode = mode;
+ memcpy(a, tempa, sizeof(tempa));
+ memcpy(l, templ, sizeof(templ));
+ for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
+ memcpy(best_dst16 + idy * 8,
+ CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
+ num_4x4_blocks_wide * 4 * sizeof(uint16_t));
+ }
+ }
+ next_highbd:
+ {}
+ }
+ if (best_rd >= rd_thresh || x->skip_encode)
+ return best_rd;
+
+ for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
+ memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
+ best_dst16 + idy * 8,
+ num_4x4_blocks_wide * 4 * sizeof(uint16_t));
+ }
+
+ return best_rd;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
+ int64_t this_rd;
+ int ratey = 0;
+ int64_t distortion = 0;
+ int rate = bmode_costs[mode];
+
+ if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode)))
+ continue;
+
+ // Only do the oblique modes if the best so far is
+ // one of the neighboring directional modes
+ if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+ if (conditional_skipintra(mode, *best_mode))
+ continue;
+ }
+
+ memcpy(tempa, ta, sizeof(ta));
+ memcpy(templ, tl, sizeof(tl));
+
+ for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
+ for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
+ const int block = ib + idy * 2 + idx;
+ const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
+ uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
+ int16_t *const src_diff =
+ vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
+ tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
+ xd->mi[0]->bmi[block].as_mode = mode;
+ vp9_predict_intra_block(xd, block, 1,
+ TX_4X4, mode,
+ x->skip_encode ? src : dst,
+ x->skip_encode ? src_stride : dst_stride,
+ dst, dst_stride, idx, idy, 0);
+ vp9_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
+
+ if (xd->lossless) {
+ const scan_order *so = &vp9_default_scan_orders[TX_4X4];
+ vp9_fwht4x4(src_diff, coeff, 8);
+ vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+ ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+ so->scan, so->neighbors,
+ cpi->sf.use_fast_coef_costing);
+ if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+ goto next;
+ vp9_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride,
+ p->eobs[block]);
+ } else {
+ int64_t unused;
+ const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block);
+ const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type];
+ vp9_fht4x4(src_diff, coeff, 8, tx_type);
+ vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
+ ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
+ so->scan, so->neighbors,
+ cpi->sf.use_fast_coef_costing);
+ distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block),
+ 16, &unused) >> 2;
+ if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
+ goto next;
+ vp9_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block),
+ dst, dst_stride, p->eobs[block]);
+ }
+ }
+ }
+
+ rate += ratey;
+ this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
+
+ if (this_rd < best_rd) {
+ *bestrate = rate;
+ *bestratey = ratey;
+ *bestdistortion = distortion;
+ best_rd = this_rd;
+ *best_mode = mode;
+ memcpy(a, tempa, sizeof(tempa));
+ memcpy(l, templ, sizeof(templ));
+ for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
+ memcpy(best_dst + idy * 8, dst_init + idy * dst_stride,
+ num_4x4_blocks_wide * 4);
+ }
+ next:
+ {}
+ }
+
+ if (best_rd >= rd_thresh || x->skip_encode)
+ return best_rd;
+
+ for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
+ memcpy(dst_init + idy * dst_stride, best_dst + idy * 8,
+ num_4x4_blocks_wide * 4);
+
+ return best_rd;
+}
+
+static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP *cpi, MACROBLOCK *mb,
+ int *rate, int *rate_y,
+ int64_t *distortion,
+ int64_t best_rd) {
+ int i, j;
+ const MACROBLOCKD *const xd = &mb->e_mbd;
+ MODE_INFO *const mic = xd->mi[0];
+ const MODE_INFO *above_mi = xd->above_mi;
+ const MODE_INFO *left_mi = xd->left_mi;
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+ const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+ int idx, idy;
+ int cost = 0;
+ int64_t total_distortion = 0;
+ int tot_rate_y = 0;
+ int64_t total_rd = 0;
+ ENTROPY_CONTEXT t_above[4], t_left[4];
+ const int *bmode_costs = cpi->mbmode_cost;
+
+ memcpy(t_above, xd->plane[0].above_context, sizeof(t_above));
+ memcpy(t_left, xd->plane[0].left_context, sizeof(t_left));
+
+ // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
+ for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
+ for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
+ PREDICTION_MODE best_mode = DC_PRED;
+ int r = INT_MAX, ry = INT_MAX;
+ int64_t d = INT64_MAX, this_rd = INT64_MAX;
+ i = idy * 2 + idx;
+ if (cpi->common.frame_type == KEY_FRAME) {
+ const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, i);
+ const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, i);
+
+ bmode_costs = cpi->y_mode_costs[A][L];
+ }
+
+ this_rd = rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs,
+ t_above + idx, t_left + idy, &r, &ry, &d,
+ bsize, best_rd - total_rd);
+ if (this_rd >= best_rd - total_rd)
+ return INT64_MAX;
+
+ total_rd += this_rd;
+ cost += r;
+ total_distortion += d;
+ tot_rate_y += ry;
+
+ mic->bmi[i].as_mode = best_mode;
+ for (j = 1; j < num_4x4_blocks_high; ++j)
+ mic->bmi[i + j * 2].as_mode = best_mode;
+ for (j = 1; j < num_4x4_blocks_wide; ++j)
+ mic->bmi[i + j].as_mode = best_mode;
+
+ if (total_rd >= best_rd)
+ return INT64_MAX;
+ }
+ }
+
+ *rate = cost;
+ *rate_y = tot_rate_y;
+ *distortion = total_distortion;
+ mic->mbmi.mode = mic->bmi[3].as_mode;
+
+ return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion);
+}
+
+// This function is used only for intra_only frames
+static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ int *rate, int *rate_tokenonly,
+ int64_t *distortion, int *skippable,
+ BLOCK_SIZE bsize,
+ int64_t tx_cache[TX_MODES],
+ int64_t best_rd) {
+ PREDICTION_MODE mode;
+ PREDICTION_MODE mode_selected = DC_PRED;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MODE_INFO *const mic = xd->mi[0];
+ int this_rate, this_rate_tokenonly, s;
+ int64_t this_distortion, this_rd;
+ TX_SIZE best_tx = TX_4X4;
+ int i;
+ int *bmode_costs;
+ const MODE_INFO *above_mi = xd->above_mi;
+ const MODE_INFO *left_mi = xd->left_mi;
+ const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
+ const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
+ bmode_costs = cpi->y_mode_costs[A][L];
+
+ if (cpi->sf.tx_size_search_method == USE_FULL_RD)
+ for (i = 0; i < TX_MODES; i++)
+ tx_cache[i] = INT64_MAX;
+
+ memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+ /* Y Search for intra prediction mode */
+ for (mode = DC_PRED; mode <= TM_PRED; mode++) {
+ int64_t local_tx_cache[TX_MODES];
+
+ if (cpi->sf.use_nonrd_pick_mode) {
+ // These speed features are turned on in hybrid non-RD and RD mode
+ // for key frame coding in the context of real-time setting.
+ if (conditional_skipintra(mode, mode_selected))
+ continue;
+ if (*skippable)
+ break;
+ }
+
+ mic->mbmi.mode = mode;
+
+ super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
+ &s, NULL, bsize, local_tx_cache, best_rd);
+
+ if (this_rate_tokenonly == INT_MAX)
+ continue;
+
+ this_rate = this_rate_tokenonly + bmode_costs[mode];
+ this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
+
+ if (this_rd < best_rd) {
+ mode_selected = mode;
+ best_rd = this_rd;
+ best_tx = mic->mbmi.tx_size;
+ *rate = this_rate;
+ *rate_tokenonly = this_rate_tokenonly;
+ *distortion = this_distortion;
+ *skippable = s;
+ }
+
+ if (cpi->sf.tx_size_search_method == USE_FULL_RD && this_rd < INT64_MAX) {
+ for (i = 0; i < TX_MODES && local_tx_cache[i] < INT64_MAX; i++) {
+ const int64_t adj_rd = this_rd + local_tx_cache[i] -
+ local_tx_cache[cpi->common.tx_mode];
+ if (adj_rd < tx_cache[i]) {
+ tx_cache[i] = adj_rd;
+ }
+ }
+ }
+ }
+
+ mic->mbmi.mode = mode_selected;
+ mic->mbmi.tx_size = best_tx;
+
+ return best_rd;
+}
+
+// Return value 0: early termination triggered, no valid rd cost available;
+// 1: rd cost values are valid.
+static int super_block_uvrd(const VP9_COMP *cpi, MACROBLOCK *x,
+ int *rate, int64_t *distortion, int *skippable,
+ int64_t *sse, BLOCK_SIZE bsize,
+ int64_t ref_best_rd) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
+ int plane;
+ int pnrate = 0, pnskip = 1;
+ int64_t pndist = 0, pnsse = 0;
+ int is_cost_valid = 1;
+
+ if (ref_best_rd < 0)
+ is_cost_valid = 0;
+
+ if (is_inter_block(mbmi) && is_cost_valid) {
+ int plane;
+ for (plane = 1; plane < MAX_MB_PLANE; ++plane)
+ vp9_subtract_plane(x, bsize, plane);
+ }
+
+ *rate = 0;
+ *distortion = 0;
+ *sse = 0;
+ *skippable = 1;
+
+ for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
+ txfm_rd_in_plane(x, &pnrate, &pndist, &pnskip, &pnsse,
+ ref_best_rd, plane, bsize, uv_tx_size,
+ cpi->sf.use_fast_coef_costing);
+ if (pnrate == INT_MAX) {
+ is_cost_valid = 0;
+ break;
+ }
+ *rate += pnrate;
+ *distortion += pndist;
+ *sse += pnsse;
+ *skippable &= pnskip;
+ }
+
+ if (!is_cost_valid) {
+ // reset cost value
+ *rate = INT_MAX;
+ *distortion = INT64_MAX;
+ *sse = INT64_MAX;
+ *skippable = 0;
+ }
+
+ return is_cost_valid;
+}
+
+static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ PICK_MODE_CONTEXT *ctx,
+ int *rate, int *rate_tokenonly,
+ int64_t *distortion, int *skippable,
+ BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ PREDICTION_MODE mode;
+ PREDICTION_MODE mode_selected = DC_PRED;
+ int64_t best_rd = INT64_MAX, this_rd;
+ int this_rate_tokenonly, this_rate, s;
+ int64_t this_distortion, this_sse;
+
+ memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+ for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
+ if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode)))
+ continue;
+
+ xd->mi[0]->mbmi.uv_mode = mode;
+
+ if (!super_block_uvrd(cpi, x, &this_rate_tokenonly,
+ &this_distortion, &s, &this_sse, bsize, best_rd))
+ continue;
+ this_rate = this_rate_tokenonly +
+ cpi->intra_uv_mode_cost[cpi->common.frame_type][mode];
+ this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
+
+ if (this_rd < best_rd) {
+ mode_selected = mode;
+ best_rd = this_rd;
+ *rate = this_rate;
+ *rate_tokenonly = this_rate_tokenonly;
+ *distortion = this_distortion;
+ *skippable = s;
+ if (!x->select_tx_size)
+ swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE);
+ }
+ }
+
+ xd->mi[0]->mbmi.uv_mode = mode_selected;
+ return best_rd;
+}
+
+static int64_t rd_sbuv_dcpred(const VP9_COMP *cpi, MACROBLOCK *x,
+ int *rate, int *rate_tokenonly,
+ int64_t *distortion, int *skippable,
+ BLOCK_SIZE bsize) {
+ const VP9_COMMON *cm = &cpi->common;
+ int64_t unused;
+
+ x->e_mbd.mi[0]->mbmi.uv_mode = DC_PRED;
+ memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+ super_block_uvrd(cpi, x, rate_tokenonly, distortion,
+ skippable, &unused, bsize, INT64_MAX);
+ *rate = *rate_tokenonly + cpi->intra_uv_mode_cost[cm->frame_type][DC_PRED];
+ return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
+}
+
+static void choose_intra_uv_mode(VP9_COMP *cpi, MACROBLOCK *const x,
+ PICK_MODE_CONTEXT *ctx,
+ BLOCK_SIZE bsize, TX_SIZE max_tx_size,
+ int *rate_uv, int *rate_uv_tokenonly,
+ int64_t *dist_uv, int *skip_uv,
+ PREDICTION_MODE *mode_uv) {
+ // Use an estimated rd for uv_intra based on DC_PRED if the
+ // appropriate speed flag is set.
+ if (cpi->sf.use_uv_intra_rd_estimate) {
+ rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv,
+ skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
+ // Else do a proper rd search for each possible transform size that may
+ // be considered in the main rd loop.
+ } else {
+ rd_pick_intra_sbuv_mode(cpi, x, ctx,
+ rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
+ bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size);
+ }
+ *mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode;
+}
+
+static int cost_mv_ref(const VP9_COMP *cpi, PREDICTION_MODE mode,
+ int mode_context) {
+ assert(is_inter_mode(mode));
+ return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
+}
+
+static int set_and_cost_bmi_mvs(VP9_COMP *cpi, MACROBLOCKD *xd, int i,
+ PREDICTION_MODE mode, int_mv this_mv[2],
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
+ int_mv seg_mvs[MAX_REF_FRAMES],
+ int_mv *best_ref_mv[2], const int *mvjcost,
+ int *mvcost[2]) {
+ MODE_INFO *const mic = xd->mi[0];
+ const MB_MODE_INFO *const mbmi = &mic->mbmi;
+ int thismvcost = 0;
+ int idx, idy;
+ const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
+ const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
+ const int is_compound = has_second_ref(mbmi);
+
+ switch (mode) {
+ case NEWMV:
+ this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
+ thismvcost += vp9_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
+ mvjcost, mvcost, MV_COST_WEIGHT_SUB);
+ if (is_compound) {
+ this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
+ thismvcost += vp9_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
+ mvjcost, mvcost, MV_COST_WEIGHT_SUB);
+ }
+ break;
+ case NEARMV:
+ case NEARESTMV:
+ this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
+ if (is_compound)
+ this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
+ break;
+ case ZEROMV:
+ this_mv[0].as_int = 0;
+ if (is_compound)
+ this_mv[1].as_int = 0;
+ break;
+ default:
+ break;
+ }
+
+ mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
+ if (is_compound)
+ mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
+
+ mic->bmi[i].as_mode = mode;
+
+ for (idy = 0; idy < num_4x4_blocks_high; ++idy)
+ for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
+ memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i]));
+
+ return cost_mv_ref(cpi, mode, mbmi->mode_context[mbmi->ref_frame[0]]) +
+ thismvcost;
+}
+
+static int64_t encode_inter_mb_segment(VP9_COMP *cpi,
+ MACROBLOCK *x,
+ int64_t best_yrd,
+ int i,
+ int *labelyrate,
+ int64_t *distortion, int64_t *sse,
+ ENTROPY_CONTEXT *ta,
+ ENTROPY_CONTEXT *tl,
+ int mi_row, int mi_col) {
+ int k;
+ MACROBLOCKD *xd = &x->e_mbd;
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ struct macroblock_plane *const p = &x->plane[0];
+ MODE_INFO *const mi = xd->mi[0];
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
+ const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize];
+ int idx, idy;
+
+ const uint8_t *const src =
+ &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
+ uint8_t *const dst = &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i,
+ pd->dst.stride)];
+ int64_t thisdistortion = 0, thissse = 0;
+ int thisrate = 0, ref;
+ const scan_order *so = &vp9_default_scan_orders[TX_4X4];
+ const int is_compound = has_second_ref(&mi->mbmi);
+ const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
+
+ for (ref = 0; ref < 1 + is_compound; ++ref) {
+ const uint8_t *pre = &pd->pre[ref].buf[vp9_raster_block_offset(BLOCK_8X8, i,
+ pd->pre[ref].stride)];
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_build_inter_predictor(pre, pd->pre[ref].stride,
+ dst, pd->dst.stride,
+ &mi->bmi[i].as_mv[ref].as_mv,
+ &xd->block_refs[ref]->sf, width, height,
+ ref, kernel, MV_PRECISION_Q3,
+ mi_col * MI_SIZE + 4 * (i % 2),
+ mi_row * MI_SIZE + 4 * (i / 2), xd->bd);
+ } else {
+ vp9_build_inter_predictor(pre, pd->pre[ref].stride,
+ dst, pd->dst.stride,
+ &mi->bmi[i].as_mv[ref].as_mv,
+ &xd->block_refs[ref]->sf, width, height, ref,
+ kernel, MV_PRECISION_Q3,
+ mi_col * MI_SIZE + 4 * (i % 2),
+ mi_row * MI_SIZE + 4 * (i / 2));
+ }
+#else
+ vp9_build_inter_predictor(pre, pd->pre[ref].stride,
+ dst, pd->dst.stride,
+ &mi->bmi[i].as_mv[ref].as_mv,
+ &xd->block_refs[ref]->sf, width, height, ref,
+ kernel, MV_PRECISION_Q3,
+ mi_col * MI_SIZE + 4 * (i % 2),
+ mi_row * MI_SIZE + 4 * (i / 2));
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_subtract_block(
+ height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
+ 8, src, p->src.stride, dst, pd->dst.stride, xd->bd);
+ } else {
+ vp9_subtract_block(
+ height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
+ 8, src, p->src.stride, dst, pd->dst.stride);
+ }
+#else
+ vp9_subtract_block(height, width,
+ vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
+ 8, src, p->src.stride, dst, pd->dst.stride);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ k = i;
+ for (idy = 0; idy < height / 4; ++idy) {
+ for (idx = 0; idx < width / 4; ++idx) {
+ int64_t ssz, rd, rd1, rd2;
+ tran_low_t* coeff;
+
+ k += (idy * 2 + idx);
+ coeff = BLOCK_OFFSET(p->coeff, k);
+ x->fwd_txm4x4(vp9_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff),
+ coeff, 8);
+ vp9_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan);
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ thisdistortion += vp9_highbd_block_error(coeff,
+ BLOCK_OFFSET(pd->dqcoeff, k),
+ 16, &ssz, xd->bd);
+ } else {
+ thisdistortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k),
+ 16, &ssz);
+ }
+#else
+ thisdistortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k),
+ 16, &ssz);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ thissse += ssz;
+ thisrate += cost_coeffs(x, 0, k, ta + (k & 1), tl + (k >> 1), TX_4X4,
+ so->scan, so->neighbors,
+ cpi->sf.use_fast_coef_costing);
+ rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
+ rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
+ rd = MIN(rd1, rd2);
+ if (rd >= best_yrd)
+ return INT64_MAX;
+ }
+ }
+
+ *distortion = thisdistortion >> 2;
+ *labelyrate = thisrate;
+ *sse = thissse >> 2;
+
+ return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
+}
+
+typedef struct {
+ int eobs;
+ int brate;
+ int byrate;
+ int64_t bdist;
+ int64_t bsse;
+ int64_t brdcost;
+ int_mv mvs[2];
+ ENTROPY_CONTEXT ta[2];
+ ENTROPY_CONTEXT tl[2];
+} SEG_RDSTAT;
+
+typedef struct {
+ int_mv *ref_mv[2];
+ int_mv mvp;
+
+ int64_t segment_rd;
+ int r;
+ int64_t d;
+ int64_t sse;
+ int segment_yrate;
+ PREDICTION_MODE modes[4];
+ SEG_RDSTAT rdstat[4][INTER_MODES];
+ int mvthresh;
+} BEST_SEG_INFO;
+
+static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) {
+ return (mv->row >> 3) < x->mv_row_min ||
+ (mv->row >> 3) > x->mv_row_max ||
+ (mv->col >> 3) < x->mv_col_min ||
+ (mv->col >> 3) > x->mv_col_max;
+}
+
+static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
+ MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
+ struct macroblock_plane *const p = &x->plane[0];
+ struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
+
+ p->src.buf = &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i,
+ p->src.stride)];
+ assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
+ pd->pre[0].buf = &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8, i,
+ pd->pre[0].stride)];
+ if (has_second_ref(mbmi))
+ pd->pre[1].buf = &pd->pre[1].buf[vp9_raster_block_offset(BLOCK_8X8, i,
+ pd->pre[1].stride)];
+}
+
+static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
+ struct buf_2d orig_pre[2]) {
+ MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
+ x->plane[0].src = orig_src;
+ x->e_mbd.plane[0].pre[0] = orig_pre[0];
+ if (has_second_ref(mbmi))
+ x->e_mbd.plane[0].pre[1] = orig_pre[1];
+}
+
+static INLINE int mv_has_subpel(const MV *mv) {
+ return (mv->row & 0x0F) || (mv->col & 0x0F);
+}
+
+// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
+// TODO(aconverse): Find out if this is still productive then clean up or remove
+static int check_best_zero_mv(
+ const VP9_COMP *cpi, const uint8_t mode_context[MAX_REF_FRAMES],
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int this_mode,
+ const MV_REFERENCE_FRAME ref_frames[2]) {
+ if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
+ frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
+ (ref_frames[1] == NONE ||
+ frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
+ int rfc = mode_context[ref_frames[0]];
+ int c1 = cost_mv_ref(cpi, NEARMV, rfc);
+ int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
+ int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
+
+ if (this_mode == NEARMV) {
+ if (c1 > c3) return 0;
+ } else if (this_mode == NEARESTMV) {
+ if (c2 > c3) return 0;
+ } else {
+ assert(this_mode == ZEROMV);
+ if (ref_frames[1] == NONE) {
+ if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
+ (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
+ return 0;
+ } else {
+ if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
+ frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
+ (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
+ frame_mv[NEARMV][ref_frames[1]].as_int == 0))
+ return 0;
+ }
+ }
+ }
+ return 1;
+}
+
+static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize,
+ int_mv *frame_mv,
+ int mi_row, int mi_col,
+ int_mv single_newmv[MAX_REF_FRAMES],
+ int *rate_mv) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
+ const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ const int refs[2] = {mbmi->ref_frame[0],
+ mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]};
+ int_mv ref_mv[2];
+ int ite, ref;
+ const InterpKernel *kernel = vp9_get_interp_kernel(mbmi->interp_filter);
+ struct scale_factors sf;
+
+ // Do joint motion search in compound mode to get more accurate mv.
+ struct buf_2d backup_yv12[2][MAX_MB_PLANE];
+ int last_besterr[2] = {INT_MAX, INT_MAX};
+ const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
+ vp9_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]),
+ vp9_get_scaled_ref_frame(cpi, mbmi->ref_frame[1])
+ };
+
+ // Prediction buffer from second frame.
+#if CONFIG_VP9_HIGHBITDEPTH
+ DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]);
+ uint8_t *second_pred;
+#else
+ DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ for (ref = 0; ref < 2; ++ref) {
+ ref_mv[ref] = mbmi->ref_mvs[refs[ref]][0];
+
+ if (scaled_ref_frame[ref]) {
+ int i;
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // motion search code to be used without additional modifications.
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ backup_yv12[ref][i] = xd->plane[i].pre[ref];
+ vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
+ NULL);
+ }
+
+ frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
+ }
+
+ // Since we have scaled the reference frames to match the size of the current
+ // frame we must use a unit scaling factor during mode selection.
+#if CONFIG_VP9_HIGHBITDEPTH
+ vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height,
+ cm->width, cm->height,
+ cm->use_highbitdepth);
+#else
+ vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height,
+ cm->width, cm->height);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ // Allow joint search multiple times iteratively for each reference frame
+ // and break out of the search loop if it couldn't find a better mv.
+ for (ite = 0; ite < 4; ite++) {
+ struct buf_2d ref_yv12[2];
+ int bestsme = INT_MAX;
+ int sadpb = x->sadperbit16;
+ MV tmp_mv;
+ int search_range = 3;
+
+ int tmp_col_min = x->mv_col_min;
+ int tmp_col_max = x->mv_col_max;
+ int tmp_row_min = x->mv_row_min;
+ int tmp_row_max = x->mv_row_max;
+ int id = ite % 2; // Even iterations search in the first reference frame,
+ // odd iterations search in the second. The predictor
+ // found for the 'other' reference frame is factored in.
+
+ // Initialized here because of compiler problem in Visual Studio.
+ ref_yv12[0] = xd->plane[0].pre[0];
+ ref_yv12[1] = xd->plane[0].pre[1];
+
+ // Get the prediction block from the 'other' reference frame.
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
+ vp9_highbd_build_inter_predictor(ref_yv12[!id].buf,
+ ref_yv12[!id].stride,
+ second_pred, pw,
+ &frame_mv[refs[!id]].as_mv,
+ &sf, pw, ph, 0,
+ kernel, MV_PRECISION_Q3,
+ mi_col * MI_SIZE, mi_row * MI_SIZE,
+ xd->bd);
+ } else {
+ second_pred = (uint8_t *)second_pred_alloc_16;
+ vp9_build_inter_predictor(ref_yv12[!id].buf,
+ ref_yv12[!id].stride,
+ second_pred, pw,
+ &frame_mv[refs[!id]].as_mv,
+ &sf, pw, ph, 0,
+ kernel, MV_PRECISION_Q3,
+ mi_col * MI_SIZE, mi_row * MI_SIZE);
+ }
+#else
+ vp9_build_inter_predictor(ref_yv12[!id].buf,
+ ref_yv12[!id].stride,
+ second_pred, pw,
+ &frame_mv[refs[!id]].as_mv,
+ &sf, pw, ph, 0,
+ kernel, MV_PRECISION_Q3,
+ mi_col * MI_SIZE, mi_row * MI_SIZE);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ // Do compound motion search on the current reference frame.
+ if (id)
+ xd->plane[0].pre[0] = ref_yv12[id];
+ vp9_set_mv_search_range(x, &ref_mv[id].as_mv);
+
+ // Use the mv result from the single mode as mv predictor.
+ tmp_mv = frame_mv[refs[id]].as_mv;
+
+ tmp_mv.col >>= 3;
+ tmp_mv.row >>= 3;
+
+ // Small-range full-pixel motion search.
+ bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb,
+ search_range,
+ &cpi->fn_ptr[bsize],
+ &ref_mv[id].as_mv, second_pred);
+ if (bestsme < INT_MAX)
+ bestsme = vp9_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv,
+ second_pred, &cpi->fn_ptr[bsize], 1);
+
+ x->mv_col_min = tmp_col_min;
+ x->mv_col_max = tmp_col_max;
+ x->mv_row_min = tmp_row_min;
+ x->mv_row_max = tmp_row_max;
+
+ if (bestsme < INT_MAX) {
+ int dis; /* TODO: use dis in distortion calculation later. */
+ unsigned int sse;
+ bestsme = cpi->find_fractional_mv_step(
+ x, &tmp_mv,
+ &ref_mv[id].as_mv,
+ cpi->common.allow_high_precision_mv,
+ x->errorperbit,
+ &cpi->fn_ptr[bsize],
+ 0, cpi->sf.mv.subpel_iters_per_step,
+ NULL,
+ x->nmvjointcost, x->mvcost,
+ &dis, &sse, second_pred,
+ pw, ph);
+ }
+
+ // Restore the pointer to the first (possibly scaled) prediction buffer.
+ if (id)
+ xd->plane[0].pre[0] = ref_yv12[0];
+
+ if (bestsme < last_besterr[id]) {
+ frame_mv[refs[id]].as_mv = tmp_mv;
+ last_besterr[id] = bestsme;
+ } else {
+ break;
+ }
+ }
+
+ *rate_mv = 0;
+
+ for (ref = 0; ref < 2; ++ref) {
+ if (scaled_ref_frame[ref]) {
+ // Restore the prediction frame pointers to their unscaled versions.
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[ref] = backup_yv12[ref][i];
+ }
+
+ *rate_mv += vp9_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
+ &mbmi->ref_mvs[refs[ref]][0].as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+ }
+}
+
+static int64_t rd_pick_best_sub8x8_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ const TileInfo * const tile,
+ int_mv *best_ref_mv,
+ int_mv *second_best_ref_mv,
+ int64_t best_rd, int *returntotrate,
+ int *returnyrate,
+ int64_t *returndistortion,
+ int *skippable, int64_t *psse,
+ int mvthresh,
+ int_mv seg_mvs[4][MAX_REF_FRAMES],
+ BEST_SEG_INFO *bsi_buf, int filter_idx,
+ int mi_row, int mi_col) {
+ int i;
+ BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
+ MACROBLOCKD *xd = &x->e_mbd;
+ MODE_INFO *mi = xd->mi[0];
+ MB_MODE_INFO *mbmi = &mi->mbmi;
+ int mode_idx;
+ int k, br = 0, idx, idy;
+ int64_t bd = 0, block_sse = 0;
+ PREDICTION_MODE this_mode;
+ VP9_COMMON *cm = &cpi->common;
+ struct macroblock_plane *const p = &x->plane[0];
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ const int label_count = 4;
+ int64_t this_segment_rd = 0;
+ int label_mv_thresh;
+ int segmentyrate = 0;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
+ ENTROPY_CONTEXT t_above[2], t_left[2];
+ int subpelmv = 1, have_ref = 0;
+ const int has_second_rf = has_second_ref(mbmi);
+ const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize];
+
+ vp9_zero(*bsi);
+
+ bsi->segment_rd = best_rd;
+ bsi->ref_mv[0] = best_ref_mv;
+ bsi->ref_mv[1] = second_best_ref_mv;
+ bsi->mvp.as_int = best_ref_mv->as_int;
+ bsi->mvthresh = mvthresh;
+
+ for (i = 0; i < 4; i++)
+ bsi->modes[i] = ZEROMV;
+
+ memcpy(t_above, pd->above_context, sizeof(t_above));
+ memcpy(t_left, pd->left_context, sizeof(t_left));
+
+ // 64 makes this threshold really big effectively
+ // making it so that we very rarely check mvs on
+ // segments. setting this to 1 would make mv thresh
+ // roughly equal to what it is for macroblocks
+ label_mv_thresh = 1 * bsi->mvthresh / label_count;
+
+ // Segmentation method overheads
+ for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
+ for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
+ // TODO(jingning,rbultje): rewrite the rate-distortion optimization
+ // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
+ int_mv mode_mv[MB_MODE_COUNT][2];
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
+ PREDICTION_MODE mode_selected = ZEROMV;
+ int64_t best_rd = INT64_MAX;
+ const int i = idy * 2 + idx;
+ int ref;
+
+ for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+ const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
+ frame_mv[ZEROMV][frame].as_int = 0;
+ vp9_append_sub8x8_mvs_for_idx(cm, xd, tile, i, ref, mi_row, mi_col,
+ &frame_mv[NEARESTMV][frame],
+ &frame_mv[NEARMV][frame]);
+ }
+
+ // search for the best motion vector on this segment
+ for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
+ const struct buf_2d orig_src = x->plane[0].src;
+ struct buf_2d orig_pre[2];
+
+ mode_idx = INTER_OFFSET(this_mode);
+ bsi->rdstat[i][mode_idx].brdcost = INT64_MAX;
+ if (!(inter_mode_mask & (1 << this_mode)))
+ continue;
+
+ if (!check_best_zero_mv(cpi, mbmi->mode_context, frame_mv,
+ this_mode, mbmi->ref_frame))
+ continue;
+
+ memcpy(orig_pre, pd->pre, sizeof(orig_pre));
+ memcpy(bsi->rdstat[i][mode_idx].ta, t_above,
+ sizeof(bsi->rdstat[i][mode_idx].ta));
+ memcpy(bsi->rdstat[i][mode_idx].tl, t_left,
+ sizeof(bsi->rdstat[i][mode_idx].tl));
+
+ // motion search for newmv (single predictor case only)
+ if (!has_second_rf && this_mode == NEWMV &&
+ seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) {
+ MV *const new_mv = &mode_mv[NEWMV][0].as_mv;
+ int step_param = 0;
+ int thissme, bestsme = INT_MAX;
+ int sadpb = x->sadperbit4;
+ MV mvp_full;
+ int max_mv;
+ int cost_list[5];
+
+ /* Is the best so far sufficiently good that we cant justify doing
+ * and new motion search. */
+ if (best_rd < label_mv_thresh)
+ break;
+
+ if (cpi->oxcf.mode != BEST) {
+ // use previous block's result as next block's MV predictor.
+ if (i > 0) {
+ bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int;
+ if (i == 2)
+ bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int;
+ }
+ }
+ if (i == 0)
+ max_mv = x->max_mv_context[mbmi->ref_frame[0]];
+ else
+ max_mv = MAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
+
+ if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
+ // Take wtd average of the step_params based on the last frame's
+ // max mv magnitude and the best ref mvs of the current block for
+ // the given reference.
+ step_param = (vp9_init_search_range(max_mv) +
+ cpi->mv_step_param) / 2;
+ } else {
+ step_param = cpi->mv_step_param;
+ }
+
+ mvp_full.row = bsi->mvp.as_mv.row >> 3;
+ mvp_full.col = bsi->mvp.as_mv.col >> 3;
+
+ if (cpi->sf.adaptive_motion_search) {
+ mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3;
+ mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3;
+ step_param = MAX(step_param, 8);
+ }
+
+ // adjust src pointer for this block
+ mi_buf_shift(x, i);
+
+ vp9_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv);
+
+ bestsme = vp9_full_pixel_search(
+ cpi, x, bsize, &mvp_full, step_param, sadpb,
+ cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
+ &bsi->ref_mv[0]->as_mv, new_mv,
+ INT_MAX, 1);
+
+ // Should we do a full search (best quality only)
+ if (cpi->oxcf.mode == BEST) {
+ int_mv *const best_mv = &mi->bmi[i].as_mv[0];
+ /* Check if mvp_full is within the range. */
+ clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max,
+ x->mv_row_min, x->mv_row_max);
+ thissme = cpi->full_search_sad(x, &mvp_full,
+ sadpb, 16, &cpi->fn_ptr[bsize],
+ &bsi->ref_mv[0]->as_mv,
+ &best_mv->as_mv);
+ cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX;
+ if (thissme < bestsme) {
+ bestsme = thissme;
+ *new_mv = best_mv->as_mv;
+ } else {
+ // The full search result is actually worse so re-instate the
+ // previous best vector
+ best_mv->as_mv = *new_mv;
+ }
+ }
+
+ if (bestsme < INT_MAX) {
+ int distortion;
+ cpi->find_fractional_mv_step(
+ x,
+ new_mv,
+ &bsi->ref_mv[0]->as_mv,
+ cm->allow_high_precision_mv,
+ x->errorperbit, &cpi->fn_ptr[bsize],
+ cpi->sf.mv.subpel_force_stop,
+ cpi->sf.mv.subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list),
+ x->nmvjointcost, x->mvcost,
+ &distortion,
+ &x->pred_sse[mbmi->ref_frame[0]],
+ NULL, 0, 0);
+
+ // save motion search result for use in compound prediction
+ seg_mvs[i][mbmi->ref_frame[0]].as_mv = *new_mv;
+ }
+
+ if (cpi->sf.adaptive_motion_search)
+ x->pred_mv[mbmi->ref_frame[0]] = *new_mv;
+
+ // restore src pointers
+ mi_buf_restore(x, orig_src, orig_pre);
+ }
+
+ if (has_second_rf) {
+ if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV ||
+ seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV)
+ continue;
+ }
+
+ if (has_second_rf && this_mode == NEWMV &&
+ mbmi->interp_filter == EIGHTTAP) {
+ // adjust src pointers
+ mi_buf_shift(x, i);
+ if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
+ int rate_mv;
+ joint_motion_search(cpi, x, bsize, frame_mv[this_mode],
+ mi_row, mi_col, seg_mvs[i],
+ &rate_mv);
+ seg_mvs[i][mbmi->ref_frame[0]].as_int =
+ frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
+ seg_mvs[i][mbmi->ref_frame[1]].as_int =
+ frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
+ }
+ // restore src pointers
+ mi_buf_restore(x, orig_src, orig_pre);
+ }
+
+ bsi->rdstat[i][mode_idx].brate =
+ set_and_cost_bmi_mvs(cpi, xd, i, this_mode, mode_mv[this_mode],
+ frame_mv, seg_mvs[i], bsi->ref_mv,
+ x->nmvjointcost, x->mvcost);
+
+ for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+ bsi->rdstat[i][mode_idx].mvs[ref].as_int =
+ mode_mv[this_mode][ref].as_int;
+ if (num_4x4_blocks_wide > 1)
+ bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int =
+ mode_mv[this_mode][ref].as_int;
+ if (num_4x4_blocks_high > 1)
+ bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int =
+ mode_mv[this_mode][ref].as_int;
+ }
+
+ // Trap vectors that reach beyond the UMV borders
+ if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) ||
+ (has_second_rf &&
+ mv_check_bounds(x, &mode_mv[this_mode][1].as_mv)))
+ continue;
+
+ if (filter_idx > 0) {
+ BEST_SEG_INFO *ref_bsi = bsi_buf;
+ subpelmv = 0;
+ have_ref = 1;
+
+ for (ref = 0; ref < 1 + has_second_rf; ++ref) {
+ subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
+ have_ref &= mode_mv[this_mode][ref].as_int ==
+ ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
+ }
+
+ if (filter_idx > 1 && !subpelmv && !have_ref) {
+ ref_bsi = bsi_buf + 1;
+ have_ref = 1;
+ for (ref = 0; ref < 1 + has_second_rf; ++ref)
+ have_ref &= mode_mv[this_mode][ref].as_int ==
+ ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
+ }
+
+ if (!subpelmv && have_ref &&
+ ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
+ memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx],
+ sizeof(SEG_RDSTAT));
+ if (num_4x4_blocks_wide > 1)
+ bsi->rdstat[i + 1][mode_idx].eobs =
+ ref_bsi->rdstat[i + 1][mode_idx].eobs;
+ if (num_4x4_blocks_high > 1)
+ bsi->rdstat[i + 2][mode_idx].eobs =
+ ref_bsi->rdstat[i + 2][mode_idx].eobs;
+
+ if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
+ mode_selected = this_mode;
+ best_rd = bsi->rdstat[i][mode_idx].brdcost;
+ }
+ continue;
+ }
+ }
+
+ bsi->rdstat[i][mode_idx].brdcost =
+ encode_inter_mb_segment(cpi, x,
+ bsi->segment_rd - this_segment_rd, i,
+ &bsi->rdstat[i][mode_idx].byrate,
+ &bsi->rdstat[i][mode_idx].bdist,
+ &bsi->rdstat[i][mode_idx].bsse,
+ bsi->rdstat[i][mode_idx].ta,
+ bsi->rdstat[i][mode_idx].tl,
+ mi_row, mi_col);
+ if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
+ bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv,
+ bsi->rdstat[i][mode_idx].brate, 0);
+ bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate;
+ bsi->rdstat[i][mode_idx].eobs = p->eobs[i];
+ if (num_4x4_blocks_wide > 1)
+ bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1];
+ if (num_4x4_blocks_high > 1)
+ bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2];
+ }
+
+ if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
+ mode_selected = this_mode;
+ best_rd = bsi->rdstat[i][mode_idx].brdcost;
+ }
+ } /*for each 4x4 mode*/
+
+ if (best_rd == INT64_MAX) {
+ int iy, midx;
+ for (iy = i + 1; iy < 4; ++iy)
+ for (midx = 0; midx < INTER_MODES; ++midx)
+ bsi->rdstat[iy][midx].brdcost = INT64_MAX;
+ bsi->segment_rd = INT64_MAX;
+ return INT64_MAX;
+ }
+
+ mode_idx = INTER_OFFSET(mode_selected);
+ memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above));
+ memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left));
+
+ set_and_cost_bmi_mvs(cpi, xd, i, mode_selected, mode_mv[mode_selected],
+ frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost,
+ x->mvcost);
+
+ br += bsi->rdstat[i][mode_idx].brate;
+ bd += bsi->rdstat[i][mode_idx].bdist;
+ block_sse += bsi->rdstat[i][mode_idx].bsse;
+ segmentyrate += bsi->rdstat[i][mode_idx].byrate;
+ this_segment_rd += bsi->rdstat[i][mode_idx].brdcost;
+
+ if (this_segment_rd > bsi->segment_rd) {
+ int iy, midx;
+ for (iy = i + 1; iy < 4; ++iy)
+ for (midx = 0; midx < INTER_MODES; ++midx)
+ bsi->rdstat[iy][midx].brdcost = INT64_MAX;
+ bsi->segment_rd = INT64_MAX;
+ return INT64_MAX;
+ }
+ }
+ } /* for each label */
+
+ bsi->r = br;
+ bsi->d = bd;
+ bsi->segment_yrate = segmentyrate;
+ bsi->segment_rd = this_segment_rd;
+ bsi->sse = block_sse;
+
+ // update the coding decisions
+ for (k = 0; k < 4; ++k)
+ bsi->modes[k] = mi->bmi[k].as_mode;
+
+ if (bsi->segment_rd > best_rd)
+ return INT64_MAX;
+ /* set it to the best */
+ for (i = 0; i < 4; i++) {
+ mode_idx = INTER_OFFSET(bsi->modes[i]);
+ mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int;
+ if (has_second_ref(mbmi))
+ mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int;
+ x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs;
+ mi->bmi[i].as_mode = bsi->modes[i];
+ }
+
+ /*
+ * used to set mbmi->mv.as_int
+ */
+ *returntotrate = bsi->r;
+ *returndistortion = bsi->d;
+ *returnyrate = bsi->segment_yrate;
+ *skippable = vp9_is_skippable_in_plane(x, BLOCK_8X8, 0);
+ *psse = bsi->sse;
+ mbmi->mode = bsi->modes[3];
+
+ return bsi->segment_rd;
+}
+
+static void estimate_ref_frame_costs(const VP9_COMMON *cm,
+ const MACROBLOCKD *xd,
+ int segment_id,
+ unsigned int *ref_costs_single,
+ unsigned int *ref_costs_comp,
+ vp9_prob *comp_mode_p) {
+ int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id,
+ SEG_LVL_REF_FRAME);
+ if (seg_ref_active) {
+ memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
+ memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
+ *comp_mode_p = 128;
+ } else {
+ vp9_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
+ vp9_prob comp_inter_p = 128;
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ comp_inter_p = vp9_get_reference_mode_prob(cm, xd);
+ *comp_mode_p = comp_inter_p;
+ } else {
+ *comp_mode_p = 128;
+ }
+
+ ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
+
+ if (cm->reference_mode != COMPOUND_REFERENCE) {
+ vp9_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
+ vp9_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
+ unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ base_cost += vp9_cost_bit(comp_inter_p, 0);
+
+ ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] =
+ ref_costs_single[ALTREF_FRAME] = base_cost;
+ ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
+ ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
+ ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
+ ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
+ ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
+ } else {
+ ref_costs_single[LAST_FRAME] = 512;
+ ref_costs_single[GOLDEN_FRAME] = 512;
+ ref_costs_single[ALTREF_FRAME] = 512;
+ }
+ if (cm->reference_mode != SINGLE_REFERENCE) {
+ vp9_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd);
+ unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ base_cost += vp9_cost_bit(comp_inter_p, 1);
+
+ ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0);
+ ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1);
+ } else {
+ ref_costs_comp[LAST_FRAME] = 512;
+ ref_costs_comp[GOLDEN_FRAME] = 512;
+ }
+ }
+}
+
+static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
+ int mode_index,
+ int64_t comp_pred_diff[REFERENCE_MODES],
+ const int64_t tx_size_diff[TX_MODES],
+ int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS],
+ int skippable) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ // Take a snapshot of the coding context so it can be
+ // restored if we decide to encode this way
+ ctx->skip = x->skip;
+ ctx->skippable = skippable;
+ ctx->best_mode_index = mode_index;
+ ctx->mic = *xd->mi[0];
+ ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
+ ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
+ ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
+
+ memcpy(ctx->tx_rd_diff, tx_size_diff, sizeof(ctx->tx_rd_diff));
+ memcpy(ctx->best_filter_diff, best_filter_diff,
+ sizeof(*best_filter_diff) * SWITCHABLE_FILTER_CONTEXTS);
+}
+
+static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
+ const TileInfo *const tile,
+ MV_REFERENCE_FRAME ref_frame,
+ BLOCK_SIZE block_size,
+ int mi_row, int mi_col,
+ int_mv frame_nearest_mv[MAX_REF_FRAMES],
+ int_mv frame_near_mv[MAX_REF_FRAMES],
+ struct buf_2d yv12_mb[4][MAX_MB_PLANE]) {
+ const VP9_COMMON *cm = &cpi->common;
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MODE_INFO *const mi = xd->mi[0];
+ int_mv *const candidates = mi->mbmi.ref_mvs[ref_frame];
+ const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
+
+ assert(yv12 != NULL);
+
+ // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
+ // use the UV scaling factors.
+ vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
+
+ // Gets an initial list of candidate vectors from neighbours and orders them
+ vp9_find_mv_refs(cm, xd, tile, mi, ref_frame, candidates, mi_row, mi_col,
+ NULL, NULL);
+
+ // Candidate refinement carried out at encoder and decoder
+ vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
+ &frame_nearest_mv[ref_frame],
+ &frame_near_mv[ref_frame]);
+
+ // Further refinement that is encode side only to test the top few candidates
+ // in full and choose the best as the centre point for subsequent searches.
+ // The current implementation doesn't support scaling.
+ if (!vp9_is_scaled(sf) && block_size >= BLOCK_8X8)
+ vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
+ ref_frame, block_size);
+}
+
+static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize,
+ int mi_row, int mi_col,
+ int_mv *tmp_mv, int *rate_mv) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ const VP9_COMMON *cm = &cpi->common;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
+ int bestsme = INT_MAX;
+ int step_param;
+ int sadpb = x->sadperbit16;
+ MV mvp_full;
+ int ref = mbmi->ref_frame[0];
+ MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
+
+ int tmp_col_min = x->mv_col_min;
+ int tmp_col_max = x->mv_col_max;
+ int tmp_row_min = x->mv_row_min;
+ int tmp_row_max = x->mv_row_max;
+ int cost_list[5];
+
+ const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
+ ref);
+
+ MV pred_mv[3];
+ pred_mv[0] = mbmi->ref_mvs[ref][0].as_mv;
+ pred_mv[1] = mbmi->ref_mvs[ref][1].as_mv;
+ pred_mv[2] = x->pred_mv[ref];
+
+ if (scaled_ref_frame) {
+ int i;
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // motion search code to be used without additional modifications.
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ backup_yv12[i] = xd->plane[i].pre[0];
+
+ vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
+ }
+
+ vp9_set_mv_search_range(x, &ref_mv);
+
+ // Work out the size of the first step in the mv step search.
+ // 0 here is maximum length first step. 1 is MAX >> 1 etc.
+ if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
+ // Take wtd average of the step_params based on the last frame's
+ // max mv magnitude and that based on the best ref mvs of the current
+ // block for the given reference.
+ step_param = (vp9_init_search_range(x->max_mv_context[ref]) +
+ cpi->mv_step_param) / 2;
+ } else {
+ step_param = cpi->mv_step_param;
+ }
+
+ if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) {
+ int boffset = 2 * (b_width_log2_lookup[BLOCK_64X64] -
+ MIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
+ step_param = MAX(step_param, boffset);
+ }
+
+ if (cpi->sf.adaptive_motion_search) {
+ int bwl = b_width_log2_lookup[bsize];
+ int bhl = b_height_log2_lookup[bsize];
+ int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
+
+ if (tlevel < 5)
+ step_param += 2;
+
+ // prev_mv_sad is not setup for dynamically scaled frames.
+ if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
+ int i;
+ for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
+ if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
+ x->pred_mv[ref].row = 0;
+ x->pred_mv[ref].col = 0;
+ tmp_mv->as_int = INVALID_MV;
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; ++i)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+ return;
+ }
+ }
+ }
+ }
+
+ mvp_full = pred_mv[x->mv_best_ref_index[ref]];
+
+ mvp_full.col >>= 3;
+ mvp_full.row >>= 3;
+
+ bestsme = vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
+ cond_cost_list(cpi, cost_list),
+ &ref_mv, &tmp_mv->as_mv, INT_MAX, 1);
+
+ x->mv_col_min = tmp_col_min;
+ x->mv_col_max = tmp_col_max;
+ x->mv_row_min = tmp_row_min;
+ x->mv_row_max = tmp_row_max;
+
+ if (bestsme < INT_MAX) {
+ int dis; /* TODO: use dis in distortion calculation later. */
+ cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
+ cm->allow_high_precision_mv,
+ x->errorperbit,
+ &cpi->fn_ptr[bsize],
+ cpi->sf.mv.subpel_force_stop,
+ cpi->sf.mv.subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list),
+ x->nmvjointcost, x->mvcost,
+ &dis, &x->pred_sse[ref], NULL, 0, 0);
+ }
+ *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+
+ if (cpi->sf.adaptive_motion_search)
+ x->pred_mv[ref] = tmp_mv->as_mv;
+
+ if (scaled_ref_frame) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ xd->plane[i].pre[0] = backup_yv12[i];
+ }
+}
+
+
+
+static INLINE void restore_dst_buf(MACROBLOCKD *xd,
+ uint8_t *orig_dst[MAX_MB_PLANE],
+ int orig_dst_stride[MAX_MB_PLANE]) {
+ int i;
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = orig_dst[i];
+ xd->plane[i].dst.stride = orig_dst_stride[i];
+ }
+}
+
+// In some situations we want to discount tha pparent cost of a new motion
+// vector. Where there is a subtle motion field and especially where there is
+// low spatial complexity then it can be hard to cover the cost of a new motion
+// vector in a single block, even if that motion vector reduces distortion.
+// However, once established that vector may be usable through the nearest and
+// near mv modes to reduce distortion in subsequent blocks and also improve
+// visual quality.
+static int discount_newmv_test(const VP9_COMP *cpi,
+ int this_mode,
+ int_mv this_mv,
+ int_mv (*mode_mv)[MAX_REF_FRAMES],
+ int ref_frame) {
+ return (!cpi->rc.is_src_frame_alt_ref &&
+ (this_mode == NEWMV) &&
+ (this_mv.as_int != 0) &&
+ ((mode_mv[NEARESTMV][ref_frame].as_int == 0) ||
+ (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) &&
+ ((mode_mv[NEARMV][ref_frame].as_int == 0) ||
+ (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV)));
+}
+
+static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize,
+ int64_t txfm_cache[],
+ int *rate2, int64_t *distortion,
+ int *skippable,
+ int *rate_y, int *rate_uv,
+ int *disable_skip,
+ int_mv (*mode_mv)[MAX_REF_FRAMES],
+ int mi_row, int mi_col,
+ int_mv single_newmv[MAX_REF_FRAMES],
+ INTERP_FILTER (*single_filter)[MAX_REF_FRAMES],
+ int (*single_skippable)[MAX_REF_FRAMES],
+ int64_t *psse,
+ const int64_t ref_best_rd,
+ int64_t *mask_filter,
+ int64_t filter_cache[]) {
+ VP9_COMMON *cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ const int is_comp_pred = has_second_ref(mbmi);
+ const int this_mode = mbmi->mode;
+ int_mv *frame_mv = mode_mv[this_mode];
+ int i;
+ int refs[2] = { mbmi->ref_frame[0],
+ (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
+ int_mv cur_mv[2];
+#if CONFIG_VP9_HIGHBITDEPTH
+ DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]);
+ uint8_t *tmp_buf;
+#else
+ DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ int pred_exists = 0;
+ int intpel_mv;
+ int64_t rd, tmp_rd, best_rd = INT64_MAX;
+ int best_needs_copy = 0;
+ uint8_t *orig_dst[MAX_MB_PLANE];
+ int orig_dst_stride[MAX_MB_PLANE];
+ int rs = 0;
+ INTERP_FILTER best_filter = SWITCHABLE;
+ uint8_t skip_txfm[MAX_MB_PLANE << 2] = {0};
+ int64_t bsse[MAX_MB_PLANE << 2] = {0};
+
+ int bsl = mi_width_log2_lookup[bsize];
+ int pred_filter_search = cpi->sf.cb_pred_filter_search ?
+ (((mi_row + mi_col) >> bsl) +
+ get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
+
+ int skip_txfm_sb = 0;
+ int64_t skip_sse_sb = INT64_MAX;
+ int64_t distortion_y = 0, distortion_uv = 0;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16);
+ } else {
+ tmp_buf = (uint8_t *)tmp_buf16;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ if (pred_filter_search) {
+ INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE;
+ if (xd->up_available)
+ af = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
+ if (xd->left_available)
+ lf = xd->mi[-1]->mbmi.interp_filter;
+
+ if ((this_mode != NEWMV) || (af == lf))
+ best_filter = af;
+ }
+
+ if (is_comp_pred) {
+ if (frame_mv[refs[0]].as_int == INVALID_MV ||
+ frame_mv[refs[1]].as_int == INVALID_MV)
+ return INT64_MAX;
+
+ if (cpi->sf.adaptive_mode_search) {
+ if (single_filter[this_mode][refs[0]] ==
+ single_filter[this_mode][refs[1]])
+ best_filter = single_filter[this_mode][refs[0]];
+ }
+ }
+
+ if (this_mode == NEWMV) {
+ int rate_mv;
+ if (is_comp_pred) {
+ // Initialize mv using single prediction mode result.
+ frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
+ frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
+
+ if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
+ joint_motion_search(cpi, x, bsize, frame_mv,
+ mi_row, mi_col, single_newmv, &rate_mv);
+ } else {
+ rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv,
+ &mbmi->ref_mvs[refs[0]][0].as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+ rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv,
+ &mbmi->ref_mvs[refs[1]][0].as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+ }
+ *rate2 += rate_mv;
+ } else {
+ int_mv tmp_mv;
+ single_motion_search(cpi, x, bsize, mi_row, mi_col,
+ &tmp_mv, &rate_mv);
+ if (tmp_mv.as_int == INVALID_MV)
+ return INT64_MAX;
+
+ frame_mv[refs[0]].as_int =
+ xd->mi[0]->bmi[0].as_mv[0].as_int = tmp_mv.as_int;
+ single_newmv[refs[0]].as_int = tmp_mv.as_int;
+
+ // Estimate the rate implications of a new mv but discount this
+ // under certain circumstances where we want to help initiate a weak
+ // motion field, where the distortion gain for a single block may not
+ // be enough to overcome the cost of a new mv.
+ if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) {
+ *rate2 += MAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
+ } else {
+ *rate2 += rate_mv;
+ }
+ }
+ }
+
+ for (i = 0; i < is_comp_pred + 1; ++i) {
+ cur_mv[i] = frame_mv[refs[i]];
+ // Clip "next_nearest" so that it does not extend to far out of image
+ if (this_mode != NEWMV)
+ clamp_mv2(&cur_mv[i].as_mv, xd);
+
+ if (mv_check_bounds(x, &cur_mv[i].as_mv))
+ return INT64_MAX;
+ mbmi->mv[i].as_int = cur_mv[i].as_int;
+ }
+
+ // do first prediction into the destination buffer. Do the next
+ // prediction into a temporary buffer. Then keep track of which one
+ // of these currently holds the best predictor, and use the other
+ // one for future predictions. In the end, copy from tmp_buf to
+ // dst if necessary.
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ orig_dst[i] = xd->plane[i].dst.buf;
+ orig_dst_stride[i] = xd->plane[i].dst.stride;
+ }
+
+ // We don't include the cost of the second reference here, because there
+ // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
+ // words if you present them in that order, the second one is always known
+ // if the first is known.
+ //
+ // Under some circumstances we discount the cost of new mv mode to encourage
+ // initiation of a motion field.
+ if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]],
+ mode_mv, refs[0])) {
+ *rate2 += MIN(cost_mv_ref(cpi, this_mode, mbmi->mode_context[refs[0]]),
+ cost_mv_ref(cpi, NEARESTMV, mbmi->mode_context[refs[0]]));
+ } else {
+ *rate2 += cost_mv_ref(cpi, this_mode, mbmi->mode_context[refs[0]]);
+ }
+
+ if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd &&
+ mbmi->mode != NEARESTMV)
+ return INT64_MAX;
+
+ pred_exists = 0;
+ // Are all MVs integer pel for Y and UV
+ intpel_mv = !mv_has_subpel(&mbmi->mv[0].as_mv);
+ if (is_comp_pred)
+ intpel_mv &= !mv_has_subpel(&mbmi->mv[1].as_mv);
+
+ // Search for best switchable filter by checking the variance of
+ // pred error irrespective of whether the filter will be used
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ filter_cache[i] = INT64_MAX;
+
+ if (cm->interp_filter != BILINEAR) {
+ if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
+ best_filter = EIGHTTAP;
+ } else if (best_filter == SWITCHABLE) {
+ int newbest;
+ int tmp_rate_sum = 0;
+ int64_t tmp_dist_sum = 0;
+
+ for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+ int j;
+ int64_t rs_rd;
+ int tmp_skip_sb = 0;
+ int64_t tmp_skip_sse = INT64_MAX;
+
+ mbmi->interp_filter = i;
+ rs = vp9_get_switchable_rate(cpi, xd);
+ rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
+
+ if (i > 0 && intpel_mv) {
+ rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum);
+ filter_cache[i] = rd;
+ filter_cache[SWITCHABLE_FILTERS] =
+ MIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
+ if (cm->interp_filter == SWITCHABLE)
+ rd += rs_rd;
+ *mask_filter = MAX(*mask_filter, rd);
+ } else {
+ int rate_sum = 0;
+ int64_t dist_sum = 0;
+ if (i > 0 && cpi->sf.adaptive_interp_filter_search &&
+ (cpi->sf.interp_filter_search_mask & (1 << i))) {
+ rate_sum = INT_MAX;
+ dist_sum = INT64_MAX;
+ continue;
+ }
+
+ if ((cm->interp_filter == SWITCHABLE &&
+ (!i || best_needs_copy)) ||
+ (cm->interp_filter != SWITCHABLE &&
+ (cm->interp_filter == mbmi->interp_filter ||
+ (i == 0 && intpel_mv)))) {
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
+ } else {
+ for (j = 0; j < MAX_MB_PLANE; j++) {
+ xd->plane[j].dst.buf = tmp_buf + j * 64 * 64;
+ xd->plane[j].dst.stride = 64;
+ }
+ }
+ vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
+ model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum,
+ &tmp_skip_sb, &tmp_skip_sse);
+
+ rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum);
+ filter_cache[i] = rd;
+ filter_cache[SWITCHABLE_FILTERS] =
+ MIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
+ if (cm->interp_filter == SWITCHABLE)
+ rd += rs_rd;
+ *mask_filter = MAX(*mask_filter, rd);
+
+ if (i == 0 && intpel_mv) {
+ tmp_rate_sum = rate_sum;
+ tmp_dist_sum = dist_sum;
+ }
+ }
+
+ if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
+ if (rd / 2 > ref_best_rd) {
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
+ return INT64_MAX;
+ }
+ }
+ newbest = i == 0 || rd < best_rd;
+
+ if (newbest) {
+ best_rd = rd;
+ best_filter = mbmi->interp_filter;
+ if (cm->interp_filter == SWITCHABLE && i && !intpel_mv)
+ best_needs_copy = !best_needs_copy;
+ }
+
+ if ((cm->interp_filter == SWITCHABLE && newbest) ||
+ (cm->interp_filter != SWITCHABLE &&
+ cm->interp_filter == mbmi->interp_filter)) {
+ pred_exists = 1;
+ tmp_rd = best_rd;
+
+ skip_txfm_sb = tmp_skip_sb;
+ skip_sse_sb = tmp_skip_sse;
+ memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
+ memcpy(bsse, x->bsse, sizeof(bsse));
+ }
+ }
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
+ }
+ }
+ // Set the appropriate filter
+ mbmi->interp_filter = cm->interp_filter != SWITCHABLE ?
+ cm->interp_filter : best_filter;
+ rs = cm->interp_filter == SWITCHABLE ? vp9_get_switchable_rate(cpi, xd) : 0;
+
+ if (pred_exists) {
+ if (best_needs_copy) {
+ // again temporarily set the buffers to local memory to prevent a memcpy
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].dst.buf = tmp_buf + i * 64 * 64;
+ xd->plane[i].dst.stride = 64;
+ }
+ }
+ rd = tmp_rd + RDCOST(x->rdmult, x->rddiv, rs, 0);
+ } else {
+ int tmp_rate;
+ int64_t tmp_dist;
+ // Handles the special case when a filter that is not in the
+ // switchable list (ex. bilinear) is indicated at the frame level, or
+ // skip condition holds.
+ vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
+ model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist,
+ &skip_txfm_sb, &skip_sse_sb);
+ rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
+ memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
+ memcpy(bsse, x->bsse, sizeof(bsse));
+ }
+
+ if (!is_comp_pred)
+ single_filter[this_mode][refs[0]] = mbmi->interp_filter;
+
+ if (cpi->sf.adaptive_mode_search)
+ if (is_comp_pred)
+ if (single_skippable[this_mode][refs[0]] &&
+ single_skippable[this_mode][refs[1]])
+ memset(skip_txfm, 1, sizeof(skip_txfm));
+
+ if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
+ // if current pred_error modeled rd is substantially more than the best
+ // so far, do not bother doing full rd
+ if (rd / 2 > ref_best_rd) {
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
+ return INT64_MAX;
+ }
+ }
+
+ if (cm->interp_filter == SWITCHABLE)
+ *rate2 += rs;
+
+ memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm));
+ memcpy(x->bsse, bsse, sizeof(bsse));
+
+ if (!skip_txfm_sb) {
+ int skippable_y, skippable_uv;
+ int64_t sseuv = INT64_MAX;
+ int64_t rdcosty = INT64_MAX;
+
+ // Y cost and distortion
+ vp9_subtract_plane(x, bsize, 0);
+ super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse,
+ bsize, txfm_cache, ref_best_rd);
+
+ if (*rate_y == INT_MAX) {
+ *rate2 = INT_MAX;
+ *distortion = INT64_MAX;
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
+ return INT64_MAX;
+ }
+
+ *rate2 += *rate_y;
+ *distortion += distortion_y;
+
+ rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
+ rdcosty = MIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
+
+ if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
+ &sseuv, bsize, ref_best_rd - rdcosty)) {
+ *rate2 = INT_MAX;
+ *distortion = INT64_MAX;
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
+ return INT64_MAX;
+ }
+
+ *psse += sseuv;
+ *rate2 += *rate_uv;
+ *distortion += distortion_uv;
+ *skippable = skippable_y && skippable_uv;
+ } else {
+ x->skip = 1;
+ *disable_skip = 1;
+
+ // The cost of skip bit needs to be added.
+ *rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+
+ *distortion = skip_sse_sb;
+ }
+
+ if (!is_comp_pred)
+ single_skippable[this_mode][refs[0]] = *skippable;
+
+ restore_dst_buf(xd, orig_dst, orig_dst_stride);
+ return 0; // The rate-distortion cost will be re-calculated by caller.
+}
+
+void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
+ RD_COST *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblockd_plane *const pd = xd->plane;
+ int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
+ int y_skip = 0, uv_skip = 0;
+ int64_t dist_y = 0, dist_uv = 0, tx_cache[TX_MODES] = { 0 };
+ TX_SIZE max_uv_tx_size;
+ x->skip_encode = 0;
+ ctx->skip = 0;
+ xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
+ xd->mi[0]->mbmi.ref_frame[1] = NONE;
+
+ if (bsize >= BLOCK_8X8) {
+ if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
+ &dist_y, &y_skip, bsize, tx_cache,
+ best_rd) >= best_rd) {
+ rd_cost->rate = INT_MAX;
+ return;
+ }
+ } else {
+ y_skip = 0;
+ if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
+ &dist_y, best_rd) >= best_rd) {
+ rd_cost->rate = INT_MAX;
+ return;
+ }
+ }
+ max_uv_tx_size = get_uv_tx_size_impl(xd->mi[0]->mbmi.tx_size, bsize,
+ pd[1].subsampling_x,
+ pd[1].subsampling_y);
+ rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly,
+ &dist_uv, &uv_skip, MAX(BLOCK_8X8, bsize),
+ max_uv_tx_size);
+
+ if (y_skip && uv_skip) {
+ rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
+ vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+ rd_cost->dist = dist_y + dist_uv;
+ vp9_zero(ctx->tx_rd_diff);
+ } else {
+ int i;
+ rd_cost->rate = rate_y + rate_uv +
+ vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
+ rd_cost->dist = dist_y + dist_uv;
+ if (cpi->sf.tx_size_search_method == USE_FULL_RD)
+ for (i = 0; i < TX_MODES; i++) {
+ if (tx_cache[i] < INT64_MAX && tx_cache[cm->tx_mode] < INT64_MAX)
+ ctx->tx_rd_diff[i] = tx_cache[i] - tx_cache[cm->tx_mode];
+ else
+ ctx->tx_rd_diff[i] = 0;
+ }
+ }
+
+ ctx->mic = *xd->mi[0];
+ rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
+}
+
+// This function is designed to apply a bias or adjustment to an rd value based
+// on the relative variance of the source and reconstruction.
+#define LOW_VAR_THRESH 16
+#define VLOW_ADJ_MAX 25
+#define VHIGH_ADJ_MAX 8
+static void rd_variance_adjustment(VP9_COMP *cpi,
+ MACROBLOCK *x,
+ BLOCK_SIZE bsize,
+ int64_t *this_rd,
+ MV_REFERENCE_FRAME ref_frame,
+ unsigned int source_variance) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ unsigned int recon_variance;
+ unsigned int absvar_diff = 0;
+ int64_t var_error = 0;
+ int64_t var_factor = 0;
+
+ if (*this_rd == INT64_MAX)
+ return;
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ recon_variance =
+ vp9_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize, xd->bd);
+ } else {
+ recon_variance =
+ vp9_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
+ }
+#else
+ recon_variance =
+ vp9_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ if ((source_variance + recon_variance) > LOW_VAR_THRESH) {
+ absvar_diff = (source_variance > recon_variance)
+ ? (source_variance - recon_variance)
+ : (recon_variance - source_variance);
+
+ var_error = (200 * source_variance * recon_variance) /
+ ((source_variance * source_variance) +
+ (recon_variance * recon_variance));
+ var_error = 100 - var_error;
+ }
+
+ // Source variance above a threshold and ref frame is intra.
+ // This case is targeted mainly at discouraging intra modes that give rise
+ // to a predictor with a low spatial complexity compared to the source.
+ if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) &&
+ (source_variance > recon_variance)) {
+ var_factor = MIN(absvar_diff, MIN(VLOW_ADJ_MAX, var_error));
+ // A second possible case of interest is where the source variance
+ // is very low and we wish to discourage false texture or motion trails.
+ } else if ((source_variance < (LOW_VAR_THRESH >> 1)) &&
+ (recon_variance > source_variance)) {
+ var_factor = MIN(absvar_diff, MIN(VHIGH_ADJ_MAX, var_error));
+ }
+ *this_rd += (*this_rd * var_factor) / 100;
+}
+
+void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi,
+ TileDataEnc *tile_data,
+ MACROBLOCK *x,
+ int mi_row, int mi_col,
+ RD_COST *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ RD_OPT *const rd_opt = &cpi->rd;
+ SPEED_FEATURES *const sf = &cpi->sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const struct segmentation *const seg = &cm->seg;
+ PREDICTION_MODE this_mode;
+ MV_REFERENCE_FRAME ref_frame, second_ref_frame;
+ unsigned char segment_id = mbmi->segment_id;
+ int comp_pred, i, k;
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
+ struct buf_2d yv12_mb[4][MAX_MB_PLANE];
+ int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } };
+ INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES];
+ int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES];
+ static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
+ VP9_ALT_FLAG };
+ int64_t best_rd = best_rd_so_far;
+ int64_t best_tx_rd[TX_MODES];
+ int64_t best_tx_diff[TX_MODES];
+ int64_t best_pred_diff[REFERENCE_MODES];
+ int64_t best_pred_rd[REFERENCE_MODES];
+ int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
+ int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+ MB_MODE_INFO best_mbmode;
+ int best_mode_skippable = 0;
+ int midx, best_mode_index = -1;
+ unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
+ vp9_prob comp_mode_p;
+ int64_t best_intra_rd = INT64_MAX;
+ unsigned int best_pred_sse = UINT_MAX;
+ PREDICTION_MODE best_intra_mode = DC_PRED;
+ int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
+ int64_t dist_uv[TX_SIZES];
+ int skip_uv[TX_SIZES];
+ PREDICTION_MODE mode_uv[TX_SIZES];
+ const int intra_cost_penalty = vp9_get_intra_cost_penalty(
+ cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
+ int best_skip2 = 0;
+ uint8_t ref_frame_skip_mask[2] = { 0 };
+ uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 };
+ int mode_skip_start = sf->mode_skip_start + 1;
+ const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
+ const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
+ int64_t mode_threshold[MAX_MODES];
+ int *mode_map = tile_data->mode_map[bsize];
+ const int mode_search_skip_flags = sf->mode_search_skip_flags;
+ int64_t mask_filter = 0;
+ int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
+
+ vp9_zero(best_mbmode);
+
+ x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ filter_cache[i] = INT64_MAX;
+
+ estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
+ &comp_mode_p);
+
+ for (i = 0; i < REFERENCE_MODES; ++i)
+ best_pred_rd[i] = INT64_MAX;
+ for (i = 0; i < TX_MODES; i++)
+ best_tx_rd[i] = INT64_MAX;
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+ best_filter_rd[i] = INT64_MAX;
+ for (i = 0; i < TX_SIZES; i++)
+ rate_uv_intra[i] = INT_MAX;
+ for (i = 0; i < MAX_REF_FRAMES; ++i)
+ x->pred_sse[i] = INT_MAX;
+ for (i = 0; i < MB_MODE_COUNT; ++i) {
+ for (k = 0; k < MAX_REF_FRAMES; ++k) {
+ single_inter_filter[i][k] = SWITCHABLE;
+ single_skippable[i][k] = 0;
+ }
+ }
+
+ rd_cost->rate = INT_MAX;
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ x->pred_mv_sad[ref_frame] = INT_MAX;
+ if (cpi->ref_frame_flags & flag_list[ref_frame]) {
+ assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
+ setup_buffer_inter(cpi, x, tile_info, ref_frame, bsize, mi_row, mi_col,
+ frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
+ }
+ frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
+ frame_mv[ZEROMV][ref_frame].as_int = 0;
+ }
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
+ // Skip checking missing references in both single and compound reference
+ // modes. Note that a mode will be skipped iff both reference frames
+ // are masked out.
+ ref_frame_skip_mask[0] |= (1 << ref_frame);
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ } else if (sf->reference_masking) {
+ for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
+ // Skip fixed mv modes for poor references
+ if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
+ mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
+ break;
+ }
+ }
+ }
+ // If the segment reference frame feature is enabled....
+ // then do nothing if the current ref frame is not allowed..
+ if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+ vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
+ ref_frame_skip_mask[0] |= (1 << ref_frame);
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ }
+ }
+
+ // Disable this drop out case if the ref frame
+ // segment level feature is enabled for this segment. This is to
+ // prevent the possibility that we end up unable to pick any mode.
+ if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
+ // Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
+ // unless ARNR filtering is enabled in which case we want
+ // an unfiltered alternative. We allow near/nearest as well
+ // because they may result in zero-zero MVs but be cheaper.
+ if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
+ ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << GOLDEN_FRAME);
+ ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
+ mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
+ if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0)
+ mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
+ if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0)
+ mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
+ }
+ }
+
+ if (cpi->rc.is_src_frame_alt_ref) {
+ if (sf->alt_ref_search_fp) {
+ mode_skip_mask[ALTREF_FRAME] = 0;
+ ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
+ ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
+ }
+ }
+
+ if (sf->alt_ref_search_fp)
+ if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
+ if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
+ mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
+
+ if (sf->adaptive_mode_search) {
+ if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
+ cpi->rc.frames_since_golden >= 3)
+ if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1))
+ mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
+ }
+
+ if (bsize > sf->max_intra_bsize) {
+ ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
+ ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
+ }
+
+ mode_skip_mask[INTRA_FRAME] |=
+ ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
+
+ for (i = 0; i <= LAST_NEW_MV_INDEX; ++i)
+ mode_threshold[i] = 0;
+ for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
+ mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5;
+
+ midx = sf->schedule_mode_search ? mode_skip_start : 0;
+ while (midx > 4) {
+ uint8_t end_pos = 0;
+ for (i = 5; i < midx; ++i) {
+ if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) {
+ uint8_t tmp = mode_map[i];
+ mode_map[i] = mode_map[i - 1];
+ mode_map[i - 1] = tmp;
+ end_pos = i;
+ }
+ }
+ midx = end_pos;
+ }
+
+ for (midx = 0; midx < MAX_MODES; ++midx) {
+ int mode_index = mode_map[midx];
+ int mode_excluded = 0;
+ int64_t this_rd = INT64_MAX;
+ int disable_skip = 0;
+ int compmode_cost = 0;
+ int rate2 = 0, rate_y = 0, rate_uv = 0;
+ int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
+ int skippable = 0;
+ int64_t tx_cache[TX_MODES];
+ int this_skip2 = 0;
+ int64_t total_sse = INT64_MAX;
+ int early_term = 0;
+
+ this_mode = vp9_mode_order[mode_index].mode;
+ ref_frame = vp9_mode_order[mode_index].ref_frame[0];
+ second_ref_frame = vp9_mode_order[mode_index].ref_frame[1];
+
+ // Look at the reference frame of the best mode so far and set the
+ // skip mask to look at a subset of the remaining modes.
+ if (midx == mode_skip_start && best_mode_index >= 0) {
+ switch (best_mbmode.ref_frame[0]) {
+ case INTRA_FRAME:
+ break;
+ case LAST_FRAME:
+ ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK;
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ break;
+ case GOLDEN_FRAME:
+ ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK;
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ break;
+ case ALTREF_FRAME:
+ ref_frame_skip_mask[0] |= ALT_REF_MODE_MASK;
+ break;
+ case NONE:
+ case MAX_REF_FRAMES:
+ assert(0 && "Invalid Reference frame");
+ break;
+ }
+ }
+
+ if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
+ (ref_frame_skip_mask[1] & (1 << MAX(0, second_ref_frame))))
+ continue;
+
+ if (mode_skip_mask[ref_frame] & (1 << this_mode))
+ continue;
+
+ // Test best rd so far against threshold for trying this mode.
+ if (best_mode_skippable && sf->schedule_mode_search)
+ mode_threshold[mode_index] <<= 1;
+
+ if (best_rd < mode_threshold[mode_index])
+ continue;
+
+ if (sf->motion_field_mode_search) {
+ const int mi_width = MIN(num_8x8_blocks_wide_lookup[bsize],
+ tile_info->mi_col_end - mi_col);
+ const int mi_height = MIN(num_8x8_blocks_high_lookup[bsize],
+ tile_info->mi_row_end - mi_row);
+ const int bsl = mi_width_log2_lookup[bsize];
+ int cb_partition_search_ctrl = (((mi_row + mi_col) >> bsl)
+ + get_chessboard_index(cm->current_video_frame)) & 0x1;
+ MB_MODE_INFO *ref_mbmi;
+ int const_motion = 1;
+ int skip_ref_frame = !cb_partition_search_ctrl;
+ MV_REFERENCE_FRAME rf = NONE;
+ int_mv ref_mv;
+ ref_mv.as_int = INVALID_MV;
+
+ if ((mi_row - 1) >= tile_info->mi_row_start) {
+ ref_mv = xd->mi[-xd->mi_stride]->mbmi.mv[0];
+ rf = xd->mi[-xd->mi_stride]->mbmi.ref_frame[0];
+ for (i = 0; i < mi_width; ++i) {
+ ref_mbmi = &xd->mi[-xd->mi_stride + i]->mbmi;
+ const_motion &= (ref_mv.as_int == ref_mbmi->mv[0].as_int) &&
+ (ref_frame == ref_mbmi->ref_frame[0]);
+ skip_ref_frame &= (rf == ref_mbmi->ref_frame[0]);
+ }
+ }
+
+ if ((mi_col - 1) >= tile_info->mi_col_start) {
+ if (ref_mv.as_int == INVALID_MV)
+ ref_mv = xd->mi[-1]->mbmi.mv[0];
+ if (rf == NONE)
+ rf = xd->mi[-1]->mbmi.ref_frame[0];
+ for (i = 0; i < mi_height; ++i) {
+ ref_mbmi = &xd->mi[i * xd->mi_stride - 1]->mbmi;
+ const_motion &= (ref_mv.as_int == ref_mbmi->mv[0].as_int) &&
+ (ref_frame == ref_mbmi->ref_frame[0]);
+ skip_ref_frame &= (rf == ref_mbmi->ref_frame[0]);
+ }
+ }
+
+ if (skip_ref_frame && this_mode != NEARESTMV && this_mode != NEWMV)
+ if (rf > INTRA_FRAME)
+ if (ref_frame != rf)
+ continue;
+
+ if (const_motion)
+ if (this_mode == NEARMV || this_mode == ZEROMV)
+ continue;
+ }
+
+ comp_pred = second_ref_frame > INTRA_FRAME;
+ if (comp_pred) {
+ if (!cpi->allow_comp_inter_inter)
+ continue;
+
+ // Skip compound inter modes if ARF is not available.
+ if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
+ continue;
+
+ // Do not allow compound prediction if the segment level reference frame
+ // feature is in use as in this case there can only be one reference.
+ if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
+ continue;
+
+ if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
+ best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME)
+ continue;
+
+ mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
+ } else {
+ if (ref_frame != INTRA_FRAME)
+ mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
+ }
+
+ if (ref_frame == INTRA_FRAME) {
+ if (sf->adaptive_mode_search)
+ if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse)
+ continue;
+
+ if (this_mode != DC_PRED) {
+ // Disable intra modes other than DC_PRED for blocks with low variance
+ // Threshold for intra skipping based on source variance
+ // TODO(debargha): Specialize the threshold for super block sizes
+ const unsigned int skip_intra_var_thresh = 64;
+ if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
+ x->source_variance < skip_intra_var_thresh)
+ continue;
+ // Only search the oblique modes if the best so far is
+ // one of the neighboring directional modes
+ if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
+ (this_mode >= D45_PRED && this_mode <= TM_PRED)) {
+ if (best_mode_index >= 0 &&
+ best_mbmode.ref_frame[0] > INTRA_FRAME)
+ continue;
+ }
+ if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+ if (conditional_skipintra(this_mode, best_intra_mode))
+ continue;
+ }
+ }
+ } else {
+ const MV_REFERENCE_FRAME ref_frames[2] = {ref_frame, second_ref_frame};
+ if (!check_best_zero_mv(cpi, mbmi->mode_context, frame_mv,
+ this_mode, ref_frames))
+ continue;
+ }
+
+ mbmi->mode = this_mode;
+ mbmi->uv_mode = DC_PRED;
+ mbmi->ref_frame[0] = ref_frame;
+ mbmi->ref_frame[1] = second_ref_frame;
+ // Evaluate all sub-pel filters irrespective of whether we can use
+ // them for this frame.
+ mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
+ : cm->interp_filter;
+ mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
+
+ x->skip = 0;
+ set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
+
+ // Select prediction reference frames.
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+ if (comp_pred)
+ xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
+ }
+
+ for (i = 0; i < TX_MODES; ++i)
+ tx_cache[i] = INT64_MAX;
+
+ if (ref_frame == INTRA_FRAME) {
+ TX_SIZE uv_tx;
+ struct macroblockd_plane *const pd = &xd->plane[1];
+ memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+ super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
+ NULL, bsize, tx_cache, best_rd);
+ if (rate_y == INT_MAX)
+ continue;
+
+ uv_tx = get_uv_tx_size_impl(mbmi->tx_size, bsize, pd->subsampling_x,
+ pd->subsampling_y);
+ if (rate_uv_intra[uv_tx] == INT_MAX) {
+ choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx,
+ &rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx],
+ &dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]);
+ }
+
+ rate_uv = rate_uv_tokenonly[uv_tx];
+ distortion_uv = dist_uv[uv_tx];
+ skippable = skippable && skip_uv[uv_tx];
+ mbmi->uv_mode = mode_uv[uv_tx];
+
+ rate2 = rate_y + cpi->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx];
+ if (this_mode != DC_PRED && this_mode != TM_PRED)
+ rate2 += intra_cost_penalty;
+ distortion2 = distortion_y + distortion_uv;
+ } else {
+ this_rd = handle_inter_mode(cpi, x, bsize,
+ tx_cache,
+ &rate2, &distortion2, &skippable,
+ &rate_y, &rate_uv,
+ &disable_skip, frame_mv,
+ mi_row, mi_col,
+ single_newmv, single_inter_filter,
+ single_skippable, &total_sse, best_rd,
+ &mask_filter, filter_cache);
+ if (this_rd == INT64_MAX)
+ continue;
+
+ compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ rate2 += compmode_cost;
+ }
+
+ // Estimate the reference frame signaling cost and add it
+ // to the rolling cost variable.
+ if (comp_pred) {
+ rate2 += ref_costs_comp[ref_frame];
+ } else {
+ rate2 += ref_costs_single[ref_frame];
+ }
+
+ if (!disable_skip) {
+ if (skippable) {
+ // Back out the coefficient coding costs
+ rate2 -= (rate_y + rate_uv);
+
+ // Cost the skip mb case
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+ } else if (ref_frame != INTRA_FRAME && !xd->lossless) {
+ if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
+ RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
+ // Add in the cost of the no skip flag.
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
+ } else {
+ // FIXME(rbultje) make this work for splitmv also
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+ distortion2 = total_sse;
+ assert(total_sse >= 0);
+ rate2 -= (rate_y + rate_uv);
+ this_skip2 = 1;
+ }
+ } else {
+ // Add in the cost of the no skip flag.
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
+ }
+
+ // Calculate the final RD estimate for this mode.
+ this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
+ }
+
+ // Apply an adjustment to the rd value based on the similarity of the
+ // source variance and reconstructed variance.
+ rd_variance_adjustment(cpi, x, bsize, &this_rd,
+ ref_frame, x->source_variance);
+
+ if (ref_frame == INTRA_FRAME) {
+ // Keep record of best intra rd
+ if (this_rd < best_intra_rd) {
+ best_intra_rd = this_rd;
+ best_intra_mode = mbmi->mode;
+ }
+ }
+
+ if (!disable_skip && ref_frame == INTRA_FRAME) {
+ for (i = 0; i < REFERENCE_MODES; ++i)
+ best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+ best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
+ }
+
+ // Did this mode help.. i.e. is it the new best mode
+ if (this_rd < best_rd || x->skip) {
+ int max_plane = MAX_MB_PLANE;
+ if (!mode_excluded) {
+ // Note index of best mode so far
+ best_mode_index = mode_index;
+
+ if (ref_frame == INTRA_FRAME) {
+ /* required for left and above block mv */
+ mbmi->mv[0].as_int = 0;
+ max_plane = 1;
+ } else {
+ best_pred_sse = x->pred_sse[ref_frame];
+ }
+
+ rd_cost->rate = rate2;
+ rd_cost->dist = distortion2;
+ rd_cost->rdcost = this_rd;
+ best_rd = this_rd;
+ best_mbmode = *mbmi;
+ best_skip2 = this_skip2;
+ best_mode_skippable = skippable;
+
+ if (!x->select_tx_size)
+ swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
+ memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mbmi->tx_size],
+ sizeof(uint8_t) * ctx->num_4x4_blk);
+
+ // TODO(debargha): enhance this test with a better distortion prediction
+ // based on qp, activity mask and history
+ if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
+ (mode_index > MIN_EARLY_TERM_INDEX)) {
+ int qstep = xd->plane[0].dequant[1];
+ // TODO(debargha): Enhance this by specializing for each mode_index
+ int scale = 4;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ qstep >>= (xd->bd - 8);
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ if (x->source_variance < UINT_MAX) {
+ const int var_adjust = (x->source_variance < 16);
+ scale -= var_adjust;
+ }
+ if (ref_frame > INTRA_FRAME &&
+ distortion2 * scale < qstep * qstep) {
+ early_term = 1;
+ }
+ }
+ }
+ }
+
+ /* keep record of best compound/single-only prediction */
+ if (!disable_skip && ref_frame != INTRA_FRAME) {
+ int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ single_rate = rate2 - compmode_cost;
+ hybrid_rate = rate2;
+ } else {
+ single_rate = rate2;
+ hybrid_rate = rate2 + compmode_cost;
+ }
+
+ single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
+ hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
+
+ if (!comp_pred) {
+ if (single_rd < best_pred_rd[SINGLE_REFERENCE])
+ best_pred_rd[SINGLE_REFERENCE] = single_rd;
+ } else {
+ if (single_rd < best_pred_rd[COMPOUND_REFERENCE])
+ best_pred_rd[COMPOUND_REFERENCE] = single_rd;
+ }
+ if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
+ best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
+
+ /* keep record of best filter type */
+ if (!mode_excluded && cm->interp_filter != BILINEAR) {
+ int64_t ref = filter_cache[cm->interp_filter == SWITCHABLE ?
+ SWITCHABLE_FILTERS : cm->interp_filter];
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+ int64_t adj_rd;
+ if (ref == INT64_MAX)
+ adj_rd = 0;
+ else if (filter_cache[i] == INT64_MAX)
+ // when early termination is triggered, the encoder does not have
+ // access to the rate-distortion cost. it only knows that the cost
+ // should be above the maximum valid value. hence it takes the known
+ // maximum plus an arbitrary constant as the rate-distortion cost.
+ adj_rd = mask_filter - ref + 10;
+ else
+ adj_rd = filter_cache[i] - ref;
+
+ adj_rd += this_rd;
+ best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
+ }
+ }
+ }
+
+ /* keep record of best txfm size */
+ if (bsize < BLOCK_32X32) {
+ if (bsize < BLOCK_16X16)
+ tx_cache[ALLOW_16X16] = tx_cache[ALLOW_8X8];
+
+ tx_cache[ALLOW_32X32] = tx_cache[ALLOW_16X16];
+ }
+ if (!mode_excluded && this_rd != INT64_MAX) {
+ for (i = 0; i < TX_MODES && tx_cache[i] < INT64_MAX; i++) {
+ int64_t adj_rd = INT64_MAX;
+ adj_rd = this_rd + tx_cache[i] - tx_cache[cm->tx_mode];
+
+ if (adj_rd < best_tx_rd[i])
+ best_tx_rd[i] = adj_rd;
+ }
+ }
+
+ if (early_term)
+ break;
+
+ if (x->skip && !comp_pred)
+ break;
+ }
+
+ // The inter modes' rate costs are not calculated precisely in some cases.
+ // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and
+ // ZEROMV. Here, checks are added for those cases, and the mode decisions
+ // are corrected.
+ if (best_mbmode.mode == NEWMV) {
+ const MV_REFERENCE_FRAME refs[2] = {best_mbmode.ref_frame[0],
+ best_mbmode.ref_frame[1]};
+ int comp_pred_mode = refs[1] > INTRA_FRAME;
+
+ if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
+ ((comp_pred_mode && frame_mv[NEARESTMV][refs[1]].as_int ==
+ best_mbmode.mv[1].as_int) || !comp_pred_mode))
+ best_mbmode.mode = NEARESTMV;
+ else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
+ ((comp_pred_mode && frame_mv[NEARMV][refs[1]].as_int ==
+ best_mbmode.mv[1].as_int) || !comp_pred_mode))
+ best_mbmode.mode = NEARMV;
+ else if (best_mbmode.mv[0].as_int == 0 &&
+ ((comp_pred_mode && best_mbmode.mv[1].as_int == 0) || !comp_pred_mode))
+ best_mbmode.mode = ZEROMV;
+ }
+
+ if (best_mode_index < 0 || best_rd >= best_rd_so_far) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ // If we used an estimate for the uv intra rd in the loop above...
+ if (sf->use_uv_intra_rd_estimate) {
+ // Do Intra UV best rd mode selection if best mode choice above was intra.
+ if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
+ TX_SIZE uv_tx_size;
+ *mbmi = best_mbmode;
+ uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
+ rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size],
+ &rate_uv_tokenonly[uv_tx_size],
+ &dist_uv[uv_tx_size],
+ &skip_uv[uv_tx_size],
+ bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
+ uv_tx_size);
+ }
+ }
+
+ assert((cm->interp_filter == SWITCHABLE) ||
+ (cm->interp_filter == best_mbmode.interp_filter) ||
+ !is_inter_block(&best_mbmode));
+
+ if (!cpi->rc.is_src_frame_alt_ref)
+ vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact,
+ sf->adaptive_rd_thresh, bsize, best_mode_index);
+
+ // macroblock modes
+ *mbmi = best_mbmode;
+ x->skip |= best_skip2;
+
+ for (i = 0; i < REFERENCE_MODES; ++i) {
+ if (best_pred_rd[i] == INT64_MAX)
+ best_pred_diff[i] = INT_MIN;
+ else
+ best_pred_diff[i] = best_rd - best_pred_rd[i];
+ }
+
+ if (!x->skip) {
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+ if (best_filter_rd[i] == INT64_MAX)
+ best_filter_diff[i] = 0;
+ else
+ best_filter_diff[i] = best_rd - best_filter_rd[i];
+ }
+ if (cm->interp_filter == SWITCHABLE)
+ assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
+ for (i = 0; i < TX_MODES; i++) {
+ if (best_tx_rd[i] == INT64_MAX)
+ best_tx_diff[i] = 0;
+ else
+ best_tx_diff[i] = best_rd - best_tx_rd[i];
+ }
+ } else {
+ vp9_zero(best_filter_diff);
+ vp9_zero(best_tx_diff);
+ }
+
+ // TODO(yunqingwang): Moving this line in front of the above best_filter_diff
+ // updating code causes PSNR loss. Need to figure out the confliction.
+ x->skip |= best_mode_skippable;
+
+ if (!x->skip && !x->select_tx_size) {
+ int has_high_freq_coeff = 0;
+ int plane;
+ int max_plane = is_inter_block(&xd->mi[0]->mbmi)
+ ? MAX_MB_PLANE : 1;
+ for (plane = 0; plane < max_plane; ++plane) {
+ x->plane[plane].eobs = ctx->eobs_pbuf[plane][1];
+ has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane);
+ }
+
+ for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) {
+ x->plane[plane].eobs = ctx->eobs_pbuf[plane][2];
+ has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane);
+ }
+
+ best_mode_skippable |= !has_high_freq_coeff;
+ }
+
+ assert(best_mode_index >= 0);
+
+ store_coding_context(x, ctx, best_mode_index, best_pred_diff,
+ best_tx_diff, best_filter_diff, best_mode_skippable);
+}
+
+void vp9_rd_pick_inter_mode_sb_seg_skip(VP9_COMP *cpi,
+ TileDataEnc *tile_data,
+ MACROBLOCK *x,
+ RD_COST *rd_cost,
+ BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ unsigned char segment_id = mbmi->segment_id;
+ const int comp_pred = 0;
+ int i;
+ int64_t best_tx_diff[TX_MODES];
+ int64_t best_pred_diff[REFERENCE_MODES];
+ int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+ unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
+ vp9_prob comp_mode_p;
+ INTERP_FILTER best_filter = SWITCHABLE;
+ int64_t this_rd = INT64_MAX;
+ int rate2 = 0;
+ const int64_t distortion2 = 0;
+
+ x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
+
+ estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
+ &comp_mode_p);
+
+ for (i = 0; i < MAX_REF_FRAMES; ++i)
+ x->pred_sse[i] = INT_MAX;
+ for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i)
+ x->pred_mv_sad[i] = INT_MAX;
+
+ rd_cost->rate = INT_MAX;
+
+ assert(vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
+
+ mbmi->mode = ZEROMV;
+ mbmi->uv_mode = DC_PRED;
+ mbmi->ref_frame[0] = LAST_FRAME;
+ mbmi->ref_frame[1] = NONE;
+ mbmi->mv[0].as_int = 0;
+ x->skip = 1;
+
+ if (cm->interp_filter != BILINEAR) {
+ best_filter = EIGHTTAP;
+ if (cm->interp_filter == SWITCHABLE &&
+ x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
+ int rs;
+ int best_rs = INT_MAX;
+ for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+ mbmi->interp_filter = i;
+ rs = vp9_get_switchable_rate(cpi, xd);
+ if (rs < best_rs) {
+ best_rs = rs;
+ best_filter = mbmi->interp_filter;
+ }
+ }
+ }
+ }
+ // Set the appropriate filter
+ if (cm->interp_filter == SWITCHABLE) {
+ mbmi->interp_filter = best_filter;
+ rate2 += vp9_get_switchable_rate(cpi, xd);
+ } else {
+ mbmi->interp_filter = cm->interp_filter;
+ }
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ rate2 += vp9_cost_bit(comp_mode_p, comp_pred);
+
+ // Estimate the reference frame signaling cost and add it
+ // to the rolling cost variable.
+ rate2 += ref_costs_single[LAST_FRAME];
+ this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
+
+ rd_cost->rate = rate2;
+ rd_cost->dist = distortion2;
+ rd_cost->rdcost = this_rd;
+
+ if (this_rd >= best_rd_so_far) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ assert((cm->interp_filter == SWITCHABLE) ||
+ (cm->interp_filter == mbmi->interp_filter));
+
+ vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact,
+ cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV);
+
+ vp9_zero(best_pred_diff);
+ vp9_zero(best_filter_diff);
+ vp9_zero(best_tx_diff);
+
+ if (!x->select_tx_size)
+ swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE);
+ store_coding_context(x, ctx, THR_ZEROMV,
+ best_pred_diff, best_tx_diff, best_filter_diff, 0);
+}
+
+void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi,
+ TileDataEnc *tile_data,
+ MACROBLOCK *x,
+ int mi_row, int mi_col,
+ RD_COST *rd_cost,
+ BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far) {
+ VP9_COMMON *const cm = &cpi->common;
+ TileInfo *const tile_info = &tile_data->tile_info;
+ RD_OPT *const rd_opt = &cpi->rd;
+ SPEED_FEATURES *const sf = &cpi->sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const struct segmentation *const seg = &cm->seg;
+ MV_REFERENCE_FRAME ref_frame, second_ref_frame;
+ unsigned char segment_id = mbmi->segment_id;
+ int comp_pred, i;
+ int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
+ struct buf_2d yv12_mb[4][MAX_MB_PLANE];
+ static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
+ VP9_ALT_FLAG };
+ int64_t best_rd = best_rd_so_far;
+ int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
+ static const int64_t best_tx_diff[TX_MODES] = { 0 };
+ int64_t best_pred_diff[REFERENCE_MODES];
+ int64_t best_pred_rd[REFERENCE_MODES];
+ int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
+ int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
+ MB_MODE_INFO best_mbmode;
+ int ref_index, best_ref_index = 0;
+ unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
+ vp9_prob comp_mode_p;
+ INTERP_FILTER tmp_best_filter = SWITCHABLE;
+ int rate_uv_intra, rate_uv_tokenonly;
+ int64_t dist_uv;
+ int skip_uv;
+ PREDICTION_MODE mode_uv = DC_PRED;
+ const int intra_cost_penalty = vp9_get_intra_cost_penalty(
+ cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
+ int_mv seg_mvs[4][MAX_REF_FRAMES];
+ b_mode_info best_bmodes[4];
+ int best_skip2 = 0;
+ int ref_frame_skip_mask[2] = { 0 };
+ int64_t mask_filter = 0;
+ int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
+
+ x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
+ memset(x->zcoeff_blk[TX_4X4], 0, 4);
+ vp9_zero(best_mbmode);
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ filter_cache[i] = INT64_MAX;
+
+ for (i = 0; i < 4; i++) {
+ int j;
+ for (j = 0; j < MAX_REF_FRAMES; j++)
+ seg_mvs[i][j].as_int = INVALID_MV;
+ }
+
+ estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
+ &comp_mode_p);
+
+ for (i = 0; i < REFERENCE_MODES; ++i)
+ best_pred_rd[i] = INT64_MAX;
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+ best_filter_rd[i] = INT64_MAX;
+ rate_uv_intra = INT_MAX;
+
+ rd_cost->rate = INT_MAX;
+
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
+ if (cpi->ref_frame_flags & flag_list[ref_frame]) {
+ setup_buffer_inter(cpi, x, tile_info,
+ ref_frame, bsize, mi_row, mi_col,
+ frame_mv[NEARESTMV], frame_mv[NEARMV],
+ yv12_mb);
+ } else {
+ ref_frame_skip_mask[0] |= (1 << ref_frame);
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ }
+ frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
+ frame_mv[ZEROMV][ref_frame].as_int = 0;
+ }
+
+ for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
+ int mode_excluded = 0;
+ int64_t this_rd = INT64_MAX;
+ int disable_skip = 0;
+ int compmode_cost = 0;
+ int rate2 = 0, rate_y = 0, rate_uv = 0;
+ int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
+ int skippable = 0;
+ int i;
+ int this_skip2 = 0;
+ int64_t total_sse = INT_MAX;
+ int early_term = 0;
+
+ ref_frame = vp9_ref_order[ref_index].ref_frame[0];
+ second_ref_frame = vp9_ref_order[ref_index].ref_frame[1];
+
+ // Look at the reference frame of the best mode so far and set the
+ // skip mask to look at a subset of the remaining modes.
+ if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) {
+ if (ref_index == 3) {
+ switch (best_mbmode.ref_frame[0]) {
+ case INTRA_FRAME:
+ break;
+ case LAST_FRAME:
+ ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME);
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ break;
+ case GOLDEN_FRAME:
+ ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << ALTREF_FRAME);
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ break;
+ case ALTREF_FRAME:
+ ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << LAST_FRAME);
+ break;
+ case NONE:
+ case MAX_REF_FRAMES:
+ assert(0 && "Invalid Reference frame");
+ break;
+ }
+ }
+ }
+
+ if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
+ (ref_frame_skip_mask[1] & (1 << MAX(0, second_ref_frame))))
+ continue;
+
+ // Test best rd so far against threshold for trying this mode.
+ if (rd_less_than_thresh(best_rd,
+ rd_opt->threshes[segment_id][bsize][ref_index],
+ tile_data->thresh_freq_fact[bsize][ref_index]))
+ continue;
+
+ comp_pred = second_ref_frame > INTRA_FRAME;
+ if (comp_pred) {
+ if (!cpi->allow_comp_inter_inter)
+ continue;
+ if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
+ continue;
+ // Do not allow compound prediction if the segment level reference frame
+ // feature is in use as in this case there can only be one reference.
+ if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
+ continue;
+
+ if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
+ best_mbmode.ref_frame[0] == INTRA_FRAME)
+ continue;
+ }
+
+ // TODO(jingning, jkoleszar): scaling reference frame not supported for
+ // sub8x8 blocks.
+ if (ref_frame > INTRA_FRAME &&
+ vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
+ continue;
+
+ if (second_ref_frame > INTRA_FRAME &&
+ vp9_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf))
+ continue;
+
+ if (comp_pred)
+ mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
+ else if (ref_frame != INTRA_FRAME)
+ mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
+
+ // If the segment reference frame feature is enabled....
+ // then do nothing if the current ref frame is not allowed..
+ if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+ vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
+ continue;
+ // Disable this drop out case if the ref frame
+ // segment level feature is enabled for this segment. This is to
+ // prevent the possibility that we end up unable to pick any mode.
+ } else if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
+ // Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
+ // unless ARNR filtering is enabled in which case we want
+ // an unfiltered alternative. We allow near/nearest as well
+ // because they may result in zero-zero MVs but be cheaper.
+ if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
+ continue;
+ }
+
+ mbmi->tx_size = TX_4X4;
+ mbmi->uv_mode = DC_PRED;
+ mbmi->ref_frame[0] = ref_frame;
+ mbmi->ref_frame[1] = second_ref_frame;
+ // Evaluate all sub-pel filters irrespective of whether we can use
+ // them for this frame.
+ mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
+ : cm->interp_filter;
+ x->skip = 0;
+ set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
+
+ // Select prediction reference frames.
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+ if (comp_pred)
+ xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
+ }
+
+ if (ref_frame == INTRA_FRAME) {
+ int rate;
+ if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y,
+ &distortion_y, best_rd) >= best_rd)
+ continue;
+ rate2 += rate;
+ rate2 += intra_cost_penalty;
+ distortion2 += distortion_y;
+
+ if (rate_uv_intra == INT_MAX) {
+ choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4,
+ &rate_uv_intra,
+ &rate_uv_tokenonly,
+ &dist_uv, &skip_uv,
+ &mode_uv);
+ }
+ rate2 += rate_uv_intra;
+ rate_uv = rate_uv_tokenonly;
+ distortion2 += dist_uv;
+ distortion_uv = dist_uv;
+ mbmi->uv_mode = mode_uv;
+ } else {
+ int rate;
+ int64_t distortion;
+ int64_t this_rd_thresh;
+ int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
+ int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
+ int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
+ int tmp_best_skippable = 0;
+ int switchable_filter_index;
+ int_mv *second_ref = comp_pred ?
+ &mbmi->ref_mvs[second_ref_frame][0] : NULL;
+ b_mode_info tmp_best_bmodes[16];
+ MB_MODE_INFO tmp_best_mbmode;
+ BEST_SEG_INFO bsi[SWITCHABLE_FILTERS];
+ int pred_exists = 0;
+ int uv_skippable;
+
+ this_rd_thresh = (ref_frame == LAST_FRAME) ?
+ rd_opt->threshes[segment_id][bsize][THR_LAST] :
+ rd_opt->threshes[segment_id][bsize][THR_ALTR];
+ this_rd_thresh = (ref_frame == GOLDEN_FRAME) ?
+ rd_opt->threshes[segment_id][bsize][THR_GOLD] : this_rd_thresh;
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
+ filter_cache[i] = INT64_MAX;
+
+ if (cm->interp_filter != BILINEAR) {
+ tmp_best_filter = EIGHTTAP;
+ if (x->source_variance < sf->disable_filter_search_var_thresh) {
+ tmp_best_filter = EIGHTTAP;
+ } else if (sf->adaptive_pred_interp_filter == 1 &&
+ ctx->pred_interp_filter < SWITCHABLE) {
+ tmp_best_filter = ctx->pred_interp_filter;
+ } else if (sf->adaptive_pred_interp_filter == 2) {
+ tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE ?
+ ctx->pred_interp_filter : 0;
+ } else {
+ for (switchable_filter_index = 0;
+ switchable_filter_index < SWITCHABLE_FILTERS;
+ ++switchable_filter_index) {
+ int newbest, rs;
+ int64_t rs_rd;
+ mbmi->interp_filter = switchable_filter_index;
+ tmp_rd = rd_pick_best_sub8x8_mode(cpi, x, tile_info,
+ &mbmi->ref_mvs[ref_frame][0],
+ second_ref, best_yrd, &rate,
+ &rate_y, &distortion,
+ &skippable, &total_sse,
+ (int) this_rd_thresh, seg_mvs,
+ bsi, switchable_filter_index,
+ mi_row, mi_col);
+
+ if (tmp_rd == INT64_MAX)
+ continue;
+ rs = vp9_get_switchable_rate(cpi, xd);
+ rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
+ filter_cache[switchable_filter_index] = tmp_rd;
+ filter_cache[SWITCHABLE_FILTERS] =
+ MIN(filter_cache[SWITCHABLE_FILTERS],
+ tmp_rd + rs_rd);
+ if (cm->interp_filter == SWITCHABLE)
+ tmp_rd += rs_rd;
+
+ mask_filter = MAX(mask_filter, tmp_rd);
+
+ newbest = (tmp_rd < tmp_best_rd);
+ if (newbest) {
+ tmp_best_filter = mbmi->interp_filter;
+ tmp_best_rd = tmp_rd;
+ }
+ if ((newbest && cm->interp_filter == SWITCHABLE) ||
+ (mbmi->interp_filter == cm->interp_filter &&
+ cm->interp_filter != SWITCHABLE)) {
+ tmp_best_rdu = tmp_rd;
+ tmp_best_rate = rate;
+ tmp_best_ratey = rate_y;
+ tmp_best_distortion = distortion;
+ tmp_best_sse = total_sse;
+ tmp_best_skippable = skippable;
+ tmp_best_mbmode = *mbmi;
+ for (i = 0; i < 4; i++) {
+ tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
+ x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i];
+ }
+ pred_exists = 1;
+ if (switchable_filter_index == 0 &&
+ sf->use_rd_breakout &&
+ best_rd < INT64_MAX) {
+ if (tmp_best_rdu / 2 > best_rd) {
+ // skip searching the other filters if the first is
+ // already substantially larger than the best so far
+ tmp_best_filter = mbmi->interp_filter;
+ tmp_best_rdu = INT64_MAX;
+ break;
+ }
+ }
+ }
+ } // switchable_filter_index loop
+ }
+ }
+
+ if (tmp_best_rdu == INT64_MAX && pred_exists)
+ continue;
+
+ mbmi->interp_filter = (cm->interp_filter == SWITCHABLE ?
+ tmp_best_filter : cm->interp_filter);
+ if (!pred_exists) {
+ // Handles the special case when a filter that is not in the
+ // switchable list (bilinear, 6-tap) is indicated at the frame level
+ tmp_rd = rd_pick_best_sub8x8_mode(cpi, x, tile_info,
+ &mbmi->ref_mvs[ref_frame][0],
+ second_ref, best_yrd, &rate, &rate_y,
+ &distortion, &skippable, &total_sse,
+ (int) this_rd_thresh, seg_mvs, bsi, 0,
+ mi_row, mi_col);
+ if (tmp_rd == INT64_MAX)
+ continue;
+ } else {
+ total_sse = tmp_best_sse;
+ rate = tmp_best_rate;
+ rate_y = tmp_best_ratey;
+ distortion = tmp_best_distortion;
+ skippable = tmp_best_skippable;
+ *mbmi = tmp_best_mbmode;
+ for (i = 0; i < 4; i++)
+ xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
+ }
+
+ rate2 += rate;
+ distortion2 += distortion;
+
+ if (cm->interp_filter == SWITCHABLE)
+ rate2 += vp9_get_switchable_rate(cpi, xd);
+
+ if (!mode_excluded)
+ mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
+ : cm->reference_mode == COMPOUND_REFERENCE;
+
+ compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
+
+ tmp_best_rdu = best_rd -
+ MIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
+ RDCOST(x->rdmult, x->rddiv, 0, total_sse));
+
+ if (tmp_best_rdu > 0) {
+ // If even the 'Y' rd value of split is higher than best so far
+ // then dont bother looking at UV
+ vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col,
+ BLOCK_8X8);
+ memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
+ if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
+ &uv_sse, BLOCK_8X8, tmp_best_rdu))
+ continue;
+
+ rate2 += rate_uv;
+ distortion2 += distortion_uv;
+ skippable = skippable && uv_skippable;
+ total_sse += uv_sse;
+ }
+ }
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ rate2 += compmode_cost;
+
+ // Estimate the reference frame signaling cost and add it
+ // to the rolling cost variable.
+ if (second_ref_frame > INTRA_FRAME) {
+ rate2 += ref_costs_comp[ref_frame];
+ } else {
+ rate2 += ref_costs_single[ref_frame];
+ }
+
+ if (!disable_skip) {
+ // Skip is never coded at the segment level for sub8x8 blocks and instead
+ // always coded in the bitstream at the mode info level.
+
+ if (ref_frame != INTRA_FRAME && !xd->lossless) {
+ if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
+ RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
+ // Add in the cost of the no skip flag.
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
+ } else {
+ // FIXME(rbultje) make this work for splitmv also
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
+ distortion2 = total_sse;
+ assert(total_sse >= 0);
+ rate2 -= (rate_y + rate_uv);
+ rate_y = 0;
+ rate_uv = 0;
+ this_skip2 = 1;
+ }
+ } else {
+ // Add in the cost of the no skip flag.
+ rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
+ }
+
+ // Calculate the final RD estimate for this mode.
+ this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
+ }
+
+ if (!disable_skip && ref_frame == INTRA_FRAME) {
+ for (i = 0; i < REFERENCE_MODES; ++i)
+ best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
+ best_filter_rd[i] = MIN(best_filter_rd[i], this_rd);
+ }
+
+ // Did this mode help.. i.e. is it the new best mode
+ if (this_rd < best_rd || x->skip) {
+ if (!mode_excluded) {
+ int max_plane = MAX_MB_PLANE;
+ // Note index of best mode so far
+ best_ref_index = ref_index;
+
+ if (ref_frame == INTRA_FRAME) {
+ /* required for left and above block mv */
+ mbmi->mv[0].as_int = 0;
+ max_plane = 1;
+ }
+
+ rd_cost->rate = rate2;
+ rd_cost->dist = distortion2;
+ rd_cost->rdcost = this_rd;
+ best_rd = this_rd;
+ best_yrd = best_rd -
+ RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
+ best_mbmode = *mbmi;
+ best_skip2 = this_skip2;
+ if (!x->select_tx_size)
+ swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
+ memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4],
+ sizeof(uint8_t) * ctx->num_4x4_blk);
+
+ for (i = 0; i < 4; i++)
+ best_bmodes[i] = xd->mi[0]->bmi[i];
+
+ // TODO(debargha): enhance this test with a better distortion prediction
+ // based on qp, activity mask and history
+ if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
+ (ref_index > MIN_EARLY_TERM_INDEX)) {
+ int qstep = xd->plane[0].dequant[1];
+ // TODO(debargha): Enhance this by specializing for each mode_index
+ int scale = 4;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ qstep >>= (xd->bd - 8);
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ if (x->source_variance < UINT_MAX) {
+ const int var_adjust = (x->source_variance < 16);
+ scale -= var_adjust;
+ }
+ if (ref_frame > INTRA_FRAME &&
+ distortion2 * scale < qstep * qstep) {
+ early_term = 1;
+ }
+ }
+ }
+ }
+
+ /* keep record of best compound/single-only prediction */
+ if (!disable_skip && ref_frame != INTRA_FRAME) {
+ int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ single_rate = rate2 - compmode_cost;
+ hybrid_rate = rate2;
+ } else {
+ single_rate = rate2;
+ hybrid_rate = rate2 + compmode_cost;
+ }
+
+ single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
+ hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
+
+ if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE])
+ best_pred_rd[SINGLE_REFERENCE] = single_rd;
+ else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE])
+ best_pred_rd[COMPOUND_REFERENCE] = single_rd;
+
+ if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
+ best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
+ }
+
+ /* keep record of best filter type */
+ if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME &&
+ cm->interp_filter != BILINEAR) {
+ int64_t ref = filter_cache[cm->interp_filter == SWITCHABLE ?
+ SWITCHABLE_FILTERS : cm->interp_filter];
+ int64_t adj_rd;
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+ if (ref == INT64_MAX)
+ adj_rd = 0;
+ else if (filter_cache[i] == INT64_MAX)
+ // when early termination is triggered, the encoder does not have
+ // access to the rate-distortion cost. it only knows that the cost
+ // should be above the maximum valid value. hence it takes the known
+ // maximum plus an arbitrary constant as the rate-distortion cost.
+ adj_rd = mask_filter - ref + 10;
+ else
+ adj_rd = filter_cache[i] - ref;
+
+ adj_rd += this_rd;
+ best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd);
+ }
+ }
+
+ if (early_term)
+ break;
+
+ if (x->skip && !comp_pred)
+ break;
+ }
+
+ if (best_rd >= best_rd_so_far) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ // If we used an estimate for the uv intra rd in the loop above...
+ if (sf->use_uv_intra_rd_estimate) {
+ // Do Intra UV best rd mode selection if best mode choice above was intra.
+ if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
+ *mbmi = best_mbmode;
+ rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra,
+ &rate_uv_tokenonly,
+ &dist_uv,
+ &skip_uv,
+ BLOCK_8X8, TX_4X4);
+ }
+ }
+
+ if (best_rd == INT64_MAX) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->dist = INT64_MAX;
+ rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ assert((cm->interp_filter == SWITCHABLE) ||
+ (cm->interp_filter == best_mbmode.interp_filter) ||
+ !is_inter_block(&best_mbmode));
+
+ vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact,
+ sf->adaptive_rd_thresh, bsize, best_ref_index);
+
+ // macroblock modes
+ *mbmi = best_mbmode;
+ x->skip |= best_skip2;
+ if (!is_inter_block(&best_mbmode)) {
+ for (i = 0; i < 4; i++)
+ xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
+ } else {
+ for (i = 0; i < 4; ++i)
+ memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
+
+ mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
+ mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
+ }
+
+ for (i = 0; i < REFERENCE_MODES; ++i) {
+ if (best_pred_rd[i] == INT64_MAX)
+ best_pred_diff[i] = INT_MIN;
+ else
+ best_pred_diff[i] = best_rd - best_pred_rd[i];
+ }
+
+ if (!x->skip) {
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
+ if (best_filter_rd[i] == INT64_MAX)
+ best_filter_diff[i] = 0;
+ else
+ best_filter_diff[i] = best_rd - best_filter_rd[i];
+ }
+ if (cm->interp_filter == SWITCHABLE)
+ assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
+ } else {
+ vp9_zero(best_filter_diff);
+ }
+
+ store_coding_context(x, ctx, best_ref_index,
+ best_pred_diff, best_tx_diff, best_filter_diff, 0);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_rdopt.h b/media/libvpx/vp9/encoder/vp9_rdopt.h
new file mode 100644
index 000000000..459b0324b
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_rdopt.h
@@ -0,0 +1,68 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_RDOPT_H_
+#define VP9_ENCODER_VP9_RDOPT_H_
+
+#include "vp9/common/vp9_blockd.h"
+
+#include "vp9/encoder/vp9_block.h"
+#include "vp9/encoder/vp9_context_tree.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct TileInfo;
+struct VP9_COMP;
+struct macroblock;
+struct RD_COST;
+
+void vp9_rd_pick_intra_mode_sb(struct VP9_COMP *cpi, struct macroblock *x,
+ struct RD_COST *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx, int64_t best_rd);
+
+unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
+ const struct buf_2d *ref,
+ BLOCK_SIZE bs);
+#if CONFIG_VP9_HIGHBITDEPTH
+unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi,
+ const struct buf_2d *ref,
+ BLOCK_SIZE bs, int bd);
+#endif
+
+void vp9_rd_pick_inter_mode_sb(struct VP9_COMP *cpi,
+ struct TileDataEnc *tile_data,
+ struct macroblock *x,
+ int mi_row, int mi_col,
+ struct RD_COST *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far);
+
+void vp9_rd_pick_inter_mode_sb_seg_skip(struct VP9_COMP *cpi,
+ struct TileDataEnc *tile_data,
+ struct macroblock *x,
+ struct RD_COST *rd_cost,
+ BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far);
+
+void vp9_rd_pick_inter_mode_sub8x8(struct VP9_COMP *cpi,
+ struct TileDataEnc *tile_data,
+ struct macroblock *x,
+ int mi_row, int mi_col,
+ struct RD_COST *rd_cost,
+ BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far);
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_RDOPT_H_
diff --git a/media/libvpx/vp9/encoder/vp9_resize.c b/media/libvpx/vp9/encoder/vp9_resize.c
new file mode 100644
index 000000000..bca5b1326
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_resize.c
@@ -0,0 +1,925 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "vpx_ports/mem.h"
+#include "vp9/common/vp9_common.h"
+#include "vp9/encoder/vp9_resize.h"
+
+#define FILTER_BITS 7
+
+#define INTERP_TAPS 8
+#define SUBPEL_BITS 5
+#define SUBPEL_MASK ((1 << SUBPEL_BITS) - 1)
+#define INTERP_PRECISION_BITS 32
+
+typedef int16_t interp_kernel[INTERP_TAPS];
+
+// Filters for interpolation (0.5-band) - note this also filters integer pels.
+const interp_kernel vp9_filteredinterp_filters500[(1 << SUBPEL_BITS)] = {
+ {-3, 0, 35, 64, 35, 0, -3, 0},
+ {-3, -1, 34, 64, 36, 1, -3, 0},
+ {-3, -1, 32, 64, 38, 1, -3, 0},
+ {-2, -2, 31, 63, 39, 2, -3, 0},
+ {-2, -2, 29, 63, 41, 2, -3, 0},
+ {-2, -2, 28, 63, 42, 3, -4, 0},
+ {-2, -3, 27, 63, 43, 4, -4, 0},
+ {-2, -3, 25, 62, 45, 5, -4, 0},
+ {-2, -3, 24, 62, 46, 5, -4, 0},
+ {-2, -3, 23, 61, 47, 6, -4, 0},
+ {-2, -3, 21, 60, 49, 7, -4, 0},
+ {-1, -4, 20, 60, 50, 8, -4, -1},
+ {-1, -4, 19, 59, 51, 9, -4, -1},
+ {-1, -4, 17, 58, 52, 10, -4, 0},
+ {-1, -4, 16, 57, 53, 12, -4, -1},
+ {-1, -4, 15, 56, 54, 13, -4, -1},
+ {-1, -4, 14, 55, 55, 14, -4, -1},
+ {-1, -4, 13, 54, 56, 15, -4, -1},
+ {-1, -4, 12, 53, 57, 16, -4, -1},
+ {0, -4, 10, 52, 58, 17, -4, -1},
+ {-1, -4, 9, 51, 59, 19, -4, -1},
+ {-1, -4, 8, 50, 60, 20, -4, -1},
+ {0, -4, 7, 49, 60, 21, -3, -2},
+ {0, -4, 6, 47, 61, 23, -3, -2},
+ {0, -4, 5, 46, 62, 24, -3, -2},
+ {0, -4, 5, 45, 62, 25, -3, -2},
+ {0, -4, 4, 43, 63, 27, -3, -2},
+ {0, -4, 3, 42, 63, 28, -2, -2},
+ {0, -3, 2, 41, 63, 29, -2, -2},
+ {0, -3, 2, 39, 63, 31, -2, -2},
+ {0, -3, 1, 38, 64, 32, -1, -3},
+ {0, -3, 1, 36, 64, 34, -1, -3}
+};
+
+// Filters for interpolation (0.625-band) - note this also filters integer pels.
+const interp_kernel vp9_filteredinterp_filters625[(1 << SUBPEL_BITS)] = {
+ {-1, -8, 33, 80, 33, -8, -1, 0},
+ {-1, -8, 30, 80, 35, -8, -1, 1},
+ {-1, -8, 28, 80, 37, -7, -2, 1},
+ {0, -8, 26, 79, 39, -7, -2, 1},
+ {0, -8, 24, 79, 41, -7, -2, 1},
+ {0, -8, 22, 78, 43, -6, -2, 1},
+ {0, -8, 20, 78, 45, -5, -3, 1},
+ {0, -8, 18, 77, 48, -5, -3, 1},
+ {0, -8, 16, 76, 50, -4, -3, 1},
+ {0, -8, 15, 75, 52, -3, -4, 1},
+ {0, -7, 13, 74, 54, -3, -4, 1},
+ {0, -7, 11, 73, 56, -2, -4, 1},
+ {0, -7, 10, 71, 58, -1, -4, 1},
+ {1, -7, 8, 70, 60, 0, -5, 1},
+ {1, -6, 6, 68, 62, 1, -5, 1},
+ {1, -6, 5, 67, 63, 2, -5, 1},
+ {1, -6, 4, 65, 65, 4, -6, 1},
+ {1, -5, 2, 63, 67, 5, -6, 1},
+ {1, -5, 1, 62, 68, 6, -6, 1},
+ {1, -5, 0, 60, 70, 8, -7, 1},
+ {1, -4, -1, 58, 71, 10, -7, 0},
+ {1, -4, -2, 56, 73, 11, -7, 0},
+ {1, -4, -3, 54, 74, 13, -7, 0},
+ {1, -4, -3, 52, 75, 15, -8, 0},
+ {1, -3, -4, 50, 76, 16, -8, 0},
+ {1, -3, -5, 48, 77, 18, -8, 0},
+ {1, -3, -5, 45, 78, 20, -8, 0},
+ {1, -2, -6, 43, 78, 22, -8, 0},
+ {1, -2, -7, 41, 79, 24, -8, 0},
+ {1, -2, -7, 39, 79, 26, -8, 0},
+ {1, -2, -7, 37, 80, 28, -8, -1},
+ {1, -1, -8, 35, 80, 30, -8, -1},
+};
+
+// Filters for interpolation (0.75-band) - note this also filters integer pels.
+const interp_kernel vp9_filteredinterp_filters750[(1 << SUBPEL_BITS)] = {
+ {2, -11, 25, 96, 25, -11, 2, 0},
+ {2, -11, 22, 96, 28, -11, 2, 0},
+ {2, -10, 19, 95, 31, -11, 2, 0},
+ {2, -10, 17, 95, 34, -12, 2, 0},
+ {2, -9, 14, 94, 37, -12, 2, 0},
+ {2, -8, 12, 93, 40, -12, 1, 0},
+ {2, -8, 9, 92, 43, -12, 1, 1},
+ {2, -7, 7, 91, 46, -12, 1, 0},
+ {2, -7, 5, 90, 49, -12, 1, 0},
+ {2, -6, 3, 88, 52, -12, 0, 1},
+ {2, -5, 1, 86, 55, -12, 0, 1},
+ {2, -5, -1, 84, 58, -11, 0, 1},
+ {2, -4, -2, 82, 61, -11, -1, 1},
+ {2, -4, -4, 80, 64, -10, -1, 1},
+ {1, -3, -5, 77, 67, -9, -1, 1},
+ {1, -3, -6, 75, 70, -8, -2, 1},
+ {1, -2, -7, 72, 72, -7, -2, 1},
+ {1, -2, -8, 70, 75, -6, -3, 1},
+ {1, -1, -9, 67, 77, -5, -3, 1},
+ {1, -1, -10, 64, 80, -4, -4, 2},
+ {1, -1, -11, 61, 82, -2, -4, 2},
+ {1, 0, -11, 58, 84, -1, -5, 2},
+ {1, 0, -12, 55, 86, 1, -5, 2},
+ {1, 0, -12, 52, 88, 3, -6, 2},
+ {0, 1, -12, 49, 90, 5, -7, 2},
+ {0, 1, -12, 46, 91, 7, -7, 2},
+ {1, 1, -12, 43, 92, 9, -8, 2},
+ {0, 1, -12, 40, 93, 12, -8, 2},
+ {0, 2, -12, 37, 94, 14, -9, 2},
+ {0, 2, -12, 34, 95, 17, -10, 2},
+ {0, 2, -11, 31, 95, 19, -10, 2},
+ {0, 2, -11, 28, 96, 22, -11, 2}
+};
+
+// Filters for interpolation (0.875-band) - note this also filters integer pels.
+const interp_kernel vp9_filteredinterp_filters875[(1 << SUBPEL_BITS)] = {
+ {3, -8, 13, 112, 13, -8, 3, 0},
+ {3, -7, 10, 112, 17, -9, 3, -1},
+ {2, -6, 7, 111, 21, -9, 3, -1},
+ {2, -5, 4, 111, 24, -10, 3, -1},
+ {2, -4, 1, 110, 28, -11, 3, -1},
+ {1, -3, -1, 108, 32, -12, 4, -1},
+ {1, -2, -3, 106, 36, -13, 4, -1},
+ {1, -1, -6, 105, 40, -14, 4, -1},
+ {1, -1, -7, 102, 44, -14, 4, -1},
+ {1, 0, -9, 100, 48, -15, 4, -1},
+ {1, 1, -11, 97, 53, -16, 4, -1},
+ {0, 1, -12, 95, 57, -16, 4, -1},
+ {0, 2, -13, 91, 61, -16, 4, -1},
+ {0, 2, -14, 88, 65, -16, 4, -1},
+ {0, 3, -15, 84, 69, -17, 4, 0},
+ {0, 3, -16, 81, 73, -16, 3, 0},
+ {0, 3, -16, 77, 77, -16, 3, 0},
+ {0, 3, -16, 73, 81, -16, 3, 0},
+ {0, 4, -17, 69, 84, -15, 3, 0},
+ {-1, 4, -16, 65, 88, -14, 2, 0},
+ {-1, 4, -16, 61, 91, -13, 2, 0},
+ {-1, 4, -16, 57, 95, -12, 1, 0},
+ {-1, 4, -16, 53, 97, -11, 1, 1},
+ {-1, 4, -15, 48, 100, -9, 0, 1},
+ {-1, 4, -14, 44, 102, -7, -1, 1},
+ {-1, 4, -14, 40, 105, -6, -1, 1},
+ {-1, 4, -13, 36, 106, -3, -2, 1},
+ {-1, 4, -12, 32, 108, -1, -3, 1},
+ {-1, 3, -11, 28, 110, 1, -4, 2},
+ {-1, 3, -10, 24, 111, 4, -5, 2},
+ {-1, 3, -9, 21, 111, 7, -6, 2},
+ {-1, 3, -9, 17, 112, 10, -7, 3}
+};
+
+// Filters for interpolation (full-band) - no filtering for integer pixels
+const interp_kernel vp9_filteredinterp_filters1000[(1 << SUBPEL_BITS)] = {
+ {0, 0, 0, 128, 0, 0, 0, 0},
+ {0, 1, -3, 128, 3, -1, 0, 0},
+ {-1, 2, -6, 127, 7, -2, 1, 0},
+ {-1, 3, -9, 126, 12, -4, 1, 0},
+ {-1, 4, -12, 125, 16, -5, 1, 0},
+ {-1, 4, -14, 123, 20, -6, 2, 0},
+ {-1, 5, -15, 120, 25, -8, 2, 0},
+ {-1, 5, -17, 118, 30, -9, 3, -1},
+ {-1, 6, -18, 114, 35, -10, 3, -1},
+ {-1, 6, -19, 111, 41, -12, 3, -1},
+ {-1, 6, -20, 107, 46, -13, 4, -1},
+ {-1, 6, -21, 103, 52, -14, 4, -1},
+ {-1, 6, -21, 99, 57, -16, 5, -1},
+ {-1, 6, -21, 94, 63, -17, 5, -1},
+ {-1, 6, -20, 89, 68, -18, 5, -1},
+ {-1, 6, -20, 84, 73, -19, 6, -1},
+ {-1, 6, -20, 79, 79, -20, 6, -1},
+ {-1, 6, -19, 73, 84, -20, 6, -1},
+ {-1, 5, -18, 68, 89, -20, 6, -1},
+ {-1, 5, -17, 63, 94, -21, 6, -1},
+ {-1, 5, -16, 57, 99, -21, 6, -1},
+ {-1, 4, -14, 52, 103, -21, 6, -1},
+ {-1, 4, -13, 46, 107, -20, 6, -1},
+ {-1, 3, -12, 41, 111, -19, 6, -1},
+ {-1, 3, -10, 35, 114, -18, 6, -1},
+ {-1, 3, -9, 30, 118, -17, 5, -1},
+ {0, 2, -8, 25, 120, -15, 5, -1},
+ {0, 2, -6, 20, 123, -14, 4, -1},
+ {0, 1, -5, 16, 125, -12, 4, -1},
+ {0, 1, -4, 12, 126, -9, 3, -1},
+ {0, 1, -2, 7, 127, -6, 2, -1},
+ {0, 0, -1, 3, 128, -3, 1, 0}
+};
+
+// Filters for factor of 2 downsampling.
+static const int16_t vp9_down2_symeven_half_filter[] = {56, 12, -3, -1};
+static const int16_t vp9_down2_symodd_half_filter[] = {64, 35, 0, -3};
+
+static const interp_kernel *choose_interp_filter(int inlength, int outlength) {
+ int outlength16 = outlength * 16;
+ if (outlength16 >= inlength * 16)
+ return vp9_filteredinterp_filters1000;
+ else if (outlength16 >= inlength * 13)
+ return vp9_filteredinterp_filters875;
+ else if (outlength16 >= inlength * 11)
+ return vp9_filteredinterp_filters750;
+ else if (outlength16 >= inlength * 9)
+ return vp9_filteredinterp_filters625;
+ else
+ return vp9_filteredinterp_filters500;
+}
+
+static void interpolate(const uint8_t *const input, int inlength,
+ uint8_t *output, int outlength) {
+ const int64_t delta = (((uint64_t)inlength << 32) + outlength / 2) /
+ outlength;
+ const int64_t offset = inlength > outlength ?
+ (((int64_t)(inlength - outlength) << 31) + outlength / 2) / outlength :
+ -(((int64_t)(outlength - inlength) << 31) + outlength / 2) / outlength;
+ uint8_t *optr = output;
+ int x, x1, x2, sum, k, int_pel, sub_pel;
+ int64_t y;
+
+ const interp_kernel *interp_filters =
+ choose_interp_filter(inlength, outlength);
+
+ x = 0;
+ y = offset;
+ while ((y >> INTERP_PRECISION_BITS) < (INTERP_TAPS / 2 - 1)) {
+ x++;
+ y += delta;
+ }
+ x1 = x;
+ x = outlength - 1;
+ y = delta * x + offset;
+ while ((y >> INTERP_PRECISION_BITS) +
+ (int64_t)(INTERP_TAPS / 2) >= inlength) {
+ x--;
+ y -= delta;
+ }
+ x2 = x;
+ if (x1 > x2) {
+ for (x = 0, y = offset; x < outlength; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k) {
+ const int pk = int_pel - INTERP_TAPS / 2 + 1 + k;
+ sum += filter[k] * input[(pk < 0 ? 0 :
+ (pk >= inlength ? inlength - 1 : pk))];
+ }
+ *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+ }
+ } else {
+ // Initial part.
+ for (x = 0, y = offset; x < x1; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k < 0 ?
+ 0 :
+ int_pel - INTERP_TAPS / 2 + 1 + k)];
+ *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+ }
+ // Middle part.
+ for (; x <= x2; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] * input[int_pel - INTERP_TAPS / 2 + 1 + k];
+ *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+ }
+ // End part.
+ for (; x < outlength; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k >=
+ inlength ? inlength - 1 :
+ int_pel - INTERP_TAPS / 2 + 1 + k)];
+ *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
+ }
+ }
+}
+
+static void down2_symeven(const uint8_t *const input, int length,
+ uint8_t *output) {
+ // Actual filter len = 2 * filter_len_half.
+ const int16_t *filter = vp9_down2_symeven_half_filter;
+ const int filter_len_half = sizeof(vp9_down2_symeven_half_filter) / 2;
+ int i, j;
+ uint8_t *optr = output;
+ int l1 = filter_len_half;
+ int l2 = (length - filter_len_half);
+ l1 += (l1 & 1);
+ l2 += (l2 & 1);
+ if (l1 > l2) {
+ // Short input length.
+ for (i = 0; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] +
+ input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ } else {
+ // Initial part.
+ for (i = 0; i < l1; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + 1 + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ // Middle part.
+ for (; i < l2; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[i + 1 + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ // End part.
+ for (; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[i - j] +
+ input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ }
+}
+
+static void down2_symodd(const uint8_t *const input, int length,
+ uint8_t *output) {
+ // Actual filter len = 2 * filter_len_half - 1.
+ const int16_t *filter = vp9_down2_symodd_half_filter;
+ const int filter_len_half = sizeof(vp9_down2_symodd_half_filter) / 2;
+ int i, j;
+ uint8_t *optr = output;
+ int l1 = filter_len_half - 1;
+ int l2 = (length - filter_len_half + 1);
+ l1 += (l1 & 1);
+ l2 += (l2 & 1);
+ if (l1 > l2) {
+ // Short input length.
+ for (i = 0; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] +
+ input[(i + j >= length ? length - 1 : i + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ } else {
+ // Initial part.
+ for (i = 0; i < l1; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ // Middle part.
+ for (; i < l2; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[i + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ // End part.
+ for (; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel(sum);
+ }
+ }
+}
+
+static int get_down2_length(int length, int steps) {
+ int s;
+ for (s = 0; s < steps; ++s)
+ length = (length + 1) >> 1;
+ return length;
+}
+
+static int get_down2_steps(int in_length, int out_length) {
+ int steps = 0;
+ int proj_in_length;
+ while ((proj_in_length = get_down2_length(in_length, 1)) >= out_length) {
+ ++steps;
+ in_length = proj_in_length;
+ }
+ return steps;
+}
+
+static void resize_multistep(const uint8_t *const input,
+ int length,
+ uint8_t *output,
+ int olength,
+ uint8_t *buf) {
+ int steps;
+ if (length == olength) {
+ memcpy(output, input, sizeof(uint8_t) * length);
+ return;
+ }
+ steps = get_down2_steps(length, olength);
+
+ if (steps > 0) {
+ int s;
+ uint8_t *out = NULL;
+ uint8_t *tmpbuf = NULL;
+ uint8_t *otmp, *otmp2;
+ int filteredlength = length;
+ if (!tmpbuf) {
+ tmpbuf = (uint8_t *)malloc(sizeof(uint8_t) * length);
+ otmp = tmpbuf;
+ } else {
+ otmp = buf;
+ }
+ otmp2 = otmp + get_down2_length(length, 1);
+ for (s = 0; s < steps; ++s) {
+ const int proj_filteredlength = get_down2_length(filteredlength, 1);
+ const uint8_t *const in = (s == 0 ? input : out);
+ if (s == steps - 1 && proj_filteredlength == olength)
+ out = output;
+ else
+ out = (s & 1 ? otmp2 : otmp);
+ if (filteredlength & 1)
+ down2_symodd(in, filteredlength, out);
+ else
+ down2_symeven(in, filteredlength, out);
+ filteredlength = proj_filteredlength;
+ }
+ if (filteredlength != olength) {
+ interpolate(out, filteredlength, output, olength);
+ }
+ if (tmpbuf)
+ free(tmpbuf);
+ } else {
+ interpolate(input, length, output, olength);
+ }
+}
+
+static void fill_col_to_arr(uint8_t *img, int stride, int len, uint8_t *arr) {
+ int i;
+ uint8_t *iptr = img;
+ uint8_t *aptr = arr;
+ for (i = 0; i < len; ++i, iptr += stride) {
+ *aptr++ = *iptr;
+ }
+}
+
+static void fill_arr_to_col(uint8_t *img, int stride, int len, uint8_t *arr) {
+ int i;
+ uint8_t *iptr = img;
+ uint8_t *aptr = arr;
+ for (i = 0; i < len; ++i, iptr += stride) {
+ *iptr = *aptr++;
+ }
+}
+
+void vp9_resize_plane(const uint8_t *const input,
+ int height,
+ int width,
+ int in_stride,
+ uint8_t *output,
+ int height2,
+ int width2,
+ int out_stride) {
+ int i;
+ uint8_t *intbuf = (uint8_t *)malloc(sizeof(uint8_t) * width2 * height);
+ uint8_t *tmpbuf = (uint8_t *)malloc(sizeof(uint8_t) *
+ (width < height ? height : width));
+ uint8_t *arrbuf = (uint8_t *)malloc(sizeof(uint8_t) * (height + height2));
+ assert(width > 0);
+ assert(height > 0);
+ assert(width2 > 0);
+ assert(height2 > 0);
+ for (i = 0; i < height; ++i)
+ resize_multistep(input + in_stride * i, width,
+ intbuf + width2 * i, width2, tmpbuf);
+ for (i = 0; i < width2; ++i) {
+ fill_col_to_arr(intbuf + i, width2, height, arrbuf);
+ resize_multistep(arrbuf, height, arrbuf + height, height2, tmpbuf);
+ fill_arr_to_col(output + i, out_stride, height2, arrbuf + height);
+ }
+ free(intbuf);
+ free(tmpbuf);
+ free(arrbuf);
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void highbd_interpolate(const uint16_t *const input, int inlength,
+ uint16_t *output, int outlength, int bd) {
+ const int64_t delta =
+ (((uint64_t)inlength << 32) + outlength / 2) / outlength;
+ const int64_t offset = inlength > outlength ?
+ (((int64_t)(inlength - outlength) << 31) + outlength / 2) / outlength :
+ -(((int64_t)(outlength - inlength) << 31) + outlength / 2) / outlength;
+ uint16_t *optr = output;
+ int x, x1, x2, sum, k, int_pel, sub_pel;
+ int64_t y;
+
+ const interp_kernel *interp_filters =
+ choose_interp_filter(inlength, outlength);
+
+ x = 0;
+ y = offset;
+ while ((y >> INTERP_PRECISION_BITS) < (INTERP_TAPS / 2 - 1)) {
+ x++;
+ y += delta;
+ }
+ x1 = x;
+ x = outlength - 1;
+ y = delta * x + offset;
+ while ((y >> INTERP_PRECISION_BITS) +
+ (int64_t)(INTERP_TAPS / 2) >= inlength) {
+ x--;
+ y -= delta;
+ }
+ x2 = x;
+ if (x1 > x2) {
+ for (x = 0, y = offset; x < outlength; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k) {
+ const int pk = int_pel - INTERP_TAPS / 2 + 1 + k;
+ sum += filter[k] *
+ input[(pk < 0 ? 0 : (pk >= inlength ? inlength - 1 : pk))];
+ }
+ *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
+ }
+ } else {
+ // Initial part.
+ for (x = 0, y = offset; x < x1; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] *
+ input[(int_pel - INTERP_TAPS / 2 + 1 + k < 0 ?
+ 0 : int_pel - INTERP_TAPS / 2 + 1 + k)];
+ *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
+ }
+ // Middle part.
+ for (; x <= x2; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] * input[int_pel - INTERP_TAPS / 2 + 1 + k];
+ *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
+ }
+ // End part.
+ for (; x < outlength; ++x, y += delta) {
+ const int16_t *filter;
+ int_pel = y >> INTERP_PRECISION_BITS;
+ sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK;
+ filter = interp_filters[sub_pel];
+ sum = 0;
+ for (k = 0; k < INTERP_TAPS; ++k)
+ sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k >=
+ inlength ? inlength - 1 :
+ int_pel - INTERP_TAPS / 2 + 1 + k)];
+ *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
+ }
+ }
+}
+
+static void highbd_down2_symeven(const uint16_t *const input, int length,
+ uint16_t *output, int bd) {
+ // Actual filter len = 2 * filter_len_half.
+ static const int16_t *filter = vp9_down2_symeven_half_filter;
+ const int filter_len_half = sizeof(vp9_down2_symeven_half_filter) / 2;
+ int i, j;
+ uint16_t *optr = output;
+ int l1 = filter_len_half;
+ int l2 = (length - filter_len_half);
+ l1 += (l1 & 1);
+ l2 += (l2 & 1);
+ if (l1 > l2) {
+ // Short input length.
+ for (i = 0; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] +
+ input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel_highbd(sum, bd);
+ }
+ } else {
+ // Initial part.
+ for (i = 0; i < l1; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + 1 + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel_highbd(sum, bd);
+ }
+ // Middle part.
+ for (; i < l2; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[i + 1 + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel_highbd(sum, bd);
+ }
+ // End part.
+ for (; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1));
+ for (j = 0; j < filter_len_half; ++j) {
+ sum += (input[i - j] +
+ input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel_highbd(sum, bd);
+ }
+ }
+}
+
+static void highbd_down2_symodd(const uint16_t *const input, int length,
+ uint16_t *output, int bd) {
+ // Actual filter len = 2 * filter_len_half - 1.
+ static const int16_t *filter = vp9_down2_symodd_half_filter;
+ const int filter_len_half = sizeof(vp9_down2_symodd_half_filter) / 2;
+ int i, j;
+ uint16_t *optr = output;
+ int l1 = filter_len_half - 1;
+ int l2 = (length - filter_len_half + 1);
+ l1 += (l1 & 1);
+ l2 += (l2 & 1);
+ if (l1 > l2) {
+ // Short input length.
+ for (i = 0; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] +
+ input[(i + j >= length ? length - 1 : i + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel_highbd(sum, bd);
+ }
+ } else {
+ // Initial part.
+ for (i = 0; i < l1; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel_highbd(sum, bd);
+ }
+ // Middle part.
+ for (; i < l2; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[i + j]) * filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel_highbd(sum, bd);
+ }
+ // End part.
+ for (; i < length; i += 2) {
+ int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
+ for (j = 1; j < filter_len_half; ++j) {
+ sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) *
+ filter[j];
+ }
+ sum >>= FILTER_BITS;
+ *optr++ = clip_pixel_highbd(sum, bd);
+ }
+ }
+}
+
+static void highbd_resize_multistep(const uint16_t *const input,
+ int length,
+ uint16_t *output,
+ int olength,
+ uint16_t *buf,
+ int bd) {
+ int steps;
+ if (length == olength) {
+ memcpy(output, input, sizeof(uint16_t) * length);
+ return;
+ }
+ steps = get_down2_steps(length, olength);
+
+ if (steps > 0) {
+ int s;
+ uint16_t *out = NULL;
+ uint16_t *tmpbuf = NULL;
+ uint16_t *otmp, *otmp2;
+ int filteredlength = length;
+ if (!tmpbuf) {
+ tmpbuf = (uint16_t *)malloc(sizeof(uint16_t) * length);
+ otmp = tmpbuf;
+ } else {
+ otmp = buf;
+ }
+ otmp2 = otmp + get_down2_length(length, 1);
+ for (s = 0; s < steps; ++s) {
+ const int proj_filteredlength = get_down2_length(filteredlength, 1);
+ const uint16_t *const in = (s == 0 ? input : out);
+ if (s == steps - 1 && proj_filteredlength == olength)
+ out = output;
+ else
+ out = (s & 1 ? otmp2 : otmp);
+ if (filteredlength & 1)
+ highbd_down2_symodd(in, filteredlength, out, bd);
+ else
+ highbd_down2_symeven(in, filteredlength, out, bd);
+ filteredlength = proj_filteredlength;
+ }
+ if (filteredlength != olength) {
+ highbd_interpolate(out, filteredlength, output, olength, bd);
+ }
+ if (tmpbuf)
+ free(tmpbuf);
+ } else {
+ highbd_interpolate(input, length, output, olength, bd);
+ }
+}
+
+static void highbd_fill_col_to_arr(uint16_t *img, int stride, int len,
+ uint16_t *arr) {
+ int i;
+ uint16_t *iptr = img;
+ uint16_t *aptr = arr;
+ for (i = 0; i < len; ++i, iptr += stride) {
+ *aptr++ = *iptr;
+ }
+}
+
+static void highbd_fill_arr_to_col(uint16_t *img, int stride, int len,
+ uint16_t *arr) {
+ int i;
+ uint16_t *iptr = img;
+ uint16_t *aptr = arr;
+ for (i = 0; i < len; ++i, iptr += stride) {
+ *iptr = *aptr++;
+ }
+}
+
+void vp9_highbd_resize_plane(const uint8_t *const input,
+ int height,
+ int width,
+ int in_stride,
+ uint8_t *output,
+ int height2,
+ int width2,
+ int out_stride,
+ int bd) {
+ int i;
+ uint16_t *intbuf = (uint16_t *)malloc(sizeof(uint16_t) * width2 * height);
+ uint16_t *tmpbuf = (uint16_t *)malloc(sizeof(uint16_t) *
+ (width < height ? height : width));
+ uint16_t *arrbuf = (uint16_t *)malloc(sizeof(uint16_t) * (height + height2));
+ for (i = 0; i < height; ++i) {
+ highbd_resize_multistep(CONVERT_TO_SHORTPTR(input + in_stride * i), width,
+ intbuf + width2 * i, width2, tmpbuf, bd);
+ }
+ for (i = 0; i < width2; ++i) {
+ highbd_fill_col_to_arr(intbuf + i, width2, height, arrbuf);
+ highbd_resize_multistep(arrbuf, height, arrbuf + height, height2, tmpbuf,
+ bd);
+ highbd_fill_arr_to_col(CONVERT_TO_SHORTPTR(output + i), out_stride, height2,
+ arrbuf + height);
+ }
+ free(intbuf);
+ free(tmpbuf);
+ free(arrbuf);
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+void vp9_resize_frame420(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth) {
+ vp9_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride);
+ vp9_resize_plane(u, height / 2, width / 2, uv_stride,
+ ou, oheight / 2, owidth / 2, ouv_stride);
+ vp9_resize_plane(v, height / 2, width / 2, uv_stride,
+ ov, oheight / 2, owidth / 2, ouv_stride);
+}
+
+void vp9_resize_frame422(const uint8_t *const y, int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth) {
+ vp9_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride);
+ vp9_resize_plane(u, height, width / 2, uv_stride,
+ ou, oheight, owidth / 2, ouv_stride);
+ vp9_resize_plane(v, height, width / 2, uv_stride,
+ ov, oheight, owidth / 2, ouv_stride);
+}
+
+void vp9_resize_frame444(const uint8_t *const y, int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth) {
+ vp9_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride);
+ vp9_resize_plane(u, height, width, uv_stride,
+ ou, oheight, owidth, ouv_stride);
+ vp9_resize_plane(v, height, width, uv_stride,
+ ov, oheight, owidth, ouv_stride);
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_resize_frame420(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth, int bd) {
+ vp9_highbd_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride, bd);
+ vp9_highbd_resize_plane(u, height / 2, width / 2, uv_stride,
+ ou, oheight / 2, owidth / 2, ouv_stride, bd);
+ vp9_highbd_resize_plane(v, height / 2, width / 2, uv_stride,
+ ov, oheight / 2, owidth / 2, ouv_stride, bd);
+}
+
+void vp9_highbd_resize_frame422(const uint8_t *const y, int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth, int bd) {
+ vp9_highbd_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride, bd);
+ vp9_highbd_resize_plane(u, height, width / 2, uv_stride,
+ ou, oheight, owidth / 2, ouv_stride, bd);
+ vp9_highbd_resize_plane(v, height, width / 2, uv_stride,
+ ov, oheight, owidth / 2, ouv_stride, bd);
+}
+
+void vp9_highbd_resize_frame444(const uint8_t *const y, int y_stride,
+ const uint8_t *const u, const uint8_t *const v,
+ int uv_stride,
+ int height, int width,
+ uint8_t *oy, int oy_stride,
+ uint8_t *ou, uint8_t *ov, int ouv_stride,
+ int oheight, int owidth, int bd) {
+ vp9_highbd_resize_plane(y, height, width, y_stride,
+ oy, oheight, owidth, oy_stride, bd);
+ vp9_highbd_resize_plane(u, height, width, uv_stride,
+ ou, oheight, owidth, ouv_stride, bd);
+ vp9_highbd_resize_plane(v, height, width, uv_stride,
+ ov, oheight, owidth, ouv_stride, bd);
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
diff --git a/media/libvpx/vp9/encoder/vp9_resize.h b/media/libvpx/vp9/encoder/vp9_resize.h
new file mode 100644
index 000000000..067af53f9
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_resize.h
@@ -0,0 +1,124 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_RESIZE_H_
+#define VP9_ENCODER_VP9_RESIZE_H_
+
+#include <stdio.h>
+#include "vpx/vpx_integer.h"
+
+void vp9_resize_plane(const uint8_t *const input,
+ int height,
+ int width,
+ int in_stride,
+ uint8_t *output,
+ int height2,
+ int width2,
+ int out_stride);
+void vp9_resize_frame420(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth);
+void vp9_resize_frame422(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth);
+void vp9_resize_frame444(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth);
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_resize_plane(const uint8_t *const input,
+ int height,
+ int width,
+ int in_stride,
+ uint8_t *output,
+ int height2,
+ int width2,
+ int out_stride,
+ int bd);
+void vp9_highbd_resize_frame420(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth,
+ int bd);
+void vp9_highbd_resize_frame422(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth,
+ int bd);
+void vp9_highbd_resize_frame444(const uint8_t *const y,
+ int y_stride,
+ const uint8_t *const u,
+ const uint8_t *const v,
+ int uv_stride,
+ int height,
+ int width,
+ uint8_t *oy,
+ int oy_stride,
+ uint8_t *ou,
+ uint8_t *ov,
+ int ouv_stride,
+ int oheight,
+ int owidth,
+ int bd);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+#endif // VP9_ENCODER_VP9_RESIZE_H_
diff --git a/media/libvpx/vp9/encoder/vp9_segmentation.c b/media/libvpx/vp9/encoder/vp9_segmentation.c
new file mode 100644
index 000000000..9b15072e9
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_segmentation.c
@@ -0,0 +1,281 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#include <limits.h>
+
+#include "vpx_mem/vpx_mem.h"
+
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_tile_common.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_segmentation.h"
+
+void vp9_enable_segmentation(struct segmentation *seg) {
+ seg->enabled = 1;
+ seg->update_map = 1;
+ seg->update_data = 1;
+}
+
+void vp9_disable_segmentation(struct segmentation *seg) {
+ seg->enabled = 0;
+ seg->update_map = 0;
+ seg->update_data = 0;
+}
+
+void vp9_set_segment_data(struct segmentation *seg,
+ signed char *feature_data,
+ unsigned char abs_delta) {
+ seg->abs_delta = abs_delta;
+
+ memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));
+}
+void vp9_disable_segfeature(struct segmentation *seg, int segment_id,
+ SEG_LVL_FEATURES feature_id) {
+ seg->feature_mask[segment_id] &= ~(1 << feature_id);
+}
+
+void vp9_clear_segdata(struct segmentation *seg, int segment_id,
+ SEG_LVL_FEATURES feature_id) {
+ seg->feature_data[segment_id][feature_id] = 0;
+}
+
+// Based on set of segment counts calculate a probability tree
+static void calc_segtree_probs(int *segcounts, vp9_prob *segment_tree_probs) {
+ // Work out probabilities of each segment
+ const int c01 = segcounts[0] + segcounts[1];
+ const int c23 = segcounts[2] + segcounts[3];
+ const int c45 = segcounts[4] + segcounts[5];
+ const int c67 = segcounts[6] + segcounts[7];
+
+ segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67);
+ segment_tree_probs[1] = get_binary_prob(c01, c23);
+ segment_tree_probs[2] = get_binary_prob(c45, c67);
+ segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
+ segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]);
+ segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]);
+ segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]);
+}
+
+// Based on set of segment counts and probabilities calculate a cost estimate
+static int cost_segmap(int *segcounts, vp9_prob *probs) {
+ const int c01 = segcounts[0] + segcounts[1];
+ const int c23 = segcounts[2] + segcounts[3];
+ const int c45 = segcounts[4] + segcounts[5];
+ const int c67 = segcounts[6] + segcounts[7];
+ const int c0123 = c01 + c23;
+ const int c4567 = c45 + c67;
+
+ // Cost the top node of the tree
+ int cost = c0123 * vp9_cost_zero(probs[0]) +
+ c4567 * vp9_cost_one(probs[0]);
+
+ // Cost subsequent levels
+ if (c0123 > 0) {
+ cost += c01 * vp9_cost_zero(probs[1]) +
+ c23 * vp9_cost_one(probs[1]);
+
+ if (c01 > 0)
+ cost += segcounts[0] * vp9_cost_zero(probs[3]) +
+ segcounts[1] * vp9_cost_one(probs[3]);
+ if (c23 > 0)
+ cost += segcounts[2] * vp9_cost_zero(probs[4]) +
+ segcounts[3] * vp9_cost_one(probs[4]);
+ }
+
+ if (c4567 > 0) {
+ cost += c45 * vp9_cost_zero(probs[2]) +
+ c67 * vp9_cost_one(probs[2]);
+
+ if (c45 > 0)
+ cost += segcounts[4] * vp9_cost_zero(probs[5]) +
+ segcounts[5] * vp9_cost_one(probs[5]);
+ if (c67 > 0)
+ cost += segcounts[6] * vp9_cost_zero(probs[6]) +
+ segcounts[7] * vp9_cost_one(probs[6]);
+ }
+
+ return cost;
+}
+
+static void count_segs(const VP9_COMMON *cm, MACROBLOCKD *xd,
+ const TileInfo *tile, MODE_INFO **mi,
+ int *no_pred_segcounts,
+ int (*temporal_predictor_count)[2],
+ int *t_unpred_seg_counts,
+ int bw, int bh, int mi_row, int mi_col) {
+ int segment_id;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ xd->mi = mi;
+ segment_id = xd->mi[0]->mbmi.segment_id;
+
+ set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
+
+ // Count the number of hits on each segment with no prediction
+ no_pred_segcounts[segment_id]++;
+
+ // Temporal prediction not allowed on key frames
+ if (cm->frame_type != KEY_FRAME) {
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+ // Test to see if the segment id matches the predicted value.
+ const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map,
+ bsize, mi_row, mi_col);
+ const int pred_flag = pred_segment_id == segment_id;
+ const int pred_context = vp9_get_pred_context_seg_id(xd);
+
+ // Store the prediction status for this mb and update counts
+ // as appropriate
+ xd->mi[0]->mbmi.seg_id_predicted = pred_flag;
+ temporal_predictor_count[pred_context][pred_flag]++;
+
+ // Update the "unpredicted" segment count
+ if (!pred_flag)
+ t_unpred_seg_counts[segment_id]++;
+ }
+}
+
+static void count_segs_sb(const VP9_COMMON *cm, MACROBLOCKD *xd,
+ const TileInfo *tile, MODE_INFO **mi,
+ int *no_pred_segcounts,
+ int (*temporal_predictor_count)[2],
+ int *t_unpred_seg_counts,
+ int mi_row, int mi_col,
+ BLOCK_SIZE bsize) {
+ const int mis = cm->mi_stride;
+ int bw, bh;
+ const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
+ return;
+
+ bw = num_8x8_blocks_wide_lookup[mi[0]->mbmi.sb_type];
+ bh = num_8x8_blocks_high_lookup[mi[0]->mbmi.sb_type];
+
+ if (bw == bs && bh == bs) {
+ count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
+ t_unpred_seg_counts, bs, bs, mi_row, mi_col);
+ } else if (bw == bs && bh < bs) {
+ count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
+ t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
+ count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
+ temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
+ mi_row + hbs, mi_col);
+ } else if (bw < bs && bh == bs) {
+ count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
+ t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
+ count_segs(cm, xd, tile, mi + hbs,
+ no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts,
+ hbs, bs, mi_row, mi_col + hbs);
+ } else {
+ const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
+ int n;
+
+ assert(bw < bs && bh < bs);
+
+ for (n = 0; n < 4; n++) {
+ const int mi_dc = hbs * (n & 1);
+ const int mi_dr = hbs * (n >> 1);
+
+ count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc],
+ no_pred_segcounts, temporal_predictor_count,
+ t_unpred_seg_counts,
+ mi_row + mi_dr, mi_col + mi_dc, subsize);
+ }
+ }
+}
+
+void vp9_choose_segmap_coding_method(VP9_COMMON *cm, MACROBLOCKD *xd) {
+ struct segmentation *seg = &cm->seg;
+
+ int no_pred_cost;
+ int t_pred_cost = INT_MAX;
+
+ int i, tile_col, mi_row, mi_col;
+
+ int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } };
+ int no_pred_segcounts[MAX_SEGMENTS] = { 0 };
+ int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
+
+ vp9_prob no_pred_tree[SEG_TREE_PROBS];
+ vp9_prob t_pred_tree[SEG_TREE_PROBS];
+ vp9_prob t_nopred_prob[PREDICTION_PROBS];
+
+ // Set default state for the segment tree probabilities and the
+ // temporal coding probabilities
+ memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
+ memset(seg->pred_probs, 255, sizeof(seg->pred_probs));
+
+ // First of all generate stats regarding how well the last segment map
+ // predicts this one
+ for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
+ TileInfo tile;
+ MODE_INFO **mi_ptr;
+ vp9_tile_init(&tile, cm, 0, tile_col);
+
+ mi_ptr = cm->mi_grid_visible + tile.mi_col_start;
+ for (mi_row = 0; mi_row < cm->mi_rows;
+ mi_row += 8, mi_ptr += 8 * cm->mi_stride) {
+ MODE_INFO **mi = mi_ptr;
+ for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
+ mi_col += 8, mi += 8)
+ count_segs_sb(cm, xd, &tile, mi, no_pred_segcounts,
+ temporal_predictor_count, t_unpred_seg_counts,
+ mi_row, mi_col, BLOCK_64X64);
+ }
+ }
+
+ // Work out probability tree for coding segments without prediction
+ // and the cost.
+ calc_segtree_probs(no_pred_segcounts, no_pred_tree);
+ no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);
+
+ // Key frames cannot use temporal prediction
+ if (!frame_is_intra_only(cm)) {
+ // Work out probability tree for coding those segments not
+ // predicted using the temporal method and the cost.
+ calc_segtree_probs(t_unpred_seg_counts, t_pred_tree);
+ t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);
+
+ // Add in the cost of the signaling for each prediction context.
+ for (i = 0; i < PREDICTION_PROBS; i++) {
+ const int count0 = temporal_predictor_count[i][0];
+ const int count1 = temporal_predictor_count[i][1];
+
+ t_nopred_prob[i] = get_binary_prob(count0, count1);
+
+ // Add in the predictor signaling cost
+ t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) +
+ count1 * vp9_cost_one(t_nopred_prob[i]);
+ }
+ }
+
+ // Now choose which coding method to use.
+ if (t_pred_cost < no_pred_cost) {
+ seg->temporal_update = 1;
+ memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree));
+ memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
+ } else {
+ seg->temporal_update = 0;
+ memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree));
+ }
+}
+
+void vp9_reset_segment_features(struct segmentation *seg) {
+ // Set up default state for MB feature flags
+ seg->enabled = 0;
+ seg->update_map = 0;
+ seg->update_data = 0;
+ memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
+ vp9_clearall_segfeatures(seg);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_segmentation.h b/media/libvpx/vp9/encoder/vp9_segmentation.h
new file mode 100644
index 000000000..8c6944ad1
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_segmentation.h
@@ -0,0 +1,53 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_SEGMENTATION_H_
+#define VP9_ENCODER_VP9_SEGMENTATION_H_
+
+#include "vp9/common/vp9_blockd.h"
+#include "vp9/encoder/vp9_encoder.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_enable_segmentation(struct segmentation *seg);
+void vp9_disable_segmentation(struct segmentation *seg);
+
+void vp9_disable_segfeature(struct segmentation *seg,
+ int segment_id,
+ SEG_LVL_FEATURES feature_id);
+void vp9_clear_segdata(struct segmentation *seg,
+ int segment_id,
+ SEG_LVL_FEATURES feature_id);
+
+// The values given for each segment can be either deltas (from the default
+// value chosen for the frame) or absolute values.
+//
+// Valid range for abs values is (0-127 for MB_LVL_ALT_Q), (0-63 for
+// SEGMENT_ALT_LF)
+// Valid range for delta values are (+/-127 for MB_LVL_ALT_Q), (+/-63 for
+// SEGMENT_ALT_LF)
+//
+// abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use
+// the absolute values given).
+void vp9_set_segment_data(struct segmentation *seg, signed char *feature_data,
+ unsigned char abs_delta);
+
+void vp9_choose_segmap_coding_method(VP9_COMMON *cm, MACROBLOCKD *xd);
+
+void vp9_reset_segment_features(struct segmentation *seg);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SEGMENTATION_H_
diff --git a/media/libvpx/vp9/encoder/vp9_skin_detection.c b/media/libvpx/vp9/encoder/vp9_skin_detection.c
new file mode 100644
index 000000000..1cb066283
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_skin_detection.c
@@ -0,0 +1,104 @@
+/*
+ * Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include <math.h>
+
+#include "vp9/common/vp9_blockd.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_skin_detection.h"
+
+// Fixed-point skin color model parameters.
+static const int skin_mean[2] = {7463, 9614}; // q6
+static const int skin_inv_cov[4] = {4107, 1663, 1663, 2157}; // q16
+static const int skin_threshold = 1570636; // q18
+
+// Thresholds on luminance.
+static const int y_low = 20;
+static const int y_high = 220;
+
+// Evaluates the Mahalanobis distance measure for the input CbCr values.
+static int evaluate_skin_color_difference(int cb, int cr) {
+ const int cb_q6 = cb << 6;
+ const int cr_q6 = cr << 6;
+ const int cb_diff_q12 = (cb_q6 - skin_mean[0]) * (cb_q6 - skin_mean[0]);
+ const int cbcr_diff_q12 = (cb_q6 - skin_mean[0]) * (cr_q6 - skin_mean[1]);
+ const int cr_diff_q12 = (cr_q6 - skin_mean[1]) * (cr_q6 - skin_mean[1]);
+ const int cb_diff_q2 = (cb_diff_q12 + (1 << 9)) >> 10;
+ const int cbcr_diff_q2 = (cbcr_diff_q12 + (1 << 9)) >> 10;
+ const int cr_diff_q2 = (cr_diff_q12 + (1 << 9)) >> 10;
+ const int skin_diff = skin_inv_cov[0] * cb_diff_q2 +
+ skin_inv_cov[1] * cbcr_diff_q2 +
+ skin_inv_cov[2] * cbcr_diff_q2 +
+ skin_inv_cov[3] * cr_diff_q2;
+ return skin_diff;
+}
+
+int vp9_skin_pixel(const uint8_t y, const uint8_t cb, const uint8_t cr) {
+ if (y < y_low || y > y_high)
+ return 0;
+ else
+ return (evaluate_skin_color_difference(cb, cr) < skin_threshold);
+}
+
+#ifdef OUTPUT_YUV_SKINMAP
+// For viewing skin map on input source.
+void vp9_compute_skin_map(VP9_COMP *const cpi, FILE *yuv_skinmap_file) {
+ int i, j, mi_row, mi_col;
+ VP9_COMMON *const cm = &cpi->common;
+ uint8_t *y;
+ const uint8_t *src_y = cpi->Source->y_buffer;
+ const uint8_t *src_u = cpi->Source->u_buffer;
+ const uint8_t *src_v = cpi->Source->v_buffer;
+ const int src_ystride = cpi->Source->y_stride;
+ const int src_uvstride = cpi->Source->uv_stride;
+ YV12_BUFFER_CONFIG skinmap;
+ memset(&skinmap, 0, sizeof(YV12_BUFFER_CONFIG));
+ if (vp9_alloc_frame_buffer(&skinmap, cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+ VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment)) {
+ vp9_free_frame_buffer(&skinmap);
+ return;
+ }
+ memset(skinmap.buffer_alloc, 128, skinmap.frame_size);
+ y = skinmap.y_buffer;
+ // Loop through 8x8 blocks and set skin map based on center pixel of block.
+ // Set y to white for skin block, otherwise set to source with gray scale.
+ // Ignore rightmost/bottom boundary blocks.
+ for (mi_row = 0; mi_row < cm->mi_rows - 1; ++mi_row) {
+ for (mi_col = 0; mi_col < cm->mi_cols - 1; ++mi_col) {
+ // Use middle pixel for each 8x8 block for skin detection.
+ // If middle pixel is skin, assign whole 8x8 block to skin.
+ const uint8_t ysource = src_y[4 * src_ystride + 4];
+ const uint8_t usource = src_u[2 * src_uvstride + 2];
+ const uint8_t vsource = src_v[2 * src_uvstride + 2];
+ const int is_skin = vp9_skin_pixel(ysource, usource, vsource);
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 8; j++) {
+ if (is_skin)
+ y[i * src_ystride + j] = 255;
+ else
+ y[i * src_ystride + j] = src_y[i * src_ystride + j];
+ }
+ }
+ y += 8;
+ src_y += 8;
+ src_u += 4;
+ src_v += 4;
+ }
+ y += (src_ystride << 3) - ((cm->mi_cols - 1) << 3);
+ src_y += (src_ystride << 3) - ((cm->mi_cols - 1) << 3);
+ src_u += (src_uvstride << 2) - ((cm->mi_cols - 1) << 2);
+ src_v += (src_uvstride << 2) - ((cm->mi_cols - 1) << 2);
+ }
+ vp9_write_yuv_frame_420(&skinmap, yuv_skinmap_file);
+ vp9_free_frame_buffer(&skinmap);
+}
+#endif
diff --git a/media/libvpx/vp9/encoder/vp9_skin_detection.h b/media/libvpx/vp9/encoder/vp9_skin_detection.h
new file mode 100644
index 000000000..3d4e7375f
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_skin_detection.h
@@ -0,0 +1,35 @@
+/*
+ * Copyright (c) 2015 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_SKIN_MAP_H_
+#define VP9_ENCODER_VP9_SKIN_MAP_H_
+
+#include "vp9/common/vp9_blockd.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct VP9_COMP;
+
+// #define OUTPUT_YUV_SKINMAP
+
+int vp9_skin_pixel(const uint8_t y, const uint8_t cb, const uint8_t cr);
+
+#ifdef OUTPUT_YUV_SKINMAP
+// For viewing skin map on input source.
+void vp9_compute_skin_map(VP9_COMP *const cpi, FILE *yuv_skinmap_file);
+#endif
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SKIN_MAP_H_
diff --git a/media/libvpx/vp9/encoder/vp9_speed_features.c b/media/libvpx/vp9/encoder/vp9_speed_features.c
new file mode 100644
index 000000000..4b206ba7b
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_speed_features.c
@@ -0,0 +1,531 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_speed_features.h"
+
+// Intra only frames, golden frames (except alt ref overlays) and
+// alt ref frames tend to be coded at a higher than ambient quality
+static int frame_is_boosted(const VP9_COMP *cpi) {
+ return frame_is_kf_gf_arf(cpi) || vp9_is_upper_layer_key_frame(cpi);
+}
+
+static void set_good_speed_feature_framesize_dependent(VP9_COMMON *cm,
+ SPEED_FEATURES *sf,
+ int speed) {
+ if (speed >= 1) {
+ if (MIN(cm->width, cm->height) >= 720) {
+ sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
+ : DISABLE_ALL_INTER_SPLIT;
+ sf->partition_search_breakout_dist_thr = (1 << 23);
+ } else {
+ sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
+ sf->partition_search_breakout_dist_thr = (1 << 21);
+ }
+ }
+
+ if (speed >= 2) {
+ if (MIN(cm->width, cm->height) >= 720) {
+ sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
+ : DISABLE_ALL_INTER_SPLIT;
+ sf->adaptive_pred_interp_filter = 0;
+ sf->partition_search_breakout_dist_thr = (1 << 24);
+ sf->partition_search_breakout_rate_thr = 120;
+ } else {
+ sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
+ sf->partition_search_breakout_dist_thr = (1 << 22);
+ sf->partition_search_breakout_rate_thr = 100;
+ }
+ }
+
+ if (speed >= 3) {
+ if (MIN(cm->width, cm->height) >= 720) {
+ sf->disable_split_mask = DISABLE_ALL_SPLIT;
+ sf->schedule_mode_search = cm->base_qindex < 220 ? 1 : 0;
+ sf->partition_search_breakout_dist_thr = (1 << 25);
+ sf->partition_search_breakout_rate_thr = 200;
+ } else {
+ sf->max_intra_bsize = BLOCK_32X32;
+ sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT;
+ sf->schedule_mode_search = cm->base_qindex < 175 ? 1 : 0;
+ sf->partition_search_breakout_dist_thr = (1 << 23);
+ sf->partition_search_breakout_rate_thr = 120;
+ }
+ }
+
+ if (speed >= 4) {
+ if (MIN(cm->width, cm->height) >= 720) {
+ sf->partition_search_breakout_dist_thr = (1 << 26);
+ } else {
+ sf->partition_search_breakout_dist_thr = (1 << 24);
+ }
+ sf->disable_split_mask = DISABLE_ALL_SPLIT;
+ }
+}
+
+// Sets a partition size down to which the auto partition code will always
+// search (can go lower), based on the image dimensions. The logic here
+// is that the extent to which ringing artefacts are offensive, depends
+// partly on the screen area that over which they propogate. Propogation is
+// limited by transform block size but the screen area take up by a given block
+// size will be larger for a small image format stretched to full screen.
+static BLOCK_SIZE set_partition_min_limit(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ unsigned int screen_area = (cm->width * cm->height);
+
+ // Select block size based on image format size.
+ if (screen_area < 1280 * 720) {
+ // Formats smaller in area than 720P
+ return BLOCK_4X4;
+ } else if (screen_area < 1920 * 1080) {
+ // Format >= 720P and < 1080P
+ return BLOCK_8X8;
+ } else {
+ // Formats 1080P and up
+ return BLOCK_16X16;
+ }
+}
+
+static void set_good_speed_feature(VP9_COMP *cpi, VP9_COMMON *cm,
+ SPEED_FEATURES *sf, int speed) {
+ const int boosted = frame_is_boosted(cpi);
+
+ sf->adaptive_rd_thresh = 1;
+ sf->allow_skip_recode = 1;
+
+ if (speed >= 1) {
+ sf->use_square_partition_only = !frame_is_intra_only(cm);
+ sf->less_rectangular_check = 1;
+
+ sf->use_rd_breakout = 1;
+ sf->adaptive_motion_search = 1;
+ sf->mv.auto_mv_step_size = 1;
+ sf->adaptive_rd_thresh = 2;
+ sf->mv.subpel_iters_per_step = 1;
+ sf->mode_skip_start = 10;
+ sf->adaptive_pred_interp_filter = 1;
+
+ sf->recode_loop = ALLOW_RECODE_KFARFGF;
+ sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
+
+ sf->tx_size_search_breakout = 1;
+ sf->partition_search_breakout_rate_thr = 80;
+ }
+
+ if (speed >= 2) {
+ sf->tx_size_search_method = frame_is_boosted(cpi) ? USE_FULL_RD
+ : USE_LARGESTALL;
+
+ // Reference masking is not supported in dynamic scaling mode.
+ sf->reference_masking = cpi->oxcf.resize_mode != RESIZE_DYNAMIC ? 1 : 0;
+
+ sf->mode_search_skip_flags = (cm->frame_type == KEY_FRAME) ? 0 :
+ FLAG_SKIP_INTRA_DIRMISMATCH |
+ FLAG_SKIP_INTRA_BESTINTER |
+ FLAG_SKIP_COMP_BESTINTRA |
+ FLAG_SKIP_INTRA_LOWVAR;
+ sf->disable_filter_search_var_thresh = 100;
+ sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
+ sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
+ sf->rd_auto_partition_min_limit = set_partition_min_limit(cpi);
+ sf->allow_partition_search_skip = 1;
+ }
+
+ if (speed >= 3) {
+ sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD
+ : USE_LARGESTALL;
+ sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED;
+ sf->adaptive_pred_interp_filter = 0;
+ sf->adaptive_mode_search = 1;
+ sf->cb_partition_search = !boosted;
+ sf->cb_pred_filter_search = 1;
+ sf->alt_ref_search_fp = 1;
+ sf->recode_loop = ALLOW_RECODE_KFMAXBW;
+ sf->adaptive_rd_thresh = 3;
+ sf->mode_skip_start = 6;
+ sf->intra_y_mode_mask[TX_32X32] = INTRA_DC;
+ sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC;
+ sf->adaptive_interp_filter_search = 1;
+ }
+
+ if (speed >= 4) {
+ sf->use_square_partition_only = 1;
+ sf->tx_size_search_method = USE_LARGESTALL;
+ sf->mv.search_method = BIGDIA;
+ sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED_MORE;
+ sf->adaptive_rd_thresh = 4;
+ if (cm->frame_type != KEY_FRAME)
+ sf->mode_search_skip_flags |= FLAG_EARLY_TERMINATE;
+ sf->disable_filter_search_var_thresh = 200;
+ sf->use_lp32x32fdct = 1;
+ sf->use_fast_coef_updates = ONE_LOOP_REDUCED;
+ sf->use_fast_coef_costing = 1;
+ sf->motion_field_mode_search = !boosted;
+ sf->partition_search_breakout_rate_thr = 300;
+ }
+
+ if (speed >= 5) {
+ int i;
+ sf->optimize_coefficients = 0;
+ sf->mv.search_method = HEX;
+ sf->disable_filter_search_var_thresh = 500;
+ for (i = 0; i < TX_SIZES; ++i) {
+ sf->intra_y_mode_mask[i] = INTRA_DC;
+ sf->intra_uv_mode_mask[i] = INTRA_DC;
+ }
+ sf->partition_search_breakout_rate_thr = 500;
+ sf->mv.reduce_first_step_size = 1;
+ }
+}
+
+static void set_rt_speed_feature_framesize_dependent(VP9_COMP *cpi,
+ SPEED_FEATURES *sf, int speed) {
+ VP9_COMMON *const cm = &cpi->common;
+
+ if (speed >= 1) {
+ if (MIN(cm->width, cm->height) >= 720) {
+ sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
+ : DISABLE_ALL_INTER_SPLIT;
+ } else {
+ sf->disable_split_mask = DISABLE_COMPOUND_SPLIT;
+ }
+ }
+
+ if (speed >= 2) {
+ if (MIN(cm->width, cm->height) >= 720) {
+ sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
+ : DISABLE_ALL_INTER_SPLIT;
+ } else {
+ sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
+ }
+ }
+
+ if (speed >= 5) {
+ if (MIN(cm->width, cm->height) >= 720) {
+ sf->partition_search_breakout_dist_thr = (1 << 25);
+ } else {
+ sf->partition_search_breakout_dist_thr = (1 << 23);
+ }
+ }
+
+ if (speed >= 7) {
+ sf->encode_breakout_thresh = (MIN(cm->width, cm->height) >= 720) ?
+ 800 : 300;
+ }
+}
+
+static void set_rt_speed_feature(VP9_COMP *cpi, SPEED_FEATURES *sf,
+ int speed, vp9e_tune_content content) {
+ VP9_COMMON *const cm = &cpi->common;
+ const int is_keyframe = cm->frame_type == KEY_FRAME;
+ const int frames_since_key = is_keyframe ? 0 : cpi->rc.frames_since_key;
+ sf->static_segmentation = 0;
+ sf->adaptive_rd_thresh = 1;
+ sf->use_fast_coef_costing = 1;
+
+ if (speed >= 1) {
+ sf->use_square_partition_only = !frame_is_intra_only(cm);
+ sf->less_rectangular_check = 1;
+ sf->tx_size_search_method = frame_is_intra_only(cm) ? USE_FULL_RD
+ : USE_LARGESTALL;
+
+ sf->use_rd_breakout = 1;
+
+ sf->adaptive_motion_search = 1;
+ sf->adaptive_pred_interp_filter = 1;
+ sf->mv.auto_mv_step_size = 1;
+ sf->adaptive_rd_thresh = 2;
+ sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V;
+ }
+
+ if (speed >= 2) {
+ sf->mode_search_skip_flags = (cm->frame_type == KEY_FRAME) ? 0 :
+ FLAG_SKIP_INTRA_DIRMISMATCH |
+ FLAG_SKIP_INTRA_BESTINTER |
+ FLAG_SKIP_COMP_BESTINTRA |
+ FLAG_SKIP_INTRA_LOWVAR;
+ sf->adaptive_pred_interp_filter = 2;
+
+ // Disable reference masking if using spatial scaling since
+ // pred_mv_sad will not be set (since vp9_mv_pred will not
+ // be called).
+ // TODO(marpan/agrange): Fix this condition.
+ sf->reference_masking = (cpi->oxcf.resize_mode != RESIZE_DYNAMIC &&
+ cpi->svc.number_spatial_layers == 1) ? 1 : 0;
+
+ sf->disable_filter_search_var_thresh = 50;
+ sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
+ sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
+ sf->lf_motion_threshold = LOW_MOTION_THRESHOLD;
+ sf->adjust_partitioning_from_last_frame = 1;
+ sf->last_partitioning_redo_frequency = 3;
+ sf->use_lp32x32fdct = 1;
+ sf->mode_skip_start = 11;
+ sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V;
+ }
+
+ if (speed >= 3) {
+ sf->use_square_partition_only = 1;
+ sf->disable_filter_search_var_thresh = 100;
+ sf->use_uv_intra_rd_estimate = 1;
+ sf->skip_encode_sb = 1;
+ sf->mv.subpel_iters_per_step = 1;
+ sf->adaptive_rd_thresh = 4;
+ sf->mode_skip_start = 6;
+ sf->allow_skip_recode = 0;
+ sf->optimize_coefficients = 0;
+ sf->disable_split_mask = DISABLE_ALL_SPLIT;
+ sf->lpf_pick = LPF_PICK_FROM_Q;
+ }
+
+ if (speed >= 4) {
+ int i;
+ sf->last_partitioning_redo_frequency = 4;
+ sf->adaptive_rd_thresh = 5;
+ sf->use_fast_coef_costing = 0;
+ sf->auto_min_max_partition_size = STRICT_NEIGHBORING_MIN_MAX;
+ sf->adjust_partitioning_from_last_frame =
+ cm->last_frame_type != cm->frame_type || (0 ==
+ (frames_since_key + 1) % sf->last_partitioning_redo_frequency);
+ sf->mv.subpel_force_stop = 1;
+ for (i = 0; i < TX_SIZES; i++) {
+ sf->intra_y_mode_mask[i] = INTRA_DC_H_V;
+ sf->intra_uv_mode_mask[i] = INTRA_DC;
+ }
+ sf->intra_y_mode_mask[TX_32X32] = INTRA_DC;
+ sf->frame_parameter_update = 0;
+ sf->mv.search_method = FAST_HEX;
+
+ sf->inter_mode_mask[BLOCK_32X32] = INTER_NEAREST_NEAR_NEW;
+ sf->inter_mode_mask[BLOCK_32X64] = INTER_NEAREST;
+ sf->inter_mode_mask[BLOCK_64X32] = INTER_NEAREST;
+ sf->inter_mode_mask[BLOCK_64X64] = INTER_NEAREST;
+ sf->max_intra_bsize = BLOCK_32X32;
+ sf->allow_skip_recode = 1;
+ }
+
+ if (speed >= 5) {
+ sf->use_quant_fp = !is_keyframe;
+ sf->auto_min_max_partition_size = is_keyframe ? RELAXED_NEIGHBORING_MIN_MAX
+ : STRICT_NEIGHBORING_MIN_MAX;
+ sf->default_max_partition_size = BLOCK_32X32;
+ sf->default_min_partition_size = BLOCK_8X8;
+ sf->force_frame_boost = is_keyframe ||
+ (frames_since_key % (sf->last_partitioning_redo_frequency << 1) == 1);
+ sf->max_delta_qindex = is_keyframe ? 20 : 15;
+ sf->partition_search_type = REFERENCE_PARTITION;
+ sf->use_nonrd_pick_mode = 1;
+ sf->allow_skip_recode = 0;
+ sf->inter_mode_mask[BLOCK_32X32] = INTER_NEAREST_NEW_ZERO;
+ sf->inter_mode_mask[BLOCK_32X64] = INTER_NEAREST_NEW_ZERO;
+ sf->inter_mode_mask[BLOCK_64X32] = INTER_NEAREST_NEW_ZERO;
+ sf->inter_mode_mask[BLOCK_64X64] = INTER_NEAREST_NEW_ZERO;
+ sf->adaptive_rd_thresh = 2;
+ // This feature is only enabled when partition search is disabled.
+ sf->reuse_inter_pred_sby = 1;
+ sf->partition_search_breakout_rate_thr = 200;
+ sf->coeff_prob_appx_step = 4;
+ sf->use_fast_coef_updates = is_keyframe ? TWO_LOOP : ONE_LOOP_REDUCED;
+ sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH;
+ sf->tx_size_search_method = is_keyframe ? USE_LARGESTALL : USE_TX_8X8;
+
+ if (!is_keyframe) {
+ int i;
+ if (content == VP9E_CONTENT_SCREEN) {
+ for (i = 0; i < BLOCK_SIZES; ++i)
+ sf->intra_y_mode_bsize_mask[i] = INTRA_DC_TM_H_V;
+ } else {
+ for (i = 0; i < BLOCK_SIZES; ++i)
+ if (i >= BLOCK_16X16)
+ sf->intra_y_mode_bsize_mask[i] = INTRA_DC;
+ else
+ // Use H and V intra mode for block sizes <= 16X16.
+ sf->intra_y_mode_bsize_mask[i] = INTRA_DC_H_V;
+ }
+ }
+ }
+
+ if (speed >= 6) {
+ // Adaptively switch between SOURCE_VAR_BASED_PARTITION and FIXED_PARTITION.
+ sf->partition_search_type = VAR_BASED_PARTITION;
+ // Turn on this to use non-RD key frame coding mode.
+ sf->use_nonrd_pick_mode = 1;
+ sf->mv.search_method = NSTEP;
+ sf->mv.reduce_first_step_size = 1;
+ sf->skip_encode_sb = 0;
+ }
+
+ if (speed >= 7) {
+ sf->adaptive_rd_thresh = 3;
+ sf->mv.search_method = FAST_DIAMOND;
+ sf->mv.fullpel_search_step_param = 10;
+ }
+ if (speed >= 8) {
+ sf->adaptive_rd_thresh = 4;
+ sf->mv.subpel_force_stop = 2;
+ sf->lpf_pick = LPF_PICK_MINIMAL_LPF;
+ }
+}
+
+void vp9_set_speed_features_framesize_dependent(VP9_COMP *cpi) {
+ SPEED_FEATURES *const sf = &cpi->sf;
+ VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ RD_OPT *const rd = &cpi->rd;
+ int i;
+
+ if (oxcf->mode == REALTIME) {
+ set_rt_speed_feature_framesize_dependent(cpi, sf, oxcf->speed);
+ } else if (oxcf->mode == GOOD) {
+ set_good_speed_feature_framesize_dependent(cm, sf, oxcf->speed);
+ }
+
+ if (sf->disable_split_mask == DISABLE_ALL_SPLIT) {
+ sf->adaptive_pred_interp_filter = 0;
+ }
+
+ if (cpi->encode_breakout && oxcf->mode == REALTIME &&
+ sf->encode_breakout_thresh > cpi->encode_breakout) {
+ cpi->encode_breakout = sf->encode_breakout_thresh;
+ }
+
+ // Check for masked out split cases.
+ for (i = 0; i < MAX_REFS; ++i) {
+ if (sf->disable_split_mask & (1 << i)) {
+ rd->thresh_mult_sub8x8[i] = INT_MAX;
+ }
+ }
+}
+
+void vp9_set_speed_features_framesize_independent(VP9_COMP *cpi) {
+ SPEED_FEATURES *const sf = &cpi->sf;
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->td.mb;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ int i;
+
+ // best quality defaults
+ sf->frame_parameter_update = 1;
+ sf->mv.search_method = NSTEP;
+ sf->recode_loop = ALLOW_RECODE;
+ sf->mv.subpel_search_method = SUBPEL_TREE;
+ sf->mv.subpel_iters_per_step = 2;
+ sf->mv.subpel_force_stop = 0;
+ sf->optimize_coefficients = !is_lossless_requested(&cpi->oxcf);
+ sf->mv.reduce_first_step_size = 0;
+ sf->coeff_prob_appx_step = 1;
+ sf->mv.auto_mv_step_size = 0;
+ sf->mv.fullpel_search_step_param = 6;
+ sf->comp_inter_joint_search_thresh = BLOCK_4X4;
+ sf->adaptive_rd_thresh = 0;
+ sf->tx_size_search_method = USE_FULL_RD;
+ sf->use_lp32x32fdct = 0;
+ sf->adaptive_motion_search = 0;
+ sf->adaptive_pred_interp_filter = 0;
+ sf->adaptive_mode_search = 0;
+ sf->cb_pred_filter_search = 0;
+ sf->cb_partition_search = 0;
+ sf->motion_field_mode_search = 0;
+ sf->alt_ref_search_fp = 0;
+ sf->use_quant_fp = 0;
+ sf->reference_masking = 0;
+ sf->partition_search_type = SEARCH_PARTITION;
+ sf->less_rectangular_check = 0;
+ sf->use_square_partition_only = 0;
+ sf->auto_min_max_partition_size = NOT_IN_USE;
+ sf->rd_auto_partition_min_limit = BLOCK_4X4;
+ sf->default_max_partition_size = BLOCK_64X64;
+ sf->default_min_partition_size = BLOCK_4X4;
+ sf->adjust_partitioning_from_last_frame = 0;
+ sf->last_partitioning_redo_frequency = 4;
+ sf->disable_split_mask = 0;
+ sf->mode_search_skip_flags = 0;
+ sf->force_frame_boost = 0;
+ sf->max_delta_qindex = 0;
+ sf->disable_filter_search_var_thresh = 0;
+ sf->adaptive_interp_filter_search = 0;
+ sf->allow_partition_search_skip = 0;
+
+ for (i = 0; i < TX_SIZES; i++) {
+ sf->intra_y_mode_mask[i] = INTRA_ALL;
+ sf->intra_uv_mode_mask[i] = INTRA_ALL;
+ }
+ sf->use_rd_breakout = 0;
+ sf->skip_encode_sb = 0;
+ sf->use_uv_intra_rd_estimate = 0;
+ sf->allow_skip_recode = 0;
+ sf->lpf_pick = LPF_PICK_FROM_FULL_IMAGE;
+ sf->use_fast_coef_updates = TWO_LOOP;
+ sf->use_fast_coef_costing = 0;
+ sf->mode_skip_start = MAX_MODES; // Mode index at which mode skip mask set
+ sf->schedule_mode_search = 0;
+ sf->use_nonrd_pick_mode = 0;
+ for (i = 0; i < BLOCK_SIZES; ++i)
+ sf->inter_mode_mask[i] = INTER_ALL;
+ sf->max_intra_bsize = BLOCK_64X64;
+ sf->reuse_inter_pred_sby = 0;
+ // This setting only takes effect when partition_search_type is set
+ // to FIXED_PARTITION.
+ sf->always_this_block_size = BLOCK_16X16;
+ sf->search_type_check_frequency = 50;
+ sf->encode_breakout_thresh = 0;
+ // Recode loop tolerance %.
+ sf->recode_tolerance = 25;
+ sf->default_interp_filter = SWITCHABLE;
+ sf->tx_size_search_breakout = 0;
+ sf->partition_search_breakout_dist_thr = 0;
+ sf->partition_search_breakout_rate_thr = 0;
+
+ if (oxcf->mode == REALTIME)
+ set_rt_speed_feature(cpi, sf, oxcf->speed, oxcf->content);
+ else if (oxcf->mode == GOOD)
+ set_good_speed_feature(cpi, cm, sf, oxcf->speed);
+
+ cpi->full_search_sad = vp9_full_search_sad;
+ cpi->diamond_search_sad = oxcf->mode == BEST ? vp9_full_range_search
+ : vp9_diamond_search_sad;
+
+ // Slow quant, dct and trellis not worthwhile for first pass
+ // so make sure they are always turned off.
+ if (oxcf->pass == 1)
+ sf->optimize_coefficients = 0;
+
+ // No recode for 1 pass.
+ if (oxcf->pass == 0) {
+ sf->recode_loop = DISALLOW_RECODE;
+ sf->optimize_coefficients = 0;
+ }
+
+ if (sf->mv.subpel_search_method == SUBPEL_TREE) {
+ cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree;
+ } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED) {
+ cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree_pruned;
+ } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED_MORE) {
+ cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree_pruned_more;
+ } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED_EVENMORE) {
+ cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree_pruned_evenmore;
+ }
+
+ x->optimize = sf->optimize_coefficients == 1 && oxcf->pass != 1;
+
+ x->min_partition_size = sf->default_min_partition_size;
+ x->max_partition_size = sf->default_max_partition_size;
+
+ if (!cpi->oxcf.frame_periodic_boost) {
+ sf->max_delta_qindex = 0;
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_speed_features.h b/media/libvpx/vp9/encoder/vp9_speed_features.h
new file mode 100644
index 000000000..8575638d9
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_speed_features.h
@@ -0,0 +1,429 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_SPEED_FEATURES_H_
+#define VP9_ENCODER_VP9_SPEED_FEATURES_H_
+
+#include "vp9/common/vp9_enums.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+enum {
+ INTRA_ALL = (1 << DC_PRED) |
+ (1 << V_PRED) | (1 << H_PRED) |
+ (1 << D45_PRED) | (1 << D135_PRED) |
+ (1 << D117_PRED) | (1 << D153_PRED) |
+ (1 << D207_PRED) | (1 << D63_PRED) |
+ (1 << TM_PRED),
+ INTRA_DC = (1 << DC_PRED),
+ INTRA_DC_TM = (1 << DC_PRED) | (1 << TM_PRED),
+ INTRA_DC_H_V = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED),
+ INTRA_DC_TM_H_V = (1 << DC_PRED) | (1 << TM_PRED) | (1 << V_PRED) |
+ (1 << H_PRED)
+};
+
+enum {
+ INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << ZEROMV) | (1 << NEWMV),
+ INTER_NEAREST = (1 << NEARESTMV),
+ INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
+ INTER_NEAREST_ZERO = (1 << NEARESTMV) | (1 << ZEROMV),
+ INTER_NEAREST_NEW_ZERO = (1 << NEARESTMV) | (1 << ZEROMV) | (1 << NEWMV),
+ INTER_NEAREST_NEAR_NEW = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
+ INTER_NEAREST_NEAR_ZERO = (1 << NEARESTMV) | (1 << NEARMV) | (1 << ZEROMV),
+};
+
+enum {
+ DISABLE_ALL_INTER_SPLIT = (1 << THR_COMP_GA) |
+ (1 << THR_COMP_LA) |
+ (1 << THR_ALTR) |
+ (1 << THR_GOLD) |
+ (1 << THR_LAST),
+
+ DISABLE_ALL_SPLIT = (1 << THR_INTRA) | DISABLE_ALL_INTER_SPLIT,
+
+ DISABLE_COMPOUND_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA),
+
+ LAST_AND_INTRA_SPLIT_ONLY = (1 << THR_COMP_GA) |
+ (1 << THR_COMP_LA) |
+ (1 << THR_ALTR) |
+ (1 << THR_GOLD)
+};
+
+typedef enum {
+ DIAMOND = 0,
+ NSTEP = 1,
+ HEX = 2,
+ BIGDIA = 3,
+ SQUARE = 4,
+ FAST_HEX = 5,
+ FAST_DIAMOND = 6
+} SEARCH_METHODS;
+
+typedef enum {
+ // No recode.
+ DISALLOW_RECODE = 0,
+ // Allow recode for KF and exceeding maximum frame bandwidth.
+ ALLOW_RECODE_KFMAXBW = 1,
+ // Allow recode only for KF/ARF/GF frames.
+ ALLOW_RECODE_KFARFGF = 2,
+ // Allow recode for all frames based on bitrate constraints.
+ ALLOW_RECODE = 3,
+} RECODE_LOOP_TYPE;
+
+typedef enum {
+ SUBPEL_TREE = 0,
+ SUBPEL_TREE_PRUNED = 1, // Prunes 1/2-pel searches
+ SUBPEL_TREE_PRUNED_MORE = 2, // Prunes 1/2-pel searches more aggressively
+ SUBPEL_TREE_PRUNED_EVENMORE = 3, // Prunes 1/2- and 1/4-pel searches
+ // Other methods to come
+} SUBPEL_SEARCH_METHODS;
+
+typedef enum {
+ NO_MOTION_THRESHOLD = 0,
+ LOW_MOTION_THRESHOLD = 7
+} MOTION_THRESHOLD;
+
+typedef enum {
+ USE_FULL_RD = 0,
+ USE_LARGESTALL,
+ USE_TX_8X8
+} TX_SIZE_SEARCH_METHOD;
+
+typedef enum {
+ NOT_IN_USE = 0,
+ RELAXED_NEIGHBORING_MIN_MAX = 1,
+ STRICT_NEIGHBORING_MIN_MAX = 2
+} AUTO_MIN_MAX_MODE;
+
+typedef enum {
+ // Try the full image with different values.
+ LPF_PICK_FROM_FULL_IMAGE,
+ // Try a small portion of the image with different values.
+ LPF_PICK_FROM_SUBIMAGE,
+ // Estimate the level based on quantizer and frame type
+ LPF_PICK_FROM_Q,
+ // Pick 0 to disable LPF if LPF was enabled last frame
+ LPF_PICK_MINIMAL_LPF
+} LPF_PICK_METHOD;
+
+typedef enum {
+ // Terminate search early based on distortion so far compared to
+ // qp step, distortion in the neighborhood of the frame, etc.
+ FLAG_EARLY_TERMINATE = 1 << 0,
+
+ // Skips comp inter modes if the best so far is an intra mode.
+ FLAG_SKIP_COMP_BESTINTRA = 1 << 1,
+
+ // Skips oblique intra modes if the best so far is an inter mode.
+ FLAG_SKIP_INTRA_BESTINTER = 1 << 3,
+
+ // Skips oblique intra modes at angles 27, 63, 117, 153 if the best
+ // intra so far is not one of the neighboring directions.
+ FLAG_SKIP_INTRA_DIRMISMATCH = 1 << 4,
+
+ // Skips intra modes other than DC_PRED if the source variance is small
+ FLAG_SKIP_INTRA_LOWVAR = 1 << 5,
+} MODE_SEARCH_SKIP_LOGIC;
+
+typedef enum {
+ FLAG_SKIP_EIGHTTAP = 1 << EIGHTTAP,
+ FLAG_SKIP_EIGHTTAP_SMOOTH = 1 << EIGHTTAP_SMOOTH,
+ FLAG_SKIP_EIGHTTAP_SHARP = 1 << EIGHTTAP_SHARP,
+} INTERP_FILTER_MASK;
+
+typedef enum {
+ // Search partitions using RD/NONRD criterion
+ SEARCH_PARTITION,
+
+ // Always use a fixed size partition
+ FIXED_PARTITION,
+
+ REFERENCE_PARTITION,
+
+ // Use an arbitrary partitioning scheme based on source variance within
+ // a 64X64 SB
+ VAR_BASED_PARTITION,
+
+ // Use non-fixed partitions based on source variance
+ SOURCE_VAR_BASED_PARTITION
+} PARTITION_SEARCH_TYPE;
+
+typedef enum {
+ // Does a dry run to see if any of the contexts need to be updated or not,
+ // before the final run.
+ TWO_LOOP = 0,
+
+ // No dry run, also only half the coef contexts and bands are updated.
+ // The rest are not updated at all.
+ ONE_LOOP_REDUCED = 1
+} FAST_COEFF_UPDATE;
+
+typedef struct MV_SPEED_FEATURES {
+ // Motion search method (Diamond, NSTEP, Hex, Big Diamond, Square, etc).
+ SEARCH_METHODS search_method;
+
+ // This parameter controls which step in the n-step process we start at.
+ // It's changed adaptively based on circumstances.
+ int reduce_first_step_size;
+
+ // If this is set to 1, we limit the motion search range to 2 times the
+ // largest motion vector found in the last frame.
+ int auto_mv_step_size;
+
+ // Subpel_search_method can only be subpel_tree which does a subpixel
+ // logarithmic search that keeps stepping at 1/2 pixel units until
+ // you stop getting a gain, and then goes on to 1/4 and repeats
+ // the same process. Along the way it skips many diagonals.
+ SUBPEL_SEARCH_METHODS subpel_search_method;
+
+ // Maximum number of steps in logarithmic subpel search before giving up.
+ int subpel_iters_per_step;
+
+ // Control when to stop subpel search
+ int subpel_force_stop;
+
+ // This variable sets the step_param used in full pel motion search.
+ int fullpel_search_step_param;
+} MV_SPEED_FEATURES;
+
+typedef struct SPEED_FEATURES {
+ MV_SPEED_FEATURES mv;
+
+ // Frame level coding parameter update
+ int frame_parameter_update;
+
+ RECODE_LOOP_TYPE recode_loop;
+
+ // Trellis (dynamic programming) optimization of quantized values (+1, 0).
+ int optimize_coefficients;
+
+ // Always set to 0. If on it enables 0 cost background transmission
+ // (except for the initial transmission of the segmentation). The feature is
+ // disabled because the addition of very large block sizes make the
+ // backgrounds very to cheap to encode, and the segmentation we have
+ // adds overhead.
+ int static_segmentation;
+
+ // If 1 we iterate finding a best reference for 2 ref frames together - via
+ // a log search that iterates 4 times (check around mv for last for best
+ // error of combined predictor then check around mv for alt). If 0 we
+ // we just use the best motion vector found for each frame by itself.
+ BLOCK_SIZE comp_inter_joint_search_thresh;
+
+ // This variable is used to cap the maximum number of times we skip testing a
+ // mode to be evaluated. A high value means we will be faster.
+ int adaptive_rd_thresh;
+
+ // Enables skipping the reconstruction step (idct, recon) in the
+ // intermediate steps assuming the last frame didn't have too many intra
+ // blocks and the q is less than a threshold.
+ int skip_encode_sb;
+ int skip_encode_frame;
+ // Speed feature to allow or disallow skipping of recode at block
+ // level within a frame.
+ int allow_skip_recode;
+
+ // Coefficient probability model approximation step size
+ int coeff_prob_appx_step;
+
+ // The threshold is to determine how slow the motino is, it is used when
+ // use_lastframe_partitioning is set to LAST_FRAME_PARTITION_LOW_MOTION
+ MOTION_THRESHOLD lf_motion_threshold;
+
+ // Determine which method we use to determine transform size. We can choose
+ // between options like full rd, largest for prediction size, largest
+ // for intra and model coefs for the rest.
+ TX_SIZE_SEARCH_METHOD tx_size_search_method;
+
+ // Low precision 32x32 fdct keeps everything in 16 bits and thus is less
+ // precise but significantly faster than the non lp version.
+ int use_lp32x32fdct;
+
+ // After looking at the first set of modes (set by index here), skip
+ // checking modes for reference frames that don't match the reference frame
+ // of the best so far.
+ int mode_skip_start;
+
+ // TODO(JBB): Remove this.
+ int reference_masking;
+
+ PARTITION_SEARCH_TYPE partition_search_type;
+
+ // Used if partition_search_type = FIXED_SIZE_PARTITION
+ BLOCK_SIZE always_this_block_size;
+
+ // Skip rectangular partition test when partition type none gives better
+ // rd than partition type split.
+ int less_rectangular_check;
+
+ // Disable testing non square partitions. (eg 16x32)
+ int use_square_partition_only;
+
+ // Sets min and max partition sizes for this 64x64 region based on the
+ // same 64x64 in last encoded frame, and the left and above neighbor.
+ AUTO_MIN_MAX_MODE auto_min_max_partition_size;
+ // Ensures the rd based auto partition search will always
+ // go down at least to the specified level.
+ BLOCK_SIZE rd_auto_partition_min_limit;
+
+ // Min and max partition size we enable (block_size) as per auto
+ // min max, but also used by adjust partitioning, and pick_partitioning.
+ BLOCK_SIZE default_min_partition_size;
+ BLOCK_SIZE default_max_partition_size;
+
+ // Whether or not we allow partitions one smaller or one greater than the last
+ // frame's partitioning. Only used if use_lastframe_partitioning is set.
+ int adjust_partitioning_from_last_frame;
+
+ // How frequently we re do the partitioning from scratch. Only used if
+ // use_lastframe_partitioning is set.
+ int last_partitioning_redo_frequency;
+
+ // Disables sub 8x8 blocksizes in different scenarios: Choices are to disable
+ // it always, to allow it for only Last frame and Intra, disable it for all
+ // inter modes or to enable it always.
+ int disable_split_mask;
+
+ // TODO(jingning): combine the related motion search speed features
+ // This allows us to use motion search at other sizes as a starting
+ // point for this motion search and limits the search range around it.
+ int adaptive_motion_search;
+
+ int schedule_mode_search;
+
+ // Allows sub 8x8 modes to use the prediction filter that was determined
+ // best for 8x8 mode. If set to 0 we always re check all the filters for
+ // sizes less than 8x8, 1 means we check all filter modes if no 8x8 filter
+ // was selected, and 2 means we use 8 tap if no 8x8 filter mode was selected.
+ int adaptive_pred_interp_filter;
+
+ // Adaptive prediction mode search
+ int adaptive_mode_search;
+
+ // Chessboard pattern prediction filter type search
+ int cb_pred_filter_search;
+
+ int cb_partition_search;
+
+ int motion_field_mode_search;
+
+ int alt_ref_search_fp;
+
+ // Fast quantization process path
+ int use_quant_fp;
+
+ // Use finer quantizer in every other few frames that run variable block
+ // partition type search.
+ int force_frame_boost;
+
+ // Maximally allowed base quantization index fluctuation.
+ int max_delta_qindex;
+
+ // Implements various heuristics to skip searching modes
+ // The heuristics selected are based on flags
+ // defined in the MODE_SEARCH_SKIP_HEURISTICS enum
+ unsigned int mode_search_skip_flags;
+
+ // A source variance threshold below which filter search is disabled
+ // Choose a very large value (UINT_MAX) to use 8-tap always
+ unsigned int disable_filter_search_var_thresh;
+
+ // These bit masks allow you to enable or disable intra modes for each
+ // transform size separately.
+ int intra_y_mode_mask[TX_SIZES];
+ int intra_uv_mode_mask[TX_SIZES];
+
+ // These bit masks allow you to enable or disable intra modes for each
+ // prediction block size separately.
+ int intra_y_mode_bsize_mask[BLOCK_SIZES];
+
+ // This variable enables an early break out of mode testing if the model for
+ // rd built from the prediction signal indicates a value that's much
+ // higher than the best rd we've seen so far.
+ int use_rd_breakout;
+
+ // This enables us to use an estimate for intra rd based on dc mode rather
+ // than choosing an actual uv mode in the stage of encoding before the actual
+ // final encode.
+ int use_uv_intra_rd_estimate;
+
+ // This feature controls how the loop filter level is determined.
+ LPF_PICK_METHOD lpf_pick;
+
+ // This feature limits the number of coefficients updates we actually do
+ // by only looking at counts from 1/2 the bands.
+ FAST_COEFF_UPDATE use_fast_coef_updates;
+
+ // This flag controls the use of non-RD mode decision.
+ int use_nonrd_pick_mode;
+
+ // A binary mask indicating if NEARESTMV, NEARMV, ZEROMV, NEWMV
+ // modes are used in order from LSB to MSB for each BLOCK_SIZE.
+ int inter_mode_mask[BLOCK_SIZES];
+
+ // This feature controls whether we do the expensive context update and
+ // calculation in the rd coefficient costing loop.
+ int use_fast_coef_costing;
+
+ // This feature controls the tolerence vs target used in deciding whether to
+ // recode a frame. It has no meaning if recode is disabled.
+ int recode_tolerance;
+
+ // This variable controls the maximum block size where intra blocks can be
+ // used in inter frames.
+ // TODO(aconverse): Fold this into one of the other many mode skips
+ BLOCK_SIZE max_intra_bsize;
+
+ // The frequency that we check if SOURCE_VAR_BASED_PARTITION or
+ // FIXED_PARTITION search type should be used.
+ int search_type_check_frequency;
+
+ // When partition is pre-set, the inter prediction result from pick_inter_mode
+ // can be reused in final block encoding process. It is enabled only for real-
+ // time mode speed 6.
+ int reuse_inter_pred_sby;
+
+ // This variable sets the encode_breakout threshold. Currently, it is only
+ // enabled in real time mode.
+ int encode_breakout_thresh;
+
+ // default interp filter choice
+ INTERP_FILTER default_interp_filter;
+
+ // Early termination in transform size search, which only applies while
+ // tx_size_search_method is USE_FULL_RD.
+ int tx_size_search_breakout;
+
+ // adaptive interp_filter search to allow skip of certain filter types.
+ int adaptive_interp_filter_search;
+
+ // mask for skip evaluation of certain interp_filter type.
+ INTERP_FILTER_MASK interp_filter_search_mask;
+
+ // Partition search early breakout thresholds.
+ int64_t partition_search_breakout_dist_thr;
+ int partition_search_breakout_rate_thr;
+
+ // Allow skipping partition search for still image frame
+ int allow_partition_search_skip;
+} SPEED_FEATURES;
+
+struct VP9_COMP;
+
+void vp9_set_speed_features_framesize_independent(struct VP9_COMP *cpi);
+void vp9_set_speed_features_framesize_dependent(struct VP9_COMP *cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SPEED_FEATURES_H_
diff --git a/media/libvpx/vp9/encoder/vp9_ssim.h b/media/libvpx/vp9/encoder/vp9_ssim.h
new file mode 100644
index 000000000..10f14c4d2
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_ssim.h
@@ -0,0 +1,96 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_SSIM_H_
+#define VP9_ENCODER_VP9_SSIM_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "vpx_scale/yv12config.h"
+
+// metrics used for calculating ssim, ssim2, dssim, and ssimc
+typedef struct {
+ // source sum ( over 8x8 region )
+ uint64_t sum_s;
+
+ // reference sum (over 8x8 region )
+ uint64_t sum_r;
+
+ // source sum squared ( over 8x8 region )
+ uint64_t sum_sq_s;
+
+ // reference sum squared (over 8x8 region )
+ uint64_t sum_sq_r;
+
+ // sum of source times reference (over 8x8 region)
+ uint64_t sum_sxr;
+
+ // calculated ssim score between source and reference
+ double ssim;
+} Ssimv;
+
+// metrics collected on a frame basis
+typedef struct {
+ // ssim consistency error metric ( see code for explanation )
+ double ssimc;
+
+ // standard ssim
+ double ssim;
+
+ // revised ssim ( see code for explanation)
+ double ssim2;
+
+ // ssim restated as an error metric like sse
+ double dssim;
+
+ // dssim converted to decibels
+ double dssimd;
+
+ // ssimc converted to decibels
+ double ssimcd;
+} Metrics;
+
+double vp9_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
+ int img2_pitch, int width, int height, Ssimv *sv2,
+ Metrics *m, int do_inconsistency);
+
+double vp9_calc_ssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
+ double *weight);
+
+double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
+ double *ssim_y, double *ssim_u, double *ssim_v);
+
+double vp9_calc_fastssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
+ double *ssim_y, double *ssim_u, double *ssim_v);
+
+double vp9_psnrhvs(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
+ double *ssim_y, double *ssim_u, double *ssim_v);
+
+#if CONFIG_VP9_HIGHBITDEPTH
+double vp9_highbd_calc_ssim(YV12_BUFFER_CONFIG *source,
+ YV12_BUFFER_CONFIG *dest,
+ double *weight,
+ unsigned int bd);
+
+double vp9_highbd_calc_ssimg(YV12_BUFFER_CONFIG *source,
+ YV12_BUFFER_CONFIG *dest,
+ double *ssim_y,
+ double *ssim_u,
+ double *ssim_v,
+ unsigned int bd);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SSIM_H_
diff --git a/media/libvpx/vp9/encoder/vp9_subexp.c b/media/libvpx/vp9/encoder/vp9_subexp.c
new file mode 100644
index 000000000..b345b162c
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_subexp.c
@@ -0,0 +1,214 @@
+/*
+ * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropy.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_subexp.h"
+#include "vp9/encoder/vp9_writer.h"
+
+#define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)))
+
+static const int update_bits[255] = {
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0,
+};
+
+static int recenter_nonneg(int v, int m) {
+ if (v > (m << 1))
+ return v;
+ else if (v >= m)
+ return ((v - m) << 1);
+ else
+ return ((m - v) << 1) - 1;
+}
+
+static int remap_prob(int v, int m) {
+ int i;
+ static const int map_table[MAX_PROB - 1] = {
+ // generated by:
+ // map_table[j] = split_index(j, MAX_PROB - 1, MODULUS_PARAM);
+ 20, 21, 22, 23, 24, 25, 0, 26, 27, 28, 29, 30, 31, 32, 33,
+ 34, 35, 36, 37, 1, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 2, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
+ 3, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 4, 74,
+ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 5, 86, 87, 88,
+ 89, 90, 91, 92, 93, 94, 95, 96, 97, 6, 98, 99, 100, 101, 102,
+ 103, 104, 105, 106, 107, 108, 109, 7, 110, 111, 112, 113, 114, 115, 116,
+ 117, 118, 119, 120, 121, 8, 122, 123, 124, 125, 126, 127, 128, 129, 130,
+ 131, 132, 133, 9, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
+ 145, 10, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 11,
+ 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 12, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 13, 182, 183, 184, 185,
+ 186, 187, 188, 189, 190, 191, 192, 193, 14, 194, 195, 196, 197, 198, 199,
+ 200, 201, 202, 203, 204, 205, 15, 206, 207, 208, 209, 210, 211, 212, 213,
+ 214, 215, 216, 217, 16, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
+ 228, 229, 17, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
+ 18, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 19,
+ };
+ v--;
+ m--;
+ if ((m << 1) <= MAX_PROB)
+ i = recenter_nonneg(v, m) - 1;
+ else
+ i = recenter_nonneg(MAX_PROB - 1 - v, MAX_PROB - 1 - m) - 1;
+
+ i = map_table[i];
+ return i;
+}
+
+static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) {
+ int delp = remap_prob(newp, oldp);
+ return update_bits[delp] * 256;
+}
+
+static void encode_uniform(vp9_writer *w, int v) {
+ const int l = 8;
+ const int m = (1 << l) - 191;
+ if (v < m) {
+ vp9_write_literal(w, v, l - 1);
+ } else {
+ vp9_write_literal(w, m + ((v - m) >> 1), l - 1);
+ vp9_write_literal(w, (v - m) & 1, 1);
+ }
+}
+
+static INLINE int write_bit_gte(vp9_writer *w, int word, int test) {
+ vp9_write_literal(w, word >= test, 1);
+ return word >= test;
+}
+
+static void encode_term_subexp(vp9_writer *w, int word) {
+ if (!write_bit_gte(w, word, 16)) {
+ vp9_write_literal(w, word, 4);
+ } else if (!write_bit_gte(w, word, 32)) {
+ vp9_write_literal(w, word - 16, 4);
+ } else if (!write_bit_gte(w, word, 64)) {
+ vp9_write_literal(w, word - 32, 5);
+ } else {
+ encode_uniform(w, word - 64);
+ }
+}
+
+void vp9_write_prob_diff_update(vp9_writer *w, vp9_prob newp, vp9_prob oldp) {
+ const int delp = remap_prob(newp, oldp);
+ encode_term_subexp(w, delp);
+}
+
+int vp9_prob_diff_update_savings_search(const unsigned int *ct,
+ vp9_prob oldp, vp9_prob *bestp,
+ vp9_prob upd) {
+ const int old_b = cost_branch256(ct, oldp);
+ int bestsavings = 0;
+ vp9_prob newp, bestnewp = oldp;
+ const int step = *bestp > oldp ? -1 : 1;
+
+ for (newp = *bestp; newp != oldp; newp += step) {
+ const int new_b = cost_branch256(ct, newp);
+ const int update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256;
+ const int savings = old_b - new_b - update_b;
+ if (savings > bestsavings) {
+ bestsavings = savings;
+ bestnewp = newp;
+ }
+ }
+ *bestp = bestnewp;
+ return bestsavings;
+}
+
+int vp9_prob_diff_update_savings_search_model(const unsigned int *ct,
+ const vp9_prob *oldp,
+ vp9_prob *bestp,
+ vp9_prob upd,
+ int stepsize) {
+ int i, old_b, new_b, update_b, savings, bestsavings, step;
+ int newp;
+ vp9_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES];
+ vp9_model_to_full_probs(oldp, oldplist);
+ memcpy(newplist, oldp, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
+ for (i = UNCONSTRAINED_NODES, old_b = 0; i < ENTROPY_NODES; ++i)
+ old_b += cost_branch256(ct + 2 * i, oldplist[i]);
+ old_b += cost_branch256(ct + 2 * PIVOT_NODE, oldplist[PIVOT_NODE]);
+
+ bestsavings = 0;
+ bestnewp = oldp[PIVOT_NODE];
+
+ if (*bestp > oldp[PIVOT_NODE]) {
+ step = -stepsize;
+ for (newp = *bestp; newp > oldp[PIVOT_NODE]; newp += step) {
+ if (newp < 1 || newp > 255)
+ continue;
+ newplist[PIVOT_NODE] = newp;
+ vp9_model_to_full_probs(newplist, newplist);
+ for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i)
+ new_b += cost_branch256(ct + 2 * i, newplist[i]);
+ new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]);
+ update_b = prob_diff_update_cost(newp, oldp[PIVOT_NODE]) +
+ vp9_cost_upd256;
+ savings = old_b - new_b - update_b;
+ if (savings > bestsavings) {
+ bestsavings = savings;
+ bestnewp = newp;
+ }
+ }
+ } else {
+ step = stepsize;
+ for (newp = *bestp; newp < oldp[PIVOT_NODE]; newp += step) {
+ if (newp < 1 || newp > 255)
+ continue;
+ newplist[PIVOT_NODE] = newp;
+ vp9_model_to_full_probs(newplist, newplist);
+ for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i)
+ new_b += cost_branch256(ct + 2 * i, newplist[i]);
+ new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]);
+ update_b = prob_diff_update_cost(newp, oldp[PIVOT_NODE]) +
+ vp9_cost_upd256;
+ savings = old_b - new_b - update_b;
+ if (savings > bestsavings) {
+ bestsavings = savings;
+ bestnewp = newp;
+ }
+ }
+ }
+
+ *bestp = bestnewp;
+ return bestsavings;
+}
+
+void vp9_cond_prob_diff_update(vp9_writer *w, vp9_prob *oldp,
+ const unsigned int ct[2]) {
+ const vp9_prob upd = DIFF_UPDATE_PROB;
+ vp9_prob newp = get_binary_prob(ct[0], ct[1]);
+ const int savings = vp9_prob_diff_update_savings_search(ct, *oldp, &newp,
+ upd);
+ assert(newp >= 1);
+ if (savings > 0) {
+ vp9_write(w, 1, upd);
+ vp9_write_prob_diff_update(w, newp, *oldp);
+ *oldp = newp;
+ } else {
+ vp9_write(w, 0, upd);
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_subexp.h b/media/libvpx/vp9/encoder/vp9_subexp.h
new file mode 100644
index 000000000..6fbb747e7
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_subexp.h
@@ -0,0 +1,44 @@
+/*
+ * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+
+#ifndef VP9_ENCODER_VP9_SUBEXP_H_
+#define VP9_ENCODER_VP9_SUBEXP_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "vp9/common/vp9_prob.h"
+
+struct vp9_writer;
+
+void vp9_write_prob_diff_update(struct vp9_writer *w,
+ vp9_prob newp, vp9_prob oldp);
+
+void vp9_cond_prob_diff_update(struct vp9_writer *w, vp9_prob *oldp,
+ const unsigned int ct[2]);
+
+int vp9_prob_diff_update_savings_search(const unsigned int *ct,
+ vp9_prob oldp, vp9_prob *bestp,
+ vp9_prob upd);
+
+
+int vp9_prob_diff_update_savings_search_model(const unsigned int *ct,
+ const vp9_prob *oldp,
+ vp9_prob *bestp,
+ vp9_prob upd,
+ int stepsize);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SUBEXP_H_
diff --git a/media/libvpx/vp9/encoder/vp9_svc_layercontext.c b/media/libvpx/vp9/encoder/vp9_svc_layercontext.c
new file mode 100644
index 000000000..cb1b0df4c
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_svc_layercontext.c
@@ -0,0 +1,646 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_svc_layercontext.h"
+#include "vp9/encoder/vp9_extend.h"
+
+#define SMALL_FRAME_FB_IDX 7
+#define SMALL_FRAME_WIDTH 16
+#define SMALL_FRAME_HEIGHT 16
+
+void vp9_init_layer_context(VP9_COMP *const cpi) {
+ SVC *const svc = &cpi->svc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ int sl, tl;
+ int alt_ref_idx = svc->number_spatial_layers;
+
+ svc->spatial_layer_id = 0;
+ svc->temporal_layer_id = 0;
+
+ if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2) {
+ if (vp9_realloc_frame_buffer(&cpi->svc.empty_frame.img,
+ SMALL_FRAME_WIDTH, SMALL_FRAME_HEIGHT,
+ cpi->common.subsampling_x,
+ cpi->common.subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cpi->common.use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS,
+ cpi->common.byte_alignment,
+ NULL, NULL, NULL))
+ vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
+ "Failed to allocate empty frame for multiple frame "
+ "contexts");
+
+ memset(cpi->svc.empty_frame.img.buffer_alloc, 0x80,
+ cpi->svc.empty_frame.img.buffer_alloc_sz);
+ }
+
+ for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
+ for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
+ int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ RATE_CONTROL *const lrc = &lc->rc;
+ int i;
+ lc->current_video_frame_in_layer = 0;
+ lc->layer_size = 0;
+ lc->frames_from_key_frame = 0;
+ lc->last_frame_type = FRAME_TYPES;
+ lrc->ni_av_qi = oxcf->worst_allowed_q;
+ lrc->total_actual_bits = 0;
+ lrc->total_target_vs_actual = 0;
+ lrc->ni_tot_qi = 0;
+ lrc->tot_q = 0.0;
+ lrc->avg_q = 0.0;
+ lrc->ni_frames = 0;
+ lrc->decimation_count = 0;
+ lrc->decimation_factor = 0;
+
+ for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
+ lrc->rate_correction_factors[i] = 1.0;
+ }
+
+ if (cpi->oxcf.rc_mode == VPX_CBR) {
+ lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
+ lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
+ lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
+ lrc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
+ } else {
+ lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
+ lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
+ lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q;
+ lrc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
+ oxcf->best_allowed_q) / 2;
+ lrc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
+ oxcf->best_allowed_q) / 2;
+ if (oxcf->ss_enable_auto_arf[sl])
+ lc->alt_ref_idx = alt_ref_idx++;
+ else
+ lc->alt_ref_idx = INVALID_IDX;
+ lc->gold_ref_idx = INVALID_IDX;
+ }
+
+ lrc->buffer_level = oxcf->starting_buffer_level_ms *
+ lc->target_bandwidth / 1000;
+ lrc->bits_off_target = lrc->buffer_level;
+ }
+ }
+
+ // Still have extra buffer for base layer golden frame
+ if (!(svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR)
+ && alt_ref_idx < REF_FRAMES)
+ svc->layer_context[0].gold_ref_idx = alt_ref_idx;
+}
+
+// Update the layer context from a change_config() call.
+void vp9_update_layer_context_change_config(VP9_COMP *const cpi,
+ const int target_bandwidth) {
+ SVC *const svc = &cpi->svc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int sl, tl, layer = 0, spatial_layer_target;
+ float bitrate_alloc = 1.0;
+
+ if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
+ for (sl = 0; sl < oxcf->ss_number_layers; ++sl) {
+ spatial_layer_target = 0;
+
+ for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
+ layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers);
+ svc->layer_context[layer].target_bandwidth =
+ oxcf->layer_target_bitrate[layer];
+ }
+
+ layer = LAYER_IDS_TO_IDX(sl, ((oxcf->ts_number_layers - 1) < 0 ?
+ 0 : (oxcf->ts_number_layers - 1)), oxcf->ts_number_layers);
+ spatial_layer_target =
+ svc->layer_context[layer].target_bandwidth =
+ oxcf->layer_target_bitrate[layer];
+
+ for (tl = 0; tl < oxcf->ts_number_layers; ++tl) {
+ LAYER_CONTEXT *const lc =
+ &svc->layer_context[sl * oxcf->ts_number_layers + tl];
+ RATE_CONTROL *const lrc = &lc->rc;
+
+ lc->spatial_layer_target_bandwidth = spatial_layer_target;
+ bitrate_alloc = (float)lc->target_bandwidth / spatial_layer_target;
+ lrc->starting_buffer_level =
+ (int64_t)(rc->starting_buffer_level * bitrate_alloc);
+ lrc->optimal_buffer_level =
+ (int64_t)(rc->optimal_buffer_level * bitrate_alloc);
+ lrc->maximum_buffer_size =
+ (int64_t)(rc->maximum_buffer_size * bitrate_alloc);
+ lrc->bits_off_target =
+ MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
+ lrc->buffer_level = MIN(lrc->buffer_level, lrc->maximum_buffer_size);
+ lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
+ lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
+ lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
+ lrc->worst_quality = rc->worst_quality;
+ lrc->best_quality = rc->best_quality;
+ }
+ }
+ } else {
+ int layer_end;
+ float bitrate_alloc = 1.0;
+
+ if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
+ layer_end = svc->number_temporal_layers;
+ } else {
+ layer_end = svc->number_spatial_layers;
+ }
+
+ for (layer = 0; layer < layer_end; ++layer) {
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ RATE_CONTROL *const lrc = &lc->rc;
+
+ lc->target_bandwidth = oxcf->layer_target_bitrate[layer];
+
+ bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
+ // Update buffer-related quantities.
+ lrc->starting_buffer_level =
+ (int64_t)(rc->starting_buffer_level * bitrate_alloc);
+ lrc->optimal_buffer_level =
+ (int64_t)(rc->optimal_buffer_level * bitrate_alloc);
+ lrc->maximum_buffer_size =
+ (int64_t)(rc->maximum_buffer_size * bitrate_alloc);
+ lrc->bits_off_target = MIN(lrc->bits_off_target,
+ lrc->maximum_buffer_size);
+ lrc->buffer_level = MIN(lrc->buffer_level, lrc->maximum_buffer_size);
+ // Update framerate-related quantities.
+ if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) {
+ lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer];
+ } else {
+ lc->framerate = cpi->framerate;
+ }
+ lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
+ lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
+ // Update qp-related quantities.
+ lrc->worst_quality = rc->worst_quality;
+ lrc->best_quality = rc->best_quality;
+ }
+ }
+}
+
+static LAYER_CONTEXT *get_layer_context(VP9_COMP *const cpi) {
+ if (is_one_pass_cbr_svc(cpi))
+ return &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
+ cpi->svc.number_temporal_layers + cpi->svc.temporal_layer_id];
+ else
+ return (cpi->svc.number_temporal_layers > 1 &&
+ cpi->oxcf.rc_mode == VPX_CBR) ?
+ &cpi->svc.layer_context[cpi->svc.temporal_layer_id] :
+ &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
+}
+
+void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) {
+ SVC *const svc = &cpi->svc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ LAYER_CONTEXT *const lc = get_layer_context(cpi);
+ RATE_CONTROL *const lrc = &lc->rc;
+ // Index into spatial+temporal arrays.
+ const int st_idx = svc->spatial_layer_id * svc->number_temporal_layers +
+ svc->temporal_layer_id;
+ const int tl = svc->temporal_layer_id;
+
+ lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl];
+ lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
+ lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
+ // Update the average layer frame size (non-cumulative per-frame-bw).
+ if (tl == 0) {
+ lc->avg_frame_size = lrc->avg_frame_bandwidth;
+ } else {
+ const double prev_layer_framerate =
+ cpi->framerate / oxcf->ts_rate_decimator[tl - 1];
+ const int prev_layer_target_bandwidth =
+ oxcf->layer_target_bitrate[st_idx - 1];
+ lc->avg_frame_size =
+ (int)((lc->target_bandwidth - prev_layer_target_bandwidth) /
+ (lc->framerate - prev_layer_framerate));
+ }
+}
+
+void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) {
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ LAYER_CONTEXT *const lc = get_layer_context(cpi);
+ RATE_CONTROL *const lrc = &lc->rc;
+
+ lc->framerate = framerate;
+ lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
+ lrc->min_frame_bandwidth = (int)(lrc->avg_frame_bandwidth *
+ oxcf->two_pass_vbrmin_section / 100);
+ lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth *
+ oxcf->two_pass_vbrmax_section) / 100);
+ vp9_rc_set_gf_interval_range(cpi, lrc);
+}
+
+void vp9_restore_layer_context(VP9_COMP *const cpi) {
+ LAYER_CONTEXT *const lc = get_layer_context(cpi);
+ const int old_frame_since_key = cpi->rc.frames_since_key;
+ const int old_frame_to_key = cpi->rc.frames_to_key;
+
+ cpi->rc = lc->rc;
+ cpi->twopass = lc->twopass;
+ cpi->oxcf.target_bandwidth = lc->target_bandwidth;
+ cpi->alt_ref_source = lc->alt_ref_source;
+ // Reset the frames_since_key and frames_to_key counters to their values
+ // before the layer restore. Keep these defined for the stream (not layer).
+ if (cpi->svc.number_temporal_layers > 1) {
+ cpi->rc.frames_since_key = old_frame_since_key;
+ cpi->rc.frames_to_key = old_frame_to_key;
+ }
+}
+
+void vp9_save_layer_context(VP9_COMP *const cpi) {
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ LAYER_CONTEXT *const lc = get_layer_context(cpi);
+
+ lc->rc = cpi->rc;
+ lc->twopass = cpi->twopass;
+ lc->target_bandwidth = (int)oxcf->target_bandwidth;
+ lc->alt_ref_source = cpi->alt_ref_source;
+}
+
+void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) {
+ SVC *const svc = &cpi->svc;
+ int i;
+
+ for (i = 0; i < svc->number_spatial_layers; ++i) {
+ TWO_PASS *const twopass = &svc->layer_context[i].twopass;
+
+ svc->spatial_layer_id = i;
+ vp9_init_second_pass(cpi);
+
+ twopass->total_stats.spatial_layer_id = i;
+ twopass->total_left_stats.spatial_layer_id = i;
+ }
+ svc->spatial_layer_id = 0;
+}
+
+void vp9_inc_frame_in_layer(VP9_COMP *const cpi) {
+ LAYER_CONTEXT *const lc =
+ &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
+ cpi->svc.number_temporal_layers];
+ ++lc->current_video_frame_in_layer;
+ ++lc->frames_from_key_frame;
+}
+
+int vp9_is_upper_layer_key_frame(const VP9_COMP *const cpi) {
+ return is_two_pass_svc(cpi) &&
+ cpi->svc.spatial_layer_id > 0 &&
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id *
+ cpi->svc.number_temporal_layers +
+ cpi->svc.temporal_layer_id].is_key_frame;
+}
+
+static void get_layer_resolution(const int width_org, const int height_org,
+ const int num, const int den,
+ int *width_out, int *height_out) {
+ int w, h;
+
+ if (width_out == NULL || height_out == NULL || den == 0)
+ return;
+
+ w = width_org * num / den;
+ h = height_org * num / den;
+
+ // make height and width even to make chrome player happy
+ w += w % 2;
+ h += h % 2;
+
+ *width_out = w;
+ *height_out = h;
+}
+
+// The function sets proper ref_frame_flags, buffer indices, and buffer update
+// variables for temporal layering mode 3 - that does 0-2-1-2 temporal layering
+// scheme.
+static void set_flags_and_fb_idx_for_temporal_mode3(VP9_COMP *const cpi) {
+ int frame_num_within_temporal_struct = 0;
+ int spatial_id, temporal_id;
+ spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
+ frame_num_within_temporal_struct =
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id *
+ cpi->svc.number_temporal_layers].current_video_frame_in_layer % 4;
+ temporal_id = cpi->svc.temporal_layer_id =
+ (frame_num_within_temporal_struct & 1) ? 2 :
+ (frame_num_within_temporal_struct >> 1);
+ cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
+ cpi->ext_refresh_alt_ref_frame = 0;
+ if (!temporal_id) {
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ext_refresh_last_frame = 1;
+ if (!spatial_id) {
+ cpi->ref_frame_flags = VP9_LAST_FLAG;
+ } else if (cpi->svc.layer_context[temporal_id].is_key_frame) {
+ // base layer is a key frame.
+ cpi->ref_frame_flags = VP9_GOLD_FLAG;
+ } else {
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ }
+ } else if (temporal_id == 1) {
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ext_refresh_alt_ref_frame = 1;
+ if (!spatial_id) {
+ cpi->ref_frame_flags = VP9_LAST_FLAG;
+ } else {
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ }
+ } else {
+ if (frame_num_within_temporal_struct == 1) {
+ // the first tl2 picture
+ if (!spatial_id) {
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ext_refresh_alt_ref_frame = 1;
+ cpi->ref_frame_flags = VP9_LAST_FLAG;
+ } else if (spatial_id < cpi->svc.number_spatial_layers - 1) {
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ext_refresh_alt_ref_frame = 1;
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ } else { // Top layer
+ cpi->ext_refresh_frame_flags_pending = 0;
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ }
+ } else {
+ // The second tl2 picture
+ if (!spatial_id) {
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ref_frame_flags = VP9_LAST_FLAG;
+ cpi->ext_refresh_last_frame = 1;
+ } else if (spatial_id < cpi->svc.number_spatial_layers - 1) {
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ cpi->ext_refresh_last_frame = 1;
+ } else { // top layer
+ cpi->ext_refresh_frame_flags_pending = 0;
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ }
+ }
+ }
+ if (temporal_id == 0) {
+ cpi->lst_fb_idx = spatial_id;
+ if (spatial_id)
+ cpi->gld_fb_idx = spatial_id - 1;
+ else
+ cpi->gld_fb_idx = 0;
+ cpi->alt_fb_idx = 0;
+ } else if (temporal_id == 1) {
+ cpi->lst_fb_idx = spatial_id;
+ cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
+ cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
+ } else if (frame_num_within_temporal_struct == 1) {
+ cpi->lst_fb_idx = spatial_id;
+ cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
+ cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
+ } else {
+ cpi->lst_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
+ cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
+ cpi->alt_fb_idx = 0;
+ }
+}
+
+// The function sets proper ref_frame_flags, buffer indices, and buffer update
+// variables for temporal layering mode 2 - that does 0-1-0-1 temporal layering
+// scheme.
+static void set_flags_and_fb_idx_for_temporal_mode2(VP9_COMP *const cpi) {
+ int spatial_id, temporal_id;
+ spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
+ temporal_id = cpi->svc.temporal_layer_id =
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id *
+ cpi->svc.number_temporal_layers].current_video_frame_in_layer & 1;
+ cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame =
+ cpi->ext_refresh_alt_ref_frame = 0;
+ if (!temporal_id) {
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ext_refresh_last_frame = 1;
+ if (!spatial_id) {
+ cpi->ref_frame_flags = VP9_LAST_FLAG;
+ } else if (cpi->svc.layer_context[temporal_id].is_key_frame) {
+ // base layer is a key frame.
+ cpi->ref_frame_flags = VP9_GOLD_FLAG;
+ } else {
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ }
+ } else if (temporal_id == 1) {
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ext_refresh_alt_ref_frame = 1;
+ if (!spatial_id) {
+ cpi->ref_frame_flags = VP9_LAST_FLAG;
+ } else {
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ }
+ }
+
+ if (temporal_id == 0) {
+ cpi->lst_fb_idx = spatial_id;
+ if (spatial_id)
+ cpi->gld_fb_idx = spatial_id - 1;
+ else
+ cpi->gld_fb_idx = 0;
+ cpi->alt_fb_idx = 0;
+ } else if (temporal_id == 1) {
+ cpi->lst_fb_idx = spatial_id;
+ cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1;
+ cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id;
+ }
+}
+
+// The function sets proper ref_frame_flags, buffer indices, and buffer update
+// variables for temporal layering mode 0 - that has no temporal layering.
+static void set_flags_and_fb_idx_for_temporal_mode_noLayering(
+ VP9_COMP *const cpi) {
+ int spatial_id;
+ spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
+ cpi->ext_refresh_last_frame =
+ cpi->ext_refresh_golden_frame = cpi->ext_refresh_alt_ref_frame = 0;
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ext_refresh_last_frame = 1;
+ if (!spatial_id) {
+ cpi->ref_frame_flags = VP9_LAST_FLAG;
+ } else if (cpi->svc.layer_context[0].is_key_frame) {
+ cpi->ref_frame_flags = VP9_GOLD_FLAG;
+ } else {
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ }
+ cpi->lst_fb_idx = spatial_id;
+ if (spatial_id)
+ cpi->gld_fb_idx = spatial_id - 1;
+ else
+ cpi->gld_fb_idx = 0;
+}
+
+int vp9_one_pass_cbr_svc_start_layer(VP9_COMP *const cpi) {
+ int width = 0, height = 0;
+ LAYER_CONTEXT *lc = NULL;
+
+ if (cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) {
+ set_flags_and_fb_idx_for_temporal_mode3(cpi);
+ } else if (cpi->svc.temporal_layering_mode ==
+ VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) {
+ set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi);
+ } else if (cpi->svc.temporal_layering_mode ==
+ VP9E_TEMPORAL_LAYERING_MODE_0101) {
+ set_flags_and_fb_idx_for_temporal_mode2(cpi);
+ } else if (cpi->svc.temporal_layering_mode ==
+ VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
+ // VP9E_TEMPORAL_LAYERING_MODE_BYPASS :
+ // if the code goes here, it means the encoder will be relying on the
+ // flags from outside for layering.
+ // However, since when spatial+temporal layering is used, the buffer indices
+ // cannot be derived automatically, the bypass mode will only work when the
+ // number of spatial layers equals 1.
+ assert(cpi->svc.number_spatial_layers == 1);
+ }
+
+ lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
+ cpi->svc.number_temporal_layers +
+ cpi->svc.temporal_layer_id];
+
+ get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
+ lc->scaling_factor_num, lc->scaling_factor_den,
+ &width, &height);
+
+ if (vp9_set_size_literal(cpi, width, height) != 0)
+ return VPX_CODEC_INVALID_PARAM;
+
+ return 0;
+}
+
+#if CONFIG_SPATIAL_SVC
+int vp9_svc_start_frame(VP9_COMP *const cpi) {
+ int width = 0, height = 0;
+ LAYER_CONTEXT *lc;
+ struct lookahead_entry *buf;
+ int count = 1 << (cpi->svc.number_temporal_layers - 1);
+
+ cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode;
+ lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
+
+ cpi->svc.temporal_layer_id = 0;
+ while ((lc->current_video_frame_in_layer % count) != 0) {
+ ++cpi->svc.temporal_layer_id;
+ count >>= 1;
+ }
+
+ cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
+
+ cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
+
+ if (cpi->svc.spatial_layer_id == 0)
+ cpi->gld_fb_idx = (lc->gold_ref_idx >= 0) ?
+ lc->gold_ref_idx : cpi->lst_fb_idx;
+ else
+ cpi->gld_fb_idx = cpi->svc.spatial_layer_id - 1;
+
+ if (lc->current_video_frame_in_layer == 0) {
+ if (cpi->svc.spatial_layer_id >= 2) {
+ cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2;
+ } else {
+ cpi->alt_fb_idx = cpi->lst_fb_idx;
+ cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_ALT_FLAG);
+ }
+ } else {
+ if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id]) {
+ cpi->alt_fb_idx = lc->alt_ref_idx;
+ if (!lc->has_alt_frame)
+ cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
+ } else {
+ // Find a proper alt_fb_idx for layers that don't have alt ref frame
+ if (cpi->svc.spatial_layer_id == 0) {
+ cpi->alt_fb_idx = cpi->lst_fb_idx;
+ } else {
+ LAYER_CONTEXT *lc_lower =
+ &cpi->svc.layer_context[cpi->svc.spatial_layer_id - 1];
+
+ if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id - 1] &&
+ lc_lower->alt_ref_source != NULL)
+ cpi->alt_fb_idx = lc_lower->alt_ref_idx;
+ else if (cpi->svc.spatial_layer_id >= 2)
+ cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2;
+ else
+ cpi->alt_fb_idx = cpi->lst_fb_idx;
+ }
+ }
+ }
+
+ get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
+ lc->scaling_factor_num, lc->scaling_factor_den,
+ &width, &height);
+
+ // Workaround for multiple frame contexts. In some frames we can't use prev_mi
+ // since its previous frame could be changed during decoding time. The idea is
+ // we put a empty invisible frame in front of them, then we will not use
+ // prev_mi when encoding these frames.
+
+ buf = vp9_lookahead_peek(cpi->lookahead, 0);
+ if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2 &&
+ cpi->svc.encode_empty_frame_state == NEED_TO_ENCODE &&
+ lc->rc.frames_to_key != 0 &&
+ !(buf != NULL && (buf->flags & VPX_EFLAG_FORCE_KF))) {
+ if ((cpi->svc.number_temporal_layers > 1 &&
+ cpi->svc.temporal_layer_id < cpi->svc.number_temporal_layers - 1) ||
+ (cpi->svc.number_spatial_layers > 1 &&
+ cpi->svc.spatial_layer_id == 0)) {
+ struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead, 0);
+
+ if (buf != NULL) {
+ cpi->svc.empty_frame.ts_start = buf->ts_start;
+ cpi->svc.empty_frame.ts_end = buf->ts_end;
+ cpi->svc.encode_empty_frame_state = ENCODING;
+ cpi->common.show_frame = 0;
+ cpi->ref_frame_flags = 0;
+ cpi->common.frame_type = INTER_FRAME;
+ cpi->lst_fb_idx =
+ cpi->gld_fb_idx = cpi->alt_fb_idx = SMALL_FRAME_FB_IDX;
+
+ if (cpi->svc.encode_intra_empty_frame != 0)
+ cpi->common.intra_only = 1;
+
+ width = SMALL_FRAME_WIDTH;
+ height = SMALL_FRAME_HEIGHT;
+ }
+ }
+ }
+
+ cpi->oxcf.worst_allowed_q = vp9_quantizer_to_qindex(lc->max_q);
+ cpi->oxcf.best_allowed_q = vp9_quantizer_to_qindex(lc->min_q);
+
+ vp9_change_config(cpi, &cpi->oxcf);
+
+ if (vp9_set_size_literal(cpi, width, height) != 0)
+ return VPX_CODEC_INVALID_PARAM;
+
+ vp9_set_high_precision_mv(cpi, 1);
+
+ cpi->alt_ref_source = get_layer_context(cpi)->alt_ref_source;
+
+ return 0;
+}
+
+#endif
+
+struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi,
+ struct lookahead_ctx *ctx,
+ int drain) {
+ struct lookahead_entry *buf = NULL;
+ if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
+ buf = vp9_lookahead_peek(ctx, 0);
+ if (buf != NULL) {
+ // Only remove the buffer when pop the highest layer.
+ if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
+ vp9_lookahead_pop(ctx, drain);
+ }
+ }
+ }
+ return buf;
+}
diff --git a/media/libvpx/vp9/encoder/vp9_svc_layercontext.h b/media/libvpx/vp9/encoder/vp9_svc_layercontext.h
new file mode 100644
index 000000000..b6a5ea548
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_svc_layercontext.h
@@ -0,0 +1,122 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_SVC_LAYERCONTEXT_H_
+#define VP9_ENCODER_VP9_SVC_LAYERCONTEXT_H_
+
+#include "vpx/vpx_encoder.h"
+
+#include "vp9/encoder/vp9_ratectrl.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct {
+ RATE_CONTROL rc;
+ int target_bandwidth;
+ int spatial_layer_target_bandwidth; // Target for the spatial layer.
+ double framerate;
+ int avg_frame_size;
+ int max_q;
+ int min_q;
+ int scaling_factor_num;
+ int scaling_factor_den;
+ TWO_PASS twopass;
+ vpx_fixed_buf_t rc_twopass_stats_in;
+ unsigned int current_video_frame_in_layer;
+ int is_key_frame;
+ int frames_from_key_frame;
+ FRAME_TYPE last_frame_type;
+ struct lookahead_entry *alt_ref_source;
+ int alt_ref_idx;
+ int gold_ref_idx;
+ int has_alt_frame;
+ size_t layer_size;
+ struct vpx_psnr_pkt psnr_pkt;
+} LAYER_CONTEXT;
+
+typedef struct {
+ int spatial_layer_id;
+ int temporal_layer_id;
+ int number_spatial_layers;
+ int number_temporal_layers;
+
+ int spatial_layer_to_encode;
+
+ // Workaround for multiple frame contexts
+ enum {
+ ENCODED = 0,
+ ENCODING,
+ NEED_TO_ENCODE
+ }encode_empty_frame_state;
+ struct lookahead_entry empty_frame;
+ int encode_intra_empty_frame;
+
+ // Store scaled source frames to be used for temporal filter to generate
+ // a alt ref frame.
+ YV12_BUFFER_CONFIG scaled_frames[MAX_LAG_BUFFERS];
+
+ // Layer context used for rate control in one pass temporal CBR mode or
+ // two pass spatial mode.
+ LAYER_CONTEXT layer_context[VPX_MAX_LAYERS];
+ // Indicates what sort of temporal layering is used.
+ // Currently, this only works for CBR mode.
+ VP9E_TEMPORAL_LAYERING_MODE temporal_layering_mode;
+} SVC;
+
+struct VP9_COMP;
+
+// Initialize layer context data from init_config().
+void vp9_init_layer_context(struct VP9_COMP *const cpi);
+
+// Update the layer context from a change_config() call.
+void vp9_update_layer_context_change_config(struct VP9_COMP *const cpi,
+ const int target_bandwidth);
+
+// Prior to encoding the frame, update framerate-related quantities
+// for the current temporal layer.
+void vp9_update_temporal_layer_framerate(struct VP9_COMP *const cpi);
+
+// Update framerate-related quantities for the current spatial layer.
+void vp9_update_spatial_layer_framerate(struct VP9_COMP *const cpi,
+ double framerate);
+
+// Prior to encoding the frame, set the layer context, for the current layer
+// to be encoded, to the cpi struct.
+void vp9_restore_layer_context(struct VP9_COMP *const cpi);
+
+// Save the layer context after encoding the frame.
+void vp9_save_layer_context(struct VP9_COMP *const cpi);
+
+// Initialize second pass rc for spatial svc.
+void vp9_init_second_pass_spatial_svc(struct VP9_COMP *cpi);
+
+// Increment number of video frames in layer
+void vp9_inc_frame_in_layer(struct VP9_COMP *const cpi);
+
+// Check if current layer is key frame in spatial upper layer
+int vp9_is_upper_layer_key_frame(const struct VP9_COMP *const cpi);
+
+// Get the next source buffer to encode
+struct lookahead_entry *vp9_svc_lookahead_pop(struct VP9_COMP *const cpi,
+ struct lookahead_ctx *ctx,
+ int drain);
+
+// Start a frame and initialize svc parameters
+int vp9_svc_start_frame(struct VP9_COMP *const cpi);
+
+int vp9_one_pass_cbr_svc_start_layer(struct VP9_COMP *const cpi);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_SVC_LAYERCONTEXT_
diff --git a/media/libvpx/vp9/encoder/vp9_temporal_filter.c b/media/libvpx/vp9/encoder/vp9_temporal_filter.c
new file mode 100644
index 000000000..24b6203cb
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_temporal_filter.c
@@ -0,0 +1,750 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <limits.h>
+
+#include "vp9/common/vp9_alloccommon.h"
+#include "vp9/common/vp9_onyxc_int.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/encoder/vp9_extend.h"
+#include "vp9/encoder/vp9_firstpass.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_segmentation.h"
+#include "vp9/encoder/vp9_temporal_filter.h"
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+#include "vpx_ports/vpx_timer.h"
+#include "vpx_scale/vpx_scale.h"
+
+static int fixed_divide[512];
+
+static void temporal_filter_predictors_mb_c(MACROBLOCKD *xd,
+ uint8_t *y_mb_ptr,
+ uint8_t *u_mb_ptr,
+ uint8_t *v_mb_ptr,
+ int stride,
+ int uv_block_width,
+ int uv_block_height,
+ int mv_row,
+ int mv_col,
+ uint8_t *pred,
+ struct scale_factors *scale,
+ int x, int y) {
+ const int which_mv = 0;
+ const MV mv = { mv_row, mv_col };
+ const InterpKernel *const kernel =
+ vp9_get_interp_kernel(xd->mi[0]->mbmi.interp_filter);
+
+ enum mv_precision mv_precision_uv;
+ int uv_stride;
+ if (uv_block_width == 8) {
+ uv_stride = (stride + 1) >> 1;
+ mv_precision_uv = MV_PRECISION_Q4;
+ } else {
+ uv_stride = stride;
+ mv_precision_uv = MV_PRECISION_Q3;
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ vp9_highbd_build_inter_predictor(y_mb_ptr, stride,
+ &pred[0], 16,
+ &mv,
+ scale,
+ 16, 16,
+ which_mv,
+ kernel, MV_PRECISION_Q3, x, y, xd->bd);
+
+ vp9_highbd_build_inter_predictor(u_mb_ptr, uv_stride,
+ &pred[256], uv_block_width,
+ &mv,
+ scale,
+ uv_block_width, uv_block_height,
+ which_mv,
+ kernel, mv_precision_uv, x, y, xd->bd);
+
+ vp9_highbd_build_inter_predictor(v_mb_ptr, uv_stride,
+ &pred[512], uv_block_width,
+ &mv,
+ scale,
+ uv_block_width, uv_block_height,
+ which_mv,
+ kernel, mv_precision_uv, x, y, xd->bd);
+ return;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ vp9_build_inter_predictor(y_mb_ptr, stride,
+ &pred[0], 16,
+ &mv,
+ scale,
+ 16, 16,
+ which_mv,
+ kernel, MV_PRECISION_Q3, x, y);
+
+ vp9_build_inter_predictor(u_mb_ptr, uv_stride,
+ &pred[256], uv_block_width,
+ &mv,
+ scale,
+ uv_block_width, uv_block_height,
+ which_mv,
+ kernel, mv_precision_uv, x, y);
+
+ vp9_build_inter_predictor(v_mb_ptr, uv_stride,
+ &pred[512], uv_block_width,
+ &mv,
+ scale,
+ uv_block_width, uv_block_height,
+ which_mv,
+ kernel, mv_precision_uv, x, y);
+}
+
+void vp9_temporal_filter_init(void) {
+ int i;
+
+ fixed_divide[0] = 0;
+ for (i = 1; i < 512; ++i)
+ fixed_divide[i] = 0x80000 / i;
+}
+
+void vp9_temporal_filter_apply_c(uint8_t *frame1,
+ unsigned int stride,
+ uint8_t *frame2,
+ unsigned int block_width,
+ unsigned int block_height,
+ int strength,
+ int filter_weight,
+ unsigned int *accumulator,
+ uint16_t *count) {
+ unsigned int i, j, k;
+ int modifier;
+ int byte = 0;
+ const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
+
+ for (i = 0, k = 0; i < block_height; i++) {
+ for (j = 0; j < block_width; j++, k++) {
+ int src_byte = frame1[byte];
+ int pixel_value = *frame2++;
+
+ modifier = src_byte - pixel_value;
+ // This is an integer approximation of:
+ // float coeff = (3.0 * modifer * modifier) / pow(2, strength);
+ // modifier = (int)roundf(coeff > 16 ? 0 : 16-coeff);
+ modifier *= modifier;
+ modifier *= 3;
+ modifier += rounding;
+ modifier >>= strength;
+
+ if (modifier > 16)
+ modifier = 16;
+
+ modifier = 16 - modifier;
+ modifier *= filter_weight;
+
+ count[k] += modifier;
+ accumulator[k] += modifier * pixel_value;
+
+ byte++;
+ }
+
+ byte += stride - block_width;
+ }
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_temporal_filter_apply_c(uint8_t *frame1_8,
+ unsigned int stride,
+ uint8_t *frame2_8,
+ unsigned int block_width,
+ unsigned int block_height,
+ int strength,
+ int filter_weight,
+ unsigned int *accumulator,
+ uint16_t *count) {
+ uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8);
+ uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8);
+ unsigned int i, j, k;
+ int modifier;
+ int byte = 0;
+ const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
+
+ for (i = 0, k = 0; i < block_height; i++) {
+ for (j = 0; j < block_width; j++, k++) {
+ int src_byte = frame1[byte];
+ int pixel_value = *frame2++;
+
+ modifier = src_byte - pixel_value;
+ // This is an integer approximation of:
+ // float coeff = (3.0 * modifer * modifier) / pow(2, strength);
+ // modifier = (int)roundf(coeff > 16 ? 0 : 16-coeff);
+ modifier *= modifier;
+ modifier *= 3;
+ modifier += rounding;
+ modifier >>= strength;
+
+ if (modifier > 16)
+ modifier = 16;
+
+ modifier = 16 - modifier;
+ modifier *= filter_weight;
+
+ count[k] += modifier;
+ accumulator[k] += modifier * pixel_value;
+
+ byte++;
+ }
+
+ byte += stride - block_width;
+ }
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+static int temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
+ uint8_t *arf_frame_buf,
+ uint8_t *frame_ptr_buf,
+ int stride) {
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
+ int step_param;
+ int sadpb = x->sadperbit16;
+ int bestsme = INT_MAX;
+ int distortion;
+ unsigned int sse;
+ int cost_list[5];
+
+ MV best_ref_mv1 = {0, 0};
+ MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
+ MV *ref_mv = &x->e_mbd.mi[0]->bmi[0].as_mv[0].as_mv;
+
+ // Save input state
+ struct buf_2d src = x->plane[0].src;
+ struct buf_2d pre = xd->plane[0].pre[0];
+
+ best_ref_mv1_full.col = best_ref_mv1.col >> 3;
+ best_ref_mv1_full.row = best_ref_mv1.row >> 3;
+
+ // Setup frame pointers
+ x->plane[0].src.buf = arf_frame_buf;
+ x->plane[0].src.stride = stride;
+ xd->plane[0].pre[0].buf = frame_ptr_buf;
+ xd->plane[0].pre[0].stride = stride;
+
+ step_param = mv_sf->reduce_first_step_size;
+ step_param = MIN(step_param, MAX_MVSEARCH_STEPS - 2);
+
+ // Ignore mv costing by sending NULL pointer instead of cost arrays
+ vp9_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
+ cond_cost_list(cpi, cost_list),
+ &cpi->fn_ptr[BLOCK_16X16], 0, &best_ref_mv1, ref_mv);
+
+ // Ignore mv costing by sending NULL pointer instead of cost array
+ bestsme = cpi->find_fractional_mv_step(x, ref_mv,
+ &best_ref_mv1,
+ cpi->common.allow_high_precision_mv,
+ x->errorperbit,
+ &cpi->fn_ptr[BLOCK_16X16],
+ 0, mv_sf->subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list),
+ NULL, NULL,
+ &distortion, &sse, NULL, 0, 0);
+
+ // Restore input state
+ x->plane[0].src = src;
+ xd->plane[0].pre[0] = pre;
+
+ return bestsme;
+}
+
+static void temporal_filter_iterate_c(VP9_COMP *cpi,
+ YV12_BUFFER_CONFIG **frames,
+ int frame_count,
+ int alt_ref_index,
+ int strength,
+ struct scale_factors *scale) {
+ int byte;
+ int frame;
+ int mb_col, mb_row;
+ unsigned int filter_weight;
+ int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4;
+ int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4;
+ int mb_y_offset = 0;
+ int mb_uv_offset = 0;
+ DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]);
+ DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]);
+ MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
+ YV12_BUFFER_CONFIG *f = frames[alt_ref_index];
+ uint8_t *dst1, *dst2;
+#if CONFIG_VP9_HIGHBITDEPTH
+ DECLARE_ALIGNED(16, uint16_t, predictor16[16 * 16 * 3]);
+ DECLARE_ALIGNED(16, uint8_t, predictor8[16 * 16 * 3]);
+ uint8_t *predictor;
+#else
+ DECLARE_ALIGNED(16, uint8_t, predictor[16 * 16 * 3]);
+#endif
+ const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
+ const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x;
+
+ // Save input state
+ uint8_t* input_buffer[MAX_MB_PLANE];
+ int i;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ predictor = CONVERT_TO_BYTEPTR(predictor16);
+ } else {
+ predictor = predictor8;
+ }
+#endif
+
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ input_buffer[i] = mbd->plane[i].pre[0].buf;
+
+ for (mb_row = 0; mb_row < mb_rows; mb_row++) {
+ // Source frames are extended to 16 pixels. This is different than
+ // L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS)
+ // A 6/8 tap filter is used for motion search. This requires 2 pixels
+ // before and 3 pixels after. So the largest Y mv on a border would
+ // then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the
+ // Y and therefore only extended by 8. The largest mv that a UV block
+ // can support is 8 - VP9_INTERP_EXTEND. A UV mv is half of a Y mv.
+ // (16 - VP9_INTERP_EXTEND) >> 1 which is greater than
+ // 8 - VP9_INTERP_EXTEND.
+ // To keep the mv in play for both Y and UV planes the max that it
+ // can be on a border is therefore 16 - (2*VP9_INTERP_EXTEND+1).
+ cpi->td.mb.mv_row_min = -((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND));
+ cpi->td.mb.mv_row_max = ((mb_rows - 1 - mb_row) * 16)
+ + (17 - 2 * VP9_INTERP_EXTEND);
+
+ for (mb_col = 0; mb_col < mb_cols; mb_col++) {
+ int i, j, k;
+ int stride;
+
+ memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
+ memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
+
+ cpi->td.mb.mv_col_min = -((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND));
+ cpi->td.mb.mv_col_max = ((mb_cols - 1 - mb_col) * 16)
+ + (17 - 2 * VP9_INTERP_EXTEND);
+
+ for (frame = 0; frame < frame_count; frame++) {
+ const int thresh_low = 10000;
+ const int thresh_high = 20000;
+
+ if (frames[frame] == NULL)
+ continue;
+
+ mbd->mi[0]->bmi[0].as_mv[0].as_mv.row = 0;
+ mbd->mi[0]->bmi[0].as_mv[0].as_mv.col = 0;
+
+ if (frame == alt_ref_index) {
+ filter_weight = 2;
+ } else {
+ // Find best match in this frame by MC
+ int err = temporal_filter_find_matching_mb_c(cpi,
+ frames[alt_ref_index]->y_buffer + mb_y_offset,
+ frames[frame]->y_buffer + mb_y_offset,
+ frames[frame]->y_stride);
+
+ // Assign higher weight to matching MB if it's error
+ // score is lower. If not applying MC default behavior
+ // is to weight all MBs equal.
+ filter_weight = err < thresh_low
+ ? 2 : err < thresh_high ? 1 : 0;
+ }
+
+ if (filter_weight != 0) {
+ // Construct the predictors
+ temporal_filter_predictors_mb_c(mbd,
+ frames[frame]->y_buffer + mb_y_offset,
+ frames[frame]->u_buffer + mb_uv_offset,
+ frames[frame]->v_buffer + mb_uv_offset,
+ frames[frame]->y_stride,
+ mb_uv_width, mb_uv_height,
+ mbd->mi[0]->bmi[0].as_mv[0].as_mv.row,
+ mbd->mi[0]->bmi[0].as_mv[0].as_mv.col,
+ predictor, scale,
+ mb_col * 16, mb_row * 16);
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ int adj_strength = strength + 2 * (mbd->bd - 8);
+ // Apply the filter (YUV)
+ vp9_highbd_temporal_filter_apply(f->y_buffer + mb_y_offset,
+ f->y_stride,
+ predictor, 16, 16, adj_strength,
+ filter_weight,
+ accumulator, count);
+ vp9_highbd_temporal_filter_apply(f->u_buffer + mb_uv_offset,
+ f->uv_stride, predictor + 256,
+ mb_uv_width, mb_uv_height,
+ adj_strength,
+ filter_weight, accumulator + 256,
+ count + 256);
+ vp9_highbd_temporal_filter_apply(f->v_buffer + mb_uv_offset,
+ f->uv_stride, predictor + 512,
+ mb_uv_width, mb_uv_height,
+ adj_strength, filter_weight,
+ accumulator + 512, count + 512);
+ } else {
+ // Apply the filter (YUV)
+ vp9_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
+ predictor, 16, 16,
+ strength, filter_weight,
+ accumulator, count);
+ vp9_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
+ predictor + 256,
+ mb_uv_width, mb_uv_height, strength,
+ filter_weight, accumulator + 256,
+ count + 256);
+ vp9_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
+ predictor + 512,
+ mb_uv_width, mb_uv_height, strength,
+ filter_weight, accumulator + 512,
+ count + 512);
+ }
+#else
+ // Apply the filter (YUV)
+ vp9_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
+ predictor, 16, 16,
+ strength, filter_weight,
+ accumulator, count);
+ vp9_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
+ predictor + 256,
+ mb_uv_width, mb_uv_height, strength,
+ filter_weight, accumulator + 256,
+ count + 256);
+ vp9_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
+ predictor + 512,
+ mb_uv_width, mb_uv_height, strength,
+ filter_weight, accumulator + 512,
+ count + 512);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ uint16_t *dst1_16;
+ uint16_t *dst2_16;
+ // Normalize filter output to produce AltRef frame
+ dst1 = cpi->alt_ref_buffer.y_buffer;
+ dst1_16 = CONVERT_TO_SHORTPTR(dst1);
+ stride = cpi->alt_ref_buffer.y_stride;
+ byte = mb_y_offset;
+ for (i = 0, k = 0; i < 16; i++) {
+ for (j = 0; j < 16; j++, k++) {
+ unsigned int pval = accumulator[k] + (count[k] >> 1);
+ pval *= fixed_divide[count[k]];
+ pval >>= 19;
+
+ dst1_16[byte] = (uint16_t)pval;
+
+ // move to next pixel
+ byte++;
+ }
+
+ byte += stride - 16;
+ }
+
+ dst1 = cpi->alt_ref_buffer.u_buffer;
+ dst2 = cpi->alt_ref_buffer.v_buffer;
+ dst1_16 = CONVERT_TO_SHORTPTR(dst1);
+ dst2_16 = CONVERT_TO_SHORTPTR(dst2);
+ stride = cpi->alt_ref_buffer.uv_stride;
+ byte = mb_uv_offset;
+ for (i = 0, k = 256; i < mb_uv_height; i++) {
+ for (j = 0; j < mb_uv_width; j++, k++) {
+ int m = k + 256;
+
+ // U
+ unsigned int pval = accumulator[k] + (count[k] >> 1);
+ pval *= fixed_divide[count[k]];
+ pval >>= 19;
+ dst1_16[byte] = (uint16_t)pval;
+
+ // V
+ pval = accumulator[m] + (count[m] >> 1);
+ pval *= fixed_divide[count[m]];
+ pval >>= 19;
+ dst2_16[byte] = (uint16_t)pval;
+
+ // move to next pixel
+ byte++;
+ }
+
+ byte += stride - mb_uv_width;
+ }
+ } else {
+ // Normalize filter output to produce AltRef frame
+ dst1 = cpi->alt_ref_buffer.y_buffer;
+ stride = cpi->alt_ref_buffer.y_stride;
+ byte = mb_y_offset;
+ for (i = 0, k = 0; i < 16; i++) {
+ for (j = 0; j < 16; j++, k++) {
+ unsigned int pval = accumulator[k] + (count[k] >> 1);
+ pval *= fixed_divide[count[k]];
+ pval >>= 19;
+
+ dst1[byte] = (uint8_t)pval;
+
+ // move to next pixel
+ byte++;
+ }
+ byte += stride - 16;
+ }
+
+ dst1 = cpi->alt_ref_buffer.u_buffer;
+ dst2 = cpi->alt_ref_buffer.v_buffer;
+ stride = cpi->alt_ref_buffer.uv_stride;
+ byte = mb_uv_offset;
+ for (i = 0, k = 256; i < mb_uv_height; i++) {
+ for (j = 0; j < mb_uv_width; j++, k++) {
+ int m = k + 256;
+
+ // U
+ unsigned int pval = accumulator[k] + (count[k] >> 1);
+ pval *= fixed_divide[count[k]];
+ pval >>= 19;
+ dst1[byte] = (uint8_t)pval;
+
+ // V
+ pval = accumulator[m] + (count[m] >> 1);
+ pval *= fixed_divide[count[m]];
+ pval >>= 19;
+ dst2[byte] = (uint8_t)pval;
+
+ // move to next pixel
+ byte++;
+ }
+ byte += stride - mb_uv_width;
+ }
+ }
+#else
+ // Normalize filter output to produce AltRef frame
+ dst1 = cpi->alt_ref_buffer.y_buffer;
+ stride = cpi->alt_ref_buffer.y_stride;
+ byte = mb_y_offset;
+ for (i = 0, k = 0; i < 16; i++) {
+ for (j = 0; j < 16; j++, k++) {
+ unsigned int pval = accumulator[k] + (count[k] >> 1);
+ pval *= fixed_divide[count[k]];
+ pval >>= 19;
+
+ dst1[byte] = (uint8_t)pval;
+
+ // move to next pixel
+ byte++;
+ }
+ byte += stride - 16;
+ }
+
+ dst1 = cpi->alt_ref_buffer.u_buffer;
+ dst2 = cpi->alt_ref_buffer.v_buffer;
+ stride = cpi->alt_ref_buffer.uv_stride;
+ byte = mb_uv_offset;
+ for (i = 0, k = 256; i < mb_uv_height; i++) {
+ for (j = 0; j < mb_uv_width; j++, k++) {
+ int m = k + 256;
+
+ // U
+ unsigned int pval = accumulator[k] + (count[k] >> 1);
+ pval *= fixed_divide[count[k]];
+ pval >>= 19;
+ dst1[byte] = (uint8_t)pval;
+
+ // V
+ pval = accumulator[m] + (count[m] >> 1);
+ pval *= fixed_divide[count[m]];
+ pval >>= 19;
+ dst2[byte] = (uint8_t)pval;
+
+ // move to next pixel
+ byte++;
+ }
+ byte += stride - mb_uv_width;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ mb_y_offset += 16;
+ mb_uv_offset += mb_uv_width;
+ }
+ mb_y_offset += 16 * (f->y_stride - mb_cols);
+ mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols;
+ }
+
+ // Restore input state
+ for (i = 0; i < MAX_MB_PLANE; i++)
+ mbd->plane[i].pre[0].buf = input_buffer[i];
+}
+
+// Apply buffer limits and context specific adjustments to arnr filter.
+static void adjust_arnr_filter(VP9_COMP *cpi,
+ int distance, int group_boost,
+ int *arnr_frames, int *arnr_strength) {
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const int frames_after_arf =
+ vp9_lookahead_depth(cpi->lookahead) - distance - 1;
+ int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
+ int frames_bwd;
+ int q, frames, strength;
+
+ // Define the forward and backwards filter limits for this arnr group.
+ if (frames_fwd > frames_after_arf)
+ frames_fwd = frames_after_arf;
+ if (frames_fwd > distance)
+ frames_fwd = distance;
+
+ frames_bwd = frames_fwd;
+
+ // For even length filter there is one more frame backward
+ // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
+ if (frames_bwd < distance)
+ frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1;
+
+ // Set the baseline active filter size.
+ frames = frames_bwd + 1 + frames_fwd;
+
+ // Adjust the strength based on active max q.
+ if (cpi->common.current_video_frame > 1)
+ q = ((int)vp9_convert_qindex_to_q(
+ cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth));
+ else
+ q = ((int)vp9_convert_qindex_to_q(
+ cpi->rc.avg_frame_qindex[KEY_FRAME], cpi->common.bit_depth));
+ if (q > 16) {
+ strength = oxcf->arnr_strength;
+ } else {
+ strength = oxcf->arnr_strength - ((16 - q) / 2);
+ if (strength < 0)
+ strength = 0;
+ }
+
+ // Adjust number of frames in filter and strength based on gf boost level.
+ if (frames > group_boost / 150) {
+ frames = group_boost / 150;
+ frames += !(frames & 1);
+ }
+
+ if (strength > group_boost / 300) {
+ strength = group_boost / 300;
+ }
+
+ // Adjustments for second level arf in multi arf case.
+ if (cpi->oxcf.pass == 2 && cpi->multi_arf_allowed) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ if (gf_group->rf_level[gf_group->index] != GF_ARF_STD) {
+ strength >>= 1;
+ }
+ }
+
+ *arnr_frames = frames;
+ *arnr_strength = strength;
+}
+
+void vp9_temporal_filter(VP9_COMP *cpi, int distance) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ int frame;
+ int frames_to_blur;
+ int start_frame;
+ int strength;
+ int frames_to_blur_backward;
+ int frames_to_blur_forward;
+ struct scale_factors sf;
+ YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = {NULL};
+
+ // Apply context specific adjustments to the arnr filter parameters.
+ adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength);
+ frames_to_blur_backward = (frames_to_blur / 2);
+ frames_to_blur_forward = ((frames_to_blur - 1) / 2);
+ start_frame = distance + frames_to_blur_forward;
+
+ // Setup frame pointers, NULL indicates frame not included in filter.
+ for (frame = 0; frame < frames_to_blur; ++frame) {
+ const int which_buffer = start_frame - frame;
+ struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead,
+ which_buffer);
+ frames[frames_to_blur - 1 - frame] = &buf->img;
+ }
+
+ if (frames_to_blur > 0) {
+ // Setup scaling factors. Scaling on each of the arnr frames is not
+ // supported.
+ if (cpi->use_svc) {
+ // In spatial svc the scaling factors might be less then 1/2.
+ // So we will use non-normative scaling.
+ int frame_used = 0;
+#if CONFIG_VP9_HIGHBITDEPTH
+ vp9_setup_scale_factors_for_frame(
+ &sf,
+ get_frame_new_buffer(cm)->y_crop_width,
+ get_frame_new_buffer(cm)->y_crop_height,
+ get_frame_new_buffer(cm)->y_crop_width,
+ get_frame_new_buffer(cm)->y_crop_height,
+ cm->use_highbitdepth);
+#else
+ vp9_setup_scale_factors_for_frame(
+ &sf,
+ get_frame_new_buffer(cm)->y_crop_width,
+ get_frame_new_buffer(cm)->y_crop_height,
+ get_frame_new_buffer(cm)->y_crop_width,
+ get_frame_new_buffer(cm)->y_crop_height);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ for (frame = 0; frame < frames_to_blur; ++frame) {
+ if (cm->mi_cols * MI_SIZE != frames[frame]->y_width ||
+ cm->mi_rows * MI_SIZE != frames[frame]->y_height) {
+ if (vp9_realloc_frame_buffer(&cpi->svc.scaled_frames[frame_used],
+ cm->width, cm->height,
+ cm->subsampling_x, cm->subsampling_y,
+#if CONFIG_VP9_HIGHBITDEPTH
+ cm->use_highbitdepth,
+#endif
+ VP9_ENC_BORDER_IN_PIXELS,
+ cm->byte_alignment,
+ NULL, NULL, NULL)) {
+ vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
+ "Failed to reallocate alt_ref_buffer");
+ }
+ frames[frame] = vp9_scale_if_required(
+ cm, frames[frame], &cpi->svc.scaled_frames[frame_used]);
+ ++frame_used;
+ }
+ }
+ cm->mi = cm->mip + cm->mi_stride + 1;
+ xd->mi = cm->mi_grid_visible;
+ xd->mi[0] = cm->mi;
+ } else {
+ // ARF is produced at the native frame size and resized when coded.
+#if CONFIG_VP9_HIGHBITDEPTH
+ vp9_setup_scale_factors_for_frame(&sf,
+ frames[0]->y_crop_width,
+ frames[0]->y_crop_height,
+ frames[0]->y_crop_width,
+ frames[0]->y_crop_height,
+ cm->use_highbitdepth);
+#else
+ vp9_setup_scale_factors_for_frame(&sf,
+ frames[0]->y_crop_width,
+ frames[0]->y_crop_height,
+ frames[0]->y_crop_width,
+ frames[0]->y_crop_height);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ }
+ }
+
+ temporal_filter_iterate_c(cpi, frames, frames_to_blur,
+ frames_to_blur_backward, strength, &sf);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_temporal_filter.h b/media/libvpx/vp9/encoder/vp9_temporal_filter.h
new file mode 100644
index 000000000..f537b8870
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_temporal_filter.h
@@ -0,0 +1,25 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_TEMPORAL_FILTER_H_
+#define VP9_ENCODER_VP9_TEMPORAL_FILTER_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_temporal_filter_init(void);
+void vp9_temporal_filter(VP9_COMP *cpi, int distance);
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_TEMPORAL_FILTER_H_
diff --git a/media/libvpx/vp9/encoder/vp9_tokenize.c b/media/libvpx/vp9/encoder/vp9_tokenize.c
new file mode 100644
index 000000000..35920313a
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_tokenize.c
@@ -0,0 +1,634 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+#include <stdio.h>
+#include <string.h>
+
+#include "vpx_mem/vpx_mem.h"
+
+#include "vp9/common/vp9_entropy.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_scan.h"
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_tokenize.h"
+
+static const TOKENVALUE dct_cat_lt_10_value_tokens[] = {
+ {9, 63}, {9, 61}, {9, 59}, {9, 57}, {9, 55}, {9, 53}, {9, 51}, {9, 49},
+ {9, 47}, {9, 45}, {9, 43}, {9, 41}, {9, 39}, {9, 37}, {9, 35}, {9, 33},
+ {9, 31}, {9, 29}, {9, 27}, {9, 25}, {9, 23}, {9, 21}, {9, 19}, {9, 17},
+ {9, 15}, {9, 13}, {9, 11}, {9, 9}, {9, 7}, {9, 5}, {9, 3}, {9, 1},
+ {8, 31}, {8, 29}, {8, 27}, {8, 25}, {8, 23}, {8, 21},
+ {8, 19}, {8, 17}, {8, 15}, {8, 13}, {8, 11}, {8, 9},
+ {8, 7}, {8, 5}, {8, 3}, {8, 1},
+ {7, 15}, {7, 13}, {7, 11}, {7, 9}, {7, 7}, {7, 5}, {7, 3}, {7, 1},
+ {6, 7}, {6, 5}, {6, 3}, {6, 1}, {5, 3}, {5, 1},
+ {4, 1}, {3, 1}, {2, 1}, {1, 1}, {0, 0},
+ {1, 0}, {2, 0}, {3, 0}, {4, 0},
+ {5, 0}, {5, 2}, {6, 0}, {6, 2}, {6, 4}, {6, 6},
+ {7, 0}, {7, 2}, {7, 4}, {7, 6}, {7, 8}, {7, 10}, {7, 12}, {7, 14},
+ {8, 0}, {8, 2}, {8, 4}, {8, 6}, {8, 8}, {8, 10}, {8, 12},
+ {8, 14}, {8, 16}, {8, 18}, {8, 20}, {8, 22}, {8, 24},
+ {8, 26}, {8, 28}, {8, 30}, {9, 0}, {9, 2},
+ {9, 4}, {9, 6}, {9, 8}, {9, 10}, {9, 12}, {9, 14}, {9, 16},
+ {9, 18}, {9, 20}, {9, 22}, {9, 24}, {9, 26}, {9, 28},
+ {9, 30}, {9, 32}, {9, 34}, {9, 36}, {9, 38}, {9, 40},
+ {9, 42}, {9, 44}, {9, 46}, {9, 48}, {9, 50}, {9, 52},
+ {9, 54}, {9, 56}, {9, 58}, {9, 60}, {9, 62}
+};
+const TOKENVALUE *vp9_dct_cat_lt_10_value_tokens = dct_cat_lt_10_value_tokens +
+ (sizeof(dct_cat_lt_10_value_tokens) / sizeof(*dct_cat_lt_10_value_tokens))
+ / 2;
+
+// Array indices are identical to previously-existing CONTEXT_NODE indices
+const vp9_tree_index vp9_coef_tree[TREE_SIZE(ENTROPY_TOKENS)] = {
+ -EOB_TOKEN, 2, // 0 = EOB
+ -ZERO_TOKEN, 4, // 1 = ZERO
+ -ONE_TOKEN, 6, // 2 = ONE
+ 8, 12, // 3 = LOW_VAL
+ -TWO_TOKEN, 10, // 4 = TWO
+ -THREE_TOKEN, -FOUR_TOKEN, // 5 = THREE
+ 14, 16, // 6 = HIGH_LOW
+ -CATEGORY1_TOKEN, -CATEGORY2_TOKEN, // 7 = CAT_ONE
+ 18, 20, // 8 = CAT_THREEFOUR
+ -CATEGORY3_TOKEN, -CATEGORY4_TOKEN, // 9 = CAT_THREE
+ -CATEGORY5_TOKEN, -CATEGORY6_TOKEN // 10 = CAT_FIVE
+};
+
+static const vp9_tree_index cat1[2] = {0, 0};
+static const vp9_tree_index cat2[4] = {2, 2, 0, 0};
+static const vp9_tree_index cat3[6] = {2, 2, 4, 4, 0, 0};
+static const vp9_tree_index cat4[8] = {2, 2, 4, 4, 6, 6, 0, 0};
+static const vp9_tree_index cat5[10] = {2, 2, 4, 4, 6, 6, 8, 8, 0, 0};
+static const vp9_tree_index cat6[28] = {2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12,
+ 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 0, 0};
+
+static const int16_t zero_cost[] = {0};
+static const int16_t one_cost[] = {255, 257};
+static const int16_t two_cost[] = {255, 257};
+static const int16_t three_cost[] = {255, 257};
+static const int16_t four_cost[] = {255, 257};
+static const int16_t cat1_cost[] = {429, 431, 616, 618};
+static const int16_t cat2_cost[] = {624, 626, 727, 729, 848, 850, 951, 953};
+static const int16_t cat3_cost[] = {
+ 820, 822, 893, 895, 940, 942, 1013, 1015, 1096, 1098, 1169, 1171, 1216, 1218,
+ 1289, 1291
+};
+static const int16_t cat4_cost[] = {
+ 1032, 1034, 1075, 1077, 1105, 1107, 1148, 1150, 1194, 1196, 1237, 1239,
+ 1267, 1269, 1310, 1312, 1328, 1330, 1371, 1373, 1401, 1403, 1444, 1446,
+ 1490, 1492, 1533, 1535, 1563, 1565, 1606, 1608
+};
+static const int16_t cat5_cost[] = {
+ 1269, 1271, 1283, 1285, 1306, 1308, 1320,
+ 1322, 1347, 1349, 1361, 1363, 1384, 1386, 1398, 1400, 1443, 1445, 1457,
+ 1459, 1480, 1482, 1494, 1496, 1521, 1523, 1535, 1537, 1558, 1560, 1572,
+ 1574, 1592, 1594, 1606, 1608, 1629, 1631, 1643, 1645, 1670, 1672, 1684,
+ 1686, 1707, 1709, 1721, 1723, 1766, 1768, 1780, 1782, 1803, 1805, 1817,
+ 1819, 1844, 1846, 1858, 1860, 1881, 1883, 1895, 1897
+};
+const int16_t vp9_cat6_low_cost[256] = {
+ 1638, 1640, 1646, 1648, 1652, 1654, 1660, 1662,
+ 1670, 1672, 1678, 1680, 1684, 1686, 1692, 1694, 1711, 1713, 1719, 1721,
+ 1725, 1727, 1733, 1735, 1743, 1745, 1751, 1753, 1757, 1759, 1765, 1767,
+ 1787, 1789, 1795, 1797, 1801, 1803, 1809, 1811, 1819, 1821, 1827, 1829,
+ 1833, 1835, 1841, 1843, 1860, 1862, 1868, 1870, 1874, 1876, 1882, 1884,
+ 1892, 1894, 1900, 1902, 1906, 1908, 1914, 1916, 1940, 1942, 1948, 1950,
+ 1954, 1956, 1962, 1964, 1972, 1974, 1980, 1982, 1986, 1988, 1994, 1996,
+ 2013, 2015, 2021, 2023, 2027, 2029, 2035, 2037, 2045, 2047, 2053, 2055,
+ 2059, 2061, 2067, 2069, 2089, 2091, 2097, 2099, 2103, 2105, 2111, 2113,
+ 2121, 2123, 2129, 2131, 2135, 2137, 2143, 2145, 2162, 2164, 2170, 2172,
+ 2176, 2178, 2184, 2186, 2194, 2196, 2202, 2204, 2208, 2210, 2216, 2218,
+ 2082, 2084, 2090, 2092, 2096, 2098, 2104, 2106, 2114, 2116, 2122, 2124,
+ 2128, 2130, 2136, 2138, 2155, 2157, 2163, 2165, 2169, 2171, 2177, 2179,
+ 2187, 2189, 2195, 2197, 2201, 2203, 2209, 2211, 2231, 2233, 2239, 2241,
+ 2245, 2247, 2253, 2255, 2263, 2265, 2271, 2273, 2277, 2279, 2285, 2287,
+ 2304, 2306, 2312, 2314, 2318, 2320, 2326, 2328, 2336, 2338, 2344, 2346,
+ 2350, 2352, 2358, 2360, 2384, 2386, 2392, 2394, 2398, 2400, 2406, 2408,
+ 2416, 2418, 2424, 2426, 2430, 2432, 2438, 2440, 2457, 2459, 2465, 2467,
+ 2471, 2473, 2479, 2481, 2489, 2491, 2497, 2499, 2503, 2505, 2511, 2513,
+ 2533, 2535, 2541, 2543, 2547, 2549, 2555, 2557, 2565, 2567, 2573, 2575,
+ 2579, 2581, 2587, 2589, 2606, 2608, 2614, 2616, 2620, 2622, 2628, 2630,
+ 2638, 2640, 2646, 2648, 2652, 2654, 2660, 2662
+};
+const int16_t vp9_cat6_high_cost[128] = {
+ 72, 892, 1183, 2003, 1448, 2268, 2559, 3379,
+ 1709, 2529, 2820, 3640, 3085, 3905, 4196, 5016, 2118, 2938, 3229, 4049,
+ 3494, 4314, 4605, 5425, 3755, 4575, 4866, 5686, 5131, 5951, 6242, 7062,
+ 2118, 2938, 3229, 4049, 3494, 4314, 4605, 5425, 3755, 4575, 4866, 5686,
+ 5131, 5951, 6242, 7062, 4164, 4984, 5275, 6095, 5540, 6360, 6651, 7471,
+ 5801, 6621, 6912, 7732, 7177, 7997, 8288, 9108, 2118, 2938, 3229, 4049,
+ 3494, 4314, 4605, 5425, 3755, 4575, 4866, 5686, 5131, 5951, 6242, 7062,
+ 4164, 4984, 5275, 6095, 5540, 6360, 6651, 7471, 5801, 6621, 6912, 7732,
+ 7177, 7997, 8288, 9108, 4164, 4984, 5275, 6095, 5540, 6360, 6651, 7471,
+ 5801, 6621, 6912, 7732, 7177, 7997, 8288, 9108, 6210, 7030, 7321, 8141,
+ 7586, 8406, 8697, 9517, 7847, 8667, 8958, 9778, 9223, 10043, 10334, 11154
+};
+
+#if CONFIG_VP9_HIGHBITDEPTH
+const int16_t vp9_cat6_high10_high_cost[512] = {
+ 74, 894, 1185, 2005, 1450, 2270, 2561,
+ 3381, 1711, 2531, 2822, 3642, 3087, 3907, 4198, 5018, 2120, 2940, 3231,
+ 4051, 3496, 4316, 4607, 5427, 3757, 4577, 4868, 5688, 5133, 5953, 6244,
+ 7064, 2120, 2940, 3231, 4051, 3496, 4316, 4607, 5427, 3757, 4577, 4868,
+ 5688, 5133, 5953, 6244, 7064, 4166, 4986, 5277, 6097, 5542, 6362, 6653,
+ 7473, 5803, 6623, 6914, 7734, 7179, 7999, 8290, 9110, 2120, 2940, 3231,
+ 4051, 3496, 4316, 4607, 5427, 3757, 4577, 4868, 5688, 5133, 5953, 6244,
+ 7064, 4166, 4986, 5277, 6097, 5542, 6362, 6653, 7473, 5803, 6623, 6914,
+ 7734, 7179, 7999, 8290, 9110, 4166, 4986, 5277, 6097, 5542, 6362, 6653,
+ 7473, 5803, 6623, 6914, 7734, 7179, 7999, 8290, 9110, 6212, 7032, 7323,
+ 8143, 7588, 8408, 8699, 9519, 7849, 8669, 8960, 9780, 9225, 10045, 10336,
+ 11156, 2120, 2940, 3231, 4051, 3496, 4316, 4607, 5427, 3757, 4577, 4868,
+ 5688, 5133, 5953, 6244, 7064, 4166, 4986, 5277, 6097, 5542, 6362, 6653,
+ 7473, 5803, 6623, 6914, 7734, 7179, 7999, 8290, 9110, 4166, 4986, 5277,
+ 6097, 5542, 6362, 6653, 7473, 5803, 6623, 6914, 7734, 7179, 7999, 8290,
+ 9110, 6212, 7032, 7323, 8143, 7588, 8408, 8699, 9519, 7849, 8669, 8960,
+ 9780, 9225, 10045, 10336, 11156, 4166, 4986, 5277, 6097, 5542, 6362, 6653,
+ 7473, 5803, 6623, 6914, 7734, 7179, 7999, 8290, 9110, 6212, 7032, 7323,
+ 8143, 7588, 8408, 8699, 9519, 7849, 8669, 8960, 9780, 9225, 10045, 10336,
+ 11156, 6212, 7032, 7323, 8143, 7588, 8408, 8699, 9519, 7849, 8669, 8960,
+ 9780, 9225, 10045, 10336, 11156, 8258, 9078, 9369, 10189, 9634, 10454,
+ 10745, 11565, 9895, 10715, 11006, 11826, 11271, 12091, 12382, 13202, 2120,
+ 2940, 3231, 4051, 3496, 4316, 4607, 5427, 3757, 4577, 4868, 5688, 5133,
+ 5953, 6244, 7064, 4166, 4986, 5277, 6097, 5542, 6362, 6653, 7473, 5803,
+ 6623, 6914, 7734, 7179, 7999, 8290, 9110, 4166, 4986, 5277, 6097, 5542,
+ 6362, 6653, 7473, 5803, 6623, 6914, 7734, 7179, 7999, 8290, 9110, 6212,
+ 7032, 7323, 8143, 7588, 8408, 8699, 9519, 7849, 8669, 8960, 9780, 9225,
+ 10045, 10336, 11156, 4166, 4986, 5277, 6097, 5542, 6362, 6653, 7473, 5803,
+ 6623, 6914, 7734, 7179, 7999, 8290, 9110, 6212, 7032, 7323, 8143, 7588,
+ 8408, 8699, 9519, 7849, 8669, 8960, 9780, 9225, 10045, 10336, 11156, 6212,
+ 7032, 7323, 8143, 7588, 8408, 8699, 9519, 7849, 8669, 8960, 9780, 9225,
+ 10045, 10336, 11156, 8258, 9078, 9369, 10189, 9634, 10454, 10745, 11565,
+ 9895, 10715, 11006, 11826, 11271, 12091, 12382, 13202, 4166, 4986, 5277,
+ 6097, 5542, 6362, 6653, 7473, 5803, 6623, 6914, 7734, 7179, 7999, 8290,
+ 9110, 6212, 7032, 7323, 8143, 7588, 8408, 8699, 9519, 7849, 8669, 8960,
+ 9780, 9225, 10045, 10336, 11156, 6212, 7032, 7323, 8143, 7588, 8408, 8699,
+ 9519, 7849, 8669, 8960, 9780, 9225, 10045, 10336, 11156, 8258, 9078, 9369,
+ 10189, 9634, 10454, 10745, 11565, 9895, 10715, 11006, 11826, 11271, 12091,
+ 12382, 13202, 6212, 7032, 7323, 8143, 7588, 8408, 8699, 9519, 7849, 8669,
+ 8960, 9780, 9225, 10045, 10336, 11156, 8258, 9078, 9369, 10189, 9634, 10454,
+ 10745, 11565, 9895, 10715, 11006, 11826, 11271, 12091, 12382, 13202, 8258,
+ 9078, 9369, 10189, 9634, 10454, 10745, 11565, 9895, 10715, 11006, 11826,
+ 11271, 12091, 12382, 13202, 10304, 11124, 11415, 12235, 11680, 12500, 12791,
+ 13611, 11941, 12761, 13052, 13872, 13317, 14137, 14428, 15248,
+};
+const int16_t vp9_cat6_high12_high_cost[2048] = {
+ 76, 896, 1187, 2007, 1452, 2272, 2563,
+ 3383, 1713, 2533, 2824, 3644, 3089, 3909, 4200, 5020, 2122, 2942, 3233,
+ 4053, 3498, 4318, 4609, 5429, 3759, 4579, 4870, 5690, 5135, 5955, 6246,
+ 7066, 2122, 2942, 3233, 4053, 3498, 4318, 4609, 5429, 3759, 4579, 4870,
+ 5690, 5135, 5955, 6246, 7066, 4168, 4988, 5279, 6099, 5544, 6364, 6655,
+ 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292, 9112, 2122, 2942, 3233,
+ 4053, 3498, 4318, 4609, 5429, 3759, 4579, 4870, 5690, 5135, 5955, 6246,
+ 7066, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475, 5805, 6625, 6916,
+ 7736, 7181, 8001, 8292, 9112, 4168, 4988, 5279, 6099, 5544, 6364, 6655,
+ 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292, 9112, 6214, 7034, 7325,
+ 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338,
+ 11158, 2122, 2942, 3233, 4053, 3498, 4318, 4609, 5429, 3759, 4579, 4870,
+ 5690, 5135, 5955, 6246, 7066, 4168, 4988, 5279, 6099, 5544, 6364, 6655,
+ 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292, 9112, 4168, 4988, 5279,
+ 6099, 5544, 6364, 6655, 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292,
+ 9112, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962,
+ 9782, 9227, 10047, 10338, 11158, 4168, 4988, 5279, 6099, 5544, 6364, 6655,
+ 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292, 9112, 6214, 7034, 7325,
+ 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338,
+ 11158, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962,
+ 9782, 9227, 10047, 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456,
+ 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 2122,
+ 2942, 3233, 4053, 3498, 4318, 4609, 5429, 3759, 4579, 4870, 5690, 5135,
+ 5955, 6246, 7066, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475, 5805,
+ 6625, 6916, 7736, 7181, 8001, 8292, 9112, 4168, 4988, 5279, 6099, 5544,
+ 6364, 6655, 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292, 9112, 6214,
+ 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227,
+ 10047, 10338, 11158, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475, 5805,
+ 6625, 6916, 7736, 7181, 8001, 8292, 9112, 6214, 7034, 7325, 8145, 7590,
+ 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 6214,
+ 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227,
+ 10047, 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567,
+ 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 4168, 4988, 5279,
+ 6099, 5544, 6364, 6655, 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292,
+ 9112, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962,
+ 9782, 9227, 10047, 10338, 11158, 6214, 7034, 7325, 8145, 7590, 8410, 8701,
+ 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 8260, 9080, 9371,
+ 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093,
+ 12384, 13204, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671,
+ 8962, 9782, 9227, 10047, 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456,
+ 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 8260,
+ 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828,
+ 11273, 12093, 12384, 13204, 10306, 11126, 11417, 12237, 11682, 12502, 12793,
+ 13613, 11943, 12763, 13054, 13874, 13319, 14139, 14430, 15250, 2122, 2942,
+ 3233, 4053, 3498, 4318, 4609, 5429, 3759, 4579, 4870, 5690, 5135, 5955,
+ 6246, 7066, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475, 5805, 6625,
+ 6916, 7736, 7181, 8001, 8292, 9112, 4168, 4988, 5279, 6099, 5544, 6364,
+ 6655, 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292, 9112, 6214, 7034,
+ 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047,
+ 10338, 11158, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475, 5805, 6625,
+ 6916, 7736, 7181, 8001, 8292, 9112, 6214, 7034, 7325, 8145, 7590, 8410,
+ 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 6214, 7034,
+ 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047,
+ 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897,
+ 10717, 11008, 11828, 11273, 12093, 12384, 13204, 4168, 4988, 5279, 6099,
+ 5544, 6364, 6655, 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292, 9112,
+ 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782,
+ 9227, 10047, 10338, 11158, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521,
+ 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 8260, 9080, 9371, 10191,
+ 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384,
+ 13204, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962,
+ 9782, 9227, 10047, 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456,
+ 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 8260,
+ 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828,
+ 11273, 12093, 12384, 13204, 10306, 11126, 11417, 12237, 11682, 12502, 12793,
+ 13613, 11943, 12763, 13054, 13874, 13319, 14139, 14430, 15250, 4168, 4988,
+ 5279, 6099, 5544, 6364, 6655, 7475, 5805, 6625, 6916, 7736, 7181, 8001,
+ 8292, 9112, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671,
+ 8962, 9782, 9227, 10047, 10338, 11158, 6214, 7034, 7325, 8145, 7590, 8410,
+ 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 8260, 9080,
+ 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273,
+ 12093, 12384, 13204, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851,
+ 8671, 8962, 9782, 9227, 10047, 10338, 11158, 8260, 9080, 9371, 10191, 9636,
+ 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204,
+ 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008,
+ 11828, 11273, 12093, 12384, 13204, 10306, 11126, 11417, 12237, 11682, 12502,
+ 12793, 13613, 11943, 12763, 13054, 13874, 13319, 14139, 14430, 15250, 6214,
+ 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227,
+ 10047, 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567,
+ 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 8260, 9080, 9371,
+ 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093,
+ 12384, 13204, 10306, 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943,
+ 12763, 13054, 13874, 13319, 14139, 14430, 15250, 8260, 9080, 9371, 10191,
+ 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384,
+ 13204, 10306, 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763,
+ 13054, 13874, 13319, 14139, 14430, 15250, 10306, 11126, 11417, 12237, 11682,
+ 12502, 12793, 13613, 11943, 12763, 13054, 13874, 13319, 14139, 14430, 15250,
+ 12352, 13172, 13463, 14283, 13728, 14548, 14839, 15659, 13989, 14809, 15100,
+ 15920, 15365, 16185, 16476, 17296, 2122, 2942, 3233, 4053, 3498, 4318, 4609,
+ 5429, 3759, 4579, 4870, 5690, 5135, 5955, 6246, 7066, 4168, 4988, 5279,
+ 6099, 5544, 6364, 6655, 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292,
+ 9112, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475, 5805, 6625, 6916,
+ 7736, 7181, 8001, 8292, 9112, 6214, 7034, 7325, 8145, 7590, 8410, 8701,
+ 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 4168, 4988, 5279,
+ 6099, 5544, 6364, 6655, 7475, 5805, 6625, 6916, 7736, 7181, 8001, 8292,
+ 9112, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962,
+ 9782, 9227, 10047, 10338, 11158, 6214, 7034, 7325, 8145, 7590, 8410, 8701,
+ 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 8260, 9080, 9371,
+ 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093,
+ 12384, 13204, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475, 5805, 6625,
+ 6916, 7736, 7181, 8001, 8292, 9112, 6214, 7034, 7325, 8145, 7590, 8410,
+ 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 6214, 7034,
+ 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047,
+ 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897,
+ 10717, 11008, 11828, 11273, 12093, 12384, 13204, 6214, 7034, 7325, 8145,
+ 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158,
+ 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008,
+ 11828, 11273, 12093, 12384, 13204, 8260, 9080, 9371, 10191, 9636, 10456,
+ 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 10306,
+ 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763, 13054, 13874,
+ 13319, 14139, 14430, 15250, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475,
+ 5805, 6625, 6916, 7736, 7181, 8001, 8292, 9112, 6214, 7034, 7325, 8145,
+ 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158,
+ 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782,
+ 9227, 10047, 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456, 10747,
+ 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 6214, 7034,
+ 7325, 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047,
+ 10338, 11158, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897,
+ 10717, 11008, 11828, 11273, 12093, 12384, 13204, 8260, 9080, 9371, 10191,
+ 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384,
+ 13204, 10306, 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763,
+ 13054, 13874, 13319, 14139, 14430, 15250, 6214, 7034, 7325, 8145, 7590,
+ 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 8260,
+ 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828,
+ 11273, 12093, 12384, 13204, 8260, 9080, 9371, 10191, 9636, 10456, 10747,
+ 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 10306, 11126,
+ 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763, 13054, 13874, 13319,
+ 14139, 14430, 15250, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567,
+ 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 10306, 11126, 11417,
+ 12237, 11682, 12502, 12793, 13613, 11943, 12763, 13054, 13874, 13319, 14139,
+ 14430, 15250, 10306, 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943,
+ 12763, 13054, 13874, 13319, 14139, 14430, 15250, 12352, 13172, 13463, 14283,
+ 13728, 14548, 14839, 15659, 13989, 14809, 15100, 15920, 15365, 16185, 16476,
+ 17296, 4168, 4988, 5279, 6099, 5544, 6364, 6655, 7475, 5805, 6625, 6916,
+ 7736, 7181, 8001, 8292, 9112, 6214, 7034, 7325, 8145, 7590, 8410, 8701,
+ 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 6214, 7034, 7325,
+ 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338,
+ 11158, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717,
+ 11008, 11828, 11273, 12093, 12384, 13204, 6214, 7034, 7325, 8145, 7590,
+ 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338, 11158, 8260,
+ 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828,
+ 11273, 12093, 12384, 13204, 8260, 9080, 9371, 10191, 9636, 10456, 10747,
+ 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 10306, 11126,
+ 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763, 13054, 13874, 13319,
+ 14139, 14430, 15250, 6214, 7034, 7325, 8145, 7590, 8410, 8701, 9521, 7851,
+ 8671, 8962, 9782, 9227, 10047, 10338, 11158, 8260, 9080, 9371, 10191, 9636,
+ 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204,
+ 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008,
+ 11828, 11273, 12093, 12384, 13204, 10306, 11126, 11417, 12237, 11682, 12502,
+ 12793, 13613, 11943, 12763, 13054, 13874, 13319, 14139, 14430, 15250, 8260,
+ 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717, 11008, 11828,
+ 11273, 12093, 12384, 13204, 10306, 11126, 11417, 12237, 11682, 12502, 12793,
+ 13613, 11943, 12763, 13054, 13874, 13319, 14139, 14430, 15250, 10306, 11126,
+ 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763, 13054, 13874, 13319,
+ 14139, 14430, 15250, 12352, 13172, 13463, 14283, 13728, 14548, 14839, 15659,
+ 13989, 14809, 15100, 15920, 15365, 16185, 16476, 17296, 6214, 7034, 7325,
+ 8145, 7590, 8410, 8701, 9521, 7851, 8671, 8962, 9782, 9227, 10047, 10338,
+ 11158, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567, 9897, 10717,
+ 11008, 11828, 11273, 12093, 12384, 13204, 8260, 9080, 9371, 10191, 9636,
+ 10456, 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204,
+ 10306, 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763, 13054,
+ 13874, 13319, 14139, 14430, 15250, 8260, 9080, 9371, 10191, 9636, 10456,
+ 10747, 11567, 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 10306,
+ 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763, 13054, 13874,
+ 13319, 14139, 14430, 15250, 10306, 11126, 11417, 12237, 11682, 12502, 12793,
+ 13613, 11943, 12763, 13054, 13874, 13319, 14139, 14430, 15250, 12352, 13172,
+ 13463, 14283, 13728, 14548, 14839, 15659, 13989, 14809, 15100, 15920, 15365,
+ 16185, 16476, 17296, 8260, 9080, 9371, 10191, 9636, 10456, 10747, 11567,
+ 9897, 10717, 11008, 11828, 11273, 12093, 12384, 13204, 10306, 11126, 11417,
+ 12237, 11682, 12502, 12793, 13613, 11943, 12763, 13054, 13874, 13319, 14139,
+ 14430, 15250, 10306, 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943,
+ 12763, 13054, 13874, 13319, 14139, 14430, 15250, 12352, 13172, 13463, 14283,
+ 13728, 14548, 14839, 15659, 13989, 14809, 15100, 15920, 15365, 16185, 16476,
+ 17296, 10306, 11126, 11417, 12237, 11682, 12502, 12793, 13613, 11943, 12763,
+ 13054, 13874, 13319, 14139, 14430, 15250, 12352, 13172, 13463, 14283, 13728,
+ 14548, 14839, 15659, 13989, 14809, 15100, 15920, 15365, 16185, 16476, 17296,
+ 12352, 13172, 13463, 14283, 13728, 14548, 14839, 15659, 13989, 14809, 15100,
+ 15920, 15365, 16185, 16476, 17296, 14398, 15218, 15509, 16329, 15774, 16594,
+ 16885, 17705, 16035, 16855, 17146, 17966, 17411, 18231, 18522, 19342
+};
+#endif
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static const vp9_tree_index cat1_high10[2] = {0, 0};
+static const vp9_tree_index cat2_high10[4] = {2, 2, 0, 0};
+static const vp9_tree_index cat3_high10[6] = {2, 2, 4, 4, 0, 0};
+static const vp9_tree_index cat4_high10[8] = {2, 2, 4, 4, 6, 6, 0, 0};
+static const vp9_tree_index cat5_high10[10] = {2, 2, 4, 4, 6, 6, 8, 8, 0, 0};
+static const vp9_tree_index cat6_high10[32] = {2, 2, 4, 4, 6, 6, 8, 8, 10, 10,
+ 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28,
+ 30, 30, 0, 0};
+static const vp9_tree_index cat1_high12[2] = {0, 0};
+static const vp9_tree_index cat2_high12[4] = {2, 2, 0, 0};
+static const vp9_tree_index cat3_high12[6] = {2, 2, 4, 4, 0, 0};
+static const vp9_tree_index cat4_high12[8] = {2, 2, 4, 4, 6, 6, 0, 0};
+static const vp9_tree_index cat5_high12[10] = {2, 2, 4, 4, 6, 6, 8, 8, 0, 0};
+static const vp9_tree_index cat6_high12[36] = {2, 2, 4, 4, 6, 6, 8, 8, 10, 10,
+ 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28,
+ 30, 30, 32, 32, 34, 34, 0, 0};
+#endif
+
+const vp9_extra_bit vp9_extra_bits[ENTROPY_TOKENS] = {
+ {0, 0, 0, 0, zero_cost}, // ZERO_TOKEN
+ {0, 0, 0, 1, one_cost}, // ONE_TOKEN
+ {0, 0, 0, 2, two_cost}, // TWO_TOKEN
+ {0, 0, 0, 3, three_cost}, // THREE_TOKEN
+ {0, 0, 0, 4, four_cost}, // FOUR_TOKEN
+ {cat1, vp9_cat1_prob, 1, CAT1_MIN_VAL, cat1_cost}, // CATEGORY1_TOKEN
+ {cat2, vp9_cat2_prob, 2, CAT2_MIN_VAL, cat2_cost}, // CATEGORY2_TOKEN
+ {cat3, vp9_cat3_prob, 3, CAT3_MIN_VAL, cat3_cost}, // CATEGORY3_TOKEN
+ {cat4, vp9_cat4_prob, 4, CAT4_MIN_VAL, cat4_cost}, // CATEGORY4_TOKEN
+ {cat5, vp9_cat5_prob, 5, CAT5_MIN_VAL, cat5_cost}, // CATEGORY5_TOKEN
+ {cat6, vp9_cat6_prob, 14, CAT6_MIN_VAL, 0}, // CATEGORY6_TOKEN
+ {0, 0, 0, 0, zero_cost} // EOB_TOKEN
+};
+
+#if CONFIG_VP9_HIGHBITDEPTH
+const vp9_extra_bit vp9_extra_bits_high10[ENTROPY_TOKENS] = {
+ {0, 0, 0, 0, zero_cost}, // ZERO
+ {0, 0, 0, 1, one_cost}, // ONE
+ {0, 0, 0, 2, two_cost}, // TWO
+ {0, 0, 0, 3, three_cost}, // THREE
+ {0, 0, 0, 4, four_cost}, // FOUR
+ {cat1_high10, vp9_cat1_prob_high10, 1, CAT1_MIN_VAL, cat1_cost}, // CAT1
+ {cat2_high10, vp9_cat2_prob_high10, 2, CAT2_MIN_VAL, cat2_cost}, // CAT2
+ {cat3_high10, vp9_cat3_prob_high10, 3, CAT3_MIN_VAL, cat3_cost}, // CAT3
+ {cat4_high10, vp9_cat4_prob_high10, 4, CAT4_MIN_VAL, cat4_cost}, // CAT4
+ {cat5_high10, vp9_cat5_prob_high10, 5, CAT5_MIN_VAL, cat5_cost}, // CAT5
+ {cat6_high10, vp9_cat6_prob_high10, 16, CAT6_MIN_VAL, 0}, // CAT6
+ {0, 0, 0, 0, zero_cost} // EOB
+};
+const vp9_extra_bit vp9_extra_bits_high12[ENTROPY_TOKENS] = {
+ {0, 0, 0, 0, zero_cost}, // ZERO
+ {0, 0, 0, 1, one_cost}, // ONE
+ {0, 0, 0, 2, two_cost}, // TWO
+ {0, 0, 0, 3, three_cost}, // THREE
+ {0, 0, 0, 4, four_cost}, // FOUR
+ {cat1_high12, vp9_cat1_prob_high12, 1, CAT1_MIN_VAL, cat1_cost}, // CAT1
+ {cat2_high12, vp9_cat2_prob_high12, 2, CAT2_MIN_VAL, cat2_cost}, // CAT2
+ {cat3_high12, vp9_cat3_prob_high12, 3, CAT3_MIN_VAL, cat3_cost}, // CAT3
+ {cat4_high12, vp9_cat4_prob_high12, 4, CAT4_MIN_VAL, cat4_cost}, // CAT4
+ {cat5_high12, vp9_cat5_prob_high12, 5, CAT5_MIN_VAL, cat5_cost}, // CAT5
+ {cat6_high12, vp9_cat6_prob_high12, 18, CAT6_MIN_VAL, 0}, // CAT6
+ {0, 0, 0, 0, zero_cost} // EOB
+};
+#endif
+
+const struct vp9_token vp9_coef_encodings[ENTROPY_TOKENS] = {
+ {2, 2}, {6, 3}, {28, 5}, {58, 6}, {59, 6}, {60, 6}, {61, 6}, {124, 7},
+ {125, 7}, {126, 7}, {127, 7}, {0, 1}
+};
+
+
+struct tokenize_b_args {
+ VP9_COMP *cpi;
+ ThreadData *td;
+ TOKENEXTRA **tp;
+};
+
+static void set_entropy_context_b(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
+ struct tokenize_b_args* const args = arg;
+ ThreadData *const td = args->td;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ struct macroblock_plane *p = &x->plane[plane];
+ struct macroblockd_plane *pd = &xd->plane[plane];
+ int aoff, loff;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &aoff, &loff);
+ vp9_set_contexts(xd, pd, plane_bsize, tx_size, p->eobs[block] > 0,
+ aoff, loff);
+}
+
+static INLINE void add_token(TOKENEXTRA **t, const vp9_prob *context_tree,
+ int32_t extra, uint8_t token,
+ uint8_t skip_eob_node,
+ unsigned int *counts) {
+ (*t)->token = token;
+ (*t)->extra = extra;
+ (*t)->context_tree = context_tree;
+ (*t)->skip_eob_node = skip_eob_node;
+ (*t)++;
+ ++counts[token];
+}
+
+static INLINE void add_token_no_extra(TOKENEXTRA **t,
+ const vp9_prob *context_tree,
+ uint8_t token,
+ uint8_t skip_eob_node,
+ unsigned int *counts) {
+ (*t)->token = token;
+ (*t)->context_tree = context_tree;
+ (*t)->skip_eob_node = skip_eob_node;
+ (*t)++;
+ ++counts[token];
+}
+
+static INLINE int get_tx_eob(const struct segmentation *seg, int segment_id,
+ TX_SIZE tx_size) {
+ const int eob_max = 16 << (tx_size << 1);
+ return vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP) ? 0 : eob_max;
+}
+
+static void tokenize_b(int plane, int block, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg) {
+ struct tokenize_b_args* const args = arg;
+ VP9_COMP *cpi = args->cpi;
+ ThreadData *const td = args->td;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ TOKENEXTRA **tp = args->tp;
+ uint8_t token_cache[32 * 32];
+ struct macroblock_plane *p = &x->plane[plane];
+ struct macroblockd_plane *pd = &xd->plane[plane];
+ MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
+ int pt; /* near block/prev token context index */
+ int c;
+ TOKENEXTRA *t = *tp; /* store tokens starting here */
+ int eob = p->eobs[block];
+ const PLANE_TYPE type = pd->plane_type;
+ const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
+ const int segment_id = mbmi->segment_id;
+ const int16_t *scan, *nb;
+ const scan_order *so;
+ const int ref = is_inter_block(mbmi);
+ unsigned int (*const counts)[COEFF_CONTEXTS][ENTROPY_TOKENS] =
+ td->rd_counts.coef_counts[tx_size][type][ref];
+ vp9_prob (*const coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] =
+ cpi->common.fc->coef_probs[tx_size][type][ref];
+ unsigned int (*const eob_branch)[COEFF_CONTEXTS] =
+ td->counts->eob_branch[tx_size][type][ref];
+ const uint8_t *const band = get_band_translate(tx_size);
+ const int seg_eob = get_tx_eob(&cpi->common.seg, segment_id, tx_size);
+ int16_t token;
+ EXTRABIT extra;
+ int aoff, loff;
+ txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &aoff, &loff);
+
+ pt = get_entropy_context(tx_size, pd->above_context + aoff,
+ pd->left_context + loff);
+ so = get_scan(xd, tx_size, type, block);
+ scan = so->scan;
+ nb = so->neighbors;
+ c = 0;
+
+ while (c < eob) {
+ int v = 0;
+ int skip_eob = 0;
+ v = qcoeff[scan[c]];
+
+ while (!v) {
+ add_token_no_extra(&t, coef_probs[band[c]][pt], ZERO_TOKEN, skip_eob,
+ counts[band[c]][pt]);
+ eob_branch[band[c]][pt] += !skip_eob;
+
+ skip_eob = 1;
+ token_cache[scan[c]] = 0;
+ ++c;
+ pt = get_coef_context(nb, token_cache, c);
+ v = qcoeff[scan[c]];
+ }
+
+ vp9_get_token_extra(v, &token, &extra);
+
+ add_token(&t, coef_probs[band[c]][pt], extra, (uint8_t)token,
+ (uint8_t)skip_eob, counts[band[c]][pt]);
+ eob_branch[band[c]][pt] += !skip_eob;
+
+ token_cache[scan[c]] = vp9_pt_energy_class[token];
+ ++c;
+ pt = get_coef_context(nb, token_cache, c);
+ }
+ if (c < seg_eob) {
+ add_token_no_extra(&t, coef_probs[band[c]][pt], EOB_TOKEN, 0,
+ counts[band[c]][pt]);
+ ++eob_branch[band[c]][pt];
+ }
+
+ *tp = t;
+
+ vp9_set_contexts(xd, pd, plane_bsize, tx_size, c > 0, aoff, loff);
+}
+
+struct is_skippable_args {
+ MACROBLOCK *x;
+ int *skippable;
+};
+static void is_skippable(int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ void *argv) {
+ struct is_skippable_args *args = argv;
+ (void)plane_bsize;
+ (void)tx_size;
+ args->skippable[0] &= (!args->x->plane[plane].eobs[block]);
+}
+
+// TODO(yaowu): rewrite and optimize this function to remove the usage of
+// vp9_foreach_transform_block() and simplify is_skippable().
+int vp9_is_skippable_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+ int result = 1;
+ struct is_skippable_args args = {x, &result};
+ vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, plane, is_skippable,
+ &args);
+ return result;
+}
+
+static void has_high_freq_coeff(int plane, int block,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ void *argv) {
+ struct is_skippable_args *args = argv;
+ int eobs = (tx_size == TX_4X4) ? 3 : 10;
+ (void) plane_bsize;
+
+ *(args->skippable) |= (args->x->plane[plane].eobs[block] > eobs);
+}
+
+int vp9_has_high_freq_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
+ int result = 0;
+ struct is_skippable_args args = {x, &result};
+ vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, plane,
+ has_high_freq_coeff, &args);
+ return result;
+}
+
+void vp9_tokenize_sb(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
+ int dry_run, BLOCK_SIZE bsize) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &td->mb;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
+ const int ctx = vp9_get_skip_context(xd);
+ const int skip_inc = !vp9_segfeature_active(&cm->seg, mbmi->segment_id,
+ SEG_LVL_SKIP);
+ struct tokenize_b_args arg = {cpi, td, t};
+ if (mbmi->skip) {
+ if (!dry_run)
+ td->counts->skip[ctx][1] += skip_inc;
+ reset_skip_context(xd, bsize);
+ return;
+ }
+
+ if (!dry_run) {
+ td->counts->skip[ctx][0] += skip_inc;
+ vp9_foreach_transformed_block(xd, bsize, tokenize_b, &arg);
+ } else {
+ vp9_foreach_transformed_block(xd, bsize, set_entropy_context_b, &arg);
+ }
+}
diff --git a/media/libvpx/vp9/encoder/vp9_tokenize.h b/media/libvpx/vp9/encoder/vp9_tokenize.h
new file mode 100644
index 000000000..81cc2e13f
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_tokenize.h
@@ -0,0 +1,112 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_TOKENIZE_H_
+#define VP9_ENCODER_VP9_TOKENIZE_H_
+
+#include "vp9/common/vp9_entropy.h"
+
+#include "vp9/encoder/vp9_block.h"
+#include "vp9/encoder/vp9_treewriter.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define EOSB_TOKEN 127 // Not signalled, encoder only
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ typedef int32_t EXTRABIT;
+#else
+ typedef int16_t EXTRABIT;
+#endif
+
+
+typedef struct {
+ int16_t token;
+ EXTRABIT extra;
+} TOKENVALUE;
+
+typedef struct {
+ const vp9_prob *context_tree;
+ EXTRABIT extra;
+ uint8_t token;
+ uint8_t skip_eob_node;
+} TOKENEXTRA;
+
+extern const vp9_tree_index vp9_coef_tree[];
+extern const vp9_tree_index vp9_coef_con_tree[];
+extern const struct vp9_token vp9_coef_encodings[];
+
+int vp9_is_skippable_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+int vp9_has_high_freq_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane);
+
+struct VP9_COMP;
+struct ThreadData;
+
+void vp9_tokenize_sb(struct VP9_COMP *cpi, struct ThreadData *td,
+ TOKENEXTRA **t, int dry_run, BLOCK_SIZE bsize);
+
+extern const int16_t *vp9_dct_value_cost_ptr;
+/* TODO: The Token field should be broken out into a separate char array to
+ * improve cache locality, since it's needed for costing when the rest of the
+ * fields are not.
+ */
+extern const TOKENVALUE *vp9_dct_value_tokens_ptr;
+extern const TOKENVALUE *vp9_dct_cat_lt_10_value_tokens;
+extern const int16_t vp9_cat6_low_cost[256];
+extern const int16_t vp9_cat6_high_cost[128];
+extern const int16_t vp9_cat6_high10_high_cost[512];
+extern const int16_t vp9_cat6_high12_high_cost[2048];
+static INLINE int16_t vp9_get_cost(int16_t token, EXTRABIT extrabits,
+ const int16_t *cat6_high_table) {
+ if (token != CATEGORY6_TOKEN)
+ return vp9_extra_bits[token].cost[extrabits];
+ return vp9_cat6_low_cost[extrabits & 0xff]
+ + cat6_high_table[extrabits >> 8];
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static INLINE const int16_t* vp9_get_high_cost_table(int bit_depth) {
+ return bit_depth == 8 ? vp9_cat6_high_cost
+ : (bit_depth == 10 ? vp9_cat6_high10_high_cost :
+ vp9_cat6_high12_high_cost);
+}
+#else
+static INLINE const int16_t* vp9_get_high_cost_table(int bit_depth) {
+ (void) bit_depth;
+ return vp9_cat6_high_cost;
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+static INLINE void vp9_get_token_extra(int v, int16_t *token, EXTRABIT *extra) {
+ if (v >= CAT6_MIN_VAL || v <= -CAT6_MIN_VAL) {
+ *token = CATEGORY6_TOKEN;
+ if (v >= CAT6_MIN_VAL)
+ *extra = 2 * v - 2 * CAT6_MIN_VAL;
+ else
+ *extra = -2 * v - 2 * CAT6_MIN_VAL + 1;
+ return;
+ }
+ *token = vp9_dct_cat_lt_10_value_tokens[v].token;
+ *extra = vp9_dct_cat_lt_10_value_tokens[v].extra;
+}
+static INLINE int16_t vp9_get_token(int v) {
+ if (v >= CAT6_MIN_VAL || v <= -CAT6_MIN_VAL)
+ return 10;
+ return vp9_dct_cat_lt_10_value_tokens[v].token;
+}
+
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_TOKENIZE_H_
diff --git a/media/libvpx/vp9/encoder/vp9_treewriter.c b/media/libvpx/vp9/encoder/vp9_treewriter.c
new file mode 100644
index 000000000..bb04b4025
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_treewriter.c
@@ -0,0 +1,58 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp9/encoder/vp9_treewriter.h"
+
+static void tree2tok(struct vp9_token *tokens, const vp9_tree_index *tree,
+ int i, int v, int l) {
+ v += v;
+ ++l;
+
+ do {
+ const vp9_tree_index j = tree[i++];
+ if (j <= 0) {
+ tokens[-j].value = v;
+ tokens[-j].len = l;
+ } else {
+ tree2tok(tokens, tree, j, v, l);
+ }
+ } while (++v & 1);
+}
+
+void vp9_tokens_from_tree(struct vp9_token *tokens,
+ const vp9_tree_index *tree) {
+ tree2tok(tokens, tree, 0, 0, 0);
+}
+
+static unsigned int convert_distribution(unsigned int i, vp9_tree tree,
+ unsigned int branch_ct[][2],
+ const unsigned int num_events[]) {
+ unsigned int left, right;
+
+ if (tree[i] <= 0)
+ left = num_events[-tree[i]];
+ else
+ left = convert_distribution(tree[i], tree, branch_ct, num_events);
+
+ if (tree[i + 1] <= 0)
+ right = num_events[-tree[i + 1]];
+ else
+ right = convert_distribution(tree[i + 1], tree, branch_ct, num_events);
+
+ branch_ct[i >> 1][0] = left;
+ branch_ct[i >> 1][1] = right;
+ return left + right;
+}
+
+void vp9_tree_probs_from_distribution(vp9_tree tree,
+ unsigned int branch_ct[/* n-1 */][2],
+ const unsigned int num_events[/* n */]) {
+ convert_distribution(0, tree, branch_ct, num_events);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_treewriter.h b/media/libvpx/vp9/encoder/vp9_treewriter.h
new file mode 100644
index 000000000..4a76d87cd
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_treewriter.h
@@ -0,0 +1,51 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_TREEWRITER_H_
+#define VP9_ENCODER_VP9_TREEWRITER_H_
+
+#include "vp9/encoder/vp9_writer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_tree_probs_from_distribution(vp9_tree tree,
+ unsigned int branch_ct[ /* n - 1 */ ][2],
+ const unsigned int num_events[ /* n */ ]);
+
+struct vp9_token {
+ int value;
+ int len;
+};
+
+void vp9_tokens_from_tree(struct vp9_token*, const vp9_tree_index *);
+
+static INLINE void vp9_write_tree(vp9_writer *w, const vp9_tree_index *tree,
+ const vp9_prob *probs, int bits, int len,
+ vp9_tree_index i) {
+ do {
+ const int bit = (bits >> --len) & 1;
+ vp9_write(w, bit, probs[i >> 1]);
+ i = tree[i + bit];
+ } while (len);
+}
+
+static INLINE void vp9_write_token(vp9_writer *w, const vp9_tree_index *tree,
+ const vp9_prob *probs,
+ const struct vp9_token *token) {
+ vp9_write_tree(w, tree, probs, token->value, token->len, 0);
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_TREEWRITER_H_
diff --git a/media/libvpx/vp9/encoder/vp9_variance.c b/media/libvpx/vp9/encoder/vp9_variance.c
new file mode 100644
index 000000000..c571b7c95
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_variance.c
@@ -0,0 +1,380 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "./vp9_rtcd.h"
+#include "./vpx_dsp_rtcd.h"
+
+#include "vpx_ports/mem.h"
+#include "vpx/vpx_integer.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_filter.h"
+
+#include "vp9/encoder/vp9_variance.h"
+
+static uint8_t bilinear_filters[8][2] = {
+ { 128, 0, },
+ { 112, 16, },
+ { 96, 32, },
+ { 80, 48, },
+ { 64, 64, },
+ { 48, 80, },
+ { 32, 96, },
+ { 16, 112, },
+};
+
+// Applies a 1-D 2-tap bi-linear filter to the source block in either horizontal
+// or vertical direction to produce the filtered output block. Used to implement
+// first-pass of 2-D separable filter.
+//
+// Produces int32_t output to retain precision for next pass. Two filter taps
+// should sum to VP9_FILTER_WEIGHT. pixel_step defines whether the filter is
+// applied horizontally (pixel_step=1) or vertically (pixel_step=stride). It
+// defines the offset required to move from one input to the next.
+static void var_filter_block2d_bil_first_pass(const uint8_t *src_ptr,
+ uint16_t *output_ptr,
+ unsigned int src_pixels_per_line,
+ int pixel_step,
+ unsigned int output_height,
+ unsigned int output_width,
+ const uint8_t *vp9_filter) {
+ unsigned int i, j;
+
+ for (i = 0; i < output_height; i++) {
+ for (j = 0; j < output_width; j++) {
+ output_ptr[j] = ROUND_POWER_OF_TWO((int)src_ptr[0] * vp9_filter[0] +
+ (int)src_ptr[pixel_step] * vp9_filter[1],
+ FILTER_BITS);
+
+ src_ptr++;
+ }
+
+ // Next row...
+ src_ptr += src_pixels_per_line - output_width;
+ output_ptr += output_width;
+ }
+}
+
+// Applies a 1-D 2-tap bi-linear filter to the source block in either horizontal
+// or vertical direction to produce the filtered output block. Used to implement
+// second-pass of 2-D separable filter.
+//
+// Requires 32-bit input as produced by filter_block2d_bil_first_pass. Two
+// filter taps should sum to VP9_FILTER_WEIGHT. pixel_step defines whether the
+// filter is applied horizontally (pixel_step=1) or vertically (pixel_step=
+// stride). It defines the offset required to move from one input to the next.
+static void var_filter_block2d_bil_second_pass(const uint16_t *src_ptr,
+ uint8_t *output_ptr,
+ unsigned int src_pixels_per_line,
+ unsigned int pixel_step,
+ unsigned int output_height,
+ unsigned int output_width,
+ const uint8_t *vp9_filter) {
+ unsigned int i, j;
+
+ for (i = 0; i < output_height; i++) {
+ for (j = 0; j < output_width; j++) {
+ output_ptr[j] = ROUND_POWER_OF_TWO((int)src_ptr[0] * vp9_filter[0] +
+ (int)src_ptr[pixel_step] * vp9_filter[1],
+ FILTER_BITS);
+ src_ptr++;
+ }
+
+ src_ptr += src_pixels_per_line - output_width;
+ output_ptr += output_width;
+ }
+}
+
+#define SUBPIX_VAR(W, H) \
+unsigned int vp9_sub_pixel_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint8_t temp2[H * W]; \
+\
+ var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, W, \
+ bilinear_filters[xoffset]); \
+ var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ bilinear_filters[yoffset]); \
+\
+ return vpx_variance##W##x##H##_c(temp2, W, dst, dst_stride, sse); \
+}
+
+#define SUBPIX_AVG_VAR(W, H) \
+unsigned int vp9_sub_pixel_avg_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse, \
+ const uint8_t *second_pred) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint8_t temp2[H * W]; \
+ DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \
+\
+ var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, W, \
+ bilinear_filters[xoffset]); \
+ var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ bilinear_filters[yoffset]); \
+\
+ vpx_comp_avg_pred(temp3, second_pred, W, H, temp2, W); \
+\
+ return vpx_variance##W##x##H##_c(temp3, W, dst, dst_stride, sse); \
+}
+
+SUBPIX_VAR(4, 4)
+SUBPIX_AVG_VAR(4, 4)
+
+SUBPIX_VAR(4, 8)
+SUBPIX_AVG_VAR(4, 8)
+
+SUBPIX_VAR(8, 4)
+SUBPIX_AVG_VAR(8, 4)
+
+SUBPIX_VAR(8, 8)
+SUBPIX_AVG_VAR(8, 8)
+
+SUBPIX_VAR(8, 16)
+SUBPIX_AVG_VAR(8, 16)
+
+SUBPIX_VAR(16, 8)
+SUBPIX_AVG_VAR(16, 8)
+
+SUBPIX_VAR(16, 16)
+SUBPIX_AVG_VAR(16, 16)
+
+SUBPIX_VAR(16, 32)
+SUBPIX_AVG_VAR(16, 32)
+
+SUBPIX_VAR(32, 16)
+SUBPIX_AVG_VAR(32, 16)
+
+SUBPIX_VAR(32, 32)
+SUBPIX_AVG_VAR(32, 32)
+
+SUBPIX_VAR(32, 64)
+SUBPIX_AVG_VAR(32, 64)
+
+SUBPIX_VAR(64, 32)
+SUBPIX_AVG_VAR(64, 32)
+
+SUBPIX_VAR(64, 64)
+SUBPIX_AVG_VAR(64, 64)
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static void highbd_var_filter_block2d_bil_first_pass(
+ const uint8_t *src_ptr8,
+ uint16_t *output_ptr,
+ unsigned int src_pixels_per_line,
+ int pixel_step,
+ unsigned int output_height,
+ unsigned int output_width,
+ const uint8_t *vp9_filter) {
+ unsigned int i, j;
+ uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src_ptr8);
+ for (i = 0; i < output_height; i++) {
+ for (j = 0; j < output_width; j++) {
+ output_ptr[j] =
+ ROUND_POWER_OF_TWO((int)src_ptr[0] * vp9_filter[0] +
+ (int)src_ptr[pixel_step] * vp9_filter[1],
+ FILTER_BITS);
+
+ src_ptr++;
+ }
+
+ // Next row...
+ src_ptr += src_pixels_per_line - output_width;
+ output_ptr += output_width;
+ }
+}
+
+static void highbd_var_filter_block2d_bil_second_pass(
+ const uint16_t *src_ptr,
+ uint16_t *output_ptr,
+ unsigned int src_pixels_per_line,
+ unsigned int pixel_step,
+ unsigned int output_height,
+ unsigned int output_width,
+ const uint8_t *vp9_filter) {
+ unsigned int i, j;
+
+ for (i = 0; i < output_height; i++) {
+ for (j = 0; j < output_width; j++) {
+ output_ptr[j] =
+ ROUND_POWER_OF_TWO((int)src_ptr[0] * vp9_filter[0] +
+ (int)src_ptr[pixel_step] * vp9_filter[1],
+ FILTER_BITS);
+ src_ptr++;
+ }
+
+ src_ptr += src_pixels_per_line - output_width;
+ output_ptr += output_width;
+ }
+}
+
+#define HIGHBD_SUBPIX_VAR(W, H) \
+unsigned int vp9_highbd_sub_pixel_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint16_t temp2[H * W]; \
+\
+ highbd_var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, \
+ W, bilinear_filters[xoffset]); \
+ highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ bilinear_filters[yoffset]); \
+\
+ return vpx_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, dst, \
+ dst_stride, sse); \
+} \
+\
+unsigned int vp9_highbd_10_sub_pixel_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint16_t temp2[H * W]; \
+\
+ highbd_var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, \
+ W, bilinear_filters[xoffset]); \
+ highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ bilinear_filters[yoffset]); \
+\
+ return vpx_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \
+ W, dst, dst_stride, sse); \
+} \
+\
+unsigned int vp9_highbd_12_sub_pixel_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint16_t temp2[H * W]; \
+\
+ highbd_var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, \
+ W, bilinear_filters[xoffset]); \
+ highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ bilinear_filters[yoffset]); \
+\
+ return vpx_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), \
+ W, dst, dst_stride, sse); \
+}
+
+#define HIGHBD_SUBPIX_AVG_VAR(W, H) \
+unsigned int vp9_highbd_sub_pixel_avg_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse, \
+ const uint8_t *second_pred) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint16_t temp2[H * W]; \
+ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
+\
+ highbd_var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, \
+ W, bilinear_filters[xoffset]); \
+ highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ bilinear_filters[yoffset]); \
+\
+ vpx_highbd_comp_avg_pred(temp3, second_pred, W, H, \
+ CONVERT_TO_BYTEPTR(temp2), W); \
+\
+ return vpx_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, dst, \
+ dst_stride, sse); \
+} \
+\
+unsigned int vp9_highbd_10_sub_pixel_avg_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse, \
+ const uint8_t *second_pred) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint16_t temp2[H * W]; \
+ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
+\
+ highbd_var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, \
+ W, bilinear_filters[xoffset]); \
+ highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ bilinear_filters[yoffset]); \
+\
+ vpx_highbd_comp_avg_pred(temp3, second_pred, W, H, \
+ CONVERT_TO_BYTEPTR(temp2), W); \
+\
+ return vpx_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), \
+ W, dst, dst_stride, sse); \
+} \
+\
+unsigned int vp9_highbd_12_sub_pixel_avg_variance##W##x##H##_c( \
+ const uint8_t *src, int src_stride, \
+ int xoffset, int yoffset, \
+ const uint8_t *dst, int dst_stride, \
+ unsigned int *sse, \
+ const uint8_t *second_pred) { \
+ uint16_t fdata3[(H + 1) * W]; \
+ uint16_t temp2[H * W]; \
+ DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \
+\
+ highbd_var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, \
+ W, bilinear_filters[xoffset]); \
+ highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
+ bilinear_filters[yoffset]); \
+\
+ vpx_highbd_comp_avg_pred(temp3, second_pred, W, H, \
+ CONVERT_TO_BYTEPTR(temp2), W); \
+\
+ return vpx_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), \
+ W, dst, dst_stride, sse); \
+}
+
+HIGHBD_SUBPIX_VAR(4, 4)
+HIGHBD_SUBPIX_AVG_VAR(4, 4)
+
+HIGHBD_SUBPIX_VAR(4, 8)
+HIGHBD_SUBPIX_AVG_VAR(4, 8)
+
+HIGHBD_SUBPIX_VAR(8, 4)
+HIGHBD_SUBPIX_AVG_VAR(8, 4)
+
+HIGHBD_SUBPIX_VAR(8, 8)
+HIGHBD_SUBPIX_AVG_VAR(8, 8)
+
+HIGHBD_SUBPIX_VAR(8, 16)
+HIGHBD_SUBPIX_AVG_VAR(8, 16)
+
+HIGHBD_SUBPIX_VAR(16, 8)
+HIGHBD_SUBPIX_AVG_VAR(16, 8)
+
+HIGHBD_SUBPIX_VAR(16, 16)
+HIGHBD_SUBPIX_AVG_VAR(16, 16)
+
+HIGHBD_SUBPIX_VAR(16, 32)
+HIGHBD_SUBPIX_AVG_VAR(16, 32)
+
+HIGHBD_SUBPIX_VAR(32, 16)
+HIGHBD_SUBPIX_AVG_VAR(32, 16)
+
+HIGHBD_SUBPIX_VAR(32, 32)
+HIGHBD_SUBPIX_AVG_VAR(32, 32)
+
+HIGHBD_SUBPIX_VAR(32, 64)
+HIGHBD_SUBPIX_AVG_VAR(32, 64)
+
+HIGHBD_SUBPIX_VAR(64, 32)
+HIGHBD_SUBPIX_AVG_VAR(64, 32)
+
+HIGHBD_SUBPIX_VAR(64, 64)
+HIGHBD_SUBPIX_AVG_VAR(64, 64)
+#endif // CONFIG_VP9_HIGHBITDEPTH
diff --git a/media/libvpx/vp9/encoder/vp9_variance.h b/media/libvpx/vp9/encoder/vp9_variance.h
new file mode 100644
index 000000000..0a8739510
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_variance.h
@@ -0,0 +1,81 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_VARIANCE_H_
+#define VP9_ENCODER_VP9_VARIANCE_H_
+
+#include "vpx/vpx_integer.h"
+#include "vpx_ports/mem.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef unsigned int(*vp9_sad_fn_t)(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t *ref_ptr,
+ int ref_stride);
+
+typedef unsigned int(*vp9_sad_avg_fn_t)(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t *ref_ptr,
+ int ref_stride,
+ const uint8_t *second_pred);
+
+typedef void (*vp9_sad_multi_fn_t)(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t *ref_ptr,
+ int ref_stride,
+ unsigned int *sad_array);
+
+typedef void (*vp9_sad_multi_d_fn_t)(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t* const ref_ptr[],
+ int ref_stride, unsigned int *sad_array);
+
+typedef unsigned int (*vp9_variance_fn_t)(const uint8_t *src_ptr,
+ int source_stride,
+ const uint8_t *ref_ptr,
+ int ref_stride,
+ unsigned int *sse);
+
+typedef unsigned int (*vp9_subpixvariance_fn_t)(const uint8_t *src_ptr,
+ int source_stride,
+ int xoffset,
+ int yoffset,
+ const uint8_t *ref_ptr,
+ int Refstride,
+ unsigned int *sse);
+
+typedef unsigned int (*vp9_subp_avg_variance_fn_t)(const uint8_t *src_ptr,
+ int source_stride,
+ int xoffset,
+ int yoffset,
+ const uint8_t *ref_ptr,
+ int Refstride,
+ unsigned int *sse,
+ const uint8_t *second_pred);
+
+typedef struct vp9_variance_vtable {
+ vp9_sad_fn_t sdf;
+ vp9_sad_avg_fn_t sdaf;
+ vp9_variance_fn_t vf;
+ vp9_subpixvariance_fn_t svf;
+ vp9_subp_avg_variance_fn_t svaf;
+ vp9_sad_multi_fn_t sdx3f;
+ vp9_sad_multi_fn_t sdx8f;
+ vp9_sad_multi_d_fn_t sdx4df;
+} vp9_variance_fn_ptr_t;
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_VARIANCE_H_
diff --git a/media/libvpx/vp9/encoder/vp9_write_bit_buffer.c b/media/libvpx/vp9/encoder/vp9_write_bit_buffer.c
new file mode 100644
index 000000000..6d55e84e8
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_write_bit_buffer.c
@@ -0,0 +1,35 @@
+/*
+ * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <limits.h>
+#include "vp9/encoder/vp9_write_bit_buffer.h"
+
+size_t vp9_wb_bytes_written(const struct vp9_write_bit_buffer *wb) {
+ return wb->bit_offset / CHAR_BIT + (wb->bit_offset % CHAR_BIT > 0);
+}
+
+void vp9_wb_write_bit(struct vp9_write_bit_buffer *wb, int bit) {
+ const int off = (int)wb->bit_offset;
+ const int p = off / CHAR_BIT;
+ const int q = CHAR_BIT - 1 - off % CHAR_BIT;
+ if (q == CHAR_BIT -1) {
+ wb->bit_buffer[p] = bit << q;
+ } else {
+ wb->bit_buffer[p] &= ~(1 << q);
+ wb->bit_buffer[p] |= bit << q;
+ }
+ wb->bit_offset = off + 1;
+}
+
+void vp9_wb_write_literal(struct vp9_write_bit_buffer *wb, int data, int bits) {
+ int bit;
+ for (bit = bits - 1; bit >= 0; bit--)
+ vp9_wb_write_bit(wb, (data >> bit) & 1);
+}
diff --git a/media/libvpx/vp9/encoder/vp9_write_bit_buffer.h b/media/libvpx/vp9/encoder/vp9_write_bit_buffer.h
new file mode 100644
index 000000000..59f9bbe30
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_write_bit_buffer.h
@@ -0,0 +1,36 @@
+/*
+ * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_WRITE_BIT_BUFFER_H_
+#define VP9_ENCODER_VP9_WRITE_BIT_BUFFER_H_
+
+#include "vpx/vpx_integer.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct vp9_write_bit_buffer {
+ uint8_t *bit_buffer;
+ size_t bit_offset;
+};
+
+size_t vp9_wb_bytes_written(const struct vp9_write_bit_buffer *wb);
+
+void vp9_wb_write_bit(struct vp9_write_bit_buffer *wb, int bit);
+
+void vp9_wb_write_literal(struct vp9_write_bit_buffer *wb, int data, int bits);
+
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_WRITE_BIT_BUFFER_H_
diff --git a/media/libvpx/vp9/encoder/vp9_writer.c b/media/libvpx/vp9/encoder/vp9_writer.c
new file mode 100644
index 000000000..ff461f218
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_writer.c
@@ -0,0 +1,34 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include "vp9/encoder/vp9_writer.h"
+#include "vp9/common/vp9_entropy.h"
+
+void vp9_start_encode(vp9_writer *br, uint8_t *source) {
+ br->lowvalue = 0;
+ br->range = 255;
+ br->count = -24;
+ br->buffer = source;
+ br->pos = 0;
+ vp9_write_bit(br, 0);
+}
+
+void vp9_stop_encode(vp9_writer *br) {
+ int i;
+
+ for (i = 0; i < 32; i++)
+ vp9_write_bit(br, 0);
+
+ // Ensure there's no ambigous collision with any index marker bytes
+ if ((br->buffer[br->pos - 1] & 0xe0) == 0xc0)
+ br->buffer[br->pos++] = 0;
+}
+
diff --git a/media/libvpx/vp9/encoder/vp9_writer.h b/media/libvpx/vp9/encoder/vp9_writer.h
new file mode 100644
index 000000000..e347ea414
--- /dev/null
+++ b/media/libvpx/vp9/encoder/vp9_writer.h
@@ -0,0 +1,98 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_WRITER_H_
+#define VP9_ENCODER_VP9_WRITER_H_
+
+#include "vpx_ports/mem.h"
+
+#include "vp9/common/vp9_prob.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct vp9_writer {
+ unsigned int lowvalue;
+ unsigned int range;
+ int count;
+ unsigned int pos;
+ uint8_t *buffer;
+} vp9_writer;
+
+void vp9_start_encode(vp9_writer *bc, uint8_t *buffer);
+void vp9_stop_encode(vp9_writer *bc);
+
+static INLINE void vp9_write(vp9_writer *br, int bit, int probability) {
+ unsigned int split;
+ int count = br->count;
+ unsigned int range = br->range;
+ unsigned int lowvalue = br->lowvalue;
+ register unsigned int shift;
+
+ split = 1 + (((range - 1) * probability) >> 8);
+
+ range = split;
+
+ if (bit) {
+ lowvalue += split;
+ range = br->range - split;
+ }
+
+ shift = vp9_norm[range];
+
+ range <<= shift;
+ count += shift;
+
+ if (count >= 0) {
+ int offset = shift - count;
+
+ if ((lowvalue << (offset - 1)) & 0x80000000) {
+ int x = br->pos - 1;
+
+ while (x >= 0 && br->buffer[x] == 0xff) {
+ br->buffer[x] = 0;
+ x--;
+ }
+
+ br->buffer[x] += 1;
+ }
+
+ br->buffer[br->pos++] = (lowvalue >> (24 - offset));
+ lowvalue <<= offset;
+ shift = count;
+ lowvalue &= 0xffffff;
+ count -= 8;
+ }
+
+ lowvalue <<= shift;
+ br->count = count;
+ br->lowvalue = lowvalue;
+ br->range = range;
+}
+
+static INLINE void vp9_write_bit(vp9_writer *w, int bit) {
+ vp9_write(w, bit, 128); // vp9_prob_half
+}
+
+static INLINE void vp9_write_literal(vp9_writer *w, int data, int bits) {
+ int bit;
+
+ for (bit = bits - 1; bit >= 0; bit--)
+ vp9_write_bit(w, 1 & (data >> bit));
+}
+
+#define vp9_write_prob(w, v) vp9_write_literal((w), (v), 8)
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_WRITER_H_
diff --git a/media/libvpx/vp9/encoder/x86/vp9_avg_intrin_sse2.c b/media/libvpx/vp9/encoder/x86/vp9_avg_intrin_sse2.c
new file mode 100644
index 000000000..56a91ed2d
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_avg_intrin_sse2.c
@@ -0,0 +1,423 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>
+
+#include "./vp9_rtcd.h"
+#include "vpx_ports/mem.h"
+
+void vp9_minmax_8x8_sse2(const uint8_t *s, int p, const uint8_t *d, int dp,
+ int *min, int *max) {
+ __m128i u0, s0, d0, diff, maxabsdiff, minabsdiff, negdiff, absdiff0, absdiff;
+ u0 = _mm_setzero_si128();
+ // Row 0
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0);
+ d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d)), u0);
+ diff = _mm_subs_epi16(s0, d0);
+ negdiff = _mm_subs_epi16(u0, diff);
+ absdiff0 = _mm_max_epi16(diff, negdiff);
+ // Row 1
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0);
+ d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + dp)), u0);
+ diff = _mm_subs_epi16(s0, d0);
+ negdiff = _mm_subs_epi16(u0, diff);
+ absdiff = _mm_max_epi16(diff, negdiff);
+ maxabsdiff = _mm_max_epi16(absdiff0, absdiff);
+ minabsdiff = _mm_min_epi16(absdiff0, absdiff);
+ // Row 2
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0);
+ d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 2 * dp)), u0);
+ diff = _mm_subs_epi16(s0, d0);
+ negdiff = _mm_subs_epi16(u0, diff);
+ absdiff = _mm_max_epi16(diff, negdiff);
+ maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
+ minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
+ // Row 3
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0);
+ d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 3 * dp)), u0);
+ diff = _mm_subs_epi16(s0, d0);
+ negdiff = _mm_subs_epi16(u0, diff);
+ absdiff = _mm_max_epi16(diff, negdiff);
+ maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
+ minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
+ // Row 4
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 4 * p)), u0);
+ d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 4 * dp)), u0);
+ diff = _mm_subs_epi16(s0, d0);
+ negdiff = _mm_subs_epi16(u0, diff);
+ absdiff = _mm_max_epi16(diff, negdiff);
+ maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
+ minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
+ // Row 5
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 5 * p)), u0);
+ d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 5 * dp)), u0);
+ diff = _mm_subs_epi16(s0, d0);
+ negdiff = _mm_subs_epi16(u0, diff);
+ absdiff = _mm_max_epi16(diff, negdiff);
+ maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
+ minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
+ // Row 6
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 6 * p)), u0);
+ d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 6 * dp)), u0);
+ diff = _mm_subs_epi16(s0, d0);
+ negdiff = _mm_subs_epi16(u0, diff);
+ absdiff = _mm_max_epi16(diff, negdiff);
+ maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
+ minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
+ // Row 7
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 7 * p)), u0);
+ d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 7 * dp)), u0);
+ diff = _mm_subs_epi16(s0, d0);
+ negdiff = _mm_subs_epi16(u0, diff);
+ absdiff = _mm_max_epi16(diff, negdiff);
+ maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
+ minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
+
+ maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_si128(maxabsdiff, 8));
+ maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 32));
+ maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 16));
+ *max = _mm_extract_epi16(maxabsdiff, 0);
+
+ minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_si128(minabsdiff, 8));
+ minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 32));
+ minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 16));
+ *min = _mm_extract_epi16(minabsdiff, 0);
+}
+
+unsigned int vp9_avg_8x8_sse2(const uint8_t *s, int p) {
+ __m128i s0, s1, u0;
+ unsigned int avg = 0;
+ u0 = _mm_setzero_si128();
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 4 * p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 5 * p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 6 * p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 7 * p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+
+ s0 = _mm_adds_epu16(s0, _mm_srli_si128(s0, 8));
+ s0 = _mm_adds_epu16(s0, _mm_srli_epi64(s0, 32));
+ s0 = _mm_adds_epu16(s0, _mm_srli_epi64(s0, 16));
+ avg = _mm_extract_epi16(s0, 0);
+ return (avg + 32) >> 6;
+}
+
+unsigned int vp9_avg_4x4_sse2(const uint8_t *s, int p) {
+ __m128i s0, s1, u0;
+ unsigned int avg = 0;
+ u0 = _mm_setzero_si128();
+ s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+ s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0);
+ s0 = _mm_adds_epu16(s0, s1);
+
+ s0 = _mm_adds_epu16(s0, _mm_srli_si128(s0, 4));
+ s0 = _mm_adds_epu16(s0, _mm_srli_epi64(s0, 16));
+ avg = _mm_extract_epi16(s0, 0);
+ return (avg + 8) >> 4;
+}
+
+static void hadamard_col8_sse2(__m128i *in, int iter) {
+ __m128i a0 = in[0];
+ __m128i a1 = in[1];
+ __m128i a2 = in[2];
+ __m128i a3 = in[3];
+ __m128i a4 = in[4];
+ __m128i a5 = in[5];
+ __m128i a6 = in[6];
+ __m128i a7 = in[7];
+
+ __m128i b0 = _mm_add_epi16(a0, a1);
+ __m128i b1 = _mm_sub_epi16(a0, a1);
+ __m128i b2 = _mm_add_epi16(a2, a3);
+ __m128i b3 = _mm_sub_epi16(a2, a3);
+ __m128i b4 = _mm_add_epi16(a4, a5);
+ __m128i b5 = _mm_sub_epi16(a4, a5);
+ __m128i b6 = _mm_add_epi16(a6, a7);
+ __m128i b7 = _mm_sub_epi16(a6, a7);
+
+ a0 = _mm_add_epi16(b0, b2);
+ a1 = _mm_add_epi16(b1, b3);
+ a2 = _mm_sub_epi16(b0, b2);
+ a3 = _mm_sub_epi16(b1, b3);
+ a4 = _mm_add_epi16(b4, b6);
+ a5 = _mm_add_epi16(b5, b7);
+ a6 = _mm_sub_epi16(b4, b6);
+ a7 = _mm_sub_epi16(b5, b7);
+
+ if (iter == 0) {
+ b0 = _mm_add_epi16(a0, a4);
+ b7 = _mm_add_epi16(a1, a5);
+ b3 = _mm_add_epi16(a2, a6);
+ b4 = _mm_add_epi16(a3, a7);
+ b2 = _mm_sub_epi16(a0, a4);
+ b6 = _mm_sub_epi16(a1, a5);
+ b1 = _mm_sub_epi16(a2, a6);
+ b5 = _mm_sub_epi16(a3, a7);
+
+ a0 = _mm_unpacklo_epi16(b0, b1);
+ a1 = _mm_unpacklo_epi16(b2, b3);
+ a2 = _mm_unpackhi_epi16(b0, b1);
+ a3 = _mm_unpackhi_epi16(b2, b3);
+ a4 = _mm_unpacklo_epi16(b4, b5);
+ a5 = _mm_unpacklo_epi16(b6, b7);
+ a6 = _mm_unpackhi_epi16(b4, b5);
+ a7 = _mm_unpackhi_epi16(b6, b7);
+
+ b0 = _mm_unpacklo_epi32(a0, a1);
+ b1 = _mm_unpacklo_epi32(a4, a5);
+ b2 = _mm_unpackhi_epi32(a0, a1);
+ b3 = _mm_unpackhi_epi32(a4, a5);
+ b4 = _mm_unpacklo_epi32(a2, a3);
+ b5 = _mm_unpacklo_epi32(a6, a7);
+ b6 = _mm_unpackhi_epi32(a2, a3);
+ b7 = _mm_unpackhi_epi32(a6, a7);
+
+ in[0] = _mm_unpacklo_epi64(b0, b1);
+ in[1] = _mm_unpackhi_epi64(b0, b1);
+ in[2] = _mm_unpacklo_epi64(b2, b3);
+ in[3] = _mm_unpackhi_epi64(b2, b3);
+ in[4] = _mm_unpacklo_epi64(b4, b5);
+ in[5] = _mm_unpackhi_epi64(b4, b5);
+ in[6] = _mm_unpacklo_epi64(b6, b7);
+ in[7] = _mm_unpackhi_epi64(b6, b7);
+ } else {
+ in[0] = _mm_add_epi16(a0, a4);
+ in[7] = _mm_add_epi16(a1, a5);
+ in[3] = _mm_add_epi16(a2, a6);
+ in[4] = _mm_add_epi16(a3, a7);
+ in[2] = _mm_sub_epi16(a0, a4);
+ in[6] = _mm_sub_epi16(a1, a5);
+ in[1] = _mm_sub_epi16(a2, a6);
+ in[5] = _mm_sub_epi16(a3, a7);
+ }
+}
+
+void vp9_hadamard_8x8_sse2(int16_t const *src_diff, int src_stride,
+ int16_t *coeff) {
+ __m128i src[8];
+ src[0] = _mm_load_si128((const __m128i *)src_diff);
+ src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
+ src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
+ src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
+ src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
+ src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
+ src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
+ src[7] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
+
+ hadamard_col8_sse2(src, 0);
+ hadamard_col8_sse2(src, 1);
+
+ _mm_store_si128((__m128i *)coeff, src[0]);
+ coeff += 8;
+ _mm_store_si128((__m128i *)coeff, src[1]);
+ coeff += 8;
+ _mm_store_si128((__m128i *)coeff, src[2]);
+ coeff += 8;
+ _mm_store_si128((__m128i *)coeff, src[3]);
+ coeff += 8;
+ _mm_store_si128((__m128i *)coeff, src[4]);
+ coeff += 8;
+ _mm_store_si128((__m128i *)coeff, src[5]);
+ coeff += 8;
+ _mm_store_si128((__m128i *)coeff, src[6]);
+ coeff += 8;
+ _mm_store_si128((__m128i *)coeff, src[7]);
+}
+
+void vp9_hadamard_16x16_sse2(int16_t const *src_diff, int src_stride,
+ int16_t *coeff) {
+ int idx;
+ for (idx = 0; idx < 4; ++idx) {
+ int16_t const *src_ptr = src_diff + (idx >> 1) * 8 * src_stride
+ + (idx & 0x01) * 8;
+ vp9_hadamard_8x8_sse2(src_ptr, src_stride, coeff + idx * 64);
+ }
+
+ for (idx = 0; idx < 64; idx += 8) {
+ __m128i coeff0 = _mm_load_si128((const __m128i *)coeff);
+ __m128i coeff1 = _mm_load_si128((const __m128i *)(coeff + 64));
+ __m128i coeff2 = _mm_load_si128((const __m128i *)(coeff + 128));
+ __m128i coeff3 = _mm_load_si128((const __m128i *)(coeff + 192));
+
+ __m128i b0 = _mm_add_epi16(coeff0, coeff1);
+ __m128i b1 = _mm_sub_epi16(coeff0, coeff1);
+ __m128i b2 = _mm_add_epi16(coeff2, coeff3);
+ __m128i b3 = _mm_sub_epi16(coeff2, coeff3);
+
+ coeff0 = _mm_add_epi16(b0, b2);
+ coeff1 = _mm_add_epi16(b1, b3);
+ coeff0 = _mm_srai_epi16(coeff0, 1);
+ coeff1 = _mm_srai_epi16(coeff1, 1);
+ _mm_store_si128((__m128i *)coeff, coeff0);
+ _mm_store_si128((__m128i *)(coeff + 64), coeff1);
+
+ coeff2 = _mm_sub_epi16(b0, b2);
+ coeff3 = _mm_sub_epi16(b1, b3);
+ coeff2 = _mm_srai_epi16(coeff2, 1);
+ coeff3 = _mm_srai_epi16(coeff3, 1);
+ _mm_store_si128((__m128i *)(coeff + 128), coeff2);
+ _mm_store_si128((__m128i *)(coeff + 192), coeff3);
+
+ coeff += 8;
+ }
+}
+
+int16_t vp9_satd_sse2(const int16_t *coeff, int length) {
+ int i;
+ __m128i sum = _mm_load_si128((const __m128i *)coeff);
+ __m128i sign = _mm_srai_epi16(sum, 15);
+ __m128i val = _mm_xor_si128(sum, sign);
+ sum = _mm_sub_epi16(val, sign);
+ coeff += 8;
+
+ for (i = 8; i < length; i += 8) {
+ __m128i src_line = _mm_load_si128((const __m128i *)coeff);
+ sign = _mm_srai_epi16(src_line, 15);
+ val = _mm_xor_si128(src_line, sign);
+ val = _mm_sub_epi16(val, sign);
+ sum = _mm_add_epi16(sum, val);
+ coeff += 8;
+ }
+
+ val = _mm_srli_si128(sum, 8);
+ sum = _mm_add_epi16(sum, val);
+ val = _mm_srli_epi64(sum, 32);
+ sum = _mm_add_epi16(sum, val);
+ val = _mm_srli_epi32(sum, 16);
+ sum = _mm_add_epi16(sum, val);
+
+ return _mm_extract_epi16(sum, 0);
+}
+
+void vp9_int_pro_row_sse2(int16_t *hbuf, uint8_t const*ref,
+ const int ref_stride, const int height) {
+ int idx;
+ __m128i zero = _mm_setzero_si128();
+ __m128i src_line = _mm_loadu_si128((const __m128i *)ref);
+ __m128i s0 = _mm_unpacklo_epi8(src_line, zero);
+ __m128i s1 = _mm_unpackhi_epi8(src_line, zero);
+ __m128i t0, t1;
+ int height_1 = height - 1;
+ ref += ref_stride;
+
+ for (idx = 1; idx < height_1; idx += 2) {
+ src_line = _mm_loadu_si128((const __m128i *)ref);
+ t0 = _mm_unpacklo_epi8(src_line, zero);
+ t1 = _mm_unpackhi_epi8(src_line, zero);
+ s0 = _mm_adds_epu16(s0, t0);
+ s1 = _mm_adds_epu16(s1, t1);
+ ref += ref_stride;
+
+ src_line = _mm_loadu_si128((const __m128i *)ref);
+ t0 = _mm_unpacklo_epi8(src_line, zero);
+ t1 = _mm_unpackhi_epi8(src_line, zero);
+ s0 = _mm_adds_epu16(s0, t0);
+ s1 = _mm_adds_epu16(s1, t1);
+ ref += ref_stride;
+ }
+
+ src_line = _mm_loadu_si128((const __m128i *)ref);
+ t0 = _mm_unpacklo_epi8(src_line, zero);
+ t1 = _mm_unpackhi_epi8(src_line, zero);
+ s0 = _mm_adds_epu16(s0, t0);
+ s1 = _mm_adds_epu16(s1, t1);
+
+ if (height == 64) {
+ s0 = _mm_srai_epi16(s0, 5);
+ s1 = _mm_srai_epi16(s1, 5);
+ } else if (height == 32) {
+ s0 = _mm_srai_epi16(s0, 4);
+ s1 = _mm_srai_epi16(s1, 4);
+ } else {
+ s0 = _mm_srai_epi16(s0, 3);
+ s1 = _mm_srai_epi16(s1, 3);
+ }
+
+ _mm_storeu_si128((__m128i *)hbuf, s0);
+ hbuf += 8;
+ _mm_storeu_si128((__m128i *)hbuf, s1);
+}
+
+int16_t vp9_int_pro_col_sse2(uint8_t const *ref, const int width) {
+ __m128i zero = _mm_setzero_si128();
+ __m128i src_line = _mm_load_si128((const __m128i *)ref);
+ __m128i s0 = _mm_sad_epu8(src_line, zero);
+ __m128i s1;
+ int i;
+
+ for (i = 16; i < width; i += 16) {
+ ref += 16;
+ src_line = _mm_load_si128((const __m128i *)ref);
+ s1 = _mm_sad_epu8(src_line, zero);
+ s0 = _mm_adds_epu16(s0, s1);
+ }
+
+ s1 = _mm_srli_si128(s0, 8);
+ s0 = _mm_adds_epu16(s0, s1);
+
+ return _mm_extract_epi16(s0, 0);
+}
+
+int vp9_vector_var_sse2(int16_t const *ref, int16_t const *src,
+ const int bwl) {
+ int idx;
+ int width = 4 << bwl;
+ int16_t mean;
+ __m128i v0 = _mm_loadu_si128((const __m128i *)ref);
+ __m128i v1 = _mm_load_si128((const __m128i *)src);
+ __m128i diff = _mm_subs_epi16(v0, v1);
+ __m128i sum = diff;
+ __m128i sse = _mm_madd_epi16(diff, diff);
+
+ ref += 8;
+ src += 8;
+
+ for (idx = 8; idx < width; idx += 8) {
+ v0 = _mm_loadu_si128((const __m128i *)ref);
+ v1 = _mm_load_si128((const __m128i *)src);
+ diff = _mm_subs_epi16(v0, v1);
+
+ sum = _mm_add_epi16(sum, diff);
+ v0 = _mm_madd_epi16(diff, diff);
+ sse = _mm_add_epi32(sse, v0);
+
+ ref += 8;
+ src += 8;
+ }
+
+ v0 = _mm_srli_si128(sum, 8);
+ sum = _mm_add_epi16(sum, v0);
+ v0 = _mm_srli_epi64(sum, 32);
+ sum = _mm_add_epi16(sum, v0);
+ v0 = _mm_srli_epi32(sum, 16);
+ sum = _mm_add_epi16(sum, v0);
+
+ v1 = _mm_srli_si128(sse, 8);
+ sse = _mm_add_epi32(sse, v1);
+ v1 = _mm_srli_epi64(sse, 32);
+ sse = _mm_add_epi32(sse, v1);
+
+ mean = _mm_extract_epi16(sum, 0);
+
+ return _mm_cvtsi128_si32(sse) - ((mean * mean) >> (bwl + 2));
+}
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct32x32_avx2_impl.h b/media/libvpx/vp9/encoder/x86/vp9_dct32x32_avx2_impl.h
new file mode 100644
index 000000000..ae6bfe5fa
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct32x32_avx2_impl.h
@@ -0,0 +1,2713 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+
+#include "./vp9_rtcd.h"
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vpx_ports/mem.h"
+
+#define pair256_set_epi16(a, b) \
+ _mm256_set_epi16((int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a), \
+ (int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a), \
+ (int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a), \
+ (int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a))
+
+#define pair256_set_epi32(a, b) \
+ _mm256_set_epi32((int)(b), (int)(a), (int)(b), (int)(a), \
+ (int)(b), (int)(a), (int)(b), (int)(a))
+
+#if FDCT32x32_HIGH_PRECISION
+static INLINE __m256i k_madd_epi32_avx2(__m256i a, __m256i b) {
+ __m256i buf0, buf1;
+ buf0 = _mm256_mul_epu32(a, b);
+ a = _mm256_srli_epi64(a, 32);
+ b = _mm256_srli_epi64(b, 32);
+ buf1 = _mm256_mul_epu32(a, b);
+ return _mm256_add_epi64(buf0, buf1);
+}
+
+static INLINE __m256i k_packs_epi64_avx2(__m256i a, __m256i b) {
+ __m256i buf0 = _mm256_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 2, 0));
+ __m256i buf1 = _mm256_shuffle_epi32(b, _MM_SHUFFLE(0, 0, 2, 0));
+ return _mm256_unpacklo_epi64(buf0, buf1);
+}
+#endif
+
+void FDCT32x32_2D_AVX2(const int16_t *input,
+ int16_t *output_org, int stride) {
+ // Calculate pre-multiplied strides
+ const int str1 = stride;
+ const int str2 = 2 * stride;
+ const int str3 = 2 * stride + str1;
+ // We need an intermediate buffer between passes.
+ DECLARE_ALIGNED(32, int16_t, intermediate[32 * 32]);
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m256i k__cospi_p16_p16 = _mm256_set1_epi16((int16_t)cospi_16_64);
+ const __m256i k__cospi_p16_m16 = pair256_set_epi16(+cospi_16_64, -cospi_16_64);
+ const __m256i k__cospi_m08_p24 = pair256_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m256i k__cospi_m24_m08 = pair256_set_epi16(-cospi_24_64, -cospi_8_64);
+ const __m256i k__cospi_p24_p08 = pair256_set_epi16(+cospi_24_64, cospi_8_64);
+ const __m256i k__cospi_p12_p20 = pair256_set_epi16(+cospi_12_64, cospi_20_64);
+ const __m256i k__cospi_m20_p12 = pair256_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m256i k__cospi_m04_p28 = pair256_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m256i k__cospi_p28_p04 = pair256_set_epi16(+cospi_28_64, cospi_4_64);
+ const __m256i k__cospi_m28_m04 = pair256_set_epi16(-cospi_28_64, -cospi_4_64);
+ const __m256i k__cospi_m12_m20 = pair256_set_epi16(-cospi_12_64, -cospi_20_64);
+ const __m256i k__cospi_p30_p02 = pair256_set_epi16(+cospi_30_64, cospi_2_64);
+ const __m256i k__cospi_p14_p18 = pair256_set_epi16(+cospi_14_64, cospi_18_64);
+ const __m256i k__cospi_p22_p10 = pair256_set_epi16(+cospi_22_64, cospi_10_64);
+ const __m256i k__cospi_p06_p26 = pair256_set_epi16(+cospi_6_64, cospi_26_64);
+ const __m256i k__cospi_m26_p06 = pair256_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m256i k__cospi_m10_p22 = pair256_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m256i k__cospi_m18_p14 = pair256_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m256i k__cospi_m02_p30 = pair256_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m256i k__cospi_p31_p01 = pair256_set_epi16(+cospi_31_64, cospi_1_64);
+ const __m256i k__cospi_p15_p17 = pair256_set_epi16(+cospi_15_64, cospi_17_64);
+ const __m256i k__cospi_p23_p09 = pair256_set_epi16(+cospi_23_64, cospi_9_64);
+ const __m256i k__cospi_p07_p25 = pair256_set_epi16(+cospi_7_64, cospi_25_64);
+ const __m256i k__cospi_m25_p07 = pair256_set_epi16(-cospi_25_64, cospi_7_64);
+ const __m256i k__cospi_m09_p23 = pair256_set_epi16(-cospi_9_64, cospi_23_64);
+ const __m256i k__cospi_m17_p15 = pair256_set_epi16(-cospi_17_64, cospi_15_64);
+ const __m256i k__cospi_m01_p31 = pair256_set_epi16(-cospi_1_64, cospi_31_64);
+ const __m256i k__cospi_p27_p05 = pair256_set_epi16(+cospi_27_64, cospi_5_64);
+ const __m256i k__cospi_p11_p21 = pair256_set_epi16(+cospi_11_64, cospi_21_64);
+ const __m256i k__cospi_p19_p13 = pair256_set_epi16(+cospi_19_64, cospi_13_64);
+ const __m256i k__cospi_p03_p29 = pair256_set_epi16(+cospi_3_64, cospi_29_64);
+ const __m256i k__cospi_m29_p03 = pair256_set_epi16(-cospi_29_64, cospi_3_64);
+ const __m256i k__cospi_m13_p19 = pair256_set_epi16(-cospi_13_64, cospi_19_64);
+ const __m256i k__cospi_m21_p11 = pair256_set_epi16(-cospi_21_64, cospi_11_64);
+ const __m256i k__cospi_m05_p27 = pair256_set_epi16(-cospi_5_64, cospi_27_64);
+ const __m256i k__DCT_CONST_ROUNDING = _mm256_set1_epi32(DCT_CONST_ROUNDING);
+ const __m256i kZero = _mm256_set1_epi16(0);
+ const __m256i kOne = _mm256_set1_epi16(1);
+ // Do the two transform/transpose passes
+ int pass;
+ for (pass = 0; pass < 2; ++pass) {
+ // We process sixteen columns (transposed rows in second pass) at a time.
+ int column_start;
+ for (column_start = 0; column_start < 32; column_start += 16) {
+ __m256i step1[32];
+ __m256i step2[32];
+ __m256i step3[32];
+ __m256i out[32];
+ // Stage 1
+ // Note: even though all the loads below are aligned, using the aligned
+ // intrinsic make the code slightly slower.
+ if (0 == pass) {
+ const int16_t *in = &input[column_start];
+ // step1[i] = (in[ 0 * stride] + in[(32 - 1) * stride]) << 2;
+ // Note: the next four blocks could be in a loop. That would help the
+ // instruction cache but is actually slower.
+ {
+ const int16_t *ina = in + 0 * str1;
+ const int16_t *inb = in + 31 * str1;
+ __m256i *step1a = &step1[ 0];
+ __m256i *step1b = &step1[31];
+ const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina));
+ const __m256i ina1 = _mm256_loadu_si256((const __m256i *)(ina + str1));
+ const __m256i ina2 = _mm256_loadu_si256((const __m256i *)(ina + str2));
+ const __m256i ina3 = _mm256_loadu_si256((const __m256i *)(ina + str3));
+ const __m256i inb3 = _mm256_loadu_si256((const __m256i *)(inb - str3));
+ const __m256i inb2 = _mm256_loadu_si256((const __m256i *)(inb - str2));
+ const __m256i inb1 = _mm256_loadu_si256((const __m256i *)(inb - str1));
+ const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb));
+ step1a[ 0] = _mm256_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm256_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm256_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm256_add_epi16(ina3, inb3);
+ step1b[-3] = _mm256_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm256_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm256_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm256_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm256_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm256_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm256_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm256_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm256_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm256_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm256_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm256_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 4 * str1;
+ const int16_t *inb = in + 27 * str1;
+ __m256i *step1a = &step1[ 4];
+ __m256i *step1b = &step1[27];
+ const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina));
+ const __m256i ina1 = _mm256_loadu_si256((const __m256i *)(ina + str1));
+ const __m256i ina2 = _mm256_loadu_si256((const __m256i *)(ina + str2));
+ const __m256i ina3 = _mm256_loadu_si256((const __m256i *)(ina + str3));
+ const __m256i inb3 = _mm256_loadu_si256((const __m256i *)(inb - str3));
+ const __m256i inb2 = _mm256_loadu_si256((const __m256i *)(inb - str2));
+ const __m256i inb1 = _mm256_loadu_si256((const __m256i *)(inb - str1));
+ const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb));
+ step1a[ 0] = _mm256_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm256_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm256_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm256_add_epi16(ina3, inb3);
+ step1b[-3] = _mm256_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm256_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm256_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm256_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm256_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm256_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm256_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm256_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm256_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm256_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm256_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm256_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 8 * str1;
+ const int16_t *inb = in + 23 * str1;
+ __m256i *step1a = &step1[ 8];
+ __m256i *step1b = &step1[23];
+ const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina));
+ const __m256i ina1 = _mm256_loadu_si256((const __m256i *)(ina + str1));
+ const __m256i ina2 = _mm256_loadu_si256((const __m256i *)(ina + str2));
+ const __m256i ina3 = _mm256_loadu_si256((const __m256i *)(ina + str3));
+ const __m256i inb3 = _mm256_loadu_si256((const __m256i *)(inb - str3));
+ const __m256i inb2 = _mm256_loadu_si256((const __m256i *)(inb - str2));
+ const __m256i inb1 = _mm256_loadu_si256((const __m256i *)(inb - str1));
+ const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb));
+ step1a[ 0] = _mm256_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm256_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm256_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm256_add_epi16(ina3, inb3);
+ step1b[-3] = _mm256_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm256_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm256_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm256_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm256_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm256_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm256_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm256_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm256_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm256_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm256_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm256_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 12 * str1;
+ const int16_t *inb = in + 19 * str1;
+ __m256i *step1a = &step1[12];
+ __m256i *step1b = &step1[19];
+ const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina));
+ const __m256i ina1 = _mm256_loadu_si256((const __m256i *)(ina + str1));
+ const __m256i ina2 = _mm256_loadu_si256((const __m256i *)(ina + str2));
+ const __m256i ina3 = _mm256_loadu_si256((const __m256i *)(ina + str3));
+ const __m256i inb3 = _mm256_loadu_si256((const __m256i *)(inb - str3));
+ const __m256i inb2 = _mm256_loadu_si256((const __m256i *)(inb - str2));
+ const __m256i inb1 = _mm256_loadu_si256((const __m256i *)(inb - str1));
+ const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb));
+ step1a[ 0] = _mm256_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm256_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm256_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm256_add_epi16(ina3, inb3);
+ step1b[-3] = _mm256_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm256_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm256_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm256_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm256_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm256_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm256_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm256_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm256_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm256_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm256_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm256_slli_epi16(step1b[-0], 2);
+ }
+ } else {
+ int16_t *in = &intermediate[column_start];
+ // step1[i] = in[ 0 * 32] + in[(32 - 1) * 32];
+ // Note: using the same approach as above to have common offset is
+ // counter-productive as all offsets can be calculated at compile
+ // time.
+ // Note: the next four blocks could be in a loop. That would help the
+ // instruction cache but is actually slower.
+ {
+ __m256i in00 = _mm256_loadu_si256((const __m256i *)(in + 0 * 32));
+ __m256i in01 = _mm256_loadu_si256((const __m256i *)(in + 1 * 32));
+ __m256i in02 = _mm256_loadu_si256((const __m256i *)(in + 2 * 32));
+ __m256i in03 = _mm256_loadu_si256((const __m256i *)(in + 3 * 32));
+ __m256i in28 = _mm256_loadu_si256((const __m256i *)(in + 28 * 32));
+ __m256i in29 = _mm256_loadu_si256((const __m256i *)(in + 29 * 32));
+ __m256i in30 = _mm256_loadu_si256((const __m256i *)(in + 30 * 32));
+ __m256i in31 = _mm256_loadu_si256((const __m256i *)(in + 31 * 32));
+ step1[ 0] = _mm256_add_epi16(in00, in31);
+ step1[ 1] = _mm256_add_epi16(in01, in30);
+ step1[ 2] = _mm256_add_epi16(in02, in29);
+ step1[ 3] = _mm256_add_epi16(in03, in28);
+ step1[28] = _mm256_sub_epi16(in03, in28);
+ step1[29] = _mm256_sub_epi16(in02, in29);
+ step1[30] = _mm256_sub_epi16(in01, in30);
+ step1[31] = _mm256_sub_epi16(in00, in31);
+ }
+ {
+ __m256i in04 = _mm256_loadu_si256((const __m256i *)(in + 4 * 32));
+ __m256i in05 = _mm256_loadu_si256((const __m256i *)(in + 5 * 32));
+ __m256i in06 = _mm256_loadu_si256((const __m256i *)(in + 6 * 32));
+ __m256i in07 = _mm256_loadu_si256((const __m256i *)(in + 7 * 32));
+ __m256i in24 = _mm256_loadu_si256((const __m256i *)(in + 24 * 32));
+ __m256i in25 = _mm256_loadu_si256((const __m256i *)(in + 25 * 32));
+ __m256i in26 = _mm256_loadu_si256((const __m256i *)(in + 26 * 32));
+ __m256i in27 = _mm256_loadu_si256((const __m256i *)(in + 27 * 32));
+ step1[ 4] = _mm256_add_epi16(in04, in27);
+ step1[ 5] = _mm256_add_epi16(in05, in26);
+ step1[ 6] = _mm256_add_epi16(in06, in25);
+ step1[ 7] = _mm256_add_epi16(in07, in24);
+ step1[24] = _mm256_sub_epi16(in07, in24);
+ step1[25] = _mm256_sub_epi16(in06, in25);
+ step1[26] = _mm256_sub_epi16(in05, in26);
+ step1[27] = _mm256_sub_epi16(in04, in27);
+ }
+ {
+ __m256i in08 = _mm256_loadu_si256((const __m256i *)(in + 8 * 32));
+ __m256i in09 = _mm256_loadu_si256((const __m256i *)(in + 9 * 32));
+ __m256i in10 = _mm256_loadu_si256((const __m256i *)(in + 10 * 32));
+ __m256i in11 = _mm256_loadu_si256((const __m256i *)(in + 11 * 32));
+ __m256i in20 = _mm256_loadu_si256((const __m256i *)(in + 20 * 32));
+ __m256i in21 = _mm256_loadu_si256((const __m256i *)(in + 21 * 32));
+ __m256i in22 = _mm256_loadu_si256((const __m256i *)(in + 22 * 32));
+ __m256i in23 = _mm256_loadu_si256((const __m256i *)(in + 23 * 32));
+ step1[ 8] = _mm256_add_epi16(in08, in23);
+ step1[ 9] = _mm256_add_epi16(in09, in22);
+ step1[10] = _mm256_add_epi16(in10, in21);
+ step1[11] = _mm256_add_epi16(in11, in20);
+ step1[20] = _mm256_sub_epi16(in11, in20);
+ step1[21] = _mm256_sub_epi16(in10, in21);
+ step1[22] = _mm256_sub_epi16(in09, in22);
+ step1[23] = _mm256_sub_epi16(in08, in23);
+ }
+ {
+ __m256i in12 = _mm256_loadu_si256((const __m256i *)(in + 12 * 32));
+ __m256i in13 = _mm256_loadu_si256((const __m256i *)(in + 13 * 32));
+ __m256i in14 = _mm256_loadu_si256((const __m256i *)(in + 14 * 32));
+ __m256i in15 = _mm256_loadu_si256((const __m256i *)(in + 15 * 32));
+ __m256i in16 = _mm256_loadu_si256((const __m256i *)(in + 16 * 32));
+ __m256i in17 = _mm256_loadu_si256((const __m256i *)(in + 17 * 32));
+ __m256i in18 = _mm256_loadu_si256((const __m256i *)(in + 18 * 32));
+ __m256i in19 = _mm256_loadu_si256((const __m256i *)(in + 19 * 32));
+ step1[12] = _mm256_add_epi16(in12, in19);
+ step1[13] = _mm256_add_epi16(in13, in18);
+ step1[14] = _mm256_add_epi16(in14, in17);
+ step1[15] = _mm256_add_epi16(in15, in16);
+ step1[16] = _mm256_sub_epi16(in15, in16);
+ step1[17] = _mm256_sub_epi16(in14, in17);
+ step1[18] = _mm256_sub_epi16(in13, in18);
+ step1[19] = _mm256_sub_epi16(in12, in19);
+ }
+ }
+ // Stage 2
+ {
+ step2[ 0] = _mm256_add_epi16(step1[0], step1[15]);
+ step2[ 1] = _mm256_add_epi16(step1[1], step1[14]);
+ step2[ 2] = _mm256_add_epi16(step1[2], step1[13]);
+ step2[ 3] = _mm256_add_epi16(step1[3], step1[12]);
+ step2[ 4] = _mm256_add_epi16(step1[4], step1[11]);
+ step2[ 5] = _mm256_add_epi16(step1[5], step1[10]);
+ step2[ 6] = _mm256_add_epi16(step1[6], step1[ 9]);
+ step2[ 7] = _mm256_add_epi16(step1[7], step1[ 8]);
+ step2[ 8] = _mm256_sub_epi16(step1[7], step1[ 8]);
+ step2[ 9] = _mm256_sub_epi16(step1[6], step1[ 9]);
+ step2[10] = _mm256_sub_epi16(step1[5], step1[10]);
+ step2[11] = _mm256_sub_epi16(step1[4], step1[11]);
+ step2[12] = _mm256_sub_epi16(step1[3], step1[12]);
+ step2[13] = _mm256_sub_epi16(step1[2], step1[13]);
+ step2[14] = _mm256_sub_epi16(step1[1], step1[14]);
+ step2[15] = _mm256_sub_epi16(step1[0], step1[15]);
+ }
+ {
+ const __m256i s2_20_0 = _mm256_unpacklo_epi16(step1[27], step1[20]);
+ const __m256i s2_20_1 = _mm256_unpackhi_epi16(step1[27], step1[20]);
+ const __m256i s2_21_0 = _mm256_unpacklo_epi16(step1[26], step1[21]);
+ const __m256i s2_21_1 = _mm256_unpackhi_epi16(step1[26], step1[21]);
+ const __m256i s2_22_0 = _mm256_unpacklo_epi16(step1[25], step1[22]);
+ const __m256i s2_22_1 = _mm256_unpackhi_epi16(step1[25], step1[22]);
+ const __m256i s2_23_0 = _mm256_unpacklo_epi16(step1[24], step1[23]);
+ const __m256i s2_23_1 = _mm256_unpackhi_epi16(step1[24], step1[23]);
+ const __m256i s2_20_2 = _mm256_madd_epi16(s2_20_0, k__cospi_p16_m16);
+ const __m256i s2_20_3 = _mm256_madd_epi16(s2_20_1, k__cospi_p16_m16);
+ const __m256i s2_21_2 = _mm256_madd_epi16(s2_21_0, k__cospi_p16_m16);
+ const __m256i s2_21_3 = _mm256_madd_epi16(s2_21_1, k__cospi_p16_m16);
+ const __m256i s2_22_2 = _mm256_madd_epi16(s2_22_0, k__cospi_p16_m16);
+ const __m256i s2_22_3 = _mm256_madd_epi16(s2_22_1, k__cospi_p16_m16);
+ const __m256i s2_23_2 = _mm256_madd_epi16(s2_23_0, k__cospi_p16_m16);
+ const __m256i s2_23_3 = _mm256_madd_epi16(s2_23_1, k__cospi_p16_m16);
+ const __m256i s2_24_2 = _mm256_madd_epi16(s2_23_0, k__cospi_p16_p16);
+ const __m256i s2_24_3 = _mm256_madd_epi16(s2_23_1, k__cospi_p16_p16);
+ const __m256i s2_25_2 = _mm256_madd_epi16(s2_22_0, k__cospi_p16_p16);
+ const __m256i s2_25_3 = _mm256_madd_epi16(s2_22_1, k__cospi_p16_p16);
+ const __m256i s2_26_2 = _mm256_madd_epi16(s2_21_0, k__cospi_p16_p16);
+ const __m256i s2_26_3 = _mm256_madd_epi16(s2_21_1, k__cospi_p16_p16);
+ const __m256i s2_27_2 = _mm256_madd_epi16(s2_20_0, k__cospi_p16_p16);
+ const __m256i s2_27_3 = _mm256_madd_epi16(s2_20_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m256i s2_20_4 = _mm256_add_epi32(s2_20_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_20_5 = _mm256_add_epi32(s2_20_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_21_4 = _mm256_add_epi32(s2_21_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_21_5 = _mm256_add_epi32(s2_21_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_22_4 = _mm256_add_epi32(s2_22_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_22_5 = _mm256_add_epi32(s2_22_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_23_4 = _mm256_add_epi32(s2_23_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_23_5 = _mm256_add_epi32(s2_23_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_24_4 = _mm256_add_epi32(s2_24_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_24_5 = _mm256_add_epi32(s2_24_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_25_4 = _mm256_add_epi32(s2_25_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_25_5 = _mm256_add_epi32(s2_25_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_26_4 = _mm256_add_epi32(s2_26_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_26_5 = _mm256_add_epi32(s2_26_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_27_4 = _mm256_add_epi32(s2_27_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_27_5 = _mm256_add_epi32(s2_27_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_20_6 = _mm256_srai_epi32(s2_20_4, DCT_CONST_BITS);
+ const __m256i s2_20_7 = _mm256_srai_epi32(s2_20_5, DCT_CONST_BITS);
+ const __m256i s2_21_6 = _mm256_srai_epi32(s2_21_4, DCT_CONST_BITS);
+ const __m256i s2_21_7 = _mm256_srai_epi32(s2_21_5, DCT_CONST_BITS);
+ const __m256i s2_22_6 = _mm256_srai_epi32(s2_22_4, DCT_CONST_BITS);
+ const __m256i s2_22_7 = _mm256_srai_epi32(s2_22_5, DCT_CONST_BITS);
+ const __m256i s2_23_6 = _mm256_srai_epi32(s2_23_4, DCT_CONST_BITS);
+ const __m256i s2_23_7 = _mm256_srai_epi32(s2_23_5, DCT_CONST_BITS);
+ const __m256i s2_24_6 = _mm256_srai_epi32(s2_24_4, DCT_CONST_BITS);
+ const __m256i s2_24_7 = _mm256_srai_epi32(s2_24_5, DCT_CONST_BITS);
+ const __m256i s2_25_6 = _mm256_srai_epi32(s2_25_4, DCT_CONST_BITS);
+ const __m256i s2_25_7 = _mm256_srai_epi32(s2_25_5, DCT_CONST_BITS);
+ const __m256i s2_26_6 = _mm256_srai_epi32(s2_26_4, DCT_CONST_BITS);
+ const __m256i s2_26_7 = _mm256_srai_epi32(s2_26_5, DCT_CONST_BITS);
+ const __m256i s2_27_6 = _mm256_srai_epi32(s2_27_4, DCT_CONST_BITS);
+ const __m256i s2_27_7 = _mm256_srai_epi32(s2_27_5, DCT_CONST_BITS);
+ // Combine
+ step2[20] = _mm256_packs_epi32(s2_20_6, s2_20_7);
+ step2[21] = _mm256_packs_epi32(s2_21_6, s2_21_7);
+ step2[22] = _mm256_packs_epi32(s2_22_6, s2_22_7);
+ step2[23] = _mm256_packs_epi32(s2_23_6, s2_23_7);
+ step2[24] = _mm256_packs_epi32(s2_24_6, s2_24_7);
+ step2[25] = _mm256_packs_epi32(s2_25_6, s2_25_7);
+ step2[26] = _mm256_packs_epi32(s2_26_6, s2_26_7);
+ step2[27] = _mm256_packs_epi32(s2_27_6, s2_27_7);
+ }
+
+#if !FDCT32x32_HIGH_PRECISION
+ // dump the magnitude by half, hence the intermediate values are within
+ // the range of 16 bits.
+ if (1 == pass) {
+ __m256i s3_00_0 = _mm256_cmpgt_epi16(kZero,step2[ 0]);
+ __m256i s3_01_0 = _mm256_cmpgt_epi16(kZero,step2[ 1]);
+ __m256i s3_02_0 = _mm256_cmpgt_epi16(kZero,step2[ 2]);
+ __m256i s3_03_0 = _mm256_cmpgt_epi16(kZero,step2[ 3]);
+ __m256i s3_04_0 = _mm256_cmpgt_epi16(kZero,step2[ 4]);
+ __m256i s3_05_0 = _mm256_cmpgt_epi16(kZero,step2[ 5]);
+ __m256i s3_06_0 = _mm256_cmpgt_epi16(kZero,step2[ 6]);
+ __m256i s3_07_0 = _mm256_cmpgt_epi16(kZero,step2[ 7]);
+ __m256i s2_08_0 = _mm256_cmpgt_epi16(kZero,step2[ 8]);
+ __m256i s2_09_0 = _mm256_cmpgt_epi16(kZero,step2[ 9]);
+ __m256i s3_10_0 = _mm256_cmpgt_epi16(kZero,step2[10]);
+ __m256i s3_11_0 = _mm256_cmpgt_epi16(kZero,step2[11]);
+ __m256i s3_12_0 = _mm256_cmpgt_epi16(kZero,step2[12]);
+ __m256i s3_13_0 = _mm256_cmpgt_epi16(kZero,step2[13]);
+ __m256i s2_14_0 = _mm256_cmpgt_epi16(kZero,step2[14]);
+ __m256i s2_15_0 = _mm256_cmpgt_epi16(kZero,step2[15]);
+ __m256i s3_16_0 = _mm256_cmpgt_epi16(kZero,step1[16]);
+ __m256i s3_17_0 = _mm256_cmpgt_epi16(kZero,step1[17]);
+ __m256i s3_18_0 = _mm256_cmpgt_epi16(kZero,step1[18]);
+ __m256i s3_19_0 = _mm256_cmpgt_epi16(kZero,step1[19]);
+ __m256i s3_20_0 = _mm256_cmpgt_epi16(kZero,step2[20]);
+ __m256i s3_21_0 = _mm256_cmpgt_epi16(kZero,step2[21]);
+ __m256i s3_22_0 = _mm256_cmpgt_epi16(kZero,step2[22]);
+ __m256i s3_23_0 = _mm256_cmpgt_epi16(kZero,step2[23]);
+ __m256i s3_24_0 = _mm256_cmpgt_epi16(kZero,step2[24]);
+ __m256i s3_25_0 = _mm256_cmpgt_epi16(kZero,step2[25]);
+ __m256i s3_26_0 = _mm256_cmpgt_epi16(kZero,step2[26]);
+ __m256i s3_27_0 = _mm256_cmpgt_epi16(kZero,step2[27]);
+ __m256i s3_28_0 = _mm256_cmpgt_epi16(kZero,step1[28]);
+ __m256i s3_29_0 = _mm256_cmpgt_epi16(kZero,step1[29]);
+ __m256i s3_30_0 = _mm256_cmpgt_epi16(kZero,step1[30]);
+ __m256i s3_31_0 = _mm256_cmpgt_epi16(kZero,step1[31]);
+
+ step2[ 0] = _mm256_sub_epi16(step2[ 0], s3_00_0);
+ step2[ 1] = _mm256_sub_epi16(step2[ 1], s3_01_0);
+ step2[ 2] = _mm256_sub_epi16(step2[ 2], s3_02_0);
+ step2[ 3] = _mm256_sub_epi16(step2[ 3], s3_03_0);
+ step2[ 4] = _mm256_sub_epi16(step2[ 4], s3_04_0);
+ step2[ 5] = _mm256_sub_epi16(step2[ 5], s3_05_0);
+ step2[ 6] = _mm256_sub_epi16(step2[ 6], s3_06_0);
+ step2[ 7] = _mm256_sub_epi16(step2[ 7], s3_07_0);
+ step2[ 8] = _mm256_sub_epi16(step2[ 8], s2_08_0);
+ step2[ 9] = _mm256_sub_epi16(step2[ 9], s2_09_0);
+ step2[10] = _mm256_sub_epi16(step2[10], s3_10_0);
+ step2[11] = _mm256_sub_epi16(step2[11], s3_11_0);
+ step2[12] = _mm256_sub_epi16(step2[12], s3_12_0);
+ step2[13] = _mm256_sub_epi16(step2[13], s3_13_0);
+ step2[14] = _mm256_sub_epi16(step2[14], s2_14_0);
+ step2[15] = _mm256_sub_epi16(step2[15], s2_15_0);
+ step1[16] = _mm256_sub_epi16(step1[16], s3_16_0);
+ step1[17] = _mm256_sub_epi16(step1[17], s3_17_0);
+ step1[18] = _mm256_sub_epi16(step1[18], s3_18_0);
+ step1[19] = _mm256_sub_epi16(step1[19], s3_19_0);
+ step2[20] = _mm256_sub_epi16(step2[20], s3_20_0);
+ step2[21] = _mm256_sub_epi16(step2[21], s3_21_0);
+ step2[22] = _mm256_sub_epi16(step2[22], s3_22_0);
+ step2[23] = _mm256_sub_epi16(step2[23], s3_23_0);
+ step2[24] = _mm256_sub_epi16(step2[24], s3_24_0);
+ step2[25] = _mm256_sub_epi16(step2[25], s3_25_0);
+ step2[26] = _mm256_sub_epi16(step2[26], s3_26_0);
+ step2[27] = _mm256_sub_epi16(step2[27], s3_27_0);
+ step1[28] = _mm256_sub_epi16(step1[28], s3_28_0);
+ step1[29] = _mm256_sub_epi16(step1[29], s3_29_0);
+ step1[30] = _mm256_sub_epi16(step1[30], s3_30_0);
+ step1[31] = _mm256_sub_epi16(step1[31], s3_31_0);
+
+ step2[ 0] = _mm256_add_epi16(step2[ 0], kOne);
+ step2[ 1] = _mm256_add_epi16(step2[ 1], kOne);
+ step2[ 2] = _mm256_add_epi16(step2[ 2], kOne);
+ step2[ 3] = _mm256_add_epi16(step2[ 3], kOne);
+ step2[ 4] = _mm256_add_epi16(step2[ 4], kOne);
+ step2[ 5] = _mm256_add_epi16(step2[ 5], kOne);
+ step2[ 6] = _mm256_add_epi16(step2[ 6], kOne);
+ step2[ 7] = _mm256_add_epi16(step2[ 7], kOne);
+ step2[ 8] = _mm256_add_epi16(step2[ 8], kOne);
+ step2[ 9] = _mm256_add_epi16(step2[ 9], kOne);
+ step2[10] = _mm256_add_epi16(step2[10], kOne);
+ step2[11] = _mm256_add_epi16(step2[11], kOne);
+ step2[12] = _mm256_add_epi16(step2[12], kOne);
+ step2[13] = _mm256_add_epi16(step2[13], kOne);
+ step2[14] = _mm256_add_epi16(step2[14], kOne);
+ step2[15] = _mm256_add_epi16(step2[15], kOne);
+ step1[16] = _mm256_add_epi16(step1[16], kOne);
+ step1[17] = _mm256_add_epi16(step1[17], kOne);
+ step1[18] = _mm256_add_epi16(step1[18], kOne);
+ step1[19] = _mm256_add_epi16(step1[19], kOne);
+ step2[20] = _mm256_add_epi16(step2[20], kOne);
+ step2[21] = _mm256_add_epi16(step2[21], kOne);
+ step2[22] = _mm256_add_epi16(step2[22], kOne);
+ step2[23] = _mm256_add_epi16(step2[23], kOne);
+ step2[24] = _mm256_add_epi16(step2[24], kOne);
+ step2[25] = _mm256_add_epi16(step2[25], kOne);
+ step2[26] = _mm256_add_epi16(step2[26], kOne);
+ step2[27] = _mm256_add_epi16(step2[27], kOne);
+ step1[28] = _mm256_add_epi16(step1[28], kOne);
+ step1[29] = _mm256_add_epi16(step1[29], kOne);
+ step1[30] = _mm256_add_epi16(step1[30], kOne);
+ step1[31] = _mm256_add_epi16(step1[31], kOne);
+
+ step2[ 0] = _mm256_srai_epi16(step2[ 0], 2);
+ step2[ 1] = _mm256_srai_epi16(step2[ 1], 2);
+ step2[ 2] = _mm256_srai_epi16(step2[ 2], 2);
+ step2[ 3] = _mm256_srai_epi16(step2[ 3], 2);
+ step2[ 4] = _mm256_srai_epi16(step2[ 4], 2);
+ step2[ 5] = _mm256_srai_epi16(step2[ 5], 2);
+ step2[ 6] = _mm256_srai_epi16(step2[ 6], 2);
+ step2[ 7] = _mm256_srai_epi16(step2[ 7], 2);
+ step2[ 8] = _mm256_srai_epi16(step2[ 8], 2);
+ step2[ 9] = _mm256_srai_epi16(step2[ 9], 2);
+ step2[10] = _mm256_srai_epi16(step2[10], 2);
+ step2[11] = _mm256_srai_epi16(step2[11], 2);
+ step2[12] = _mm256_srai_epi16(step2[12], 2);
+ step2[13] = _mm256_srai_epi16(step2[13], 2);
+ step2[14] = _mm256_srai_epi16(step2[14], 2);
+ step2[15] = _mm256_srai_epi16(step2[15], 2);
+ step1[16] = _mm256_srai_epi16(step1[16], 2);
+ step1[17] = _mm256_srai_epi16(step1[17], 2);
+ step1[18] = _mm256_srai_epi16(step1[18], 2);
+ step1[19] = _mm256_srai_epi16(step1[19], 2);
+ step2[20] = _mm256_srai_epi16(step2[20], 2);
+ step2[21] = _mm256_srai_epi16(step2[21], 2);
+ step2[22] = _mm256_srai_epi16(step2[22], 2);
+ step2[23] = _mm256_srai_epi16(step2[23], 2);
+ step2[24] = _mm256_srai_epi16(step2[24], 2);
+ step2[25] = _mm256_srai_epi16(step2[25], 2);
+ step2[26] = _mm256_srai_epi16(step2[26], 2);
+ step2[27] = _mm256_srai_epi16(step2[27], 2);
+ step1[28] = _mm256_srai_epi16(step1[28], 2);
+ step1[29] = _mm256_srai_epi16(step1[29], 2);
+ step1[30] = _mm256_srai_epi16(step1[30], 2);
+ step1[31] = _mm256_srai_epi16(step1[31], 2);
+ }
+#endif
+
+#if FDCT32x32_HIGH_PRECISION
+ if (pass == 0) {
+#endif
+ // Stage 3
+ {
+ step3[0] = _mm256_add_epi16(step2[(8 - 1)], step2[0]);
+ step3[1] = _mm256_add_epi16(step2[(8 - 2)], step2[1]);
+ step3[2] = _mm256_add_epi16(step2[(8 - 3)], step2[2]);
+ step3[3] = _mm256_add_epi16(step2[(8 - 4)], step2[3]);
+ step3[4] = _mm256_sub_epi16(step2[(8 - 5)], step2[4]);
+ step3[5] = _mm256_sub_epi16(step2[(8 - 6)], step2[5]);
+ step3[6] = _mm256_sub_epi16(step2[(8 - 7)], step2[6]);
+ step3[7] = _mm256_sub_epi16(step2[(8 - 8)], step2[7]);
+ }
+ {
+ const __m256i s3_10_0 = _mm256_unpacklo_epi16(step2[13], step2[10]);
+ const __m256i s3_10_1 = _mm256_unpackhi_epi16(step2[13], step2[10]);
+ const __m256i s3_11_0 = _mm256_unpacklo_epi16(step2[12], step2[11]);
+ const __m256i s3_11_1 = _mm256_unpackhi_epi16(step2[12], step2[11]);
+ const __m256i s3_10_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_m16);
+ const __m256i s3_10_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_m16);
+ const __m256i s3_11_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_m16);
+ const __m256i s3_11_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_m16);
+ const __m256i s3_12_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_p16);
+ const __m256i s3_12_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_p16);
+ const __m256i s3_13_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_p16);
+ const __m256i s3_13_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m256i s3_10_4 = _mm256_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_10_5 = _mm256_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_11_4 = _mm256_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_11_5 = _mm256_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_12_4 = _mm256_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_12_5 = _mm256_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_13_4 = _mm256_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_13_5 = _mm256_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_10_6 = _mm256_srai_epi32(s3_10_4, DCT_CONST_BITS);
+ const __m256i s3_10_7 = _mm256_srai_epi32(s3_10_5, DCT_CONST_BITS);
+ const __m256i s3_11_6 = _mm256_srai_epi32(s3_11_4, DCT_CONST_BITS);
+ const __m256i s3_11_7 = _mm256_srai_epi32(s3_11_5, DCT_CONST_BITS);
+ const __m256i s3_12_6 = _mm256_srai_epi32(s3_12_4, DCT_CONST_BITS);
+ const __m256i s3_12_7 = _mm256_srai_epi32(s3_12_5, DCT_CONST_BITS);
+ const __m256i s3_13_6 = _mm256_srai_epi32(s3_13_4, DCT_CONST_BITS);
+ const __m256i s3_13_7 = _mm256_srai_epi32(s3_13_5, DCT_CONST_BITS);
+ // Combine
+ step3[10] = _mm256_packs_epi32(s3_10_6, s3_10_7);
+ step3[11] = _mm256_packs_epi32(s3_11_6, s3_11_7);
+ step3[12] = _mm256_packs_epi32(s3_12_6, s3_12_7);
+ step3[13] = _mm256_packs_epi32(s3_13_6, s3_13_7);
+ }
+ {
+ step3[16] = _mm256_add_epi16(step2[23], step1[16]);
+ step3[17] = _mm256_add_epi16(step2[22], step1[17]);
+ step3[18] = _mm256_add_epi16(step2[21], step1[18]);
+ step3[19] = _mm256_add_epi16(step2[20], step1[19]);
+ step3[20] = _mm256_sub_epi16(step1[19], step2[20]);
+ step3[21] = _mm256_sub_epi16(step1[18], step2[21]);
+ step3[22] = _mm256_sub_epi16(step1[17], step2[22]);
+ step3[23] = _mm256_sub_epi16(step1[16], step2[23]);
+ step3[24] = _mm256_sub_epi16(step1[31], step2[24]);
+ step3[25] = _mm256_sub_epi16(step1[30], step2[25]);
+ step3[26] = _mm256_sub_epi16(step1[29], step2[26]);
+ step3[27] = _mm256_sub_epi16(step1[28], step2[27]);
+ step3[28] = _mm256_add_epi16(step2[27], step1[28]);
+ step3[29] = _mm256_add_epi16(step2[26], step1[29]);
+ step3[30] = _mm256_add_epi16(step2[25], step1[30]);
+ step3[31] = _mm256_add_epi16(step2[24], step1[31]);
+ }
+
+ // Stage 4
+ {
+ step1[ 0] = _mm256_add_epi16(step3[ 3], step3[ 0]);
+ step1[ 1] = _mm256_add_epi16(step3[ 2], step3[ 1]);
+ step1[ 2] = _mm256_sub_epi16(step3[ 1], step3[ 2]);
+ step1[ 3] = _mm256_sub_epi16(step3[ 0], step3[ 3]);
+ step1[ 8] = _mm256_add_epi16(step3[11], step2[ 8]);
+ step1[ 9] = _mm256_add_epi16(step3[10], step2[ 9]);
+ step1[10] = _mm256_sub_epi16(step2[ 9], step3[10]);
+ step1[11] = _mm256_sub_epi16(step2[ 8], step3[11]);
+ step1[12] = _mm256_sub_epi16(step2[15], step3[12]);
+ step1[13] = _mm256_sub_epi16(step2[14], step3[13]);
+ step1[14] = _mm256_add_epi16(step3[13], step2[14]);
+ step1[15] = _mm256_add_epi16(step3[12], step2[15]);
+ }
+ {
+ const __m256i s1_05_0 = _mm256_unpacklo_epi16(step3[6], step3[5]);
+ const __m256i s1_05_1 = _mm256_unpackhi_epi16(step3[6], step3[5]);
+ const __m256i s1_05_2 = _mm256_madd_epi16(s1_05_0, k__cospi_p16_m16);
+ const __m256i s1_05_3 = _mm256_madd_epi16(s1_05_1, k__cospi_p16_m16);
+ const __m256i s1_06_2 = _mm256_madd_epi16(s1_05_0, k__cospi_p16_p16);
+ const __m256i s1_06_3 = _mm256_madd_epi16(s1_05_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m256i s1_05_4 = _mm256_add_epi32(s1_05_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_05_5 = _mm256_add_epi32(s1_05_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_06_4 = _mm256_add_epi32(s1_06_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_06_5 = _mm256_add_epi32(s1_06_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_05_6 = _mm256_srai_epi32(s1_05_4, DCT_CONST_BITS);
+ const __m256i s1_05_7 = _mm256_srai_epi32(s1_05_5, DCT_CONST_BITS);
+ const __m256i s1_06_6 = _mm256_srai_epi32(s1_06_4, DCT_CONST_BITS);
+ const __m256i s1_06_7 = _mm256_srai_epi32(s1_06_5, DCT_CONST_BITS);
+ // Combine
+ step1[5] = _mm256_packs_epi32(s1_05_6, s1_05_7);
+ step1[6] = _mm256_packs_epi32(s1_06_6, s1_06_7);
+ }
+ {
+ const __m256i s1_18_0 = _mm256_unpacklo_epi16(step3[18], step3[29]);
+ const __m256i s1_18_1 = _mm256_unpackhi_epi16(step3[18], step3[29]);
+ const __m256i s1_19_0 = _mm256_unpacklo_epi16(step3[19], step3[28]);
+ const __m256i s1_19_1 = _mm256_unpackhi_epi16(step3[19], step3[28]);
+ const __m256i s1_20_0 = _mm256_unpacklo_epi16(step3[20], step3[27]);
+ const __m256i s1_20_1 = _mm256_unpackhi_epi16(step3[20], step3[27]);
+ const __m256i s1_21_0 = _mm256_unpacklo_epi16(step3[21], step3[26]);
+ const __m256i s1_21_1 = _mm256_unpackhi_epi16(step3[21], step3[26]);
+ const __m256i s1_18_2 = _mm256_madd_epi16(s1_18_0, k__cospi_m08_p24);
+ const __m256i s1_18_3 = _mm256_madd_epi16(s1_18_1, k__cospi_m08_p24);
+ const __m256i s1_19_2 = _mm256_madd_epi16(s1_19_0, k__cospi_m08_p24);
+ const __m256i s1_19_3 = _mm256_madd_epi16(s1_19_1, k__cospi_m08_p24);
+ const __m256i s1_20_2 = _mm256_madd_epi16(s1_20_0, k__cospi_m24_m08);
+ const __m256i s1_20_3 = _mm256_madd_epi16(s1_20_1, k__cospi_m24_m08);
+ const __m256i s1_21_2 = _mm256_madd_epi16(s1_21_0, k__cospi_m24_m08);
+ const __m256i s1_21_3 = _mm256_madd_epi16(s1_21_1, k__cospi_m24_m08);
+ const __m256i s1_26_2 = _mm256_madd_epi16(s1_21_0, k__cospi_m08_p24);
+ const __m256i s1_26_3 = _mm256_madd_epi16(s1_21_1, k__cospi_m08_p24);
+ const __m256i s1_27_2 = _mm256_madd_epi16(s1_20_0, k__cospi_m08_p24);
+ const __m256i s1_27_3 = _mm256_madd_epi16(s1_20_1, k__cospi_m08_p24);
+ const __m256i s1_28_2 = _mm256_madd_epi16(s1_19_0, k__cospi_p24_p08);
+ const __m256i s1_28_3 = _mm256_madd_epi16(s1_19_1, k__cospi_p24_p08);
+ const __m256i s1_29_2 = _mm256_madd_epi16(s1_18_0, k__cospi_p24_p08);
+ const __m256i s1_29_3 = _mm256_madd_epi16(s1_18_1, k__cospi_p24_p08);
+ // dct_const_round_shift
+ const __m256i s1_18_4 = _mm256_add_epi32(s1_18_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_18_5 = _mm256_add_epi32(s1_18_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_19_4 = _mm256_add_epi32(s1_19_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_19_5 = _mm256_add_epi32(s1_19_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_20_4 = _mm256_add_epi32(s1_20_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_20_5 = _mm256_add_epi32(s1_20_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_21_4 = _mm256_add_epi32(s1_21_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_21_5 = _mm256_add_epi32(s1_21_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_26_4 = _mm256_add_epi32(s1_26_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_26_5 = _mm256_add_epi32(s1_26_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_27_4 = _mm256_add_epi32(s1_27_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_27_5 = _mm256_add_epi32(s1_27_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_28_4 = _mm256_add_epi32(s1_28_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_28_5 = _mm256_add_epi32(s1_28_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_29_4 = _mm256_add_epi32(s1_29_2, k__DCT_CONST_ROUNDING);
+ const __m256i s1_29_5 = _mm256_add_epi32(s1_29_3, k__DCT_CONST_ROUNDING);
+ const __m256i s1_18_6 = _mm256_srai_epi32(s1_18_4, DCT_CONST_BITS);
+ const __m256i s1_18_7 = _mm256_srai_epi32(s1_18_5, DCT_CONST_BITS);
+ const __m256i s1_19_6 = _mm256_srai_epi32(s1_19_4, DCT_CONST_BITS);
+ const __m256i s1_19_7 = _mm256_srai_epi32(s1_19_5, DCT_CONST_BITS);
+ const __m256i s1_20_6 = _mm256_srai_epi32(s1_20_4, DCT_CONST_BITS);
+ const __m256i s1_20_7 = _mm256_srai_epi32(s1_20_5, DCT_CONST_BITS);
+ const __m256i s1_21_6 = _mm256_srai_epi32(s1_21_4, DCT_CONST_BITS);
+ const __m256i s1_21_7 = _mm256_srai_epi32(s1_21_5, DCT_CONST_BITS);
+ const __m256i s1_26_6 = _mm256_srai_epi32(s1_26_4, DCT_CONST_BITS);
+ const __m256i s1_26_7 = _mm256_srai_epi32(s1_26_5, DCT_CONST_BITS);
+ const __m256i s1_27_6 = _mm256_srai_epi32(s1_27_4, DCT_CONST_BITS);
+ const __m256i s1_27_7 = _mm256_srai_epi32(s1_27_5, DCT_CONST_BITS);
+ const __m256i s1_28_6 = _mm256_srai_epi32(s1_28_4, DCT_CONST_BITS);
+ const __m256i s1_28_7 = _mm256_srai_epi32(s1_28_5, DCT_CONST_BITS);
+ const __m256i s1_29_6 = _mm256_srai_epi32(s1_29_4, DCT_CONST_BITS);
+ const __m256i s1_29_7 = _mm256_srai_epi32(s1_29_5, DCT_CONST_BITS);
+ // Combine
+ step1[18] = _mm256_packs_epi32(s1_18_6, s1_18_7);
+ step1[19] = _mm256_packs_epi32(s1_19_6, s1_19_7);
+ step1[20] = _mm256_packs_epi32(s1_20_6, s1_20_7);
+ step1[21] = _mm256_packs_epi32(s1_21_6, s1_21_7);
+ step1[26] = _mm256_packs_epi32(s1_26_6, s1_26_7);
+ step1[27] = _mm256_packs_epi32(s1_27_6, s1_27_7);
+ step1[28] = _mm256_packs_epi32(s1_28_6, s1_28_7);
+ step1[29] = _mm256_packs_epi32(s1_29_6, s1_29_7);
+ }
+ // Stage 5
+ {
+ step2[4] = _mm256_add_epi16(step1[5], step3[4]);
+ step2[5] = _mm256_sub_epi16(step3[4], step1[5]);
+ step2[6] = _mm256_sub_epi16(step3[7], step1[6]);
+ step2[7] = _mm256_add_epi16(step1[6], step3[7]);
+ }
+ {
+ const __m256i out_00_0 = _mm256_unpacklo_epi16(step1[0], step1[1]);
+ const __m256i out_00_1 = _mm256_unpackhi_epi16(step1[0], step1[1]);
+ const __m256i out_08_0 = _mm256_unpacklo_epi16(step1[2], step1[3]);
+ const __m256i out_08_1 = _mm256_unpackhi_epi16(step1[2], step1[3]);
+ const __m256i out_00_2 = _mm256_madd_epi16(out_00_0, k__cospi_p16_p16);
+ const __m256i out_00_3 = _mm256_madd_epi16(out_00_1, k__cospi_p16_p16);
+ const __m256i out_16_2 = _mm256_madd_epi16(out_00_0, k__cospi_p16_m16);
+ const __m256i out_16_3 = _mm256_madd_epi16(out_00_1, k__cospi_p16_m16);
+ const __m256i out_08_2 = _mm256_madd_epi16(out_08_0, k__cospi_p24_p08);
+ const __m256i out_08_3 = _mm256_madd_epi16(out_08_1, k__cospi_p24_p08);
+ const __m256i out_24_2 = _mm256_madd_epi16(out_08_0, k__cospi_m08_p24);
+ const __m256i out_24_3 = _mm256_madd_epi16(out_08_1, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m256i out_00_4 = _mm256_add_epi32(out_00_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_00_5 = _mm256_add_epi32(out_00_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_16_4 = _mm256_add_epi32(out_16_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_16_5 = _mm256_add_epi32(out_16_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_08_4 = _mm256_add_epi32(out_08_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_08_5 = _mm256_add_epi32(out_08_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_24_4 = _mm256_add_epi32(out_24_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_24_5 = _mm256_add_epi32(out_24_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_00_6 = _mm256_srai_epi32(out_00_4, DCT_CONST_BITS);
+ const __m256i out_00_7 = _mm256_srai_epi32(out_00_5, DCT_CONST_BITS);
+ const __m256i out_16_6 = _mm256_srai_epi32(out_16_4, DCT_CONST_BITS);
+ const __m256i out_16_7 = _mm256_srai_epi32(out_16_5, DCT_CONST_BITS);
+ const __m256i out_08_6 = _mm256_srai_epi32(out_08_4, DCT_CONST_BITS);
+ const __m256i out_08_7 = _mm256_srai_epi32(out_08_5, DCT_CONST_BITS);
+ const __m256i out_24_6 = _mm256_srai_epi32(out_24_4, DCT_CONST_BITS);
+ const __m256i out_24_7 = _mm256_srai_epi32(out_24_5, DCT_CONST_BITS);
+ // Combine
+ out[ 0] = _mm256_packs_epi32(out_00_6, out_00_7);
+ out[16] = _mm256_packs_epi32(out_16_6, out_16_7);
+ out[ 8] = _mm256_packs_epi32(out_08_6, out_08_7);
+ out[24] = _mm256_packs_epi32(out_24_6, out_24_7);
+ }
+ {
+ const __m256i s2_09_0 = _mm256_unpacklo_epi16(step1[ 9], step1[14]);
+ const __m256i s2_09_1 = _mm256_unpackhi_epi16(step1[ 9], step1[14]);
+ const __m256i s2_10_0 = _mm256_unpacklo_epi16(step1[10], step1[13]);
+ const __m256i s2_10_1 = _mm256_unpackhi_epi16(step1[10], step1[13]);
+ const __m256i s2_09_2 = _mm256_madd_epi16(s2_09_0, k__cospi_m08_p24);
+ const __m256i s2_09_3 = _mm256_madd_epi16(s2_09_1, k__cospi_m08_p24);
+ const __m256i s2_10_2 = _mm256_madd_epi16(s2_10_0, k__cospi_m24_m08);
+ const __m256i s2_10_3 = _mm256_madd_epi16(s2_10_1, k__cospi_m24_m08);
+ const __m256i s2_13_2 = _mm256_madd_epi16(s2_10_0, k__cospi_m08_p24);
+ const __m256i s2_13_3 = _mm256_madd_epi16(s2_10_1, k__cospi_m08_p24);
+ const __m256i s2_14_2 = _mm256_madd_epi16(s2_09_0, k__cospi_p24_p08);
+ const __m256i s2_14_3 = _mm256_madd_epi16(s2_09_1, k__cospi_p24_p08);
+ // dct_const_round_shift
+ const __m256i s2_09_4 = _mm256_add_epi32(s2_09_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_09_5 = _mm256_add_epi32(s2_09_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_10_4 = _mm256_add_epi32(s2_10_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_10_5 = _mm256_add_epi32(s2_10_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_13_4 = _mm256_add_epi32(s2_13_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_13_5 = _mm256_add_epi32(s2_13_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_14_4 = _mm256_add_epi32(s2_14_2, k__DCT_CONST_ROUNDING);
+ const __m256i s2_14_5 = _mm256_add_epi32(s2_14_3, k__DCT_CONST_ROUNDING);
+ const __m256i s2_09_6 = _mm256_srai_epi32(s2_09_4, DCT_CONST_BITS);
+ const __m256i s2_09_7 = _mm256_srai_epi32(s2_09_5, DCT_CONST_BITS);
+ const __m256i s2_10_6 = _mm256_srai_epi32(s2_10_4, DCT_CONST_BITS);
+ const __m256i s2_10_7 = _mm256_srai_epi32(s2_10_5, DCT_CONST_BITS);
+ const __m256i s2_13_6 = _mm256_srai_epi32(s2_13_4, DCT_CONST_BITS);
+ const __m256i s2_13_7 = _mm256_srai_epi32(s2_13_5, DCT_CONST_BITS);
+ const __m256i s2_14_6 = _mm256_srai_epi32(s2_14_4, DCT_CONST_BITS);
+ const __m256i s2_14_7 = _mm256_srai_epi32(s2_14_5, DCT_CONST_BITS);
+ // Combine
+ step2[ 9] = _mm256_packs_epi32(s2_09_6, s2_09_7);
+ step2[10] = _mm256_packs_epi32(s2_10_6, s2_10_7);
+ step2[13] = _mm256_packs_epi32(s2_13_6, s2_13_7);
+ step2[14] = _mm256_packs_epi32(s2_14_6, s2_14_7);
+ }
+ {
+ step2[16] = _mm256_add_epi16(step1[19], step3[16]);
+ step2[17] = _mm256_add_epi16(step1[18], step3[17]);
+ step2[18] = _mm256_sub_epi16(step3[17], step1[18]);
+ step2[19] = _mm256_sub_epi16(step3[16], step1[19]);
+ step2[20] = _mm256_sub_epi16(step3[23], step1[20]);
+ step2[21] = _mm256_sub_epi16(step3[22], step1[21]);
+ step2[22] = _mm256_add_epi16(step1[21], step3[22]);
+ step2[23] = _mm256_add_epi16(step1[20], step3[23]);
+ step2[24] = _mm256_add_epi16(step1[27], step3[24]);
+ step2[25] = _mm256_add_epi16(step1[26], step3[25]);
+ step2[26] = _mm256_sub_epi16(step3[25], step1[26]);
+ step2[27] = _mm256_sub_epi16(step3[24], step1[27]);
+ step2[28] = _mm256_sub_epi16(step3[31], step1[28]);
+ step2[29] = _mm256_sub_epi16(step3[30], step1[29]);
+ step2[30] = _mm256_add_epi16(step1[29], step3[30]);
+ step2[31] = _mm256_add_epi16(step1[28], step3[31]);
+ }
+ // Stage 6
+ {
+ const __m256i out_04_0 = _mm256_unpacklo_epi16(step2[4], step2[7]);
+ const __m256i out_04_1 = _mm256_unpackhi_epi16(step2[4], step2[7]);
+ const __m256i out_20_0 = _mm256_unpacklo_epi16(step2[5], step2[6]);
+ const __m256i out_20_1 = _mm256_unpackhi_epi16(step2[5], step2[6]);
+ const __m256i out_12_0 = _mm256_unpacklo_epi16(step2[5], step2[6]);
+ const __m256i out_12_1 = _mm256_unpackhi_epi16(step2[5], step2[6]);
+ const __m256i out_28_0 = _mm256_unpacklo_epi16(step2[4], step2[7]);
+ const __m256i out_28_1 = _mm256_unpackhi_epi16(step2[4], step2[7]);
+ const __m256i out_04_2 = _mm256_madd_epi16(out_04_0, k__cospi_p28_p04);
+ const __m256i out_04_3 = _mm256_madd_epi16(out_04_1, k__cospi_p28_p04);
+ const __m256i out_20_2 = _mm256_madd_epi16(out_20_0, k__cospi_p12_p20);
+ const __m256i out_20_3 = _mm256_madd_epi16(out_20_1, k__cospi_p12_p20);
+ const __m256i out_12_2 = _mm256_madd_epi16(out_12_0, k__cospi_m20_p12);
+ const __m256i out_12_3 = _mm256_madd_epi16(out_12_1, k__cospi_m20_p12);
+ const __m256i out_28_2 = _mm256_madd_epi16(out_28_0, k__cospi_m04_p28);
+ const __m256i out_28_3 = _mm256_madd_epi16(out_28_1, k__cospi_m04_p28);
+ // dct_const_round_shift
+ const __m256i out_04_4 = _mm256_add_epi32(out_04_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_04_5 = _mm256_add_epi32(out_04_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_20_4 = _mm256_add_epi32(out_20_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_20_5 = _mm256_add_epi32(out_20_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_12_4 = _mm256_add_epi32(out_12_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_12_5 = _mm256_add_epi32(out_12_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_28_4 = _mm256_add_epi32(out_28_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_28_5 = _mm256_add_epi32(out_28_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_04_6 = _mm256_srai_epi32(out_04_4, DCT_CONST_BITS);
+ const __m256i out_04_7 = _mm256_srai_epi32(out_04_5, DCT_CONST_BITS);
+ const __m256i out_20_6 = _mm256_srai_epi32(out_20_4, DCT_CONST_BITS);
+ const __m256i out_20_7 = _mm256_srai_epi32(out_20_5, DCT_CONST_BITS);
+ const __m256i out_12_6 = _mm256_srai_epi32(out_12_4, DCT_CONST_BITS);
+ const __m256i out_12_7 = _mm256_srai_epi32(out_12_5, DCT_CONST_BITS);
+ const __m256i out_28_6 = _mm256_srai_epi32(out_28_4, DCT_CONST_BITS);
+ const __m256i out_28_7 = _mm256_srai_epi32(out_28_5, DCT_CONST_BITS);
+ // Combine
+ out[ 4] = _mm256_packs_epi32(out_04_6, out_04_7);
+ out[20] = _mm256_packs_epi32(out_20_6, out_20_7);
+ out[12] = _mm256_packs_epi32(out_12_6, out_12_7);
+ out[28] = _mm256_packs_epi32(out_28_6, out_28_7);
+ }
+ {
+ step3[ 8] = _mm256_add_epi16(step2[ 9], step1[ 8]);
+ step3[ 9] = _mm256_sub_epi16(step1[ 8], step2[ 9]);
+ step3[10] = _mm256_sub_epi16(step1[11], step2[10]);
+ step3[11] = _mm256_add_epi16(step2[10], step1[11]);
+ step3[12] = _mm256_add_epi16(step2[13], step1[12]);
+ step3[13] = _mm256_sub_epi16(step1[12], step2[13]);
+ step3[14] = _mm256_sub_epi16(step1[15], step2[14]);
+ step3[15] = _mm256_add_epi16(step2[14], step1[15]);
+ }
+ {
+ const __m256i s3_17_0 = _mm256_unpacklo_epi16(step2[17], step2[30]);
+ const __m256i s3_17_1 = _mm256_unpackhi_epi16(step2[17], step2[30]);
+ const __m256i s3_18_0 = _mm256_unpacklo_epi16(step2[18], step2[29]);
+ const __m256i s3_18_1 = _mm256_unpackhi_epi16(step2[18], step2[29]);
+ const __m256i s3_21_0 = _mm256_unpacklo_epi16(step2[21], step2[26]);
+ const __m256i s3_21_1 = _mm256_unpackhi_epi16(step2[21], step2[26]);
+ const __m256i s3_22_0 = _mm256_unpacklo_epi16(step2[22], step2[25]);
+ const __m256i s3_22_1 = _mm256_unpackhi_epi16(step2[22], step2[25]);
+ const __m256i s3_17_2 = _mm256_madd_epi16(s3_17_0, k__cospi_m04_p28);
+ const __m256i s3_17_3 = _mm256_madd_epi16(s3_17_1, k__cospi_m04_p28);
+ const __m256i s3_18_2 = _mm256_madd_epi16(s3_18_0, k__cospi_m28_m04);
+ const __m256i s3_18_3 = _mm256_madd_epi16(s3_18_1, k__cospi_m28_m04);
+ const __m256i s3_21_2 = _mm256_madd_epi16(s3_21_0, k__cospi_m20_p12);
+ const __m256i s3_21_3 = _mm256_madd_epi16(s3_21_1, k__cospi_m20_p12);
+ const __m256i s3_22_2 = _mm256_madd_epi16(s3_22_0, k__cospi_m12_m20);
+ const __m256i s3_22_3 = _mm256_madd_epi16(s3_22_1, k__cospi_m12_m20);
+ const __m256i s3_25_2 = _mm256_madd_epi16(s3_22_0, k__cospi_m20_p12);
+ const __m256i s3_25_3 = _mm256_madd_epi16(s3_22_1, k__cospi_m20_p12);
+ const __m256i s3_26_2 = _mm256_madd_epi16(s3_21_0, k__cospi_p12_p20);
+ const __m256i s3_26_3 = _mm256_madd_epi16(s3_21_1, k__cospi_p12_p20);
+ const __m256i s3_29_2 = _mm256_madd_epi16(s3_18_0, k__cospi_m04_p28);
+ const __m256i s3_29_3 = _mm256_madd_epi16(s3_18_1, k__cospi_m04_p28);
+ const __m256i s3_30_2 = _mm256_madd_epi16(s3_17_0, k__cospi_p28_p04);
+ const __m256i s3_30_3 = _mm256_madd_epi16(s3_17_1, k__cospi_p28_p04);
+ // dct_const_round_shift
+ const __m256i s3_17_4 = _mm256_add_epi32(s3_17_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_17_5 = _mm256_add_epi32(s3_17_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_18_4 = _mm256_add_epi32(s3_18_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_18_5 = _mm256_add_epi32(s3_18_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_21_4 = _mm256_add_epi32(s3_21_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_21_5 = _mm256_add_epi32(s3_21_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_22_4 = _mm256_add_epi32(s3_22_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_22_5 = _mm256_add_epi32(s3_22_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_17_6 = _mm256_srai_epi32(s3_17_4, DCT_CONST_BITS);
+ const __m256i s3_17_7 = _mm256_srai_epi32(s3_17_5, DCT_CONST_BITS);
+ const __m256i s3_18_6 = _mm256_srai_epi32(s3_18_4, DCT_CONST_BITS);
+ const __m256i s3_18_7 = _mm256_srai_epi32(s3_18_5, DCT_CONST_BITS);
+ const __m256i s3_21_6 = _mm256_srai_epi32(s3_21_4, DCT_CONST_BITS);
+ const __m256i s3_21_7 = _mm256_srai_epi32(s3_21_5, DCT_CONST_BITS);
+ const __m256i s3_22_6 = _mm256_srai_epi32(s3_22_4, DCT_CONST_BITS);
+ const __m256i s3_22_7 = _mm256_srai_epi32(s3_22_5, DCT_CONST_BITS);
+ const __m256i s3_25_4 = _mm256_add_epi32(s3_25_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_25_5 = _mm256_add_epi32(s3_25_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_26_4 = _mm256_add_epi32(s3_26_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_26_5 = _mm256_add_epi32(s3_26_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_29_4 = _mm256_add_epi32(s3_29_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_29_5 = _mm256_add_epi32(s3_29_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_30_4 = _mm256_add_epi32(s3_30_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_30_5 = _mm256_add_epi32(s3_30_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_25_6 = _mm256_srai_epi32(s3_25_4, DCT_CONST_BITS);
+ const __m256i s3_25_7 = _mm256_srai_epi32(s3_25_5, DCT_CONST_BITS);
+ const __m256i s3_26_6 = _mm256_srai_epi32(s3_26_4, DCT_CONST_BITS);
+ const __m256i s3_26_7 = _mm256_srai_epi32(s3_26_5, DCT_CONST_BITS);
+ const __m256i s3_29_6 = _mm256_srai_epi32(s3_29_4, DCT_CONST_BITS);
+ const __m256i s3_29_7 = _mm256_srai_epi32(s3_29_5, DCT_CONST_BITS);
+ const __m256i s3_30_6 = _mm256_srai_epi32(s3_30_4, DCT_CONST_BITS);
+ const __m256i s3_30_7 = _mm256_srai_epi32(s3_30_5, DCT_CONST_BITS);
+ // Combine
+ step3[17] = _mm256_packs_epi32(s3_17_6, s3_17_7);
+ step3[18] = _mm256_packs_epi32(s3_18_6, s3_18_7);
+ step3[21] = _mm256_packs_epi32(s3_21_6, s3_21_7);
+ step3[22] = _mm256_packs_epi32(s3_22_6, s3_22_7);
+ // Combine
+ step3[25] = _mm256_packs_epi32(s3_25_6, s3_25_7);
+ step3[26] = _mm256_packs_epi32(s3_26_6, s3_26_7);
+ step3[29] = _mm256_packs_epi32(s3_29_6, s3_29_7);
+ step3[30] = _mm256_packs_epi32(s3_30_6, s3_30_7);
+ }
+ // Stage 7
+ {
+ const __m256i out_02_0 = _mm256_unpacklo_epi16(step3[ 8], step3[15]);
+ const __m256i out_02_1 = _mm256_unpackhi_epi16(step3[ 8], step3[15]);
+ const __m256i out_18_0 = _mm256_unpacklo_epi16(step3[ 9], step3[14]);
+ const __m256i out_18_1 = _mm256_unpackhi_epi16(step3[ 9], step3[14]);
+ const __m256i out_10_0 = _mm256_unpacklo_epi16(step3[10], step3[13]);
+ const __m256i out_10_1 = _mm256_unpackhi_epi16(step3[10], step3[13]);
+ const __m256i out_26_0 = _mm256_unpacklo_epi16(step3[11], step3[12]);
+ const __m256i out_26_1 = _mm256_unpackhi_epi16(step3[11], step3[12]);
+ const __m256i out_02_2 = _mm256_madd_epi16(out_02_0, k__cospi_p30_p02);
+ const __m256i out_02_3 = _mm256_madd_epi16(out_02_1, k__cospi_p30_p02);
+ const __m256i out_18_2 = _mm256_madd_epi16(out_18_0, k__cospi_p14_p18);
+ const __m256i out_18_3 = _mm256_madd_epi16(out_18_1, k__cospi_p14_p18);
+ const __m256i out_10_2 = _mm256_madd_epi16(out_10_0, k__cospi_p22_p10);
+ const __m256i out_10_3 = _mm256_madd_epi16(out_10_1, k__cospi_p22_p10);
+ const __m256i out_26_2 = _mm256_madd_epi16(out_26_0, k__cospi_p06_p26);
+ const __m256i out_26_3 = _mm256_madd_epi16(out_26_1, k__cospi_p06_p26);
+ const __m256i out_06_2 = _mm256_madd_epi16(out_26_0, k__cospi_m26_p06);
+ const __m256i out_06_3 = _mm256_madd_epi16(out_26_1, k__cospi_m26_p06);
+ const __m256i out_22_2 = _mm256_madd_epi16(out_10_0, k__cospi_m10_p22);
+ const __m256i out_22_3 = _mm256_madd_epi16(out_10_1, k__cospi_m10_p22);
+ const __m256i out_14_2 = _mm256_madd_epi16(out_18_0, k__cospi_m18_p14);
+ const __m256i out_14_3 = _mm256_madd_epi16(out_18_1, k__cospi_m18_p14);
+ const __m256i out_30_2 = _mm256_madd_epi16(out_02_0, k__cospi_m02_p30);
+ const __m256i out_30_3 = _mm256_madd_epi16(out_02_1, k__cospi_m02_p30);
+ // dct_const_round_shift
+ const __m256i out_02_4 = _mm256_add_epi32(out_02_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_02_5 = _mm256_add_epi32(out_02_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_18_4 = _mm256_add_epi32(out_18_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_18_5 = _mm256_add_epi32(out_18_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_10_4 = _mm256_add_epi32(out_10_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_10_5 = _mm256_add_epi32(out_10_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_26_4 = _mm256_add_epi32(out_26_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_26_5 = _mm256_add_epi32(out_26_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_06_4 = _mm256_add_epi32(out_06_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_06_5 = _mm256_add_epi32(out_06_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_22_4 = _mm256_add_epi32(out_22_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_22_5 = _mm256_add_epi32(out_22_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_14_4 = _mm256_add_epi32(out_14_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_14_5 = _mm256_add_epi32(out_14_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_30_4 = _mm256_add_epi32(out_30_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_30_5 = _mm256_add_epi32(out_30_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_02_6 = _mm256_srai_epi32(out_02_4, DCT_CONST_BITS);
+ const __m256i out_02_7 = _mm256_srai_epi32(out_02_5, DCT_CONST_BITS);
+ const __m256i out_18_6 = _mm256_srai_epi32(out_18_4, DCT_CONST_BITS);
+ const __m256i out_18_7 = _mm256_srai_epi32(out_18_5, DCT_CONST_BITS);
+ const __m256i out_10_6 = _mm256_srai_epi32(out_10_4, DCT_CONST_BITS);
+ const __m256i out_10_7 = _mm256_srai_epi32(out_10_5, DCT_CONST_BITS);
+ const __m256i out_26_6 = _mm256_srai_epi32(out_26_4, DCT_CONST_BITS);
+ const __m256i out_26_7 = _mm256_srai_epi32(out_26_5, DCT_CONST_BITS);
+ const __m256i out_06_6 = _mm256_srai_epi32(out_06_4, DCT_CONST_BITS);
+ const __m256i out_06_7 = _mm256_srai_epi32(out_06_5, DCT_CONST_BITS);
+ const __m256i out_22_6 = _mm256_srai_epi32(out_22_4, DCT_CONST_BITS);
+ const __m256i out_22_7 = _mm256_srai_epi32(out_22_5, DCT_CONST_BITS);
+ const __m256i out_14_6 = _mm256_srai_epi32(out_14_4, DCT_CONST_BITS);
+ const __m256i out_14_7 = _mm256_srai_epi32(out_14_5, DCT_CONST_BITS);
+ const __m256i out_30_6 = _mm256_srai_epi32(out_30_4, DCT_CONST_BITS);
+ const __m256i out_30_7 = _mm256_srai_epi32(out_30_5, DCT_CONST_BITS);
+ // Combine
+ out[ 2] = _mm256_packs_epi32(out_02_6, out_02_7);
+ out[18] = _mm256_packs_epi32(out_18_6, out_18_7);
+ out[10] = _mm256_packs_epi32(out_10_6, out_10_7);
+ out[26] = _mm256_packs_epi32(out_26_6, out_26_7);
+ out[ 6] = _mm256_packs_epi32(out_06_6, out_06_7);
+ out[22] = _mm256_packs_epi32(out_22_6, out_22_7);
+ out[14] = _mm256_packs_epi32(out_14_6, out_14_7);
+ out[30] = _mm256_packs_epi32(out_30_6, out_30_7);
+ }
+ {
+ step1[16] = _mm256_add_epi16(step3[17], step2[16]);
+ step1[17] = _mm256_sub_epi16(step2[16], step3[17]);
+ step1[18] = _mm256_sub_epi16(step2[19], step3[18]);
+ step1[19] = _mm256_add_epi16(step3[18], step2[19]);
+ step1[20] = _mm256_add_epi16(step3[21], step2[20]);
+ step1[21] = _mm256_sub_epi16(step2[20], step3[21]);
+ step1[22] = _mm256_sub_epi16(step2[23], step3[22]);
+ step1[23] = _mm256_add_epi16(step3[22], step2[23]);
+ step1[24] = _mm256_add_epi16(step3[25], step2[24]);
+ step1[25] = _mm256_sub_epi16(step2[24], step3[25]);
+ step1[26] = _mm256_sub_epi16(step2[27], step3[26]);
+ step1[27] = _mm256_add_epi16(step3[26], step2[27]);
+ step1[28] = _mm256_add_epi16(step3[29], step2[28]);
+ step1[29] = _mm256_sub_epi16(step2[28], step3[29]);
+ step1[30] = _mm256_sub_epi16(step2[31], step3[30]);
+ step1[31] = _mm256_add_epi16(step3[30], step2[31]);
+ }
+ // Final stage --- outputs indices are bit-reversed.
+ {
+ const __m256i out_01_0 = _mm256_unpacklo_epi16(step1[16], step1[31]);
+ const __m256i out_01_1 = _mm256_unpackhi_epi16(step1[16], step1[31]);
+ const __m256i out_17_0 = _mm256_unpacklo_epi16(step1[17], step1[30]);
+ const __m256i out_17_1 = _mm256_unpackhi_epi16(step1[17], step1[30]);
+ const __m256i out_09_0 = _mm256_unpacklo_epi16(step1[18], step1[29]);
+ const __m256i out_09_1 = _mm256_unpackhi_epi16(step1[18], step1[29]);
+ const __m256i out_25_0 = _mm256_unpacklo_epi16(step1[19], step1[28]);
+ const __m256i out_25_1 = _mm256_unpackhi_epi16(step1[19], step1[28]);
+ const __m256i out_01_2 = _mm256_madd_epi16(out_01_0, k__cospi_p31_p01);
+ const __m256i out_01_3 = _mm256_madd_epi16(out_01_1, k__cospi_p31_p01);
+ const __m256i out_17_2 = _mm256_madd_epi16(out_17_0, k__cospi_p15_p17);
+ const __m256i out_17_3 = _mm256_madd_epi16(out_17_1, k__cospi_p15_p17);
+ const __m256i out_09_2 = _mm256_madd_epi16(out_09_0, k__cospi_p23_p09);
+ const __m256i out_09_3 = _mm256_madd_epi16(out_09_1, k__cospi_p23_p09);
+ const __m256i out_25_2 = _mm256_madd_epi16(out_25_0, k__cospi_p07_p25);
+ const __m256i out_25_3 = _mm256_madd_epi16(out_25_1, k__cospi_p07_p25);
+ const __m256i out_07_2 = _mm256_madd_epi16(out_25_0, k__cospi_m25_p07);
+ const __m256i out_07_3 = _mm256_madd_epi16(out_25_1, k__cospi_m25_p07);
+ const __m256i out_23_2 = _mm256_madd_epi16(out_09_0, k__cospi_m09_p23);
+ const __m256i out_23_3 = _mm256_madd_epi16(out_09_1, k__cospi_m09_p23);
+ const __m256i out_15_2 = _mm256_madd_epi16(out_17_0, k__cospi_m17_p15);
+ const __m256i out_15_3 = _mm256_madd_epi16(out_17_1, k__cospi_m17_p15);
+ const __m256i out_31_2 = _mm256_madd_epi16(out_01_0, k__cospi_m01_p31);
+ const __m256i out_31_3 = _mm256_madd_epi16(out_01_1, k__cospi_m01_p31);
+ // dct_const_round_shift
+ const __m256i out_01_4 = _mm256_add_epi32(out_01_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_01_5 = _mm256_add_epi32(out_01_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_17_4 = _mm256_add_epi32(out_17_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_17_5 = _mm256_add_epi32(out_17_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_09_4 = _mm256_add_epi32(out_09_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_09_5 = _mm256_add_epi32(out_09_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_25_4 = _mm256_add_epi32(out_25_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_25_5 = _mm256_add_epi32(out_25_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_07_4 = _mm256_add_epi32(out_07_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_07_5 = _mm256_add_epi32(out_07_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_23_4 = _mm256_add_epi32(out_23_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_23_5 = _mm256_add_epi32(out_23_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_15_4 = _mm256_add_epi32(out_15_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_15_5 = _mm256_add_epi32(out_15_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_31_4 = _mm256_add_epi32(out_31_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_31_5 = _mm256_add_epi32(out_31_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_01_6 = _mm256_srai_epi32(out_01_4, DCT_CONST_BITS);
+ const __m256i out_01_7 = _mm256_srai_epi32(out_01_5, DCT_CONST_BITS);
+ const __m256i out_17_6 = _mm256_srai_epi32(out_17_4, DCT_CONST_BITS);
+ const __m256i out_17_7 = _mm256_srai_epi32(out_17_5, DCT_CONST_BITS);
+ const __m256i out_09_6 = _mm256_srai_epi32(out_09_4, DCT_CONST_BITS);
+ const __m256i out_09_7 = _mm256_srai_epi32(out_09_5, DCT_CONST_BITS);
+ const __m256i out_25_6 = _mm256_srai_epi32(out_25_4, DCT_CONST_BITS);
+ const __m256i out_25_7 = _mm256_srai_epi32(out_25_5, DCT_CONST_BITS);
+ const __m256i out_07_6 = _mm256_srai_epi32(out_07_4, DCT_CONST_BITS);
+ const __m256i out_07_7 = _mm256_srai_epi32(out_07_5, DCT_CONST_BITS);
+ const __m256i out_23_6 = _mm256_srai_epi32(out_23_4, DCT_CONST_BITS);
+ const __m256i out_23_7 = _mm256_srai_epi32(out_23_5, DCT_CONST_BITS);
+ const __m256i out_15_6 = _mm256_srai_epi32(out_15_4, DCT_CONST_BITS);
+ const __m256i out_15_7 = _mm256_srai_epi32(out_15_5, DCT_CONST_BITS);
+ const __m256i out_31_6 = _mm256_srai_epi32(out_31_4, DCT_CONST_BITS);
+ const __m256i out_31_7 = _mm256_srai_epi32(out_31_5, DCT_CONST_BITS);
+ // Combine
+ out[ 1] = _mm256_packs_epi32(out_01_6, out_01_7);
+ out[17] = _mm256_packs_epi32(out_17_6, out_17_7);
+ out[ 9] = _mm256_packs_epi32(out_09_6, out_09_7);
+ out[25] = _mm256_packs_epi32(out_25_6, out_25_7);
+ out[ 7] = _mm256_packs_epi32(out_07_6, out_07_7);
+ out[23] = _mm256_packs_epi32(out_23_6, out_23_7);
+ out[15] = _mm256_packs_epi32(out_15_6, out_15_7);
+ out[31] = _mm256_packs_epi32(out_31_6, out_31_7);
+ }
+ {
+ const __m256i out_05_0 = _mm256_unpacklo_epi16(step1[20], step1[27]);
+ const __m256i out_05_1 = _mm256_unpackhi_epi16(step1[20], step1[27]);
+ const __m256i out_21_0 = _mm256_unpacklo_epi16(step1[21], step1[26]);
+ const __m256i out_21_1 = _mm256_unpackhi_epi16(step1[21], step1[26]);
+ const __m256i out_13_0 = _mm256_unpacklo_epi16(step1[22], step1[25]);
+ const __m256i out_13_1 = _mm256_unpackhi_epi16(step1[22], step1[25]);
+ const __m256i out_29_0 = _mm256_unpacklo_epi16(step1[23], step1[24]);
+ const __m256i out_29_1 = _mm256_unpackhi_epi16(step1[23], step1[24]);
+ const __m256i out_05_2 = _mm256_madd_epi16(out_05_0, k__cospi_p27_p05);
+ const __m256i out_05_3 = _mm256_madd_epi16(out_05_1, k__cospi_p27_p05);
+ const __m256i out_21_2 = _mm256_madd_epi16(out_21_0, k__cospi_p11_p21);
+ const __m256i out_21_3 = _mm256_madd_epi16(out_21_1, k__cospi_p11_p21);
+ const __m256i out_13_2 = _mm256_madd_epi16(out_13_0, k__cospi_p19_p13);
+ const __m256i out_13_3 = _mm256_madd_epi16(out_13_1, k__cospi_p19_p13);
+ const __m256i out_29_2 = _mm256_madd_epi16(out_29_0, k__cospi_p03_p29);
+ const __m256i out_29_3 = _mm256_madd_epi16(out_29_1, k__cospi_p03_p29);
+ const __m256i out_03_2 = _mm256_madd_epi16(out_29_0, k__cospi_m29_p03);
+ const __m256i out_03_3 = _mm256_madd_epi16(out_29_1, k__cospi_m29_p03);
+ const __m256i out_19_2 = _mm256_madd_epi16(out_13_0, k__cospi_m13_p19);
+ const __m256i out_19_3 = _mm256_madd_epi16(out_13_1, k__cospi_m13_p19);
+ const __m256i out_11_2 = _mm256_madd_epi16(out_21_0, k__cospi_m21_p11);
+ const __m256i out_11_3 = _mm256_madd_epi16(out_21_1, k__cospi_m21_p11);
+ const __m256i out_27_2 = _mm256_madd_epi16(out_05_0, k__cospi_m05_p27);
+ const __m256i out_27_3 = _mm256_madd_epi16(out_05_1, k__cospi_m05_p27);
+ // dct_const_round_shift
+ const __m256i out_05_4 = _mm256_add_epi32(out_05_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_05_5 = _mm256_add_epi32(out_05_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_21_4 = _mm256_add_epi32(out_21_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_21_5 = _mm256_add_epi32(out_21_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_13_4 = _mm256_add_epi32(out_13_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_13_5 = _mm256_add_epi32(out_13_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_29_4 = _mm256_add_epi32(out_29_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_29_5 = _mm256_add_epi32(out_29_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_03_4 = _mm256_add_epi32(out_03_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_03_5 = _mm256_add_epi32(out_03_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_19_4 = _mm256_add_epi32(out_19_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_19_5 = _mm256_add_epi32(out_19_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_11_4 = _mm256_add_epi32(out_11_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_11_5 = _mm256_add_epi32(out_11_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_27_4 = _mm256_add_epi32(out_27_2, k__DCT_CONST_ROUNDING);
+ const __m256i out_27_5 = _mm256_add_epi32(out_27_3, k__DCT_CONST_ROUNDING);
+ const __m256i out_05_6 = _mm256_srai_epi32(out_05_4, DCT_CONST_BITS);
+ const __m256i out_05_7 = _mm256_srai_epi32(out_05_5, DCT_CONST_BITS);
+ const __m256i out_21_6 = _mm256_srai_epi32(out_21_4, DCT_CONST_BITS);
+ const __m256i out_21_7 = _mm256_srai_epi32(out_21_5, DCT_CONST_BITS);
+ const __m256i out_13_6 = _mm256_srai_epi32(out_13_4, DCT_CONST_BITS);
+ const __m256i out_13_7 = _mm256_srai_epi32(out_13_5, DCT_CONST_BITS);
+ const __m256i out_29_6 = _mm256_srai_epi32(out_29_4, DCT_CONST_BITS);
+ const __m256i out_29_7 = _mm256_srai_epi32(out_29_5, DCT_CONST_BITS);
+ const __m256i out_03_6 = _mm256_srai_epi32(out_03_4, DCT_CONST_BITS);
+ const __m256i out_03_7 = _mm256_srai_epi32(out_03_5, DCT_CONST_BITS);
+ const __m256i out_19_6 = _mm256_srai_epi32(out_19_4, DCT_CONST_BITS);
+ const __m256i out_19_7 = _mm256_srai_epi32(out_19_5, DCT_CONST_BITS);
+ const __m256i out_11_6 = _mm256_srai_epi32(out_11_4, DCT_CONST_BITS);
+ const __m256i out_11_7 = _mm256_srai_epi32(out_11_5, DCT_CONST_BITS);
+ const __m256i out_27_6 = _mm256_srai_epi32(out_27_4, DCT_CONST_BITS);
+ const __m256i out_27_7 = _mm256_srai_epi32(out_27_5, DCT_CONST_BITS);
+ // Combine
+ out[ 5] = _mm256_packs_epi32(out_05_6, out_05_7);
+ out[21] = _mm256_packs_epi32(out_21_6, out_21_7);
+ out[13] = _mm256_packs_epi32(out_13_6, out_13_7);
+ out[29] = _mm256_packs_epi32(out_29_6, out_29_7);
+ out[ 3] = _mm256_packs_epi32(out_03_6, out_03_7);
+ out[19] = _mm256_packs_epi32(out_19_6, out_19_7);
+ out[11] = _mm256_packs_epi32(out_11_6, out_11_7);
+ out[27] = _mm256_packs_epi32(out_27_6, out_27_7);
+ }
+#if FDCT32x32_HIGH_PRECISION
+ } else {
+ __m256i lstep1[64], lstep2[64], lstep3[64];
+ __m256i u[32], v[32], sign[16];
+ const __m256i K32One = _mm256_set_epi32(1, 1, 1, 1, 1, 1, 1, 1);
+ // start using 32-bit operations
+ // stage 3
+ {
+ // expanding to 32-bit length priori to addition operations
+ lstep2[ 0] = _mm256_unpacklo_epi16(step2[ 0], kZero);
+ lstep2[ 1] = _mm256_unpackhi_epi16(step2[ 0], kZero);
+ lstep2[ 2] = _mm256_unpacklo_epi16(step2[ 1], kZero);
+ lstep2[ 3] = _mm256_unpackhi_epi16(step2[ 1], kZero);
+ lstep2[ 4] = _mm256_unpacklo_epi16(step2[ 2], kZero);
+ lstep2[ 5] = _mm256_unpackhi_epi16(step2[ 2], kZero);
+ lstep2[ 6] = _mm256_unpacklo_epi16(step2[ 3], kZero);
+ lstep2[ 7] = _mm256_unpackhi_epi16(step2[ 3], kZero);
+ lstep2[ 8] = _mm256_unpacklo_epi16(step2[ 4], kZero);
+ lstep2[ 9] = _mm256_unpackhi_epi16(step2[ 4], kZero);
+ lstep2[10] = _mm256_unpacklo_epi16(step2[ 5], kZero);
+ lstep2[11] = _mm256_unpackhi_epi16(step2[ 5], kZero);
+ lstep2[12] = _mm256_unpacklo_epi16(step2[ 6], kZero);
+ lstep2[13] = _mm256_unpackhi_epi16(step2[ 6], kZero);
+ lstep2[14] = _mm256_unpacklo_epi16(step2[ 7], kZero);
+ lstep2[15] = _mm256_unpackhi_epi16(step2[ 7], kZero);
+ lstep2[ 0] = _mm256_madd_epi16(lstep2[ 0], kOne);
+ lstep2[ 1] = _mm256_madd_epi16(lstep2[ 1], kOne);
+ lstep2[ 2] = _mm256_madd_epi16(lstep2[ 2], kOne);
+ lstep2[ 3] = _mm256_madd_epi16(lstep2[ 3], kOne);
+ lstep2[ 4] = _mm256_madd_epi16(lstep2[ 4], kOne);
+ lstep2[ 5] = _mm256_madd_epi16(lstep2[ 5], kOne);
+ lstep2[ 6] = _mm256_madd_epi16(lstep2[ 6], kOne);
+ lstep2[ 7] = _mm256_madd_epi16(lstep2[ 7], kOne);
+ lstep2[ 8] = _mm256_madd_epi16(lstep2[ 8], kOne);
+ lstep2[ 9] = _mm256_madd_epi16(lstep2[ 9], kOne);
+ lstep2[10] = _mm256_madd_epi16(lstep2[10], kOne);
+ lstep2[11] = _mm256_madd_epi16(lstep2[11], kOne);
+ lstep2[12] = _mm256_madd_epi16(lstep2[12], kOne);
+ lstep2[13] = _mm256_madd_epi16(lstep2[13], kOne);
+ lstep2[14] = _mm256_madd_epi16(lstep2[14], kOne);
+ lstep2[15] = _mm256_madd_epi16(lstep2[15], kOne);
+
+ lstep3[ 0] = _mm256_add_epi32(lstep2[14], lstep2[ 0]);
+ lstep3[ 1] = _mm256_add_epi32(lstep2[15], lstep2[ 1]);
+ lstep3[ 2] = _mm256_add_epi32(lstep2[12], lstep2[ 2]);
+ lstep3[ 3] = _mm256_add_epi32(lstep2[13], lstep2[ 3]);
+ lstep3[ 4] = _mm256_add_epi32(lstep2[10], lstep2[ 4]);
+ lstep3[ 5] = _mm256_add_epi32(lstep2[11], lstep2[ 5]);
+ lstep3[ 6] = _mm256_add_epi32(lstep2[ 8], lstep2[ 6]);
+ lstep3[ 7] = _mm256_add_epi32(lstep2[ 9], lstep2[ 7]);
+ lstep3[ 8] = _mm256_sub_epi32(lstep2[ 6], lstep2[ 8]);
+ lstep3[ 9] = _mm256_sub_epi32(lstep2[ 7], lstep2[ 9]);
+ lstep3[10] = _mm256_sub_epi32(lstep2[ 4], lstep2[10]);
+ lstep3[11] = _mm256_sub_epi32(lstep2[ 5], lstep2[11]);
+ lstep3[12] = _mm256_sub_epi32(lstep2[ 2], lstep2[12]);
+ lstep3[13] = _mm256_sub_epi32(lstep2[ 3], lstep2[13]);
+ lstep3[14] = _mm256_sub_epi32(lstep2[ 0], lstep2[14]);
+ lstep3[15] = _mm256_sub_epi32(lstep2[ 1], lstep2[15]);
+ }
+ {
+ const __m256i s3_10_0 = _mm256_unpacklo_epi16(step2[13], step2[10]);
+ const __m256i s3_10_1 = _mm256_unpackhi_epi16(step2[13], step2[10]);
+ const __m256i s3_11_0 = _mm256_unpacklo_epi16(step2[12], step2[11]);
+ const __m256i s3_11_1 = _mm256_unpackhi_epi16(step2[12], step2[11]);
+ const __m256i s3_10_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_m16);
+ const __m256i s3_10_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_m16);
+ const __m256i s3_11_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_m16);
+ const __m256i s3_11_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_m16);
+ const __m256i s3_12_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_p16);
+ const __m256i s3_12_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_p16);
+ const __m256i s3_13_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_p16);
+ const __m256i s3_13_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m256i s3_10_4 = _mm256_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_10_5 = _mm256_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_11_4 = _mm256_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_11_5 = _mm256_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_12_4 = _mm256_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_12_5 = _mm256_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING);
+ const __m256i s3_13_4 = _mm256_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING);
+ const __m256i s3_13_5 = _mm256_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING);
+ lstep3[20] = _mm256_srai_epi32(s3_10_4, DCT_CONST_BITS);
+ lstep3[21] = _mm256_srai_epi32(s3_10_5, DCT_CONST_BITS);
+ lstep3[22] = _mm256_srai_epi32(s3_11_4, DCT_CONST_BITS);
+ lstep3[23] = _mm256_srai_epi32(s3_11_5, DCT_CONST_BITS);
+ lstep3[24] = _mm256_srai_epi32(s3_12_4, DCT_CONST_BITS);
+ lstep3[25] = _mm256_srai_epi32(s3_12_5, DCT_CONST_BITS);
+ lstep3[26] = _mm256_srai_epi32(s3_13_4, DCT_CONST_BITS);
+ lstep3[27] = _mm256_srai_epi32(s3_13_5, DCT_CONST_BITS);
+ }
+ {
+ lstep2[40] = _mm256_unpacklo_epi16(step2[20], kZero);
+ lstep2[41] = _mm256_unpackhi_epi16(step2[20], kZero);
+ lstep2[42] = _mm256_unpacklo_epi16(step2[21], kZero);
+ lstep2[43] = _mm256_unpackhi_epi16(step2[21], kZero);
+ lstep2[44] = _mm256_unpacklo_epi16(step2[22], kZero);
+ lstep2[45] = _mm256_unpackhi_epi16(step2[22], kZero);
+ lstep2[46] = _mm256_unpacklo_epi16(step2[23], kZero);
+ lstep2[47] = _mm256_unpackhi_epi16(step2[23], kZero);
+ lstep2[48] = _mm256_unpacklo_epi16(step2[24], kZero);
+ lstep2[49] = _mm256_unpackhi_epi16(step2[24], kZero);
+ lstep2[50] = _mm256_unpacklo_epi16(step2[25], kZero);
+ lstep2[51] = _mm256_unpackhi_epi16(step2[25], kZero);
+ lstep2[52] = _mm256_unpacklo_epi16(step2[26], kZero);
+ lstep2[53] = _mm256_unpackhi_epi16(step2[26], kZero);
+ lstep2[54] = _mm256_unpacklo_epi16(step2[27], kZero);
+ lstep2[55] = _mm256_unpackhi_epi16(step2[27], kZero);
+ lstep2[40] = _mm256_madd_epi16(lstep2[40], kOne);
+ lstep2[41] = _mm256_madd_epi16(lstep2[41], kOne);
+ lstep2[42] = _mm256_madd_epi16(lstep2[42], kOne);
+ lstep2[43] = _mm256_madd_epi16(lstep2[43], kOne);
+ lstep2[44] = _mm256_madd_epi16(lstep2[44], kOne);
+ lstep2[45] = _mm256_madd_epi16(lstep2[45], kOne);
+ lstep2[46] = _mm256_madd_epi16(lstep2[46], kOne);
+ lstep2[47] = _mm256_madd_epi16(lstep2[47], kOne);
+ lstep2[48] = _mm256_madd_epi16(lstep2[48], kOne);
+ lstep2[49] = _mm256_madd_epi16(lstep2[49], kOne);
+ lstep2[50] = _mm256_madd_epi16(lstep2[50], kOne);
+ lstep2[51] = _mm256_madd_epi16(lstep2[51], kOne);
+ lstep2[52] = _mm256_madd_epi16(lstep2[52], kOne);
+ lstep2[53] = _mm256_madd_epi16(lstep2[53], kOne);
+ lstep2[54] = _mm256_madd_epi16(lstep2[54], kOne);
+ lstep2[55] = _mm256_madd_epi16(lstep2[55], kOne);
+
+ lstep1[32] = _mm256_unpacklo_epi16(step1[16], kZero);
+ lstep1[33] = _mm256_unpackhi_epi16(step1[16], kZero);
+ lstep1[34] = _mm256_unpacklo_epi16(step1[17], kZero);
+ lstep1[35] = _mm256_unpackhi_epi16(step1[17], kZero);
+ lstep1[36] = _mm256_unpacklo_epi16(step1[18], kZero);
+ lstep1[37] = _mm256_unpackhi_epi16(step1[18], kZero);
+ lstep1[38] = _mm256_unpacklo_epi16(step1[19], kZero);
+ lstep1[39] = _mm256_unpackhi_epi16(step1[19], kZero);
+ lstep1[56] = _mm256_unpacklo_epi16(step1[28], kZero);
+ lstep1[57] = _mm256_unpackhi_epi16(step1[28], kZero);
+ lstep1[58] = _mm256_unpacklo_epi16(step1[29], kZero);
+ lstep1[59] = _mm256_unpackhi_epi16(step1[29], kZero);
+ lstep1[60] = _mm256_unpacklo_epi16(step1[30], kZero);
+ lstep1[61] = _mm256_unpackhi_epi16(step1[30], kZero);
+ lstep1[62] = _mm256_unpacklo_epi16(step1[31], kZero);
+ lstep1[63] = _mm256_unpackhi_epi16(step1[31], kZero);
+ lstep1[32] = _mm256_madd_epi16(lstep1[32], kOne);
+ lstep1[33] = _mm256_madd_epi16(lstep1[33], kOne);
+ lstep1[34] = _mm256_madd_epi16(lstep1[34], kOne);
+ lstep1[35] = _mm256_madd_epi16(lstep1[35], kOne);
+ lstep1[36] = _mm256_madd_epi16(lstep1[36], kOne);
+ lstep1[37] = _mm256_madd_epi16(lstep1[37], kOne);
+ lstep1[38] = _mm256_madd_epi16(lstep1[38], kOne);
+ lstep1[39] = _mm256_madd_epi16(lstep1[39], kOne);
+ lstep1[56] = _mm256_madd_epi16(lstep1[56], kOne);
+ lstep1[57] = _mm256_madd_epi16(lstep1[57], kOne);
+ lstep1[58] = _mm256_madd_epi16(lstep1[58], kOne);
+ lstep1[59] = _mm256_madd_epi16(lstep1[59], kOne);
+ lstep1[60] = _mm256_madd_epi16(lstep1[60], kOne);
+ lstep1[61] = _mm256_madd_epi16(lstep1[61], kOne);
+ lstep1[62] = _mm256_madd_epi16(lstep1[62], kOne);
+ lstep1[63] = _mm256_madd_epi16(lstep1[63], kOne);
+
+ lstep3[32] = _mm256_add_epi32(lstep2[46], lstep1[32]);
+ lstep3[33] = _mm256_add_epi32(lstep2[47], lstep1[33]);
+
+ lstep3[34] = _mm256_add_epi32(lstep2[44], lstep1[34]);
+ lstep3[35] = _mm256_add_epi32(lstep2[45], lstep1[35]);
+ lstep3[36] = _mm256_add_epi32(lstep2[42], lstep1[36]);
+ lstep3[37] = _mm256_add_epi32(lstep2[43], lstep1[37]);
+ lstep3[38] = _mm256_add_epi32(lstep2[40], lstep1[38]);
+ lstep3[39] = _mm256_add_epi32(lstep2[41], lstep1[39]);
+ lstep3[40] = _mm256_sub_epi32(lstep1[38], lstep2[40]);
+ lstep3[41] = _mm256_sub_epi32(lstep1[39], lstep2[41]);
+ lstep3[42] = _mm256_sub_epi32(lstep1[36], lstep2[42]);
+ lstep3[43] = _mm256_sub_epi32(lstep1[37], lstep2[43]);
+ lstep3[44] = _mm256_sub_epi32(lstep1[34], lstep2[44]);
+ lstep3[45] = _mm256_sub_epi32(lstep1[35], lstep2[45]);
+ lstep3[46] = _mm256_sub_epi32(lstep1[32], lstep2[46]);
+ lstep3[47] = _mm256_sub_epi32(lstep1[33], lstep2[47]);
+ lstep3[48] = _mm256_sub_epi32(lstep1[62], lstep2[48]);
+ lstep3[49] = _mm256_sub_epi32(lstep1[63], lstep2[49]);
+ lstep3[50] = _mm256_sub_epi32(lstep1[60], lstep2[50]);
+ lstep3[51] = _mm256_sub_epi32(lstep1[61], lstep2[51]);
+ lstep3[52] = _mm256_sub_epi32(lstep1[58], lstep2[52]);
+ lstep3[53] = _mm256_sub_epi32(lstep1[59], lstep2[53]);
+ lstep3[54] = _mm256_sub_epi32(lstep1[56], lstep2[54]);
+ lstep3[55] = _mm256_sub_epi32(lstep1[57], lstep2[55]);
+ lstep3[56] = _mm256_add_epi32(lstep2[54], lstep1[56]);
+ lstep3[57] = _mm256_add_epi32(lstep2[55], lstep1[57]);
+ lstep3[58] = _mm256_add_epi32(lstep2[52], lstep1[58]);
+ lstep3[59] = _mm256_add_epi32(lstep2[53], lstep1[59]);
+ lstep3[60] = _mm256_add_epi32(lstep2[50], lstep1[60]);
+ lstep3[61] = _mm256_add_epi32(lstep2[51], lstep1[61]);
+ lstep3[62] = _mm256_add_epi32(lstep2[48], lstep1[62]);
+ lstep3[63] = _mm256_add_epi32(lstep2[49], lstep1[63]);
+ }
+
+ // stage 4
+ {
+ // expanding to 32-bit length priori to addition operations
+ lstep2[16] = _mm256_unpacklo_epi16(step2[ 8], kZero);
+ lstep2[17] = _mm256_unpackhi_epi16(step2[ 8], kZero);
+ lstep2[18] = _mm256_unpacklo_epi16(step2[ 9], kZero);
+ lstep2[19] = _mm256_unpackhi_epi16(step2[ 9], kZero);
+ lstep2[28] = _mm256_unpacklo_epi16(step2[14], kZero);
+ lstep2[29] = _mm256_unpackhi_epi16(step2[14], kZero);
+ lstep2[30] = _mm256_unpacklo_epi16(step2[15], kZero);
+ lstep2[31] = _mm256_unpackhi_epi16(step2[15], kZero);
+ lstep2[16] = _mm256_madd_epi16(lstep2[16], kOne);
+ lstep2[17] = _mm256_madd_epi16(lstep2[17], kOne);
+ lstep2[18] = _mm256_madd_epi16(lstep2[18], kOne);
+ lstep2[19] = _mm256_madd_epi16(lstep2[19], kOne);
+ lstep2[28] = _mm256_madd_epi16(lstep2[28], kOne);
+ lstep2[29] = _mm256_madd_epi16(lstep2[29], kOne);
+ lstep2[30] = _mm256_madd_epi16(lstep2[30], kOne);
+ lstep2[31] = _mm256_madd_epi16(lstep2[31], kOne);
+
+ lstep1[ 0] = _mm256_add_epi32(lstep3[ 6], lstep3[ 0]);
+ lstep1[ 1] = _mm256_add_epi32(lstep3[ 7], lstep3[ 1]);
+ lstep1[ 2] = _mm256_add_epi32(lstep3[ 4], lstep3[ 2]);
+ lstep1[ 3] = _mm256_add_epi32(lstep3[ 5], lstep3[ 3]);
+ lstep1[ 4] = _mm256_sub_epi32(lstep3[ 2], lstep3[ 4]);
+ lstep1[ 5] = _mm256_sub_epi32(lstep3[ 3], lstep3[ 5]);
+ lstep1[ 6] = _mm256_sub_epi32(lstep3[ 0], lstep3[ 6]);
+ lstep1[ 7] = _mm256_sub_epi32(lstep3[ 1], lstep3[ 7]);
+ lstep1[16] = _mm256_add_epi32(lstep3[22], lstep2[16]);
+ lstep1[17] = _mm256_add_epi32(lstep3[23], lstep2[17]);
+ lstep1[18] = _mm256_add_epi32(lstep3[20], lstep2[18]);
+ lstep1[19] = _mm256_add_epi32(lstep3[21], lstep2[19]);
+ lstep1[20] = _mm256_sub_epi32(lstep2[18], lstep3[20]);
+ lstep1[21] = _mm256_sub_epi32(lstep2[19], lstep3[21]);
+ lstep1[22] = _mm256_sub_epi32(lstep2[16], lstep3[22]);
+ lstep1[23] = _mm256_sub_epi32(lstep2[17], lstep3[23]);
+ lstep1[24] = _mm256_sub_epi32(lstep2[30], lstep3[24]);
+ lstep1[25] = _mm256_sub_epi32(lstep2[31], lstep3[25]);
+ lstep1[26] = _mm256_sub_epi32(lstep2[28], lstep3[26]);
+ lstep1[27] = _mm256_sub_epi32(lstep2[29], lstep3[27]);
+ lstep1[28] = _mm256_add_epi32(lstep3[26], lstep2[28]);
+ lstep1[29] = _mm256_add_epi32(lstep3[27], lstep2[29]);
+ lstep1[30] = _mm256_add_epi32(lstep3[24], lstep2[30]);
+ lstep1[31] = _mm256_add_epi32(lstep3[25], lstep2[31]);
+ }
+ {
+ // to be continued...
+ //
+ const __m256i k32_p16_p16 = pair256_set_epi32(cospi_16_64, cospi_16_64);
+ const __m256i k32_p16_m16 = pair256_set_epi32(cospi_16_64, -cospi_16_64);
+
+ u[0] = _mm256_unpacklo_epi32(lstep3[12], lstep3[10]);
+ u[1] = _mm256_unpackhi_epi32(lstep3[12], lstep3[10]);
+ u[2] = _mm256_unpacklo_epi32(lstep3[13], lstep3[11]);
+ u[3] = _mm256_unpackhi_epi32(lstep3[13], lstep3[11]);
+
+ // TODO(jingning): manually inline k_madd_epi32_avx2_ to further hide
+ // instruction latency.
+ v[ 0] = k_madd_epi32_avx2(u[0], k32_p16_m16);
+ v[ 1] = k_madd_epi32_avx2(u[1], k32_p16_m16);
+ v[ 2] = k_madd_epi32_avx2(u[2], k32_p16_m16);
+ v[ 3] = k_madd_epi32_avx2(u[3], k32_p16_m16);
+ v[ 4] = k_madd_epi32_avx2(u[0], k32_p16_p16);
+ v[ 5] = k_madd_epi32_avx2(u[1], k32_p16_p16);
+ v[ 6] = k_madd_epi32_avx2(u[2], k32_p16_p16);
+ v[ 7] = k_madd_epi32_avx2(u[3], k32_p16_p16);
+
+ u[0] = k_packs_epi64_avx2(v[0], v[1]);
+ u[1] = k_packs_epi64_avx2(v[2], v[3]);
+ u[2] = k_packs_epi64_avx2(v[4], v[5]);
+ u[3] = k_packs_epi64_avx2(v[6], v[7]);
+
+ v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+
+ lstep1[10] = _mm256_srai_epi32(v[0], DCT_CONST_BITS);
+ lstep1[11] = _mm256_srai_epi32(v[1], DCT_CONST_BITS);
+ lstep1[12] = _mm256_srai_epi32(v[2], DCT_CONST_BITS);
+ lstep1[13] = _mm256_srai_epi32(v[3], DCT_CONST_BITS);
+ }
+ {
+ const __m256i k32_m08_p24 = pair256_set_epi32(-cospi_8_64, cospi_24_64);
+ const __m256i k32_m24_m08 = pair256_set_epi32(-cospi_24_64, -cospi_8_64);
+ const __m256i k32_p24_p08 = pair256_set_epi32(cospi_24_64, cospi_8_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep3[36], lstep3[58]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep3[36], lstep3[58]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep3[37], lstep3[59]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep3[37], lstep3[59]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep3[38], lstep3[56]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep3[38], lstep3[56]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep3[39], lstep3[57]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep3[39], lstep3[57]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep3[40], lstep3[54]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep3[40], lstep3[54]);
+ u[10] = _mm256_unpacklo_epi32(lstep3[41], lstep3[55]);
+ u[11] = _mm256_unpackhi_epi32(lstep3[41], lstep3[55]);
+ u[12] = _mm256_unpacklo_epi32(lstep3[42], lstep3[52]);
+ u[13] = _mm256_unpackhi_epi32(lstep3[42], lstep3[52]);
+ u[14] = _mm256_unpacklo_epi32(lstep3[43], lstep3[53]);
+ u[15] = _mm256_unpackhi_epi32(lstep3[43], lstep3[53]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_m08_p24);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_m08_p24);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_m08_p24);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_m08_p24);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_m08_p24);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_m08_p24);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_m08_p24);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_m08_p24);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_m24_m08);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_m24_m08);
+ v[10] = k_madd_epi32_avx2(u[10], k32_m24_m08);
+ v[11] = k_madd_epi32_avx2(u[11], k32_m24_m08);
+ v[12] = k_madd_epi32_avx2(u[12], k32_m24_m08);
+ v[13] = k_madd_epi32_avx2(u[13], k32_m24_m08);
+ v[14] = k_madd_epi32_avx2(u[14], k32_m24_m08);
+ v[15] = k_madd_epi32_avx2(u[15], k32_m24_m08);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m08_p24);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m08_p24);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m08_p24);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m08_p24);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_m08_p24);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_m08_p24);
+ v[22] = k_madd_epi32_avx2(u[10], k32_m08_p24);
+ v[23] = k_madd_epi32_avx2(u[11], k32_m08_p24);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_p24_p08);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_p24_p08);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_p24_p08);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_p24_p08);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_p24_p08);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_p24_p08);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_p24_p08);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_p24_p08);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ lstep1[36] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ lstep1[37] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ lstep1[38] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ lstep1[39] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ lstep1[40] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ lstep1[41] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ lstep1[42] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ lstep1[43] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ lstep1[52] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ lstep1[53] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ lstep1[54] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ lstep1[55] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ lstep1[56] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ lstep1[57] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ lstep1[58] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ lstep1[59] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+ }
+ // stage 5
+ {
+ lstep2[ 8] = _mm256_add_epi32(lstep1[10], lstep3[ 8]);
+ lstep2[ 9] = _mm256_add_epi32(lstep1[11], lstep3[ 9]);
+ lstep2[10] = _mm256_sub_epi32(lstep3[ 8], lstep1[10]);
+ lstep2[11] = _mm256_sub_epi32(lstep3[ 9], lstep1[11]);
+ lstep2[12] = _mm256_sub_epi32(lstep3[14], lstep1[12]);
+ lstep2[13] = _mm256_sub_epi32(lstep3[15], lstep1[13]);
+ lstep2[14] = _mm256_add_epi32(lstep1[12], lstep3[14]);
+ lstep2[15] = _mm256_add_epi32(lstep1[13], lstep3[15]);
+ }
+ {
+ const __m256i k32_p16_p16 = pair256_set_epi32(cospi_16_64, cospi_16_64);
+ const __m256i k32_p16_m16 = pair256_set_epi32(cospi_16_64, -cospi_16_64);
+ const __m256i k32_p24_p08 = pair256_set_epi32(cospi_24_64, cospi_8_64);
+ const __m256i k32_m08_p24 = pair256_set_epi32(-cospi_8_64, cospi_24_64);
+
+ u[0] = _mm256_unpacklo_epi32(lstep1[0], lstep1[2]);
+ u[1] = _mm256_unpackhi_epi32(lstep1[0], lstep1[2]);
+ u[2] = _mm256_unpacklo_epi32(lstep1[1], lstep1[3]);
+ u[3] = _mm256_unpackhi_epi32(lstep1[1], lstep1[3]);
+ u[4] = _mm256_unpacklo_epi32(lstep1[4], lstep1[6]);
+ u[5] = _mm256_unpackhi_epi32(lstep1[4], lstep1[6]);
+ u[6] = _mm256_unpacklo_epi32(lstep1[5], lstep1[7]);
+ u[7] = _mm256_unpackhi_epi32(lstep1[5], lstep1[7]);
+
+ // TODO(jingning): manually inline k_madd_epi32_avx2_ to further hide
+ // instruction latency.
+ v[ 0] = k_madd_epi32_avx2(u[0], k32_p16_p16);
+ v[ 1] = k_madd_epi32_avx2(u[1], k32_p16_p16);
+ v[ 2] = k_madd_epi32_avx2(u[2], k32_p16_p16);
+ v[ 3] = k_madd_epi32_avx2(u[3], k32_p16_p16);
+ v[ 4] = k_madd_epi32_avx2(u[0], k32_p16_m16);
+ v[ 5] = k_madd_epi32_avx2(u[1], k32_p16_m16);
+ v[ 6] = k_madd_epi32_avx2(u[2], k32_p16_m16);
+ v[ 7] = k_madd_epi32_avx2(u[3], k32_p16_m16);
+ v[ 8] = k_madd_epi32_avx2(u[4], k32_p24_p08);
+ v[ 9] = k_madd_epi32_avx2(u[5], k32_p24_p08);
+ v[10] = k_madd_epi32_avx2(u[6], k32_p24_p08);
+ v[11] = k_madd_epi32_avx2(u[7], k32_p24_p08);
+ v[12] = k_madd_epi32_avx2(u[4], k32_m08_p24);
+ v[13] = k_madd_epi32_avx2(u[5], k32_m08_p24);
+ v[14] = k_madd_epi32_avx2(u[6], k32_m08_p24);
+ v[15] = k_madd_epi32_avx2(u[7], k32_m08_p24);
+
+ u[0] = k_packs_epi64_avx2(v[0], v[1]);
+ u[1] = k_packs_epi64_avx2(v[2], v[3]);
+ u[2] = k_packs_epi64_avx2(v[4], v[5]);
+ u[3] = k_packs_epi64_avx2(v[6], v[7]);
+ u[4] = k_packs_epi64_avx2(v[8], v[9]);
+ u[5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[7] = k_packs_epi64_avx2(v[14], v[15]);
+
+ v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS);
+
+ sign[0] = _mm256_cmpgt_epi32(kZero,u[0]);
+ sign[1] = _mm256_cmpgt_epi32(kZero,u[1]);
+ sign[2] = _mm256_cmpgt_epi32(kZero,u[2]);
+ sign[3] = _mm256_cmpgt_epi32(kZero,u[3]);
+ sign[4] = _mm256_cmpgt_epi32(kZero,u[4]);
+ sign[5] = _mm256_cmpgt_epi32(kZero,u[5]);
+ sign[6] = _mm256_cmpgt_epi32(kZero,u[6]);
+ sign[7] = _mm256_cmpgt_epi32(kZero,u[7]);
+
+ u[0] = _mm256_sub_epi32(u[0], sign[0]);
+ u[1] = _mm256_sub_epi32(u[1], sign[1]);
+ u[2] = _mm256_sub_epi32(u[2], sign[2]);
+ u[3] = _mm256_sub_epi32(u[3], sign[3]);
+ u[4] = _mm256_sub_epi32(u[4], sign[4]);
+ u[5] = _mm256_sub_epi32(u[5], sign[5]);
+ u[6] = _mm256_sub_epi32(u[6], sign[6]);
+ u[7] = _mm256_sub_epi32(u[7], sign[7]);
+
+ u[0] = _mm256_add_epi32(u[0], K32One);
+ u[1] = _mm256_add_epi32(u[1], K32One);
+ u[2] = _mm256_add_epi32(u[2], K32One);
+ u[3] = _mm256_add_epi32(u[3], K32One);
+ u[4] = _mm256_add_epi32(u[4], K32One);
+ u[5] = _mm256_add_epi32(u[5], K32One);
+ u[6] = _mm256_add_epi32(u[6], K32One);
+ u[7] = _mm256_add_epi32(u[7], K32One);
+
+ u[0] = _mm256_srai_epi32(u[0], 2);
+ u[1] = _mm256_srai_epi32(u[1], 2);
+ u[2] = _mm256_srai_epi32(u[2], 2);
+ u[3] = _mm256_srai_epi32(u[3], 2);
+ u[4] = _mm256_srai_epi32(u[4], 2);
+ u[5] = _mm256_srai_epi32(u[5], 2);
+ u[6] = _mm256_srai_epi32(u[6], 2);
+ u[7] = _mm256_srai_epi32(u[7], 2);
+
+ // Combine
+ out[ 0] = _mm256_packs_epi32(u[0], u[1]);
+ out[16] = _mm256_packs_epi32(u[2], u[3]);
+ out[ 8] = _mm256_packs_epi32(u[4], u[5]);
+ out[24] = _mm256_packs_epi32(u[6], u[7]);
+ }
+ {
+ const __m256i k32_m08_p24 = pair256_set_epi32(-cospi_8_64, cospi_24_64);
+ const __m256i k32_m24_m08 = pair256_set_epi32(-cospi_24_64, -cospi_8_64);
+ const __m256i k32_p24_p08 = pair256_set_epi32(cospi_24_64, cospi_8_64);
+
+ u[0] = _mm256_unpacklo_epi32(lstep1[18], lstep1[28]);
+ u[1] = _mm256_unpackhi_epi32(lstep1[18], lstep1[28]);
+ u[2] = _mm256_unpacklo_epi32(lstep1[19], lstep1[29]);
+ u[3] = _mm256_unpackhi_epi32(lstep1[19], lstep1[29]);
+ u[4] = _mm256_unpacklo_epi32(lstep1[20], lstep1[26]);
+ u[5] = _mm256_unpackhi_epi32(lstep1[20], lstep1[26]);
+ u[6] = _mm256_unpacklo_epi32(lstep1[21], lstep1[27]);
+ u[7] = _mm256_unpackhi_epi32(lstep1[21], lstep1[27]);
+
+ v[0] = k_madd_epi32_avx2(u[0], k32_m08_p24);
+ v[1] = k_madd_epi32_avx2(u[1], k32_m08_p24);
+ v[2] = k_madd_epi32_avx2(u[2], k32_m08_p24);
+ v[3] = k_madd_epi32_avx2(u[3], k32_m08_p24);
+ v[4] = k_madd_epi32_avx2(u[4], k32_m24_m08);
+ v[5] = k_madd_epi32_avx2(u[5], k32_m24_m08);
+ v[6] = k_madd_epi32_avx2(u[6], k32_m24_m08);
+ v[7] = k_madd_epi32_avx2(u[7], k32_m24_m08);
+ v[ 8] = k_madd_epi32_avx2(u[4], k32_m08_p24);
+ v[ 9] = k_madd_epi32_avx2(u[5], k32_m08_p24);
+ v[10] = k_madd_epi32_avx2(u[6], k32_m08_p24);
+ v[11] = k_madd_epi32_avx2(u[7], k32_m08_p24);
+ v[12] = k_madd_epi32_avx2(u[0], k32_p24_p08);
+ v[13] = k_madd_epi32_avx2(u[1], k32_p24_p08);
+ v[14] = k_madd_epi32_avx2(u[2], k32_p24_p08);
+ v[15] = k_madd_epi32_avx2(u[3], k32_p24_p08);
+
+ u[0] = k_packs_epi64_avx2(v[0], v[1]);
+ u[1] = k_packs_epi64_avx2(v[2], v[3]);
+ u[2] = k_packs_epi64_avx2(v[4], v[5]);
+ u[3] = k_packs_epi64_avx2(v[6], v[7]);
+ u[4] = k_packs_epi64_avx2(v[8], v[9]);
+ u[5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[7] = k_packs_epi64_avx2(v[14], v[15]);
+
+ u[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ lstep2[18] = _mm256_srai_epi32(u[0], DCT_CONST_BITS);
+ lstep2[19] = _mm256_srai_epi32(u[1], DCT_CONST_BITS);
+ lstep2[20] = _mm256_srai_epi32(u[2], DCT_CONST_BITS);
+ lstep2[21] = _mm256_srai_epi32(u[3], DCT_CONST_BITS);
+ lstep2[26] = _mm256_srai_epi32(u[4], DCT_CONST_BITS);
+ lstep2[27] = _mm256_srai_epi32(u[5], DCT_CONST_BITS);
+ lstep2[28] = _mm256_srai_epi32(u[6], DCT_CONST_BITS);
+ lstep2[29] = _mm256_srai_epi32(u[7], DCT_CONST_BITS);
+ }
+ {
+ lstep2[32] = _mm256_add_epi32(lstep1[38], lstep3[32]);
+ lstep2[33] = _mm256_add_epi32(lstep1[39], lstep3[33]);
+ lstep2[34] = _mm256_add_epi32(lstep1[36], lstep3[34]);
+ lstep2[35] = _mm256_add_epi32(lstep1[37], lstep3[35]);
+ lstep2[36] = _mm256_sub_epi32(lstep3[34], lstep1[36]);
+ lstep2[37] = _mm256_sub_epi32(lstep3[35], lstep1[37]);
+ lstep2[38] = _mm256_sub_epi32(lstep3[32], lstep1[38]);
+ lstep2[39] = _mm256_sub_epi32(lstep3[33], lstep1[39]);
+ lstep2[40] = _mm256_sub_epi32(lstep3[46], lstep1[40]);
+ lstep2[41] = _mm256_sub_epi32(lstep3[47], lstep1[41]);
+ lstep2[42] = _mm256_sub_epi32(lstep3[44], lstep1[42]);
+ lstep2[43] = _mm256_sub_epi32(lstep3[45], lstep1[43]);
+ lstep2[44] = _mm256_add_epi32(lstep1[42], lstep3[44]);
+ lstep2[45] = _mm256_add_epi32(lstep1[43], lstep3[45]);
+ lstep2[46] = _mm256_add_epi32(lstep1[40], lstep3[46]);
+ lstep2[47] = _mm256_add_epi32(lstep1[41], lstep3[47]);
+ lstep2[48] = _mm256_add_epi32(lstep1[54], lstep3[48]);
+ lstep2[49] = _mm256_add_epi32(lstep1[55], lstep3[49]);
+ lstep2[50] = _mm256_add_epi32(lstep1[52], lstep3[50]);
+ lstep2[51] = _mm256_add_epi32(lstep1[53], lstep3[51]);
+ lstep2[52] = _mm256_sub_epi32(lstep3[50], lstep1[52]);
+ lstep2[53] = _mm256_sub_epi32(lstep3[51], lstep1[53]);
+ lstep2[54] = _mm256_sub_epi32(lstep3[48], lstep1[54]);
+ lstep2[55] = _mm256_sub_epi32(lstep3[49], lstep1[55]);
+ lstep2[56] = _mm256_sub_epi32(lstep3[62], lstep1[56]);
+ lstep2[57] = _mm256_sub_epi32(lstep3[63], lstep1[57]);
+ lstep2[58] = _mm256_sub_epi32(lstep3[60], lstep1[58]);
+ lstep2[59] = _mm256_sub_epi32(lstep3[61], lstep1[59]);
+ lstep2[60] = _mm256_add_epi32(lstep1[58], lstep3[60]);
+ lstep2[61] = _mm256_add_epi32(lstep1[59], lstep3[61]);
+ lstep2[62] = _mm256_add_epi32(lstep1[56], lstep3[62]);
+ lstep2[63] = _mm256_add_epi32(lstep1[57], lstep3[63]);
+ }
+ // stage 6
+ {
+ const __m256i k32_p28_p04 = pair256_set_epi32(cospi_28_64, cospi_4_64);
+ const __m256i k32_p12_p20 = pair256_set_epi32(cospi_12_64, cospi_20_64);
+ const __m256i k32_m20_p12 = pair256_set_epi32(-cospi_20_64, cospi_12_64);
+ const __m256i k32_m04_p28 = pair256_set_epi32(-cospi_4_64, cospi_28_64);
+
+ u[0] = _mm256_unpacklo_epi32(lstep2[ 8], lstep2[14]);
+ u[1] = _mm256_unpackhi_epi32(lstep2[ 8], lstep2[14]);
+ u[2] = _mm256_unpacklo_epi32(lstep2[ 9], lstep2[15]);
+ u[3] = _mm256_unpackhi_epi32(lstep2[ 9], lstep2[15]);
+ u[4] = _mm256_unpacklo_epi32(lstep2[10], lstep2[12]);
+ u[5] = _mm256_unpackhi_epi32(lstep2[10], lstep2[12]);
+ u[6] = _mm256_unpacklo_epi32(lstep2[11], lstep2[13]);
+ u[7] = _mm256_unpackhi_epi32(lstep2[11], lstep2[13]);
+ u[8] = _mm256_unpacklo_epi32(lstep2[10], lstep2[12]);
+ u[9] = _mm256_unpackhi_epi32(lstep2[10], lstep2[12]);
+ u[10] = _mm256_unpacklo_epi32(lstep2[11], lstep2[13]);
+ u[11] = _mm256_unpackhi_epi32(lstep2[11], lstep2[13]);
+ u[12] = _mm256_unpacklo_epi32(lstep2[ 8], lstep2[14]);
+ u[13] = _mm256_unpackhi_epi32(lstep2[ 8], lstep2[14]);
+ u[14] = _mm256_unpacklo_epi32(lstep2[ 9], lstep2[15]);
+ u[15] = _mm256_unpackhi_epi32(lstep2[ 9], lstep2[15]);
+
+ v[0] = k_madd_epi32_avx2(u[0], k32_p28_p04);
+ v[1] = k_madd_epi32_avx2(u[1], k32_p28_p04);
+ v[2] = k_madd_epi32_avx2(u[2], k32_p28_p04);
+ v[3] = k_madd_epi32_avx2(u[3], k32_p28_p04);
+ v[4] = k_madd_epi32_avx2(u[4], k32_p12_p20);
+ v[5] = k_madd_epi32_avx2(u[5], k32_p12_p20);
+ v[6] = k_madd_epi32_avx2(u[6], k32_p12_p20);
+ v[7] = k_madd_epi32_avx2(u[7], k32_p12_p20);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_m20_p12);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_m20_p12);
+ v[10] = k_madd_epi32_avx2(u[10], k32_m20_p12);
+ v[11] = k_madd_epi32_avx2(u[11], k32_m20_p12);
+ v[12] = k_madd_epi32_avx2(u[12], k32_m04_p28);
+ v[13] = k_madd_epi32_avx2(u[13], k32_m04_p28);
+ v[14] = k_madd_epi32_avx2(u[14], k32_m04_p28);
+ v[15] = k_madd_epi32_avx2(u[15], k32_m04_p28);
+
+ u[0] = k_packs_epi64_avx2(v[0], v[1]);
+ u[1] = k_packs_epi64_avx2(v[2], v[3]);
+ u[2] = k_packs_epi64_avx2(v[4], v[5]);
+ u[3] = k_packs_epi64_avx2(v[6], v[7]);
+ u[4] = k_packs_epi64_avx2(v[8], v[9]);
+ u[5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[7] = k_packs_epi64_avx2(v[14], v[15]);
+
+ v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS);
+
+ sign[0] = _mm256_cmpgt_epi32(kZero,u[0]);
+ sign[1] = _mm256_cmpgt_epi32(kZero,u[1]);
+ sign[2] = _mm256_cmpgt_epi32(kZero,u[2]);
+ sign[3] = _mm256_cmpgt_epi32(kZero,u[3]);
+ sign[4] = _mm256_cmpgt_epi32(kZero,u[4]);
+ sign[5] = _mm256_cmpgt_epi32(kZero,u[5]);
+ sign[6] = _mm256_cmpgt_epi32(kZero,u[6]);
+ sign[7] = _mm256_cmpgt_epi32(kZero,u[7]);
+
+ u[0] = _mm256_sub_epi32(u[0], sign[0]);
+ u[1] = _mm256_sub_epi32(u[1], sign[1]);
+ u[2] = _mm256_sub_epi32(u[2], sign[2]);
+ u[3] = _mm256_sub_epi32(u[3], sign[3]);
+ u[4] = _mm256_sub_epi32(u[4], sign[4]);
+ u[5] = _mm256_sub_epi32(u[5], sign[5]);
+ u[6] = _mm256_sub_epi32(u[6], sign[6]);
+ u[7] = _mm256_sub_epi32(u[7], sign[7]);
+
+ u[0] = _mm256_add_epi32(u[0], K32One);
+ u[1] = _mm256_add_epi32(u[1], K32One);
+ u[2] = _mm256_add_epi32(u[2], K32One);
+ u[3] = _mm256_add_epi32(u[3], K32One);
+ u[4] = _mm256_add_epi32(u[4], K32One);
+ u[5] = _mm256_add_epi32(u[5], K32One);
+ u[6] = _mm256_add_epi32(u[6], K32One);
+ u[7] = _mm256_add_epi32(u[7], K32One);
+
+ u[0] = _mm256_srai_epi32(u[0], 2);
+ u[1] = _mm256_srai_epi32(u[1], 2);
+ u[2] = _mm256_srai_epi32(u[2], 2);
+ u[3] = _mm256_srai_epi32(u[3], 2);
+ u[4] = _mm256_srai_epi32(u[4], 2);
+ u[5] = _mm256_srai_epi32(u[5], 2);
+ u[6] = _mm256_srai_epi32(u[6], 2);
+ u[7] = _mm256_srai_epi32(u[7], 2);
+
+ out[ 4] = _mm256_packs_epi32(u[0], u[1]);
+ out[20] = _mm256_packs_epi32(u[2], u[3]);
+ out[12] = _mm256_packs_epi32(u[4], u[5]);
+ out[28] = _mm256_packs_epi32(u[6], u[7]);
+ }
+ {
+ lstep3[16] = _mm256_add_epi32(lstep2[18], lstep1[16]);
+ lstep3[17] = _mm256_add_epi32(lstep2[19], lstep1[17]);
+ lstep3[18] = _mm256_sub_epi32(lstep1[16], lstep2[18]);
+ lstep3[19] = _mm256_sub_epi32(lstep1[17], lstep2[19]);
+ lstep3[20] = _mm256_sub_epi32(lstep1[22], lstep2[20]);
+ lstep3[21] = _mm256_sub_epi32(lstep1[23], lstep2[21]);
+ lstep3[22] = _mm256_add_epi32(lstep2[20], lstep1[22]);
+ lstep3[23] = _mm256_add_epi32(lstep2[21], lstep1[23]);
+ lstep3[24] = _mm256_add_epi32(lstep2[26], lstep1[24]);
+ lstep3[25] = _mm256_add_epi32(lstep2[27], lstep1[25]);
+ lstep3[26] = _mm256_sub_epi32(lstep1[24], lstep2[26]);
+ lstep3[27] = _mm256_sub_epi32(lstep1[25], lstep2[27]);
+ lstep3[28] = _mm256_sub_epi32(lstep1[30], lstep2[28]);
+ lstep3[29] = _mm256_sub_epi32(lstep1[31], lstep2[29]);
+ lstep3[30] = _mm256_add_epi32(lstep2[28], lstep1[30]);
+ lstep3[31] = _mm256_add_epi32(lstep2[29], lstep1[31]);
+ }
+ {
+ const __m256i k32_m04_p28 = pair256_set_epi32(-cospi_4_64, cospi_28_64);
+ const __m256i k32_m28_m04 = pair256_set_epi32(-cospi_28_64, -cospi_4_64);
+ const __m256i k32_m20_p12 = pair256_set_epi32(-cospi_20_64, cospi_12_64);
+ const __m256i k32_m12_m20 = pair256_set_epi32(-cospi_12_64,
+ -cospi_20_64);
+ const __m256i k32_p12_p20 = pair256_set_epi32(cospi_12_64, cospi_20_64);
+ const __m256i k32_p28_p04 = pair256_set_epi32(cospi_28_64, cospi_4_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep2[34], lstep2[60]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep2[34], lstep2[60]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep2[35], lstep2[61]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep2[35], lstep2[61]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep2[36], lstep2[58]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep2[36], lstep2[58]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep2[37], lstep2[59]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep2[37], lstep2[59]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep2[42], lstep2[52]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep2[42], lstep2[52]);
+ u[10] = _mm256_unpacklo_epi32(lstep2[43], lstep2[53]);
+ u[11] = _mm256_unpackhi_epi32(lstep2[43], lstep2[53]);
+ u[12] = _mm256_unpacklo_epi32(lstep2[44], lstep2[50]);
+ u[13] = _mm256_unpackhi_epi32(lstep2[44], lstep2[50]);
+ u[14] = _mm256_unpacklo_epi32(lstep2[45], lstep2[51]);
+ u[15] = _mm256_unpackhi_epi32(lstep2[45], lstep2[51]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_m04_p28);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_m04_p28);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_m04_p28);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_m04_p28);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_m28_m04);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_m28_m04);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_m28_m04);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_m28_m04);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_m20_p12);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_m20_p12);
+ v[10] = k_madd_epi32_avx2(u[10], k32_m20_p12);
+ v[11] = k_madd_epi32_avx2(u[11], k32_m20_p12);
+ v[12] = k_madd_epi32_avx2(u[12], k32_m12_m20);
+ v[13] = k_madd_epi32_avx2(u[13], k32_m12_m20);
+ v[14] = k_madd_epi32_avx2(u[14], k32_m12_m20);
+ v[15] = k_madd_epi32_avx2(u[15], k32_m12_m20);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m20_p12);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m20_p12);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m20_p12);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m20_p12);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_p12_p20);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_p12_p20);
+ v[22] = k_madd_epi32_avx2(u[10], k32_p12_p20);
+ v[23] = k_madd_epi32_avx2(u[11], k32_p12_p20);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_m04_p28);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_m04_p28);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_m04_p28);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_m04_p28);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_p28_p04);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_p28_p04);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_p28_p04);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_p28_p04);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ lstep3[34] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ lstep3[35] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ lstep3[36] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ lstep3[37] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ lstep3[42] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ lstep3[43] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ lstep3[44] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ lstep3[45] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ lstep3[50] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ lstep3[51] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ lstep3[52] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ lstep3[53] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ lstep3[58] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ lstep3[59] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ lstep3[60] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ lstep3[61] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+ }
+ // stage 7
+ {
+ const __m256i k32_p30_p02 = pair256_set_epi32(cospi_30_64, cospi_2_64);
+ const __m256i k32_p14_p18 = pair256_set_epi32(cospi_14_64, cospi_18_64);
+ const __m256i k32_p22_p10 = pair256_set_epi32(cospi_22_64, cospi_10_64);
+ const __m256i k32_p06_p26 = pair256_set_epi32(cospi_6_64, cospi_26_64);
+ const __m256i k32_m26_p06 = pair256_set_epi32(-cospi_26_64, cospi_6_64);
+ const __m256i k32_m10_p22 = pair256_set_epi32(-cospi_10_64, cospi_22_64);
+ const __m256i k32_m18_p14 = pair256_set_epi32(-cospi_18_64, cospi_14_64);
+ const __m256i k32_m02_p30 = pair256_set_epi32(-cospi_2_64, cospi_30_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep3[16], lstep3[30]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep3[16], lstep3[30]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep3[17], lstep3[31]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep3[17], lstep3[31]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep3[18], lstep3[28]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep3[18], lstep3[28]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep3[19], lstep3[29]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep3[19], lstep3[29]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep3[20], lstep3[26]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep3[20], lstep3[26]);
+ u[10] = _mm256_unpacklo_epi32(lstep3[21], lstep3[27]);
+ u[11] = _mm256_unpackhi_epi32(lstep3[21], lstep3[27]);
+ u[12] = _mm256_unpacklo_epi32(lstep3[22], lstep3[24]);
+ u[13] = _mm256_unpackhi_epi32(lstep3[22], lstep3[24]);
+ u[14] = _mm256_unpacklo_epi32(lstep3[23], lstep3[25]);
+ u[15] = _mm256_unpackhi_epi32(lstep3[23], lstep3[25]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_p30_p02);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_p30_p02);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_p30_p02);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_p30_p02);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_p14_p18);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_p14_p18);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_p14_p18);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_p14_p18);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_p22_p10);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_p22_p10);
+ v[10] = k_madd_epi32_avx2(u[10], k32_p22_p10);
+ v[11] = k_madd_epi32_avx2(u[11], k32_p22_p10);
+ v[12] = k_madd_epi32_avx2(u[12], k32_p06_p26);
+ v[13] = k_madd_epi32_avx2(u[13], k32_p06_p26);
+ v[14] = k_madd_epi32_avx2(u[14], k32_p06_p26);
+ v[15] = k_madd_epi32_avx2(u[15], k32_p06_p26);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m26_p06);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m26_p06);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m26_p06);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m26_p06);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_m10_p22);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_m10_p22);
+ v[22] = k_madd_epi32_avx2(u[10], k32_m10_p22);
+ v[23] = k_madd_epi32_avx2(u[11], k32_m10_p22);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_m18_p14);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_m18_p14);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_m18_p14);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_m18_p14);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_m02_p30);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_m02_p30);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_m02_p30);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_m02_p30);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm256_cmpgt_epi32(kZero,u[ 0]);
+ v[ 1] = _mm256_cmpgt_epi32(kZero,u[ 1]);
+ v[ 2] = _mm256_cmpgt_epi32(kZero,u[ 2]);
+ v[ 3] = _mm256_cmpgt_epi32(kZero,u[ 3]);
+ v[ 4] = _mm256_cmpgt_epi32(kZero,u[ 4]);
+ v[ 5] = _mm256_cmpgt_epi32(kZero,u[ 5]);
+ v[ 6] = _mm256_cmpgt_epi32(kZero,u[ 6]);
+ v[ 7] = _mm256_cmpgt_epi32(kZero,u[ 7]);
+ v[ 8] = _mm256_cmpgt_epi32(kZero,u[ 8]);
+ v[ 9] = _mm256_cmpgt_epi32(kZero,u[ 9]);
+ v[10] = _mm256_cmpgt_epi32(kZero,u[10]);
+ v[11] = _mm256_cmpgt_epi32(kZero,u[11]);
+ v[12] = _mm256_cmpgt_epi32(kZero,u[12]);
+ v[13] = _mm256_cmpgt_epi32(kZero,u[13]);
+ v[14] = _mm256_cmpgt_epi32(kZero,u[14]);
+ v[15] = _mm256_cmpgt_epi32(kZero,u[15]);
+
+ u[ 0] = _mm256_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm256_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm256_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm256_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm256_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm256_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm256_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm256_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm256_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm256_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm256_sub_epi32(u[10], v[10]);
+ u[11] = _mm256_sub_epi32(u[11], v[11]);
+ u[12] = _mm256_sub_epi32(u[12], v[12]);
+ u[13] = _mm256_sub_epi32(u[13], v[13]);
+ u[14] = _mm256_sub_epi32(u[14], v[14]);
+ u[15] = _mm256_sub_epi32(u[15], v[15]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], K32One);
+ v[ 1] = _mm256_add_epi32(u[ 1], K32One);
+ v[ 2] = _mm256_add_epi32(u[ 2], K32One);
+ v[ 3] = _mm256_add_epi32(u[ 3], K32One);
+ v[ 4] = _mm256_add_epi32(u[ 4], K32One);
+ v[ 5] = _mm256_add_epi32(u[ 5], K32One);
+ v[ 6] = _mm256_add_epi32(u[ 6], K32One);
+ v[ 7] = _mm256_add_epi32(u[ 7], K32One);
+ v[ 8] = _mm256_add_epi32(u[ 8], K32One);
+ v[ 9] = _mm256_add_epi32(u[ 9], K32One);
+ v[10] = _mm256_add_epi32(u[10], K32One);
+ v[11] = _mm256_add_epi32(u[11], K32One);
+ v[12] = _mm256_add_epi32(u[12], K32One);
+ v[13] = _mm256_add_epi32(u[13], K32One);
+ v[14] = _mm256_add_epi32(u[14], K32One);
+ v[15] = _mm256_add_epi32(u[15], K32One);
+
+ u[ 0] = _mm256_srai_epi32(v[ 0], 2);
+ u[ 1] = _mm256_srai_epi32(v[ 1], 2);
+ u[ 2] = _mm256_srai_epi32(v[ 2], 2);
+ u[ 3] = _mm256_srai_epi32(v[ 3], 2);
+ u[ 4] = _mm256_srai_epi32(v[ 4], 2);
+ u[ 5] = _mm256_srai_epi32(v[ 5], 2);
+ u[ 6] = _mm256_srai_epi32(v[ 6], 2);
+ u[ 7] = _mm256_srai_epi32(v[ 7], 2);
+ u[ 8] = _mm256_srai_epi32(v[ 8], 2);
+ u[ 9] = _mm256_srai_epi32(v[ 9], 2);
+ u[10] = _mm256_srai_epi32(v[10], 2);
+ u[11] = _mm256_srai_epi32(v[11], 2);
+ u[12] = _mm256_srai_epi32(v[12], 2);
+ u[13] = _mm256_srai_epi32(v[13], 2);
+ u[14] = _mm256_srai_epi32(v[14], 2);
+ u[15] = _mm256_srai_epi32(v[15], 2);
+
+ out[ 2] = _mm256_packs_epi32(u[0], u[1]);
+ out[18] = _mm256_packs_epi32(u[2], u[3]);
+ out[10] = _mm256_packs_epi32(u[4], u[5]);
+ out[26] = _mm256_packs_epi32(u[6], u[7]);
+ out[ 6] = _mm256_packs_epi32(u[8], u[9]);
+ out[22] = _mm256_packs_epi32(u[10], u[11]);
+ out[14] = _mm256_packs_epi32(u[12], u[13]);
+ out[30] = _mm256_packs_epi32(u[14], u[15]);
+ }
+ {
+ lstep1[32] = _mm256_add_epi32(lstep3[34], lstep2[32]);
+ lstep1[33] = _mm256_add_epi32(lstep3[35], lstep2[33]);
+ lstep1[34] = _mm256_sub_epi32(lstep2[32], lstep3[34]);
+ lstep1[35] = _mm256_sub_epi32(lstep2[33], lstep3[35]);
+ lstep1[36] = _mm256_sub_epi32(lstep2[38], lstep3[36]);
+ lstep1[37] = _mm256_sub_epi32(lstep2[39], lstep3[37]);
+ lstep1[38] = _mm256_add_epi32(lstep3[36], lstep2[38]);
+ lstep1[39] = _mm256_add_epi32(lstep3[37], lstep2[39]);
+ lstep1[40] = _mm256_add_epi32(lstep3[42], lstep2[40]);
+ lstep1[41] = _mm256_add_epi32(lstep3[43], lstep2[41]);
+ lstep1[42] = _mm256_sub_epi32(lstep2[40], lstep3[42]);
+ lstep1[43] = _mm256_sub_epi32(lstep2[41], lstep3[43]);
+ lstep1[44] = _mm256_sub_epi32(lstep2[46], lstep3[44]);
+ lstep1[45] = _mm256_sub_epi32(lstep2[47], lstep3[45]);
+ lstep1[46] = _mm256_add_epi32(lstep3[44], lstep2[46]);
+ lstep1[47] = _mm256_add_epi32(lstep3[45], lstep2[47]);
+ lstep1[48] = _mm256_add_epi32(lstep3[50], lstep2[48]);
+ lstep1[49] = _mm256_add_epi32(lstep3[51], lstep2[49]);
+ lstep1[50] = _mm256_sub_epi32(lstep2[48], lstep3[50]);
+ lstep1[51] = _mm256_sub_epi32(lstep2[49], lstep3[51]);
+ lstep1[52] = _mm256_sub_epi32(lstep2[54], lstep3[52]);
+ lstep1[53] = _mm256_sub_epi32(lstep2[55], lstep3[53]);
+ lstep1[54] = _mm256_add_epi32(lstep3[52], lstep2[54]);
+ lstep1[55] = _mm256_add_epi32(lstep3[53], lstep2[55]);
+ lstep1[56] = _mm256_add_epi32(lstep3[58], lstep2[56]);
+ lstep1[57] = _mm256_add_epi32(lstep3[59], lstep2[57]);
+ lstep1[58] = _mm256_sub_epi32(lstep2[56], lstep3[58]);
+ lstep1[59] = _mm256_sub_epi32(lstep2[57], lstep3[59]);
+ lstep1[60] = _mm256_sub_epi32(lstep2[62], lstep3[60]);
+ lstep1[61] = _mm256_sub_epi32(lstep2[63], lstep3[61]);
+ lstep1[62] = _mm256_add_epi32(lstep3[60], lstep2[62]);
+ lstep1[63] = _mm256_add_epi32(lstep3[61], lstep2[63]);
+ }
+ // stage 8
+ {
+ const __m256i k32_p31_p01 = pair256_set_epi32(cospi_31_64, cospi_1_64);
+ const __m256i k32_p15_p17 = pair256_set_epi32(cospi_15_64, cospi_17_64);
+ const __m256i k32_p23_p09 = pair256_set_epi32(cospi_23_64, cospi_9_64);
+ const __m256i k32_p07_p25 = pair256_set_epi32(cospi_7_64, cospi_25_64);
+ const __m256i k32_m25_p07 = pair256_set_epi32(-cospi_25_64, cospi_7_64);
+ const __m256i k32_m09_p23 = pair256_set_epi32(-cospi_9_64, cospi_23_64);
+ const __m256i k32_m17_p15 = pair256_set_epi32(-cospi_17_64, cospi_15_64);
+ const __m256i k32_m01_p31 = pair256_set_epi32(-cospi_1_64, cospi_31_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep1[32], lstep1[62]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep1[32], lstep1[62]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep1[33], lstep1[63]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep1[33], lstep1[63]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep1[34], lstep1[60]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep1[34], lstep1[60]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep1[35], lstep1[61]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep1[35], lstep1[61]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep1[36], lstep1[58]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep1[36], lstep1[58]);
+ u[10] = _mm256_unpacklo_epi32(lstep1[37], lstep1[59]);
+ u[11] = _mm256_unpackhi_epi32(lstep1[37], lstep1[59]);
+ u[12] = _mm256_unpacklo_epi32(lstep1[38], lstep1[56]);
+ u[13] = _mm256_unpackhi_epi32(lstep1[38], lstep1[56]);
+ u[14] = _mm256_unpacklo_epi32(lstep1[39], lstep1[57]);
+ u[15] = _mm256_unpackhi_epi32(lstep1[39], lstep1[57]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_p31_p01);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_p31_p01);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_p31_p01);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_p31_p01);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_p15_p17);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_p15_p17);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_p15_p17);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_p15_p17);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_p23_p09);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_p23_p09);
+ v[10] = k_madd_epi32_avx2(u[10], k32_p23_p09);
+ v[11] = k_madd_epi32_avx2(u[11], k32_p23_p09);
+ v[12] = k_madd_epi32_avx2(u[12], k32_p07_p25);
+ v[13] = k_madd_epi32_avx2(u[13], k32_p07_p25);
+ v[14] = k_madd_epi32_avx2(u[14], k32_p07_p25);
+ v[15] = k_madd_epi32_avx2(u[15], k32_p07_p25);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m25_p07);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m25_p07);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m25_p07);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m25_p07);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_m09_p23);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_m09_p23);
+ v[22] = k_madd_epi32_avx2(u[10], k32_m09_p23);
+ v[23] = k_madd_epi32_avx2(u[11], k32_m09_p23);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_m17_p15);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_m17_p15);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_m17_p15);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_m17_p15);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_m01_p31);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_m01_p31);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_m01_p31);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_m01_p31);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm256_cmpgt_epi32(kZero,u[ 0]);
+ v[ 1] = _mm256_cmpgt_epi32(kZero,u[ 1]);
+ v[ 2] = _mm256_cmpgt_epi32(kZero,u[ 2]);
+ v[ 3] = _mm256_cmpgt_epi32(kZero,u[ 3]);
+ v[ 4] = _mm256_cmpgt_epi32(kZero,u[ 4]);
+ v[ 5] = _mm256_cmpgt_epi32(kZero,u[ 5]);
+ v[ 6] = _mm256_cmpgt_epi32(kZero,u[ 6]);
+ v[ 7] = _mm256_cmpgt_epi32(kZero,u[ 7]);
+ v[ 8] = _mm256_cmpgt_epi32(kZero,u[ 8]);
+ v[ 9] = _mm256_cmpgt_epi32(kZero,u[ 9]);
+ v[10] = _mm256_cmpgt_epi32(kZero,u[10]);
+ v[11] = _mm256_cmpgt_epi32(kZero,u[11]);
+ v[12] = _mm256_cmpgt_epi32(kZero,u[12]);
+ v[13] = _mm256_cmpgt_epi32(kZero,u[13]);
+ v[14] = _mm256_cmpgt_epi32(kZero,u[14]);
+ v[15] = _mm256_cmpgt_epi32(kZero,u[15]);
+
+ u[ 0] = _mm256_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm256_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm256_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm256_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm256_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm256_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm256_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm256_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm256_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm256_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm256_sub_epi32(u[10], v[10]);
+ u[11] = _mm256_sub_epi32(u[11], v[11]);
+ u[12] = _mm256_sub_epi32(u[12], v[12]);
+ u[13] = _mm256_sub_epi32(u[13], v[13]);
+ u[14] = _mm256_sub_epi32(u[14], v[14]);
+ u[15] = _mm256_sub_epi32(u[15], v[15]);
+
+ v[0] = _mm256_add_epi32(u[0], K32One);
+ v[1] = _mm256_add_epi32(u[1], K32One);
+ v[2] = _mm256_add_epi32(u[2], K32One);
+ v[3] = _mm256_add_epi32(u[3], K32One);
+ v[4] = _mm256_add_epi32(u[4], K32One);
+ v[5] = _mm256_add_epi32(u[5], K32One);
+ v[6] = _mm256_add_epi32(u[6], K32One);
+ v[7] = _mm256_add_epi32(u[7], K32One);
+ v[8] = _mm256_add_epi32(u[8], K32One);
+ v[9] = _mm256_add_epi32(u[9], K32One);
+ v[10] = _mm256_add_epi32(u[10], K32One);
+ v[11] = _mm256_add_epi32(u[11], K32One);
+ v[12] = _mm256_add_epi32(u[12], K32One);
+ v[13] = _mm256_add_epi32(u[13], K32One);
+ v[14] = _mm256_add_epi32(u[14], K32One);
+ v[15] = _mm256_add_epi32(u[15], K32One);
+
+ u[0] = _mm256_srai_epi32(v[0], 2);
+ u[1] = _mm256_srai_epi32(v[1], 2);
+ u[2] = _mm256_srai_epi32(v[2], 2);
+ u[3] = _mm256_srai_epi32(v[3], 2);
+ u[4] = _mm256_srai_epi32(v[4], 2);
+ u[5] = _mm256_srai_epi32(v[5], 2);
+ u[6] = _mm256_srai_epi32(v[6], 2);
+ u[7] = _mm256_srai_epi32(v[7], 2);
+ u[8] = _mm256_srai_epi32(v[8], 2);
+ u[9] = _mm256_srai_epi32(v[9], 2);
+ u[10] = _mm256_srai_epi32(v[10], 2);
+ u[11] = _mm256_srai_epi32(v[11], 2);
+ u[12] = _mm256_srai_epi32(v[12], 2);
+ u[13] = _mm256_srai_epi32(v[13], 2);
+ u[14] = _mm256_srai_epi32(v[14], 2);
+ u[15] = _mm256_srai_epi32(v[15], 2);
+
+ out[ 1] = _mm256_packs_epi32(u[0], u[1]);
+ out[17] = _mm256_packs_epi32(u[2], u[3]);
+ out[ 9] = _mm256_packs_epi32(u[4], u[5]);
+ out[25] = _mm256_packs_epi32(u[6], u[7]);
+ out[ 7] = _mm256_packs_epi32(u[8], u[9]);
+ out[23] = _mm256_packs_epi32(u[10], u[11]);
+ out[15] = _mm256_packs_epi32(u[12], u[13]);
+ out[31] = _mm256_packs_epi32(u[14], u[15]);
+ }
+ {
+ const __m256i k32_p27_p05 = pair256_set_epi32(cospi_27_64, cospi_5_64);
+ const __m256i k32_p11_p21 = pair256_set_epi32(cospi_11_64, cospi_21_64);
+ const __m256i k32_p19_p13 = pair256_set_epi32(cospi_19_64, cospi_13_64);
+ const __m256i k32_p03_p29 = pair256_set_epi32(cospi_3_64, cospi_29_64);
+ const __m256i k32_m29_p03 = pair256_set_epi32(-cospi_29_64, cospi_3_64);
+ const __m256i k32_m13_p19 = pair256_set_epi32(-cospi_13_64, cospi_19_64);
+ const __m256i k32_m21_p11 = pair256_set_epi32(-cospi_21_64, cospi_11_64);
+ const __m256i k32_m05_p27 = pair256_set_epi32(-cospi_5_64, cospi_27_64);
+
+ u[ 0] = _mm256_unpacklo_epi32(lstep1[40], lstep1[54]);
+ u[ 1] = _mm256_unpackhi_epi32(lstep1[40], lstep1[54]);
+ u[ 2] = _mm256_unpacklo_epi32(lstep1[41], lstep1[55]);
+ u[ 3] = _mm256_unpackhi_epi32(lstep1[41], lstep1[55]);
+ u[ 4] = _mm256_unpacklo_epi32(lstep1[42], lstep1[52]);
+ u[ 5] = _mm256_unpackhi_epi32(lstep1[42], lstep1[52]);
+ u[ 6] = _mm256_unpacklo_epi32(lstep1[43], lstep1[53]);
+ u[ 7] = _mm256_unpackhi_epi32(lstep1[43], lstep1[53]);
+ u[ 8] = _mm256_unpacklo_epi32(lstep1[44], lstep1[50]);
+ u[ 9] = _mm256_unpackhi_epi32(lstep1[44], lstep1[50]);
+ u[10] = _mm256_unpacklo_epi32(lstep1[45], lstep1[51]);
+ u[11] = _mm256_unpackhi_epi32(lstep1[45], lstep1[51]);
+ u[12] = _mm256_unpacklo_epi32(lstep1[46], lstep1[48]);
+ u[13] = _mm256_unpackhi_epi32(lstep1[46], lstep1[48]);
+ u[14] = _mm256_unpacklo_epi32(lstep1[47], lstep1[49]);
+ u[15] = _mm256_unpackhi_epi32(lstep1[47], lstep1[49]);
+
+ v[ 0] = k_madd_epi32_avx2(u[ 0], k32_p27_p05);
+ v[ 1] = k_madd_epi32_avx2(u[ 1], k32_p27_p05);
+ v[ 2] = k_madd_epi32_avx2(u[ 2], k32_p27_p05);
+ v[ 3] = k_madd_epi32_avx2(u[ 3], k32_p27_p05);
+ v[ 4] = k_madd_epi32_avx2(u[ 4], k32_p11_p21);
+ v[ 5] = k_madd_epi32_avx2(u[ 5], k32_p11_p21);
+ v[ 6] = k_madd_epi32_avx2(u[ 6], k32_p11_p21);
+ v[ 7] = k_madd_epi32_avx2(u[ 7], k32_p11_p21);
+ v[ 8] = k_madd_epi32_avx2(u[ 8], k32_p19_p13);
+ v[ 9] = k_madd_epi32_avx2(u[ 9], k32_p19_p13);
+ v[10] = k_madd_epi32_avx2(u[10], k32_p19_p13);
+ v[11] = k_madd_epi32_avx2(u[11], k32_p19_p13);
+ v[12] = k_madd_epi32_avx2(u[12], k32_p03_p29);
+ v[13] = k_madd_epi32_avx2(u[13], k32_p03_p29);
+ v[14] = k_madd_epi32_avx2(u[14], k32_p03_p29);
+ v[15] = k_madd_epi32_avx2(u[15], k32_p03_p29);
+ v[16] = k_madd_epi32_avx2(u[12], k32_m29_p03);
+ v[17] = k_madd_epi32_avx2(u[13], k32_m29_p03);
+ v[18] = k_madd_epi32_avx2(u[14], k32_m29_p03);
+ v[19] = k_madd_epi32_avx2(u[15], k32_m29_p03);
+ v[20] = k_madd_epi32_avx2(u[ 8], k32_m13_p19);
+ v[21] = k_madd_epi32_avx2(u[ 9], k32_m13_p19);
+ v[22] = k_madd_epi32_avx2(u[10], k32_m13_p19);
+ v[23] = k_madd_epi32_avx2(u[11], k32_m13_p19);
+ v[24] = k_madd_epi32_avx2(u[ 4], k32_m21_p11);
+ v[25] = k_madd_epi32_avx2(u[ 5], k32_m21_p11);
+ v[26] = k_madd_epi32_avx2(u[ 6], k32_m21_p11);
+ v[27] = k_madd_epi32_avx2(u[ 7], k32_m21_p11);
+ v[28] = k_madd_epi32_avx2(u[ 0], k32_m05_p27);
+ v[29] = k_madd_epi32_avx2(u[ 1], k32_m05_p27);
+ v[30] = k_madd_epi32_avx2(u[ 2], k32_m05_p27);
+ v[31] = k_madd_epi32_avx2(u[ 3], k32_m05_p27);
+
+ u[ 0] = k_packs_epi64_avx2(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64_avx2(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64_avx2(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64_avx2(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64_avx2(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64_avx2(v[10], v[11]);
+ u[ 6] = k_packs_epi64_avx2(v[12], v[13]);
+ u[ 7] = k_packs_epi64_avx2(v[14], v[15]);
+ u[ 8] = k_packs_epi64_avx2(v[16], v[17]);
+ u[ 9] = k_packs_epi64_avx2(v[18], v[19]);
+ u[10] = k_packs_epi64_avx2(v[20], v[21]);
+ u[11] = k_packs_epi64_avx2(v[22], v[23]);
+ u[12] = k_packs_epi64_avx2(v[24], v[25]);
+ u[13] = k_packs_epi64_avx2(v[26], v[27]);
+ u[14] = k_packs_epi64_avx2(v[28], v[29]);
+ u[15] = k_packs_epi64_avx2(v[30], v[31]);
+
+ v[ 0] = _mm256_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm256_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm256_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm256_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm256_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm256_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm256_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm256_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm256_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm256_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm256_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm256_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm256_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm256_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm256_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm256_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm256_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm256_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm256_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm256_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm256_cmpgt_epi32(kZero,u[ 0]);
+ v[ 1] = _mm256_cmpgt_epi32(kZero,u[ 1]);
+ v[ 2] = _mm256_cmpgt_epi32(kZero,u[ 2]);
+ v[ 3] = _mm256_cmpgt_epi32(kZero,u[ 3]);
+ v[ 4] = _mm256_cmpgt_epi32(kZero,u[ 4]);
+ v[ 5] = _mm256_cmpgt_epi32(kZero,u[ 5]);
+ v[ 6] = _mm256_cmpgt_epi32(kZero,u[ 6]);
+ v[ 7] = _mm256_cmpgt_epi32(kZero,u[ 7]);
+ v[ 8] = _mm256_cmpgt_epi32(kZero,u[ 8]);
+ v[ 9] = _mm256_cmpgt_epi32(kZero,u[ 9]);
+ v[10] = _mm256_cmpgt_epi32(kZero,u[10]);
+ v[11] = _mm256_cmpgt_epi32(kZero,u[11]);
+ v[12] = _mm256_cmpgt_epi32(kZero,u[12]);
+ v[13] = _mm256_cmpgt_epi32(kZero,u[13]);
+ v[14] = _mm256_cmpgt_epi32(kZero,u[14]);
+ v[15] = _mm256_cmpgt_epi32(kZero,u[15]);
+
+ u[ 0] = _mm256_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm256_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm256_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm256_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm256_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm256_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm256_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm256_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm256_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm256_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm256_sub_epi32(u[10], v[10]);
+ u[11] = _mm256_sub_epi32(u[11], v[11]);
+ u[12] = _mm256_sub_epi32(u[12], v[12]);
+ u[13] = _mm256_sub_epi32(u[13], v[13]);
+ u[14] = _mm256_sub_epi32(u[14], v[14]);
+ u[15] = _mm256_sub_epi32(u[15], v[15]);
+
+ v[0] = _mm256_add_epi32(u[0], K32One);
+ v[1] = _mm256_add_epi32(u[1], K32One);
+ v[2] = _mm256_add_epi32(u[2], K32One);
+ v[3] = _mm256_add_epi32(u[3], K32One);
+ v[4] = _mm256_add_epi32(u[4], K32One);
+ v[5] = _mm256_add_epi32(u[5], K32One);
+ v[6] = _mm256_add_epi32(u[6], K32One);
+ v[7] = _mm256_add_epi32(u[7], K32One);
+ v[8] = _mm256_add_epi32(u[8], K32One);
+ v[9] = _mm256_add_epi32(u[9], K32One);
+ v[10] = _mm256_add_epi32(u[10], K32One);
+ v[11] = _mm256_add_epi32(u[11], K32One);
+ v[12] = _mm256_add_epi32(u[12], K32One);
+ v[13] = _mm256_add_epi32(u[13], K32One);
+ v[14] = _mm256_add_epi32(u[14], K32One);
+ v[15] = _mm256_add_epi32(u[15], K32One);
+
+ u[0] = _mm256_srai_epi32(v[0], 2);
+ u[1] = _mm256_srai_epi32(v[1], 2);
+ u[2] = _mm256_srai_epi32(v[2], 2);
+ u[3] = _mm256_srai_epi32(v[3], 2);
+ u[4] = _mm256_srai_epi32(v[4], 2);
+ u[5] = _mm256_srai_epi32(v[5], 2);
+ u[6] = _mm256_srai_epi32(v[6], 2);
+ u[7] = _mm256_srai_epi32(v[7], 2);
+ u[8] = _mm256_srai_epi32(v[8], 2);
+ u[9] = _mm256_srai_epi32(v[9], 2);
+ u[10] = _mm256_srai_epi32(v[10], 2);
+ u[11] = _mm256_srai_epi32(v[11], 2);
+ u[12] = _mm256_srai_epi32(v[12], 2);
+ u[13] = _mm256_srai_epi32(v[13], 2);
+ u[14] = _mm256_srai_epi32(v[14], 2);
+ u[15] = _mm256_srai_epi32(v[15], 2);
+
+ out[ 5] = _mm256_packs_epi32(u[0], u[1]);
+ out[21] = _mm256_packs_epi32(u[2], u[3]);
+ out[13] = _mm256_packs_epi32(u[4], u[5]);
+ out[29] = _mm256_packs_epi32(u[6], u[7]);
+ out[ 3] = _mm256_packs_epi32(u[8], u[9]);
+ out[19] = _mm256_packs_epi32(u[10], u[11]);
+ out[11] = _mm256_packs_epi32(u[12], u[13]);
+ out[27] = _mm256_packs_epi32(u[14], u[15]);
+ }
+ }
+#endif
+ // Transpose the results, do it as four 8x8 transposes.
+ {
+ int transpose_block;
+ int16_t *output_currStep,*output_nextStep;
+ if (0 == pass){
+ output_currStep = &intermediate[column_start * 32];
+ output_nextStep = &intermediate[(column_start + 8) * 32];
+ } else{
+ output_currStep = &output_org[column_start * 32];
+ output_nextStep = &output_org[(column_start + 8) * 32];
+ }
+ for (transpose_block = 0; transpose_block < 4; ++transpose_block) {
+ __m256i *this_out = &out[8 * transpose_block];
+ // 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
+ // 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
+ // 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
+ // 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
+ // 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
+ // 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
+ // 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
+ // 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
+ const __m256i tr0_0 = _mm256_unpacklo_epi16(this_out[0], this_out[1]);
+ const __m256i tr0_1 = _mm256_unpacklo_epi16(this_out[2], this_out[3]);
+ const __m256i tr0_2 = _mm256_unpackhi_epi16(this_out[0], this_out[1]);
+ const __m256i tr0_3 = _mm256_unpackhi_epi16(this_out[2], this_out[3]);
+ const __m256i tr0_4 = _mm256_unpacklo_epi16(this_out[4], this_out[5]);
+ const __m256i tr0_5 = _mm256_unpacklo_epi16(this_out[6], this_out[7]);
+ const __m256i tr0_6 = _mm256_unpackhi_epi16(this_out[4], this_out[5]);
+ const __m256i tr0_7 = _mm256_unpackhi_epi16(this_out[6], this_out[7]);
+ // 00 20 01 21 02 22 03 23 08 28 09 29 10 30 11 31
+ // 40 60 41 61 42 62 43 63 48 68 49 69 50 70 51 71
+ // 04 24 05 25 06 26 07 27 12 32 13 33 14 34 15 35
+ // 44 64 45 65 46 66 47 67 52 72 53 73 54 74 55 75
+ // 80 100 81 101 82 102 83 103 88 108 89 109 90 110 91 101
+ // 120 140 121 141 122 142 123 143 128 148 129 149 130 150 131 151
+ // 84 104 85 105 86 106 87 107 92 112 93 113 94 114 95 115
+ // 124 144 125 145 126 146 127 147 132 152 133 153 134 154 135 155
+
+ const __m256i tr1_0 = _mm256_unpacklo_epi32(tr0_0, tr0_1);
+ const __m256i tr1_1 = _mm256_unpacklo_epi32(tr0_2, tr0_3);
+ const __m256i tr1_2 = _mm256_unpackhi_epi32(tr0_0, tr0_1);
+ const __m256i tr1_3 = _mm256_unpackhi_epi32(tr0_2, tr0_3);
+ const __m256i tr1_4 = _mm256_unpacklo_epi32(tr0_4, tr0_5);
+ const __m256i tr1_5 = _mm256_unpacklo_epi32(tr0_6, tr0_7);
+ const __m256i tr1_6 = _mm256_unpackhi_epi32(tr0_4, tr0_5);
+ const __m256i tr1_7 = _mm256_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 20 40 60 01 21 41 61 08 28 48 68 09 29 49 69
+ // 04 24 44 64 05 25 45 65 12 32 52 72 13 33 53 73
+ // 02 22 42 62 03 23 43 63 10 30 50 70 11 31 51 71
+ // 06 26 46 66 07 27 47 67 14 34 54 74 15 35 55 75
+ // 80 100 120 140 81 101 121 141 88 108 128 148 89 109 129 149
+ // 84 104 124 144 85 105 125 145 92 112 132 152 93 113 133 153
+ // 82 102 122 142 83 103 123 143 90 110 130 150 91 101 131 151
+ // 86 106 126 146 87 107 127 147 94 114 134 154 95 115 135 155
+ __m256i tr2_0 = _mm256_unpacklo_epi64(tr1_0, tr1_4);
+ __m256i tr2_1 = _mm256_unpackhi_epi64(tr1_0, tr1_4);
+ __m256i tr2_2 = _mm256_unpacklo_epi64(tr1_2, tr1_6);
+ __m256i tr2_3 = _mm256_unpackhi_epi64(tr1_2, tr1_6);
+ __m256i tr2_4 = _mm256_unpacklo_epi64(tr1_1, tr1_5);
+ __m256i tr2_5 = _mm256_unpackhi_epi64(tr1_1, tr1_5);
+ __m256i tr2_6 = _mm256_unpacklo_epi64(tr1_3, tr1_7);
+ __m256i tr2_7 = _mm256_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 20 40 60 80 100 120 140 08 28 48 68 88 108 128 148
+ // 01 21 41 61 81 101 121 141 09 29 49 69 89 109 129 149
+ // 02 22 42 62 82 102 122 142 10 30 50 70 90 110 130 150
+ // 03 23 43 63 83 103 123 143 11 31 51 71 91 101 131 151
+ // 04 24 44 64 84 104 124 144 12 32 52 72 92 112 132 152
+ // 05 25 45 65 85 105 125 145 13 33 53 73 93 113 133 153
+ // 06 26 46 66 86 106 126 146 14 34 54 74 94 114 134 154
+ // 07 27 47 67 87 107 127 147 15 35 55 75 95 115 135 155
+ if (0 == pass) {
+ // output[j] = (output[j] + 1 + (output[j] > 0)) >> 2;
+ // TODO(cd): see quality impact of only doing
+ // output[j] = (output[j] + 1) >> 2;
+ // which would remove the code between here ...
+ __m256i tr2_0_0 = _mm256_cmpgt_epi16(tr2_0, kZero);
+ __m256i tr2_1_0 = _mm256_cmpgt_epi16(tr2_1, kZero);
+ __m256i tr2_2_0 = _mm256_cmpgt_epi16(tr2_2, kZero);
+ __m256i tr2_3_0 = _mm256_cmpgt_epi16(tr2_3, kZero);
+ __m256i tr2_4_0 = _mm256_cmpgt_epi16(tr2_4, kZero);
+ __m256i tr2_5_0 = _mm256_cmpgt_epi16(tr2_5, kZero);
+ __m256i tr2_6_0 = _mm256_cmpgt_epi16(tr2_6, kZero);
+ __m256i tr2_7_0 = _mm256_cmpgt_epi16(tr2_7, kZero);
+ tr2_0 = _mm256_sub_epi16(tr2_0, tr2_0_0);
+ tr2_1 = _mm256_sub_epi16(tr2_1, tr2_1_0);
+ tr2_2 = _mm256_sub_epi16(tr2_2, tr2_2_0);
+ tr2_3 = _mm256_sub_epi16(tr2_3, tr2_3_0);
+ tr2_4 = _mm256_sub_epi16(tr2_4, tr2_4_0);
+ tr2_5 = _mm256_sub_epi16(tr2_5, tr2_5_0);
+ tr2_6 = _mm256_sub_epi16(tr2_6, tr2_6_0);
+ tr2_7 = _mm256_sub_epi16(tr2_7, tr2_7_0);
+ // ... and here.
+ // PS: also change code in vp9/encoder/vp9_dct.c
+ tr2_0 = _mm256_add_epi16(tr2_0, kOne);
+ tr2_1 = _mm256_add_epi16(tr2_1, kOne);
+ tr2_2 = _mm256_add_epi16(tr2_2, kOne);
+ tr2_3 = _mm256_add_epi16(tr2_3, kOne);
+ tr2_4 = _mm256_add_epi16(tr2_4, kOne);
+ tr2_5 = _mm256_add_epi16(tr2_5, kOne);
+ tr2_6 = _mm256_add_epi16(tr2_6, kOne);
+ tr2_7 = _mm256_add_epi16(tr2_7, kOne);
+ tr2_0 = _mm256_srai_epi16(tr2_0, 2);
+ tr2_1 = _mm256_srai_epi16(tr2_1, 2);
+ tr2_2 = _mm256_srai_epi16(tr2_2, 2);
+ tr2_3 = _mm256_srai_epi16(tr2_3, 2);
+ tr2_4 = _mm256_srai_epi16(tr2_4, 2);
+ tr2_5 = _mm256_srai_epi16(tr2_5, 2);
+ tr2_6 = _mm256_srai_epi16(tr2_6, 2);
+ tr2_7 = _mm256_srai_epi16(tr2_7, 2);
+ }
+ // Note: even though all these stores are aligned, using the aligned
+ // intrinsic make the code slightly slower.
+ _mm_storeu_si128((__m128i *)(output_currStep + 0 * 32), _mm256_castsi256_si128(tr2_0));
+ _mm_storeu_si128((__m128i *)(output_currStep + 1 * 32), _mm256_castsi256_si128(tr2_1));
+ _mm_storeu_si128((__m128i *)(output_currStep + 2 * 32), _mm256_castsi256_si128(tr2_2));
+ _mm_storeu_si128((__m128i *)(output_currStep + 3 * 32), _mm256_castsi256_si128(tr2_3));
+ _mm_storeu_si128((__m128i *)(output_currStep + 4 * 32), _mm256_castsi256_si128(tr2_4));
+ _mm_storeu_si128((__m128i *)(output_currStep + 5 * 32), _mm256_castsi256_si128(tr2_5));
+ _mm_storeu_si128((__m128i *)(output_currStep + 6 * 32), _mm256_castsi256_si128(tr2_6));
+ _mm_storeu_si128((__m128i *)(output_currStep + 7 * 32), _mm256_castsi256_si128(tr2_7));
+
+ _mm_storeu_si128((__m128i *)(output_nextStep + 0 * 32), _mm256_extractf128_si256(tr2_0,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 1 * 32), _mm256_extractf128_si256(tr2_1,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 2 * 32), _mm256_extractf128_si256(tr2_2,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 3 * 32), _mm256_extractf128_si256(tr2_3,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 4 * 32), _mm256_extractf128_si256(tr2_4,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 5 * 32), _mm256_extractf128_si256(tr2_5,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 6 * 32), _mm256_extractf128_si256(tr2_6,1));
+ _mm_storeu_si128((__m128i *)(output_nextStep + 7 * 32), _mm256_extractf128_si256(tr2_7,1));
+ // Process next 8x8
+ output_currStep += 8;
+ output_nextStep += 8;
+ }
+ }
+ }
+ }
+} // NOLINT
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2_impl.h b/media/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2_impl.h
new file mode 100644
index 000000000..003ebd13f
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct32x32_sse2_impl.h
@@ -0,0 +1,3151 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h> // SSE2
+
+#include "./vp9_rtcd.h"
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vp9/encoder/x86/vp9_dct_sse2.h"
+#include "vp9/encoder/vp9_dct.h"
+#include "vpx_ports/mem.h"
+
+#if DCT_HIGH_BIT_DEPTH
+#define ADD_EPI16 _mm_adds_epi16
+#define SUB_EPI16 _mm_subs_epi16
+#if FDCT32x32_HIGH_PRECISION
+void vp9_fdct32x32_rows_c(const int16_t *intermediate, tran_low_t *out) {
+ int i, j;
+ for (i = 0; i < 32; ++i) {
+ tran_high_t temp_in[32], temp_out[32];
+ for (j = 0; j < 32; ++j)
+ temp_in[j] = intermediate[j * 32 + i];
+ vp9_fdct32(temp_in, temp_out, 0);
+ for (j = 0; j < 32; ++j)
+ out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
+ }
+}
+ #define HIGH_FDCT32x32_2D_C vp9_highbd_fdct32x32_c
+ #define HIGH_FDCT32x32_2D_ROWS_C vp9_fdct32x32_rows_c
+#else
+void vp9_fdct32x32_rd_rows_c(const int16_t *intermediate, tran_low_t *out) {
+ int i, j;
+ for (i = 0; i < 32; ++i) {
+ tran_high_t temp_in[32], temp_out[32];
+ for (j = 0; j < 32; ++j)
+ temp_in[j] = intermediate[j * 32 + i];
+ vp9_fdct32(temp_in, temp_out, 1);
+ for (j = 0; j < 32; ++j)
+ out[j + i * 32] = temp_out[j];
+ }
+}
+ #define HIGH_FDCT32x32_2D_C vp9_highbd_fdct32x32_rd_c
+ #define HIGH_FDCT32x32_2D_ROWS_C vp9_fdct32x32_rd_rows_c
+#endif // FDCT32x32_HIGH_PRECISION
+#else
+#define ADD_EPI16 _mm_add_epi16
+#define SUB_EPI16 _mm_sub_epi16
+#endif // DCT_HIGH_BIT_DEPTH
+
+
+void FDCT32x32_2D(const int16_t *input,
+ tran_low_t *output_org, int stride) {
+ // Calculate pre-multiplied strides
+ const int str1 = stride;
+ const int str2 = 2 * stride;
+ const int str3 = 2 * stride + str1;
+ // We need an intermediate buffer between passes.
+ DECLARE_ALIGNED(16, int16_t, intermediate[32 * 32]);
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(+cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(+cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(+cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(+cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m28_m04 = pair_set_epi16(-cospi_28_64, -cospi_4_64);
+ const __m128i k__cospi_m12_m20 = pair_set_epi16(-cospi_12_64, -cospi_20_64);
+ const __m128i k__cospi_p30_p02 = pair_set_epi16(+cospi_30_64, cospi_2_64);
+ const __m128i k__cospi_p14_p18 = pair_set_epi16(+cospi_14_64, cospi_18_64);
+ const __m128i k__cospi_p22_p10 = pair_set_epi16(+cospi_22_64, cospi_10_64);
+ const __m128i k__cospi_p06_p26 = pair_set_epi16(+cospi_6_64, cospi_26_64);
+ const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_p31_p01 = pair_set_epi16(+cospi_31_64, cospi_1_64);
+ const __m128i k__cospi_p15_p17 = pair_set_epi16(+cospi_15_64, cospi_17_64);
+ const __m128i k__cospi_p23_p09 = pair_set_epi16(+cospi_23_64, cospi_9_64);
+ const __m128i k__cospi_p07_p25 = pair_set_epi16(+cospi_7_64, cospi_25_64);
+ const __m128i k__cospi_m25_p07 = pair_set_epi16(-cospi_25_64, cospi_7_64);
+ const __m128i k__cospi_m09_p23 = pair_set_epi16(-cospi_9_64, cospi_23_64);
+ const __m128i k__cospi_m17_p15 = pair_set_epi16(-cospi_17_64, cospi_15_64);
+ const __m128i k__cospi_m01_p31 = pair_set_epi16(-cospi_1_64, cospi_31_64);
+ const __m128i k__cospi_p27_p05 = pair_set_epi16(+cospi_27_64, cospi_5_64);
+ const __m128i k__cospi_p11_p21 = pair_set_epi16(+cospi_11_64, cospi_21_64);
+ const __m128i k__cospi_p19_p13 = pair_set_epi16(+cospi_19_64, cospi_13_64);
+ const __m128i k__cospi_p03_p29 = pair_set_epi16(+cospi_3_64, cospi_29_64);
+ const __m128i k__cospi_m29_p03 = pair_set_epi16(-cospi_29_64, cospi_3_64);
+ const __m128i k__cospi_m13_p19 = pair_set_epi16(-cospi_13_64, cospi_19_64);
+ const __m128i k__cospi_m21_p11 = pair_set_epi16(-cospi_21_64, cospi_11_64);
+ const __m128i k__cospi_m05_p27 = pair_set_epi16(-cospi_5_64, cospi_27_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ const __m128i kZero = _mm_set1_epi16(0);
+ const __m128i kOne = _mm_set1_epi16(1);
+ // Do the two transform/transpose passes
+ int pass;
+#if DCT_HIGH_BIT_DEPTH
+ int overflow;
+#endif
+ for (pass = 0; pass < 2; ++pass) {
+ // We process eight columns (transposed rows in second pass) at a time.
+ int column_start;
+ for (column_start = 0; column_start < 32; column_start += 8) {
+ __m128i step1[32];
+ __m128i step2[32];
+ __m128i step3[32];
+ __m128i out[32];
+ // Stage 1
+ // Note: even though all the loads below are aligned, using the aligned
+ // intrinsic make the code slightly slower.
+ if (0 == pass) {
+ const int16_t *in = &input[column_start];
+ // step1[i] = (in[ 0 * stride] + in[(32 - 1) * stride]) << 2;
+ // Note: the next four blocks could be in a loop. That would help the
+ // instruction cache but is actually slower.
+ {
+ const int16_t *ina = in + 0 * str1;
+ const int16_t *inb = in + 31 * str1;
+ __m128i *step1a = &step1[ 0];
+ __m128i *step1b = &step1[31];
+ const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina));
+ const __m128i ina1 = _mm_loadu_si128((const __m128i *)(ina + str1));
+ const __m128i ina2 = _mm_loadu_si128((const __m128i *)(ina + str2));
+ const __m128i ina3 = _mm_loadu_si128((const __m128i *)(ina + str3));
+ const __m128i inb3 = _mm_loadu_si128((const __m128i *)(inb - str3));
+ const __m128i inb2 = _mm_loadu_si128((const __m128i *)(inb - str2));
+ const __m128i inb1 = _mm_loadu_si128((const __m128i *)(inb - str1));
+ const __m128i inb0 = _mm_loadu_si128((const __m128i *)(inb));
+ step1a[ 0] = _mm_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm_add_epi16(ina3, inb3);
+ step1b[-3] = _mm_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 4 * str1;
+ const int16_t *inb = in + 27 * str1;
+ __m128i *step1a = &step1[ 4];
+ __m128i *step1b = &step1[27];
+ const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina));
+ const __m128i ina1 = _mm_loadu_si128((const __m128i *)(ina + str1));
+ const __m128i ina2 = _mm_loadu_si128((const __m128i *)(ina + str2));
+ const __m128i ina3 = _mm_loadu_si128((const __m128i *)(ina + str3));
+ const __m128i inb3 = _mm_loadu_si128((const __m128i *)(inb - str3));
+ const __m128i inb2 = _mm_loadu_si128((const __m128i *)(inb - str2));
+ const __m128i inb1 = _mm_loadu_si128((const __m128i *)(inb - str1));
+ const __m128i inb0 = _mm_loadu_si128((const __m128i *)(inb));
+ step1a[ 0] = _mm_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm_add_epi16(ina3, inb3);
+ step1b[-3] = _mm_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 8 * str1;
+ const int16_t *inb = in + 23 * str1;
+ __m128i *step1a = &step1[ 8];
+ __m128i *step1b = &step1[23];
+ const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina));
+ const __m128i ina1 = _mm_loadu_si128((const __m128i *)(ina + str1));
+ const __m128i ina2 = _mm_loadu_si128((const __m128i *)(ina + str2));
+ const __m128i ina3 = _mm_loadu_si128((const __m128i *)(ina + str3));
+ const __m128i inb3 = _mm_loadu_si128((const __m128i *)(inb - str3));
+ const __m128i inb2 = _mm_loadu_si128((const __m128i *)(inb - str2));
+ const __m128i inb1 = _mm_loadu_si128((const __m128i *)(inb - str1));
+ const __m128i inb0 = _mm_loadu_si128((const __m128i *)(inb));
+ step1a[ 0] = _mm_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm_add_epi16(ina3, inb3);
+ step1b[-3] = _mm_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
+ }
+ {
+ const int16_t *ina = in + 12 * str1;
+ const int16_t *inb = in + 19 * str1;
+ __m128i *step1a = &step1[12];
+ __m128i *step1b = &step1[19];
+ const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina));
+ const __m128i ina1 = _mm_loadu_si128((const __m128i *)(ina + str1));
+ const __m128i ina2 = _mm_loadu_si128((const __m128i *)(ina + str2));
+ const __m128i ina3 = _mm_loadu_si128((const __m128i *)(ina + str3));
+ const __m128i inb3 = _mm_loadu_si128((const __m128i *)(inb - str3));
+ const __m128i inb2 = _mm_loadu_si128((const __m128i *)(inb - str2));
+ const __m128i inb1 = _mm_loadu_si128((const __m128i *)(inb - str1));
+ const __m128i inb0 = _mm_loadu_si128((const __m128i *)(inb));
+ step1a[ 0] = _mm_add_epi16(ina0, inb0);
+ step1a[ 1] = _mm_add_epi16(ina1, inb1);
+ step1a[ 2] = _mm_add_epi16(ina2, inb2);
+ step1a[ 3] = _mm_add_epi16(ina3, inb3);
+ step1b[-3] = _mm_sub_epi16(ina3, inb3);
+ step1b[-2] = _mm_sub_epi16(ina2, inb2);
+ step1b[-1] = _mm_sub_epi16(ina1, inb1);
+ step1b[-0] = _mm_sub_epi16(ina0, inb0);
+ step1a[ 0] = _mm_slli_epi16(step1a[ 0], 2);
+ step1a[ 1] = _mm_slli_epi16(step1a[ 1], 2);
+ step1a[ 2] = _mm_slli_epi16(step1a[ 2], 2);
+ step1a[ 3] = _mm_slli_epi16(step1a[ 3], 2);
+ step1b[-3] = _mm_slli_epi16(step1b[-3], 2);
+ step1b[-2] = _mm_slli_epi16(step1b[-2], 2);
+ step1b[-1] = _mm_slli_epi16(step1b[-1], 2);
+ step1b[-0] = _mm_slli_epi16(step1b[-0], 2);
+ }
+ } else {
+ int16_t *in = &intermediate[column_start];
+ // step1[i] = in[ 0 * 32] + in[(32 - 1) * 32];
+ // Note: using the same approach as above to have common offset is
+ // counter-productive as all offsets can be calculated at compile
+ // time.
+ // Note: the next four blocks could be in a loop. That would help the
+ // instruction cache but is actually slower.
+ {
+ __m128i in00 = _mm_loadu_si128((const __m128i *)(in + 0 * 32));
+ __m128i in01 = _mm_loadu_si128((const __m128i *)(in + 1 * 32));
+ __m128i in02 = _mm_loadu_si128((const __m128i *)(in + 2 * 32));
+ __m128i in03 = _mm_loadu_si128((const __m128i *)(in + 3 * 32));
+ __m128i in28 = _mm_loadu_si128((const __m128i *)(in + 28 * 32));
+ __m128i in29 = _mm_loadu_si128((const __m128i *)(in + 29 * 32));
+ __m128i in30 = _mm_loadu_si128((const __m128i *)(in + 30 * 32));
+ __m128i in31 = _mm_loadu_si128((const __m128i *)(in + 31 * 32));
+ step1[0] = ADD_EPI16(in00, in31);
+ step1[1] = ADD_EPI16(in01, in30);
+ step1[2] = ADD_EPI16(in02, in29);
+ step1[3] = ADD_EPI16(in03, in28);
+ step1[28] = SUB_EPI16(in03, in28);
+ step1[29] = SUB_EPI16(in02, in29);
+ step1[30] = SUB_EPI16(in01, in30);
+ step1[31] = SUB_EPI16(in00, in31);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1[0], &step1[1], &step1[2],
+ &step1[3], &step1[28], &step1[29],
+ &step1[30], &step1[31]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ __m128i in04 = _mm_loadu_si128((const __m128i *)(in + 4 * 32));
+ __m128i in05 = _mm_loadu_si128((const __m128i *)(in + 5 * 32));
+ __m128i in06 = _mm_loadu_si128((const __m128i *)(in + 6 * 32));
+ __m128i in07 = _mm_loadu_si128((const __m128i *)(in + 7 * 32));
+ __m128i in24 = _mm_loadu_si128((const __m128i *)(in + 24 * 32));
+ __m128i in25 = _mm_loadu_si128((const __m128i *)(in + 25 * 32));
+ __m128i in26 = _mm_loadu_si128((const __m128i *)(in + 26 * 32));
+ __m128i in27 = _mm_loadu_si128((const __m128i *)(in + 27 * 32));
+ step1[4] = ADD_EPI16(in04, in27);
+ step1[5] = ADD_EPI16(in05, in26);
+ step1[6] = ADD_EPI16(in06, in25);
+ step1[7] = ADD_EPI16(in07, in24);
+ step1[24] = SUB_EPI16(in07, in24);
+ step1[25] = SUB_EPI16(in06, in25);
+ step1[26] = SUB_EPI16(in05, in26);
+ step1[27] = SUB_EPI16(in04, in27);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1[4], &step1[5], &step1[6],
+ &step1[7], &step1[24], &step1[25],
+ &step1[26], &step1[27]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ __m128i in08 = _mm_loadu_si128((const __m128i *)(in + 8 * 32));
+ __m128i in09 = _mm_loadu_si128((const __m128i *)(in + 9 * 32));
+ __m128i in10 = _mm_loadu_si128((const __m128i *)(in + 10 * 32));
+ __m128i in11 = _mm_loadu_si128((const __m128i *)(in + 11 * 32));
+ __m128i in20 = _mm_loadu_si128((const __m128i *)(in + 20 * 32));
+ __m128i in21 = _mm_loadu_si128((const __m128i *)(in + 21 * 32));
+ __m128i in22 = _mm_loadu_si128((const __m128i *)(in + 22 * 32));
+ __m128i in23 = _mm_loadu_si128((const __m128i *)(in + 23 * 32));
+ step1[8] = ADD_EPI16(in08, in23);
+ step1[9] = ADD_EPI16(in09, in22);
+ step1[10] = ADD_EPI16(in10, in21);
+ step1[11] = ADD_EPI16(in11, in20);
+ step1[20] = SUB_EPI16(in11, in20);
+ step1[21] = SUB_EPI16(in10, in21);
+ step1[22] = SUB_EPI16(in09, in22);
+ step1[23] = SUB_EPI16(in08, in23);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1[8], &step1[9], &step1[10],
+ &step1[11], &step1[20], &step1[21],
+ &step1[22], &step1[23]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ __m128i in12 = _mm_loadu_si128((const __m128i *)(in + 12 * 32));
+ __m128i in13 = _mm_loadu_si128((const __m128i *)(in + 13 * 32));
+ __m128i in14 = _mm_loadu_si128((const __m128i *)(in + 14 * 32));
+ __m128i in15 = _mm_loadu_si128((const __m128i *)(in + 15 * 32));
+ __m128i in16 = _mm_loadu_si128((const __m128i *)(in + 16 * 32));
+ __m128i in17 = _mm_loadu_si128((const __m128i *)(in + 17 * 32));
+ __m128i in18 = _mm_loadu_si128((const __m128i *)(in + 18 * 32));
+ __m128i in19 = _mm_loadu_si128((const __m128i *)(in + 19 * 32));
+ step1[12] = ADD_EPI16(in12, in19);
+ step1[13] = ADD_EPI16(in13, in18);
+ step1[14] = ADD_EPI16(in14, in17);
+ step1[15] = ADD_EPI16(in15, in16);
+ step1[16] = SUB_EPI16(in15, in16);
+ step1[17] = SUB_EPI16(in14, in17);
+ step1[18] = SUB_EPI16(in13, in18);
+ step1[19] = SUB_EPI16(in12, in19);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1[12], &step1[13], &step1[14],
+ &step1[15], &step1[16], &step1[17],
+ &step1[18], &step1[19]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Stage 2
+ {
+ step2[0] = ADD_EPI16(step1[0], step1[15]);
+ step2[1] = ADD_EPI16(step1[1], step1[14]);
+ step2[2] = ADD_EPI16(step1[2], step1[13]);
+ step2[3] = ADD_EPI16(step1[3], step1[12]);
+ step2[4] = ADD_EPI16(step1[4], step1[11]);
+ step2[5] = ADD_EPI16(step1[5], step1[10]);
+ step2[6] = ADD_EPI16(step1[6], step1[ 9]);
+ step2[7] = ADD_EPI16(step1[7], step1[ 8]);
+ step2[8] = SUB_EPI16(step1[7], step1[ 8]);
+ step2[9] = SUB_EPI16(step1[6], step1[ 9]);
+ step2[10] = SUB_EPI16(step1[5], step1[10]);
+ step2[11] = SUB_EPI16(step1[4], step1[11]);
+ step2[12] = SUB_EPI16(step1[3], step1[12]);
+ step2[13] = SUB_EPI16(step1[2], step1[13]);
+ step2[14] = SUB_EPI16(step1[1], step1[14]);
+ step2[15] = SUB_EPI16(step1[0], step1[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ &step2[0], &step2[1], &step2[2], &step2[3],
+ &step2[4], &step2[5], &step2[6], &step2[7],
+ &step2[8], &step2[9], &step2[10], &step2[11],
+ &step2[12], &step2[13], &step2[14], &step2[15]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i s2_20_0 = _mm_unpacklo_epi16(step1[27], step1[20]);
+ const __m128i s2_20_1 = _mm_unpackhi_epi16(step1[27], step1[20]);
+ const __m128i s2_21_0 = _mm_unpacklo_epi16(step1[26], step1[21]);
+ const __m128i s2_21_1 = _mm_unpackhi_epi16(step1[26], step1[21]);
+ const __m128i s2_22_0 = _mm_unpacklo_epi16(step1[25], step1[22]);
+ const __m128i s2_22_1 = _mm_unpackhi_epi16(step1[25], step1[22]);
+ const __m128i s2_23_0 = _mm_unpacklo_epi16(step1[24], step1[23]);
+ const __m128i s2_23_1 = _mm_unpackhi_epi16(step1[24], step1[23]);
+ const __m128i s2_20_2 = _mm_madd_epi16(s2_20_0, k__cospi_p16_m16);
+ const __m128i s2_20_3 = _mm_madd_epi16(s2_20_1, k__cospi_p16_m16);
+ const __m128i s2_21_2 = _mm_madd_epi16(s2_21_0, k__cospi_p16_m16);
+ const __m128i s2_21_3 = _mm_madd_epi16(s2_21_1, k__cospi_p16_m16);
+ const __m128i s2_22_2 = _mm_madd_epi16(s2_22_0, k__cospi_p16_m16);
+ const __m128i s2_22_3 = _mm_madd_epi16(s2_22_1, k__cospi_p16_m16);
+ const __m128i s2_23_2 = _mm_madd_epi16(s2_23_0, k__cospi_p16_m16);
+ const __m128i s2_23_3 = _mm_madd_epi16(s2_23_1, k__cospi_p16_m16);
+ const __m128i s2_24_2 = _mm_madd_epi16(s2_23_0, k__cospi_p16_p16);
+ const __m128i s2_24_3 = _mm_madd_epi16(s2_23_1, k__cospi_p16_p16);
+ const __m128i s2_25_2 = _mm_madd_epi16(s2_22_0, k__cospi_p16_p16);
+ const __m128i s2_25_3 = _mm_madd_epi16(s2_22_1, k__cospi_p16_p16);
+ const __m128i s2_26_2 = _mm_madd_epi16(s2_21_0, k__cospi_p16_p16);
+ const __m128i s2_26_3 = _mm_madd_epi16(s2_21_1, k__cospi_p16_p16);
+ const __m128i s2_27_2 = _mm_madd_epi16(s2_20_0, k__cospi_p16_p16);
+ const __m128i s2_27_3 = _mm_madd_epi16(s2_20_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i s2_20_4 = _mm_add_epi32(s2_20_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_20_5 = _mm_add_epi32(s2_20_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_21_4 = _mm_add_epi32(s2_21_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_21_5 = _mm_add_epi32(s2_21_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_22_4 = _mm_add_epi32(s2_22_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_22_5 = _mm_add_epi32(s2_22_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_23_4 = _mm_add_epi32(s2_23_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_23_5 = _mm_add_epi32(s2_23_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_24_4 = _mm_add_epi32(s2_24_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_24_5 = _mm_add_epi32(s2_24_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_25_4 = _mm_add_epi32(s2_25_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_25_5 = _mm_add_epi32(s2_25_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_26_4 = _mm_add_epi32(s2_26_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_26_5 = _mm_add_epi32(s2_26_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_27_4 = _mm_add_epi32(s2_27_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_27_5 = _mm_add_epi32(s2_27_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_20_6 = _mm_srai_epi32(s2_20_4, DCT_CONST_BITS);
+ const __m128i s2_20_7 = _mm_srai_epi32(s2_20_5, DCT_CONST_BITS);
+ const __m128i s2_21_6 = _mm_srai_epi32(s2_21_4, DCT_CONST_BITS);
+ const __m128i s2_21_7 = _mm_srai_epi32(s2_21_5, DCT_CONST_BITS);
+ const __m128i s2_22_6 = _mm_srai_epi32(s2_22_4, DCT_CONST_BITS);
+ const __m128i s2_22_7 = _mm_srai_epi32(s2_22_5, DCT_CONST_BITS);
+ const __m128i s2_23_6 = _mm_srai_epi32(s2_23_4, DCT_CONST_BITS);
+ const __m128i s2_23_7 = _mm_srai_epi32(s2_23_5, DCT_CONST_BITS);
+ const __m128i s2_24_6 = _mm_srai_epi32(s2_24_4, DCT_CONST_BITS);
+ const __m128i s2_24_7 = _mm_srai_epi32(s2_24_5, DCT_CONST_BITS);
+ const __m128i s2_25_6 = _mm_srai_epi32(s2_25_4, DCT_CONST_BITS);
+ const __m128i s2_25_7 = _mm_srai_epi32(s2_25_5, DCT_CONST_BITS);
+ const __m128i s2_26_6 = _mm_srai_epi32(s2_26_4, DCT_CONST_BITS);
+ const __m128i s2_26_7 = _mm_srai_epi32(s2_26_5, DCT_CONST_BITS);
+ const __m128i s2_27_6 = _mm_srai_epi32(s2_27_4, DCT_CONST_BITS);
+ const __m128i s2_27_7 = _mm_srai_epi32(s2_27_5, DCT_CONST_BITS);
+ // Combine
+ step2[20] = _mm_packs_epi32(s2_20_6, s2_20_7);
+ step2[21] = _mm_packs_epi32(s2_21_6, s2_21_7);
+ step2[22] = _mm_packs_epi32(s2_22_6, s2_22_7);
+ step2[23] = _mm_packs_epi32(s2_23_6, s2_23_7);
+ step2[24] = _mm_packs_epi32(s2_24_6, s2_24_7);
+ step2[25] = _mm_packs_epi32(s2_25_6, s2_25_7);
+ step2[26] = _mm_packs_epi32(s2_26_6, s2_26_7);
+ step2[27] = _mm_packs_epi32(s2_27_6, s2_27_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step2[20], &step2[21], &step2[22],
+ &step2[23], &step2[24], &step2[25],
+ &step2[26], &step2[27]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+
+#if !FDCT32x32_HIGH_PRECISION
+ // dump the magnitude by half, hence the intermediate values are within
+ // the range of 16 bits.
+ if (1 == pass) {
+ __m128i s3_00_0 = _mm_cmplt_epi16(step2[ 0], kZero);
+ __m128i s3_01_0 = _mm_cmplt_epi16(step2[ 1], kZero);
+ __m128i s3_02_0 = _mm_cmplt_epi16(step2[ 2], kZero);
+ __m128i s3_03_0 = _mm_cmplt_epi16(step2[ 3], kZero);
+ __m128i s3_04_0 = _mm_cmplt_epi16(step2[ 4], kZero);
+ __m128i s3_05_0 = _mm_cmplt_epi16(step2[ 5], kZero);
+ __m128i s3_06_0 = _mm_cmplt_epi16(step2[ 6], kZero);
+ __m128i s3_07_0 = _mm_cmplt_epi16(step2[ 7], kZero);
+ __m128i s2_08_0 = _mm_cmplt_epi16(step2[ 8], kZero);
+ __m128i s2_09_0 = _mm_cmplt_epi16(step2[ 9], kZero);
+ __m128i s3_10_0 = _mm_cmplt_epi16(step2[10], kZero);
+ __m128i s3_11_0 = _mm_cmplt_epi16(step2[11], kZero);
+ __m128i s3_12_0 = _mm_cmplt_epi16(step2[12], kZero);
+ __m128i s3_13_0 = _mm_cmplt_epi16(step2[13], kZero);
+ __m128i s2_14_0 = _mm_cmplt_epi16(step2[14], kZero);
+ __m128i s2_15_0 = _mm_cmplt_epi16(step2[15], kZero);
+ __m128i s3_16_0 = _mm_cmplt_epi16(step1[16], kZero);
+ __m128i s3_17_0 = _mm_cmplt_epi16(step1[17], kZero);
+ __m128i s3_18_0 = _mm_cmplt_epi16(step1[18], kZero);
+ __m128i s3_19_0 = _mm_cmplt_epi16(step1[19], kZero);
+ __m128i s3_20_0 = _mm_cmplt_epi16(step2[20], kZero);
+ __m128i s3_21_0 = _mm_cmplt_epi16(step2[21], kZero);
+ __m128i s3_22_0 = _mm_cmplt_epi16(step2[22], kZero);
+ __m128i s3_23_0 = _mm_cmplt_epi16(step2[23], kZero);
+ __m128i s3_24_0 = _mm_cmplt_epi16(step2[24], kZero);
+ __m128i s3_25_0 = _mm_cmplt_epi16(step2[25], kZero);
+ __m128i s3_26_0 = _mm_cmplt_epi16(step2[26], kZero);
+ __m128i s3_27_0 = _mm_cmplt_epi16(step2[27], kZero);
+ __m128i s3_28_0 = _mm_cmplt_epi16(step1[28], kZero);
+ __m128i s3_29_0 = _mm_cmplt_epi16(step1[29], kZero);
+ __m128i s3_30_0 = _mm_cmplt_epi16(step1[30], kZero);
+ __m128i s3_31_0 = _mm_cmplt_epi16(step1[31], kZero);
+
+ step2[0] = SUB_EPI16(step2[ 0], s3_00_0);
+ step2[1] = SUB_EPI16(step2[ 1], s3_01_0);
+ step2[2] = SUB_EPI16(step2[ 2], s3_02_0);
+ step2[3] = SUB_EPI16(step2[ 3], s3_03_0);
+ step2[4] = SUB_EPI16(step2[ 4], s3_04_0);
+ step2[5] = SUB_EPI16(step2[ 5], s3_05_0);
+ step2[6] = SUB_EPI16(step2[ 6], s3_06_0);
+ step2[7] = SUB_EPI16(step2[ 7], s3_07_0);
+ step2[8] = SUB_EPI16(step2[ 8], s2_08_0);
+ step2[9] = SUB_EPI16(step2[ 9], s2_09_0);
+ step2[10] = SUB_EPI16(step2[10], s3_10_0);
+ step2[11] = SUB_EPI16(step2[11], s3_11_0);
+ step2[12] = SUB_EPI16(step2[12], s3_12_0);
+ step2[13] = SUB_EPI16(step2[13], s3_13_0);
+ step2[14] = SUB_EPI16(step2[14], s2_14_0);
+ step2[15] = SUB_EPI16(step2[15], s2_15_0);
+ step1[16] = SUB_EPI16(step1[16], s3_16_0);
+ step1[17] = SUB_EPI16(step1[17], s3_17_0);
+ step1[18] = SUB_EPI16(step1[18], s3_18_0);
+ step1[19] = SUB_EPI16(step1[19], s3_19_0);
+ step2[20] = SUB_EPI16(step2[20], s3_20_0);
+ step2[21] = SUB_EPI16(step2[21], s3_21_0);
+ step2[22] = SUB_EPI16(step2[22], s3_22_0);
+ step2[23] = SUB_EPI16(step2[23], s3_23_0);
+ step2[24] = SUB_EPI16(step2[24], s3_24_0);
+ step2[25] = SUB_EPI16(step2[25], s3_25_0);
+ step2[26] = SUB_EPI16(step2[26], s3_26_0);
+ step2[27] = SUB_EPI16(step2[27], s3_27_0);
+ step1[28] = SUB_EPI16(step1[28], s3_28_0);
+ step1[29] = SUB_EPI16(step1[29], s3_29_0);
+ step1[30] = SUB_EPI16(step1[30], s3_30_0);
+ step1[31] = SUB_EPI16(step1[31], s3_31_0);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x32(
+ &step2[0], &step2[1], &step2[2], &step2[3],
+ &step2[4], &step2[5], &step2[6], &step2[7],
+ &step2[8], &step2[9], &step2[10], &step2[11],
+ &step2[12], &step2[13], &step2[14], &step2[15],
+ &step1[16], &step1[17], &step1[18], &step1[19],
+ &step2[20], &step2[21], &step2[22], &step2[23],
+ &step2[24], &step2[25], &step2[26], &step2[27],
+ &step1[28], &step1[29], &step1[30], &step1[31]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ step2[0] = _mm_add_epi16(step2[ 0], kOne);
+ step2[1] = _mm_add_epi16(step2[ 1], kOne);
+ step2[2] = _mm_add_epi16(step2[ 2], kOne);
+ step2[3] = _mm_add_epi16(step2[ 3], kOne);
+ step2[4] = _mm_add_epi16(step2[ 4], kOne);
+ step2[5] = _mm_add_epi16(step2[ 5], kOne);
+ step2[6] = _mm_add_epi16(step2[ 6], kOne);
+ step2[7] = _mm_add_epi16(step2[ 7], kOne);
+ step2[8] = _mm_add_epi16(step2[ 8], kOne);
+ step2[9] = _mm_add_epi16(step2[ 9], kOne);
+ step2[10] = _mm_add_epi16(step2[10], kOne);
+ step2[11] = _mm_add_epi16(step2[11], kOne);
+ step2[12] = _mm_add_epi16(step2[12], kOne);
+ step2[13] = _mm_add_epi16(step2[13], kOne);
+ step2[14] = _mm_add_epi16(step2[14], kOne);
+ step2[15] = _mm_add_epi16(step2[15], kOne);
+ step1[16] = _mm_add_epi16(step1[16], kOne);
+ step1[17] = _mm_add_epi16(step1[17], kOne);
+ step1[18] = _mm_add_epi16(step1[18], kOne);
+ step1[19] = _mm_add_epi16(step1[19], kOne);
+ step2[20] = _mm_add_epi16(step2[20], kOne);
+ step2[21] = _mm_add_epi16(step2[21], kOne);
+ step2[22] = _mm_add_epi16(step2[22], kOne);
+ step2[23] = _mm_add_epi16(step2[23], kOne);
+ step2[24] = _mm_add_epi16(step2[24], kOne);
+ step2[25] = _mm_add_epi16(step2[25], kOne);
+ step2[26] = _mm_add_epi16(step2[26], kOne);
+ step2[27] = _mm_add_epi16(step2[27], kOne);
+ step1[28] = _mm_add_epi16(step1[28], kOne);
+ step1[29] = _mm_add_epi16(step1[29], kOne);
+ step1[30] = _mm_add_epi16(step1[30], kOne);
+ step1[31] = _mm_add_epi16(step1[31], kOne);
+
+ step2[0] = _mm_srai_epi16(step2[ 0], 2);
+ step2[1] = _mm_srai_epi16(step2[ 1], 2);
+ step2[2] = _mm_srai_epi16(step2[ 2], 2);
+ step2[3] = _mm_srai_epi16(step2[ 3], 2);
+ step2[4] = _mm_srai_epi16(step2[ 4], 2);
+ step2[5] = _mm_srai_epi16(step2[ 5], 2);
+ step2[6] = _mm_srai_epi16(step2[ 6], 2);
+ step2[7] = _mm_srai_epi16(step2[ 7], 2);
+ step2[8] = _mm_srai_epi16(step2[ 8], 2);
+ step2[9] = _mm_srai_epi16(step2[ 9], 2);
+ step2[10] = _mm_srai_epi16(step2[10], 2);
+ step2[11] = _mm_srai_epi16(step2[11], 2);
+ step2[12] = _mm_srai_epi16(step2[12], 2);
+ step2[13] = _mm_srai_epi16(step2[13], 2);
+ step2[14] = _mm_srai_epi16(step2[14], 2);
+ step2[15] = _mm_srai_epi16(step2[15], 2);
+ step1[16] = _mm_srai_epi16(step1[16], 2);
+ step1[17] = _mm_srai_epi16(step1[17], 2);
+ step1[18] = _mm_srai_epi16(step1[18], 2);
+ step1[19] = _mm_srai_epi16(step1[19], 2);
+ step2[20] = _mm_srai_epi16(step2[20], 2);
+ step2[21] = _mm_srai_epi16(step2[21], 2);
+ step2[22] = _mm_srai_epi16(step2[22], 2);
+ step2[23] = _mm_srai_epi16(step2[23], 2);
+ step2[24] = _mm_srai_epi16(step2[24], 2);
+ step2[25] = _mm_srai_epi16(step2[25], 2);
+ step2[26] = _mm_srai_epi16(step2[26], 2);
+ step2[27] = _mm_srai_epi16(step2[27], 2);
+ step1[28] = _mm_srai_epi16(step1[28], 2);
+ step1[29] = _mm_srai_epi16(step1[29], 2);
+ step1[30] = _mm_srai_epi16(step1[30], 2);
+ step1[31] = _mm_srai_epi16(step1[31], 2);
+ }
+#endif // !FDCT32x32_HIGH_PRECISION
+
+#if FDCT32x32_HIGH_PRECISION
+ if (pass == 0) {
+#endif
+ // Stage 3
+ {
+ step3[0] = ADD_EPI16(step2[(8 - 1)], step2[0]);
+ step3[1] = ADD_EPI16(step2[(8 - 2)], step2[1]);
+ step3[2] = ADD_EPI16(step2[(8 - 3)], step2[2]);
+ step3[3] = ADD_EPI16(step2[(8 - 4)], step2[3]);
+ step3[4] = SUB_EPI16(step2[(8 - 5)], step2[4]);
+ step3[5] = SUB_EPI16(step2[(8 - 6)], step2[5]);
+ step3[6] = SUB_EPI16(step2[(8 - 7)], step2[6]);
+ step3[7] = SUB_EPI16(step2[(8 - 8)], step2[7]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step3[0], &step3[1], &step3[2],
+ &step3[3], &step3[4], &step3[5],
+ &step3[6], &step3[7]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i s3_10_0 = _mm_unpacklo_epi16(step2[13], step2[10]);
+ const __m128i s3_10_1 = _mm_unpackhi_epi16(step2[13], step2[10]);
+ const __m128i s3_11_0 = _mm_unpacklo_epi16(step2[12], step2[11]);
+ const __m128i s3_11_1 = _mm_unpackhi_epi16(step2[12], step2[11]);
+ const __m128i s3_10_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_m16);
+ const __m128i s3_10_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_m16);
+ const __m128i s3_11_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_m16);
+ const __m128i s3_11_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_m16);
+ const __m128i s3_12_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_p16);
+ const __m128i s3_12_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_p16);
+ const __m128i s3_13_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_p16);
+ const __m128i s3_13_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i s3_10_4 = _mm_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_10_5 = _mm_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_11_4 = _mm_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_11_5 = _mm_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_12_4 = _mm_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_12_5 = _mm_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_13_4 = _mm_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_13_5 = _mm_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_10_6 = _mm_srai_epi32(s3_10_4, DCT_CONST_BITS);
+ const __m128i s3_10_7 = _mm_srai_epi32(s3_10_5, DCT_CONST_BITS);
+ const __m128i s3_11_6 = _mm_srai_epi32(s3_11_4, DCT_CONST_BITS);
+ const __m128i s3_11_7 = _mm_srai_epi32(s3_11_5, DCT_CONST_BITS);
+ const __m128i s3_12_6 = _mm_srai_epi32(s3_12_4, DCT_CONST_BITS);
+ const __m128i s3_12_7 = _mm_srai_epi32(s3_12_5, DCT_CONST_BITS);
+ const __m128i s3_13_6 = _mm_srai_epi32(s3_13_4, DCT_CONST_BITS);
+ const __m128i s3_13_7 = _mm_srai_epi32(s3_13_5, DCT_CONST_BITS);
+ // Combine
+ step3[10] = _mm_packs_epi32(s3_10_6, s3_10_7);
+ step3[11] = _mm_packs_epi32(s3_11_6, s3_11_7);
+ step3[12] = _mm_packs_epi32(s3_12_6, s3_12_7);
+ step3[13] = _mm_packs_epi32(s3_13_6, s3_13_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&step3[10], &step3[11],
+ &step3[12], &step3[13]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ step3[16] = ADD_EPI16(step2[23], step1[16]);
+ step3[17] = ADD_EPI16(step2[22], step1[17]);
+ step3[18] = ADD_EPI16(step2[21], step1[18]);
+ step3[19] = ADD_EPI16(step2[20], step1[19]);
+ step3[20] = SUB_EPI16(step1[19], step2[20]);
+ step3[21] = SUB_EPI16(step1[18], step2[21]);
+ step3[22] = SUB_EPI16(step1[17], step2[22]);
+ step3[23] = SUB_EPI16(step1[16], step2[23]);
+ step3[24] = SUB_EPI16(step1[31], step2[24]);
+ step3[25] = SUB_EPI16(step1[30], step2[25]);
+ step3[26] = SUB_EPI16(step1[29], step2[26]);
+ step3[27] = SUB_EPI16(step1[28], step2[27]);
+ step3[28] = ADD_EPI16(step2[27], step1[28]);
+ step3[29] = ADD_EPI16(step2[26], step1[29]);
+ step3[30] = ADD_EPI16(step2[25], step1[30]);
+ step3[31] = ADD_EPI16(step2[24], step1[31]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ &step3[16], &step3[17], &step3[18], &step3[19],
+ &step3[20], &step3[21], &step3[22], &step3[23],
+ &step3[24], &step3[25], &step3[26], &step3[27],
+ &step3[28], &step3[29], &step3[30], &step3[31]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+
+ // Stage 4
+ {
+ step1[0] = ADD_EPI16(step3[ 3], step3[ 0]);
+ step1[1] = ADD_EPI16(step3[ 2], step3[ 1]);
+ step1[2] = SUB_EPI16(step3[ 1], step3[ 2]);
+ step1[3] = SUB_EPI16(step3[ 0], step3[ 3]);
+ step1[8] = ADD_EPI16(step3[11], step2[ 8]);
+ step1[9] = ADD_EPI16(step3[10], step2[ 9]);
+ step1[10] = SUB_EPI16(step2[ 9], step3[10]);
+ step1[11] = SUB_EPI16(step2[ 8], step3[11]);
+ step1[12] = SUB_EPI16(step2[15], step3[12]);
+ step1[13] = SUB_EPI16(step2[14], step3[13]);
+ step1[14] = ADD_EPI16(step3[13], step2[14]);
+ step1[15] = ADD_EPI16(step3[12], step2[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ &step1[0], &step1[1], &step1[2], &step1[3],
+ &step1[4], &step1[5], &step1[6], &step1[7],
+ &step1[8], &step1[9], &step1[10], &step1[11],
+ &step1[12], &step1[13], &step1[14], &step1[15]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i s1_05_0 = _mm_unpacklo_epi16(step3[6], step3[5]);
+ const __m128i s1_05_1 = _mm_unpackhi_epi16(step3[6], step3[5]);
+ const __m128i s1_05_2 = _mm_madd_epi16(s1_05_0, k__cospi_p16_m16);
+ const __m128i s1_05_3 = _mm_madd_epi16(s1_05_1, k__cospi_p16_m16);
+ const __m128i s1_06_2 = _mm_madd_epi16(s1_05_0, k__cospi_p16_p16);
+ const __m128i s1_06_3 = _mm_madd_epi16(s1_05_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i s1_05_4 = _mm_add_epi32(s1_05_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_05_5 = _mm_add_epi32(s1_05_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_06_4 = _mm_add_epi32(s1_06_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_06_5 = _mm_add_epi32(s1_06_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_05_6 = _mm_srai_epi32(s1_05_4, DCT_CONST_BITS);
+ const __m128i s1_05_7 = _mm_srai_epi32(s1_05_5, DCT_CONST_BITS);
+ const __m128i s1_06_6 = _mm_srai_epi32(s1_06_4, DCT_CONST_BITS);
+ const __m128i s1_06_7 = _mm_srai_epi32(s1_06_5, DCT_CONST_BITS);
+ // Combine
+ step1[5] = _mm_packs_epi32(s1_05_6, s1_05_7);
+ step1[6] = _mm_packs_epi32(s1_06_6, s1_06_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&step1[5], &step1[6]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i s1_18_0 = _mm_unpacklo_epi16(step3[18], step3[29]);
+ const __m128i s1_18_1 = _mm_unpackhi_epi16(step3[18], step3[29]);
+ const __m128i s1_19_0 = _mm_unpacklo_epi16(step3[19], step3[28]);
+ const __m128i s1_19_1 = _mm_unpackhi_epi16(step3[19], step3[28]);
+ const __m128i s1_20_0 = _mm_unpacklo_epi16(step3[20], step3[27]);
+ const __m128i s1_20_1 = _mm_unpackhi_epi16(step3[20], step3[27]);
+ const __m128i s1_21_0 = _mm_unpacklo_epi16(step3[21], step3[26]);
+ const __m128i s1_21_1 = _mm_unpackhi_epi16(step3[21], step3[26]);
+ const __m128i s1_18_2 = _mm_madd_epi16(s1_18_0, k__cospi_m08_p24);
+ const __m128i s1_18_3 = _mm_madd_epi16(s1_18_1, k__cospi_m08_p24);
+ const __m128i s1_19_2 = _mm_madd_epi16(s1_19_0, k__cospi_m08_p24);
+ const __m128i s1_19_3 = _mm_madd_epi16(s1_19_1, k__cospi_m08_p24);
+ const __m128i s1_20_2 = _mm_madd_epi16(s1_20_0, k__cospi_m24_m08);
+ const __m128i s1_20_3 = _mm_madd_epi16(s1_20_1, k__cospi_m24_m08);
+ const __m128i s1_21_2 = _mm_madd_epi16(s1_21_0, k__cospi_m24_m08);
+ const __m128i s1_21_3 = _mm_madd_epi16(s1_21_1, k__cospi_m24_m08);
+ const __m128i s1_26_2 = _mm_madd_epi16(s1_21_0, k__cospi_m08_p24);
+ const __m128i s1_26_3 = _mm_madd_epi16(s1_21_1, k__cospi_m08_p24);
+ const __m128i s1_27_2 = _mm_madd_epi16(s1_20_0, k__cospi_m08_p24);
+ const __m128i s1_27_3 = _mm_madd_epi16(s1_20_1, k__cospi_m08_p24);
+ const __m128i s1_28_2 = _mm_madd_epi16(s1_19_0, k__cospi_p24_p08);
+ const __m128i s1_28_3 = _mm_madd_epi16(s1_19_1, k__cospi_p24_p08);
+ const __m128i s1_29_2 = _mm_madd_epi16(s1_18_0, k__cospi_p24_p08);
+ const __m128i s1_29_3 = _mm_madd_epi16(s1_18_1, k__cospi_p24_p08);
+ // dct_const_round_shift
+ const __m128i s1_18_4 = _mm_add_epi32(s1_18_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_18_5 = _mm_add_epi32(s1_18_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_19_4 = _mm_add_epi32(s1_19_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_19_5 = _mm_add_epi32(s1_19_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_20_4 = _mm_add_epi32(s1_20_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_20_5 = _mm_add_epi32(s1_20_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_21_4 = _mm_add_epi32(s1_21_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_21_5 = _mm_add_epi32(s1_21_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_26_4 = _mm_add_epi32(s1_26_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_26_5 = _mm_add_epi32(s1_26_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_27_4 = _mm_add_epi32(s1_27_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_27_5 = _mm_add_epi32(s1_27_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_28_4 = _mm_add_epi32(s1_28_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_28_5 = _mm_add_epi32(s1_28_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_29_4 = _mm_add_epi32(s1_29_2, k__DCT_CONST_ROUNDING);
+ const __m128i s1_29_5 = _mm_add_epi32(s1_29_3, k__DCT_CONST_ROUNDING);
+ const __m128i s1_18_6 = _mm_srai_epi32(s1_18_4, DCT_CONST_BITS);
+ const __m128i s1_18_7 = _mm_srai_epi32(s1_18_5, DCT_CONST_BITS);
+ const __m128i s1_19_6 = _mm_srai_epi32(s1_19_4, DCT_CONST_BITS);
+ const __m128i s1_19_7 = _mm_srai_epi32(s1_19_5, DCT_CONST_BITS);
+ const __m128i s1_20_6 = _mm_srai_epi32(s1_20_4, DCT_CONST_BITS);
+ const __m128i s1_20_7 = _mm_srai_epi32(s1_20_5, DCT_CONST_BITS);
+ const __m128i s1_21_6 = _mm_srai_epi32(s1_21_4, DCT_CONST_BITS);
+ const __m128i s1_21_7 = _mm_srai_epi32(s1_21_5, DCT_CONST_BITS);
+ const __m128i s1_26_6 = _mm_srai_epi32(s1_26_4, DCT_CONST_BITS);
+ const __m128i s1_26_7 = _mm_srai_epi32(s1_26_5, DCT_CONST_BITS);
+ const __m128i s1_27_6 = _mm_srai_epi32(s1_27_4, DCT_CONST_BITS);
+ const __m128i s1_27_7 = _mm_srai_epi32(s1_27_5, DCT_CONST_BITS);
+ const __m128i s1_28_6 = _mm_srai_epi32(s1_28_4, DCT_CONST_BITS);
+ const __m128i s1_28_7 = _mm_srai_epi32(s1_28_5, DCT_CONST_BITS);
+ const __m128i s1_29_6 = _mm_srai_epi32(s1_29_4, DCT_CONST_BITS);
+ const __m128i s1_29_7 = _mm_srai_epi32(s1_29_5, DCT_CONST_BITS);
+ // Combine
+ step1[18] = _mm_packs_epi32(s1_18_6, s1_18_7);
+ step1[19] = _mm_packs_epi32(s1_19_6, s1_19_7);
+ step1[20] = _mm_packs_epi32(s1_20_6, s1_20_7);
+ step1[21] = _mm_packs_epi32(s1_21_6, s1_21_7);
+ step1[26] = _mm_packs_epi32(s1_26_6, s1_26_7);
+ step1[27] = _mm_packs_epi32(s1_27_6, s1_27_7);
+ step1[28] = _mm_packs_epi32(s1_28_6, s1_28_7);
+ step1[29] = _mm_packs_epi32(s1_29_6, s1_29_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1[18], &step1[19], &step1[20],
+ &step1[21], &step1[26], &step1[27],
+ &step1[28], &step1[29]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Stage 5
+ {
+ step2[4] = ADD_EPI16(step1[5], step3[4]);
+ step2[5] = SUB_EPI16(step3[4], step1[5]);
+ step2[6] = SUB_EPI16(step3[7], step1[6]);
+ step2[7] = ADD_EPI16(step1[6], step3[7]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&step2[4], &step2[5],
+ &step2[6], &step2[7]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i out_00_0 = _mm_unpacklo_epi16(step1[0], step1[1]);
+ const __m128i out_00_1 = _mm_unpackhi_epi16(step1[0], step1[1]);
+ const __m128i out_08_0 = _mm_unpacklo_epi16(step1[2], step1[3]);
+ const __m128i out_08_1 = _mm_unpackhi_epi16(step1[2], step1[3]);
+ const __m128i out_00_2 = _mm_madd_epi16(out_00_0, k__cospi_p16_p16);
+ const __m128i out_00_3 = _mm_madd_epi16(out_00_1, k__cospi_p16_p16);
+ const __m128i out_16_2 = _mm_madd_epi16(out_00_0, k__cospi_p16_m16);
+ const __m128i out_16_3 = _mm_madd_epi16(out_00_1, k__cospi_p16_m16);
+ const __m128i out_08_2 = _mm_madd_epi16(out_08_0, k__cospi_p24_p08);
+ const __m128i out_08_3 = _mm_madd_epi16(out_08_1, k__cospi_p24_p08);
+ const __m128i out_24_2 = _mm_madd_epi16(out_08_0, k__cospi_m08_p24);
+ const __m128i out_24_3 = _mm_madd_epi16(out_08_1, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m128i out_00_4 = _mm_add_epi32(out_00_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_00_5 = _mm_add_epi32(out_00_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_16_4 = _mm_add_epi32(out_16_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_16_5 = _mm_add_epi32(out_16_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_08_4 = _mm_add_epi32(out_08_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_08_5 = _mm_add_epi32(out_08_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_24_4 = _mm_add_epi32(out_24_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_24_5 = _mm_add_epi32(out_24_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_00_6 = _mm_srai_epi32(out_00_4, DCT_CONST_BITS);
+ const __m128i out_00_7 = _mm_srai_epi32(out_00_5, DCT_CONST_BITS);
+ const __m128i out_16_6 = _mm_srai_epi32(out_16_4, DCT_CONST_BITS);
+ const __m128i out_16_7 = _mm_srai_epi32(out_16_5, DCT_CONST_BITS);
+ const __m128i out_08_6 = _mm_srai_epi32(out_08_4, DCT_CONST_BITS);
+ const __m128i out_08_7 = _mm_srai_epi32(out_08_5, DCT_CONST_BITS);
+ const __m128i out_24_6 = _mm_srai_epi32(out_24_4, DCT_CONST_BITS);
+ const __m128i out_24_7 = _mm_srai_epi32(out_24_5, DCT_CONST_BITS);
+ // Combine
+ out[ 0] = _mm_packs_epi32(out_00_6, out_00_7);
+ out[16] = _mm_packs_epi32(out_16_6, out_16_7);
+ out[ 8] = _mm_packs_epi32(out_08_6, out_08_7);
+ out[24] = _mm_packs_epi32(out_24_6, out_24_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&out[0], &out[16],
+ &out[8], &out[24]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i s2_09_0 = _mm_unpacklo_epi16(step1[ 9], step1[14]);
+ const __m128i s2_09_1 = _mm_unpackhi_epi16(step1[ 9], step1[14]);
+ const __m128i s2_10_0 = _mm_unpacklo_epi16(step1[10], step1[13]);
+ const __m128i s2_10_1 = _mm_unpackhi_epi16(step1[10], step1[13]);
+ const __m128i s2_09_2 = _mm_madd_epi16(s2_09_0, k__cospi_m08_p24);
+ const __m128i s2_09_3 = _mm_madd_epi16(s2_09_1, k__cospi_m08_p24);
+ const __m128i s2_10_2 = _mm_madd_epi16(s2_10_0, k__cospi_m24_m08);
+ const __m128i s2_10_3 = _mm_madd_epi16(s2_10_1, k__cospi_m24_m08);
+ const __m128i s2_13_2 = _mm_madd_epi16(s2_10_0, k__cospi_m08_p24);
+ const __m128i s2_13_3 = _mm_madd_epi16(s2_10_1, k__cospi_m08_p24);
+ const __m128i s2_14_2 = _mm_madd_epi16(s2_09_0, k__cospi_p24_p08);
+ const __m128i s2_14_3 = _mm_madd_epi16(s2_09_1, k__cospi_p24_p08);
+ // dct_const_round_shift
+ const __m128i s2_09_4 = _mm_add_epi32(s2_09_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_09_5 = _mm_add_epi32(s2_09_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_10_4 = _mm_add_epi32(s2_10_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_10_5 = _mm_add_epi32(s2_10_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_13_4 = _mm_add_epi32(s2_13_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_13_5 = _mm_add_epi32(s2_13_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_14_4 = _mm_add_epi32(s2_14_2, k__DCT_CONST_ROUNDING);
+ const __m128i s2_14_5 = _mm_add_epi32(s2_14_3, k__DCT_CONST_ROUNDING);
+ const __m128i s2_09_6 = _mm_srai_epi32(s2_09_4, DCT_CONST_BITS);
+ const __m128i s2_09_7 = _mm_srai_epi32(s2_09_5, DCT_CONST_BITS);
+ const __m128i s2_10_6 = _mm_srai_epi32(s2_10_4, DCT_CONST_BITS);
+ const __m128i s2_10_7 = _mm_srai_epi32(s2_10_5, DCT_CONST_BITS);
+ const __m128i s2_13_6 = _mm_srai_epi32(s2_13_4, DCT_CONST_BITS);
+ const __m128i s2_13_7 = _mm_srai_epi32(s2_13_5, DCT_CONST_BITS);
+ const __m128i s2_14_6 = _mm_srai_epi32(s2_14_4, DCT_CONST_BITS);
+ const __m128i s2_14_7 = _mm_srai_epi32(s2_14_5, DCT_CONST_BITS);
+ // Combine
+ step2[ 9] = _mm_packs_epi32(s2_09_6, s2_09_7);
+ step2[10] = _mm_packs_epi32(s2_10_6, s2_10_7);
+ step2[13] = _mm_packs_epi32(s2_13_6, s2_13_7);
+ step2[14] = _mm_packs_epi32(s2_14_6, s2_14_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&step2[9], &step2[10],
+ &step2[13], &step2[14]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ step2[16] = ADD_EPI16(step1[19], step3[16]);
+ step2[17] = ADD_EPI16(step1[18], step3[17]);
+ step2[18] = SUB_EPI16(step3[17], step1[18]);
+ step2[19] = SUB_EPI16(step3[16], step1[19]);
+ step2[20] = SUB_EPI16(step3[23], step1[20]);
+ step2[21] = SUB_EPI16(step3[22], step1[21]);
+ step2[22] = ADD_EPI16(step1[21], step3[22]);
+ step2[23] = ADD_EPI16(step1[20], step3[23]);
+ step2[24] = ADD_EPI16(step1[27], step3[24]);
+ step2[25] = ADD_EPI16(step1[26], step3[25]);
+ step2[26] = SUB_EPI16(step3[25], step1[26]);
+ step2[27] = SUB_EPI16(step3[24], step1[27]);
+ step2[28] = SUB_EPI16(step3[31], step1[28]);
+ step2[29] = SUB_EPI16(step3[30], step1[29]);
+ step2[30] = ADD_EPI16(step1[29], step3[30]);
+ step2[31] = ADD_EPI16(step1[28], step3[31]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ &step2[16], &step2[17], &step2[18], &step2[19],
+ &step2[20], &step2[21], &step2[22], &step2[23],
+ &step2[24], &step2[25], &step2[26], &step2[27],
+ &step2[28], &step2[29], &step2[30], &step2[31]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Stage 6
+ {
+ const __m128i out_04_0 = _mm_unpacklo_epi16(step2[4], step2[7]);
+ const __m128i out_04_1 = _mm_unpackhi_epi16(step2[4], step2[7]);
+ const __m128i out_20_0 = _mm_unpacklo_epi16(step2[5], step2[6]);
+ const __m128i out_20_1 = _mm_unpackhi_epi16(step2[5], step2[6]);
+ const __m128i out_12_0 = _mm_unpacklo_epi16(step2[5], step2[6]);
+ const __m128i out_12_1 = _mm_unpackhi_epi16(step2[5], step2[6]);
+ const __m128i out_28_0 = _mm_unpacklo_epi16(step2[4], step2[7]);
+ const __m128i out_28_1 = _mm_unpackhi_epi16(step2[4], step2[7]);
+ const __m128i out_04_2 = _mm_madd_epi16(out_04_0, k__cospi_p28_p04);
+ const __m128i out_04_3 = _mm_madd_epi16(out_04_1, k__cospi_p28_p04);
+ const __m128i out_20_2 = _mm_madd_epi16(out_20_0, k__cospi_p12_p20);
+ const __m128i out_20_3 = _mm_madd_epi16(out_20_1, k__cospi_p12_p20);
+ const __m128i out_12_2 = _mm_madd_epi16(out_12_0, k__cospi_m20_p12);
+ const __m128i out_12_3 = _mm_madd_epi16(out_12_1, k__cospi_m20_p12);
+ const __m128i out_28_2 = _mm_madd_epi16(out_28_0, k__cospi_m04_p28);
+ const __m128i out_28_3 = _mm_madd_epi16(out_28_1, k__cospi_m04_p28);
+ // dct_const_round_shift
+ const __m128i out_04_4 = _mm_add_epi32(out_04_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_04_5 = _mm_add_epi32(out_04_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_20_4 = _mm_add_epi32(out_20_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_20_5 = _mm_add_epi32(out_20_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_12_4 = _mm_add_epi32(out_12_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_12_5 = _mm_add_epi32(out_12_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_28_4 = _mm_add_epi32(out_28_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_28_5 = _mm_add_epi32(out_28_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_04_6 = _mm_srai_epi32(out_04_4, DCT_CONST_BITS);
+ const __m128i out_04_7 = _mm_srai_epi32(out_04_5, DCT_CONST_BITS);
+ const __m128i out_20_6 = _mm_srai_epi32(out_20_4, DCT_CONST_BITS);
+ const __m128i out_20_7 = _mm_srai_epi32(out_20_5, DCT_CONST_BITS);
+ const __m128i out_12_6 = _mm_srai_epi32(out_12_4, DCT_CONST_BITS);
+ const __m128i out_12_7 = _mm_srai_epi32(out_12_5, DCT_CONST_BITS);
+ const __m128i out_28_6 = _mm_srai_epi32(out_28_4, DCT_CONST_BITS);
+ const __m128i out_28_7 = _mm_srai_epi32(out_28_5, DCT_CONST_BITS);
+ // Combine
+ out[4] = _mm_packs_epi32(out_04_6, out_04_7);
+ out[20] = _mm_packs_epi32(out_20_6, out_20_7);
+ out[12] = _mm_packs_epi32(out_12_6, out_12_7);
+ out[28] = _mm_packs_epi32(out_28_6, out_28_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&out[4], &out[20],
+ &out[12], &out[28]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ step3[8] = ADD_EPI16(step2[ 9], step1[ 8]);
+ step3[9] = SUB_EPI16(step1[ 8], step2[ 9]);
+ step3[10] = SUB_EPI16(step1[11], step2[10]);
+ step3[11] = ADD_EPI16(step2[10], step1[11]);
+ step3[12] = ADD_EPI16(step2[13], step1[12]);
+ step3[13] = SUB_EPI16(step1[12], step2[13]);
+ step3[14] = SUB_EPI16(step1[15], step2[14]);
+ step3[15] = ADD_EPI16(step2[14], step1[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step3[8], &step3[9], &step3[10],
+ &step3[11], &step3[12], &step3[13],
+ &step3[14], &step3[15]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i s3_17_0 = _mm_unpacklo_epi16(step2[17], step2[30]);
+ const __m128i s3_17_1 = _mm_unpackhi_epi16(step2[17], step2[30]);
+ const __m128i s3_18_0 = _mm_unpacklo_epi16(step2[18], step2[29]);
+ const __m128i s3_18_1 = _mm_unpackhi_epi16(step2[18], step2[29]);
+ const __m128i s3_21_0 = _mm_unpacklo_epi16(step2[21], step2[26]);
+ const __m128i s3_21_1 = _mm_unpackhi_epi16(step2[21], step2[26]);
+ const __m128i s3_22_0 = _mm_unpacklo_epi16(step2[22], step2[25]);
+ const __m128i s3_22_1 = _mm_unpackhi_epi16(step2[22], step2[25]);
+ const __m128i s3_17_2 = _mm_madd_epi16(s3_17_0, k__cospi_m04_p28);
+ const __m128i s3_17_3 = _mm_madd_epi16(s3_17_1, k__cospi_m04_p28);
+ const __m128i s3_18_2 = _mm_madd_epi16(s3_18_0, k__cospi_m28_m04);
+ const __m128i s3_18_3 = _mm_madd_epi16(s3_18_1, k__cospi_m28_m04);
+ const __m128i s3_21_2 = _mm_madd_epi16(s3_21_0, k__cospi_m20_p12);
+ const __m128i s3_21_3 = _mm_madd_epi16(s3_21_1, k__cospi_m20_p12);
+ const __m128i s3_22_2 = _mm_madd_epi16(s3_22_0, k__cospi_m12_m20);
+ const __m128i s3_22_3 = _mm_madd_epi16(s3_22_1, k__cospi_m12_m20);
+ const __m128i s3_25_2 = _mm_madd_epi16(s3_22_0, k__cospi_m20_p12);
+ const __m128i s3_25_3 = _mm_madd_epi16(s3_22_1, k__cospi_m20_p12);
+ const __m128i s3_26_2 = _mm_madd_epi16(s3_21_0, k__cospi_p12_p20);
+ const __m128i s3_26_3 = _mm_madd_epi16(s3_21_1, k__cospi_p12_p20);
+ const __m128i s3_29_2 = _mm_madd_epi16(s3_18_0, k__cospi_m04_p28);
+ const __m128i s3_29_3 = _mm_madd_epi16(s3_18_1, k__cospi_m04_p28);
+ const __m128i s3_30_2 = _mm_madd_epi16(s3_17_0, k__cospi_p28_p04);
+ const __m128i s3_30_3 = _mm_madd_epi16(s3_17_1, k__cospi_p28_p04);
+ // dct_const_round_shift
+ const __m128i s3_17_4 = _mm_add_epi32(s3_17_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_17_5 = _mm_add_epi32(s3_17_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_18_4 = _mm_add_epi32(s3_18_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_18_5 = _mm_add_epi32(s3_18_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_21_4 = _mm_add_epi32(s3_21_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_21_5 = _mm_add_epi32(s3_21_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_22_4 = _mm_add_epi32(s3_22_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_22_5 = _mm_add_epi32(s3_22_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_17_6 = _mm_srai_epi32(s3_17_4, DCT_CONST_BITS);
+ const __m128i s3_17_7 = _mm_srai_epi32(s3_17_5, DCT_CONST_BITS);
+ const __m128i s3_18_6 = _mm_srai_epi32(s3_18_4, DCT_CONST_BITS);
+ const __m128i s3_18_7 = _mm_srai_epi32(s3_18_5, DCT_CONST_BITS);
+ const __m128i s3_21_6 = _mm_srai_epi32(s3_21_4, DCT_CONST_BITS);
+ const __m128i s3_21_7 = _mm_srai_epi32(s3_21_5, DCT_CONST_BITS);
+ const __m128i s3_22_6 = _mm_srai_epi32(s3_22_4, DCT_CONST_BITS);
+ const __m128i s3_22_7 = _mm_srai_epi32(s3_22_5, DCT_CONST_BITS);
+ const __m128i s3_25_4 = _mm_add_epi32(s3_25_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_25_5 = _mm_add_epi32(s3_25_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_26_4 = _mm_add_epi32(s3_26_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_26_5 = _mm_add_epi32(s3_26_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_29_4 = _mm_add_epi32(s3_29_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_29_5 = _mm_add_epi32(s3_29_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_30_4 = _mm_add_epi32(s3_30_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_30_5 = _mm_add_epi32(s3_30_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_25_6 = _mm_srai_epi32(s3_25_4, DCT_CONST_BITS);
+ const __m128i s3_25_7 = _mm_srai_epi32(s3_25_5, DCT_CONST_BITS);
+ const __m128i s3_26_6 = _mm_srai_epi32(s3_26_4, DCT_CONST_BITS);
+ const __m128i s3_26_7 = _mm_srai_epi32(s3_26_5, DCT_CONST_BITS);
+ const __m128i s3_29_6 = _mm_srai_epi32(s3_29_4, DCT_CONST_BITS);
+ const __m128i s3_29_7 = _mm_srai_epi32(s3_29_5, DCT_CONST_BITS);
+ const __m128i s3_30_6 = _mm_srai_epi32(s3_30_4, DCT_CONST_BITS);
+ const __m128i s3_30_7 = _mm_srai_epi32(s3_30_5, DCT_CONST_BITS);
+ // Combine
+ step3[17] = _mm_packs_epi32(s3_17_6, s3_17_7);
+ step3[18] = _mm_packs_epi32(s3_18_6, s3_18_7);
+ step3[21] = _mm_packs_epi32(s3_21_6, s3_21_7);
+ step3[22] = _mm_packs_epi32(s3_22_6, s3_22_7);
+ // Combine
+ step3[25] = _mm_packs_epi32(s3_25_6, s3_25_7);
+ step3[26] = _mm_packs_epi32(s3_26_6, s3_26_7);
+ step3[29] = _mm_packs_epi32(s3_29_6, s3_29_7);
+ step3[30] = _mm_packs_epi32(s3_30_6, s3_30_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step3[17], &step3[18], &step3[21],
+ &step3[22], &step3[25], &step3[26],
+ &step3[29], &step3[30]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Stage 7
+ {
+ const __m128i out_02_0 = _mm_unpacklo_epi16(step3[ 8], step3[15]);
+ const __m128i out_02_1 = _mm_unpackhi_epi16(step3[ 8], step3[15]);
+ const __m128i out_18_0 = _mm_unpacklo_epi16(step3[ 9], step3[14]);
+ const __m128i out_18_1 = _mm_unpackhi_epi16(step3[ 9], step3[14]);
+ const __m128i out_10_0 = _mm_unpacklo_epi16(step3[10], step3[13]);
+ const __m128i out_10_1 = _mm_unpackhi_epi16(step3[10], step3[13]);
+ const __m128i out_26_0 = _mm_unpacklo_epi16(step3[11], step3[12]);
+ const __m128i out_26_1 = _mm_unpackhi_epi16(step3[11], step3[12]);
+ const __m128i out_02_2 = _mm_madd_epi16(out_02_0, k__cospi_p30_p02);
+ const __m128i out_02_3 = _mm_madd_epi16(out_02_1, k__cospi_p30_p02);
+ const __m128i out_18_2 = _mm_madd_epi16(out_18_0, k__cospi_p14_p18);
+ const __m128i out_18_3 = _mm_madd_epi16(out_18_1, k__cospi_p14_p18);
+ const __m128i out_10_2 = _mm_madd_epi16(out_10_0, k__cospi_p22_p10);
+ const __m128i out_10_3 = _mm_madd_epi16(out_10_1, k__cospi_p22_p10);
+ const __m128i out_26_2 = _mm_madd_epi16(out_26_0, k__cospi_p06_p26);
+ const __m128i out_26_3 = _mm_madd_epi16(out_26_1, k__cospi_p06_p26);
+ const __m128i out_06_2 = _mm_madd_epi16(out_26_0, k__cospi_m26_p06);
+ const __m128i out_06_3 = _mm_madd_epi16(out_26_1, k__cospi_m26_p06);
+ const __m128i out_22_2 = _mm_madd_epi16(out_10_0, k__cospi_m10_p22);
+ const __m128i out_22_3 = _mm_madd_epi16(out_10_1, k__cospi_m10_p22);
+ const __m128i out_14_2 = _mm_madd_epi16(out_18_0, k__cospi_m18_p14);
+ const __m128i out_14_3 = _mm_madd_epi16(out_18_1, k__cospi_m18_p14);
+ const __m128i out_30_2 = _mm_madd_epi16(out_02_0, k__cospi_m02_p30);
+ const __m128i out_30_3 = _mm_madd_epi16(out_02_1, k__cospi_m02_p30);
+ // dct_const_round_shift
+ const __m128i out_02_4 = _mm_add_epi32(out_02_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_02_5 = _mm_add_epi32(out_02_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_18_4 = _mm_add_epi32(out_18_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_18_5 = _mm_add_epi32(out_18_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_10_4 = _mm_add_epi32(out_10_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_10_5 = _mm_add_epi32(out_10_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_26_4 = _mm_add_epi32(out_26_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_26_5 = _mm_add_epi32(out_26_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_06_4 = _mm_add_epi32(out_06_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_06_5 = _mm_add_epi32(out_06_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_22_4 = _mm_add_epi32(out_22_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_22_5 = _mm_add_epi32(out_22_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_14_4 = _mm_add_epi32(out_14_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_14_5 = _mm_add_epi32(out_14_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_30_4 = _mm_add_epi32(out_30_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_30_5 = _mm_add_epi32(out_30_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_02_6 = _mm_srai_epi32(out_02_4, DCT_CONST_BITS);
+ const __m128i out_02_7 = _mm_srai_epi32(out_02_5, DCT_CONST_BITS);
+ const __m128i out_18_6 = _mm_srai_epi32(out_18_4, DCT_CONST_BITS);
+ const __m128i out_18_7 = _mm_srai_epi32(out_18_5, DCT_CONST_BITS);
+ const __m128i out_10_6 = _mm_srai_epi32(out_10_4, DCT_CONST_BITS);
+ const __m128i out_10_7 = _mm_srai_epi32(out_10_5, DCT_CONST_BITS);
+ const __m128i out_26_6 = _mm_srai_epi32(out_26_4, DCT_CONST_BITS);
+ const __m128i out_26_7 = _mm_srai_epi32(out_26_5, DCT_CONST_BITS);
+ const __m128i out_06_6 = _mm_srai_epi32(out_06_4, DCT_CONST_BITS);
+ const __m128i out_06_7 = _mm_srai_epi32(out_06_5, DCT_CONST_BITS);
+ const __m128i out_22_6 = _mm_srai_epi32(out_22_4, DCT_CONST_BITS);
+ const __m128i out_22_7 = _mm_srai_epi32(out_22_5, DCT_CONST_BITS);
+ const __m128i out_14_6 = _mm_srai_epi32(out_14_4, DCT_CONST_BITS);
+ const __m128i out_14_7 = _mm_srai_epi32(out_14_5, DCT_CONST_BITS);
+ const __m128i out_30_6 = _mm_srai_epi32(out_30_4, DCT_CONST_BITS);
+ const __m128i out_30_7 = _mm_srai_epi32(out_30_5, DCT_CONST_BITS);
+ // Combine
+ out[ 2] = _mm_packs_epi32(out_02_6, out_02_7);
+ out[18] = _mm_packs_epi32(out_18_6, out_18_7);
+ out[10] = _mm_packs_epi32(out_10_6, out_10_7);
+ out[26] = _mm_packs_epi32(out_26_6, out_26_7);
+ out[ 6] = _mm_packs_epi32(out_06_6, out_06_7);
+ out[22] = _mm_packs_epi32(out_22_6, out_22_7);
+ out[14] = _mm_packs_epi32(out_14_6, out_14_7);
+ out[30] = _mm_packs_epi32(out_30_6, out_30_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&out[2], &out[18], &out[10],
+ &out[26], &out[6], &out[22],
+ &out[14], &out[30]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ step1[16] = ADD_EPI16(step3[17], step2[16]);
+ step1[17] = SUB_EPI16(step2[16], step3[17]);
+ step1[18] = SUB_EPI16(step2[19], step3[18]);
+ step1[19] = ADD_EPI16(step3[18], step2[19]);
+ step1[20] = ADD_EPI16(step3[21], step2[20]);
+ step1[21] = SUB_EPI16(step2[20], step3[21]);
+ step1[22] = SUB_EPI16(step2[23], step3[22]);
+ step1[23] = ADD_EPI16(step3[22], step2[23]);
+ step1[24] = ADD_EPI16(step3[25], step2[24]);
+ step1[25] = SUB_EPI16(step2[24], step3[25]);
+ step1[26] = SUB_EPI16(step2[27], step3[26]);
+ step1[27] = ADD_EPI16(step3[26], step2[27]);
+ step1[28] = ADD_EPI16(step3[29], step2[28]);
+ step1[29] = SUB_EPI16(step2[28], step3[29]);
+ step1[30] = SUB_EPI16(step2[31], step3[30]);
+ step1[31] = ADD_EPI16(step3[30], step2[31]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x16(
+ &step1[16], &step1[17], &step1[18], &step1[19],
+ &step1[20], &step1[21], &step1[22], &step1[23],
+ &step1[24], &step1[25], &step1[26], &step1[27],
+ &step1[28], &step1[29], &step1[30], &step1[31]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Final stage --- outputs indices are bit-reversed.
+ {
+ const __m128i out_01_0 = _mm_unpacklo_epi16(step1[16], step1[31]);
+ const __m128i out_01_1 = _mm_unpackhi_epi16(step1[16], step1[31]);
+ const __m128i out_17_0 = _mm_unpacklo_epi16(step1[17], step1[30]);
+ const __m128i out_17_1 = _mm_unpackhi_epi16(step1[17], step1[30]);
+ const __m128i out_09_0 = _mm_unpacklo_epi16(step1[18], step1[29]);
+ const __m128i out_09_1 = _mm_unpackhi_epi16(step1[18], step1[29]);
+ const __m128i out_25_0 = _mm_unpacklo_epi16(step1[19], step1[28]);
+ const __m128i out_25_1 = _mm_unpackhi_epi16(step1[19], step1[28]);
+ const __m128i out_01_2 = _mm_madd_epi16(out_01_0, k__cospi_p31_p01);
+ const __m128i out_01_3 = _mm_madd_epi16(out_01_1, k__cospi_p31_p01);
+ const __m128i out_17_2 = _mm_madd_epi16(out_17_0, k__cospi_p15_p17);
+ const __m128i out_17_3 = _mm_madd_epi16(out_17_1, k__cospi_p15_p17);
+ const __m128i out_09_2 = _mm_madd_epi16(out_09_0, k__cospi_p23_p09);
+ const __m128i out_09_3 = _mm_madd_epi16(out_09_1, k__cospi_p23_p09);
+ const __m128i out_25_2 = _mm_madd_epi16(out_25_0, k__cospi_p07_p25);
+ const __m128i out_25_3 = _mm_madd_epi16(out_25_1, k__cospi_p07_p25);
+ const __m128i out_07_2 = _mm_madd_epi16(out_25_0, k__cospi_m25_p07);
+ const __m128i out_07_3 = _mm_madd_epi16(out_25_1, k__cospi_m25_p07);
+ const __m128i out_23_2 = _mm_madd_epi16(out_09_0, k__cospi_m09_p23);
+ const __m128i out_23_3 = _mm_madd_epi16(out_09_1, k__cospi_m09_p23);
+ const __m128i out_15_2 = _mm_madd_epi16(out_17_0, k__cospi_m17_p15);
+ const __m128i out_15_3 = _mm_madd_epi16(out_17_1, k__cospi_m17_p15);
+ const __m128i out_31_2 = _mm_madd_epi16(out_01_0, k__cospi_m01_p31);
+ const __m128i out_31_3 = _mm_madd_epi16(out_01_1, k__cospi_m01_p31);
+ // dct_const_round_shift
+ const __m128i out_01_4 = _mm_add_epi32(out_01_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_01_5 = _mm_add_epi32(out_01_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_17_4 = _mm_add_epi32(out_17_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_17_5 = _mm_add_epi32(out_17_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_09_4 = _mm_add_epi32(out_09_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_09_5 = _mm_add_epi32(out_09_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_25_4 = _mm_add_epi32(out_25_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_25_5 = _mm_add_epi32(out_25_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_07_4 = _mm_add_epi32(out_07_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_07_5 = _mm_add_epi32(out_07_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_23_4 = _mm_add_epi32(out_23_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_23_5 = _mm_add_epi32(out_23_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_15_4 = _mm_add_epi32(out_15_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_15_5 = _mm_add_epi32(out_15_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_31_4 = _mm_add_epi32(out_31_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_31_5 = _mm_add_epi32(out_31_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_01_6 = _mm_srai_epi32(out_01_4, DCT_CONST_BITS);
+ const __m128i out_01_7 = _mm_srai_epi32(out_01_5, DCT_CONST_BITS);
+ const __m128i out_17_6 = _mm_srai_epi32(out_17_4, DCT_CONST_BITS);
+ const __m128i out_17_7 = _mm_srai_epi32(out_17_5, DCT_CONST_BITS);
+ const __m128i out_09_6 = _mm_srai_epi32(out_09_4, DCT_CONST_BITS);
+ const __m128i out_09_7 = _mm_srai_epi32(out_09_5, DCT_CONST_BITS);
+ const __m128i out_25_6 = _mm_srai_epi32(out_25_4, DCT_CONST_BITS);
+ const __m128i out_25_7 = _mm_srai_epi32(out_25_5, DCT_CONST_BITS);
+ const __m128i out_07_6 = _mm_srai_epi32(out_07_4, DCT_CONST_BITS);
+ const __m128i out_07_7 = _mm_srai_epi32(out_07_5, DCT_CONST_BITS);
+ const __m128i out_23_6 = _mm_srai_epi32(out_23_4, DCT_CONST_BITS);
+ const __m128i out_23_7 = _mm_srai_epi32(out_23_5, DCT_CONST_BITS);
+ const __m128i out_15_6 = _mm_srai_epi32(out_15_4, DCT_CONST_BITS);
+ const __m128i out_15_7 = _mm_srai_epi32(out_15_5, DCT_CONST_BITS);
+ const __m128i out_31_6 = _mm_srai_epi32(out_31_4, DCT_CONST_BITS);
+ const __m128i out_31_7 = _mm_srai_epi32(out_31_5, DCT_CONST_BITS);
+ // Combine
+ out[ 1] = _mm_packs_epi32(out_01_6, out_01_7);
+ out[17] = _mm_packs_epi32(out_17_6, out_17_7);
+ out[ 9] = _mm_packs_epi32(out_09_6, out_09_7);
+ out[25] = _mm_packs_epi32(out_25_6, out_25_7);
+ out[ 7] = _mm_packs_epi32(out_07_6, out_07_7);
+ out[23] = _mm_packs_epi32(out_23_6, out_23_7);
+ out[15] = _mm_packs_epi32(out_15_6, out_15_7);
+ out[31] = _mm_packs_epi32(out_31_6, out_31_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&out[1], &out[17], &out[9],
+ &out[25], &out[7], &out[23],
+ &out[15], &out[31]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i out_05_0 = _mm_unpacklo_epi16(step1[20], step1[27]);
+ const __m128i out_05_1 = _mm_unpackhi_epi16(step1[20], step1[27]);
+ const __m128i out_21_0 = _mm_unpacklo_epi16(step1[21], step1[26]);
+ const __m128i out_21_1 = _mm_unpackhi_epi16(step1[21], step1[26]);
+ const __m128i out_13_0 = _mm_unpacklo_epi16(step1[22], step1[25]);
+ const __m128i out_13_1 = _mm_unpackhi_epi16(step1[22], step1[25]);
+ const __m128i out_29_0 = _mm_unpacklo_epi16(step1[23], step1[24]);
+ const __m128i out_29_1 = _mm_unpackhi_epi16(step1[23], step1[24]);
+ const __m128i out_05_2 = _mm_madd_epi16(out_05_0, k__cospi_p27_p05);
+ const __m128i out_05_3 = _mm_madd_epi16(out_05_1, k__cospi_p27_p05);
+ const __m128i out_21_2 = _mm_madd_epi16(out_21_0, k__cospi_p11_p21);
+ const __m128i out_21_3 = _mm_madd_epi16(out_21_1, k__cospi_p11_p21);
+ const __m128i out_13_2 = _mm_madd_epi16(out_13_0, k__cospi_p19_p13);
+ const __m128i out_13_3 = _mm_madd_epi16(out_13_1, k__cospi_p19_p13);
+ const __m128i out_29_2 = _mm_madd_epi16(out_29_0, k__cospi_p03_p29);
+ const __m128i out_29_3 = _mm_madd_epi16(out_29_1, k__cospi_p03_p29);
+ const __m128i out_03_2 = _mm_madd_epi16(out_29_0, k__cospi_m29_p03);
+ const __m128i out_03_3 = _mm_madd_epi16(out_29_1, k__cospi_m29_p03);
+ const __m128i out_19_2 = _mm_madd_epi16(out_13_0, k__cospi_m13_p19);
+ const __m128i out_19_3 = _mm_madd_epi16(out_13_1, k__cospi_m13_p19);
+ const __m128i out_11_2 = _mm_madd_epi16(out_21_0, k__cospi_m21_p11);
+ const __m128i out_11_3 = _mm_madd_epi16(out_21_1, k__cospi_m21_p11);
+ const __m128i out_27_2 = _mm_madd_epi16(out_05_0, k__cospi_m05_p27);
+ const __m128i out_27_3 = _mm_madd_epi16(out_05_1, k__cospi_m05_p27);
+ // dct_const_round_shift
+ const __m128i out_05_4 = _mm_add_epi32(out_05_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_05_5 = _mm_add_epi32(out_05_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_21_4 = _mm_add_epi32(out_21_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_21_5 = _mm_add_epi32(out_21_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_13_4 = _mm_add_epi32(out_13_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_13_5 = _mm_add_epi32(out_13_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_29_4 = _mm_add_epi32(out_29_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_29_5 = _mm_add_epi32(out_29_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_03_4 = _mm_add_epi32(out_03_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_03_5 = _mm_add_epi32(out_03_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_19_4 = _mm_add_epi32(out_19_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_19_5 = _mm_add_epi32(out_19_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_11_4 = _mm_add_epi32(out_11_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_11_5 = _mm_add_epi32(out_11_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_27_4 = _mm_add_epi32(out_27_2, k__DCT_CONST_ROUNDING);
+ const __m128i out_27_5 = _mm_add_epi32(out_27_3, k__DCT_CONST_ROUNDING);
+ const __m128i out_05_6 = _mm_srai_epi32(out_05_4, DCT_CONST_BITS);
+ const __m128i out_05_7 = _mm_srai_epi32(out_05_5, DCT_CONST_BITS);
+ const __m128i out_21_6 = _mm_srai_epi32(out_21_4, DCT_CONST_BITS);
+ const __m128i out_21_7 = _mm_srai_epi32(out_21_5, DCT_CONST_BITS);
+ const __m128i out_13_6 = _mm_srai_epi32(out_13_4, DCT_CONST_BITS);
+ const __m128i out_13_7 = _mm_srai_epi32(out_13_5, DCT_CONST_BITS);
+ const __m128i out_29_6 = _mm_srai_epi32(out_29_4, DCT_CONST_BITS);
+ const __m128i out_29_7 = _mm_srai_epi32(out_29_5, DCT_CONST_BITS);
+ const __m128i out_03_6 = _mm_srai_epi32(out_03_4, DCT_CONST_BITS);
+ const __m128i out_03_7 = _mm_srai_epi32(out_03_5, DCT_CONST_BITS);
+ const __m128i out_19_6 = _mm_srai_epi32(out_19_4, DCT_CONST_BITS);
+ const __m128i out_19_7 = _mm_srai_epi32(out_19_5, DCT_CONST_BITS);
+ const __m128i out_11_6 = _mm_srai_epi32(out_11_4, DCT_CONST_BITS);
+ const __m128i out_11_7 = _mm_srai_epi32(out_11_5, DCT_CONST_BITS);
+ const __m128i out_27_6 = _mm_srai_epi32(out_27_4, DCT_CONST_BITS);
+ const __m128i out_27_7 = _mm_srai_epi32(out_27_5, DCT_CONST_BITS);
+ // Combine
+ out[ 5] = _mm_packs_epi32(out_05_6, out_05_7);
+ out[21] = _mm_packs_epi32(out_21_6, out_21_7);
+ out[13] = _mm_packs_epi32(out_13_6, out_13_7);
+ out[29] = _mm_packs_epi32(out_29_6, out_29_7);
+ out[ 3] = _mm_packs_epi32(out_03_6, out_03_7);
+ out[19] = _mm_packs_epi32(out_19_6, out_19_7);
+ out[11] = _mm_packs_epi32(out_11_6, out_11_7);
+ out[27] = _mm_packs_epi32(out_27_6, out_27_7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&out[5], &out[21], &out[13],
+ &out[29], &out[3], &out[19],
+ &out[11], &out[27]);
+ if (overflow) {
+ if (pass == 0)
+ HIGH_FDCT32x32_2D_C(input, output_org, stride);
+ else
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+#if FDCT32x32_HIGH_PRECISION
+ } else {
+ __m128i lstep1[64], lstep2[64], lstep3[64];
+ __m128i u[32], v[32], sign[16];
+ const __m128i K32One = _mm_set_epi32(1, 1, 1, 1);
+ // start using 32-bit operations
+ // stage 3
+ {
+ // expanding to 32-bit length priori to addition operations
+ lstep2[ 0] = _mm_unpacklo_epi16(step2[ 0], kZero);
+ lstep2[ 1] = _mm_unpackhi_epi16(step2[ 0], kZero);
+ lstep2[ 2] = _mm_unpacklo_epi16(step2[ 1], kZero);
+ lstep2[ 3] = _mm_unpackhi_epi16(step2[ 1], kZero);
+ lstep2[ 4] = _mm_unpacklo_epi16(step2[ 2], kZero);
+ lstep2[ 5] = _mm_unpackhi_epi16(step2[ 2], kZero);
+ lstep2[ 6] = _mm_unpacklo_epi16(step2[ 3], kZero);
+ lstep2[ 7] = _mm_unpackhi_epi16(step2[ 3], kZero);
+ lstep2[ 8] = _mm_unpacklo_epi16(step2[ 4], kZero);
+ lstep2[ 9] = _mm_unpackhi_epi16(step2[ 4], kZero);
+ lstep2[10] = _mm_unpacklo_epi16(step2[ 5], kZero);
+ lstep2[11] = _mm_unpackhi_epi16(step2[ 5], kZero);
+ lstep2[12] = _mm_unpacklo_epi16(step2[ 6], kZero);
+ lstep2[13] = _mm_unpackhi_epi16(step2[ 6], kZero);
+ lstep2[14] = _mm_unpacklo_epi16(step2[ 7], kZero);
+ lstep2[15] = _mm_unpackhi_epi16(step2[ 7], kZero);
+ lstep2[ 0] = _mm_madd_epi16(lstep2[ 0], kOne);
+ lstep2[ 1] = _mm_madd_epi16(lstep2[ 1], kOne);
+ lstep2[ 2] = _mm_madd_epi16(lstep2[ 2], kOne);
+ lstep2[ 3] = _mm_madd_epi16(lstep2[ 3], kOne);
+ lstep2[ 4] = _mm_madd_epi16(lstep2[ 4], kOne);
+ lstep2[ 5] = _mm_madd_epi16(lstep2[ 5], kOne);
+ lstep2[ 6] = _mm_madd_epi16(lstep2[ 6], kOne);
+ lstep2[ 7] = _mm_madd_epi16(lstep2[ 7], kOne);
+ lstep2[ 8] = _mm_madd_epi16(lstep2[ 8], kOne);
+ lstep2[ 9] = _mm_madd_epi16(lstep2[ 9], kOne);
+ lstep2[10] = _mm_madd_epi16(lstep2[10], kOne);
+ lstep2[11] = _mm_madd_epi16(lstep2[11], kOne);
+ lstep2[12] = _mm_madd_epi16(lstep2[12], kOne);
+ lstep2[13] = _mm_madd_epi16(lstep2[13], kOne);
+ lstep2[14] = _mm_madd_epi16(lstep2[14], kOne);
+ lstep2[15] = _mm_madd_epi16(lstep2[15], kOne);
+
+ lstep3[ 0] = _mm_add_epi32(lstep2[14], lstep2[ 0]);
+ lstep3[ 1] = _mm_add_epi32(lstep2[15], lstep2[ 1]);
+ lstep3[ 2] = _mm_add_epi32(lstep2[12], lstep2[ 2]);
+ lstep3[ 3] = _mm_add_epi32(lstep2[13], lstep2[ 3]);
+ lstep3[ 4] = _mm_add_epi32(lstep2[10], lstep2[ 4]);
+ lstep3[ 5] = _mm_add_epi32(lstep2[11], lstep2[ 5]);
+ lstep3[ 6] = _mm_add_epi32(lstep2[ 8], lstep2[ 6]);
+ lstep3[ 7] = _mm_add_epi32(lstep2[ 9], lstep2[ 7]);
+ lstep3[ 8] = _mm_sub_epi32(lstep2[ 6], lstep2[ 8]);
+ lstep3[ 9] = _mm_sub_epi32(lstep2[ 7], lstep2[ 9]);
+ lstep3[10] = _mm_sub_epi32(lstep2[ 4], lstep2[10]);
+ lstep3[11] = _mm_sub_epi32(lstep2[ 5], lstep2[11]);
+ lstep3[12] = _mm_sub_epi32(lstep2[ 2], lstep2[12]);
+ lstep3[13] = _mm_sub_epi32(lstep2[ 3], lstep2[13]);
+ lstep3[14] = _mm_sub_epi32(lstep2[ 0], lstep2[14]);
+ lstep3[15] = _mm_sub_epi32(lstep2[ 1], lstep2[15]);
+ }
+ {
+ const __m128i s3_10_0 = _mm_unpacklo_epi16(step2[13], step2[10]);
+ const __m128i s3_10_1 = _mm_unpackhi_epi16(step2[13], step2[10]);
+ const __m128i s3_11_0 = _mm_unpacklo_epi16(step2[12], step2[11]);
+ const __m128i s3_11_1 = _mm_unpackhi_epi16(step2[12], step2[11]);
+ const __m128i s3_10_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_m16);
+ const __m128i s3_10_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_m16);
+ const __m128i s3_11_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_m16);
+ const __m128i s3_11_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_m16);
+ const __m128i s3_12_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_p16);
+ const __m128i s3_12_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_p16);
+ const __m128i s3_13_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_p16);
+ const __m128i s3_13_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i s3_10_4 = _mm_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_10_5 = _mm_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_11_4 = _mm_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_11_5 = _mm_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_12_4 = _mm_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_12_5 = _mm_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING);
+ const __m128i s3_13_4 = _mm_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING);
+ const __m128i s3_13_5 = _mm_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING);
+ lstep3[20] = _mm_srai_epi32(s3_10_4, DCT_CONST_BITS);
+ lstep3[21] = _mm_srai_epi32(s3_10_5, DCT_CONST_BITS);
+ lstep3[22] = _mm_srai_epi32(s3_11_4, DCT_CONST_BITS);
+ lstep3[23] = _mm_srai_epi32(s3_11_5, DCT_CONST_BITS);
+ lstep3[24] = _mm_srai_epi32(s3_12_4, DCT_CONST_BITS);
+ lstep3[25] = _mm_srai_epi32(s3_12_5, DCT_CONST_BITS);
+ lstep3[26] = _mm_srai_epi32(s3_13_4, DCT_CONST_BITS);
+ lstep3[27] = _mm_srai_epi32(s3_13_5, DCT_CONST_BITS);
+ }
+ {
+ lstep2[40] = _mm_unpacklo_epi16(step2[20], kZero);
+ lstep2[41] = _mm_unpackhi_epi16(step2[20], kZero);
+ lstep2[42] = _mm_unpacklo_epi16(step2[21], kZero);
+ lstep2[43] = _mm_unpackhi_epi16(step2[21], kZero);
+ lstep2[44] = _mm_unpacklo_epi16(step2[22], kZero);
+ lstep2[45] = _mm_unpackhi_epi16(step2[22], kZero);
+ lstep2[46] = _mm_unpacklo_epi16(step2[23], kZero);
+ lstep2[47] = _mm_unpackhi_epi16(step2[23], kZero);
+ lstep2[48] = _mm_unpacklo_epi16(step2[24], kZero);
+ lstep2[49] = _mm_unpackhi_epi16(step2[24], kZero);
+ lstep2[50] = _mm_unpacklo_epi16(step2[25], kZero);
+ lstep2[51] = _mm_unpackhi_epi16(step2[25], kZero);
+ lstep2[52] = _mm_unpacklo_epi16(step2[26], kZero);
+ lstep2[53] = _mm_unpackhi_epi16(step2[26], kZero);
+ lstep2[54] = _mm_unpacklo_epi16(step2[27], kZero);
+ lstep2[55] = _mm_unpackhi_epi16(step2[27], kZero);
+ lstep2[40] = _mm_madd_epi16(lstep2[40], kOne);
+ lstep2[41] = _mm_madd_epi16(lstep2[41], kOne);
+ lstep2[42] = _mm_madd_epi16(lstep2[42], kOne);
+ lstep2[43] = _mm_madd_epi16(lstep2[43], kOne);
+ lstep2[44] = _mm_madd_epi16(lstep2[44], kOne);
+ lstep2[45] = _mm_madd_epi16(lstep2[45], kOne);
+ lstep2[46] = _mm_madd_epi16(lstep2[46], kOne);
+ lstep2[47] = _mm_madd_epi16(lstep2[47], kOne);
+ lstep2[48] = _mm_madd_epi16(lstep2[48], kOne);
+ lstep2[49] = _mm_madd_epi16(lstep2[49], kOne);
+ lstep2[50] = _mm_madd_epi16(lstep2[50], kOne);
+ lstep2[51] = _mm_madd_epi16(lstep2[51], kOne);
+ lstep2[52] = _mm_madd_epi16(lstep2[52], kOne);
+ lstep2[53] = _mm_madd_epi16(lstep2[53], kOne);
+ lstep2[54] = _mm_madd_epi16(lstep2[54], kOne);
+ lstep2[55] = _mm_madd_epi16(lstep2[55], kOne);
+
+ lstep1[32] = _mm_unpacklo_epi16(step1[16], kZero);
+ lstep1[33] = _mm_unpackhi_epi16(step1[16], kZero);
+ lstep1[34] = _mm_unpacklo_epi16(step1[17], kZero);
+ lstep1[35] = _mm_unpackhi_epi16(step1[17], kZero);
+ lstep1[36] = _mm_unpacklo_epi16(step1[18], kZero);
+ lstep1[37] = _mm_unpackhi_epi16(step1[18], kZero);
+ lstep1[38] = _mm_unpacklo_epi16(step1[19], kZero);
+ lstep1[39] = _mm_unpackhi_epi16(step1[19], kZero);
+ lstep1[56] = _mm_unpacklo_epi16(step1[28], kZero);
+ lstep1[57] = _mm_unpackhi_epi16(step1[28], kZero);
+ lstep1[58] = _mm_unpacklo_epi16(step1[29], kZero);
+ lstep1[59] = _mm_unpackhi_epi16(step1[29], kZero);
+ lstep1[60] = _mm_unpacklo_epi16(step1[30], kZero);
+ lstep1[61] = _mm_unpackhi_epi16(step1[30], kZero);
+ lstep1[62] = _mm_unpacklo_epi16(step1[31], kZero);
+ lstep1[63] = _mm_unpackhi_epi16(step1[31], kZero);
+ lstep1[32] = _mm_madd_epi16(lstep1[32], kOne);
+ lstep1[33] = _mm_madd_epi16(lstep1[33], kOne);
+ lstep1[34] = _mm_madd_epi16(lstep1[34], kOne);
+ lstep1[35] = _mm_madd_epi16(lstep1[35], kOne);
+ lstep1[36] = _mm_madd_epi16(lstep1[36], kOne);
+ lstep1[37] = _mm_madd_epi16(lstep1[37], kOne);
+ lstep1[38] = _mm_madd_epi16(lstep1[38], kOne);
+ lstep1[39] = _mm_madd_epi16(lstep1[39], kOne);
+ lstep1[56] = _mm_madd_epi16(lstep1[56], kOne);
+ lstep1[57] = _mm_madd_epi16(lstep1[57], kOne);
+ lstep1[58] = _mm_madd_epi16(lstep1[58], kOne);
+ lstep1[59] = _mm_madd_epi16(lstep1[59], kOne);
+ lstep1[60] = _mm_madd_epi16(lstep1[60], kOne);
+ lstep1[61] = _mm_madd_epi16(lstep1[61], kOne);
+ lstep1[62] = _mm_madd_epi16(lstep1[62], kOne);
+ lstep1[63] = _mm_madd_epi16(lstep1[63], kOne);
+
+ lstep3[32] = _mm_add_epi32(lstep2[46], lstep1[32]);
+ lstep3[33] = _mm_add_epi32(lstep2[47], lstep1[33]);
+
+ lstep3[34] = _mm_add_epi32(lstep2[44], lstep1[34]);
+ lstep3[35] = _mm_add_epi32(lstep2[45], lstep1[35]);
+ lstep3[36] = _mm_add_epi32(lstep2[42], lstep1[36]);
+ lstep3[37] = _mm_add_epi32(lstep2[43], lstep1[37]);
+ lstep3[38] = _mm_add_epi32(lstep2[40], lstep1[38]);
+ lstep3[39] = _mm_add_epi32(lstep2[41], lstep1[39]);
+ lstep3[40] = _mm_sub_epi32(lstep1[38], lstep2[40]);
+ lstep3[41] = _mm_sub_epi32(lstep1[39], lstep2[41]);
+ lstep3[42] = _mm_sub_epi32(lstep1[36], lstep2[42]);
+ lstep3[43] = _mm_sub_epi32(lstep1[37], lstep2[43]);
+ lstep3[44] = _mm_sub_epi32(lstep1[34], lstep2[44]);
+ lstep3[45] = _mm_sub_epi32(lstep1[35], lstep2[45]);
+ lstep3[46] = _mm_sub_epi32(lstep1[32], lstep2[46]);
+ lstep3[47] = _mm_sub_epi32(lstep1[33], lstep2[47]);
+ lstep3[48] = _mm_sub_epi32(lstep1[62], lstep2[48]);
+ lstep3[49] = _mm_sub_epi32(lstep1[63], lstep2[49]);
+ lstep3[50] = _mm_sub_epi32(lstep1[60], lstep2[50]);
+ lstep3[51] = _mm_sub_epi32(lstep1[61], lstep2[51]);
+ lstep3[52] = _mm_sub_epi32(lstep1[58], lstep2[52]);
+ lstep3[53] = _mm_sub_epi32(lstep1[59], lstep2[53]);
+ lstep3[54] = _mm_sub_epi32(lstep1[56], lstep2[54]);
+ lstep3[55] = _mm_sub_epi32(lstep1[57], lstep2[55]);
+ lstep3[56] = _mm_add_epi32(lstep2[54], lstep1[56]);
+ lstep3[57] = _mm_add_epi32(lstep2[55], lstep1[57]);
+ lstep3[58] = _mm_add_epi32(lstep2[52], lstep1[58]);
+ lstep3[59] = _mm_add_epi32(lstep2[53], lstep1[59]);
+ lstep3[60] = _mm_add_epi32(lstep2[50], lstep1[60]);
+ lstep3[61] = _mm_add_epi32(lstep2[51], lstep1[61]);
+ lstep3[62] = _mm_add_epi32(lstep2[48], lstep1[62]);
+ lstep3[63] = _mm_add_epi32(lstep2[49], lstep1[63]);
+ }
+
+ // stage 4
+ {
+ // expanding to 32-bit length priori to addition operations
+ lstep2[16] = _mm_unpacklo_epi16(step2[ 8], kZero);
+ lstep2[17] = _mm_unpackhi_epi16(step2[ 8], kZero);
+ lstep2[18] = _mm_unpacklo_epi16(step2[ 9], kZero);
+ lstep2[19] = _mm_unpackhi_epi16(step2[ 9], kZero);
+ lstep2[28] = _mm_unpacklo_epi16(step2[14], kZero);
+ lstep2[29] = _mm_unpackhi_epi16(step2[14], kZero);
+ lstep2[30] = _mm_unpacklo_epi16(step2[15], kZero);
+ lstep2[31] = _mm_unpackhi_epi16(step2[15], kZero);
+ lstep2[16] = _mm_madd_epi16(lstep2[16], kOne);
+ lstep2[17] = _mm_madd_epi16(lstep2[17], kOne);
+ lstep2[18] = _mm_madd_epi16(lstep2[18], kOne);
+ lstep2[19] = _mm_madd_epi16(lstep2[19], kOne);
+ lstep2[28] = _mm_madd_epi16(lstep2[28], kOne);
+ lstep2[29] = _mm_madd_epi16(lstep2[29], kOne);
+ lstep2[30] = _mm_madd_epi16(lstep2[30], kOne);
+ lstep2[31] = _mm_madd_epi16(lstep2[31], kOne);
+
+ lstep1[ 0] = _mm_add_epi32(lstep3[ 6], lstep3[ 0]);
+ lstep1[ 1] = _mm_add_epi32(lstep3[ 7], lstep3[ 1]);
+ lstep1[ 2] = _mm_add_epi32(lstep3[ 4], lstep3[ 2]);
+ lstep1[ 3] = _mm_add_epi32(lstep3[ 5], lstep3[ 3]);
+ lstep1[ 4] = _mm_sub_epi32(lstep3[ 2], lstep3[ 4]);
+ lstep1[ 5] = _mm_sub_epi32(lstep3[ 3], lstep3[ 5]);
+ lstep1[ 6] = _mm_sub_epi32(lstep3[ 0], lstep3[ 6]);
+ lstep1[ 7] = _mm_sub_epi32(lstep3[ 1], lstep3[ 7]);
+ lstep1[16] = _mm_add_epi32(lstep3[22], lstep2[16]);
+ lstep1[17] = _mm_add_epi32(lstep3[23], lstep2[17]);
+ lstep1[18] = _mm_add_epi32(lstep3[20], lstep2[18]);
+ lstep1[19] = _mm_add_epi32(lstep3[21], lstep2[19]);
+ lstep1[20] = _mm_sub_epi32(lstep2[18], lstep3[20]);
+ lstep1[21] = _mm_sub_epi32(lstep2[19], lstep3[21]);
+ lstep1[22] = _mm_sub_epi32(lstep2[16], lstep3[22]);
+ lstep1[23] = _mm_sub_epi32(lstep2[17], lstep3[23]);
+ lstep1[24] = _mm_sub_epi32(lstep2[30], lstep3[24]);
+ lstep1[25] = _mm_sub_epi32(lstep2[31], lstep3[25]);
+ lstep1[26] = _mm_sub_epi32(lstep2[28], lstep3[26]);
+ lstep1[27] = _mm_sub_epi32(lstep2[29], lstep3[27]);
+ lstep1[28] = _mm_add_epi32(lstep3[26], lstep2[28]);
+ lstep1[29] = _mm_add_epi32(lstep3[27], lstep2[29]);
+ lstep1[30] = _mm_add_epi32(lstep3[24], lstep2[30]);
+ lstep1[31] = _mm_add_epi32(lstep3[25], lstep2[31]);
+ }
+ {
+ // to be continued...
+ //
+ const __m128i k32_p16_p16 = pair_set_epi32(cospi_16_64, cospi_16_64);
+ const __m128i k32_p16_m16 = pair_set_epi32(cospi_16_64, -cospi_16_64);
+
+ u[0] = _mm_unpacklo_epi32(lstep3[12], lstep3[10]);
+ u[1] = _mm_unpackhi_epi32(lstep3[12], lstep3[10]);
+ u[2] = _mm_unpacklo_epi32(lstep3[13], lstep3[11]);
+ u[3] = _mm_unpackhi_epi32(lstep3[13], lstep3[11]);
+
+ // TODO(jingning): manually inline k_madd_epi32_ to further hide
+ // instruction latency.
+ v[0] = k_madd_epi32(u[0], k32_p16_m16);
+ v[1] = k_madd_epi32(u[1], k32_p16_m16);
+ v[2] = k_madd_epi32(u[2], k32_p16_m16);
+ v[3] = k_madd_epi32(u[3], k32_p16_m16);
+ v[4] = k_madd_epi32(u[0], k32_p16_p16);
+ v[5] = k_madd_epi32(u[1], k32_p16_p16);
+ v[6] = k_madd_epi32(u[2], k32_p16_p16);
+ v[7] = k_madd_epi32(u[3], k32_p16_p16);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_8(&v[0], &v[1], &v[2], &v[3],
+ &v[4], &v[5], &v[6], &v[7], &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[0] = k_packs_epi64(v[0], v[1]);
+ u[1] = k_packs_epi64(v[2], v[3]);
+ u[2] = k_packs_epi64(v[4], v[5]);
+ u[3] = k_packs_epi64(v[6], v[7]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+
+ lstep1[10] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ lstep1[11] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ lstep1[12] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ lstep1[13] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ }
+ {
+ const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64);
+ const __m128i k32_m24_m08 = pair_set_epi32(-cospi_24_64, -cospi_8_64);
+ const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64);
+
+ u[ 0] = _mm_unpacklo_epi32(lstep3[36], lstep3[58]);
+ u[ 1] = _mm_unpackhi_epi32(lstep3[36], lstep3[58]);
+ u[ 2] = _mm_unpacklo_epi32(lstep3[37], lstep3[59]);
+ u[ 3] = _mm_unpackhi_epi32(lstep3[37], lstep3[59]);
+ u[ 4] = _mm_unpacklo_epi32(lstep3[38], lstep3[56]);
+ u[ 5] = _mm_unpackhi_epi32(lstep3[38], lstep3[56]);
+ u[ 6] = _mm_unpacklo_epi32(lstep3[39], lstep3[57]);
+ u[ 7] = _mm_unpackhi_epi32(lstep3[39], lstep3[57]);
+ u[ 8] = _mm_unpacklo_epi32(lstep3[40], lstep3[54]);
+ u[ 9] = _mm_unpackhi_epi32(lstep3[40], lstep3[54]);
+ u[10] = _mm_unpacklo_epi32(lstep3[41], lstep3[55]);
+ u[11] = _mm_unpackhi_epi32(lstep3[41], lstep3[55]);
+ u[12] = _mm_unpacklo_epi32(lstep3[42], lstep3[52]);
+ u[13] = _mm_unpackhi_epi32(lstep3[42], lstep3[52]);
+ u[14] = _mm_unpacklo_epi32(lstep3[43], lstep3[53]);
+ u[15] = _mm_unpackhi_epi32(lstep3[43], lstep3[53]);
+
+ v[ 0] = k_madd_epi32(u[ 0], k32_m08_p24);
+ v[ 1] = k_madd_epi32(u[ 1], k32_m08_p24);
+ v[ 2] = k_madd_epi32(u[ 2], k32_m08_p24);
+ v[ 3] = k_madd_epi32(u[ 3], k32_m08_p24);
+ v[ 4] = k_madd_epi32(u[ 4], k32_m08_p24);
+ v[ 5] = k_madd_epi32(u[ 5], k32_m08_p24);
+ v[ 6] = k_madd_epi32(u[ 6], k32_m08_p24);
+ v[ 7] = k_madd_epi32(u[ 7], k32_m08_p24);
+ v[ 8] = k_madd_epi32(u[ 8], k32_m24_m08);
+ v[ 9] = k_madd_epi32(u[ 9], k32_m24_m08);
+ v[10] = k_madd_epi32(u[10], k32_m24_m08);
+ v[11] = k_madd_epi32(u[11], k32_m24_m08);
+ v[12] = k_madd_epi32(u[12], k32_m24_m08);
+ v[13] = k_madd_epi32(u[13], k32_m24_m08);
+ v[14] = k_madd_epi32(u[14], k32_m24_m08);
+ v[15] = k_madd_epi32(u[15], k32_m24_m08);
+ v[16] = k_madd_epi32(u[12], k32_m08_p24);
+ v[17] = k_madd_epi32(u[13], k32_m08_p24);
+ v[18] = k_madd_epi32(u[14], k32_m08_p24);
+ v[19] = k_madd_epi32(u[15], k32_m08_p24);
+ v[20] = k_madd_epi32(u[ 8], k32_m08_p24);
+ v[21] = k_madd_epi32(u[ 9], k32_m08_p24);
+ v[22] = k_madd_epi32(u[10], k32_m08_p24);
+ v[23] = k_madd_epi32(u[11], k32_m08_p24);
+ v[24] = k_madd_epi32(u[ 4], k32_p24_p08);
+ v[25] = k_madd_epi32(u[ 5], k32_p24_p08);
+ v[26] = k_madd_epi32(u[ 6], k32_p24_p08);
+ v[27] = k_madd_epi32(u[ 7], k32_p24_p08);
+ v[28] = k_madd_epi32(u[ 0], k32_p24_p08);
+ v[29] = k_madd_epi32(u[ 1], k32_p24_p08);
+ v[30] = k_madd_epi32(u[ 2], k32_p24_p08);
+ v[31] = k_madd_epi32(u[ 3], k32_p24_p08);
+
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+ &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+ &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+ &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+ &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64(v[10], v[11]);
+ u[ 6] = k_packs_epi64(v[12], v[13]);
+ u[ 7] = k_packs_epi64(v[14], v[15]);
+ u[ 8] = k_packs_epi64(v[16], v[17]);
+ u[ 9] = k_packs_epi64(v[18], v[19]);
+ u[10] = k_packs_epi64(v[20], v[21]);
+ u[11] = k_packs_epi64(v[22], v[23]);
+ u[12] = k_packs_epi64(v[24], v[25]);
+ u[13] = k_packs_epi64(v[26], v[27]);
+ u[14] = k_packs_epi64(v[28], v[29]);
+ u[15] = k_packs_epi64(v[30], v[31]);
+
+ v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ lstep1[36] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+ lstep1[37] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+ lstep1[38] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+ lstep1[39] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+ lstep1[40] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+ lstep1[41] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+ lstep1[42] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+ lstep1[43] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+ lstep1[52] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+ lstep1[53] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+ lstep1[54] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ lstep1[55] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ lstep1[56] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ lstep1[57] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ lstep1[58] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ lstep1[59] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+ }
+ // stage 5
+ {
+ lstep2[ 8] = _mm_add_epi32(lstep1[10], lstep3[ 8]);
+ lstep2[ 9] = _mm_add_epi32(lstep1[11], lstep3[ 9]);
+ lstep2[10] = _mm_sub_epi32(lstep3[ 8], lstep1[10]);
+ lstep2[11] = _mm_sub_epi32(lstep3[ 9], lstep1[11]);
+ lstep2[12] = _mm_sub_epi32(lstep3[14], lstep1[12]);
+ lstep2[13] = _mm_sub_epi32(lstep3[15], lstep1[13]);
+ lstep2[14] = _mm_add_epi32(lstep1[12], lstep3[14]);
+ lstep2[15] = _mm_add_epi32(lstep1[13], lstep3[15]);
+ }
+ {
+ const __m128i k32_p16_p16 = pair_set_epi32(cospi_16_64, cospi_16_64);
+ const __m128i k32_p16_m16 = pair_set_epi32(cospi_16_64, -cospi_16_64);
+ const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64);
+ const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64);
+
+ u[0] = _mm_unpacklo_epi32(lstep1[0], lstep1[2]);
+ u[1] = _mm_unpackhi_epi32(lstep1[0], lstep1[2]);
+ u[2] = _mm_unpacklo_epi32(lstep1[1], lstep1[3]);
+ u[3] = _mm_unpackhi_epi32(lstep1[1], lstep1[3]);
+ u[4] = _mm_unpacklo_epi32(lstep1[4], lstep1[6]);
+ u[5] = _mm_unpackhi_epi32(lstep1[4], lstep1[6]);
+ u[6] = _mm_unpacklo_epi32(lstep1[5], lstep1[7]);
+ u[7] = _mm_unpackhi_epi32(lstep1[5], lstep1[7]);
+
+ // TODO(jingning): manually inline k_madd_epi32_ to further hide
+ // instruction latency.
+ v[ 0] = k_madd_epi32(u[0], k32_p16_p16);
+ v[ 1] = k_madd_epi32(u[1], k32_p16_p16);
+ v[ 2] = k_madd_epi32(u[2], k32_p16_p16);
+ v[ 3] = k_madd_epi32(u[3], k32_p16_p16);
+ v[ 4] = k_madd_epi32(u[0], k32_p16_m16);
+ v[ 5] = k_madd_epi32(u[1], k32_p16_m16);
+ v[ 6] = k_madd_epi32(u[2], k32_p16_m16);
+ v[ 7] = k_madd_epi32(u[3], k32_p16_m16);
+ v[ 8] = k_madd_epi32(u[4], k32_p24_p08);
+ v[ 9] = k_madd_epi32(u[5], k32_p24_p08);
+ v[10] = k_madd_epi32(u[6], k32_p24_p08);
+ v[11] = k_madd_epi32(u[7], k32_p24_p08);
+ v[12] = k_madd_epi32(u[4], k32_m08_p24);
+ v[13] = k_madd_epi32(u[5], k32_m08_p24);
+ v[14] = k_madd_epi32(u[6], k32_m08_p24);
+ v[15] = k_madd_epi32(u[7], k32_m08_p24);
+
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_16(
+ &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+ &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+ &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[0] = k_packs_epi64(v[0], v[1]);
+ u[1] = k_packs_epi64(v[2], v[3]);
+ u[2] = k_packs_epi64(v[4], v[5]);
+ u[3] = k_packs_epi64(v[6], v[7]);
+ u[4] = k_packs_epi64(v[8], v[9]);
+ u[5] = k_packs_epi64(v[10], v[11]);
+ u[6] = k_packs_epi64(v[12], v[13]);
+ u[7] = k_packs_epi64(v[14], v[15]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+
+ sign[0] = _mm_cmplt_epi32(u[0], kZero);
+ sign[1] = _mm_cmplt_epi32(u[1], kZero);
+ sign[2] = _mm_cmplt_epi32(u[2], kZero);
+ sign[3] = _mm_cmplt_epi32(u[3], kZero);
+ sign[4] = _mm_cmplt_epi32(u[4], kZero);
+ sign[5] = _mm_cmplt_epi32(u[5], kZero);
+ sign[6] = _mm_cmplt_epi32(u[6], kZero);
+ sign[7] = _mm_cmplt_epi32(u[7], kZero);
+
+ u[0] = _mm_sub_epi32(u[0], sign[0]);
+ u[1] = _mm_sub_epi32(u[1], sign[1]);
+ u[2] = _mm_sub_epi32(u[2], sign[2]);
+ u[3] = _mm_sub_epi32(u[3], sign[3]);
+ u[4] = _mm_sub_epi32(u[4], sign[4]);
+ u[5] = _mm_sub_epi32(u[5], sign[5]);
+ u[6] = _mm_sub_epi32(u[6], sign[6]);
+ u[7] = _mm_sub_epi32(u[7], sign[7]);
+
+ u[0] = _mm_add_epi32(u[0], K32One);
+ u[1] = _mm_add_epi32(u[1], K32One);
+ u[2] = _mm_add_epi32(u[2], K32One);
+ u[3] = _mm_add_epi32(u[3], K32One);
+ u[4] = _mm_add_epi32(u[4], K32One);
+ u[5] = _mm_add_epi32(u[5], K32One);
+ u[6] = _mm_add_epi32(u[6], K32One);
+ u[7] = _mm_add_epi32(u[7], K32One);
+
+ u[0] = _mm_srai_epi32(u[0], 2);
+ u[1] = _mm_srai_epi32(u[1], 2);
+ u[2] = _mm_srai_epi32(u[2], 2);
+ u[3] = _mm_srai_epi32(u[3], 2);
+ u[4] = _mm_srai_epi32(u[4], 2);
+ u[5] = _mm_srai_epi32(u[5], 2);
+ u[6] = _mm_srai_epi32(u[6], 2);
+ u[7] = _mm_srai_epi32(u[7], 2);
+
+ // Combine
+ out[ 0] = _mm_packs_epi32(u[0], u[1]);
+ out[16] = _mm_packs_epi32(u[2], u[3]);
+ out[ 8] = _mm_packs_epi32(u[4], u[5]);
+ out[24] = _mm_packs_epi32(u[6], u[7]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&out[0], &out[16],
+ &out[8], &out[24]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64);
+ const __m128i k32_m24_m08 = pair_set_epi32(-cospi_24_64, -cospi_8_64);
+ const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64);
+
+ u[0] = _mm_unpacklo_epi32(lstep1[18], lstep1[28]);
+ u[1] = _mm_unpackhi_epi32(lstep1[18], lstep1[28]);
+ u[2] = _mm_unpacklo_epi32(lstep1[19], lstep1[29]);
+ u[3] = _mm_unpackhi_epi32(lstep1[19], lstep1[29]);
+ u[4] = _mm_unpacklo_epi32(lstep1[20], lstep1[26]);
+ u[5] = _mm_unpackhi_epi32(lstep1[20], lstep1[26]);
+ u[6] = _mm_unpacklo_epi32(lstep1[21], lstep1[27]);
+ u[7] = _mm_unpackhi_epi32(lstep1[21], lstep1[27]);
+
+ v[0] = k_madd_epi32(u[0], k32_m08_p24);
+ v[1] = k_madd_epi32(u[1], k32_m08_p24);
+ v[2] = k_madd_epi32(u[2], k32_m08_p24);
+ v[3] = k_madd_epi32(u[3], k32_m08_p24);
+ v[4] = k_madd_epi32(u[4], k32_m24_m08);
+ v[5] = k_madd_epi32(u[5], k32_m24_m08);
+ v[6] = k_madd_epi32(u[6], k32_m24_m08);
+ v[7] = k_madd_epi32(u[7], k32_m24_m08);
+ v[ 8] = k_madd_epi32(u[4], k32_m08_p24);
+ v[ 9] = k_madd_epi32(u[5], k32_m08_p24);
+ v[10] = k_madd_epi32(u[6], k32_m08_p24);
+ v[11] = k_madd_epi32(u[7], k32_m08_p24);
+ v[12] = k_madd_epi32(u[0], k32_p24_p08);
+ v[13] = k_madd_epi32(u[1], k32_p24_p08);
+ v[14] = k_madd_epi32(u[2], k32_p24_p08);
+ v[15] = k_madd_epi32(u[3], k32_p24_p08);
+
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_16(
+ &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+ &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+ &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[0] = k_packs_epi64(v[0], v[1]);
+ u[1] = k_packs_epi64(v[2], v[3]);
+ u[2] = k_packs_epi64(v[4], v[5]);
+ u[3] = k_packs_epi64(v[6], v[7]);
+ u[4] = k_packs_epi64(v[8], v[9]);
+ u[5] = k_packs_epi64(v[10], v[11]);
+ u[6] = k_packs_epi64(v[12], v[13]);
+ u[7] = k_packs_epi64(v[14], v[15]);
+
+ u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ lstep2[18] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ lstep2[19] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ lstep2[20] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ lstep2[21] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ lstep2[26] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ lstep2[27] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ lstep2[28] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ lstep2[29] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+ }
+ {
+ lstep2[32] = _mm_add_epi32(lstep1[38], lstep3[32]);
+ lstep2[33] = _mm_add_epi32(lstep1[39], lstep3[33]);
+ lstep2[34] = _mm_add_epi32(lstep1[36], lstep3[34]);
+ lstep2[35] = _mm_add_epi32(lstep1[37], lstep3[35]);
+ lstep2[36] = _mm_sub_epi32(lstep3[34], lstep1[36]);
+ lstep2[37] = _mm_sub_epi32(lstep3[35], lstep1[37]);
+ lstep2[38] = _mm_sub_epi32(lstep3[32], lstep1[38]);
+ lstep2[39] = _mm_sub_epi32(lstep3[33], lstep1[39]);
+ lstep2[40] = _mm_sub_epi32(lstep3[46], lstep1[40]);
+ lstep2[41] = _mm_sub_epi32(lstep3[47], lstep1[41]);
+ lstep2[42] = _mm_sub_epi32(lstep3[44], lstep1[42]);
+ lstep2[43] = _mm_sub_epi32(lstep3[45], lstep1[43]);
+ lstep2[44] = _mm_add_epi32(lstep1[42], lstep3[44]);
+ lstep2[45] = _mm_add_epi32(lstep1[43], lstep3[45]);
+ lstep2[46] = _mm_add_epi32(lstep1[40], lstep3[46]);
+ lstep2[47] = _mm_add_epi32(lstep1[41], lstep3[47]);
+ lstep2[48] = _mm_add_epi32(lstep1[54], lstep3[48]);
+ lstep2[49] = _mm_add_epi32(lstep1[55], lstep3[49]);
+ lstep2[50] = _mm_add_epi32(lstep1[52], lstep3[50]);
+ lstep2[51] = _mm_add_epi32(lstep1[53], lstep3[51]);
+ lstep2[52] = _mm_sub_epi32(lstep3[50], lstep1[52]);
+ lstep2[53] = _mm_sub_epi32(lstep3[51], lstep1[53]);
+ lstep2[54] = _mm_sub_epi32(lstep3[48], lstep1[54]);
+ lstep2[55] = _mm_sub_epi32(lstep3[49], lstep1[55]);
+ lstep2[56] = _mm_sub_epi32(lstep3[62], lstep1[56]);
+ lstep2[57] = _mm_sub_epi32(lstep3[63], lstep1[57]);
+ lstep2[58] = _mm_sub_epi32(lstep3[60], lstep1[58]);
+ lstep2[59] = _mm_sub_epi32(lstep3[61], lstep1[59]);
+ lstep2[60] = _mm_add_epi32(lstep1[58], lstep3[60]);
+ lstep2[61] = _mm_add_epi32(lstep1[59], lstep3[61]);
+ lstep2[62] = _mm_add_epi32(lstep1[56], lstep3[62]);
+ lstep2[63] = _mm_add_epi32(lstep1[57], lstep3[63]);
+ }
+ // stage 6
+ {
+ const __m128i k32_p28_p04 = pair_set_epi32(cospi_28_64, cospi_4_64);
+ const __m128i k32_p12_p20 = pair_set_epi32(cospi_12_64, cospi_20_64);
+ const __m128i k32_m20_p12 = pair_set_epi32(-cospi_20_64, cospi_12_64);
+ const __m128i k32_m04_p28 = pair_set_epi32(-cospi_4_64, cospi_28_64);
+
+ u[0] = _mm_unpacklo_epi32(lstep2[ 8], lstep2[14]);
+ u[1] = _mm_unpackhi_epi32(lstep2[ 8], lstep2[14]);
+ u[2] = _mm_unpacklo_epi32(lstep2[ 9], lstep2[15]);
+ u[3] = _mm_unpackhi_epi32(lstep2[ 9], lstep2[15]);
+ u[4] = _mm_unpacklo_epi32(lstep2[10], lstep2[12]);
+ u[5] = _mm_unpackhi_epi32(lstep2[10], lstep2[12]);
+ u[6] = _mm_unpacklo_epi32(lstep2[11], lstep2[13]);
+ u[7] = _mm_unpackhi_epi32(lstep2[11], lstep2[13]);
+ u[8] = _mm_unpacklo_epi32(lstep2[10], lstep2[12]);
+ u[9] = _mm_unpackhi_epi32(lstep2[10], lstep2[12]);
+ u[10] = _mm_unpacklo_epi32(lstep2[11], lstep2[13]);
+ u[11] = _mm_unpackhi_epi32(lstep2[11], lstep2[13]);
+ u[12] = _mm_unpacklo_epi32(lstep2[ 8], lstep2[14]);
+ u[13] = _mm_unpackhi_epi32(lstep2[ 8], lstep2[14]);
+ u[14] = _mm_unpacklo_epi32(lstep2[ 9], lstep2[15]);
+ u[15] = _mm_unpackhi_epi32(lstep2[ 9], lstep2[15]);
+
+ v[0] = k_madd_epi32(u[0], k32_p28_p04);
+ v[1] = k_madd_epi32(u[1], k32_p28_p04);
+ v[2] = k_madd_epi32(u[2], k32_p28_p04);
+ v[3] = k_madd_epi32(u[3], k32_p28_p04);
+ v[4] = k_madd_epi32(u[4], k32_p12_p20);
+ v[5] = k_madd_epi32(u[5], k32_p12_p20);
+ v[6] = k_madd_epi32(u[6], k32_p12_p20);
+ v[7] = k_madd_epi32(u[7], k32_p12_p20);
+ v[ 8] = k_madd_epi32(u[ 8], k32_m20_p12);
+ v[ 9] = k_madd_epi32(u[ 9], k32_m20_p12);
+ v[10] = k_madd_epi32(u[10], k32_m20_p12);
+ v[11] = k_madd_epi32(u[11], k32_m20_p12);
+ v[12] = k_madd_epi32(u[12], k32_m04_p28);
+ v[13] = k_madd_epi32(u[13], k32_m04_p28);
+ v[14] = k_madd_epi32(u[14], k32_m04_p28);
+ v[15] = k_madd_epi32(u[15], k32_m04_p28);
+
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_16(
+ &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+ &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+ &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[0] = k_packs_epi64(v[0], v[1]);
+ u[1] = k_packs_epi64(v[2], v[3]);
+ u[2] = k_packs_epi64(v[4], v[5]);
+ u[3] = k_packs_epi64(v[6], v[7]);
+ u[4] = k_packs_epi64(v[8], v[9]);
+ u[5] = k_packs_epi64(v[10], v[11]);
+ u[6] = k_packs_epi64(v[12], v[13]);
+ u[7] = k_packs_epi64(v[14], v[15]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+
+ sign[0] = _mm_cmplt_epi32(u[0], kZero);
+ sign[1] = _mm_cmplt_epi32(u[1], kZero);
+ sign[2] = _mm_cmplt_epi32(u[2], kZero);
+ sign[3] = _mm_cmplt_epi32(u[3], kZero);
+ sign[4] = _mm_cmplt_epi32(u[4], kZero);
+ sign[5] = _mm_cmplt_epi32(u[5], kZero);
+ sign[6] = _mm_cmplt_epi32(u[6], kZero);
+ sign[7] = _mm_cmplt_epi32(u[7], kZero);
+
+ u[0] = _mm_sub_epi32(u[0], sign[0]);
+ u[1] = _mm_sub_epi32(u[1], sign[1]);
+ u[2] = _mm_sub_epi32(u[2], sign[2]);
+ u[3] = _mm_sub_epi32(u[3], sign[3]);
+ u[4] = _mm_sub_epi32(u[4], sign[4]);
+ u[5] = _mm_sub_epi32(u[5], sign[5]);
+ u[6] = _mm_sub_epi32(u[6], sign[6]);
+ u[7] = _mm_sub_epi32(u[7], sign[7]);
+
+ u[0] = _mm_add_epi32(u[0], K32One);
+ u[1] = _mm_add_epi32(u[1], K32One);
+ u[2] = _mm_add_epi32(u[2], K32One);
+ u[3] = _mm_add_epi32(u[3], K32One);
+ u[4] = _mm_add_epi32(u[4], K32One);
+ u[5] = _mm_add_epi32(u[5], K32One);
+ u[6] = _mm_add_epi32(u[6], K32One);
+ u[7] = _mm_add_epi32(u[7], K32One);
+
+ u[0] = _mm_srai_epi32(u[0], 2);
+ u[1] = _mm_srai_epi32(u[1], 2);
+ u[2] = _mm_srai_epi32(u[2], 2);
+ u[3] = _mm_srai_epi32(u[3], 2);
+ u[4] = _mm_srai_epi32(u[4], 2);
+ u[5] = _mm_srai_epi32(u[5], 2);
+ u[6] = _mm_srai_epi32(u[6], 2);
+ u[7] = _mm_srai_epi32(u[7], 2);
+
+ out[ 4] = _mm_packs_epi32(u[0], u[1]);
+ out[20] = _mm_packs_epi32(u[2], u[3]);
+ out[12] = _mm_packs_epi32(u[4], u[5]);
+ out[28] = _mm_packs_epi32(u[6], u[7]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&out[4], &out[20],
+ &out[12], &out[28]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ lstep3[16] = _mm_add_epi32(lstep2[18], lstep1[16]);
+ lstep3[17] = _mm_add_epi32(lstep2[19], lstep1[17]);
+ lstep3[18] = _mm_sub_epi32(lstep1[16], lstep2[18]);
+ lstep3[19] = _mm_sub_epi32(lstep1[17], lstep2[19]);
+ lstep3[20] = _mm_sub_epi32(lstep1[22], lstep2[20]);
+ lstep3[21] = _mm_sub_epi32(lstep1[23], lstep2[21]);
+ lstep3[22] = _mm_add_epi32(lstep2[20], lstep1[22]);
+ lstep3[23] = _mm_add_epi32(lstep2[21], lstep1[23]);
+ lstep3[24] = _mm_add_epi32(lstep2[26], lstep1[24]);
+ lstep3[25] = _mm_add_epi32(lstep2[27], lstep1[25]);
+ lstep3[26] = _mm_sub_epi32(lstep1[24], lstep2[26]);
+ lstep3[27] = _mm_sub_epi32(lstep1[25], lstep2[27]);
+ lstep3[28] = _mm_sub_epi32(lstep1[30], lstep2[28]);
+ lstep3[29] = _mm_sub_epi32(lstep1[31], lstep2[29]);
+ lstep3[30] = _mm_add_epi32(lstep2[28], lstep1[30]);
+ lstep3[31] = _mm_add_epi32(lstep2[29], lstep1[31]);
+ }
+ {
+ const __m128i k32_m04_p28 = pair_set_epi32(-cospi_4_64, cospi_28_64);
+ const __m128i k32_m28_m04 = pair_set_epi32(-cospi_28_64, -cospi_4_64);
+ const __m128i k32_m20_p12 = pair_set_epi32(-cospi_20_64, cospi_12_64);
+ const __m128i k32_m12_m20 = pair_set_epi32(-cospi_12_64,
+ -cospi_20_64);
+ const __m128i k32_p12_p20 = pair_set_epi32(cospi_12_64, cospi_20_64);
+ const __m128i k32_p28_p04 = pair_set_epi32(cospi_28_64, cospi_4_64);
+
+ u[ 0] = _mm_unpacklo_epi32(lstep2[34], lstep2[60]);
+ u[ 1] = _mm_unpackhi_epi32(lstep2[34], lstep2[60]);
+ u[ 2] = _mm_unpacklo_epi32(lstep2[35], lstep2[61]);
+ u[ 3] = _mm_unpackhi_epi32(lstep2[35], lstep2[61]);
+ u[ 4] = _mm_unpacklo_epi32(lstep2[36], lstep2[58]);
+ u[ 5] = _mm_unpackhi_epi32(lstep2[36], lstep2[58]);
+ u[ 6] = _mm_unpacklo_epi32(lstep2[37], lstep2[59]);
+ u[ 7] = _mm_unpackhi_epi32(lstep2[37], lstep2[59]);
+ u[ 8] = _mm_unpacklo_epi32(lstep2[42], lstep2[52]);
+ u[ 9] = _mm_unpackhi_epi32(lstep2[42], lstep2[52]);
+ u[10] = _mm_unpacklo_epi32(lstep2[43], lstep2[53]);
+ u[11] = _mm_unpackhi_epi32(lstep2[43], lstep2[53]);
+ u[12] = _mm_unpacklo_epi32(lstep2[44], lstep2[50]);
+ u[13] = _mm_unpackhi_epi32(lstep2[44], lstep2[50]);
+ u[14] = _mm_unpacklo_epi32(lstep2[45], lstep2[51]);
+ u[15] = _mm_unpackhi_epi32(lstep2[45], lstep2[51]);
+
+ v[ 0] = k_madd_epi32(u[ 0], k32_m04_p28);
+ v[ 1] = k_madd_epi32(u[ 1], k32_m04_p28);
+ v[ 2] = k_madd_epi32(u[ 2], k32_m04_p28);
+ v[ 3] = k_madd_epi32(u[ 3], k32_m04_p28);
+ v[ 4] = k_madd_epi32(u[ 4], k32_m28_m04);
+ v[ 5] = k_madd_epi32(u[ 5], k32_m28_m04);
+ v[ 6] = k_madd_epi32(u[ 6], k32_m28_m04);
+ v[ 7] = k_madd_epi32(u[ 7], k32_m28_m04);
+ v[ 8] = k_madd_epi32(u[ 8], k32_m20_p12);
+ v[ 9] = k_madd_epi32(u[ 9], k32_m20_p12);
+ v[10] = k_madd_epi32(u[10], k32_m20_p12);
+ v[11] = k_madd_epi32(u[11], k32_m20_p12);
+ v[12] = k_madd_epi32(u[12], k32_m12_m20);
+ v[13] = k_madd_epi32(u[13], k32_m12_m20);
+ v[14] = k_madd_epi32(u[14], k32_m12_m20);
+ v[15] = k_madd_epi32(u[15], k32_m12_m20);
+ v[16] = k_madd_epi32(u[12], k32_m20_p12);
+ v[17] = k_madd_epi32(u[13], k32_m20_p12);
+ v[18] = k_madd_epi32(u[14], k32_m20_p12);
+ v[19] = k_madd_epi32(u[15], k32_m20_p12);
+ v[20] = k_madd_epi32(u[ 8], k32_p12_p20);
+ v[21] = k_madd_epi32(u[ 9], k32_p12_p20);
+ v[22] = k_madd_epi32(u[10], k32_p12_p20);
+ v[23] = k_madd_epi32(u[11], k32_p12_p20);
+ v[24] = k_madd_epi32(u[ 4], k32_m04_p28);
+ v[25] = k_madd_epi32(u[ 5], k32_m04_p28);
+ v[26] = k_madd_epi32(u[ 6], k32_m04_p28);
+ v[27] = k_madd_epi32(u[ 7], k32_m04_p28);
+ v[28] = k_madd_epi32(u[ 0], k32_p28_p04);
+ v[29] = k_madd_epi32(u[ 1], k32_p28_p04);
+ v[30] = k_madd_epi32(u[ 2], k32_p28_p04);
+ v[31] = k_madd_epi32(u[ 3], k32_p28_p04);
+
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+ &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+ &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+ &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+ &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64(v[10], v[11]);
+ u[ 6] = k_packs_epi64(v[12], v[13]);
+ u[ 7] = k_packs_epi64(v[14], v[15]);
+ u[ 8] = k_packs_epi64(v[16], v[17]);
+ u[ 9] = k_packs_epi64(v[18], v[19]);
+ u[10] = k_packs_epi64(v[20], v[21]);
+ u[11] = k_packs_epi64(v[22], v[23]);
+ u[12] = k_packs_epi64(v[24], v[25]);
+ u[13] = k_packs_epi64(v[26], v[27]);
+ u[14] = k_packs_epi64(v[28], v[29]);
+ u[15] = k_packs_epi64(v[30], v[31]);
+
+ v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ lstep3[34] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+ lstep3[35] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+ lstep3[36] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+ lstep3[37] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+ lstep3[42] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+ lstep3[43] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+ lstep3[44] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+ lstep3[45] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+ lstep3[50] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+ lstep3[51] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+ lstep3[52] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ lstep3[53] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ lstep3[58] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ lstep3[59] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ lstep3[60] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ lstep3[61] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+ }
+ // stage 7
+ {
+ const __m128i k32_p30_p02 = pair_set_epi32(cospi_30_64, cospi_2_64);
+ const __m128i k32_p14_p18 = pair_set_epi32(cospi_14_64, cospi_18_64);
+ const __m128i k32_p22_p10 = pair_set_epi32(cospi_22_64, cospi_10_64);
+ const __m128i k32_p06_p26 = pair_set_epi32(cospi_6_64, cospi_26_64);
+ const __m128i k32_m26_p06 = pair_set_epi32(-cospi_26_64, cospi_6_64);
+ const __m128i k32_m10_p22 = pair_set_epi32(-cospi_10_64, cospi_22_64);
+ const __m128i k32_m18_p14 = pair_set_epi32(-cospi_18_64, cospi_14_64);
+ const __m128i k32_m02_p30 = pair_set_epi32(-cospi_2_64, cospi_30_64);
+
+ u[ 0] = _mm_unpacklo_epi32(lstep3[16], lstep3[30]);
+ u[ 1] = _mm_unpackhi_epi32(lstep3[16], lstep3[30]);
+ u[ 2] = _mm_unpacklo_epi32(lstep3[17], lstep3[31]);
+ u[ 3] = _mm_unpackhi_epi32(lstep3[17], lstep3[31]);
+ u[ 4] = _mm_unpacklo_epi32(lstep3[18], lstep3[28]);
+ u[ 5] = _mm_unpackhi_epi32(lstep3[18], lstep3[28]);
+ u[ 6] = _mm_unpacklo_epi32(lstep3[19], lstep3[29]);
+ u[ 7] = _mm_unpackhi_epi32(lstep3[19], lstep3[29]);
+ u[ 8] = _mm_unpacklo_epi32(lstep3[20], lstep3[26]);
+ u[ 9] = _mm_unpackhi_epi32(lstep3[20], lstep3[26]);
+ u[10] = _mm_unpacklo_epi32(lstep3[21], lstep3[27]);
+ u[11] = _mm_unpackhi_epi32(lstep3[21], lstep3[27]);
+ u[12] = _mm_unpacklo_epi32(lstep3[22], lstep3[24]);
+ u[13] = _mm_unpackhi_epi32(lstep3[22], lstep3[24]);
+ u[14] = _mm_unpacklo_epi32(lstep3[23], lstep3[25]);
+ u[15] = _mm_unpackhi_epi32(lstep3[23], lstep3[25]);
+
+ v[ 0] = k_madd_epi32(u[ 0], k32_p30_p02);
+ v[ 1] = k_madd_epi32(u[ 1], k32_p30_p02);
+ v[ 2] = k_madd_epi32(u[ 2], k32_p30_p02);
+ v[ 3] = k_madd_epi32(u[ 3], k32_p30_p02);
+ v[ 4] = k_madd_epi32(u[ 4], k32_p14_p18);
+ v[ 5] = k_madd_epi32(u[ 5], k32_p14_p18);
+ v[ 6] = k_madd_epi32(u[ 6], k32_p14_p18);
+ v[ 7] = k_madd_epi32(u[ 7], k32_p14_p18);
+ v[ 8] = k_madd_epi32(u[ 8], k32_p22_p10);
+ v[ 9] = k_madd_epi32(u[ 9], k32_p22_p10);
+ v[10] = k_madd_epi32(u[10], k32_p22_p10);
+ v[11] = k_madd_epi32(u[11], k32_p22_p10);
+ v[12] = k_madd_epi32(u[12], k32_p06_p26);
+ v[13] = k_madd_epi32(u[13], k32_p06_p26);
+ v[14] = k_madd_epi32(u[14], k32_p06_p26);
+ v[15] = k_madd_epi32(u[15], k32_p06_p26);
+ v[16] = k_madd_epi32(u[12], k32_m26_p06);
+ v[17] = k_madd_epi32(u[13], k32_m26_p06);
+ v[18] = k_madd_epi32(u[14], k32_m26_p06);
+ v[19] = k_madd_epi32(u[15], k32_m26_p06);
+ v[20] = k_madd_epi32(u[ 8], k32_m10_p22);
+ v[21] = k_madd_epi32(u[ 9], k32_m10_p22);
+ v[22] = k_madd_epi32(u[10], k32_m10_p22);
+ v[23] = k_madd_epi32(u[11], k32_m10_p22);
+ v[24] = k_madd_epi32(u[ 4], k32_m18_p14);
+ v[25] = k_madd_epi32(u[ 5], k32_m18_p14);
+ v[26] = k_madd_epi32(u[ 6], k32_m18_p14);
+ v[27] = k_madd_epi32(u[ 7], k32_m18_p14);
+ v[28] = k_madd_epi32(u[ 0], k32_m02_p30);
+ v[29] = k_madd_epi32(u[ 1], k32_m02_p30);
+ v[30] = k_madd_epi32(u[ 2], k32_m02_p30);
+ v[31] = k_madd_epi32(u[ 3], k32_m02_p30);
+
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+ &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+ &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+ &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+ &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64(v[10], v[11]);
+ u[ 6] = k_packs_epi64(v[12], v[13]);
+ u[ 7] = k_packs_epi64(v[14], v[15]);
+ u[ 8] = k_packs_epi64(v[16], v[17]);
+ u[ 9] = k_packs_epi64(v[18], v[19]);
+ u[10] = k_packs_epi64(v[20], v[21]);
+ u[11] = k_packs_epi64(v[22], v[23]);
+ u[12] = k_packs_epi64(v[24], v[25]);
+ u[13] = k_packs_epi64(v[26], v[27]);
+ u[14] = k_packs_epi64(v[28], v[29]);
+ u[15] = k_packs_epi64(v[30], v[31]);
+
+ v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm_cmplt_epi32(u[ 0], kZero);
+ v[ 1] = _mm_cmplt_epi32(u[ 1], kZero);
+ v[ 2] = _mm_cmplt_epi32(u[ 2], kZero);
+ v[ 3] = _mm_cmplt_epi32(u[ 3], kZero);
+ v[ 4] = _mm_cmplt_epi32(u[ 4], kZero);
+ v[ 5] = _mm_cmplt_epi32(u[ 5], kZero);
+ v[ 6] = _mm_cmplt_epi32(u[ 6], kZero);
+ v[ 7] = _mm_cmplt_epi32(u[ 7], kZero);
+ v[ 8] = _mm_cmplt_epi32(u[ 8], kZero);
+ v[ 9] = _mm_cmplt_epi32(u[ 9], kZero);
+ v[10] = _mm_cmplt_epi32(u[10], kZero);
+ v[11] = _mm_cmplt_epi32(u[11], kZero);
+ v[12] = _mm_cmplt_epi32(u[12], kZero);
+ v[13] = _mm_cmplt_epi32(u[13], kZero);
+ v[14] = _mm_cmplt_epi32(u[14], kZero);
+ v[15] = _mm_cmplt_epi32(u[15], kZero);
+
+ u[ 0] = _mm_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm_sub_epi32(u[10], v[10]);
+ u[11] = _mm_sub_epi32(u[11], v[11]);
+ u[12] = _mm_sub_epi32(u[12], v[12]);
+ u[13] = _mm_sub_epi32(u[13], v[13]);
+ u[14] = _mm_sub_epi32(u[14], v[14]);
+ u[15] = _mm_sub_epi32(u[15], v[15]);
+
+ v[ 0] = _mm_add_epi32(u[ 0], K32One);
+ v[ 1] = _mm_add_epi32(u[ 1], K32One);
+ v[ 2] = _mm_add_epi32(u[ 2], K32One);
+ v[ 3] = _mm_add_epi32(u[ 3], K32One);
+ v[ 4] = _mm_add_epi32(u[ 4], K32One);
+ v[ 5] = _mm_add_epi32(u[ 5], K32One);
+ v[ 6] = _mm_add_epi32(u[ 6], K32One);
+ v[ 7] = _mm_add_epi32(u[ 7], K32One);
+ v[ 8] = _mm_add_epi32(u[ 8], K32One);
+ v[ 9] = _mm_add_epi32(u[ 9], K32One);
+ v[10] = _mm_add_epi32(u[10], K32One);
+ v[11] = _mm_add_epi32(u[11], K32One);
+ v[12] = _mm_add_epi32(u[12], K32One);
+ v[13] = _mm_add_epi32(u[13], K32One);
+ v[14] = _mm_add_epi32(u[14], K32One);
+ v[15] = _mm_add_epi32(u[15], K32One);
+
+ u[ 0] = _mm_srai_epi32(v[ 0], 2);
+ u[ 1] = _mm_srai_epi32(v[ 1], 2);
+ u[ 2] = _mm_srai_epi32(v[ 2], 2);
+ u[ 3] = _mm_srai_epi32(v[ 3], 2);
+ u[ 4] = _mm_srai_epi32(v[ 4], 2);
+ u[ 5] = _mm_srai_epi32(v[ 5], 2);
+ u[ 6] = _mm_srai_epi32(v[ 6], 2);
+ u[ 7] = _mm_srai_epi32(v[ 7], 2);
+ u[ 8] = _mm_srai_epi32(v[ 8], 2);
+ u[ 9] = _mm_srai_epi32(v[ 9], 2);
+ u[10] = _mm_srai_epi32(v[10], 2);
+ u[11] = _mm_srai_epi32(v[11], 2);
+ u[12] = _mm_srai_epi32(v[12], 2);
+ u[13] = _mm_srai_epi32(v[13], 2);
+ u[14] = _mm_srai_epi32(v[14], 2);
+ u[15] = _mm_srai_epi32(v[15], 2);
+
+ out[ 2] = _mm_packs_epi32(u[0], u[1]);
+ out[18] = _mm_packs_epi32(u[2], u[3]);
+ out[10] = _mm_packs_epi32(u[4], u[5]);
+ out[26] = _mm_packs_epi32(u[6], u[7]);
+ out[ 6] = _mm_packs_epi32(u[8], u[9]);
+ out[22] = _mm_packs_epi32(u[10], u[11]);
+ out[14] = _mm_packs_epi32(u[12], u[13]);
+ out[30] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&out[2], &out[18], &out[10],
+ &out[26], &out[6], &out[22],
+ &out[14], &out[30]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ lstep1[32] = _mm_add_epi32(lstep3[34], lstep2[32]);
+ lstep1[33] = _mm_add_epi32(lstep3[35], lstep2[33]);
+ lstep1[34] = _mm_sub_epi32(lstep2[32], lstep3[34]);
+ lstep1[35] = _mm_sub_epi32(lstep2[33], lstep3[35]);
+ lstep1[36] = _mm_sub_epi32(lstep2[38], lstep3[36]);
+ lstep1[37] = _mm_sub_epi32(lstep2[39], lstep3[37]);
+ lstep1[38] = _mm_add_epi32(lstep3[36], lstep2[38]);
+ lstep1[39] = _mm_add_epi32(lstep3[37], lstep2[39]);
+ lstep1[40] = _mm_add_epi32(lstep3[42], lstep2[40]);
+ lstep1[41] = _mm_add_epi32(lstep3[43], lstep2[41]);
+ lstep1[42] = _mm_sub_epi32(lstep2[40], lstep3[42]);
+ lstep1[43] = _mm_sub_epi32(lstep2[41], lstep3[43]);
+ lstep1[44] = _mm_sub_epi32(lstep2[46], lstep3[44]);
+ lstep1[45] = _mm_sub_epi32(lstep2[47], lstep3[45]);
+ lstep1[46] = _mm_add_epi32(lstep3[44], lstep2[46]);
+ lstep1[47] = _mm_add_epi32(lstep3[45], lstep2[47]);
+ lstep1[48] = _mm_add_epi32(lstep3[50], lstep2[48]);
+ lstep1[49] = _mm_add_epi32(lstep3[51], lstep2[49]);
+ lstep1[50] = _mm_sub_epi32(lstep2[48], lstep3[50]);
+ lstep1[51] = _mm_sub_epi32(lstep2[49], lstep3[51]);
+ lstep1[52] = _mm_sub_epi32(lstep2[54], lstep3[52]);
+ lstep1[53] = _mm_sub_epi32(lstep2[55], lstep3[53]);
+ lstep1[54] = _mm_add_epi32(lstep3[52], lstep2[54]);
+ lstep1[55] = _mm_add_epi32(lstep3[53], lstep2[55]);
+ lstep1[56] = _mm_add_epi32(lstep3[58], lstep2[56]);
+ lstep1[57] = _mm_add_epi32(lstep3[59], lstep2[57]);
+ lstep1[58] = _mm_sub_epi32(lstep2[56], lstep3[58]);
+ lstep1[59] = _mm_sub_epi32(lstep2[57], lstep3[59]);
+ lstep1[60] = _mm_sub_epi32(lstep2[62], lstep3[60]);
+ lstep1[61] = _mm_sub_epi32(lstep2[63], lstep3[61]);
+ lstep1[62] = _mm_add_epi32(lstep3[60], lstep2[62]);
+ lstep1[63] = _mm_add_epi32(lstep3[61], lstep2[63]);
+ }
+ // stage 8
+ {
+ const __m128i k32_p31_p01 = pair_set_epi32(cospi_31_64, cospi_1_64);
+ const __m128i k32_p15_p17 = pair_set_epi32(cospi_15_64, cospi_17_64);
+ const __m128i k32_p23_p09 = pair_set_epi32(cospi_23_64, cospi_9_64);
+ const __m128i k32_p07_p25 = pair_set_epi32(cospi_7_64, cospi_25_64);
+ const __m128i k32_m25_p07 = pair_set_epi32(-cospi_25_64, cospi_7_64);
+ const __m128i k32_m09_p23 = pair_set_epi32(-cospi_9_64, cospi_23_64);
+ const __m128i k32_m17_p15 = pair_set_epi32(-cospi_17_64, cospi_15_64);
+ const __m128i k32_m01_p31 = pair_set_epi32(-cospi_1_64, cospi_31_64);
+
+ u[ 0] = _mm_unpacklo_epi32(lstep1[32], lstep1[62]);
+ u[ 1] = _mm_unpackhi_epi32(lstep1[32], lstep1[62]);
+ u[ 2] = _mm_unpacklo_epi32(lstep1[33], lstep1[63]);
+ u[ 3] = _mm_unpackhi_epi32(lstep1[33], lstep1[63]);
+ u[ 4] = _mm_unpacklo_epi32(lstep1[34], lstep1[60]);
+ u[ 5] = _mm_unpackhi_epi32(lstep1[34], lstep1[60]);
+ u[ 6] = _mm_unpacklo_epi32(lstep1[35], lstep1[61]);
+ u[ 7] = _mm_unpackhi_epi32(lstep1[35], lstep1[61]);
+ u[ 8] = _mm_unpacklo_epi32(lstep1[36], lstep1[58]);
+ u[ 9] = _mm_unpackhi_epi32(lstep1[36], lstep1[58]);
+ u[10] = _mm_unpacklo_epi32(lstep1[37], lstep1[59]);
+ u[11] = _mm_unpackhi_epi32(lstep1[37], lstep1[59]);
+ u[12] = _mm_unpacklo_epi32(lstep1[38], lstep1[56]);
+ u[13] = _mm_unpackhi_epi32(lstep1[38], lstep1[56]);
+ u[14] = _mm_unpacklo_epi32(lstep1[39], lstep1[57]);
+ u[15] = _mm_unpackhi_epi32(lstep1[39], lstep1[57]);
+
+ v[ 0] = k_madd_epi32(u[ 0], k32_p31_p01);
+ v[ 1] = k_madd_epi32(u[ 1], k32_p31_p01);
+ v[ 2] = k_madd_epi32(u[ 2], k32_p31_p01);
+ v[ 3] = k_madd_epi32(u[ 3], k32_p31_p01);
+ v[ 4] = k_madd_epi32(u[ 4], k32_p15_p17);
+ v[ 5] = k_madd_epi32(u[ 5], k32_p15_p17);
+ v[ 6] = k_madd_epi32(u[ 6], k32_p15_p17);
+ v[ 7] = k_madd_epi32(u[ 7], k32_p15_p17);
+ v[ 8] = k_madd_epi32(u[ 8], k32_p23_p09);
+ v[ 9] = k_madd_epi32(u[ 9], k32_p23_p09);
+ v[10] = k_madd_epi32(u[10], k32_p23_p09);
+ v[11] = k_madd_epi32(u[11], k32_p23_p09);
+ v[12] = k_madd_epi32(u[12], k32_p07_p25);
+ v[13] = k_madd_epi32(u[13], k32_p07_p25);
+ v[14] = k_madd_epi32(u[14], k32_p07_p25);
+ v[15] = k_madd_epi32(u[15], k32_p07_p25);
+ v[16] = k_madd_epi32(u[12], k32_m25_p07);
+ v[17] = k_madd_epi32(u[13], k32_m25_p07);
+ v[18] = k_madd_epi32(u[14], k32_m25_p07);
+ v[19] = k_madd_epi32(u[15], k32_m25_p07);
+ v[20] = k_madd_epi32(u[ 8], k32_m09_p23);
+ v[21] = k_madd_epi32(u[ 9], k32_m09_p23);
+ v[22] = k_madd_epi32(u[10], k32_m09_p23);
+ v[23] = k_madd_epi32(u[11], k32_m09_p23);
+ v[24] = k_madd_epi32(u[ 4], k32_m17_p15);
+ v[25] = k_madd_epi32(u[ 5], k32_m17_p15);
+ v[26] = k_madd_epi32(u[ 6], k32_m17_p15);
+ v[27] = k_madd_epi32(u[ 7], k32_m17_p15);
+ v[28] = k_madd_epi32(u[ 0], k32_m01_p31);
+ v[29] = k_madd_epi32(u[ 1], k32_m01_p31);
+ v[30] = k_madd_epi32(u[ 2], k32_m01_p31);
+ v[31] = k_madd_epi32(u[ 3], k32_m01_p31);
+
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+ &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+ &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+ &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+ &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64(v[10], v[11]);
+ u[ 6] = k_packs_epi64(v[12], v[13]);
+ u[ 7] = k_packs_epi64(v[14], v[15]);
+ u[ 8] = k_packs_epi64(v[16], v[17]);
+ u[ 9] = k_packs_epi64(v[18], v[19]);
+ u[10] = k_packs_epi64(v[20], v[21]);
+ u[11] = k_packs_epi64(v[22], v[23]);
+ u[12] = k_packs_epi64(v[24], v[25]);
+ u[13] = k_packs_epi64(v[26], v[27]);
+ u[14] = k_packs_epi64(v[28], v[29]);
+ u[15] = k_packs_epi64(v[30], v[31]);
+
+ v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm_cmplt_epi32(u[ 0], kZero);
+ v[ 1] = _mm_cmplt_epi32(u[ 1], kZero);
+ v[ 2] = _mm_cmplt_epi32(u[ 2], kZero);
+ v[ 3] = _mm_cmplt_epi32(u[ 3], kZero);
+ v[ 4] = _mm_cmplt_epi32(u[ 4], kZero);
+ v[ 5] = _mm_cmplt_epi32(u[ 5], kZero);
+ v[ 6] = _mm_cmplt_epi32(u[ 6], kZero);
+ v[ 7] = _mm_cmplt_epi32(u[ 7], kZero);
+ v[ 8] = _mm_cmplt_epi32(u[ 8], kZero);
+ v[ 9] = _mm_cmplt_epi32(u[ 9], kZero);
+ v[10] = _mm_cmplt_epi32(u[10], kZero);
+ v[11] = _mm_cmplt_epi32(u[11], kZero);
+ v[12] = _mm_cmplt_epi32(u[12], kZero);
+ v[13] = _mm_cmplt_epi32(u[13], kZero);
+ v[14] = _mm_cmplt_epi32(u[14], kZero);
+ v[15] = _mm_cmplt_epi32(u[15], kZero);
+
+ u[ 0] = _mm_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm_sub_epi32(u[10], v[10]);
+ u[11] = _mm_sub_epi32(u[11], v[11]);
+ u[12] = _mm_sub_epi32(u[12], v[12]);
+ u[13] = _mm_sub_epi32(u[13], v[13]);
+ u[14] = _mm_sub_epi32(u[14], v[14]);
+ u[15] = _mm_sub_epi32(u[15], v[15]);
+
+ v[0] = _mm_add_epi32(u[0], K32One);
+ v[1] = _mm_add_epi32(u[1], K32One);
+ v[2] = _mm_add_epi32(u[2], K32One);
+ v[3] = _mm_add_epi32(u[3], K32One);
+ v[4] = _mm_add_epi32(u[4], K32One);
+ v[5] = _mm_add_epi32(u[5], K32One);
+ v[6] = _mm_add_epi32(u[6], K32One);
+ v[7] = _mm_add_epi32(u[7], K32One);
+ v[8] = _mm_add_epi32(u[8], K32One);
+ v[9] = _mm_add_epi32(u[9], K32One);
+ v[10] = _mm_add_epi32(u[10], K32One);
+ v[11] = _mm_add_epi32(u[11], K32One);
+ v[12] = _mm_add_epi32(u[12], K32One);
+ v[13] = _mm_add_epi32(u[13], K32One);
+ v[14] = _mm_add_epi32(u[14], K32One);
+ v[15] = _mm_add_epi32(u[15], K32One);
+
+ u[0] = _mm_srai_epi32(v[0], 2);
+ u[1] = _mm_srai_epi32(v[1], 2);
+ u[2] = _mm_srai_epi32(v[2], 2);
+ u[3] = _mm_srai_epi32(v[3], 2);
+ u[4] = _mm_srai_epi32(v[4], 2);
+ u[5] = _mm_srai_epi32(v[5], 2);
+ u[6] = _mm_srai_epi32(v[6], 2);
+ u[7] = _mm_srai_epi32(v[7], 2);
+ u[8] = _mm_srai_epi32(v[8], 2);
+ u[9] = _mm_srai_epi32(v[9], 2);
+ u[10] = _mm_srai_epi32(v[10], 2);
+ u[11] = _mm_srai_epi32(v[11], 2);
+ u[12] = _mm_srai_epi32(v[12], 2);
+ u[13] = _mm_srai_epi32(v[13], 2);
+ u[14] = _mm_srai_epi32(v[14], 2);
+ u[15] = _mm_srai_epi32(v[15], 2);
+
+ out[ 1] = _mm_packs_epi32(u[0], u[1]);
+ out[17] = _mm_packs_epi32(u[2], u[3]);
+ out[ 9] = _mm_packs_epi32(u[4], u[5]);
+ out[25] = _mm_packs_epi32(u[6], u[7]);
+ out[ 7] = _mm_packs_epi32(u[8], u[9]);
+ out[23] = _mm_packs_epi32(u[10], u[11]);
+ out[15] = _mm_packs_epi32(u[12], u[13]);
+ out[31] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&out[1], &out[17], &out[9],
+ &out[25], &out[7], &out[23],
+ &out[15], &out[31]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i k32_p27_p05 = pair_set_epi32(cospi_27_64, cospi_5_64);
+ const __m128i k32_p11_p21 = pair_set_epi32(cospi_11_64, cospi_21_64);
+ const __m128i k32_p19_p13 = pair_set_epi32(cospi_19_64, cospi_13_64);
+ const __m128i k32_p03_p29 = pair_set_epi32(cospi_3_64, cospi_29_64);
+ const __m128i k32_m29_p03 = pair_set_epi32(-cospi_29_64, cospi_3_64);
+ const __m128i k32_m13_p19 = pair_set_epi32(-cospi_13_64, cospi_19_64);
+ const __m128i k32_m21_p11 = pair_set_epi32(-cospi_21_64, cospi_11_64);
+ const __m128i k32_m05_p27 = pair_set_epi32(-cospi_5_64, cospi_27_64);
+
+ u[ 0] = _mm_unpacklo_epi32(lstep1[40], lstep1[54]);
+ u[ 1] = _mm_unpackhi_epi32(lstep1[40], lstep1[54]);
+ u[ 2] = _mm_unpacklo_epi32(lstep1[41], lstep1[55]);
+ u[ 3] = _mm_unpackhi_epi32(lstep1[41], lstep1[55]);
+ u[ 4] = _mm_unpacklo_epi32(lstep1[42], lstep1[52]);
+ u[ 5] = _mm_unpackhi_epi32(lstep1[42], lstep1[52]);
+ u[ 6] = _mm_unpacklo_epi32(lstep1[43], lstep1[53]);
+ u[ 7] = _mm_unpackhi_epi32(lstep1[43], lstep1[53]);
+ u[ 8] = _mm_unpacklo_epi32(lstep1[44], lstep1[50]);
+ u[ 9] = _mm_unpackhi_epi32(lstep1[44], lstep1[50]);
+ u[10] = _mm_unpacklo_epi32(lstep1[45], lstep1[51]);
+ u[11] = _mm_unpackhi_epi32(lstep1[45], lstep1[51]);
+ u[12] = _mm_unpacklo_epi32(lstep1[46], lstep1[48]);
+ u[13] = _mm_unpackhi_epi32(lstep1[46], lstep1[48]);
+ u[14] = _mm_unpacklo_epi32(lstep1[47], lstep1[49]);
+ u[15] = _mm_unpackhi_epi32(lstep1[47], lstep1[49]);
+
+ v[ 0] = k_madd_epi32(u[ 0], k32_p27_p05);
+ v[ 1] = k_madd_epi32(u[ 1], k32_p27_p05);
+ v[ 2] = k_madd_epi32(u[ 2], k32_p27_p05);
+ v[ 3] = k_madd_epi32(u[ 3], k32_p27_p05);
+ v[ 4] = k_madd_epi32(u[ 4], k32_p11_p21);
+ v[ 5] = k_madd_epi32(u[ 5], k32_p11_p21);
+ v[ 6] = k_madd_epi32(u[ 6], k32_p11_p21);
+ v[ 7] = k_madd_epi32(u[ 7], k32_p11_p21);
+ v[ 8] = k_madd_epi32(u[ 8], k32_p19_p13);
+ v[ 9] = k_madd_epi32(u[ 9], k32_p19_p13);
+ v[10] = k_madd_epi32(u[10], k32_p19_p13);
+ v[11] = k_madd_epi32(u[11], k32_p19_p13);
+ v[12] = k_madd_epi32(u[12], k32_p03_p29);
+ v[13] = k_madd_epi32(u[13], k32_p03_p29);
+ v[14] = k_madd_epi32(u[14], k32_p03_p29);
+ v[15] = k_madd_epi32(u[15], k32_p03_p29);
+ v[16] = k_madd_epi32(u[12], k32_m29_p03);
+ v[17] = k_madd_epi32(u[13], k32_m29_p03);
+ v[18] = k_madd_epi32(u[14], k32_m29_p03);
+ v[19] = k_madd_epi32(u[15], k32_m29_p03);
+ v[20] = k_madd_epi32(u[ 8], k32_m13_p19);
+ v[21] = k_madd_epi32(u[ 9], k32_m13_p19);
+ v[22] = k_madd_epi32(u[10], k32_m13_p19);
+ v[23] = k_madd_epi32(u[11], k32_m13_p19);
+ v[24] = k_madd_epi32(u[ 4], k32_m21_p11);
+ v[25] = k_madd_epi32(u[ 5], k32_m21_p11);
+ v[26] = k_madd_epi32(u[ 6], k32_m21_p11);
+ v[27] = k_madd_epi32(u[ 7], k32_m21_p11);
+ v[28] = k_madd_epi32(u[ 0], k32_m05_p27);
+ v[29] = k_madd_epi32(u[ 1], k32_m05_p27);
+ v[30] = k_madd_epi32(u[ 2], k32_m05_p27);
+ v[31] = k_madd_epi32(u[ 3], k32_m05_p27);
+
+#if DCT_HIGH_BIT_DEPTH
+ overflow = k_check_epi32_overflow_32(
+ &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7],
+ &v[8], &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15],
+ &v[16], &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23],
+ &v[24], &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31],
+ &kZero);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ u[ 0] = k_packs_epi64(v[ 0], v[ 1]);
+ u[ 1] = k_packs_epi64(v[ 2], v[ 3]);
+ u[ 2] = k_packs_epi64(v[ 4], v[ 5]);
+ u[ 3] = k_packs_epi64(v[ 6], v[ 7]);
+ u[ 4] = k_packs_epi64(v[ 8], v[ 9]);
+ u[ 5] = k_packs_epi64(v[10], v[11]);
+ u[ 6] = k_packs_epi64(v[12], v[13]);
+ u[ 7] = k_packs_epi64(v[14], v[15]);
+ u[ 8] = k_packs_epi64(v[16], v[17]);
+ u[ 9] = k_packs_epi64(v[18], v[19]);
+ u[10] = k_packs_epi64(v[20], v[21]);
+ u[11] = k_packs_epi64(v[22], v[23]);
+ u[12] = k_packs_epi64(v[24], v[25]);
+ u[13] = k_packs_epi64(v[26], v[27]);
+ u[14] = k_packs_epi64(v[28], v[29]);
+ u[15] = k_packs_epi64(v[30], v[31]);
+
+ v[ 0] = _mm_add_epi32(u[ 0], k__DCT_CONST_ROUNDING);
+ v[ 1] = _mm_add_epi32(u[ 1], k__DCT_CONST_ROUNDING);
+ v[ 2] = _mm_add_epi32(u[ 2], k__DCT_CONST_ROUNDING);
+ v[ 3] = _mm_add_epi32(u[ 3], k__DCT_CONST_ROUNDING);
+ v[ 4] = _mm_add_epi32(u[ 4], k__DCT_CONST_ROUNDING);
+ v[ 5] = _mm_add_epi32(u[ 5], k__DCT_CONST_ROUNDING);
+ v[ 6] = _mm_add_epi32(u[ 6], k__DCT_CONST_ROUNDING);
+ v[ 7] = _mm_add_epi32(u[ 7], k__DCT_CONST_ROUNDING);
+ v[ 8] = _mm_add_epi32(u[ 8], k__DCT_CONST_ROUNDING);
+ v[ 9] = _mm_add_epi32(u[ 9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[ 0] = _mm_srai_epi32(v[ 0], DCT_CONST_BITS);
+ u[ 1] = _mm_srai_epi32(v[ 1], DCT_CONST_BITS);
+ u[ 2] = _mm_srai_epi32(v[ 2], DCT_CONST_BITS);
+ u[ 3] = _mm_srai_epi32(v[ 3], DCT_CONST_BITS);
+ u[ 4] = _mm_srai_epi32(v[ 4], DCT_CONST_BITS);
+ u[ 5] = _mm_srai_epi32(v[ 5], DCT_CONST_BITS);
+ u[ 6] = _mm_srai_epi32(v[ 6], DCT_CONST_BITS);
+ u[ 7] = _mm_srai_epi32(v[ 7], DCT_CONST_BITS);
+ u[ 8] = _mm_srai_epi32(v[ 8], DCT_CONST_BITS);
+ u[ 9] = _mm_srai_epi32(v[ 9], DCT_CONST_BITS);
+ u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+ v[ 0] = _mm_cmplt_epi32(u[ 0], kZero);
+ v[ 1] = _mm_cmplt_epi32(u[ 1], kZero);
+ v[ 2] = _mm_cmplt_epi32(u[ 2], kZero);
+ v[ 3] = _mm_cmplt_epi32(u[ 3], kZero);
+ v[ 4] = _mm_cmplt_epi32(u[ 4], kZero);
+ v[ 5] = _mm_cmplt_epi32(u[ 5], kZero);
+ v[ 6] = _mm_cmplt_epi32(u[ 6], kZero);
+ v[ 7] = _mm_cmplt_epi32(u[ 7], kZero);
+ v[ 8] = _mm_cmplt_epi32(u[ 8], kZero);
+ v[ 9] = _mm_cmplt_epi32(u[ 9], kZero);
+ v[10] = _mm_cmplt_epi32(u[10], kZero);
+ v[11] = _mm_cmplt_epi32(u[11], kZero);
+ v[12] = _mm_cmplt_epi32(u[12], kZero);
+ v[13] = _mm_cmplt_epi32(u[13], kZero);
+ v[14] = _mm_cmplt_epi32(u[14], kZero);
+ v[15] = _mm_cmplt_epi32(u[15], kZero);
+
+ u[ 0] = _mm_sub_epi32(u[ 0], v[ 0]);
+ u[ 1] = _mm_sub_epi32(u[ 1], v[ 1]);
+ u[ 2] = _mm_sub_epi32(u[ 2], v[ 2]);
+ u[ 3] = _mm_sub_epi32(u[ 3], v[ 3]);
+ u[ 4] = _mm_sub_epi32(u[ 4], v[ 4]);
+ u[ 5] = _mm_sub_epi32(u[ 5], v[ 5]);
+ u[ 6] = _mm_sub_epi32(u[ 6], v[ 6]);
+ u[ 7] = _mm_sub_epi32(u[ 7], v[ 7]);
+ u[ 8] = _mm_sub_epi32(u[ 8], v[ 8]);
+ u[ 9] = _mm_sub_epi32(u[ 9], v[ 9]);
+ u[10] = _mm_sub_epi32(u[10], v[10]);
+ u[11] = _mm_sub_epi32(u[11], v[11]);
+ u[12] = _mm_sub_epi32(u[12], v[12]);
+ u[13] = _mm_sub_epi32(u[13], v[13]);
+ u[14] = _mm_sub_epi32(u[14], v[14]);
+ u[15] = _mm_sub_epi32(u[15], v[15]);
+
+ v[0] = _mm_add_epi32(u[0], K32One);
+ v[1] = _mm_add_epi32(u[1], K32One);
+ v[2] = _mm_add_epi32(u[2], K32One);
+ v[3] = _mm_add_epi32(u[3], K32One);
+ v[4] = _mm_add_epi32(u[4], K32One);
+ v[5] = _mm_add_epi32(u[5], K32One);
+ v[6] = _mm_add_epi32(u[6], K32One);
+ v[7] = _mm_add_epi32(u[7], K32One);
+ v[8] = _mm_add_epi32(u[8], K32One);
+ v[9] = _mm_add_epi32(u[9], K32One);
+ v[10] = _mm_add_epi32(u[10], K32One);
+ v[11] = _mm_add_epi32(u[11], K32One);
+ v[12] = _mm_add_epi32(u[12], K32One);
+ v[13] = _mm_add_epi32(u[13], K32One);
+ v[14] = _mm_add_epi32(u[14], K32One);
+ v[15] = _mm_add_epi32(u[15], K32One);
+
+ u[0] = _mm_srai_epi32(v[0], 2);
+ u[1] = _mm_srai_epi32(v[1], 2);
+ u[2] = _mm_srai_epi32(v[2], 2);
+ u[3] = _mm_srai_epi32(v[3], 2);
+ u[4] = _mm_srai_epi32(v[4], 2);
+ u[5] = _mm_srai_epi32(v[5], 2);
+ u[6] = _mm_srai_epi32(v[6], 2);
+ u[7] = _mm_srai_epi32(v[7], 2);
+ u[8] = _mm_srai_epi32(v[8], 2);
+ u[9] = _mm_srai_epi32(v[9], 2);
+ u[10] = _mm_srai_epi32(v[10], 2);
+ u[11] = _mm_srai_epi32(v[11], 2);
+ u[12] = _mm_srai_epi32(v[12], 2);
+ u[13] = _mm_srai_epi32(v[13], 2);
+ u[14] = _mm_srai_epi32(v[14], 2);
+ u[15] = _mm_srai_epi32(v[15], 2);
+
+ out[ 5] = _mm_packs_epi32(u[0], u[1]);
+ out[21] = _mm_packs_epi32(u[2], u[3]);
+ out[13] = _mm_packs_epi32(u[4], u[5]);
+ out[29] = _mm_packs_epi32(u[6], u[7]);
+ out[ 3] = _mm_packs_epi32(u[8], u[9]);
+ out[19] = _mm_packs_epi32(u[10], u[11]);
+ out[11] = _mm_packs_epi32(u[12], u[13]);
+ out[27] = _mm_packs_epi32(u[14], u[15]);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&out[5], &out[21], &out[13],
+ &out[29], &out[3], &out[19],
+ &out[11], &out[27]);
+ if (overflow) {
+ HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+#endif // FDCT32x32_HIGH_PRECISION
+ // Transpose the results, do it as four 8x8 transposes.
+ {
+ int transpose_block;
+ int16_t *output0 = &intermediate[column_start * 32];
+ tran_low_t *output1 = &output_org[column_start * 32];
+ for (transpose_block = 0; transpose_block < 4; ++transpose_block) {
+ __m128i *this_out = &out[8 * transpose_block];
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(this_out[0], this_out[1]);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(this_out[2], this_out[3]);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(this_out[0], this_out[1]);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(this_out[2], this_out[3]);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(this_out[4], this_out[5]);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(this_out[6], this_out[7]);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(this_out[4], this_out[5]);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(this_out[6], this_out[7]);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ if (0 == pass) {
+ // output[j] = (output[j] + 1 + (output[j] > 0)) >> 2;
+ // TODO(cd): see quality impact of only doing
+ // output[j] = (output[j] + 1) >> 2;
+ // which would remove the code between here ...
+ __m128i tr2_0_0 = _mm_cmpgt_epi16(tr2_0, kZero);
+ __m128i tr2_1_0 = _mm_cmpgt_epi16(tr2_1, kZero);
+ __m128i tr2_2_0 = _mm_cmpgt_epi16(tr2_2, kZero);
+ __m128i tr2_3_0 = _mm_cmpgt_epi16(tr2_3, kZero);
+ __m128i tr2_4_0 = _mm_cmpgt_epi16(tr2_4, kZero);
+ __m128i tr2_5_0 = _mm_cmpgt_epi16(tr2_5, kZero);
+ __m128i tr2_6_0 = _mm_cmpgt_epi16(tr2_6, kZero);
+ __m128i tr2_7_0 = _mm_cmpgt_epi16(tr2_7, kZero);
+ tr2_0 = _mm_sub_epi16(tr2_0, tr2_0_0);
+ tr2_1 = _mm_sub_epi16(tr2_1, tr2_1_0);
+ tr2_2 = _mm_sub_epi16(tr2_2, tr2_2_0);
+ tr2_3 = _mm_sub_epi16(tr2_3, tr2_3_0);
+ tr2_4 = _mm_sub_epi16(tr2_4, tr2_4_0);
+ tr2_5 = _mm_sub_epi16(tr2_5, tr2_5_0);
+ tr2_6 = _mm_sub_epi16(tr2_6, tr2_6_0);
+ tr2_7 = _mm_sub_epi16(tr2_7, tr2_7_0);
+ // ... and here.
+ // PS: also change code in vp9/encoder/vp9_dct.c
+ tr2_0 = _mm_add_epi16(tr2_0, kOne);
+ tr2_1 = _mm_add_epi16(tr2_1, kOne);
+ tr2_2 = _mm_add_epi16(tr2_2, kOne);
+ tr2_3 = _mm_add_epi16(tr2_3, kOne);
+ tr2_4 = _mm_add_epi16(tr2_4, kOne);
+ tr2_5 = _mm_add_epi16(tr2_5, kOne);
+ tr2_6 = _mm_add_epi16(tr2_6, kOne);
+ tr2_7 = _mm_add_epi16(tr2_7, kOne);
+ tr2_0 = _mm_srai_epi16(tr2_0, 2);
+ tr2_1 = _mm_srai_epi16(tr2_1, 2);
+ tr2_2 = _mm_srai_epi16(tr2_2, 2);
+ tr2_3 = _mm_srai_epi16(tr2_3, 2);
+ tr2_4 = _mm_srai_epi16(tr2_4, 2);
+ tr2_5 = _mm_srai_epi16(tr2_5, 2);
+ tr2_6 = _mm_srai_epi16(tr2_6, 2);
+ tr2_7 = _mm_srai_epi16(tr2_7, 2);
+ }
+ // Note: even though all these stores are aligned, using the aligned
+ // intrinsic make the code slightly slower.
+ if (pass == 0) {
+ _mm_storeu_si128((__m128i *)(output0 + 0 * 32), tr2_0);
+ _mm_storeu_si128((__m128i *)(output0 + 1 * 32), tr2_1);
+ _mm_storeu_si128((__m128i *)(output0 + 2 * 32), tr2_2);
+ _mm_storeu_si128((__m128i *)(output0 + 3 * 32), tr2_3);
+ _mm_storeu_si128((__m128i *)(output0 + 4 * 32), tr2_4);
+ _mm_storeu_si128((__m128i *)(output0 + 5 * 32), tr2_5);
+ _mm_storeu_si128((__m128i *)(output0 + 6 * 32), tr2_6);
+ _mm_storeu_si128((__m128i *)(output0 + 7 * 32), tr2_7);
+ // Process next 8x8
+ output0 += 8;
+ } else {
+ storeu_output(&tr2_0, (output1 + 0 * 32));
+ storeu_output(&tr2_1, (output1 + 1 * 32));
+ storeu_output(&tr2_2, (output1 + 2 * 32));
+ storeu_output(&tr2_3, (output1 + 3 * 32));
+ storeu_output(&tr2_4, (output1 + 4 * 32));
+ storeu_output(&tr2_5, (output1 + 5 * 32));
+ storeu_output(&tr2_6, (output1 + 6 * 32));
+ storeu_output(&tr2_7, (output1 + 7 * 32));
+ // Process next 8x8
+ output1 += 8;
+ }
+ }
+ }
+ }
+ }
+} // NOLINT
+
+#undef ADD_EPI16
+#undef SUB_EPI16
+#undef HIGH_FDCT32x32_2D_C
+#undef HIGH_FDCT32x32_2D_ROWS_C
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct_avx2.c b/media/libvpx/vp9/encoder/x86/vp9_dct_avx2.c
new file mode 100644
index 000000000..8f3b61ad8
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct_avx2.c
@@ -0,0 +1,26 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vpx_ports/mem.h"
+
+
+#define FDCT32x32_2D_AVX2 vp9_fdct32x32_rd_avx2
+#define FDCT32x32_HIGH_PRECISION 0
+#include "vp9/encoder/x86/vp9_dct32x32_avx2_impl.h"
+#undef FDCT32x32_2D_AVX2
+#undef FDCT32x32_HIGH_PRECISION
+
+#define FDCT32x32_2D_AVX2 vp9_fdct32x32_avx2
+#define FDCT32x32_HIGH_PRECISION 1
+#include "vp9/encoder/x86/vp9_dct32x32_avx2_impl.h" // NOLINT
+#undef FDCT32x32_2D_AVX2
+#undef FDCT32x32_HIGH_PRECISION
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct_mmx.asm b/media/libvpx/vp9/encoder/x86/vp9_dct_mmx.asm
new file mode 100644
index 000000000..b41fbc8b3
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct_mmx.asm
@@ -0,0 +1,101 @@
+;
+; Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION .text
+
+%macro TRANSFORM_COLS 0
+ paddw m0, m1
+ movq m4, m0
+ psubw m3, m2
+ psubw m4, m3
+ psraw m4, 1
+ movq m5, m4
+ psubw m5, m1 ;b1
+ psubw m4, m2 ;c1
+ psubw m0, m4
+ paddw m3, m5
+ ; m0 a0
+ SWAP 1, 4 ; m1 c1
+ SWAP 2, 3 ; m2 d1
+ SWAP 3, 5 ; m3 b1
+%endmacro
+
+%macro TRANSPOSE_4X4 0
+ movq m4, m0
+ movq m5, m2
+ punpcklwd m4, m1
+ punpckhwd m0, m1
+ punpcklwd m5, m3
+ punpckhwd m2, m3
+ movq m1, m4
+ movq m3, m0
+ punpckldq m1, m5
+ punpckhdq m4, m5
+ punpckldq m3, m2
+ punpckhdq m0, m2
+ SWAP 2, 3, 0, 1, 4
+%endmacro
+
+INIT_MMX mmx
+cglobal fwht4x4, 3, 4, 8, input, output, stride
+ lea r3q, [inputq + strideq*4]
+ movq m0, [inputq] ;a1
+ movq m1, [inputq + strideq*2] ;b1
+ movq m2, [r3q] ;c1
+ movq m3, [r3q + strideq*2] ;d1
+
+ TRANSFORM_COLS
+ TRANSPOSE_4X4
+ TRANSFORM_COLS
+ TRANSPOSE_4X4
+
+ psllw m0, 2
+ psllw m1, 2
+ psllw m2, 2
+ psllw m3, 2
+
+%if CONFIG_VP9_HIGHBITDEPTH
+ pxor m4, m4
+ pxor m5, m5
+ pcmpgtw m4, m0
+ pcmpgtw m5, m1
+ movq m6, m0
+ movq m7, m1
+ punpcklwd m0, m4
+ punpcklwd m1, m5
+ punpckhwd m6, m4
+ punpckhwd m7, m5
+ movq [outputq], m0
+ movq [outputq + 8], m6
+ movq [outputq + 16], m1
+ movq [outputq + 24], m7
+ pxor m4, m4
+ pxor m5, m5
+ pcmpgtw m4, m2
+ pcmpgtw m5, m3
+ movq m6, m2
+ movq m7, m3
+ punpcklwd m2, m4
+ punpcklwd m3, m5
+ punpckhwd m6, m4
+ punpckhwd m7, m5
+ movq [outputq + 32], m2
+ movq [outputq + 40], m6
+ movq [outputq + 48], m3
+ movq [outputq + 56], m7
+%else
+ movq [outputq], m0
+ movq [outputq + 8], m1
+ movq [outputq + 16], m2
+ movq [outputq + 24], m3
+%endif
+
+ RET
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct_sse2.c b/media/libvpx/vp9/encoder/x86/vp9_dct_sse2.c
new file mode 100644
index 000000000..cff4fcbdc
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct_sse2.c
@@ -0,0 +1,2429 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <emmintrin.h> // SSE2
+
+#include "./vp9_rtcd.h"
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vp9/encoder/vp9_dct.h"
+#include "vp9/encoder/x86/vp9_dct_sse2.h"
+#include "vpx_ports/mem.h"
+
+void vp9_fdct4x4_1_sse2(const int16_t *input, tran_low_t *output, int stride) {
+ __m128i in0, in1;
+ __m128i tmp;
+ const __m128i zero = _mm_setzero_si128();
+ in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
+ in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
+ in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
+ (input + 2 * stride)));
+ in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
+ (input + 3 * stride)));
+
+ tmp = _mm_add_epi16(in0, in1);
+ in0 = _mm_unpacklo_epi16(zero, tmp);
+ in1 = _mm_unpackhi_epi16(zero, tmp);
+ in0 = _mm_srai_epi32(in0, 16);
+ in1 = _mm_srai_epi32(in1, 16);
+
+ tmp = _mm_add_epi32(in0, in1);
+ in0 = _mm_unpacklo_epi32(tmp, zero);
+ in1 = _mm_unpackhi_epi32(tmp, zero);
+
+ tmp = _mm_add_epi32(in0, in1);
+ in0 = _mm_srli_si128(tmp, 8);
+
+ in1 = _mm_add_epi32(tmp, in0);
+ in0 = _mm_slli_epi32(in1, 1);
+ store_output(&in0, output);
+}
+
+static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in,
+ int stride) {
+ const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
+ const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
+ __m128i mask;
+
+ in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
+ in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
+ in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
+ in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
+
+ in[0] = _mm_slli_epi16(in[0], 4);
+ in[1] = _mm_slli_epi16(in[1], 4);
+ in[2] = _mm_slli_epi16(in[2], 4);
+ in[3] = _mm_slli_epi16(in[3], 4);
+
+ mask = _mm_cmpeq_epi16(in[0], k__nonzero_bias_a);
+ in[0] = _mm_add_epi16(in[0], mask);
+ in[0] = _mm_add_epi16(in[0], k__nonzero_bias_b);
+}
+
+static INLINE void write_buffer_4x4(tran_low_t *output, __m128i *res) {
+ const __m128i kOne = _mm_set1_epi16(1);
+ __m128i in01 = _mm_unpacklo_epi64(res[0], res[1]);
+ __m128i in23 = _mm_unpacklo_epi64(res[2], res[3]);
+ __m128i out01 = _mm_add_epi16(in01, kOne);
+ __m128i out23 = _mm_add_epi16(in23, kOne);
+ out01 = _mm_srai_epi16(out01, 2);
+ out23 = _mm_srai_epi16(out23, 2);
+ store_output(&out01, (output + 0 * 8));
+ store_output(&out23, (output + 1 * 8));
+}
+
+static INLINE void transpose_4x4(__m128i *res) {
+ // Combine and transpose
+ // 00 01 02 03 20 21 22 23
+ // 10 11 12 13 30 31 32 33
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]);
+ const __m128i tr0_1 = _mm_unpackhi_epi16(res[0], res[1]);
+
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ res[0] = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ res[2] = _mm_unpackhi_epi32(tr0_0, tr0_1);
+
+ // 00 10 20 30 01 11 21 31
+ // 02 12 22 32 03 13 23 33
+ // only use the first 4 16-bit integers
+ res[1] = _mm_unpackhi_epi64(res[0], res[0]);
+ res[3] = _mm_unpackhi_epi64(res[2], res[2]);
+}
+
+static void fdct4_sse2(__m128i *in) {
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+ __m128i u[4], v[4];
+ u[0]=_mm_unpacklo_epi16(in[0], in[1]);
+ u[1]=_mm_unpacklo_epi16(in[3], in[2]);
+
+ v[0] = _mm_add_epi16(u[0], u[1]);
+ v[1] = _mm_sub_epi16(u[0], u[1]);
+
+ u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16); // 0
+ u[1] = _mm_madd_epi16(v[0], k__cospi_p16_m16); // 2
+ u[2] = _mm_madd_epi16(v[1], k__cospi_p08_p24); // 1
+ u[3] = _mm_madd_epi16(v[1], k__cospi_p24_m08); // 3
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+
+ in[0] = _mm_packs_epi32(u[0], u[1]);
+ in[1] = _mm_packs_epi32(u[2], u[3]);
+ transpose_4x4(in);
+}
+
+static void fadst4_sse2(__m128i *in) {
+ const __m128i k__sinpi_p01_p02 = pair_set_epi16(sinpi_1_9, sinpi_2_9);
+ const __m128i k__sinpi_p04_m01 = pair_set_epi16(sinpi_4_9, -sinpi_1_9);
+ const __m128i k__sinpi_p03_p04 = pair_set_epi16(sinpi_3_9, sinpi_4_9);
+ const __m128i k__sinpi_m03_p02 = pair_set_epi16(-sinpi_3_9, sinpi_2_9);
+ const __m128i k__sinpi_p03_p03 = _mm_set1_epi16((int16_t)sinpi_3_9);
+ const __m128i kZero = _mm_set1_epi16(0);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ __m128i u[8], v[8];
+ __m128i in7 = _mm_add_epi16(in[0], in[1]);
+
+ u[0] = _mm_unpacklo_epi16(in[0], in[1]);
+ u[1] = _mm_unpacklo_epi16(in[2], in[3]);
+ u[2] = _mm_unpacklo_epi16(in7, kZero);
+ u[3] = _mm_unpacklo_epi16(in[2], kZero);
+ u[4] = _mm_unpacklo_epi16(in[3], kZero);
+
+ v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p02); // s0 + s2
+ v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p04); // s4 + s5
+ v[2] = _mm_madd_epi16(u[2], k__sinpi_p03_p03); // x1
+ v[3] = _mm_madd_epi16(u[0], k__sinpi_p04_m01); // s1 - s3
+ v[4] = _mm_madd_epi16(u[1], k__sinpi_m03_p02); // -s4 + s6
+ v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03); // s4
+ v[6] = _mm_madd_epi16(u[4], k__sinpi_p03_p03);
+
+ u[0] = _mm_add_epi32(v[0], v[1]);
+ u[1] = _mm_sub_epi32(v[2], v[6]);
+ u[2] = _mm_add_epi32(v[3], v[4]);
+ u[3] = _mm_sub_epi32(u[2], u[0]);
+ u[4] = _mm_slli_epi32(v[5], 2);
+ u[5] = _mm_sub_epi32(u[4], v[5]);
+ u[6] = _mm_add_epi32(u[3], u[5]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+
+ in[0] = _mm_packs_epi32(u[0], u[2]);
+ in[1] = _mm_packs_epi32(u[1], u[3]);
+ transpose_4x4(in);
+}
+
+void vp9_fht4x4_sse2(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ __m128i in[4];
+
+ switch (tx_type) {
+ case DCT_DCT:
+ vp9_fdct4x4_sse2(input, output, stride);
+ break;
+ case ADST_DCT:
+ load_buffer_4x4(input, in, stride);
+ fadst4_sse2(in);
+ fdct4_sse2(in);
+ write_buffer_4x4(output, in);
+ break;
+ case DCT_ADST:
+ load_buffer_4x4(input, in, stride);
+ fdct4_sse2(in);
+ fadst4_sse2(in);
+ write_buffer_4x4(output, in);
+ break;
+ case ADST_ADST:
+ load_buffer_4x4(input, in, stride);
+ fadst4_sse2(in);
+ fadst4_sse2(in);
+ write_buffer_4x4(output, in);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+void vp9_fdct8x8_1_sse2(const int16_t *input, tran_low_t *output, int stride) {
+ __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ __m128i u0, u1, sum;
+
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+
+ in0 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ in1 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ in2 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ in3 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+
+ sum = _mm_add_epi16(u0, u1);
+
+ in0 = _mm_add_epi16(in0, in1);
+ in2 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, in0);
+
+ u0 = _mm_setzero_si128();
+ sum = _mm_add_epi16(sum, in2);
+
+ in0 = _mm_unpacklo_epi16(u0, sum);
+ in1 = _mm_unpackhi_epi16(u0, sum);
+ in0 = _mm_srai_epi32(in0, 16);
+ in1 = _mm_srai_epi32(in1, 16);
+
+ sum = _mm_add_epi32(in0, in1);
+ in0 = _mm_unpacklo_epi32(sum, u0);
+ in1 = _mm_unpackhi_epi32(sum, u0);
+
+ sum = _mm_add_epi32(in0, in1);
+ in0 = _mm_srli_si128(sum, 8);
+
+ in1 = _mm_add_epi32(sum, in0);
+ store_output(&in1, output);
+}
+
+void vp9_fdct8x8_quant_sse2(const int16_t *input, int stride,
+ int16_t* coeff_ptr, intptr_t n_coeffs,
+ int skip_block, const int16_t* zbin_ptr,
+ const int16_t* round_ptr, const int16_t* quant_ptr,
+ const int16_t* quant_shift_ptr, int16_t* qcoeff_ptr,
+ int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
+ uint16_t* eob_ptr,
+ const int16_t* scan_ptr,
+ const int16_t* iscan_ptr) {
+ __m128i zero;
+ int pass;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ // Load input
+ __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+ __m128i *in[8];
+ int index = 0;
+
+ (void)scan_ptr;
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+ (void)coeff_ptr;
+
+ // Pre-condition input (shift by two)
+ in0 = _mm_slli_epi16(in0, 2);
+ in1 = _mm_slli_epi16(in1, 2);
+ in2 = _mm_slli_epi16(in2, 2);
+ in3 = _mm_slli_epi16(in3, 2);
+ in4 = _mm_slli_epi16(in4, 2);
+ in5 = _mm_slli_epi16(in5, 2);
+ in6 = _mm_slli_epi16(in6, 2);
+ in7 = _mm_slli_epi16(in7, 2);
+
+ in[0] = &in0;
+ in[1] = &in1;
+ in[2] = &in2;
+ in[3] = &in3;
+ in[4] = &in4;
+ in[5] = &in5;
+ in[6] = &in6;
+ in[7] = &in7;
+
+ // We do two passes, first the columns, then the rows. The results of the
+ // first pass are transposed so that the same column code can be reused. The
+ // results of the second pass are also transposed so that the rows (processed
+ // as columns) are put back in row positions.
+ for (pass = 0; pass < 2; pass++) {
+ // To store results of each pass before the transpose.
+ __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+ // Add/subtract
+ const __m128i q0 = _mm_add_epi16(in0, in7);
+ const __m128i q1 = _mm_add_epi16(in1, in6);
+ const __m128i q2 = _mm_add_epi16(in2, in5);
+ const __m128i q3 = _mm_add_epi16(in3, in4);
+ const __m128i q4 = _mm_sub_epi16(in3, in4);
+ const __m128i q5 = _mm_sub_epi16(in2, in5);
+ const __m128i q6 = _mm_sub_epi16(in1, in6);
+ const __m128i q7 = _mm_sub_epi16(in0, in7);
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = _mm_add_epi16(q0, q3);
+ const __m128i r1 = _mm_add_epi16(q1, q2);
+ const __m128i r2 = _mm_sub_epi16(q1, q2);
+ const __m128i r3 = _mm_sub_epi16(q0, q3);
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res0 = _mm_packs_epi32(w0, w1);
+ res4 = _mm_packs_epi32(w2, w3);
+ res2 = _mm_packs_epi32(w4, w5);
+ res6 = _mm_packs_epi32(w6, w7);
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
+ const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
+ const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
+ const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
+ const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
+ const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
+ const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
+ const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
+ const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
+ const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
+ const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
+ // Combine
+ const __m128i r0 = _mm_packs_epi32(s0, s1);
+ const __m128i r1 = _mm_packs_epi32(s2, s3);
+ // Add/subtract
+ const __m128i x0 = _mm_add_epi16(q4, r0);
+ const __m128i x1 = _mm_sub_epi16(q4, r0);
+ const __m128i x2 = _mm_sub_epi16(q7, r1);
+ const __m128i x3 = _mm_add_epi16(q7, r1);
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res1 = _mm_packs_epi32(w0, w1);
+ res7 = _mm_packs_epi32(w2, w3);
+ res5 = _mm_packs_epi32(w4, w5);
+ res3 = _mm_packs_epi32(w6, w7);
+ }
+ // Transpose the 8x8.
+ {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ }
+ }
+ // Post-condition output and store it
+ {
+ // Post-condition (division by two)
+ // division of two 16 bits signed numbers using shifts
+ // n / 2 = (n - (n >> 15)) >> 1
+ const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+ const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+ const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+ const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+ const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+ const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+ const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+ const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+ in0 = _mm_sub_epi16(in0, sign_in0);
+ in1 = _mm_sub_epi16(in1, sign_in1);
+ in2 = _mm_sub_epi16(in2, sign_in2);
+ in3 = _mm_sub_epi16(in3, sign_in3);
+ in4 = _mm_sub_epi16(in4, sign_in4);
+ in5 = _mm_sub_epi16(in5, sign_in5);
+ in6 = _mm_sub_epi16(in6, sign_in6);
+ in7 = _mm_sub_epi16(in7, sign_in7);
+ in0 = _mm_srai_epi16(in0, 1);
+ in1 = _mm_srai_epi16(in1, 1);
+ in2 = _mm_srai_epi16(in2, 1);
+ in3 = _mm_srai_epi16(in3, 1);
+ in4 = _mm_srai_epi16(in4, 1);
+ in5 = _mm_srai_epi16(in5, 1);
+ in6 = _mm_srai_epi16(in6, 1);
+ in7 = _mm_srai_epi16(in7, 1);
+ }
+
+ iscan_ptr += n_coeffs;
+ qcoeff_ptr += n_coeffs;
+ dqcoeff_ptr += n_coeffs;
+ n_coeffs = -n_coeffs;
+ zero = _mm_setzero_si128();
+
+ if (!skip_block) {
+ __m128i eob;
+ __m128i round, quant, dequant;
+ {
+ __m128i coeff0, coeff1;
+
+ // Setup global values
+ {
+ round = _mm_load_si128((const __m128i*)round_ptr);
+ quant = _mm_load_si128((const __m128i*)quant_ptr);
+ dequant = _mm_load_si128((const __m128i*)dequant_ptr);
+ }
+
+ {
+ __m128i coeff0_sign, coeff1_sign;
+ __m128i qcoeff0, qcoeff1;
+ __m128i qtmp0, qtmp1;
+ // Do DC and first 15 AC
+ coeff0 = *in[0];
+ coeff1 = *in[1];
+
+ // Poor man's sign extract
+ coeff0_sign = _mm_srai_epi16(coeff0, 15);
+ coeff1_sign = _mm_srai_epi16(coeff1, 15);
+ qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+ round = _mm_unpackhi_epi64(round, round);
+ qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+ qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+ quant = _mm_unpackhi_epi64(quant, quant);
+ qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+ // Reinsert signs
+ qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+ coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+ dequant = _mm_unpackhi_epi64(dequant, dequant);
+ coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+ }
+
+ {
+ // Scan for eob
+ __m128i zero_coeff0, zero_coeff1;
+ __m128i nzero_coeff0, nzero_coeff1;
+ __m128i iscan0, iscan1;
+ __m128i eob1;
+ zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+ zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+ nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+ nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+ iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+ iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+ // Add one to convert from indices to counts
+ iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+ iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+ eob = _mm_and_si128(iscan0, nzero_coeff0);
+ eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+ eob = _mm_max_epi16(eob, eob1);
+ }
+ n_coeffs += 8 * 2;
+ }
+
+ // AC only loop
+ index = 2;
+ while (n_coeffs < 0) {
+ __m128i coeff0, coeff1;
+ {
+ __m128i coeff0_sign, coeff1_sign;
+ __m128i qcoeff0, qcoeff1;
+ __m128i qtmp0, qtmp1;
+
+ assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
+ coeff0 = *in[index];
+ coeff1 = *in[index + 1];
+
+ // Poor man's sign extract
+ coeff0_sign = _mm_srai_epi16(coeff0, 15);
+ coeff1_sign = _mm_srai_epi16(coeff1, 15);
+ qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+ qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+ qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+ qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+ // Reinsert signs
+ qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+ coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+ coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+ }
+
+ {
+ // Scan for eob
+ __m128i zero_coeff0, zero_coeff1;
+ __m128i nzero_coeff0, nzero_coeff1;
+ __m128i iscan0, iscan1;
+ __m128i eob0, eob1;
+ zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+ zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+ nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+ nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+ iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+ iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+ // Add one to convert from indices to counts
+ iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+ iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+ eob0 = _mm_and_si128(iscan0, nzero_coeff0);
+ eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+ eob0 = _mm_max_epi16(eob0, eob1);
+ eob = _mm_max_epi16(eob, eob0);
+ }
+ n_coeffs += 8 * 2;
+ index += 2;
+ }
+
+ // Accumulate EOB
+ {
+ __m128i eob_shuffled;
+ eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ *eob_ptr = _mm_extract_epi16(eob, 1);
+ }
+ } else {
+ do {
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+ n_coeffs += 8 * 2;
+ } while (n_coeffs < 0);
+ *eob_ptr = 0;
+ }
+}
+
+// load 8x8 array
+static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in,
+ int stride) {
+ in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride));
+
+ in[0] = _mm_slli_epi16(in[0], 2);
+ in[1] = _mm_slli_epi16(in[1], 2);
+ in[2] = _mm_slli_epi16(in[2], 2);
+ in[3] = _mm_slli_epi16(in[3], 2);
+ in[4] = _mm_slli_epi16(in[4], 2);
+ in[5] = _mm_slli_epi16(in[5], 2);
+ in[6] = _mm_slli_epi16(in[6], 2);
+ in[7] = _mm_slli_epi16(in[7], 2);
+}
+
+// right shift and rounding
+static INLINE void right_shift_8x8(__m128i *res, const int bit) {
+ __m128i sign0 = _mm_srai_epi16(res[0], 15);
+ __m128i sign1 = _mm_srai_epi16(res[1], 15);
+ __m128i sign2 = _mm_srai_epi16(res[2], 15);
+ __m128i sign3 = _mm_srai_epi16(res[3], 15);
+ __m128i sign4 = _mm_srai_epi16(res[4], 15);
+ __m128i sign5 = _mm_srai_epi16(res[5], 15);
+ __m128i sign6 = _mm_srai_epi16(res[6], 15);
+ __m128i sign7 = _mm_srai_epi16(res[7], 15);
+
+ if (bit == 2) {
+ const __m128i const_rounding = _mm_set1_epi16(1);
+ res[0] = _mm_add_epi16(res[0], const_rounding);
+ res[1] = _mm_add_epi16(res[1], const_rounding);
+ res[2] = _mm_add_epi16(res[2], const_rounding);
+ res[3] = _mm_add_epi16(res[3], const_rounding);
+ res[4] = _mm_add_epi16(res[4], const_rounding);
+ res[5] = _mm_add_epi16(res[5], const_rounding);
+ res[6] = _mm_add_epi16(res[6], const_rounding);
+ res[7] = _mm_add_epi16(res[7], const_rounding);
+ }
+
+ res[0] = _mm_sub_epi16(res[0], sign0);
+ res[1] = _mm_sub_epi16(res[1], sign1);
+ res[2] = _mm_sub_epi16(res[2], sign2);
+ res[3] = _mm_sub_epi16(res[3], sign3);
+ res[4] = _mm_sub_epi16(res[4], sign4);
+ res[5] = _mm_sub_epi16(res[5], sign5);
+ res[6] = _mm_sub_epi16(res[6], sign6);
+ res[7] = _mm_sub_epi16(res[7], sign7);
+
+ if (bit == 1) {
+ res[0] = _mm_srai_epi16(res[0], 1);
+ res[1] = _mm_srai_epi16(res[1], 1);
+ res[2] = _mm_srai_epi16(res[2], 1);
+ res[3] = _mm_srai_epi16(res[3], 1);
+ res[4] = _mm_srai_epi16(res[4], 1);
+ res[5] = _mm_srai_epi16(res[5], 1);
+ res[6] = _mm_srai_epi16(res[6], 1);
+ res[7] = _mm_srai_epi16(res[7], 1);
+ } else {
+ res[0] = _mm_srai_epi16(res[0], 2);
+ res[1] = _mm_srai_epi16(res[1], 2);
+ res[2] = _mm_srai_epi16(res[2], 2);
+ res[3] = _mm_srai_epi16(res[3], 2);
+ res[4] = _mm_srai_epi16(res[4], 2);
+ res[5] = _mm_srai_epi16(res[5], 2);
+ res[6] = _mm_srai_epi16(res[6], 2);
+ res[7] = _mm_srai_epi16(res[7], 2);
+ }
+}
+
+// write 8x8 array
+static INLINE void write_buffer_8x8(tran_low_t *output, __m128i *res,
+ int stride) {
+ store_output(&res[0], (output + 0 * stride));
+ store_output(&res[1], (output + 1 * stride));
+ store_output(&res[2], (output + 2 * stride));
+ store_output(&res[3], (output + 3 * stride));
+ store_output(&res[4], (output + 4 * stride));
+ store_output(&res[5], (output + 5 * stride));
+ store_output(&res[6], (output + 6 * stride));
+ store_output(&res[7], (output + 7 * stride));
+}
+
+// perform in-place transpose
+static INLINE void array_transpose_8x8(__m128i *in, __m128i *res) {
+ const __m128i tr0_0 = _mm_unpacklo_epi16(in[0], in[1]);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(in[2], in[3]);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(in[0], in[1]);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(in[2], in[3]);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(in[4], in[5]);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(in[6], in[7]);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(in[4], in[5]);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(in[6], in[7]);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 44 54 45 55 46 56 47 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 25 35
+ // 44 54 64 74 45 55 65 75
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ res[0] = _mm_unpacklo_epi64(tr1_0, tr1_1);
+ res[1] = _mm_unpackhi_epi64(tr1_0, tr1_1);
+ res[2] = _mm_unpacklo_epi64(tr1_2, tr1_3);
+ res[3] = _mm_unpackhi_epi64(tr1_2, tr1_3);
+ res[4] = _mm_unpacklo_epi64(tr1_4, tr1_5);
+ res[5] = _mm_unpackhi_epi64(tr1_4, tr1_5);
+ res[6] = _mm_unpacklo_epi64(tr1_6, tr1_7);
+ res[7] = _mm_unpackhi_epi64(tr1_6, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+}
+
+static void fdct8_sse2(__m128i *in) {
+ // constants
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ __m128i u0, u1, u2, u3, u4, u5, u6, u7;
+ __m128i v0, v1, v2, v3, v4, v5, v6, v7;
+ __m128i s0, s1, s2, s3, s4, s5, s6, s7;
+
+ // stage 1
+ s0 = _mm_add_epi16(in[0], in[7]);
+ s1 = _mm_add_epi16(in[1], in[6]);
+ s2 = _mm_add_epi16(in[2], in[5]);
+ s3 = _mm_add_epi16(in[3], in[4]);
+ s4 = _mm_sub_epi16(in[3], in[4]);
+ s5 = _mm_sub_epi16(in[2], in[5]);
+ s6 = _mm_sub_epi16(in[1], in[6]);
+ s7 = _mm_sub_epi16(in[0], in[7]);
+
+ u0 = _mm_add_epi16(s0, s3);
+ u1 = _mm_add_epi16(s1, s2);
+ u2 = _mm_sub_epi16(s1, s2);
+ u3 = _mm_sub_epi16(s0, s3);
+ // interleave and perform butterfly multiplication/addition
+ v0 = _mm_unpacklo_epi16(u0, u1);
+ v1 = _mm_unpackhi_epi16(u0, u1);
+ v2 = _mm_unpacklo_epi16(u2, u3);
+ v3 = _mm_unpackhi_epi16(u2, u3);
+
+ u0 = _mm_madd_epi16(v0, k__cospi_p16_p16);
+ u1 = _mm_madd_epi16(v1, k__cospi_p16_p16);
+ u2 = _mm_madd_epi16(v0, k__cospi_p16_m16);
+ u3 = _mm_madd_epi16(v1, k__cospi_p16_m16);
+ u4 = _mm_madd_epi16(v2, k__cospi_p24_p08);
+ u5 = _mm_madd_epi16(v3, k__cospi_p24_p08);
+ u6 = _mm_madd_epi16(v2, k__cospi_m08_p24);
+ u7 = _mm_madd_epi16(v3, k__cospi_m08_p24);
+
+ // shift and rounding
+ v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+
+ u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+
+ in[0] = _mm_packs_epi32(u0, u1);
+ in[2] = _mm_packs_epi32(u4, u5);
+ in[4] = _mm_packs_epi32(u2, u3);
+ in[6] = _mm_packs_epi32(u6, u7);
+
+ // stage 2
+ // interleave and perform butterfly multiplication/addition
+ u0 = _mm_unpacklo_epi16(s6, s5);
+ u1 = _mm_unpackhi_epi16(s6, s5);
+ v0 = _mm_madd_epi16(u0, k__cospi_p16_m16);
+ v1 = _mm_madd_epi16(u1, k__cospi_p16_m16);
+ v2 = _mm_madd_epi16(u0, k__cospi_p16_p16);
+ v3 = _mm_madd_epi16(u1, k__cospi_p16_p16);
+
+ // shift and rounding
+ u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+ u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+ u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+ u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+
+ v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+ v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+ v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+ v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+
+ u0 = _mm_packs_epi32(v0, v1);
+ u1 = _mm_packs_epi32(v2, v3);
+
+ // stage 3
+ s0 = _mm_add_epi16(s4, u0);
+ s1 = _mm_sub_epi16(s4, u0);
+ s2 = _mm_sub_epi16(s7, u1);
+ s3 = _mm_add_epi16(s7, u1);
+
+ // stage 4
+ u0 = _mm_unpacklo_epi16(s0, s3);
+ u1 = _mm_unpackhi_epi16(s0, s3);
+ u2 = _mm_unpacklo_epi16(s1, s2);
+ u3 = _mm_unpackhi_epi16(s1, s2);
+
+ v0 = _mm_madd_epi16(u0, k__cospi_p28_p04);
+ v1 = _mm_madd_epi16(u1, k__cospi_p28_p04);
+ v2 = _mm_madd_epi16(u2, k__cospi_p12_p20);
+ v3 = _mm_madd_epi16(u3, k__cospi_p12_p20);
+ v4 = _mm_madd_epi16(u2, k__cospi_m20_p12);
+ v5 = _mm_madd_epi16(u3, k__cospi_m20_p12);
+ v6 = _mm_madd_epi16(u0, k__cospi_m04_p28);
+ v7 = _mm_madd_epi16(u1, k__cospi_m04_p28);
+
+ // shift and rounding
+ u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+ u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+ u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+ u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+ u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
+ u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
+ u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
+ u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
+
+ v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+ v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+ v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+ v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+ v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
+ v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
+ v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
+ v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
+
+ in[1] = _mm_packs_epi32(v0, v1);
+ in[3] = _mm_packs_epi32(v4, v5);
+ in[5] = _mm_packs_epi32(v2, v3);
+ in[7] = _mm_packs_epi32(v6, v7);
+
+ // transpose
+ array_transpose_8x8(in, in);
+}
+
+static void fadst8_sse2(__m128i *in) {
+ // Constants
+ const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64);
+ const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64);
+ const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64);
+ const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64);
+ const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64);
+ const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__const_0 = _mm_set1_epi16(0);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+ __m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15;
+ __m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15;
+ __m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
+ __m128i s0, s1, s2, s3, s4, s5, s6, s7;
+ __m128i in0, in1, in2, in3, in4, in5, in6, in7;
+
+ // properly aligned for butterfly input
+ in0 = in[7];
+ in1 = in[0];
+ in2 = in[5];
+ in3 = in[2];
+ in4 = in[3];
+ in5 = in[4];
+ in6 = in[1];
+ in7 = in[6];
+
+ // column transformation
+ // stage 1
+ // interleave and multiply/add into 32-bit integer
+ s0 = _mm_unpacklo_epi16(in0, in1);
+ s1 = _mm_unpackhi_epi16(in0, in1);
+ s2 = _mm_unpacklo_epi16(in2, in3);
+ s3 = _mm_unpackhi_epi16(in2, in3);
+ s4 = _mm_unpacklo_epi16(in4, in5);
+ s5 = _mm_unpackhi_epi16(in4, in5);
+ s6 = _mm_unpacklo_epi16(in6, in7);
+ s7 = _mm_unpackhi_epi16(in6, in7);
+
+ u0 = _mm_madd_epi16(s0, k__cospi_p02_p30);
+ u1 = _mm_madd_epi16(s1, k__cospi_p02_p30);
+ u2 = _mm_madd_epi16(s0, k__cospi_p30_m02);
+ u3 = _mm_madd_epi16(s1, k__cospi_p30_m02);
+ u4 = _mm_madd_epi16(s2, k__cospi_p10_p22);
+ u5 = _mm_madd_epi16(s3, k__cospi_p10_p22);
+ u6 = _mm_madd_epi16(s2, k__cospi_p22_m10);
+ u7 = _mm_madd_epi16(s3, k__cospi_p22_m10);
+ u8 = _mm_madd_epi16(s4, k__cospi_p18_p14);
+ u9 = _mm_madd_epi16(s5, k__cospi_p18_p14);
+ u10 = _mm_madd_epi16(s4, k__cospi_p14_m18);
+ u11 = _mm_madd_epi16(s5, k__cospi_p14_m18);
+ u12 = _mm_madd_epi16(s6, k__cospi_p26_p06);
+ u13 = _mm_madd_epi16(s7, k__cospi_p26_p06);
+ u14 = _mm_madd_epi16(s6, k__cospi_p06_m26);
+ u15 = _mm_madd_epi16(s7, k__cospi_p06_m26);
+
+ // addition
+ w0 = _mm_add_epi32(u0, u8);
+ w1 = _mm_add_epi32(u1, u9);
+ w2 = _mm_add_epi32(u2, u10);
+ w3 = _mm_add_epi32(u3, u11);
+ w4 = _mm_add_epi32(u4, u12);
+ w5 = _mm_add_epi32(u5, u13);
+ w6 = _mm_add_epi32(u6, u14);
+ w7 = _mm_add_epi32(u7, u15);
+ w8 = _mm_sub_epi32(u0, u8);
+ w9 = _mm_sub_epi32(u1, u9);
+ w10 = _mm_sub_epi32(u2, u10);
+ w11 = _mm_sub_epi32(u3, u11);
+ w12 = _mm_sub_epi32(u4, u12);
+ w13 = _mm_sub_epi32(u5, u13);
+ w14 = _mm_sub_epi32(u6, u14);
+ w15 = _mm_sub_epi32(u7, u15);
+
+ // shift and rounding
+ v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
+ v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
+ v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
+ v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
+ v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
+ v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
+ v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
+ v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
+ v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING);
+ v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING);
+ v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING);
+ v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING);
+ v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING);
+ v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING);
+ v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING);
+ v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING);
+
+ u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ u8 = _mm_srai_epi32(v8, DCT_CONST_BITS);
+ u9 = _mm_srai_epi32(v9, DCT_CONST_BITS);
+ u10 = _mm_srai_epi32(v10, DCT_CONST_BITS);
+ u11 = _mm_srai_epi32(v11, DCT_CONST_BITS);
+ u12 = _mm_srai_epi32(v12, DCT_CONST_BITS);
+ u13 = _mm_srai_epi32(v13, DCT_CONST_BITS);
+ u14 = _mm_srai_epi32(v14, DCT_CONST_BITS);
+ u15 = _mm_srai_epi32(v15, DCT_CONST_BITS);
+
+ // back to 16-bit and pack 8 integers into __m128i
+ in[0] = _mm_packs_epi32(u0, u1);
+ in[1] = _mm_packs_epi32(u2, u3);
+ in[2] = _mm_packs_epi32(u4, u5);
+ in[3] = _mm_packs_epi32(u6, u7);
+ in[4] = _mm_packs_epi32(u8, u9);
+ in[5] = _mm_packs_epi32(u10, u11);
+ in[6] = _mm_packs_epi32(u12, u13);
+ in[7] = _mm_packs_epi32(u14, u15);
+
+ // stage 2
+ s0 = _mm_add_epi16(in[0], in[2]);
+ s1 = _mm_add_epi16(in[1], in[3]);
+ s2 = _mm_sub_epi16(in[0], in[2]);
+ s3 = _mm_sub_epi16(in[1], in[3]);
+ u0 = _mm_unpacklo_epi16(in[4], in[5]);
+ u1 = _mm_unpackhi_epi16(in[4], in[5]);
+ u2 = _mm_unpacklo_epi16(in[6], in[7]);
+ u3 = _mm_unpackhi_epi16(in[6], in[7]);
+
+ v0 = _mm_madd_epi16(u0, k__cospi_p08_p24);
+ v1 = _mm_madd_epi16(u1, k__cospi_p08_p24);
+ v2 = _mm_madd_epi16(u0, k__cospi_p24_m08);
+ v3 = _mm_madd_epi16(u1, k__cospi_p24_m08);
+ v4 = _mm_madd_epi16(u2, k__cospi_m24_p08);
+ v5 = _mm_madd_epi16(u3, k__cospi_m24_p08);
+ v6 = _mm_madd_epi16(u2, k__cospi_p08_p24);
+ v7 = _mm_madd_epi16(u3, k__cospi_p08_p24);
+
+ w0 = _mm_add_epi32(v0, v4);
+ w1 = _mm_add_epi32(v1, v5);
+ w2 = _mm_add_epi32(v2, v6);
+ w3 = _mm_add_epi32(v3, v7);
+ w4 = _mm_sub_epi32(v0, v4);
+ w5 = _mm_sub_epi32(v1, v5);
+ w6 = _mm_sub_epi32(v2, v6);
+ w7 = _mm_sub_epi32(v3, v7);
+
+ v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
+ v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
+ v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
+ v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
+ v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
+ v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
+ v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
+ v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
+
+ u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+
+ // back to 16-bit intergers
+ s4 = _mm_packs_epi32(u0, u1);
+ s5 = _mm_packs_epi32(u2, u3);
+ s6 = _mm_packs_epi32(u4, u5);
+ s7 = _mm_packs_epi32(u6, u7);
+
+ // stage 3
+ u0 = _mm_unpacklo_epi16(s2, s3);
+ u1 = _mm_unpackhi_epi16(s2, s3);
+ u2 = _mm_unpacklo_epi16(s6, s7);
+ u3 = _mm_unpackhi_epi16(s6, s7);
+
+ v0 = _mm_madd_epi16(u0, k__cospi_p16_p16);
+ v1 = _mm_madd_epi16(u1, k__cospi_p16_p16);
+ v2 = _mm_madd_epi16(u0, k__cospi_p16_m16);
+ v3 = _mm_madd_epi16(u1, k__cospi_p16_m16);
+ v4 = _mm_madd_epi16(u2, k__cospi_p16_p16);
+ v5 = _mm_madd_epi16(u3, k__cospi_p16_p16);
+ v6 = _mm_madd_epi16(u2, k__cospi_p16_m16);
+ v7 = _mm_madd_epi16(u3, k__cospi_p16_m16);
+
+ u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
+ u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
+ u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
+ u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
+ u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
+ u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
+ u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
+ u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
+
+ v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
+ v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
+ v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
+ v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
+ v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
+ v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
+ v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
+ v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
+
+ s2 = _mm_packs_epi32(v0, v1);
+ s3 = _mm_packs_epi32(v2, v3);
+ s6 = _mm_packs_epi32(v4, v5);
+ s7 = _mm_packs_epi32(v6, v7);
+
+ // FIXME(jingning): do subtract using bit inversion?
+ in[0] = s0;
+ in[1] = _mm_sub_epi16(k__const_0, s4);
+ in[2] = s6;
+ in[3] = _mm_sub_epi16(k__const_0, s2);
+ in[4] = s3;
+ in[5] = _mm_sub_epi16(k__const_0, s7);
+ in[6] = s5;
+ in[7] = _mm_sub_epi16(k__const_0, s1);
+
+ // transpose
+ array_transpose_8x8(in, in);
+}
+
+void vp9_fht8x8_sse2(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ __m128i in[8];
+
+ switch (tx_type) {
+ case DCT_DCT:
+ vp9_fdct8x8_sse2(input, output, stride);
+ break;
+ case ADST_DCT:
+ load_buffer_8x8(input, in, stride);
+ fadst8_sse2(in);
+ fdct8_sse2(in);
+ right_shift_8x8(in, 1);
+ write_buffer_8x8(output, in, 8);
+ break;
+ case DCT_ADST:
+ load_buffer_8x8(input, in, stride);
+ fdct8_sse2(in);
+ fadst8_sse2(in);
+ right_shift_8x8(in, 1);
+ write_buffer_8x8(output, in, 8);
+ break;
+ case ADST_ADST:
+ load_buffer_8x8(input, in, stride);
+ fadst8_sse2(in);
+ fadst8_sse2(in);
+ right_shift_8x8(in, 1);
+ write_buffer_8x8(output, in, 8);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+void vp9_fdct16x16_1_sse2(const int16_t *input, tran_low_t *output,
+ int stride) {
+ __m128i in0, in1, in2, in3;
+ __m128i u0, u1;
+ __m128i sum = _mm_setzero_si128();
+ int i;
+
+ for (i = 0; i < 2; ++i) {
+ input += 8 * i;
+ in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, u0);
+
+ in0 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ in1 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ in2 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ in3 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+
+ sum = _mm_add_epi16(sum, u1);
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, u0);
+
+ in0 = _mm_load_si128((const __m128i *)(input + 8 * stride));
+ in1 = _mm_load_si128((const __m128i *)(input + 9 * stride));
+ in2 = _mm_load_si128((const __m128i *)(input + 10 * stride));
+ in3 = _mm_load_si128((const __m128i *)(input + 11 * stride));
+
+ sum = _mm_add_epi16(sum, u1);
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, u0);
+
+ in0 = _mm_load_si128((const __m128i *)(input + 12 * stride));
+ in1 = _mm_load_si128((const __m128i *)(input + 13 * stride));
+ in2 = _mm_load_si128((const __m128i *)(input + 14 * stride));
+ in3 = _mm_load_si128((const __m128i *)(input + 15 * stride));
+
+ sum = _mm_add_epi16(sum, u1);
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, u0);
+
+ sum = _mm_add_epi16(sum, u1);
+ }
+
+ u0 = _mm_setzero_si128();
+ in0 = _mm_unpacklo_epi16(u0, sum);
+ in1 = _mm_unpackhi_epi16(u0, sum);
+ in0 = _mm_srai_epi32(in0, 16);
+ in1 = _mm_srai_epi32(in1, 16);
+
+ sum = _mm_add_epi32(in0, in1);
+ in0 = _mm_unpacklo_epi32(sum, u0);
+ in1 = _mm_unpackhi_epi32(sum, u0);
+
+ sum = _mm_add_epi32(in0, in1);
+ in0 = _mm_srli_si128(sum, 8);
+
+ in1 = _mm_add_epi32(sum, in0);
+ in1 = _mm_srai_epi32(in1, 1);
+ store_output(&in1, output);
+}
+
+static INLINE void load_buffer_16x16(const int16_t* input, __m128i *in0,
+ __m128i *in1, int stride) {
+ // load first 8 columns
+ load_buffer_8x8(input, in0, stride);
+ load_buffer_8x8(input + 8 * stride, in0 + 8, stride);
+
+ input += 8;
+ // load second 8 columns
+ load_buffer_8x8(input, in1, stride);
+ load_buffer_8x8(input + 8 * stride, in1 + 8, stride);
+}
+
+static INLINE void write_buffer_16x16(tran_low_t *output, __m128i *in0,
+ __m128i *in1, int stride) {
+ // write first 8 columns
+ write_buffer_8x8(output, in0, stride);
+ write_buffer_8x8(output + 8 * stride, in0 + 8, stride);
+ // write second 8 columns
+ output += 8;
+ write_buffer_8x8(output, in1, stride);
+ write_buffer_8x8(output + 8 * stride, in1 + 8, stride);
+}
+
+static INLINE void array_transpose_16x16(__m128i *res0, __m128i *res1) {
+ __m128i tbuf[8];
+ array_transpose_8x8(res0, res0);
+ array_transpose_8x8(res1, tbuf);
+ array_transpose_8x8(res0 + 8, res1);
+ array_transpose_8x8(res1 + 8, res1 + 8);
+
+ res0[8] = tbuf[0];
+ res0[9] = tbuf[1];
+ res0[10] = tbuf[2];
+ res0[11] = tbuf[3];
+ res0[12] = tbuf[4];
+ res0[13] = tbuf[5];
+ res0[14] = tbuf[6];
+ res0[15] = tbuf[7];
+}
+
+static INLINE void right_shift_16x16(__m128i *res0, __m128i *res1) {
+ // perform rounding operations
+ right_shift_8x8(res0, 2);
+ right_shift_8x8(res0 + 8, 2);
+ right_shift_8x8(res1, 2);
+ right_shift_8x8(res1 + 8, 2);
+}
+
+static void fdct16_8col(__m128i *in) {
+ // perform 16x16 1-D DCT for 8 columns
+ __m128i i[8], s[8], p[8], t[8], u[16], v[16];
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
+ const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
+ const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
+ const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
+ const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+
+ // stage 1
+ i[0] = _mm_add_epi16(in[0], in[15]);
+ i[1] = _mm_add_epi16(in[1], in[14]);
+ i[2] = _mm_add_epi16(in[2], in[13]);
+ i[3] = _mm_add_epi16(in[3], in[12]);
+ i[4] = _mm_add_epi16(in[4], in[11]);
+ i[5] = _mm_add_epi16(in[5], in[10]);
+ i[6] = _mm_add_epi16(in[6], in[9]);
+ i[7] = _mm_add_epi16(in[7], in[8]);
+
+ s[0] = _mm_sub_epi16(in[7], in[8]);
+ s[1] = _mm_sub_epi16(in[6], in[9]);
+ s[2] = _mm_sub_epi16(in[5], in[10]);
+ s[3] = _mm_sub_epi16(in[4], in[11]);
+ s[4] = _mm_sub_epi16(in[3], in[12]);
+ s[5] = _mm_sub_epi16(in[2], in[13]);
+ s[6] = _mm_sub_epi16(in[1], in[14]);
+ s[7] = _mm_sub_epi16(in[0], in[15]);
+
+ p[0] = _mm_add_epi16(i[0], i[7]);
+ p[1] = _mm_add_epi16(i[1], i[6]);
+ p[2] = _mm_add_epi16(i[2], i[5]);
+ p[3] = _mm_add_epi16(i[3], i[4]);
+ p[4] = _mm_sub_epi16(i[3], i[4]);
+ p[5] = _mm_sub_epi16(i[2], i[5]);
+ p[6] = _mm_sub_epi16(i[1], i[6]);
+ p[7] = _mm_sub_epi16(i[0], i[7]);
+
+ u[0] = _mm_add_epi16(p[0], p[3]);
+ u[1] = _mm_add_epi16(p[1], p[2]);
+ u[2] = _mm_sub_epi16(p[1], p[2]);
+ u[3] = _mm_sub_epi16(p[0], p[3]);
+
+ v[0] = _mm_unpacklo_epi16(u[0], u[1]);
+ v[1] = _mm_unpackhi_epi16(u[0], u[1]);
+ v[2] = _mm_unpacklo_epi16(u[2], u[3]);
+ v[3] = _mm_unpackhi_epi16(u[2], u[3]);
+
+ u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16);
+ u[1] = _mm_madd_epi16(v[1], k__cospi_p16_p16);
+ u[2] = _mm_madd_epi16(v[0], k__cospi_p16_m16);
+ u[3] = _mm_madd_epi16(v[1], k__cospi_p16_m16);
+ u[4] = _mm_madd_epi16(v[2], k__cospi_p24_p08);
+ u[5] = _mm_madd_epi16(v[3], k__cospi_p24_p08);
+ u[6] = _mm_madd_epi16(v[2], k__cospi_m08_p24);
+ u[7] = _mm_madd_epi16(v[3], k__cospi_m08_p24);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+
+ in[0] = _mm_packs_epi32(u[0], u[1]);
+ in[4] = _mm_packs_epi32(u[4], u[5]);
+ in[8] = _mm_packs_epi32(u[2], u[3]);
+ in[12] = _mm_packs_epi32(u[6], u[7]);
+
+ u[0] = _mm_unpacklo_epi16(p[5], p[6]);
+ u[1] = _mm_unpackhi_epi16(p[5], p[6]);
+ v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+
+ u[0] = _mm_packs_epi32(v[0], v[1]);
+ u[1] = _mm_packs_epi32(v[2], v[3]);
+
+ t[0] = _mm_add_epi16(p[4], u[0]);
+ t[1] = _mm_sub_epi16(p[4], u[0]);
+ t[2] = _mm_sub_epi16(p[7], u[1]);
+ t[3] = _mm_add_epi16(p[7], u[1]);
+
+ u[0] = _mm_unpacklo_epi16(t[0], t[3]);
+ u[1] = _mm_unpackhi_epi16(t[0], t[3]);
+ u[2] = _mm_unpacklo_epi16(t[1], t[2]);
+ u[3] = _mm_unpackhi_epi16(t[1], t[2]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p28_p04);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p28_p04);
+ v[2] = _mm_madd_epi16(u[2], k__cospi_p12_p20);
+ v[3] = _mm_madd_epi16(u[3], k__cospi_p12_p20);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_m20_p12);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_m20_p12);
+ v[6] = _mm_madd_epi16(u[0], k__cospi_m04_p28);
+ v[7] = _mm_madd_epi16(u[1], k__cospi_m04_p28);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+ in[2] = _mm_packs_epi32(v[0], v[1]);
+ in[6] = _mm_packs_epi32(v[4], v[5]);
+ in[10] = _mm_packs_epi32(v[2], v[3]);
+ in[14] = _mm_packs_epi32(v[6], v[7]);
+
+ // stage 2
+ u[0] = _mm_unpacklo_epi16(s[2], s[5]);
+ u[1] = _mm_unpackhi_epi16(s[2], s[5]);
+ u[2] = _mm_unpacklo_epi16(s[3], s[4]);
+ u[3] = _mm_unpackhi_epi16(s[3], s[4]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
+ v[2] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
+ v[3] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
+ v[6] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
+ v[7] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+ t[2] = _mm_packs_epi32(v[0], v[1]);
+ t[3] = _mm_packs_epi32(v[2], v[3]);
+ t[4] = _mm_packs_epi32(v[4], v[5]);
+ t[5] = _mm_packs_epi32(v[6], v[7]);
+
+ // stage 3
+ p[0] = _mm_add_epi16(s[0], t[3]);
+ p[1] = _mm_add_epi16(s[1], t[2]);
+ p[2] = _mm_sub_epi16(s[1], t[2]);
+ p[3] = _mm_sub_epi16(s[0], t[3]);
+ p[4] = _mm_sub_epi16(s[7], t[4]);
+ p[5] = _mm_sub_epi16(s[6], t[5]);
+ p[6] = _mm_add_epi16(s[6], t[5]);
+ p[7] = _mm_add_epi16(s[7], t[4]);
+
+ // stage 4
+ u[0] = _mm_unpacklo_epi16(p[1], p[6]);
+ u[1] = _mm_unpackhi_epi16(p[1], p[6]);
+ u[2] = _mm_unpacklo_epi16(p[2], p[5]);
+ u[3] = _mm_unpackhi_epi16(p[2], p[5]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_m08_p24);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_m08_p24);
+ v[2] = _mm_madd_epi16(u[2], k__cospi_p24_p08);
+ v[3] = _mm_madd_epi16(u[3], k__cospi_p24_p08);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p08_m24);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p08_m24);
+ v[6] = _mm_madd_epi16(u[0], k__cospi_p24_p08);
+ v[7] = _mm_madd_epi16(u[1], k__cospi_p24_p08);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+
+ t[1] = _mm_packs_epi32(v[0], v[1]);
+ t[2] = _mm_packs_epi32(v[2], v[3]);
+ t[5] = _mm_packs_epi32(v[4], v[5]);
+ t[6] = _mm_packs_epi32(v[6], v[7]);
+
+ // stage 5
+ s[0] = _mm_add_epi16(p[0], t[1]);
+ s[1] = _mm_sub_epi16(p[0], t[1]);
+ s[2] = _mm_add_epi16(p[3], t[2]);
+ s[3] = _mm_sub_epi16(p[3], t[2]);
+ s[4] = _mm_sub_epi16(p[4], t[5]);
+ s[5] = _mm_add_epi16(p[4], t[5]);
+ s[6] = _mm_sub_epi16(p[7], t[6]);
+ s[7] = _mm_add_epi16(p[7], t[6]);
+
+ // stage 6
+ u[0] = _mm_unpacklo_epi16(s[0], s[7]);
+ u[1] = _mm_unpackhi_epi16(s[0], s[7]);
+ u[2] = _mm_unpacklo_epi16(s[1], s[6]);
+ u[3] = _mm_unpackhi_epi16(s[1], s[6]);
+ u[4] = _mm_unpacklo_epi16(s[2], s[5]);
+ u[5] = _mm_unpackhi_epi16(s[2], s[5]);
+ u[6] = _mm_unpacklo_epi16(s[3], s[4]);
+ u[7] = _mm_unpackhi_epi16(s[3], s[4]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p30_p02);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p30_p02);
+ v[2] = _mm_madd_epi16(u[2], k__cospi_p14_p18);
+ v[3] = _mm_madd_epi16(u[3], k__cospi_p14_p18);
+ v[4] = _mm_madd_epi16(u[4], k__cospi_p22_p10);
+ v[5] = _mm_madd_epi16(u[5], k__cospi_p22_p10);
+ v[6] = _mm_madd_epi16(u[6], k__cospi_p06_p26);
+ v[7] = _mm_madd_epi16(u[7], k__cospi_p06_p26);
+ v[8] = _mm_madd_epi16(u[6], k__cospi_m26_p06);
+ v[9] = _mm_madd_epi16(u[7], k__cospi_m26_p06);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_m10_p22);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_m10_p22);
+ v[12] = _mm_madd_epi16(u[2], k__cospi_m18_p14);
+ v[13] = _mm_madd_epi16(u[3], k__cospi_m18_p14);
+ v[14] = _mm_madd_epi16(u[0], k__cospi_m02_p30);
+ v[15] = _mm_madd_epi16(u[1], k__cospi_m02_p30);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+ u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
+ u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
+ u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
+ u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
+ u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
+ u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
+ u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
+ u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+ v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+ v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+ v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+ v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+ v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+ v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+ v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+ v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+ in[1] = _mm_packs_epi32(v[0], v[1]);
+ in[9] = _mm_packs_epi32(v[2], v[3]);
+ in[5] = _mm_packs_epi32(v[4], v[5]);
+ in[13] = _mm_packs_epi32(v[6], v[7]);
+ in[3] = _mm_packs_epi32(v[8], v[9]);
+ in[11] = _mm_packs_epi32(v[10], v[11]);
+ in[7] = _mm_packs_epi32(v[12], v[13]);
+ in[15] = _mm_packs_epi32(v[14], v[15]);
+}
+
+static void fadst16_8col(__m128i *in) {
+ // perform 16x16 1-D ADST for 8 columns
+ __m128i s[16], x[16], u[32], v[32];
+ const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64);
+ const __m128i k__cospi_p31_m01 = pair_set_epi16(cospi_31_64, -cospi_1_64);
+ const __m128i k__cospi_p05_p27 = pair_set_epi16(cospi_5_64, cospi_27_64);
+ const __m128i k__cospi_p27_m05 = pair_set_epi16(cospi_27_64, -cospi_5_64);
+ const __m128i k__cospi_p09_p23 = pair_set_epi16(cospi_9_64, cospi_23_64);
+ const __m128i k__cospi_p23_m09 = pair_set_epi16(cospi_23_64, -cospi_9_64);
+ const __m128i k__cospi_p13_p19 = pair_set_epi16(cospi_13_64, cospi_19_64);
+ const __m128i k__cospi_p19_m13 = pair_set_epi16(cospi_19_64, -cospi_13_64);
+ const __m128i k__cospi_p17_p15 = pair_set_epi16(cospi_17_64, cospi_15_64);
+ const __m128i k__cospi_p15_m17 = pair_set_epi16(cospi_15_64, -cospi_17_64);
+ const __m128i k__cospi_p21_p11 = pair_set_epi16(cospi_21_64, cospi_11_64);
+ const __m128i k__cospi_p11_m21 = pair_set_epi16(cospi_11_64, -cospi_21_64);
+ const __m128i k__cospi_p25_p07 = pair_set_epi16(cospi_25_64, cospi_7_64);
+ const __m128i k__cospi_p07_m25 = pair_set_epi16(cospi_7_64, -cospi_25_64);
+ const __m128i k__cospi_p29_p03 = pair_set_epi16(cospi_29_64, cospi_3_64);
+ const __m128i k__cospi_p03_m29 = pair_set_epi16(cospi_3_64, -cospi_29_64);
+ const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64);
+ const __m128i k__cospi_p20_p12 = pair_set_epi16(cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_p12_m20 = pair_set_epi16(cospi_12_64, -cospi_20_64);
+ const __m128i k__cospi_m28_p04 = pair_set_epi16(-cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m12_p20 = pair_set_epi16(-cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m16_m16 = _mm_set1_epi16((int16_t)-cospi_16_64);
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ const __m128i kZero = _mm_set1_epi16(0);
+
+ u[0] = _mm_unpacklo_epi16(in[15], in[0]);
+ u[1] = _mm_unpackhi_epi16(in[15], in[0]);
+ u[2] = _mm_unpacklo_epi16(in[13], in[2]);
+ u[3] = _mm_unpackhi_epi16(in[13], in[2]);
+ u[4] = _mm_unpacklo_epi16(in[11], in[4]);
+ u[5] = _mm_unpackhi_epi16(in[11], in[4]);
+ u[6] = _mm_unpacklo_epi16(in[9], in[6]);
+ u[7] = _mm_unpackhi_epi16(in[9], in[6]);
+ u[8] = _mm_unpacklo_epi16(in[7], in[8]);
+ u[9] = _mm_unpackhi_epi16(in[7], in[8]);
+ u[10] = _mm_unpacklo_epi16(in[5], in[10]);
+ u[11] = _mm_unpackhi_epi16(in[5], in[10]);
+ u[12] = _mm_unpacklo_epi16(in[3], in[12]);
+ u[13] = _mm_unpackhi_epi16(in[3], in[12]);
+ u[14] = _mm_unpacklo_epi16(in[1], in[14]);
+ u[15] = _mm_unpackhi_epi16(in[1], in[14]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p01_p31);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p01_p31);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p31_m01);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p31_m01);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p05_p27);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p05_p27);
+ v[6] = _mm_madd_epi16(u[2], k__cospi_p27_m05);
+ v[7] = _mm_madd_epi16(u[3], k__cospi_p27_m05);
+ v[8] = _mm_madd_epi16(u[4], k__cospi_p09_p23);
+ v[9] = _mm_madd_epi16(u[5], k__cospi_p09_p23);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_p23_m09);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_p23_m09);
+ v[12] = _mm_madd_epi16(u[6], k__cospi_p13_p19);
+ v[13] = _mm_madd_epi16(u[7], k__cospi_p13_p19);
+ v[14] = _mm_madd_epi16(u[6], k__cospi_p19_m13);
+ v[15] = _mm_madd_epi16(u[7], k__cospi_p19_m13);
+ v[16] = _mm_madd_epi16(u[8], k__cospi_p17_p15);
+ v[17] = _mm_madd_epi16(u[9], k__cospi_p17_p15);
+ v[18] = _mm_madd_epi16(u[8], k__cospi_p15_m17);
+ v[19] = _mm_madd_epi16(u[9], k__cospi_p15_m17);
+ v[20] = _mm_madd_epi16(u[10], k__cospi_p21_p11);
+ v[21] = _mm_madd_epi16(u[11], k__cospi_p21_p11);
+ v[22] = _mm_madd_epi16(u[10], k__cospi_p11_m21);
+ v[23] = _mm_madd_epi16(u[11], k__cospi_p11_m21);
+ v[24] = _mm_madd_epi16(u[12], k__cospi_p25_p07);
+ v[25] = _mm_madd_epi16(u[13], k__cospi_p25_p07);
+ v[26] = _mm_madd_epi16(u[12], k__cospi_p07_m25);
+ v[27] = _mm_madd_epi16(u[13], k__cospi_p07_m25);
+ v[28] = _mm_madd_epi16(u[14], k__cospi_p29_p03);
+ v[29] = _mm_madd_epi16(u[15], k__cospi_p29_p03);
+ v[30] = _mm_madd_epi16(u[14], k__cospi_p03_m29);
+ v[31] = _mm_madd_epi16(u[15], k__cospi_p03_m29);
+
+ u[0] = _mm_add_epi32(v[0], v[16]);
+ u[1] = _mm_add_epi32(v[1], v[17]);
+ u[2] = _mm_add_epi32(v[2], v[18]);
+ u[3] = _mm_add_epi32(v[3], v[19]);
+ u[4] = _mm_add_epi32(v[4], v[20]);
+ u[5] = _mm_add_epi32(v[5], v[21]);
+ u[6] = _mm_add_epi32(v[6], v[22]);
+ u[7] = _mm_add_epi32(v[7], v[23]);
+ u[8] = _mm_add_epi32(v[8], v[24]);
+ u[9] = _mm_add_epi32(v[9], v[25]);
+ u[10] = _mm_add_epi32(v[10], v[26]);
+ u[11] = _mm_add_epi32(v[11], v[27]);
+ u[12] = _mm_add_epi32(v[12], v[28]);
+ u[13] = _mm_add_epi32(v[13], v[29]);
+ u[14] = _mm_add_epi32(v[14], v[30]);
+ u[15] = _mm_add_epi32(v[15], v[31]);
+ u[16] = _mm_sub_epi32(v[0], v[16]);
+ u[17] = _mm_sub_epi32(v[1], v[17]);
+ u[18] = _mm_sub_epi32(v[2], v[18]);
+ u[19] = _mm_sub_epi32(v[3], v[19]);
+ u[20] = _mm_sub_epi32(v[4], v[20]);
+ u[21] = _mm_sub_epi32(v[5], v[21]);
+ u[22] = _mm_sub_epi32(v[6], v[22]);
+ u[23] = _mm_sub_epi32(v[7], v[23]);
+ u[24] = _mm_sub_epi32(v[8], v[24]);
+ u[25] = _mm_sub_epi32(v[9], v[25]);
+ u[26] = _mm_sub_epi32(v[10], v[26]);
+ u[27] = _mm_sub_epi32(v[11], v[27]);
+ u[28] = _mm_sub_epi32(v[12], v[28]);
+ u[29] = _mm_sub_epi32(v[13], v[29]);
+ u[30] = _mm_sub_epi32(v[14], v[30]);
+ u[31] = _mm_sub_epi32(v[15], v[31]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+ v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+ v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+ v[16] = _mm_add_epi32(u[16], k__DCT_CONST_ROUNDING);
+ v[17] = _mm_add_epi32(u[17], k__DCT_CONST_ROUNDING);
+ v[18] = _mm_add_epi32(u[18], k__DCT_CONST_ROUNDING);
+ v[19] = _mm_add_epi32(u[19], k__DCT_CONST_ROUNDING);
+ v[20] = _mm_add_epi32(u[20], k__DCT_CONST_ROUNDING);
+ v[21] = _mm_add_epi32(u[21], k__DCT_CONST_ROUNDING);
+ v[22] = _mm_add_epi32(u[22], k__DCT_CONST_ROUNDING);
+ v[23] = _mm_add_epi32(u[23], k__DCT_CONST_ROUNDING);
+ v[24] = _mm_add_epi32(u[24], k__DCT_CONST_ROUNDING);
+ v[25] = _mm_add_epi32(u[25], k__DCT_CONST_ROUNDING);
+ v[26] = _mm_add_epi32(u[26], k__DCT_CONST_ROUNDING);
+ v[27] = _mm_add_epi32(u[27], k__DCT_CONST_ROUNDING);
+ v[28] = _mm_add_epi32(u[28], k__DCT_CONST_ROUNDING);
+ v[29] = _mm_add_epi32(u[29], k__DCT_CONST_ROUNDING);
+ v[30] = _mm_add_epi32(u[30], k__DCT_CONST_ROUNDING);
+ v[31] = _mm_add_epi32(u[31], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+ u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
+ u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
+ u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+ u[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS);
+ u[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS);
+ u[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS);
+ u[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS);
+ u[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS);
+ u[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS);
+ u[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS);
+ u[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS);
+ u[24] = _mm_srai_epi32(v[24], DCT_CONST_BITS);
+ u[25] = _mm_srai_epi32(v[25], DCT_CONST_BITS);
+ u[26] = _mm_srai_epi32(v[26], DCT_CONST_BITS);
+ u[27] = _mm_srai_epi32(v[27], DCT_CONST_BITS);
+ u[28] = _mm_srai_epi32(v[28], DCT_CONST_BITS);
+ u[29] = _mm_srai_epi32(v[29], DCT_CONST_BITS);
+ u[30] = _mm_srai_epi32(v[30], DCT_CONST_BITS);
+ u[31] = _mm_srai_epi32(v[31], DCT_CONST_BITS);
+
+ s[0] = _mm_packs_epi32(u[0], u[1]);
+ s[1] = _mm_packs_epi32(u[2], u[3]);
+ s[2] = _mm_packs_epi32(u[4], u[5]);
+ s[3] = _mm_packs_epi32(u[6], u[7]);
+ s[4] = _mm_packs_epi32(u[8], u[9]);
+ s[5] = _mm_packs_epi32(u[10], u[11]);
+ s[6] = _mm_packs_epi32(u[12], u[13]);
+ s[7] = _mm_packs_epi32(u[14], u[15]);
+ s[8] = _mm_packs_epi32(u[16], u[17]);
+ s[9] = _mm_packs_epi32(u[18], u[19]);
+ s[10] = _mm_packs_epi32(u[20], u[21]);
+ s[11] = _mm_packs_epi32(u[22], u[23]);
+ s[12] = _mm_packs_epi32(u[24], u[25]);
+ s[13] = _mm_packs_epi32(u[26], u[27]);
+ s[14] = _mm_packs_epi32(u[28], u[29]);
+ s[15] = _mm_packs_epi32(u[30], u[31]);
+
+ // stage 2
+ u[0] = _mm_unpacklo_epi16(s[8], s[9]);
+ u[1] = _mm_unpackhi_epi16(s[8], s[9]);
+ u[2] = _mm_unpacklo_epi16(s[10], s[11]);
+ u[3] = _mm_unpackhi_epi16(s[10], s[11]);
+ u[4] = _mm_unpacklo_epi16(s[12], s[13]);
+ u[5] = _mm_unpackhi_epi16(s[12], s[13]);
+ u[6] = _mm_unpacklo_epi16(s[14], s[15]);
+ u[7] = _mm_unpackhi_epi16(s[14], s[15]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p04_p28);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p04_p28);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p28_m04);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p28_m04);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p20_p12);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p20_p12);
+ v[6] = _mm_madd_epi16(u[2], k__cospi_p12_m20);
+ v[7] = _mm_madd_epi16(u[3], k__cospi_p12_m20);
+ v[8] = _mm_madd_epi16(u[4], k__cospi_m28_p04);
+ v[9] = _mm_madd_epi16(u[5], k__cospi_m28_p04);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_p04_p28);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_p04_p28);
+ v[12] = _mm_madd_epi16(u[6], k__cospi_m12_p20);
+ v[13] = _mm_madd_epi16(u[7], k__cospi_m12_p20);
+ v[14] = _mm_madd_epi16(u[6], k__cospi_p20_p12);
+ v[15] = _mm_madd_epi16(u[7], k__cospi_p20_p12);
+
+ u[0] = _mm_add_epi32(v[0], v[8]);
+ u[1] = _mm_add_epi32(v[1], v[9]);
+ u[2] = _mm_add_epi32(v[2], v[10]);
+ u[3] = _mm_add_epi32(v[3], v[11]);
+ u[4] = _mm_add_epi32(v[4], v[12]);
+ u[5] = _mm_add_epi32(v[5], v[13]);
+ u[6] = _mm_add_epi32(v[6], v[14]);
+ u[7] = _mm_add_epi32(v[7], v[15]);
+ u[8] = _mm_sub_epi32(v[0], v[8]);
+ u[9] = _mm_sub_epi32(v[1], v[9]);
+ u[10] = _mm_sub_epi32(v[2], v[10]);
+ u[11] = _mm_sub_epi32(v[3], v[11]);
+ u[12] = _mm_sub_epi32(v[4], v[12]);
+ u[13] = _mm_sub_epi32(v[5], v[13]);
+ u[14] = _mm_sub_epi32(v[6], v[14]);
+ u[15] = _mm_sub_epi32(v[7], v[15]);
+
+ v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+ v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+ v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+ v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
+ u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
+ u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
+ u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
+ u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
+ u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
+ u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
+ u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
+ u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
+ u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
+ u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
+ u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
+ u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
+ u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
+ u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
+ u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
+
+ x[0] = _mm_add_epi16(s[0], s[4]);
+ x[1] = _mm_add_epi16(s[1], s[5]);
+ x[2] = _mm_add_epi16(s[2], s[6]);
+ x[3] = _mm_add_epi16(s[3], s[7]);
+ x[4] = _mm_sub_epi16(s[0], s[4]);
+ x[5] = _mm_sub_epi16(s[1], s[5]);
+ x[6] = _mm_sub_epi16(s[2], s[6]);
+ x[7] = _mm_sub_epi16(s[3], s[7]);
+ x[8] = _mm_packs_epi32(u[0], u[1]);
+ x[9] = _mm_packs_epi32(u[2], u[3]);
+ x[10] = _mm_packs_epi32(u[4], u[5]);
+ x[11] = _mm_packs_epi32(u[6], u[7]);
+ x[12] = _mm_packs_epi32(u[8], u[9]);
+ x[13] = _mm_packs_epi32(u[10], u[11]);
+ x[14] = _mm_packs_epi32(u[12], u[13]);
+ x[15] = _mm_packs_epi32(u[14], u[15]);
+
+ // stage 3
+ u[0] = _mm_unpacklo_epi16(x[4], x[5]);
+ u[1] = _mm_unpackhi_epi16(x[4], x[5]);
+ u[2] = _mm_unpacklo_epi16(x[6], x[7]);
+ u[3] = _mm_unpackhi_epi16(x[6], x[7]);
+ u[4] = _mm_unpacklo_epi16(x[12], x[13]);
+ u[5] = _mm_unpackhi_epi16(x[12], x[13]);
+ u[6] = _mm_unpacklo_epi16(x[14], x[15]);
+ u[7] = _mm_unpackhi_epi16(x[14], x[15]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_p08_p24);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_p08_p24);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p24_m08);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p24_m08);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_m24_p08);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_m24_p08);
+ v[6] = _mm_madd_epi16(u[2], k__cospi_p08_p24);
+ v[7] = _mm_madd_epi16(u[3], k__cospi_p08_p24);
+ v[8] = _mm_madd_epi16(u[4], k__cospi_p08_p24);
+ v[9] = _mm_madd_epi16(u[5], k__cospi_p08_p24);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_p24_m08);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_p24_m08);
+ v[12] = _mm_madd_epi16(u[6], k__cospi_m24_p08);
+ v[13] = _mm_madd_epi16(u[7], k__cospi_m24_p08);
+ v[14] = _mm_madd_epi16(u[6], k__cospi_p08_p24);
+ v[15] = _mm_madd_epi16(u[7], k__cospi_p08_p24);
+
+ u[0] = _mm_add_epi32(v[0], v[4]);
+ u[1] = _mm_add_epi32(v[1], v[5]);
+ u[2] = _mm_add_epi32(v[2], v[6]);
+ u[3] = _mm_add_epi32(v[3], v[7]);
+ u[4] = _mm_sub_epi32(v[0], v[4]);
+ u[5] = _mm_sub_epi32(v[1], v[5]);
+ u[6] = _mm_sub_epi32(v[2], v[6]);
+ u[7] = _mm_sub_epi32(v[3], v[7]);
+ u[8] = _mm_add_epi32(v[8], v[12]);
+ u[9] = _mm_add_epi32(v[9], v[13]);
+ u[10] = _mm_add_epi32(v[10], v[14]);
+ u[11] = _mm_add_epi32(v[11], v[15]);
+ u[12] = _mm_sub_epi32(v[8], v[12]);
+ u[13] = _mm_sub_epi32(v[9], v[13]);
+ u[14] = _mm_sub_epi32(v[10], v[14]);
+ u[15] = _mm_sub_epi32(v[11], v[15]);
+
+ u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
+ u[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
+ u[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
+ u[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
+ u[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
+ u[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
+ u[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
+ u[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
+ u[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+ v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+ v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+ v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+ v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+ v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+ v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+ v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+ v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+ s[0] = _mm_add_epi16(x[0], x[2]);
+ s[1] = _mm_add_epi16(x[1], x[3]);
+ s[2] = _mm_sub_epi16(x[0], x[2]);
+ s[3] = _mm_sub_epi16(x[1], x[3]);
+ s[4] = _mm_packs_epi32(v[0], v[1]);
+ s[5] = _mm_packs_epi32(v[2], v[3]);
+ s[6] = _mm_packs_epi32(v[4], v[5]);
+ s[7] = _mm_packs_epi32(v[6], v[7]);
+ s[8] = _mm_add_epi16(x[8], x[10]);
+ s[9] = _mm_add_epi16(x[9], x[11]);
+ s[10] = _mm_sub_epi16(x[8], x[10]);
+ s[11] = _mm_sub_epi16(x[9], x[11]);
+ s[12] = _mm_packs_epi32(v[8], v[9]);
+ s[13] = _mm_packs_epi32(v[10], v[11]);
+ s[14] = _mm_packs_epi32(v[12], v[13]);
+ s[15] = _mm_packs_epi32(v[14], v[15]);
+
+ // stage 4
+ u[0] = _mm_unpacklo_epi16(s[2], s[3]);
+ u[1] = _mm_unpackhi_epi16(s[2], s[3]);
+ u[2] = _mm_unpacklo_epi16(s[6], s[7]);
+ u[3] = _mm_unpackhi_epi16(s[6], s[7]);
+ u[4] = _mm_unpacklo_epi16(s[10], s[11]);
+ u[5] = _mm_unpackhi_epi16(s[10], s[11]);
+ u[6] = _mm_unpacklo_epi16(s[14], s[15]);
+ u[7] = _mm_unpackhi_epi16(s[14], s[15]);
+
+ v[0] = _mm_madd_epi16(u[0], k__cospi_m16_m16);
+ v[1] = _mm_madd_epi16(u[1], k__cospi_m16_m16);
+ v[2] = _mm_madd_epi16(u[0], k__cospi_p16_m16);
+ v[3] = _mm_madd_epi16(u[1], k__cospi_p16_m16);
+ v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
+ v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
+ v[6] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
+ v[7] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
+ v[8] = _mm_madd_epi16(u[4], k__cospi_p16_p16);
+ v[9] = _mm_madd_epi16(u[5], k__cospi_p16_p16);
+ v[10] = _mm_madd_epi16(u[4], k__cospi_m16_p16);
+ v[11] = _mm_madd_epi16(u[5], k__cospi_m16_p16);
+ v[12] = _mm_madd_epi16(u[6], k__cospi_m16_m16);
+ v[13] = _mm_madd_epi16(u[7], k__cospi_m16_m16);
+ v[14] = _mm_madd_epi16(u[6], k__cospi_p16_m16);
+ v[15] = _mm_madd_epi16(u[7], k__cospi_p16_m16);
+
+ u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
+ u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
+ u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
+ u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
+ u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
+ u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
+ u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
+ u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
+ u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
+ u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
+ u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
+ u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
+ u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
+ u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
+ u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
+ u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
+
+ v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
+ v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
+ v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
+ v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
+ v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
+ v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
+ v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
+ v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
+ v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
+ v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
+ v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
+ v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
+ v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
+ v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
+ v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
+ v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
+
+ in[0] = s[0];
+ in[1] = _mm_sub_epi16(kZero, s[8]);
+ in[2] = s[12];
+ in[3] = _mm_sub_epi16(kZero, s[4]);
+ in[4] = _mm_packs_epi32(v[4], v[5]);
+ in[5] = _mm_packs_epi32(v[12], v[13]);
+ in[6] = _mm_packs_epi32(v[8], v[9]);
+ in[7] = _mm_packs_epi32(v[0], v[1]);
+ in[8] = _mm_packs_epi32(v[2], v[3]);
+ in[9] = _mm_packs_epi32(v[10], v[11]);
+ in[10] = _mm_packs_epi32(v[14], v[15]);
+ in[11] = _mm_packs_epi32(v[6], v[7]);
+ in[12] = s[5];
+ in[13] = _mm_sub_epi16(kZero, s[13]);
+ in[14] = s[9];
+ in[15] = _mm_sub_epi16(kZero, s[1]);
+}
+
+static void fdct16_sse2(__m128i *in0, __m128i *in1) {
+ fdct16_8col(in0);
+ fdct16_8col(in1);
+ array_transpose_16x16(in0, in1);
+}
+
+static void fadst16_sse2(__m128i *in0, __m128i *in1) {
+ fadst16_8col(in0);
+ fadst16_8col(in1);
+ array_transpose_16x16(in0, in1);
+}
+
+void vp9_fht16x16_sse2(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ __m128i in0[16], in1[16];
+
+ switch (tx_type) {
+ case DCT_DCT:
+ vp9_fdct16x16_sse2(input, output, stride);
+ break;
+ case ADST_DCT:
+ load_buffer_16x16(input, in0, in1, stride);
+ fadst16_sse2(in0, in1);
+ right_shift_16x16(in0, in1);
+ fdct16_sse2(in0, in1);
+ write_buffer_16x16(output, in0, in1, 16);
+ break;
+ case DCT_ADST:
+ load_buffer_16x16(input, in0, in1, stride);
+ fdct16_sse2(in0, in1);
+ right_shift_16x16(in0, in1);
+ fadst16_sse2(in0, in1);
+ write_buffer_16x16(output, in0, in1, 16);
+ break;
+ case ADST_ADST:
+ load_buffer_16x16(input, in0, in1, stride);
+ fadst16_sse2(in0, in1);
+ right_shift_16x16(in0, in1);
+ fadst16_sse2(in0, in1);
+ write_buffer_16x16(output, in0, in1, 16);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+}
+
+void vp9_fdct32x32_1_sse2(const int16_t *input, tran_low_t *output,
+ int stride) {
+ __m128i in0, in1, in2, in3;
+ __m128i u0, u1;
+ __m128i sum = _mm_setzero_si128();
+ int i;
+
+ for (i = 0; i < 8; ++i) {
+ in0 = _mm_load_si128((const __m128i *)(input + 0));
+ in1 = _mm_load_si128((const __m128i *)(input + 8));
+ in2 = _mm_load_si128((const __m128i *)(input + 16));
+ in3 = _mm_load_si128((const __m128i *)(input + 24));
+
+ input += stride;
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, u0);
+
+ in0 = _mm_load_si128((const __m128i *)(input + 0));
+ in1 = _mm_load_si128((const __m128i *)(input + 8));
+ in2 = _mm_load_si128((const __m128i *)(input + 16));
+ in3 = _mm_load_si128((const __m128i *)(input + 24));
+
+ input += stride;
+ sum = _mm_add_epi16(sum, u1);
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, u0);
+
+ in0 = _mm_load_si128((const __m128i *)(input + 0));
+ in1 = _mm_load_si128((const __m128i *)(input + 8));
+ in2 = _mm_load_si128((const __m128i *)(input + 16));
+ in3 = _mm_load_si128((const __m128i *)(input + 24));
+
+ input += stride;
+ sum = _mm_add_epi16(sum, u1);
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, u0);
+
+ in0 = _mm_load_si128((const __m128i *)(input + 0));
+ in1 = _mm_load_si128((const __m128i *)(input + 8));
+ in2 = _mm_load_si128((const __m128i *)(input + 16));
+ in3 = _mm_load_si128((const __m128i *)(input + 24));
+
+ input += stride;
+ sum = _mm_add_epi16(sum, u1);
+ u0 = _mm_add_epi16(in0, in1);
+ u1 = _mm_add_epi16(in2, in3);
+ sum = _mm_add_epi16(sum, u0);
+
+ sum = _mm_add_epi16(sum, u1);
+ }
+
+ u0 = _mm_setzero_si128();
+ in0 = _mm_unpacklo_epi16(u0, sum);
+ in1 = _mm_unpackhi_epi16(u0, sum);
+ in0 = _mm_srai_epi32(in0, 16);
+ in1 = _mm_srai_epi32(in1, 16);
+
+ sum = _mm_add_epi32(in0, in1);
+ in0 = _mm_unpacklo_epi32(sum, u0);
+ in1 = _mm_unpackhi_epi32(sum, u0);
+
+ sum = _mm_add_epi32(in0, in1);
+ in0 = _mm_srli_si128(sum, 8);
+
+ in1 = _mm_add_epi32(sum, in0);
+ in1 = _mm_srai_epi32(in1, 3);
+ store_output(&in1, output);
+}
+
+#if CONFIG_VP9_HIGHBITDEPTH
+/* These SSE2 versions of the FHT functions only actually use SSE2 in the
+ * DCT_DCT case in all other cases, they revert to C code which is identical
+ * to that used by the C versions of them.
+ */
+
+void vp9_highbd_fht4x4_sse2(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_highbd_fdct4x4_sse2(input, output, stride);
+ } else {
+ tran_low_t out[4 * 4];
+ tran_low_t *outptr = &out[0];
+ int i, j;
+ tran_low_t temp_in[4], temp_out[4];
+ const transform_2d ht = FHT_4[tx_type];
+
+ // Columns
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = input[j * stride + i] * 16;
+ if (i == 0 && temp_in[0])
+ temp_in[0] += 1;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 4; ++j)
+ outptr[j * 4 + i] = temp_out[j];
+ }
+
+ // Rows
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j)
+ temp_in[j] = out[j + i * 4];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 4; ++j)
+ output[j + i * 4] = (temp_out[j] + 1) >> 2;
+ }
+ }
+}
+
+void vp9_highbd_fht8x8_sse2(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_highbd_fdct8x8_sse2(input, output, stride);
+ } else {
+ tran_low_t out[64];
+ tran_low_t *outptr = &out[0];
+ int i, j;
+ tran_low_t temp_in[8], temp_out[8];
+ const transform_2d ht = FHT_8[tx_type];
+
+ // Columns
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 8; ++j)
+ outptr[j * 8 + i] = temp_out[j];
+ }
+
+ // Rows
+ for (i = 0; i < 8; ++i) {
+ for (j = 0; j < 8; ++j)
+ temp_in[j] = out[j + i * 8];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 8; ++j)
+ output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
+ }
+ }
+}
+
+void vp9_highbd_fht16x16_sse2(const int16_t *input, tran_low_t *output,
+ int stride, int tx_type) {
+ if (tx_type == DCT_DCT) {
+ vp9_highbd_fdct16x16_sse2(input, output, stride);
+ } else {
+ tran_low_t out[256];
+ tran_low_t *outptr = &out[0];
+ int i, j;
+ tran_low_t temp_in[16], temp_out[16];
+ const transform_2d ht = FHT_16[tx_type];
+
+ // Columns
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = input[j * stride + i] * 4;
+ ht.cols(temp_in, temp_out);
+ for (j = 0; j < 16; ++j)
+ outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
+ }
+
+ // Rows
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < 16; ++j)
+ temp_in[j] = out[j + i * 16];
+ ht.rows(temp_in, temp_out);
+ for (j = 0; j < 16; ++j)
+ output[j + i * 16] = temp_out[j];
+ }
+ }
+}
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+/*
+ * The DCTnxn functions are defined using the macros below. The main code for
+ * them is in separate files (vp9/encoder/x86/vp9_dct_sse2_impl.h &
+ * vp9/encoder/x86/vp9_dct32x32_sse2_impl.h) which are used by both the 8 bit code
+ * and the high bit depth code.
+ */
+
+#define DCT_HIGH_BIT_DEPTH 0
+
+#define FDCT4x4_2D vp9_fdct4x4_sse2
+#define FDCT8x8_2D vp9_fdct8x8_sse2
+#define FDCT16x16_2D vp9_fdct16x16_sse2
+#include "vp9/encoder/x86/vp9_dct_sse2_impl.h"
+#undef FDCT4x4_2D
+#undef FDCT8x8_2D
+#undef FDCT16x16_2D
+
+#define FDCT32x32_2D vp9_fdct32x32_rd_sse2
+#define FDCT32x32_HIGH_PRECISION 0
+#include "vp9/encoder/x86/vp9_dct32x32_sse2_impl.h"
+#undef FDCT32x32_2D
+#undef FDCT32x32_HIGH_PRECISION
+
+#define FDCT32x32_2D vp9_fdct32x32_sse2
+#define FDCT32x32_HIGH_PRECISION 1
+#include "vp9/encoder/x86/vp9_dct32x32_sse2_impl.h" // NOLINT
+#undef FDCT32x32_2D
+#undef FDCT32x32_HIGH_PRECISION
+
+#undef DCT_HIGH_BIT_DEPTH
+
+
+#if CONFIG_VP9_HIGHBITDEPTH
+
+#define DCT_HIGH_BIT_DEPTH 1
+
+#define FDCT4x4_2D vp9_highbd_fdct4x4_sse2
+#define FDCT8x8_2D vp9_highbd_fdct8x8_sse2
+#define FDCT16x16_2D vp9_highbd_fdct16x16_sse2
+#include "vp9/encoder/x86/vp9_dct_sse2_impl.h" // NOLINT
+#undef FDCT4x4_2D
+#undef FDCT8x8_2D
+#undef FDCT16x16_2D
+
+#define FDCT32x32_2D vp9_highbd_fdct32x32_rd_sse2
+#define FDCT32x32_HIGH_PRECISION 0
+#include "vp9/encoder/x86/vp9_dct32x32_sse2_impl.h" // NOLINT
+#undef FDCT32x32_2D
+#undef FDCT32x32_HIGH_PRECISION
+
+#define FDCT32x32_2D vp9_highbd_fdct32x32_sse2
+#define FDCT32x32_HIGH_PRECISION 1
+#include "vp9/encoder/x86/vp9_dct32x32_sse2_impl.h" // NOLINT
+#undef FDCT32x32_2D
+#undef FDCT32x32_HIGH_PRECISION
+
+#undef DCT_HIGH_BIT_DEPTH
+
+#endif // CONFIG_VP9_HIGHBITDEPTH
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct_sse2.h b/media/libvpx/vp9/encoder/x86/vp9_dct_sse2.h
new file mode 100644
index 000000000..b99db923e
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct_sse2.h
@@ -0,0 +1,464 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_X86_VP9_DCT_SSE2_H_
+#define VP9_ENCODER_X86_VP9_DCT_SSE2_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define pair_set_epi32(a, b) \
+ _mm_set_epi32((int)(b), (int)(a), (int)(b), (int)(a))
+
+void vp9_fdct4x4_sse2(const int16_t *input, tran_low_t *output, int stride);
+void vp9_fdct8x8_sse2(const int16_t *input, tran_low_t *output, int stride);
+void vp9_fdct16x16_sse2(const int16_t *input, tran_low_t *output, int stride);
+void vp9_highbd_fdct4x4_sse2(const int16_t *input, tran_low_t *output,
+ int stride);
+void vp9_highbd_fdct8x8_sse2(const int16_t *input, tran_low_t *output,
+ int stride);
+void vp9_highbd_fdct16x16_sse2(const int16_t *input, tran_low_t *output,
+ int stride);
+
+static INLINE __m128i k_madd_epi32(__m128i a, __m128i b) {
+ __m128i buf0, buf1;
+ buf0 = _mm_mul_epu32(a, b);
+ a = _mm_srli_epi64(a, 32);
+ b = _mm_srli_epi64(b, 32);
+ buf1 = _mm_mul_epu32(a, b);
+ return _mm_add_epi64(buf0, buf1);
+}
+
+static INLINE __m128i k_packs_epi64(__m128i a, __m128i b) {
+ __m128i buf0 = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 2, 0));
+ __m128i buf1 = _mm_shuffle_epi32(b, _MM_SHUFFLE(0, 0, 2, 0));
+ return _mm_unpacklo_epi64(buf0, buf1);
+}
+
+static INLINE int check_epi16_overflow_x2(const __m128i *preg0,
+ const __m128i *preg1) {
+ const __m128i max_overflow = _mm_set1_epi16(0x7fff);
+ const __m128i min_overflow = _mm_set1_epi16(0x8000);
+ __m128i cmp0 = _mm_or_si128(_mm_cmpeq_epi16(*preg0, max_overflow),
+ _mm_cmpeq_epi16(*preg0, min_overflow));
+ __m128i cmp1 = _mm_or_si128(_mm_cmpeq_epi16(*preg1, max_overflow),
+ _mm_cmpeq_epi16(*preg1, min_overflow));
+ cmp0 = _mm_or_si128(cmp0, cmp1);
+ return _mm_movemask_epi8(cmp0);
+}
+
+static INLINE int check_epi16_overflow_x4(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3) {
+ const __m128i max_overflow = _mm_set1_epi16(0x7fff);
+ const __m128i min_overflow = _mm_set1_epi16(0x8000);
+ __m128i cmp0 = _mm_or_si128(_mm_cmpeq_epi16(*preg0, max_overflow),
+ _mm_cmpeq_epi16(*preg0, min_overflow));
+ __m128i cmp1 = _mm_or_si128(_mm_cmpeq_epi16(*preg1, max_overflow),
+ _mm_cmpeq_epi16(*preg1, min_overflow));
+ __m128i cmp2 = _mm_or_si128(_mm_cmpeq_epi16(*preg2, max_overflow),
+ _mm_cmpeq_epi16(*preg2, min_overflow));
+ __m128i cmp3 = _mm_or_si128(_mm_cmpeq_epi16(*preg3, max_overflow),
+ _mm_cmpeq_epi16(*preg3, min_overflow));
+ cmp0 = _mm_or_si128(_mm_or_si128(cmp0, cmp1), _mm_or_si128(cmp2, cmp3));
+ return _mm_movemask_epi8(cmp0);
+}
+
+static INLINE int check_epi16_overflow_x8(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3,
+ const __m128i *preg4,
+ const __m128i *preg5,
+ const __m128i *preg6,
+ const __m128i *preg7) {
+ int res0, res1;
+ res0 = check_epi16_overflow_x4(preg0, preg1, preg2, preg3);
+ res1 = check_epi16_overflow_x4(preg4, preg5, preg6, preg7);
+ return res0 + res1;
+}
+
+static INLINE int check_epi16_overflow_x12(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3,
+ const __m128i *preg4,
+ const __m128i *preg5,
+ const __m128i *preg6,
+ const __m128i *preg7,
+ const __m128i *preg8,
+ const __m128i *preg9,
+ const __m128i *preg10,
+ const __m128i *preg11) {
+ int res0, res1;
+ res0 = check_epi16_overflow_x4(preg0, preg1, preg2, preg3);
+ res1 = check_epi16_overflow_x4(preg4, preg5, preg6, preg7);
+ if (!res0)
+ res0 = check_epi16_overflow_x4(preg8, preg9, preg10, preg11);
+ return res0 + res1;
+}
+
+static INLINE int check_epi16_overflow_x16(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3,
+ const __m128i *preg4,
+ const __m128i *preg5,
+ const __m128i *preg6,
+ const __m128i *preg7,
+ const __m128i *preg8,
+ const __m128i *preg9,
+ const __m128i *preg10,
+ const __m128i *preg11,
+ const __m128i *preg12,
+ const __m128i *preg13,
+ const __m128i *preg14,
+ const __m128i *preg15) {
+ int res0, res1;
+ res0 = check_epi16_overflow_x4(preg0, preg1, preg2, preg3);
+ res1 = check_epi16_overflow_x4(preg4, preg5, preg6, preg7);
+ if (!res0) {
+ res0 = check_epi16_overflow_x4(preg8, preg9, preg10, preg11);
+ if (!res1)
+ res1 = check_epi16_overflow_x4(preg12, preg13, preg14, preg15);
+ }
+ return res0 + res1;
+}
+
+static INLINE int check_epi16_overflow_x32(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3,
+ const __m128i *preg4,
+ const __m128i *preg5,
+ const __m128i *preg6,
+ const __m128i *preg7,
+ const __m128i *preg8,
+ const __m128i *preg9,
+ const __m128i *preg10,
+ const __m128i *preg11,
+ const __m128i *preg12,
+ const __m128i *preg13,
+ const __m128i *preg14,
+ const __m128i *preg15,
+ const __m128i *preg16,
+ const __m128i *preg17,
+ const __m128i *preg18,
+ const __m128i *preg19,
+ const __m128i *preg20,
+ const __m128i *preg21,
+ const __m128i *preg22,
+ const __m128i *preg23,
+ const __m128i *preg24,
+ const __m128i *preg25,
+ const __m128i *preg26,
+ const __m128i *preg27,
+ const __m128i *preg28,
+ const __m128i *preg29,
+ const __m128i *preg30,
+ const __m128i *preg31) {
+ int res0, res1;
+ res0 = check_epi16_overflow_x4(preg0, preg1, preg2, preg3);
+ res1 = check_epi16_overflow_x4(preg4, preg5, preg6, preg7);
+ if (!res0) {
+ res0 = check_epi16_overflow_x4(preg8, preg9, preg10, preg11);
+ if (!res1) {
+ res1 = check_epi16_overflow_x4(preg12, preg13, preg14, preg15);
+ if (!res0) {
+ res0 = check_epi16_overflow_x4(preg16, preg17, preg18, preg19);
+ if (!res1) {
+ res1 = check_epi16_overflow_x4(preg20, preg21, preg22, preg23);
+ if (!res0) {
+ res0 = check_epi16_overflow_x4(preg24, preg25, preg26, preg27);
+ if (!res1)
+ res1 = check_epi16_overflow_x4(preg28, preg29, preg30, preg31);
+ }
+ }
+ }
+ }
+ }
+ return res0 + res1;
+}
+
+static INLINE int k_check_epi32_overflow_4(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3,
+ const __m128i *zero) {
+ __m128i minus_one = _mm_set1_epi32(-1);
+ // Check for overflows
+ __m128i reg0_shifted = _mm_slli_epi64(*preg0, 1);
+ __m128i reg1_shifted = _mm_slli_epi64(*preg1, 1);
+ __m128i reg2_shifted = _mm_slli_epi64(*preg2, 1);
+ __m128i reg3_shifted = _mm_slli_epi64(*preg3, 1);
+ __m128i reg0_top_dwords = _mm_shuffle_epi32(
+ reg0_shifted, _MM_SHUFFLE(0, 0, 3, 1));
+ __m128i reg1_top_dwords = _mm_shuffle_epi32(
+ reg1_shifted, _MM_SHUFFLE(0, 0, 3, 1));
+ __m128i reg2_top_dwords = _mm_shuffle_epi32(
+ reg2_shifted, _MM_SHUFFLE(0, 0, 3, 1));
+ __m128i reg3_top_dwords = _mm_shuffle_epi32(
+ reg3_shifted, _MM_SHUFFLE(0, 0, 3, 1));
+ __m128i top_dwords_01 = _mm_unpacklo_epi64(reg0_top_dwords, reg1_top_dwords);
+ __m128i top_dwords_23 = _mm_unpacklo_epi64(reg2_top_dwords, reg3_top_dwords);
+ __m128i valid_positve_01 = _mm_cmpeq_epi32(top_dwords_01, *zero);
+ __m128i valid_positve_23 = _mm_cmpeq_epi32(top_dwords_23, *zero);
+ __m128i valid_negative_01 = _mm_cmpeq_epi32(top_dwords_01, minus_one);
+ __m128i valid_negative_23 = _mm_cmpeq_epi32(top_dwords_23, minus_one);
+ int overflow_01 = _mm_movemask_epi8(
+ _mm_cmpeq_epi32(valid_positve_01, valid_negative_01));
+ int overflow_23 = _mm_movemask_epi8(
+ _mm_cmpeq_epi32(valid_positve_23, valid_negative_23));
+ return (overflow_01 + overflow_23);
+}
+
+static INLINE int k_check_epi32_overflow_8(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3,
+ const __m128i *preg4,
+ const __m128i *preg5,
+ const __m128i *preg6,
+ const __m128i *preg7,
+ const __m128i *zero) {
+ int overflow = k_check_epi32_overflow_4(preg0, preg1, preg2, preg3, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg4, preg5, preg6, preg7, zero);
+ }
+ return overflow;
+}
+
+static INLINE int k_check_epi32_overflow_16(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3,
+ const __m128i *preg4,
+ const __m128i *preg5,
+ const __m128i *preg6,
+ const __m128i *preg7,
+ const __m128i *preg8,
+ const __m128i *preg9,
+ const __m128i *preg10,
+ const __m128i *preg11,
+ const __m128i *preg12,
+ const __m128i *preg13,
+ const __m128i *preg14,
+ const __m128i *preg15,
+ const __m128i *zero) {
+ int overflow = k_check_epi32_overflow_4(preg0, preg1, preg2, preg3, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg4, preg5, preg6, preg7, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg8, preg9, preg10, preg11,
+ zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg12, preg13, preg14, preg15,
+ zero);
+ }
+ }
+ }
+ return overflow;
+}
+
+static INLINE int k_check_epi32_overflow_32(const __m128i *preg0,
+ const __m128i *preg1,
+ const __m128i *preg2,
+ const __m128i *preg3,
+ const __m128i *preg4,
+ const __m128i *preg5,
+ const __m128i *preg6,
+ const __m128i *preg7,
+ const __m128i *preg8,
+ const __m128i *preg9,
+ const __m128i *preg10,
+ const __m128i *preg11,
+ const __m128i *preg12,
+ const __m128i *preg13,
+ const __m128i *preg14,
+ const __m128i *preg15,
+ const __m128i *preg16,
+ const __m128i *preg17,
+ const __m128i *preg18,
+ const __m128i *preg19,
+ const __m128i *preg20,
+ const __m128i *preg21,
+ const __m128i *preg22,
+ const __m128i *preg23,
+ const __m128i *preg24,
+ const __m128i *preg25,
+ const __m128i *preg26,
+ const __m128i *preg27,
+ const __m128i *preg28,
+ const __m128i *preg29,
+ const __m128i *preg30,
+ const __m128i *preg31,
+ const __m128i *zero) {
+ int overflow = k_check_epi32_overflow_4(preg0, preg1, preg2, preg3, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg4, preg5, preg6, preg7, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg8, preg9, preg10, preg11, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg12, preg13, preg14, preg15,
+ zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg16, preg17, preg18, preg19,
+ zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg20, preg21,
+ preg22, preg23, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg24, preg25,
+ preg26, preg27, zero);
+ if (!overflow) {
+ overflow = k_check_epi32_overflow_4(preg28, preg29,
+ preg30, preg31, zero);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return overflow;
+}
+
+static INLINE void store_output(const __m128i *poutput, tran_low_t* dst_ptr) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i sign_bits = _mm_cmplt_epi16(*poutput, zero);
+ __m128i out0 = _mm_unpacklo_epi16(*poutput, sign_bits);
+ __m128i out1 = _mm_unpackhi_epi16(*poutput, sign_bits);
+ _mm_store_si128((__m128i *)(dst_ptr), out0);
+ _mm_store_si128((__m128i *)(dst_ptr + 4), out1);
+#else
+ _mm_store_si128((__m128i *)(dst_ptr), *poutput);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+}
+
+static INLINE void storeu_output(const __m128i *poutput, tran_low_t* dst_ptr) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i sign_bits = _mm_cmplt_epi16(*poutput, zero);
+ __m128i out0 = _mm_unpacklo_epi16(*poutput, sign_bits);
+ __m128i out1 = _mm_unpackhi_epi16(*poutput, sign_bits);
+ _mm_storeu_si128((__m128i *)(dst_ptr), out0);
+ _mm_storeu_si128((__m128i *)(dst_ptr + 4), out1);
+#else
+ _mm_storeu_si128((__m128i *)(dst_ptr), *poutput);
+#endif // CONFIG_VP9_HIGHBITDEPTH
+}
+
+
+static INLINE __m128i mult_round_shift(const __m128i *pin0,
+ const __m128i *pin1,
+ const __m128i *pmultiplier,
+ const __m128i *prounding,
+ const int shift) {
+ const __m128i u0 = _mm_madd_epi16(*pin0, *pmultiplier);
+ const __m128i u1 = _mm_madd_epi16(*pin1, *pmultiplier);
+ const __m128i v0 = _mm_add_epi32(u0, *prounding);
+ const __m128i v1 = _mm_add_epi32(u1, *prounding);
+ const __m128i w0 = _mm_srai_epi32(v0, shift);
+ const __m128i w1 = _mm_srai_epi32(v1, shift);
+ return _mm_packs_epi32(w0, w1);
+}
+
+static INLINE void transpose_and_output8x8(
+ const __m128i *pin00, const __m128i *pin01,
+ const __m128i *pin02, const __m128i *pin03,
+ const __m128i *pin04, const __m128i *pin05,
+ const __m128i *pin06, const __m128i *pin07,
+ const int pass, int16_t* out0_ptr,
+ tran_low_t* out1_ptr) {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(*pin00, *pin01);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(*pin02, *pin03);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(*pin00, *pin01);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(*pin02, *pin03);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(*pin04, *pin05);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(*pin06, *pin07);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(*pin04, *pin05);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(*pin06, *pin07);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ if (pass == 0) {
+ _mm_storeu_si128((__m128i*)(out0_ptr + 0 * 16), tr2_0);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 1 * 16), tr2_1);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 2 * 16), tr2_2);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 3 * 16), tr2_3);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 4 * 16), tr2_4);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 5 * 16), tr2_5);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 6 * 16), tr2_6);
+ _mm_storeu_si128((__m128i*)(out0_ptr + 7 * 16), tr2_7);
+ } else {
+ storeu_output(&tr2_0, (out1_ptr + 0 * 16));
+ storeu_output(&tr2_1, (out1_ptr + 1 * 16));
+ storeu_output(&tr2_2, (out1_ptr + 2 * 16));
+ storeu_output(&tr2_3, (out1_ptr + 3 * 16));
+ storeu_output(&tr2_4, (out1_ptr + 4 * 16));
+ storeu_output(&tr2_5, (out1_ptr + 5 * 16));
+ storeu_output(&tr2_6, (out1_ptr + 6 * 16));
+ storeu_output(&tr2_7, (out1_ptr + 7 * 16));
+ }
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_X86_VP9_DCT_SSE2_H_
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct_sse2_impl.h b/media/libvpx/vp9/encoder/x86/vp9_dct_sse2_impl.h
new file mode 100644
index 000000000..11bf5a25e
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct_sse2_impl.h
@@ -0,0 +1,1024 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h> // SSE2
+
+#include "./vp9_rtcd.h"
+#include "vp9/common/vp9_idct.h" // for cospi constants
+#include "vp9/encoder/vp9_dct.h"
+#include "vp9/encoder/x86/vp9_dct_sse2.h"
+#include "vpx_ports/mem.h"
+
+#if DCT_HIGH_BIT_DEPTH
+#define ADD_EPI16 _mm_adds_epi16
+#define SUB_EPI16 _mm_subs_epi16
+
+#else
+#define ADD_EPI16 _mm_add_epi16
+#define SUB_EPI16 _mm_sub_epi16
+#endif
+
+void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) {
+ // This 2D transform implements 4 vertical 1D transforms followed
+ // by 4 horizontal 1D transforms. The multiplies and adds are as given
+ // by Chen, Smith and Fralick ('77). The commands for moving the data
+ // around have been minimized by hand.
+ // For the purposes of the comments, the 16 inputs are referred to at i0
+ // through iF (in raster order), intermediate variables are a0, b0, c0
+ // through f, and correspond to the in-place computations mapped to input
+ // locations. The outputs, o0 through oF are labeled according to the
+ // output locations.
+
+ // Constants
+ // These are the coefficients used for the multiplies.
+ // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
+ // where cospi_N_64 = cos(N pi /64)
+ const __m128i k__cospi_A = _mm_setr_epi16(cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_B = _mm_setr_epi16(cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_C = _mm_setr_epi16(cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64,
+ cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64);
+ const __m128i k__cospi_D = _mm_setr_epi16(cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64,
+ cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_E = _mm_setr_epi16(cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64,
+ cospi_16_64, cospi_16_64);
+ const __m128i k__cospi_F = _mm_setr_epi16(cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64,
+ cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_G = _mm_setr_epi16(cospi_8_64, cospi_24_64,
+ cospi_8_64, cospi_24_64,
+ -cospi_8_64, -cospi_24_64,
+ -cospi_8_64, -cospi_24_64);
+ const __m128i k__cospi_H = _mm_setr_epi16(cospi_24_64, -cospi_8_64,
+ cospi_24_64, -cospi_8_64,
+ -cospi_24_64, cospi_8_64,
+ -cospi_24_64, cospi_8_64);
+
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ // This second rounding constant saves doing some extra adds at the end
+ const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING
+ +(DCT_CONST_ROUNDING << 1));
+ const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2;
+ const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
+ const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
+ __m128i in0, in1;
+#if DCT_HIGH_BIT_DEPTH
+ __m128i cmp0, cmp1;
+ int test, overflow;
+#endif
+
+ // Load inputs.
+ in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
+ in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
+ in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
+ (input + 2 * stride)));
+ in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
+ (input + 3 * stride)));
+ // in0 = [i0 i1 i2 i3 iC iD iE iF]
+ // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+#if DCT_HIGH_BIT_DEPTH
+ // Check inputs small enough to use optimised code
+ cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)),
+ _mm_cmplt_epi16(in0, _mm_set1_epi16(0xfc00)));
+ cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)),
+ _mm_cmplt_epi16(in1, _mm_set1_epi16(0xfc00)));
+ test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1));
+ if (test) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+
+ // multiply by 16 to give some extra precision
+ in0 = _mm_slli_epi16(in0, 4);
+ in1 = _mm_slli_epi16(in1, 4);
+ // if (i == 0 && input[0]) input[0] += 1;
+ // add 1 to the upper left pixel if it is non-zero, which helps reduce
+ // the round-trip error
+ {
+ // The mask will only contain whether the first value is zero, all
+ // other comparison will fail as something shifted by 4 (above << 4)
+ // can never be equal to one. To increment in the non-zero case, we
+ // add the mask and one for the first element:
+ // - if zero, mask = -1, v = v - 1 + 1 = v
+ // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
+ __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
+ in0 = _mm_add_epi16(in0, mask);
+ in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
+ }
+ // There are 4 total stages, alternating between an add/subtract stage
+ // followed by an multiply-and-add stage.
+ {
+ // Stage 1: Add/subtract
+
+ // in0 = [i0 i1 i2 i3 iC iD iE iF]
+ // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
+ const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
+ const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
+ // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
+ // r1 = [iC i8 iD i9 iE iA iF iB]
+ const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
+ const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
+ // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
+ // r3 = [iC i8 iD i9 iF iB iE iA]
+
+ const __m128i t0 = _mm_add_epi16(r2, r3);
+ const __m128i t1 = _mm_sub_epi16(r2, r3);
+ // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
+ // t1 = [aC a8 aD a9 aF aB aE aA]
+
+ // Stage 2: multiply by constants (which gets us into 32 bits).
+ // The constants needed here are:
+ // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
+ // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
+ // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
+ // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
+ // Then add and right-shift to get back to 16-bit range
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ // w0 = [b0 b1 b7 b6]
+ // w1 = [b8 b9 bF bE]
+ // w2 = [b4 b5 b3 b2]
+ // w3 = [bC bD bB bA]
+ const __m128i x0 = _mm_packs_epi32(w0, w1);
+ const __m128i x1 = _mm_packs_epi32(w2, w3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&x0, &x1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
+ // x1 = [b4 b5 b3 b2 bC bD bB bA]
+ in0 = _mm_shuffle_epi32(x0, 0xD8);
+ in1 = _mm_shuffle_epi32(x1, 0x8D);
+ // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
+ // in1 = [b3 b2 bB bA b4 b5 bC bD]
+ }
+ {
+ // vertical DCTs finished. Now we do the horizontal DCTs.
+ // Stage 3: Add/subtract
+
+ const __m128i t0 = ADD_EPI16(in0, in1);
+ const __m128i t1 = SUB_EPI16(in0, in1);
+ // t0 = [c0 c1 c8 c9 c4 c5 cC cD]
+ // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&t0, &t1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+
+ // Stage 4: multiply by constants (which gets us into 32 bits).
+ {
+ // The constants needed here are:
+ // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
+ // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
+ // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
+ // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
+ const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
+ const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
+ // Then add and right-shift to get back to 16-bit range
+ // but this combines the final right-shift as well to save operations
+ // This unusual rounding operations is to maintain bit-accurate
+ // compatibility with the c version of this function which has two
+ // rounding steps in a row.
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
+ // w0 = [o0 o4 o8 oC]
+ // w1 = [o2 o6 oA oE]
+ // w2 = [o1 o5 o9 oD]
+ // w3 = [o3 o7 oB oF]
+ // remember the o's are numbered according to the correct output location
+ const __m128i x0 = _mm_packs_epi32(w0, w1);
+ const __m128i x1 = _mm_packs_epi32(w2, w3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&x0, &x1);
+ if (overflow) {
+ vp9_highbd_fdct4x4_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // x0 = [o0 o4 o8 oC o2 o6 oA oE]
+ // x1 = [o1 o5 o9 oD o3 o7 oB oF]
+ const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
+ const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
+ // y0 = [o0 o1 o4 o5 o8 o9 oC oD]
+ // y1 = [o2 o3 o6 o7 oA oB oE oF]
+ in0 = _mm_unpacklo_epi32(y0, y1);
+ // in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
+ in1 = _mm_unpackhi_epi32(y0, y1);
+ // in1 = [o8 o9 oA oB oC oD oE oF]
+ }
+ }
+ }
+ // Post-condition (v + 1) >> 2 is now incorporated into previous
+ // add and right-shift commands. Only 2 store instructions needed
+ // because we are using the fact that 1/3 are stored just after 0/2.
+ storeu_output(&in0, output + 0 * 4);
+ storeu_output(&in1, output + 2 * 4);
+}
+
+
+void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) {
+ int pass;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+#if DCT_HIGH_BIT_DEPTH
+ int overflow;
+#endif
+ // Load input
+ __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+ // Pre-condition input (shift by two)
+ in0 = _mm_slli_epi16(in0, 2);
+ in1 = _mm_slli_epi16(in1, 2);
+ in2 = _mm_slli_epi16(in2, 2);
+ in3 = _mm_slli_epi16(in3, 2);
+ in4 = _mm_slli_epi16(in4, 2);
+ in5 = _mm_slli_epi16(in5, 2);
+ in6 = _mm_slli_epi16(in6, 2);
+ in7 = _mm_slli_epi16(in7, 2);
+
+ // We do two passes, first the columns, then the rows. The results of the
+ // first pass are transposed so that the same column code can be reused. The
+ // results of the second pass are also transposed so that the rows (processed
+ // as columns) are put back in row positions.
+ for (pass = 0; pass < 2; pass++) {
+ // To store results of each pass before the transpose.
+ __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+ // Add/subtract
+ const __m128i q0 = ADD_EPI16(in0, in7);
+ const __m128i q1 = ADD_EPI16(in1, in6);
+ const __m128i q2 = ADD_EPI16(in2, in5);
+ const __m128i q3 = ADD_EPI16(in3, in4);
+ const __m128i q4 = SUB_EPI16(in3, in4);
+ const __m128i q5 = SUB_EPI16(in2, in5);
+ const __m128i q6 = SUB_EPI16(in1, in6);
+ const __m128i q7 = SUB_EPI16(in0, in7);
+#if DCT_HIGH_BIT_DEPTH
+ if (pass == 1) {
+ overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3,
+ &q4, &q5, &q6, &q7);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = ADD_EPI16(q0, q3);
+ const __m128i r1 = ADD_EPI16(q1, q2);
+ const __m128i r2 = SUB_EPI16(q1, q2);
+ const __m128i r3 = SUB_EPI16(q0, q3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us into 32bits
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res0 = _mm_packs_epi32(w0, w1);
+ res4 = _mm_packs_epi32(w2, w3);
+ res2 = _mm_packs_epi32(w4, w5);
+ res6 = _mm_packs_epi32(w6, w7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
+ const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
+ const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
+ const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
+ // dct_const_round_shift
+ const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
+ const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
+ const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
+ const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
+ const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
+ const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
+ const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
+ const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
+ // Combine
+ const __m128i r0 = _mm_packs_epi32(s0, s1);
+ const __m128i r1 = _mm_packs_epi32(s2, s3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&r0, &r1);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // Add/subtract
+ const __m128i x0 = ADD_EPI16(q4, r0);
+ const __m128i x1 = SUB_EPI16(q4, r0);
+ const __m128i x2 = SUB_EPI16(q7, r1);
+ const __m128i x3 = ADD_EPI16(q7, r1);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us into 32bits
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res1 = _mm_packs_epi32(w0, w1);
+ res7 = _mm_packs_epi32(w2, w3);
+ res5 = _mm_packs_epi32(w4, w5);
+ res3 = _mm_packs_epi32(w6, w7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3);
+ if (overflow) {
+ vp9_highbd_fdct8x8_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ }
+ // Transpose the 8x8.
+ {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ }
+ }
+ // Post-condition output and store it
+ {
+ // Post-condition (division by two)
+ // division of two 16 bits signed numbers using shifts
+ // n / 2 = (n - (n >> 15)) >> 1
+ const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+ const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+ const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+ const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+ const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+ const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+ const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+ const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+ in0 = _mm_sub_epi16(in0, sign_in0);
+ in1 = _mm_sub_epi16(in1, sign_in1);
+ in2 = _mm_sub_epi16(in2, sign_in2);
+ in3 = _mm_sub_epi16(in3, sign_in3);
+ in4 = _mm_sub_epi16(in4, sign_in4);
+ in5 = _mm_sub_epi16(in5, sign_in5);
+ in6 = _mm_sub_epi16(in6, sign_in6);
+ in7 = _mm_sub_epi16(in7, sign_in7);
+ in0 = _mm_srai_epi16(in0, 1);
+ in1 = _mm_srai_epi16(in1, 1);
+ in2 = _mm_srai_epi16(in2, 1);
+ in3 = _mm_srai_epi16(in3, 1);
+ in4 = _mm_srai_epi16(in4, 1);
+ in5 = _mm_srai_epi16(in5, 1);
+ in6 = _mm_srai_epi16(in6, 1);
+ in7 = _mm_srai_epi16(in7, 1);
+ // store results
+ store_output(&in0, (output + 0 * 8));
+ store_output(&in1, (output + 1 * 8));
+ store_output(&in2, (output + 2 * 8));
+ store_output(&in3, (output + 3 * 8));
+ store_output(&in4, (output + 4 * 8));
+ store_output(&in5, (output + 5 * 8));
+ store_output(&in6, (output + 6 * 8));
+ store_output(&in7, (output + 7 * 8));
+ }
+}
+
+void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) {
+ // The 2D transform is done with two passes which are actually pretty
+ // similar. In the first one, we transform the columns and transpose
+ // the results. In the second one, we transform the rows. To achieve that,
+ // as the first pass results are transposed, we transpose the columns (that
+ // is the transposed rows) and transpose the results (so that it goes back
+ // in normal/row positions).
+ int pass;
+ // We need an intermediate buffer between passes.
+ DECLARE_ALIGNED(16, int16_t, intermediate[256]);
+ const int16_t *in = input;
+ int16_t *out0 = intermediate;
+ tran_low_t *out1 = output;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
+ const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
+ const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
+ const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
+ const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
+ const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
+ const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
+ const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ const __m128i kOne = _mm_set1_epi16(1);
+ // Do the two transform/transpose passes
+ for (pass = 0; pass < 2; ++pass) {
+ // We process eight columns (transposed rows in second pass) at a time.
+ int column_start;
+#if DCT_HIGH_BIT_DEPTH
+ int overflow;
+#endif
+ for (column_start = 0; column_start < 16; column_start += 8) {
+ __m128i in00, in01, in02, in03, in04, in05, in06, in07;
+ __m128i in08, in09, in10, in11, in12, in13, in14, in15;
+ __m128i input0, input1, input2, input3, input4, input5, input6, input7;
+ __m128i step1_0, step1_1, step1_2, step1_3;
+ __m128i step1_4, step1_5, step1_6, step1_7;
+ __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
+ __m128i step3_0, step3_1, step3_2, step3_3;
+ __m128i step3_4, step3_5, step3_6, step3_7;
+ __m128i res00, res01, res02, res03, res04, res05, res06, res07;
+ __m128i res08, res09, res10, res11, res12, res13, res14, res15;
+ // Load and pre-condition input.
+ if (0 == pass) {
+ in00 = _mm_load_si128((const __m128i *)(in + 0 * stride));
+ in01 = _mm_load_si128((const __m128i *)(in + 1 * stride));
+ in02 = _mm_load_si128((const __m128i *)(in + 2 * stride));
+ in03 = _mm_load_si128((const __m128i *)(in + 3 * stride));
+ in04 = _mm_load_si128((const __m128i *)(in + 4 * stride));
+ in05 = _mm_load_si128((const __m128i *)(in + 5 * stride));
+ in06 = _mm_load_si128((const __m128i *)(in + 6 * stride));
+ in07 = _mm_load_si128((const __m128i *)(in + 7 * stride));
+ in08 = _mm_load_si128((const __m128i *)(in + 8 * stride));
+ in09 = _mm_load_si128((const __m128i *)(in + 9 * stride));
+ in10 = _mm_load_si128((const __m128i *)(in + 10 * stride));
+ in11 = _mm_load_si128((const __m128i *)(in + 11 * stride));
+ in12 = _mm_load_si128((const __m128i *)(in + 12 * stride));
+ in13 = _mm_load_si128((const __m128i *)(in + 13 * stride));
+ in14 = _mm_load_si128((const __m128i *)(in + 14 * stride));
+ in15 = _mm_load_si128((const __m128i *)(in + 15 * stride));
+ // x = x << 2
+ in00 = _mm_slli_epi16(in00, 2);
+ in01 = _mm_slli_epi16(in01, 2);
+ in02 = _mm_slli_epi16(in02, 2);
+ in03 = _mm_slli_epi16(in03, 2);
+ in04 = _mm_slli_epi16(in04, 2);
+ in05 = _mm_slli_epi16(in05, 2);
+ in06 = _mm_slli_epi16(in06, 2);
+ in07 = _mm_slli_epi16(in07, 2);
+ in08 = _mm_slli_epi16(in08, 2);
+ in09 = _mm_slli_epi16(in09, 2);
+ in10 = _mm_slli_epi16(in10, 2);
+ in11 = _mm_slli_epi16(in11, 2);
+ in12 = _mm_slli_epi16(in12, 2);
+ in13 = _mm_slli_epi16(in13, 2);
+ in14 = _mm_slli_epi16(in14, 2);
+ in15 = _mm_slli_epi16(in15, 2);
+ } else {
+ in00 = _mm_load_si128((const __m128i *)(in + 0 * 16));
+ in01 = _mm_load_si128((const __m128i *)(in + 1 * 16));
+ in02 = _mm_load_si128((const __m128i *)(in + 2 * 16));
+ in03 = _mm_load_si128((const __m128i *)(in + 3 * 16));
+ in04 = _mm_load_si128((const __m128i *)(in + 4 * 16));
+ in05 = _mm_load_si128((const __m128i *)(in + 5 * 16));
+ in06 = _mm_load_si128((const __m128i *)(in + 6 * 16));
+ in07 = _mm_load_si128((const __m128i *)(in + 7 * 16));
+ in08 = _mm_load_si128((const __m128i *)(in + 8 * 16));
+ in09 = _mm_load_si128((const __m128i *)(in + 9 * 16));
+ in10 = _mm_load_si128((const __m128i *)(in + 10 * 16));
+ in11 = _mm_load_si128((const __m128i *)(in + 11 * 16));
+ in12 = _mm_load_si128((const __m128i *)(in + 12 * 16));
+ in13 = _mm_load_si128((const __m128i *)(in + 13 * 16));
+ in14 = _mm_load_si128((const __m128i *)(in + 14 * 16));
+ in15 = _mm_load_si128((const __m128i *)(in + 15 * 16));
+ // x = (x + 1) >> 2
+ in00 = _mm_add_epi16(in00, kOne);
+ in01 = _mm_add_epi16(in01, kOne);
+ in02 = _mm_add_epi16(in02, kOne);
+ in03 = _mm_add_epi16(in03, kOne);
+ in04 = _mm_add_epi16(in04, kOne);
+ in05 = _mm_add_epi16(in05, kOne);
+ in06 = _mm_add_epi16(in06, kOne);
+ in07 = _mm_add_epi16(in07, kOne);
+ in08 = _mm_add_epi16(in08, kOne);
+ in09 = _mm_add_epi16(in09, kOne);
+ in10 = _mm_add_epi16(in10, kOne);
+ in11 = _mm_add_epi16(in11, kOne);
+ in12 = _mm_add_epi16(in12, kOne);
+ in13 = _mm_add_epi16(in13, kOne);
+ in14 = _mm_add_epi16(in14, kOne);
+ in15 = _mm_add_epi16(in15, kOne);
+ in00 = _mm_srai_epi16(in00, 2);
+ in01 = _mm_srai_epi16(in01, 2);
+ in02 = _mm_srai_epi16(in02, 2);
+ in03 = _mm_srai_epi16(in03, 2);
+ in04 = _mm_srai_epi16(in04, 2);
+ in05 = _mm_srai_epi16(in05, 2);
+ in06 = _mm_srai_epi16(in06, 2);
+ in07 = _mm_srai_epi16(in07, 2);
+ in08 = _mm_srai_epi16(in08, 2);
+ in09 = _mm_srai_epi16(in09, 2);
+ in10 = _mm_srai_epi16(in10, 2);
+ in11 = _mm_srai_epi16(in11, 2);
+ in12 = _mm_srai_epi16(in12, 2);
+ in13 = _mm_srai_epi16(in13, 2);
+ in14 = _mm_srai_epi16(in14, 2);
+ in15 = _mm_srai_epi16(in15, 2);
+ }
+ in += 8;
+ // Calculate input for the first 8 results.
+ {
+ input0 = ADD_EPI16(in00, in15);
+ input1 = ADD_EPI16(in01, in14);
+ input2 = ADD_EPI16(in02, in13);
+ input3 = ADD_EPI16(in03, in12);
+ input4 = ADD_EPI16(in04, in11);
+ input5 = ADD_EPI16(in05, in10);
+ input6 = ADD_EPI16(in06, in09);
+ input7 = ADD_EPI16(in07, in08);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&input0, &input1, &input2, &input3,
+ &input4, &input5, &input6, &input7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Calculate input for the next 8 results.
+ {
+ step1_0 = SUB_EPI16(in07, in08);
+ step1_1 = SUB_EPI16(in06, in09);
+ step1_2 = SUB_EPI16(in05, in10);
+ step1_3 = SUB_EPI16(in04, in11);
+ step1_4 = SUB_EPI16(in03, in12);
+ step1_5 = SUB_EPI16(in02, in13);
+ step1_6 = SUB_EPI16(in01, in14);
+ step1_7 = SUB_EPI16(in00, in15);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1_0, &step1_1,
+ &step1_2, &step1_3,
+ &step1_4, &step1_5,
+ &step1_6, &step1_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // Work on the first eight values; fdct8(input, even_results);
+ {
+ // Add/subtract
+ const __m128i q0 = ADD_EPI16(input0, input7);
+ const __m128i q1 = ADD_EPI16(input1, input6);
+ const __m128i q2 = ADD_EPI16(input2, input5);
+ const __m128i q3 = ADD_EPI16(input3, input4);
+ const __m128i q4 = SUB_EPI16(input3, input4);
+ const __m128i q5 = SUB_EPI16(input2, input5);
+ const __m128i q6 = SUB_EPI16(input1, input6);
+ const __m128i q7 = SUB_EPI16(input0, input7);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3,
+ &q4, &q5, &q6, &q7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = ADD_EPI16(q0, q3);
+ const __m128i r1 = ADD_EPI16(q1, q2);
+ const __m128i r2 = SUB_EPI16(q1, q2);
+ const __m128i r3 = SUB_EPI16(q0, q3);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+ res00 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res08 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res04 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res12 = mult_round_shift(&t2, &t3, &k__cospi_m08_p24,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res00, &res08, &res04, &res12);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
+ const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
+ const __m128i r0 = mult_round_shift(&d0, &d1, &k__cospi_p16_m16,
+ &k__DCT_CONST_ROUNDING,
+ DCT_CONST_BITS);
+ const __m128i r1 = mult_round_shift(&d0, &d1, &k__cospi_p16_p16,
+ &k__DCT_CONST_ROUNDING,
+ DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x2(&r0, &r1);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ {
+ // Add/subtract
+ const __m128i x0 = ADD_EPI16(q4, r0);
+ const __m128i x1 = SUB_EPI16(q4, r0);
+ const __m128i x2 = SUB_EPI16(q7, r1);
+ const __m128i x3 = ADD_EPI16(q7, r1);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ // Interleave to do the multiply by constants which gets us
+ // into 32 bits.
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ res02 = mult_round_shift(&t0, &t1, &k__cospi_p28_p04,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res14 = mult_round_shift(&t0, &t1, &k__cospi_m04_p28,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res10 = mult_round_shift(&t2, &t3, &k__cospi_p12_p20,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res06 = mult_round_shift(&t2, &t3, &k__cospi_m20_p12,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res02, &res14,
+ &res10, &res06);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ }
+ }
+ // Work on the next eight values; step1 -> odd_results
+ {
+ // step 2
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
+ step2_2 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_3 = mult_round_shift(&t2, &t3, &k__cospi_p16_m16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_5 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_4 = mult_round_shift(&t2, &t3, &k__cospi_p16_p16,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&step2_2, &step2_3, &step2_5,
+ &step2_4);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 3
+ {
+ step3_0 = ADD_EPI16(step1_0, step2_3);
+ step3_1 = ADD_EPI16(step1_1, step2_2);
+ step3_2 = SUB_EPI16(step1_1, step2_2);
+ step3_3 = SUB_EPI16(step1_0, step2_3);
+ step3_4 = SUB_EPI16(step1_7, step2_4);
+ step3_5 = SUB_EPI16(step1_6, step2_5);
+ step3_6 = ADD_EPI16(step1_6, step2_5);
+ step3_7 = ADD_EPI16(step1_7, step2_4);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step3_0, &step3_1,
+ &step3_2, &step3_3,
+ &step3_4, &step3_5,
+ &step3_6, &step3_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 4
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
+ const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
+ const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
+ const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
+ step2_1 = mult_round_shift(&t0, &t1, &k__cospi_m08_p24,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_2 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_6 = mult_round_shift(&t0, &t1, &k__cospi_p24_p08,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ step2_5 = mult_round_shift(&t2, &t3, &k__cospi_p08_m24,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&step2_1, &step2_2, &step2_6,
+ &step2_5);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 5
+ {
+ step1_0 = ADD_EPI16(step3_0, step2_1);
+ step1_1 = SUB_EPI16(step3_0, step2_1);
+ step1_2 = ADD_EPI16(step3_3, step2_2);
+ step1_3 = SUB_EPI16(step3_3, step2_2);
+ step1_4 = SUB_EPI16(step3_4, step2_5);
+ step1_5 = ADD_EPI16(step3_4, step2_5);
+ step1_6 = SUB_EPI16(step3_7, step2_6);
+ step1_7 = ADD_EPI16(step3_7, step2_6);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x8(&step1_0, &step1_1,
+ &step1_2, &step1_3,
+ &step1_4, &step1_5,
+ &step1_6, &step1_7);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ // step 6
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
+ res01 = mult_round_shift(&t0, &t1, &k__cospi_p30_p02,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res09 = mult_round_shift(&t2, &t3, &k__cospi_p14_p18,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res15 = mult_round_shift(&t0, &t1, &k__cospi_m02_p30,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res07 = mult_round_shift(&t2, &t3, &k__cospi_m18_p14,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res01, &res09, &res15, &res07);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ {
+ const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
+ const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
+ const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
+ const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
+ res05 = mult_round_shift(&t0, &t1, &k__cospi_p22_p10,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res13 = mult_round_shift(&t2, &t3, &k__cospi_p06_p26,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res11 = mult_round_shift(&t0, &t1, &k__cospi_m10_p22,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+ res03 = mult_round_shift(&t2, &t3, &k__cospi_m26_p06,
+ &k__DCT_CONST_ROUNDING, DCT_CONST_BITS);
+#if DCT_HIGH_BIT_DEPTH
+ overflow = check_epi16_overflow_x4(&res05, &res13, &res11, &res03);
+ if (overflow) {
+ vp9_highbd_fdct16x16_c(input, output, stride);
+ return;
+ }
+#endif // DCT_HIGH_BIT_DEPTH
+ }
+ }
+ // Transpose the results, do it as two 8x8 transposes.
+ transpose_and_output8x8(&res00, &res01, &res02, &res03,
+ &res04, &res05, &res06, &res07,
+ pass, out0, out1);
+ transpose_and_output8x8(&res08, &res09, &res10, &res11,
+ &res12, &res13, &res14, &res15,
+ pass, out0 + 8, out1 + 8);
+ if (pass == 0) {
+ out0 += 8*16;
+ } else {
+ out1 += 8*16;
+ }
+ }
+ // Setup in/out for next pass.
+ in = intermediate;
+ }
+}
+
+#undef ADD_EPI16
+#undef SUB_EPI16
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c b/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c
new file mode 100644
index 000000000..96038fee1
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c
@@ -0,0 +1,471 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#if defined(_MSC_VER) && _MSC_VER <= 1500
+// Need to include math.h before calling tmmintrin.h/intrin.h
+// in certain versions of MSVS.
+#include <math.h>
+#endif
+#include <tmmintrin.h> // SSSE3
+
+#include "./vp9_rtcd.h"
+#include "vp9/common/x86/vp9_idct_intrin_sse2.h"
+
+void vp9_fdct8x8_quant_ssse3(const int16_t *input, int stride,
+ int16_t* coeff_ptr, intptr_t n_coeffs,
+ int skip_block, const int16_t* zbin_ptr,
+ const int16_t* round_ptr, const int16_t* quant_ptr,
+ const int16_t* quant_shift_ptr,
+ int16_t* qcoeff_ptr,
+ int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
+ uint16_t* eob_ptr,
+ const int16_t* scan_ptr,
+ const int16_t* iscan_ptr) {
+ __m128i zero;
+ int pass;
+ // Constants
+ // When we use them, in one case, they are all the same. In all others
+ // it's a pair of them that we need to repeat four times. This is done
+ // by constructing the 32 bit constant corresponding to that pair.
+ const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170);
+ const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
+ const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
+ const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
+ const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
+ const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
+ const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
+ const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
+ const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
+ const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
+ // Load input
+ __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
+ __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
+ __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
+ __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
+ __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
+ __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
+ __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
+ __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
+ __m128i *in[8];
+ int index = 0;
+
+ (void)scan_ptr;
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+ (void)coeff_ptr;
+
+ // Pre-condition input (shift by two)
+ in0 = _mm_slli_epi16(in0, 2);
+ in1 = _mm_slli_epi16(in1, 2);
+ in2 = _mm_slli_epi16(in2, 2);
+ in3 = _mm_slli_epi16(in3, 2);
+ in4 = _mm_slli_epi16(in4, 2);
+ in5 = _mm_slli_epi16(in5, 2);
+ in6 = _mm_slli_epi16(in6, 2);
+ in7 = _mm_slli_epi16(in7, 2);
+
+ in[0] = &in0;
+ in[1] = &in1;
+ in[2] = &in2;
+ in[3] = &in3;
+ in[4] = &in4;
+ in[5] = &in5;
+ in[6] = &in6;
+ in[7] = &in7;
+
+ // We do two passes, first the columns, then the rows. The results of the
+ // first pass are transposed so that the same column code can be reused. The
+ // results of the second pass are also transposed so that the rows (processed
+ // as columns) are put back in row positions.
+ for (pass = 0; pass < 2; pass++) {
+ // To store results of each pass before the transpose.
+ __m128i res0, res1, res2, res3, res4, res5, res6, res7;
+ // Add/subtract
+ const __m128i q0 = _mm_add_epi16(in0, in7);
+ const __m128i q1 = _mm_add_epi16(in1, in6);
+ const __m128i q2 = _mm_add_epi16(in2, in5);
+ const __m128i q3 = _mm_add_epi16(in3, in4);
+ const __m128i q4 = _mm_sub_epi16(in3, in4);
+ const __m128i q5 = _mm_sub_epi16(in2, in5);
+ const __m128i q6 = _mm_sub_epi16(in1, in6);
+ const __m128i q7 = _mm_sub_epi16(in0, in7);
+ // Work on first four results
+ {
+ // Add/subtract
+ const __m128i r0 = _mm_add_epi16(q0, q3);
+ const __m128i r1 = _mm_add_epi16(q1, q2);
+ const __m128i r2 = _mm_sub_epi16(q1, q2);
+ const __m128i r3 = _mm_sub_epi16(q0, q3);
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
+ const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
+ const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
+ const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
+
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
+
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
+ // dct_const_round_shift
+
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+
+ res0 = _mm_packs_epi32(w0, w1);
+ res4 = _mm_packs_epi32(w2, w3);
+ res2 = _mm_packs_epi32(w4, w5);
+ res6 = _mm_packs_epi32(w6, w7);
+ }
+ // Work on next four results
+ {
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i d0 = _mm_sub_epi16(q6, q5);
+ const __m128i d1 = _mm_add_epi16(q6, q5);
+ const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16);
+ const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16);
+
+ // Add/subtract
+ const __m128i x0 = _mm_add_epi16(q4, r0);
+ const __m128i x1 = _mm_sub_epi16(q4, r0);
+ const __m128i x2 = _mm_sub_epi16(q7, r1);
+ const __m128i x3 = _mm_add_epi16(q7, r1);
+ // Interleave to do the multiply by constants which gets us into 32bits
+ const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
+ const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
+ const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
+ const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
+ const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
+ const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
+ const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
+ const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
+ const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
+ const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
+ const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
+ const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
+ // dct_const_round_shift
+ const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
+ const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
+ const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
+ const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
+ const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
+ const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
+ const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
+ const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
+ const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
+ const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
+ const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
+ const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
+ const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
+ const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
+ const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
+ const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
+ // Combine
+ res1 = _mm_packs_epi32(w0, w1);
+ res7 = _mm_packs_epi32(w2, w3);
+ res5 = _mm_packs_epi32(w4, w5);
+ res3 = _mm_packs_epi32(w6, w7);
+ }
+ // Transpose the 8x8.
+ {
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
+ const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
+ const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
+ const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
+ const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
+ const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
+ const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
+ const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
+ // 00 10 01 11 02 12 03 13
+ // 20 30 21 31 22 32 23 33
+ // 04 14 05 15 06 16 07 17
+ // 24 34 25 35 26 36 27 37
+ // 40 50 41 51 42 52 43 53
+ // 60 70 61 71 62 72 63 73
+ // 54 54 55 55 56 56 57 57
+ // 64 74 65 75 66 76 67 77
+ const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
+ const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
+ const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
+ const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
+ const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
+ const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
+ const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
+ const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
+ // 00 10 20 30 01 11 21 31
+ // 40 50 60 70 41 51 61 71
+ // 02 12 22 32 03 13 23 33
+ // 42 52 62 72 43 53 63 73
+ // 04 14 24 34 05 15 21 36
+ // 44 54 64 74 45 55 61 76
+ // 06 16 26 36 07 17 27 37
+ // 46 56 66 76 47 57 67 77
+ in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
+ in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
+ in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
+ in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
+ in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
+ in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
+ in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
+ in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
+ // 00 10 20 30 40 50 60 70
+ // 01 11 21 31 41 51 61 71
+ // 02 12 22 32 42 52 62 72
+ // 03 13 23 33 43 53 63 73
+ // 04 14 24 34 44 54 64 74
+ // 05 15 25 35 45 55 65 75
+ // 06 16 26 36 46 56 66 76
+ // 07 17 27 37 47 57 67 77
+ }
+ }
+ // Post-condition output and store it
+ {
+ // Post-condition (division by two)
+ // division of two 16 bits signed numbers using shifts
+ // n / 2 = (n - (n >> 15)) >> 1
+ const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
+ const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
+ const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
+ const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
+ const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
+ const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
+ const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
+ const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
+ in0 = _mm_sub_epi16(in0, sign_in0);
+ in1 = _mm_sub_epi16(in1, sign_in1);
+ in2 = _mm_sub_epi16(in2, sign_in2);
+ in3 = _mm_sub_epi16(in3, sign_in3);
+ in4 = _mm_sub_epi16(in4, sign_in4);
+ in5 = _mm_sub_epi16(in5, sign_in5);
+ in6 = _mm_sub_epi16(in6, sign_in6);
+ in7 = _mm_sub_epi16(in7, sign_in7);
+ in0 = _mm_srai_epi16(in0, 1);
+ in1 = _mm_srai_epi16(in1, 1);
+ in2 = _mm_srai_epi16(in2, 1);
+ in3 = _mm_srai_epi16(in3, 1);
+ in4 = _mm_srai_epi16(in4, 1);
+ in5 = _mm_srai_epi16(in5, 1);
+ in6 = _mm_srai_epi16(in6, 1);
+ in7 = _mm_srai_epi16(in7, 1);
+ }
+
+ iscan_ptr += n_coeffs;
+ qcoeff_ptr += n_coeffs;
+ dqcoeff_ptr += n_coeffs;
+ n_coeffs = -n_coeffs;
+ zero = _mm_setzero_si128();
+
+ if (!skip_block) {
+ __m128i eob;
+ __m128i round, quant, dequant, thr;
+ int16_t nzflag;
+ {
+ __m128i coeff0, coeff1;
+
+ // Setup global values
+ {
+ round = _mm_load_si128((const __m128i*)round_ptr);
+ quant = _mm_load_si128((const __m128i*)quant_ptr);
+ dequant = _mm_load_si128((const __m128i*)dequant_ptr);
+ }
+
+ {
+ __m128i coeff0_sign, coeff1_sign;
+ __m128i qcoeff0, qcoeff1;
+ __m128i qtmp0, qtmp1;
+ // Do DC and first 15 AC
+ coeff0 = *in[0];
+ coeff1 = *in[1];
+
+ // Poor man's sign extract
+ coeff0_sign = _mm_srai_epi16(coeff0, 15);
+ coeff1_sign = _mm_srai_epi16(coeff1, 15);
+ qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+ round = _mm_unpackhi_epi64(round, round);
+ qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+ qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+ quant = _mm_unpackhi_epi64(quant, quant);
+ qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+ // Reinsert signs
+ qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+ coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+ dequant = _mm_unpackhi_epi64(dequant, dequant);
+ coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+ }
+
+ {
+ // Scan for eob
+ __m128i zero_coeff0, zero_coeff1;
+ __m128i nzero_coeff0, nzero_coeff1;
+ __m128i iscan0, iscan1;
+ __m128i eob1;
+ zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+ zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+ nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+ nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+ iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+ iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+ // Add one to convert from indices to counts
+ iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+ iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+ eob = _mm_and_si128(iscan0, nzero_coeff0);
+ eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+ eob = _mm_max_epi16(eob, eob1);
+ }
+ n_coeffs += 8 * 2;
+ }
+
+ // AC only loop
+ index = 2;
+ thr = _mm_srai_epi16(dequant, 1);
+ while (n_coeffs < 0) {
+ __m128i coeff0, coeff1;
+ {
+ __m128i coeff0_sign, coeff1_sign;
+ __m128i qcoeff0, qcoeff1;
+ __m128i qtmp0, qtmp1;
+
+ assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
+ coeff0 = *in[index];
+ coeff1 = *in[index + 1];
+
+ // Poor man's sign extract
+ coeff0_sign = _mm_srai_epi16(coeff0, 15);
+ coeff1_sign = _mm_srai_epi16(coeff1, 15);
+ qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
+ _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
+
+ if (nzflag) {
+ qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+ qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+ qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+ qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+ // Reinsert signs
+ qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+ coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+ coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+ } else {
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+ }
+ }
+
+ if (nzflag) {
+ // Scan for eob
+ __m128i zero_coeff0, zero_coeff1;
+ __m128i nzero_coeff0, nzero_coeff1;
+ __m128i iscan0, iscan1;
+ __m128i eob0, eob1;
+ zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+ zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+ nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+ nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+ iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+ iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+ // Add one to convert from indices to counts
+ iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+ iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+ eob0 = _mm_and_si128(iscan0, nzero_coeff0);
+ eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+ eob0 = _mm_max_epi16(eob0, eob1);
+ eob = _mm_max_epi16(eob, eob0);
+ }
+ n_coeffs += 8 * 2;
+ index += 2;
+ }
+
+ // Accumulate EOB
+ {
+ __m128i eob_shuffled;
+ eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ *eob_ptr = _mm_extract_epi16(eob, 1);
+ }
+ } else {
+ do {
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+ n_coeffs += 8 * 2;
+ } while (n_coeffs < 0);
+ *eob_ptr = 0;
+ }
+}
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3_x86_64.asm b/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3_x86_64.asm
new file mode 100644
index 000000000..3a29aba6f
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3_x86_64.asm
@@ -0,0 +1,255 @@
+;
+; Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+%include "third_party/x86inc/x86inc.asm"
+
+; This file provides SSSE3 version of the forward transformation. Part
+; of the macro definitions are originally derived from the ffmpeg project.
+; The current version applies to x86 64-bit only.
+
+SECTION_RODATA
+
+pw_11585x2: times 8 dw 23170
+pd_8192: times 4 dd 8192
+
+%macro TRANSFORM_COEFFS 2
+pw_%1_%2: dw %1, %2, %1, %2, %1, %2, %1, %2
+pw_%2_m%1: dw %2, -%1, %2, -%1, %2, -%1, %2, -%1
+%endmacro
+
+TRANSFORM_COEFFS 11585, 11585
+TRANSFORM_COEFFS 15137, 6270
+TRANSFORM_COEFFS 16069, 3196
+TRANSFORM_COEFFS 9102, 13623
+
+SECTION .text
+
+%if ARCH_X86_64
+%macro SUM_SUB 3
+ psubw m%3, m%1, m%2
+ paddw m%1, m%2
+ SWAP %2, %3
+%endmacro
+
+; butterfly operation
+%macro MUL_ADD_2X 6 ; dst1, dst2, src, round, coefs1, coefs2
+ pmaddwd m%1, m%3, %5
+ pmaddwd m%2, m%3, %6
+ paddd m%1, %4
+ paddd m%2, %4
+ psrad m%1, 14
+ psrad m%2, 14
+%endmacro
+
+%macro BUTTERFLY_4X 7 ; dst1, dst2, coef1, coef2, round, tmp1, tmp2
+ punpckhwd m%6, m%2, m%1
+ MUL_ADD_2X %7, %6, %6, %5, [pw_%4_%3], [pw_%3_m%4]
+ punpcklwd m%2, m%1
+ MUL_ADD_2X %1, %2, %2, %5, [pw_%4_%3], [pw_%3_m%4]
+ packssdw m%1, m%7
+ packssdw m%2, m%6
+%endmacro
+
+; matrix transpose
+%macro INTERLEAVE_2X 4
+ punpckh%1 m%4, m%2, m%3
+ punpckl%1 m%2, m%3
+ SWAP %3, %4
+%endmacro
+
+%macro TRANSPOSE8X8 9
+ INTERLEAVE_2X wd, %1, %2, %9
+ INTERLEAVE_2X wd, %3, %4, %9
+ INTERLEAVE_2X wd, %5, %6, %9
+ INTERLEAVE_2X wd, %7, %8, %9
+
+ INTERLEAVE_2X dq, %1, %3, %9
+ INTERLEAVE_2X dq, %2, %4, %9
+ INTERLEAVE_2X dq, %5, %7, %9
+ INTERLEAVE_2X dq, %6, %8, %9
+
+ INTERLEAVE_2X qdq, %1, %5, %9
+ INTERLEAVE_2X qdq, %3, %7, %9
+ INTERLEAVE_2X qdq, %2, %6, %9
+ INTERLEAVE_2X qdq, %4, %8, %9
+
+ SWAP %2, %5
+ SWAP %4, %7
+%endmacro
+
+; 1D forward 8x8 DCT transform
+%macro FDCT8_1D 1
+ SUM_SUB 0, 7, 9
+ SUM_SUB 1, 6, 9
+ SUM_SUB 2, 5, 9
+ SUM_SUB 3, 4, 9
+
+ SUM_SUB 0, 3, 9
+ SUM_SUB 1, 2, 9
+ SUM_SUB 6, 5, 9
+%if %1 == 0
+ SUM_SUB 0, 1, 9
+%endif
+
+ BUTTERFLY_4X 2, 3, 6270, 15137, m8, 9, 10
+
+ pmulhrsw m6, m12
+ pmulhrsw m5, m12
+%if %1 == 0
+ pmulhrsw m0, m12
+ pmulhrsw m1, m12
+%else
+ BUTTERFLY_4X 1, 0, 11585, 11585, m8, 9, 10
+ SWAP 0, 1
+%endif
+
+ SUM_SUB 4, 5, 9
+ SUM_SUB 7, 6, 9
+ BUTTERFLY_4X 4, 7, 3196, 16069, m8, 9, 10
+ BUTTERFLY_4X 5, 6, 13623, 9102, m8, 9, 10
+ SWAP 1, 4
+ SWAP 3, 6
+%endmacro
+
+%macro DIVIDE_ROUND_2X 4 ; dst1, dst2, tmp1, tmp2
+ psraw m%3, m%1, 15
+ psraw m%4, m%2, 15
+ psubw m%1, m%3
+ psubw m%2, m%4
+ psraw m%1, 1
+ psraw m%2, 1
+%endmacro
+
+INIT_XMM ssse3
+cglobal fdct8x8, 3, 5, 13, input, output, stride
+
+ mova m8, [pd_8192]
+ mova m12, [pw_11585x2]
+ pxor m11, m11
+
+ lea r3, [2 * strideq]
+ lea r4, [4 * strideq]
+ mova m0, [inputq]
+ mova m1, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m2, [inputq]
+ mova m3, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m4, [inputq]
+ mova m5, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m6, [inputq]
+ mova m7, [inputq + r3]
+
+ ; left shift by 2 to increase forward transformation precision
+ psllw m0, 2
+ psllw m1, 2
+ psllw m2, 2
+ psllw m3, 2
+ psllw m4, 2
+ psllw m5, 2
+ psllw m6, 2
+ psllw m7, 2
+
+ ; column transform
+ FDCT8_1D 0
+ TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
+
+ FDCT8_1D 1
+ TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
+
+ DIVIDE_ROUND_2X 0, 1, 9, 10
+ DIVIDE_ROUND_2X 2, 3, 9, 10
+ DIVIDE_ROUND_2X 4, 5, 9, 10
+ DIVIDE_ROUND_2X 6, 7, 9, 10
+
+ mova [outputq + 0], m0
+ mova [outputq + 16], m1
+ mova [outputq + 32], m2
+ mova [outputq + 48], m3
+ mova [outputq + 64], m4
+ mova [outputq + 80], m5
+ mova [outputq + 96], m6
+ mova [outputq + 112], m7
+
+ RET
+
+%macro HMD8_1D 0
+ psubw m8, m0, m1
+ psubw m9, m2, m3
+ paddw m0, m1
+ paddw m2, m3
+ SWAP 1, 8
+ SWAP 3, 9
+ psubw m8, m4, m5
+ psubw m9, m6, m7
+ paddw m4, m5
+ paddw m6, m7
+ SWAP 5, 8
+ SWAP 7, 9
+
+ psubw m8, m0, m2
+ psubw m9, m1, m3
+ paddw m0, m2
+ paddw m1, m3
+ SWAP 2, 8
+ SWAP 3, 9
+ psubw m8, m4, m6
+ psubw m9, m5, m7
+ paddw m4, m6
+ paddw m5, m7
+ SWAP 6, 8
+ SWAP 7, 9
+
+ psubw m8, m0, m4
+ psubw m9, m1, m5
+ paddw m0, m4
+ paddw m1, m5
+ SWAP 4, 8
+ SWAP 5, 9
+ psubw m8, m2, m6
+ psubw m9, m3, m7
+ paddw m2, m6
+ paddw m3, m7
+ SWAP 6, 8
+ SWAP 7, 9
+%endmacro
+
+INIT_XMM ssse3
+cglobal hadamard_8x8, 3, 5, 10, input, stride, output
+ lea r3, [2 * strideq]
+ lea r4, [4 * strideq]
+
+ mova m0, [inputq]
+ mova m1, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m2, [inputq]
+ mova m3, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m4, [inputq]
+ mova m5, [inputq + r3]
+ lea inputq, [inputq + r4]
+ mova m6, [inputq]
+ mova m7, [inputq + r3]
+
+ HMD8_1D
+ TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9
+ HMD8_1D
+
+ mova [outputq + 0], m0
+ mova [outputq + 16], m1
+ mova [outputq + 32], m2
+ mova [outputq + 48], m3
+ mova [outputq + 64], m4
+ mova [outputq + 80], m5
+ mova [outputq + 96], m6
+ mova [outputq + 112], m7
+
+ RET
+%endif
diff --git a/media/libvpx/vp9/encoder/x86/vp9_denoiser_sse2.c b/media/libvpx/vp9/encoder/x86/vp9_denoiser_sse2.c
new file mode 100644
index 000000000..bf7c7af77
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_denoiser_sse2.c
@@ -0,0 +1,375 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>
+
+#include "./vpx_config.h"
+#include "./vp9_rtcd.h"
+
+#include "vpx_ports/emmintrin_compat.h"
+#include "vpx/vpx_integer.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/encoder/vp9_context_tree.h"
+#include "vp9/encoder/vp9_denoiser.h"
+#include "vpx_mem/vpx_mem.h"
+
+// Compute the sum of all pixel differences of this MB.
+static INLINE int sum_diff_16x1(__m128i acc_diff) {
+ const __m128i k_1 = _mm_set1_epi16(1);
+ const __m128i acc_diff_lo =
+ _mm_srai_epi16(_mm_unpacklo_epi8(acc_diff, acc_diff), 8);
+ const __m128i acc_diff_hi =
+ _mm_srai_epi16(_mm_unpackhi_epi8(acc_diff, acc_diff), 8);
+ const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi);
+ const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1);
+ const __m128i hgfe_dcba =
+ _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8));
+ const __m128i hgfedcba =
+ _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4));
+ return _mm_cvtsi128_si32(hgfedcba);
+}
+
+// Denoise a 16x1 vector.
+static INLINE __m128i vp9_denoiser_16x1_sse2(const uint8_t *sig,
+ const uint8_t *mc_running_avg_y,
+ uint8_t *running_avg_y,
+ const __m128i *k_0,
+ const __m128i *k_4,
+ const __m128i *k_8,
+ const __m128i *k_16,
+ const __m128i *l3,
+ const __m128i *l32,
+ const __m128i *l21,
+ __m128i acc_diff) {
+ // Calculate differences
+ const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
+ const __m128i v_mc_running_avg_y =
+ _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
+ __m128i v_running_avg_y;
+ const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
+ const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
+ // Obtain the sign. FF if diff is negative.
+ const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, *k_0);
+ // Clamp absolute difference to 16 to be used to get mask. Doing this
+ // allows us to use _mm_cmpgt_epi8, which operates on signed byte.
+ const __m128i clamped_absdiff =
+ _mm_min_epu8(_mm_or_si128(pdiff, ndiff), *k_16);
+ // Get masks for l2 l1 and l0 adjustments.
+ const __m128i mask2 = _mm_cmpgt_epi8(*k_16, clamped_absdiff);
+ const __m128i mask1 = _mm_cmpgt_epi8(*k_8, clamped_absdiff);
+ const __m128i mask0 = _mm_cmpgt_epi8(*k_4, clamped_absdiff);
+ // Get adjustments for l2, l1, and l0.
+ __m128i adj2 = _mm_and_si128(mask2, *l32);
+ const __m128i adj1 = _mm_and_si128(mask1, *l21);
+ const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
+ __m128i adj, padj, nadj;
+
+ // Combine the adjustments and get absolute adjustments.
+ adj2 = _mm_add_epi8(adj2, adj1);
+ adj = _mm_sub_epi8(*l3, adj2);
+ adj = _mm_andnot_si128(mask0, adj);
+ adj = _mm_or_si128(adj, adj0);
+
+ // Restore the sign and get positive and negative adjustments.
+ padj = _mm_andnot_si128(diff_sign, adj);
+ nadj = _mm_and_si128(diff_sign, adj);
+
+ // Calculate filtered value.
+ v_running_avg_y = _mm_adds_epu8(v_sig, padj);
+ v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
+ _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
+
+ // Adjustments <=7, and each element in acc_diff can fit in signed
+ // char.
+ acc_diff = _mm_adds_epi8(acc_diff, padj);
+ acc_diff = _mm_subs_epi8(acc_diff, nadj);
+ return acc_diff;
+}
+
+// Denoise a 16x1 vector with a weaker filter.
+static INLINE __m128i vp9_denoiser_adj_16x1_sse2(
+ const uint8_t *sig, const uint8_t *mc_running_avg_y,
+ uint8_t *running_avg_y, const __m128i k_0,
+ const __m128i k_delta, __m128i acc_diff) {
+ __m128i v_running_avg_y = _mm_loadu_si128((__m128i *)(&running_avg_y[0]));
+ // Calculate differences.
+ const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
+ const __m128i v_mc_running_avg_y =
+ _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
+ const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
+ const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
+ // Obtain the sign. FF if diff is negative.
+ const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
+ // Clamp absolute difference to delta to get the adjustment.
+ const __m128i adj =
+ _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta);
+ // Restore the sign and get positive and negative adjustments.
+ __m128i padj, nadj;
+ padj = _mm_andnot_si128(diff_sign, adj);
+ nadj = _mm_and_si128(diff_sign, adj);
+ // Calculate filtered value.
+ v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj);
+ v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj);
+ _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
+
+ // Accumulate the adjustments.
+ acc_diff = _mm_subs_epi8(acc_diff, padj);
+ acc_diff = _mm_adds_epi8(acc_diff, nadj);
+ return acc_diff;
+}
+
+// Denoiser for 4xM and 8xM blocks.
+static int vp9_denoiser_NxM_sse2_small(
+ const uint8_t *sig, int sig_stride, const uint8_t *mc_running_avg_y,
+ int mc_avg_y_stride, uint8_t *running_avg_y, int avg_y_stride,
+ int increase_denoising, BLOCK_SIZE bs, int motion_magnitude, int width) {
+ int sum_diff_thresh, r, sum_diff = 0;
+ const int shift_inc = (increase_denoising &&
+ motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ?
+ 1 : 0;
+ uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16];
+ __m128i acc_diff = _mm_setzero_si128();
+ const __m128i k_0 = _mm_setzero_si128();
+ const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
+ const __m128i k_8 = _mm_set1_epi8(8);
+ const __m128i k_16 = _mm_set1_epi8(16);
+ // Modify each level's adjustment according to motion_magnitude.
+ const __m128i l3 = _mm_set1_epi8(
+ (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
+ // Difference between level 3 and level 2 is 2.
+ const __m128i l32 = _mm_set1_epi8(2);
+ // Difference between level 2 and level 1 is 1.
+ const __m128i l21 = _mm_set1_epi8(1);
+ const uint8_t shift = (width == 4) ? 2 : 1;
+
+ for (r = 0; r < ((4 << b_height_log2_lookup[bs]) >> shift); ++r) {
+ memcpy(sig_buffer[r], sig, width);
+ memcpy(sig_buffer[r] + width, sig + sig_stride, width);
+ memcpy(mc_running_buffer[r], mc_running_avg_y, width);
+ memcpy(mc_running_buffer[r] + width,
+ mc_running_avg_y + mc_avg_y_stride, width);
+ memcpy(running_buffer[r], running_avg_y, width);
+ memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width);
+ if (width == 4) {
+ memcpy(sig_buffer[r] + width * 2, sig + sig_stride * 2, width);
+ memcpy(sig_buffer[r] + width * 3, sig + sig_stride * 3, width);
+ memcpy(mc_running_buffer[r] + width * 2,
+ mc_running_avg_y + mc_avg_y_stride * 2, width);
+ memcpy(mc_running_buffer[r] + width * 3,
+ mc_running_avg_y + mc_avg_y_stride * 3, width);
+ memcpy(running_buffer[r] + width * 2,
+ running_avg_y + avg_y_stride * 2, width);
+ memcpy(running_buffer[r] + width * 3,
+ running_avg_y + avg_y_stride * 3, width);
+ }
+ acc_diff = vp9_denoiser_16x1_sse2(sig_buffer[r],
+ mc_running_buffer[r],
+ running_buffer[r],
+ &k_0, &k_4, &k_8, &k_16,
+ &l3, &l32, &l21, acc_diff);
+ memcpy(running_avg_y, running_buffer[r], width);
+ memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width, width);
+ if (width == 4) {
+ memcpy(running_avg_y + avg_y_stride * 2,
+ running_buffer[r] + width * 2, width);
+ memcpy(running_avg_y + avg_y_stride * 3,
+ running_buffer[r] + width * 3, width);
+ }
+ // Update pointers for next iteration.
+ sig += (sig_stride << shift);
+ mc_running_avg_y += (mc_avg_y_stride << shift);
+ running_avg_y += (avg_y_stride << shift);
+ }
+
+ {
+ sum_diff = sum_diff_16x1(acc_diff);
+ sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
+ if (abs(sum_diff) > sum_diff_thresh) {
+ // Before returning to copy the block (i.e., apply no denoising),
+ // check if we can still apply some (weaker) temporal filtering to
+ // this block, that would otherwise not be denoised at all. Simplest
+ // is to apply an additional adjustment to running_avg_y to bring it
+ // closer to sig. The adjustment is capped by a maximum delta, and
+ // chosen such that in most cases the resulting sum_diff will be
+ // within the acceptable range given by sum_diff_thresh.
+
+ // The delta is set by the excess of absolute pixel diff over the
+ // threshold.
+ const int delta = ((abs(sum_diff) - sum_diff_thresh) >>
+ num_pels_log2_lookup[bs]) + 1;
+ // Only apply the adjustment for max delta up to 3.
+ if (delta < 4) {
+ const __m128i k_delta = _mm_set1_epi8(delta);
+ running_avg_y -= avg_y_stride * (4 << b_height_log2_lookup[bs]);
+ for (r = 0; r < ((4 << b_height_log2_lookup[bs]) >> shift); ++r) {
+ acc_diff = vp9_denoiser_adj_16x1_sse2(
+ sig_buffer[r], mc_running_buffer[r], running_buffer[r],
+ k_0, k_delta, acc_diff);
+ memcpy(running_avg_y, running_buffer[r], width);
+ memcpy(running_avg_y + avg_y_stride,
+ running_buffer[r] + width, width);
+ if (width == 4) {
+ memcpy(running_avg_y + avg_y_stride * 2,
+ running_buffer[r] + width * 2, width);
+ memcpy(running_avg_y + avg_y_stride * 3,
+ running_buffer[r] + width * 3, width);
+ }
+ // Update pointers for next iteration.
+ running_avg_y += (avg_y_stride << shift);
+ }
+ sum_diff = sum_diff_16x1(acc_diff);
+ if (abs(sum_diff) > sum_diff_thresh) {
+ return COPY_BLOCK;
+ }
+ } else {
+ return COPY_BLOCK;
+ }
+ }
+ }
+ return FILTER_BLOCK;
+}
+
+// Denoiser for 16xM, 32xM and 64xM blocks
+static int vp9_denoiser_NxM_sse2_big(const uint8_t *sig, int sig_stride,
+ const uint8_t *mc_running_avg_y,
+ int mc_avg_y_stride,
+ uint8_t *running_avg_y,
+ int avg_y_stride,
+ int increase_denoising, BLOCK_SIZE bs,
+ int motion_magnitude) {
+ int sum_diff_thresh, r, c, sum_diff = 0;
+ const int shift_inc = (increase_denoising &&
+ motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ?
+ 1 : 0;
+ __m128i acc_diff[4][4];
+ const __m128i k_0 = _mm_setzero_si128();
+ const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
+ const __m128i k_8 = _mm_set1_epi8(8);
+ const __m128i k_16 = _mm_set1_epi8(16);
+ // Modify each level's adjustment according to motion_magnitude.
+ const __m128i l3 = _mm_set1_epi8(
+ (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
+ // Difference between level 3 and level 2 is 2.
+ const __m128i l32 = _mm_set1_epi8(2);
+ // Difference between level 2 and level 1 is 1.
+ const __m128i l21 = _mm_set1_epi8(1);
+
+ for (c = 0; c < 4; ++c) {
+ for (r = 0; r < 4; ++r) {
+ acc_diff[c][r] = _mm_setzero_si128();
+ }
+ }
+
+ for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
+ for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) {
+ acc_diff[c>>4][r>>4] = vp9_denoiser_16x1_sse2(
+ sig, mc_running_avg_y, running_avg_y, &k_0, &k_4,
+ &k_8, &k_16, &l3, &l32, &l21, acc_diff[c>>4][r>>4]);
+ // Update pointers for next iteration.
+ sig += 16;
+ mc_running_avg_y += 16;
+ running_avg_y += 16;
+ }
+
+ if ((r + 1) % 16 == 0 || (bs == BLOCK_16X8 && r == 7)) {
+ for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) {
+ sum_diff += sum_diff_16x1(acc_diff[c>>4][r>>4]);
+ }
+ }
+
+ // Update pointers for next iteration.
+ sig = sig - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + sig_stride;
+ mc_running_avg_y = mc_running_avg_y -
+ 16 * ((4 << b_width_log2_lookup[bs]) >> 4) +
+ mc_avg_y_stride;
+ running_avg_y = running_avg_y -
+ 16 * ((4 << b_width_log2_lookup[bs]) >> 4) +
+ avg_y_stride;
+ }
+
+ {
+ sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
+ if (abs(sum_diff) > sum_diff_thresh) {
+ const int delta = ((abs(sum_diff) - sum_diff_thresh) >>
+ num_pels_log2_lookup[bs]) + 1;
+
+ // Only apply the adjustment for max delta up to 3.
+ if (delta < 4) {
+ const __m128i k_delta = _mm_set1_epi8(delta);
+ sig -= sig_stride * (4 << b_height_log2_lookup[bs]);
+ mc_running_avg_y -= mc_avg_y_stride * (4 << b_height_log2_lookup[bs]);
+ running_avg_y -= avg_y_stride * (4 << b_height_log2_lookup[bs]);
+ sum_diff = 0;
+ for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) {
+ for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) {
+ acc_diff[c>>4][r>>4] = vp9_denoiser_adj_16x1_sse2(
+ sig, mc_running_avg_y, running_avg_y, k_0,
+ k_delta, acc_diff[c>>4][r>>4]);
+ // Update pointers for next iteration.
+ sig += 16;
+ mc_running_avg_y += 16;
+ running_avg_y += 16;
+ }
+
+ if ((r + 1) % 16 == 0 || (bs == BLOCK_16X8 && r == 7)) {
+ for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) {
+ sum_diff += sum_diff_16x1(acc_diff[c>>4][r>>4]);
+ }
+ }
+ sig = sig - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + sig_stride;
+ mc_running_avg_y = mc_running_avg_y -
+ 16 * ((4 << b_width_log2_lookup[bs]) >> 4) +
+ mc_avg_y_stride;
+ running_avg_y = running_avg_y -
+ 16 * ((4 << b_width_log2_lookup[bs]) >> 4) +
+ avg_y_stride;
+ }
+ if (abs(sum_diff) > sum_diff_thresh) {
+ return COPY_BLOCK;
+ }
+ } else {
+ return COPY_BLOCK;
+ }
+ }
+ }
+ return FILTER_BLOCK;
+}
+
+int vp9_denoiser_filter_sse2(const uint8_t *sig, int sig_stride,
+ const uint8_t *mc_avg,
+ int mc_avg_stride,
+ uint8_t *avg, int avg_stride,
+ int increase_denoising,
+ BLOCK_SIZE bs,
+ int motion_magnitude) {
+ if (bs == BLOCK_4X4 || bs == BLOCK_4X8) {
+ return vp9_denoiser_NxM_sse2_small(sig, sig_stride,
+ mc_avg, mc_avg_stride,
+ avg, avg_stride,
+ increase_denoising,
+ bs, motion_magnitude, 4);
+ } else if (bs == BLOCK_8X4 || bs == BLOCK_8X8 || bs == BLOCK_8X16) {
+ return vp9_denoiser_NxM_sse2_small(sig, sig_stride,
+ mc_avg, mc_avg_stride,
+ avg, avg_stride,
+ increase_denoising,
+ bs, motion_magnitude, 8);
+ } else if (bs == BLOCK_16X8 || bs == BLOCK_16X16 || bs == BLOCK_16X32 ||
+ bs == BLOCK_32X16|| bs == BLOCK_32X32 || bs == BLOCK_32X64 ||
+ bs == BLOCK_64X32 || bs == BLOCK_64X64) {
+ return vp9_denoiser_NxM_sse2_big(sig, sig_stride,
+ mc_avg, mc_avg_stride,
+ avg, avg_stride,
+ increase_denoising,
+ bs, motion_magnitude);
+ } else {
+ return COPY_BLOCK;
+ }
+}
diff --git a/media/libvpx/vp9/encoder/x86/vp9_error_intrin_avx2.c b/media/libvpx/vp9/encoder/x86/vp9_error_intrin_avx2.c
new file mode 100644
index 000000000..dfebaab0a
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_error_intrin_avx2.c
@@ -0,0 +1,73 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Usee of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+
+#include "./vp9_rtcd.h"
+#include "vpx/vpx_integer.h"
+
+int64_t vp9_block_error_avx2(const int16_t *coeff,
+ const int16_t *dqcoeff,
+ intptr_t block_size,
+ int64_t *ssz) {
+ __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
+ __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
+ __m256i sse_reg_64hi, ssz_reg_64hi;
+ __m128i sse_reg128, ssz_reg128;
+ int64_t sse;
+ int i;
+ const __m256i zero_reg = _mm256_set1_epi16(0);
+
+ // init sse and ssz registerd to zero
+ sse_reg = _mm256_set1_epi16(0);
+ ssz_reg = _mm256_set1_epi16(0);
+
+ for (i = 0 ; i < block_size ; i+= 16) {
+ // load 32 bytes from coeff and dqcoeff
+ coeff_reg = _mm256_loadu_si256((const __m256i *)(coeff + i));
+ dqcoeff_reg = _mm256_loadu_si256((const __m256i *)(dqcoeff + i));
+ // dqcoeff - coeff
+ dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
+ // madd (dqcoeff - coeff)
+ dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
+ // madd coeff
+ coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
+ // expand each double word of madd (dqcoeff - coeff) to quad word
+ exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
+ exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
+ // expand each double word of madd (coeff) to quad word
+ exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
+ exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
+ // add each quad word of madd (dqcoeff - coeff) and madd (coeff)
+ sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
+ ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
+ sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
+ ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
+ }
+ // save the higher 64 bit of each 128 bit lane
+ sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
+ ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
+ // add the higher 64 bit to the low 64 bit
+ sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
+ ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
+
+ // add each 64 bit from each of the 128 bit lane of the 256 bit
+ sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
+ _mm256_extractf128_si256(sse_reg, 1));
+
+ ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
+ _mm256_extractf128_si256(ssz_reg, 1));
+
+ // store the results
+ _mm_storel_epi64((__m128i*)(&sse), sse_reg128);
+
+ _mm_storel_epi64((__m128i*)(ssz), ssz_reg128);
+ return sse;
+}
diff --git a/media/libvpx/vp9/encoder/x86/vp9_error_sse2.asm b/media/libvpx/vp9/encoder/x86/vp9_error_sse2.asm
new file mode 100644
index 000000000..56373e897
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_error_sse2.asm
@@ -0,0 +1,120 @@
+;
+; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION .text
+
+; int64_t vp9_block_error(int16_t *coeff, int16_t *dqcoeff, intptr_t block_size,
+; int64_t *ssz)
+
+INIT_XMM sse2
+cglobal block_error, 3, 3, 8, uqc, dqc, size, ssz
+ pxor m4, m4 ; sse accumulator
+ pxor m6, m6 ; ssz accumulator
+ pxor m5, m5 ; dedicated zero register
+ lea uqcq, [uqcq+sizeq*2]
+ lea dqcq, [dqcq+sizeq*2]
+ neg sizeq
+.loop:
+ mova m2, [uqcq+sizeq*2]
+ mova m0, [dqcq+sizeq*2]
+ mova m3, [uqcq+sizeq*2+mmsize]
+ mova m1, [dqcq+sizeq*2+mmsize]
+ psubw m0, m2
+ psubw m1, m3
+ ; individual errors are max. 15bit+sign, so squares are 30bit, and
+ ; thus the sum of 2 should fit in a 31bit integer (+ unused sign bit)
+ pmaddwd m0, m0
+ pmaddwd m1, m1
+ pmaddwd m2, m2
+ pmaddwd m3, m3
+ ; accumulate in 64bit
+ punpckldq m7, m0, m5
+ punpckhdq m0, m5
+ paddq m4, m7
+ punpckldq m7, m1, m5
+ paddq m4, m0
+ punpckhdq m1, m5
+ paddq m4, m7
+ punpckldq m7, m2, m5
+ paddq m4, m1
+ punpckhdq m2, m5
+ paddq m6, m7
+ punpckldq m7, m3, m5
+ paddq m6, m2
+ punpckhdq m3, m5
+ paddq m6, m7
+ paddq m6, m3
+ add sizeq, mmsize
+ jl .loop
+
+ ; accumulate horizontally and store in return value
+ movhlps m5, m4
+ movhlps m7, m6
+ paddq m4, m5
+ paddq m6, m7
+%if ARCH_X86_64
+ movq rax, m4
+ movq [sszq], m6
+%else
+ mov eax, sszm
+ pshufd m5, m4, 0x1
+ movq [eax], m6
+ movd eax, m4
+ movd edx, m5
+%endif
+ RET
+
+; Compute the sum of squared difference between two int16_t vectors.
+; int64_t vp9_block_error_fp(int16_t *coeff, int16_t *dqcoeff,
+; intptr_t block_size)
+
+INIT_XMM sse2
+cglobal block_error_fp, 3, 3, 6, uqc, dqc, size
+ pxor m4, m4 ; sse accumulator
+ pxor m5, m5 ; dedicated zero register
+ lea uqcq, [uqcq+sizeq*2]
+ lea dqcq, [dqcq+sizeq*2]
+ neg sizeq
+.loop:
+ mova m2, [uqcq+sizeq*2]
+ mova m0, [dqcq+sizeq*2]
+ mova m3, [uqcq+sizeq*2+mmsize]
+ mova m1, [dqcq+sizeq*2+mmsize]
+ psubw m0, m2
+ psubw m1, m3
+ ; individual errors are max. 15bit+sign, so squares are 30bit, and
+ ; thus the sum of 2 should fit in a 31bit integer (+ unused sign bit)
+ pmaddwd m0, m0
+ pmaddwd m1, m1
+ ; accumulate in 64bit
+ punpckldq m3, m0, m5
+ punpckhdq m0, m5
+ paddq m4, m3
+ punpckldq m3, m1, m5
+ paddq m4, m0
+ punpckhdq m1, m5
+ paddq m4, m3
+ paddq m4, m1
+ add sizeq, mmsize
+ jl .loop
+
+ ; accumulate horizontally and store in return value
+ movhlps m5, m4
+ paddq m4, m5
+%if ARCH_X86_64
+ movq rax, m4
+%else
+ pshufd m5, m4, 0x1
+ movd eax, m4
+ movd edx, m5
+%endif
+ RET
diff --git a/media/libvpx/vp9/encoder/x86/vp9_highbd_block_error_intrin_sse2.c b/media/libvpx/vp9/encoder/x86/vp9_highbd_block_error_intrin_sse2.c
new file mode 100644
index 000000000..c245ccafa
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_highbd_block_error_intrin_sse2.c
@@ -0,0 +1,71 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>
+#include <stdio.h>
+
+#include "vp9/common/vp9_common.h"
+
+int64_t vp9_highbd_block_error_sse2(tran_low_t *coeff, tran_low_t *dqcoeff,
+ intptr_t block_size, int64_t *ssz,
+ int bps) {
+ int i, j, test;
+ uint32_t temp[4];
+ __m128i max, min, cmp0, cmp1, cmp2, cmp3;
+ int64_t error = 0, sqcoeff = 0;
+ const int shift = 2 * (bps - 8);
+ const int rounding = shift > 0 ? 1 << (shift - 1) : 0;
+
+ for (i = 0; i < block_size; i+=8) {
+ // Load the data into xmm registers
+ __m128i mm_coeff = _mm_load_si128((__m128i*) (coeff + i));
+ __m128i mm_coeff2 = _mm_load_si128((__m128i*) (coeff + i + 4));
+ __m128i mm_dqcoeff = _mm_load_si128((__m128i*) (dqcoeff + i));
+ __m128i mm_dqcoeff2 = _mm_load_si128((__m128i*) (dqcoeff + i + 4));
+ // Check if any values require more than 15 bit
+ max = _mm_set1_epi32(0x3fff);
+ min = _mm_set1_epi32(0xffffc000);
+ cmp0 = _mm_xor_si128(_mm_cmpgt_epi32(mm_coeff, max),
+ _mm_cmplt_epi32(mm_coeff, min));
+ cmp1 = _mm_xor_si128(_mm_cmpgt_epi32(mm_coeff2, max),
+ _mm_cmplt_epi32(mm_coeff2, min));
+ cmp2 = _mm_xor_si128(_mm_cmpgt_epi32(mm_dqcoeff, max),
+ _mm_cmplt_epi32(mm_dqcoeff, min));
+ cmp3 = _mm_xor_si128(_mm_cmpgt_epi32(mm_dqcoeff2, max),
+ _mm_cmplt_epi32(mm_dqcoeff2, min));
+ test = _mm_movemask_epi8(_mm_or_si128(_mm_or_si128(cmp0, cmp1),
+ _mm_or_si128(cmp2, cmp3)));
+
+ if (!test) {
+ __m128i mm_diff, error_sse2, sqcoeff_sse2;;
+ mm_coeff = _mm_packs_epi32(mm_coeff, mm_coeff2);
+ mm_dqcoeff = _mm_packs_epi32(mm_dqcoeff, mm_dqcoeff2);
+ mm_diff = _mm_sub_epi16(mm_coeff, mm_dqcoeff);
+ error_sse2 = _mm_madd_epi16(mm_diff, mm_diff);
+ sqcoeff_sse2 = _mm_madd_epi16(mm_coeff, mm_coeff);
+ _mm_storeu_si128((__m128i*)temp, error_sse2);
+ error = error + temp[0] + temp[1] + temp[2] + temp[3];
+ _mm_storeu_si128((__m128i*)temp, sqcoeff_sse2);
+ sqcoeff += temp[0] + temp[1] + temp[2] + temp[3];
+ } else {
+ for (j = 0; j < 8; j++) {
+ const int64_t diff = coeff[i + j] - dqcoeff[i + j];
+ error += diff * diff;
+ sqcoeff += (int64_t)coeff[i + j] * (int64_t)coeff[i + j];
+ }
+ }
+ }
+ assert(error >= 0 && sqcoeff >= 0);
+ error = (error + rounding) >> shift;
+ sqcoeff = (sqcoeff + rounding) >> shift;
+
+ *ssz = sqcoeff;
+ return error;
+}
diff --git a/media/libvpx/vp9/encoder/x86/vp9_highbd_quantize_intrin_sse2.c b/media/libvpx/vp9/encoder/x86/vp9_highbd_quantize_intrin_sse2.c
new file mode 100644
index 000000000..cbdd1c93e
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_highbd_quantize_intrin_sse2.c
@@ -0,0 +1,181 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>
+
+#include "vpx_ports/mem.h"
+#include "vp9/common/vp9_common.h"
+
+#if CONFIG_VP9_HIGHBITDEPTH
+// from vp9_idct.h: typedef int32_t tran_low_t;
+void vp9_highbd_quantize_b_sse2(const tran_low_t *coeff_ptr,
+ intptr_t count,
+ int skip_block,
+ const int16_t *zbin_ptr,
+ const int16_t *round_ptr,
+ const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr,
+ tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan,
+ const int16_t *iscan) {
+ int i, j, non_zero_regs = (int)count / 4, eob_i = -1;
+ __m128i zbins[2];
+ __m128i nzbins[2];
+
+ zbins[0] = _mm_set_epi32((int)zbin_ptr[1],
+ (int)zbin_ptr[1],
+ (int)zbin_ptr[1],
+ (int)zbin_ptr[0]);
+ zbins[1] = _mm_set1_epi32((int)zbin_ptr[1]);
+
+ nzbins[0] = _mm_setzero_si128();
+ nzbins[1] = _mm_setzero_si128();
+ nzbins[0] = _mm_sub_epi32(nzbins[0], zbins[0]);
+ nzbins[1] = _mm_sub_epi32(nzbins[1], zbins[1]);
+
+ (void)scan;
+
+ memset(qcoeff_ptr, 0, count * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, count * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Pre-scan pass
+ for (i = ((int)count / 4) - 1; i >= 0; i--) {
+ __m128i coeffs, cmp1, cmp2;
+ int test;
+ coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4));
+ cmp1 = _mm_cmplt_epi32(coeffs, zbins[i != 0]);
+ cmp2 = _mm_cmpgt_epi32(coeffs, nzbins[i != 0]);
+ cmp1 = _mm_and_si128(cmp1, cmp2);
+ test = _mm_movemask_epi8(cmp1);
+ if (test == 0xffff)
+ non_zero_regs--;
+ else
+ break;
+ }
+
+ // Quantization pass:
+ for (i = 0; i < non_zero_regs; i++) {
+ __m128i coeffs, coeffs_sign, tmp1, tmp2;
+ int test;
+ int abs_coeff[4];
+ int coeff_sign[4];
+
+ coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4));
+ coeffs_sign = _mm_srai_epi32(coeffs, 31);
+ coeffs = _mm_sub_epi32(
+ _mm_xor_si128(coeffs, coeffs_sign), coeffs_sign);
+ tmp1 = _mm_cmpgt_epi32(coeffs, zbins[i != 0]);
+ tmp2 = _mm_cmpeq_epi32(coeffs, zbins[i != 0]);
+ tmp1 = _mm_or_si128(tmp1, tmp2);
+ test = _mm_movemask_epi8(tmp1);
+ _mm_storeu_si128((__m128i*)abs_coeff, coeffs);
+ _mm_storeu_si128((__m128i*)coeff_sign, coeffs_sign);
+
+ for (j = 0; j < 4; j++) {
+ if (test & (1 << (4 * j))) {
+ int k = 4 * i + j;
+ int64_t tmp = clamp(abs_coeff[j] + round_ptr[k != 0],
+ INT32_MIN, INT32_MAX);
+ tmp = ((((tmp * quant_ptr[k != 0]) >> 16) + tmp) *
+ quant_shift_ptr[k != 0]) >> 16; // quantization
+ qcoeff_ptr[k] = (tmp ^ coeff_sign[j]) - coeff_sign[j];
+ dqcoeff_ptr[k] = qcoeff_ptr[k] * dequant_ptr[k != 0];
+ if (tmp)
+ eob_i = iscan[k] > eob_i ? iscan[k] : eob_i;
+ }
+ }
+ }
+ }
+ *eob_ptr = eob_i + 1;
+}
+
+
+void vp9_highbd_quantize_b_32x32_sse2(const tran_low_t *coeff_ptr,
+ intptr_t n_coeffs,
+ int skip_block,
+ const int16_t *zbin_ptr,
+ const int16_t *round_ptr,
+ const int16_t *quant_ptr,
+ const int16_t *quant_shift_ptr,
+ tran_low_t *qcoeff_ptr,
+ tran_low_t *dqcoeff_ptr,
+ const int16_t *dequant_ptr,
+ uint16_t *eob_ptr,
+ const int16_t *scan,
+ const int16_t *iscan) {
+ __m128i zbins[2];
+ __m128i nzbins[2];
+ int idx = 0;
+ int idx_arr[1024];
+ int i, eob = -1;
+ const int zbin0_tmp = ROUND_POWER_OF_TWO(zbin_ptr[0], 1);
+ const int zbin1_tmp = ROUND_POWER_OF_TWO(zbin_ptr[1], 1);
+ (void)scan;
+ zbins[0] = _mm_set_epi32(zbin1_tmp,
+ zbin1_tmp,
+ zbin1_tmp,
+ zbin0_tmp);
+ zbins[1] = _mm_set1_epi32(zbin1_tmp);
+
+ nzbins[0] = _mm_setzero_si128();
+ nzbins[1] = _mm_setzero_si128();
+ nzbins[0] = _mm_sub_epi32(nzbins[0], zbins[0]);
+ nzbins[1] = _mm_sub_epi32(nzbins[1], zbins[1]);
+
+ memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
+ memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
+
+ if (!skip_block) {
+ // Pre-scan pass
+ for (i = 0; i < n_coeffs / 4; i++) {
+ __m128i coeffs, cmp1, cmp2;
+ int test;
+ coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4));
+ cmp1 = _mm_cmplt_epi32(coeffs, zbins[i != 0]);
+ cmp2 = _mm_cmpgt_epi32(coeffs, nzbins[i != 0]);
+ cmp1 = _mm_and_si128(cmp1, cmp2);
+ test = _mm_movemask_epi8(cmp1);
+ if (!(test & 0xf))
+ idx_arr[idx++] = i * 4;
+ if (!(test & 0xf0))
+ idx_arr[idx++] = i * 4 + 1;
+ if (!(test & 0xf00))
+ idx_arr[idx++] = i * 4 + 2;
+ if (!(test & 0xf000))
+ idx_arr[idx++] = i * 4 + 3;
+ }
+
+ // Quantization pass: only process the coefficients selected in
+ // pre-scan pass. Note: idx can be zero.
+ for (i = 0; i < idx; i++) {
+ const int rc = idx_arr[i];
+ const int coeff = coeff_ptr[rc];
+ const int coeff_sign = (coeff >> 31);
+ int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
+ int64_t tmp = clamp(abs_coeff +
+ ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1),
+ INT32_MIN, INT32_MAX);
+ tmp = ((((tmp * quant_ptr[rc != 0]) >> 16) + tmp) *
+ quant_shift_ptr[rc != 0]) >> 15;
+
+ qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
+ dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2;
+
+ if (tmp)
+ eob = iscan[idx_arr[i]] > eob ? iscan[idx_arr[i]] : eob;
+ }
+ }
+ *eob_ptr = eob + 1;
+}
+#endif
diff --git a/media/libvpx/vp9/encoder/x86/vp9_highbd_subpel_variance.asm b/media/libvpx/vp9/encoder/x86/vp9_highbd_subpel_variance.asm
new file mode 100644
index 000000000..4594bb1aa
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_highbd_subpel_variance.asm
@@ -0,0 +1,1039 @@
+;
+; Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION_RODATA
+pw_8: times 8 dw 8
+bilin_filter_m_sse2: times 8 dw 16
+ times 8 dw 0
+ times 8 dw 14
+ times 8 dw 2
+ times 8 dw 12
+ times 8 dw 4
+ times 8 dw 10
+ times 8 dw 6
+ times 16 dw 8
+ times 8 dw 6
+ times 8 dw 10
+ times 8 dw 4
+ times 8 dw 12
+ times 8 dw 2
+ times 8 dw 14
+
+SECTION .text
+
+; int vp9_sub_pixel_varianceNxh(const uint8_t *src, ptrdiff_t src_stride,
+; int x_offset, int y_offset,
+; const uint8_t *dst, ptrdiff_t dst_stride,
+; int height, unsigned int *sse);
+;
+; This function returns the SE and stores SSE in the given pointer.
+
+%macro SUM_SSE 6 ; src1, dst1, src2, dst2, sum, sse
+ psubw %3, %4
+ psubw %1, %2
+ mova %4, %3 ; make copies to manipulate to calc sum
+ mova %2, %1 ; use originals for calc sse
+ pmaddwd %3, %3
+ paddw %4, %2
+ pmaddwd %1, %1
+ movhlps %2, %4
+ paddd %6, %3
+ paddw %4, %2
+ pxor %2, %2
+ pcmpgtw %2, %4 ; mask for 0 > %4 (sum)
+ punpcklwd %4, %2 ; sign-extend word to dword
+ paddd %6, %1
+ paddd %5, %4
+
+%endmacro
+
+%macro STORE_AND_RET 0
+%if mmsize == 16
+ ; if H=64 and W=16, we have 8 words of each 2(1bit)x64(6bit)x9bit=16bit
+ ; in m6, i.e. it _exactly_ fits in a signed word per word in the xmm reg.
+ ; We have to sign-extend it before adding the words within the register
+ ; and outputing to a dword.
+ movhlps m3, m7
+ movhlps m4, m6
+ paddd m7, m3
+ paddd m6, m4
+ pshufd m3, m7, 0x1
+ pshufd m4, m6, 0x1
+ paddd m7, m3
+ paddd m6, m4
+ mov r1, ssem ; r1 = unsigned int *sse
+ movd [r1], m7 ; store sse
+ movd rax, m6 ; store sum as return value
+%endif
+ RET
+%endmacro
+
+%macro INC_SRC_BY_SRC_STRIDE 0
+%if ARCH_X86=1 && CONFIG_PIC=1
+ lea srcq, [srcq + src_stridemp*2]
+%else
+ lea srcq, [srcq + src_strideq*2]
+%endif
+%endmacro
+
+%macro INC_SRC_BY_SRC_2STRIDE 0
+%if ARCH_X86=1 && CONFIG_PIC=1
+ lea srcq, [srcq + src_stridemp*4]
+%else
+ lea srcq, [srcq + src_strideq*4]
+%endif
+%endmacro
+
+%macro SUBPEL_VARIANCE 1-2 0 ; W
+%define bilin_filter_m bilin_filter_m_sse2
+%define filter_idx_shift 5
+
+
+%ifdef PIC ; 64bit PIC
+ %if %2 == 1 ; avg
+ cglobal highbd_sub_pixel_avg_variance%1xh, 9, 10, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, height, sse
+ %define sec_str sec_strideq
+ %else
+ cglobal highbd_sub_pixel_variance%1xh, 7, 8, 13, src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, height, sse
+ %endif
+ %define h heightd
+ %define bilin_filter sseq
+%else
+ %if ARCH_X86=1 && CONFIG_PIC=1
+ %if %2 == 1 ; avg
+ cglobal highbd_sub_pixel_avg_variance%1xh, 7, 7, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, \
+ height, sse, g_bilin_filter, g_pw_8
+ %define h dword heightm
+ %define sec_str sec_stridemp
+
+ ; Store bilin_filter and pw_8 location in stack
+ GET_GOT eax
+ add esp, 4 ; restore esp
+
+ lea ecx, [GLOBAL(bilin_filter_m)]
+ mov g_bilin_filterm, ecx
+
+ lea ecx, [GLOBAL(pw_8)]
+ mov g_pw_8m, ecx
+
+ LOAD_IF_USED 0, 1 ; load eax, ecx back
+ %else
+ cglobal highbd_sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, \
+ x_offset, y_offset, dst, dst_stride, height, \
+ sse, g_bilin_filter, g_pw_8
+ %define h heightd
+
+ ; Store bilin_filter and pw_8 location in stack
+ GET_GOT eax
+ add esp, 4 ; restore esp
+
+ lea ecx, [GLOBAL(bilin_filter_m)]
+ mov g_bilin_filterm, ecx
+
+ lea ecx, [GLOBAL(pw_8)]
+ mov g_pw_8m, ecx
+
+ LOAD_IF_USED 0, 1 ; load eax, ecx back
+ %endif
+ %else
+ %if %2 == 1 ; avg
+ cglobal highbd_sub_pixel_avg_variance%1xh, 7 + 2 * ARCH_X86_64, \
+ 7 + 2 * ARCH_X86_64, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, \
+ height, sse
+ %if ARCH_X86_64
+ %define h heightd
+ %define sec_str sec_strideq
+ %else
+ %define h dword heightm
+ %define sec_str sec_stridemp
+ %endif
+ %else
+ cglobal highbd_sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, \
+ x_offset, y_offset, dst, dst_stride, height, sse
+ %define h heightd
+ %endif
+
+ %define bilin_filter bilin_filter_m
+ %endif
+%endif
+
+ ASSERT %1 <= 16 ; m6 overflows if w > 16
+ pxor m6, m6 ; sum
+ pxor m7, m7 ; sse
+
+%if %1 < 16
+ sar h, 1
+%endif
+%if %2 == 1 ; avg
+ shl sec_str, 1
+%endif
+
+ ; FIXME(rbultje) replace by jumptable?
+ test x_offsetd, x_offsetd
+ jnz .x_nonzero
+ ; x_offset == 0
+ test y_offsetd, y_offsetd
+ jnz .x_zero_y_nonzero
+
+ ; x_offset == 0 && y_offset == 0
+.x_zero_y_zero_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m2, [srcq + 16]
+ mova m1, [dstq]
+ mova m3, [dstq + 16]
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m2, [secq+16]
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ lea srcq, [srcq + src_strideq*2]
+ lea dstq, [dstq + dst_strideq*2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m2, [srcq + src_strideq*2]
+ mova m1, [dstq]
+ mova m3, [dstq + dst_strideq*2]
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m2, [secq]
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ lea srcq, [srcq + src_strideq*4]
+ lea dstq, [dstq + dst_strideq*4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_zero_y_zero_loop
+ STORE_AND_RET
+
+.x_zero_y_nonzero:
+ cmp y_offsetd, 8
+ jne .x_zero_y_nonhalf
+
+ ; x_offset == 0 && y_offset == 0.5
+.x_zero_y_half_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq+16]
+ movu m4, [srcq+src_strideq*2]
+ movu m5, [srcq+src_strideq*2+16]
+ mova m2, [dstq]
+ mova m3, [dstq+16]
+ pavgw m0, m4
+ pavgw m1, m5
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m1, [secq+16]
+%endif
+ SUM_SSE m0, m2, m1, m3, m6, m7
+
+ lea srcq, [srcq + src_strideq*2]
+ lea dstq, [dstq + dst_strideq*2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m1, [srcq+src_strideq*2]
+ movu m5, [srcq+src_strideq*4]
+ mova m2, [dstq]
+ mova m3, [dstq+dst_strideq*2]
+ pavgw m0, m1
+ pavgw m1, m5
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m1, [secq]
+%endif
+ SUM_SSE m0, m2, m1, m3, m6, m7
+
+ lea srcq, [srcq + src_strideq*4]
+ lea dstq, [dstq + dst_strideq*4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_zero_y_half_loop
+ STORE_AND_RET
+
+.x_zero_y_nonhalf:
+ ; x_offset == 0 && y_offset == bilin interpolation
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl y_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+y_offsetq]
+ mova m9, [bilin_filter+y_offsetq+16]
+ mova m10, [pw_8]
+%define filter_y_a m8
+%define filter_y_b m9
+%define filter_rnd m10
+%else ; x86-32 or mmx
+%if ARCH_X86=1 && CONFIG_PIC=1
+; x_offset == 0, reuse x_offset reg
+%define tempq x_offsetq
+ add y_offsetq, g_bilin_filterm
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add y_offsetq, bilin_filter
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+.x_zero_y_other_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq + 16]
+ movu m4, [srcq+src_strideq*2]
+ movu m5, [srcq+src_strideq*2+16]
+ mova m2, [dstq]
+ mova m3, [dstq+16]
+ ; FIXME(rbultje) instead of out=((num-x)*in1+x*in2+rnd)>>log2(num), we can
+ ; also do out=in1+(((num-x)*(in2-in1)+rnd)>>log2(num)). Total number of
+ ; instructions is the same (5), but it is 1 mul instead of 2, so might be
+ ; slightly faster because of pmullw latency. It would also cut our rodata
+ ; tables in half for this function, and save 1-2 registers on x86-64.
+ pmullw m1, filter_y_a
+ pmullw m5, filter_y_b
+ paddw m1, filter_rnd
+ pmullw m0, filter_y_a
+ pmullw m4, filter_y_b
+ paddw m0, filter_rnd
+ paddw m1, m5
+ paddw m0, m4
+ psrlw m1, 4
+ psrlw m0, 4
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m1, [secq+16]
+%endif
+ SUM_SSE m0, m2, m1, m3, m6, m7
+
+ lea srcq, [srcq + src_strideq*2]
+ lea dstq, [dstq + dst_strideq*2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m1, [srcq+src_strideq*2]
+ movu m5, [srcq+src_strideq*4]
+ mova m4, m1
+ mova m2, [dstq]
+ mova m3, [dstq+dst_strideq*2]
+ pmullw m1, filter_y_a
+ pmullw m5, filter_y_b
+ paddw m1, filter_rnd
+ pmullw m0, filter_y_a
+ pmullw m4, filter_y_b
+ paddw m0, filter_rnd
+ paddw m1, m5
+ paddw m0, m4
+ psrlw m1, 4
+ psrlw m0, 4
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m1, [secq]
+%endif
+ SUM_SSE m0, m2, m1, m3, m6, m7
+
+ lea srcq, [srcq + src_strideq*4]
+ lea dstq, [dstq + dst_strideq*4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_zero_y_other_loop
+%undef filter_y_a
+%undef filter_y_b
+%undef filter_rnd
+ STORE_AND_RET
+
+.x_nonzero:
+ cmp x_offsetd, 8
+ jne .x_nonhalf
+ ; x_offset == 0.5
+ test y_offsetd, y_offsetd
+ jnz .x_half_y_nonzero
+
+ ; x_offset == 0.5 && y_offset == 0
+.x_half_y_zero_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq + 16]
+ movu m4, [srcq + 2]
+ movu m5, [srcq + 18]
+ mova m2, [dstq]
+ mova m3, [dstq + 16]
+ pavgw m0, m4
+ pavgw m1, m5
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m1, [secq+16]
+%endif
+ SUM_SSE m0, m2, m1, m3, m6, m7
+
+ lea srcq, [srcq + src_strideq*2]
+ lea dstq, [dstq + dst_strideq*2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m1, [srcq + src_strideq*2]
+ movu m4, [srcq + 2]
+ movu m5, [srcq + src_strideq*2 + 2]
+ mova m2, [dstq]
+ mova m3, [dstq + dst_strideq*2]
+ pavgw m0, m4
+ pavgw m1, m5
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m1, [secq]
+%endif
+ SUM_SSE m0, m2, m1, m3, m6, m7
+
+ lea srcq, [srcq + src_strideq*4]
+ lea dstq, [dstq + dst_strideq*4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_half_y_zero_loop
+ STORE_AND_RET
+
+.x_half_y_nonzero:
+ cmp y_offsetd, 8
+ jne .x_half_y_nonhalf
+
+ ; x_offset == 0.5 && y_offset == 0.5
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq+16]
+ movu m2, [srcq+2]
+ movu m3, [srcq+18]
+ lea srcq, [srcq + src_strideq*2]
+ pavgw m0, m2
+ pavgw m1, m3
+.x_half_y_half_loop:
+ movu m2, [srcq]
+ movu m3, [srcq + 16]
+ movu m4, [srcq + 2]
+ movu m5, [srcq + 18]
+ pavgw m2, m4
+ pavgw m3, m5
+ pavgw m0, m2
+ pavgw m1, m3
+ mova m4, [dstq]
+ mova m5, [dstq + 16]
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m1, [secq+16]
+%endif
+ SUM_SSE m0, m4, m1, m5, m6, m7
+ mova m0, m2
+ mova m1, m3
+
+ lea srcq, [srcq + src_strideq*2]
+ lea dstq, [dstq + dst_strideq*2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m2, [srcq+2]
+ lea srcq, [srcq + src_strideq*2]
+ pavgw m0, m2
+.x_half_y_half_loop:
+ movu m2, [srcq]
+ movu m3, [srcq + src_strideq*2]
+ movu m4, [srcq + 2]
+ movu m5, [srcq + src_strideq*2 + 2]
+ pavgw m2, m4
+ pavgw m3, m5
+ pavgw m0, m2
+ pavgw m2, m3
+ mova m4, [dstq]
+ mova m5, [dstq + dst_strideq*2]
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m2, [secq]
+%endif
+ SUM_SSE m0, m4, m2, m5, m6, m7
+ mova m0, m3
+
+ lea srcq, [srcq + src_strideq*4]
+ lea dstq, [dstq + dst_strideq*4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_half_y_half_loop
+ STORE_AND_RET
+
+.x_half_y_nonhalf:
+ ; x_offset == 0.5 && y_offset == bilin interpolation
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl y_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+y_offsetq]
+ mova m9, [bilin_filter+y_offsetq+16]
+ mova m10, [pw_8]
+%define filter_y_a m8
+%define filter_y_b m9
+%define filter_rnd m10
+%else ; x86_32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; x_offset == 0.5. We can reuse x_offset reg
+%define tempq x_offsetq
+ add y_offsetq, g_bilin_filterm
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add y_offsetq, bilin_filter
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq+16]
+ movu m2, [srcq+2]
+ movu m3, [srcq+18]
+ lea srcq, [srcq + src_strideq*2]
+ pavgw m0, m2
+ pavgw m1, m3
+.x_half_y_other_loop:
+ movu m2, [srcq]
+ movu m3, [srcq+16]
+ movu m4, [srcq+2]
+ movu m5, [srcq+18]
+ pavgw m2, m4
+ pavgw m3, m5
+ mova m4, m2
+ mova m5, m3
+ pmullw m1, filter_y_a
+ pmullw m3, filter_y_b
+ paddw m1, filter_rnd
+ paddw m1, m3
+ pmullw m0, filter_y_a
+ pmullw m2, filter_y_b
+ paddw m0, filter_rnd
+ psrlw m1, 4
+ paddw m0, m2
+ mova m2, [dstq]
+ psrlw m0, 4
+ mova m3, [dstq+16]
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m1, [secq+16]
+%endif
+ SUM_SSE m0, m2, m1, m3, m6, m7
+ mova m0, m4
+ mova m1, m5
+
+ lea srcq, [srcq + src_strideq*2]
+ lea dstq, [dstq + dst_strideq*2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m2, [srcq+2]
+ lea srcq, [srcq + src_strideq*2]
+ pavgw m0, m2
+.x_half_y_other_loop:
+ movu m2, [srcq]
+ movu m3, [srcq+src_strideq*2]
+ movu m4, [srcq+2]
+ movu m5, [srcq+src_strideq*2+2]
+ pavgw m2, m4
+ pavgw m3, m5
+ mova m4, m2
+ mova m5, m3
+ pmullw m4, filter_y_a
+ pmullw m3, filter_y_b
+ paddw m4, filter_rnd
+ paddw m4, m3
+ pmullw m0, filter_y_a
+ pmullw m2, filter_y_b
+ paddw m0, filter_rnd
+ psrlw m4, 4
+ paddw m0, m2
+ mova m2, [dstq]
+ psrlw m0, 4
+ mova m3, [dstq+dst_strideq*2]
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m4, [secq]
+%endif
+ SUM_SSE m0, m2, m4, m3, m6, m7
+ mova m0, m5
+
+ lea srcq, [srcq + src_strideq*4]
+ lea dstq, [dstq + dst_strideq*4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_half_y_other_loop
+%undef filter_y_a
+%undef filter_y_b
+%undef filter_rnd
+ STORE_AND_RET
+
+.x_nonhalf:
+ test y_offsetd, y_offsetd
+ jnz .x_nonhalf_y_nonzero
+
+ ; x_offset == bilin interpolation && y_offset == 0
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl x_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+x_offsetq]
+ mova m9, [bilin_filter+x_offsetq+16]
+ mova m10, [pw_8]
+%define filter_x_a m8
+%define filter_x_b m9
+%define filter_rnd m10
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; y_offset == 0. We can reuse y_offset reg.
+%define tempq y_offsetq
+ add x_offsetq, g_bilin_filterm
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add x_offsetq, bilin_filter
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+.x_other_y_zero_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq+16]
+ movu m2, [srcq+2]
+ movu m3, [srcq+18]
+ mova m4, [dstq]
+ mova m5, [dstq+16]
+ pmullw m1, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m1, filter_rnd
+ pmullw m0, filter_x_a
+ pmullw m2, filter_x_b
+ paddw m0, filter_rnd
+ paddw m1, m3
+ paddw m0, m2
+ psrlw m1, 4
+ psrlw m0, 4
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m1, [secq+16]
+%endif
+ SUM_SSE m0, m4, m1, m5, m6, m7
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m1, [srcq+src_strideq*2]
+ movu m2, [srcq+2]
+ movu m3, [srcq+src_strideq*2+2]
+ mova m4, [dstq]
+ mova m5, [dstq+dst_strideq*2]
+ pmullw m1, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m1, filter_rnd
+ pmullw m0, filter_x_a
+ pmullw m2, filter_x_b
+ paddw m0, filter_rnd
+ paddw m1, m3
+ paddw m0, m2
+ psrlw m1, 4
+ psrlw m0, 4
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m1, [secq]
+%endif
+ SUM_SSE m0, m4, m1, m5, m6, m7
+
+ lea srcq, [srcq+src_strideq*4]
+ lea dstq, [dstq+dst_strideq*4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_other_y_zero_loop
+%undef filter_x_a
+%undef filter_x_b
+%undef filter_rnd
+ STORE_AND_RET
+
+.x_nonhalf_y_nonzero:
+ cmp y_offsetd, 8
+ jne .x_nonhalf_y_nonhalf
+
+ ; x_offset == bilin interpolation && y_offset == 0.5
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl x_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+x_offsetq]
+ mova m9, [bilin_filter+x_offsetq+16]
+ mova m10, [pw_8]
+%define filter_x_a m8
+%define filter_x_b m9
+%define filter_rnd m10
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; y_offset == 0.5. We can reuse y_offset reg.
+%define tempq y_offsetq
+ add x_offsetq, g_bilin_filterm
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add x_offsetq, bilin_filter
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq+16]
+ movu m2, [srcq+2]
+ movu m3, [srcq+18]
+ pmullw m0, filter_x_a
+ pmullw m2, filter_x_b
+ paddw m0, filter_rnd
+ pmullw m1, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m1, filter_rnd
+ paddw m0, m2
+ paddw m1, m3
+ psrlw m0, 4
+ psrlw m1, 4
+ lea srcq, [srcq+src_strideq*2]
+.x_other_y_half_loop:
+ movu m2, [srcq]
+ movu m3, [srcq+16]
+ movu m4, [srcq+2]
+ movu m5, [srcq+18]
+ pmullw m2, filter_x_a
+ pmullw m4, filter_x_b
+ paddw m2, filter_rnd
+ pmullw m3, filter_x_a
+ pmullw m5, filter_x_b
+ paddw m3, filter_rnd
+ paddw m2, m4
+ paddw m3, m5
+ mova m4, [dstq]
+ mova m5, [dstq+16]
+ psrlw m2, 4
+ psrlw m3, 4
+ pavgw m0, m2
+ pavgw m1, m3
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m1, [secq+16]
+%endif
+ SUM_SSE m0, m4, m1, m5, m6, m7
+ mova m0, m2
+ mova m1, m3
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m2, [srcq+2]
+ pmullw m0, filter_x_a
+ pmullw m2, filter_x_b
+ paddw m0, filter_rnd
+ paddw m0, m2
+ psrlw m0, 4
+ lea srcq, [srcq+src_strideq*2]
+.x_other_y_half_loop:
+ movu m2, [srcq]
+ movu m3, [srcq+src_strideq*2]
+ movu m4, [srcq+2]
+ movu m5, [srcq+src_strideq*2+2]
+ pmullw m2, filter_x_a
+ pmullw m4, filter_x_b
+ paddw m2, filter_rnd
+ pmullw m3, filter_x_a
+ pmullw m5, filter_x_b
+ paddw m3, filter_rnd
+ paddw m2, m4
+ paddw m3, m5
+ mova m4, [dstq]
+ mova m5, [dstq+dst_strideq*2]
+ psrlw m2, 4
+ psrlw m3, 4
+ pavgw m0, m2
+ pavgw m2, m3
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m2, [secq]
+%endif
+ SUM_SSE m0, m4, m2, m5, m6, m7
+ mova m0, m3
+
+ lea srcq, [srcq+src_strideq*4]
+ lea dstq, [dstq+dst_strideq*4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_other_y_half_loop
+%undef filter_x_a
+%undef filter_x_b
+%undef filter_rnd
+ STORE_AND_RET
+
+.x_nonhalf_y_nonhalf:
+; loading filter - this is same as in 8-bit depth
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl x_offsetd, filter_idx_shift ; filter_idx_shift = 5
+ shl y_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+x_offsetq]
+ mova m9, [bilin_filter+x_offsetq+16]
+ mova m10, [bilin_filter+y_offsetq]
+ mova m11, [bilin_filter+y_offsetq+16]
+ mova m12, [pw_8]
+%define filter_x_a m8
+%define filter_x_b m9
+%define filter_y_a m10
+%define filter_y_b m11
+%define filter_rnd m12
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; In this case, there is NO unused register. Used src_stride register. Later,
+; src_stride has to be loaded from stack when it is needed.
+%define tempq src_strideq
+ mov tempq, g_bilin_filterm
+ add x_offsetq, tempq
+ add y_offsetq, tempq
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add x_offsetq, bilin_filter
+ add y_offsetq, bilin_filter
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+; end of load filter
+
+ ; x_offset == bilin interpolation && y_offset == bilin interpolation
+%if %1 == 16
+ movu m0, [srcq]
+ movu m2, [srcq+2]
+ movu m1, [srcq+16]
+ movu m3, [srcq+18]
+ pmullw m0, filter_x_a
+ pmullw m2, filter_x_b
+ paddw m0, filter_rnd
+ pmullw m1, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m1, filter_rnd
+ paddw m0, m2
+ paddw m1, m3
+ psrlw m0, 4
+ psrlw m1, 4
+
+ INC_SRC_BY_SRC_STRIDE
+
+.x_other_y_other_loop:
+ movu m2, [srcq]
+ movu m4, [srcq+2]
+ movu m3, [srcq+16]
+ movu m5, [srcq+18]
+ pmullw m2, filter_x_a
+ pmullw m4, filter_x_b
+ paddw m2, filter_rnd
+ pmullw m3, filter_x_a
+ pmullw m5, filter_x_b
+ paddw m3, filter_rnd
+ paddw m2, m4
+ paddw m3, m5
+ psrlw m2, 4
+ psrlw m3, 4
+ mova m4, m2
+ mova m5, m3
+ pmullw m0, filter_y_a
+ pmullw m2, filter_y_b
+ paddw m0, filter_rnd
+ pmullw m1, filter_y_a
+ pmullw m3, filter_y_b
+ paddw m0, m2
+ paddw m1, filter_rnd
+ mova m2, [dstq]
+ paddw m1, m3
+ psrlw m0, 4
+ psrlw m1, 4
+ mova m3, [dstq+16]
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ pavgw m1, [secq+16]
+%endif
+ SUM_SSE m0, m2, m1, m3, m6, m7
+ mova m0, m4
+ mova m1, m5
+
+ INC_SRC_BY_SRC_STRIDE
+ lea dstq, [dstq + dst_strideq * 2]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%else ; %1 < 16
+ movu m0, [srcq]
+ movu m2, [srcq+2]
+ pmullw m0, filter_x_a
+ pmullw m2, filter_x_b
+ paddw m0, filter_rnd
+ paddw m0, m2
+ psrlw m0, 4
+
+ INC_SRC_BY_SRC_STRIDE
+
+.x_other_y_other_loop:
+ movu m2, [srcq]
+ movu m4, [srcq+2]
+ movu m3, [srcq+src_strideq*2]
+ movu m5, [srcq+src_strideq*2+2]
+ pmullw m2, filter_x_a
+ pmullw m4, filter_x_b
+ paddw m2, filter_rnd
+ pmullw m3, filter_x_a
+ pmullw m5, filter_x_b
+ paddw m3, filter_rnd
+ paddw m2, m4
+ paddw m3, m5
+ psrlw m2, 4
+ psrlw m3, 4
+ mova m4, m2
+ mova m5, m3
+ pmullw m0, filter_y_a
+ pmullw m2, filter_y_b
+ paddw m0, filter_rnd
+ pmullw m4, filter_y_a
+ pmullw m3, filter_y_b
+ paddw m0, m2
+ paddw m4, filter_rnd
+ mova m2, [dstq]
+ paddw m4, m3
+ psrlw m0, 4
+ psrlw m4, 4
+ mova m3, [dstq+dst_strideq*2]
+%if %2 == 1 ; avg
+ pavgw m0, [secq]
+ add secq, sec_str
+ pavgw m4, [secq]
+%endif
+ SUM_SSE m0, m2, m4, m3, m6, m7
+ mova m0, m5
+
+ INC_SRC_BY_SRC_2STRIDE
+ lea dstq, [dstq + dst_strideq * 4]
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+%endif
+ dec h
+ jg .x_other_y_other_loop
+%undef filter_x_a
+%undef filter_x_b
+%undef filter_y_a
+%undef filter_y_b
+%undef filter_rnd
+ STORE_AND_RET
+%endmacro
+
+INIT_XMM sse2
+SUBPEL_VARIANCE 8
+SUBPEL_VARIANCE 16
+
+INIT_XMM sse2
+SUBPEL_VARIANCE 8, 1
+SUBPEL_VARIANCE 16, 1
diff --git a/media/libvpx/vp9/encoder/x86/vp9_highbd_variance_sse2.c b/media/libvpx/vp9/encoder/x86/vp9_highbd_variance_sse2.c
new file mode 100644
index 000000000..29b7b2782
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_highbd_variance_sse2.c
@@ -0,0 +1,349 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include "./vpx_config.h"
+#include "vp9/common/vp9_common.h"
+
+#include "vp9/encoder/vp9_variance.h"
+#include "vpx_ports/mem.h"
+
+#define DECL(w, opt) \
+int vp9_highbd_sub_pixel_variance##w##xh_##opt(const uint16_t *src, \
+ ptrdiff_t src_stride, \
+ int x_offset, int y_offset, \
+ const uint16_t *dst, \
+ ptrdiff_t dst_stride, \
+ int height, unsigned int *sse);
+#define DECLS(opt1, opt2) \
+DECL(8, opt1); \
+DECL(16, opt1)
+
+DECLS(sse2, sse);
+// DECLS(ssse3, ssse3);
+#undef DECLS
+#undef DECL
+
+#define FN(w, h, wf, wlog2, hlog2, opt, cast) \
+uint32_t vp9_highbd_sub_pixel_variance##w##x##h##_##opt(const uint8_t *src8, \
+ int src_stride, \
+ int x_offset, \
+ int y_offset, \
+ const uint8_t *dst8, \
+ int dst_stride, \
+ uint32_t *sse_ptr) { \
+ uint32_t sse; \
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \
+ int se = vp9_highbd_sub_pixel_variance##wf##xh_##opt(src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, h, \
+ &sse); \
+ if (w > wf) { \
+ unsigned int sse2; \
+ int se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt(src + 16, \
+ src_stride, \
+ x_offset, y_offset, \
+ dst + 16, \
+ dst_stride, \
+ h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ if (w > wf * 2) { \
+ se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt(src + 32, src_stride, \
+ x_offset, y_offset, \
+ dst + 32, dst_stride, \
+ h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt( \
+ src + 48, src_stride, x_offset, y_offset, \
+ dst + 48, dst_stride, h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ } \
+ } \
+ *sse_ptr = sse; \
+ return sse - ((cast se * se) >> (wlog2 + hlog2)); \
+} \
+\
+uint32_t vp9_highbd_10_sub_pixel_variance##w##x##h##_##opt( \
+ const uint8_t *src8, int src_stride, int x_offset, int y_offset, \
+ const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr) { \
+ uint32_t sse; \
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \
+ int se = vp9_highbd_sub_pixel_variance##wf##xh_##opt(src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ h, &sse); \
+ if (w > wf) { \
+ uint32_t sse2; \
+ int se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt(src + 16, \
+ src_stride, \
+ x_offset, y_offset, \
+ dst + 16, \
+ dst_stride, \
+ h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ if (w > wf * 2) { \
+ se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt(src + 32, src_stride, \
+ x_offset, y_offset, \
+ dst + 32, dst_stride, \
+ h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt(src + 48, src_stride, \
+ x_offset, y_offset, \
+ dst + 48, dst_stride, \
+ h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ } \
+ } \
+ se = ROUND_POWER_OF_TWO(se, 2); \
+ sse = ROUND_POWER_OF_TWO(sse, 4); \
+ *sse_ptr = sse; \
+ return sse - ((cast se * se) >> (wlog2 + hlog2)); \
+} \
+\
+uint32_t vp9_highbd_12_sub_pixel_variance##w##x##h##_##opt( \
+ const uint8_t *src8, int src_stride, int x_offset, int y_offset, \
+ const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr) { \
+ int start_row; \
+ uint32_t sse; \
+ int se = 0; \
+ uint64_t long_sse = 0; \
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \
+ for (start_row = 0; start_row < h; start_row +=16) { \
+ uint32_t sse2; \
+ int height = h - start_row < 16 ? h - start_row : 16; \
+ int se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt( \
+ src + (start_row * src_stride), src_stride, \
+ x_offset, y_offset, dst + (start_row * dst_stride), \
+ dst_stride, height, &sse2); \
+ se += se2; \
+ long_sse += sse2; \
+ if (w > wf) { \
+ se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt( \
+ src + 16 + (start_row * src_stride), src_stride, \
+ x_offset, y_offset, dst + 16 + (start_row * dst_stride), \
+ dst_stride, height, &sse2); \
+ se += se2; \
+ long_sse += sse2; \
+ if (w > wf * 2) { \
+ se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt( \
+ src + 32 + (start_row * src_stride), src_stride, \
+ x_offset, y_offset, dst + 32 + (start_row * dst_stride), \
+ dst_stride, height, &sse2); \
+ se += se2; \
+ long_sse += sse2; \
+ se2 = vp9_highbd_sub_pixel_variance##wf##xh_##opt( \
+ src + 48 + (start_row * src_stride), src_stride, \
+ x_offset, y_offset, dst + 48 + (start_row * dst_stride), \
+ dst_stride, height, &sse2); \
+ se += se2; \
+ long_sse += sse2; \
+ }\
+ } \
+ } \
+ se = ROUND_POWER_OF_TWO(se, 4); \
+ sse = ROUND_POWER_OF_TWO(long_sse, 8); \
+ *sse_ptr = sse; \
+ return sse - ((cast se * se) >> (wlog2 + hlog2)); \
+}
+
+#define FNS(opt1, opt2) \
+FN(64, 64, 16, 6, 6, opt1, (int64_t)); \
+FN(64, 32, 16, 6, 5, opt1, (int64_t)); \
+FN(32, 64, 16, 5, 6, opt1, (int64_t)); \
+FN(32, 32, 16, 5, 5, opt1, (int64_t)); \
+FN(32, 16, 16, 5, 4, opt1, (int64_t)); \
+FN(16, 32, 16, 4, 5, opt1, (int64_t)); \
+FN(16, 16, 16, 4, 4, opt1, (int64_t)); \
+FN(16, 8, 16, 4, 3, opt1, (int64_t)); \
+FN(8, 16, 8, 3, 4, opt1, (int64_t)); \
+FN(8, 8, 8, 3, 3, opt1, (int64_t)); \
+FN(8, 4, 8, 3, 2, opt1, (int64_t));
+
+
+FNS(sse2, sse);
+
+#undef FNS
+#undef FN
+
+#define DECL(w, opt) \
+int vp9_highbd_sub_pixel_avg_variance##w##xh_##opt(const uint16_t *src, \
+ ptrdiff_t src_stride, \
+ int x_offset, int y_offset, \
+ const uint16_t *dst, \
+ ptrdiff_t dst_stride, \
+ const uint16_t *sec, \
+ ptrdiff_t sec_stride, \
+ int height, \
+ unsigned int *sse);
+#define DECLS(opt1) \
+DECL(16, opt1) \
+DECL(8, opt1)
+
+DECLS(sse2);
+#undef DECL
+#undef DECLS
+
+#define FN(w, h, wf, wlog2, hlog2, opt, cast) \
+uint32_t vp9_highbd_sub_pixel_avg_variance##w##x##h##_##opt( \
+ const uint8_t *src8, int src_stride, int x_offset, int y_offset, \
+ const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr, \
+ const uint8_t *sec8) { \
+ uint32_t sse; \
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \
+ uint16_t *sec = CONVERT_TO_SHORTPTR(sec8); \
+ int se = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, sec, w, h, &sse); \
+ if (w > wf) { \
+ uint32_t sse2; \
+ int se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 16, src_stride, x_offset, y_offset, \
+ dst + 16, dst_stride, sec + 16, w, h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ if (w > wf * 2) { \
+ se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 32, src_stride, x_offset, y_offset, \
+ dst + 32, dst_stride, sec + 32, w, h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 48, src_stride, x_offset, y_offset, \
+ dst + 48, dst_stride, sec + 48, w, h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ } \
+ } \
+ *sse_ptr = sse; \
+ return sse - ((cast se * se) >> (wlog2 + hlog2)); \
+} \
+\
+uint32_t vp9_highbd_10_sub_pixel_avg_variance##w##x##h##_##opt( \
+ const uint8_t *src8, int src_stride, int x_offset, int y_offset, \
+ const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr, \
+ const uint8_t *sec8) { \
+ uint32_t sse; \
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \
+ uint16_t *sec = CONVERT_TO_SHORTPTR(sec8); \
+ int se = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, \
+ sec, w, h, &sse); \
+ if (w > wf) { \
+ uint32_t sse2; \
+ int se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 16, src_stride, \
+ x_offset, y_offset, \
+ dst + 16, dst_stride, \
+ sec + 16, w, h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ if (w > wf * 2) { \
+ se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 32, src_stride, \
+ x_offset, y_offset, \
+ dst + 32, dst_stride, \
+ sec + 32, w, h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 48, src_stride, \
+ x_offset, y_offset, \
+ dst + 48, dst_stride, \
+ sec + 48, w, h, &sse2); \
+ se += se2; \
+ sse += sse2; \
+ } \
+ } \
+ se = ROUND_POWER_OF_TWO(se, 2); \
+ sse = ROUND_POWER_OF_TWO(sse, 4); \
+ *sse_ptr = sse; \
+ return sse - ((cast se * se) >> (wlog2 + hlog2)); \
+} \
+\
+uint32_t vp9_highbd_12_sub_pixel_avg_variance##w##x##h##_##opt( \
+ const uint8_t *src8, int src_stride, int x_offset, int y_offset, \
+ const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr, \
+ const uint8_t *sec8) { \
+ int start_row; \
+ uint32_t sse; \
+ int se = 0; \
+ uint64_t long_sse = 0; \
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
+ uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \
+ uint16_t *sec = CONVERT_TO_SHORTPTR(sec8); \
+ for (start_row = 0; start_row < h; start_row +=16) { \
+ uint32_t sse2; \
+ int height = h - start_row < 16 ? h - start_row : 16; \
+ int se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + (start_row * src_stride), src_stride, x_offset, \
+ y_offset, dst + (start_row * dst_stride), dst_stride, \
+ sec + (start_row * w), w, height, &sse2); \
+ se += se2; \
+ long_sse += sse2; \
+ if (w > wf) { \
+ se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 16 + (start_row * src_stride), src_stride, \
+ x_offset, y_offset, \
+ dst + 16 + (start_row * dst_stride), dst_stride, \
+ sec + 16 + (start_row * w), w, height, &sse2); \
+ se += se2; \
+ long_sse += sse2; \
+ if (w > wf * 2) { \
+ se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 32 + (start_row * src_stride), src_stride, \
+ x_offset, y_offset, \
+ dst + 32 + (start_row * dst_stride), dst_stride, \
+ sec + 32 + (start_row * w), w, height, &sse2); \
+ se += se2; \
+ long_sse += sse2; \
+ se2 = vp9_highbd_sub_pixel_avg_variance##wf##xh_##opt( \
+ src + 48 + (start_row * src_stride), src_stride, \
+ x_offset, y_offset, \
+ dst + 48 + (start_row * dst_stride), dst_stride, \
+ sec + 48 + (start_row * w), w, height, &sse2); \
+ se += se2; \
+ long_sse += sse2; \
+ } \
+ } \
+ } \
+ se = ROUND_POWER_OF_TWO(se, 4); \
+ sse = ROUND_POWER_OF_TWO(long_sse, 8); \
+ *sse_ptr = sse; \
+ return sse - ((cast se * se) >> (wlog2 + hlog2)); \
+}
+
+
+#define FNS(opt1) \
+FN(64, 64, 16, 6, 6, opt1, (int64_t)); \
+FN(64, 32, 16, 6, 5, opt1, (int64_t)); \
+FN(32, 64, 16, 5, 6, opt1, (int64_t)); \
+FN(32, 32, 16, 5, 5, opt1, (int64_t)); \
+FN(32, 16, 16, 5, 4, opt1, (int64_t)); \
+FN(16, 32, 16, 4, 5, opt1, (int64_t)); \
+FN(16, 16, 16, 4, 4, opt1, (int64_t)); \
+FN(16, 8, 16, 4, 3, opt1, (int64_t)); \
+FN(8, 16, 8, 4, 3, opt1, (int64_t)); \
+FN(8, 8, 8, 3, 3, opt1, (int64_t)); \
+FN(8, 4, 8, 3, 2, opt1, (int64_t));
+
+FNS(sse2);
+
+#undef FNS
+#undef FN
diff --git a/media/libvpx/vp9/encoder/x86/vp9_quantize_sse2.c b/media/libvpx/vp9/encoder/x86/vp9_quantize_sse2.c
new file mode 100644
index 000000000..71fdfd716
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_quantize_sse2.c
@@ -0,0 +1,419 @@
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h>
+#include <xmmintrin.h>
+
+#include "./vp9_rtcd.h"
+#include "vpx/vpx_integer.h"
+
+void vp9_quantize_b_sse2(const int16_t* coeff_ptr, intptr_t n_coeffs,
+ int skip_block, const int16_t* zbin_ptr,
+ const int16_t* round_ptr, const int16_t* quant_ptr,
+ const int16_t* quant_shift_ptr, int16_t* qcoeff_ptr,
+ int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
+ uint16_t* eob_ptr,
+ const int16_t* scan_ptr,
+ const int16_t* iscan_ptr) {
+ __m128i zero;
+ (void)scan_ptr;
+
+ coeff_ptr += n_coeffs;
+ iscan_ptr += n_coeffs;
+ qcoeff_ptr += n_coeffs;
+ dqcoeff_ptr += n_coeffs;
+ n_coeffs = -n_coeffs;
+ zero = _mm_setzero_si128();
+ if (!skip_block) {
+ __m128i eob;
+ __m128i zbin;
+ __m128i round, quant, dequant, shift;
+ {
+ __m128i coeff0, coeff1;
+
+ // Setup global values
+ {
+ __m128i pw_1;
+ zbin = _mm_load_si128((const __m128i*)zbin_ptr);
+ round = _mm_load_si128((const __m128i*)round_ptr);
+ quant = _mm_load_si128((const __m128i*)quant_ptr);
+ pw_1 = _mm_set1_epi16(1);
+ zbin = _mm_sub_epi16(zbin, pw_1);
+ dequant = _mm_load_si128((const __m128i*)dequant_ptr);
+ shift = _mm_load_si128((const __m128i*)quant_shift_ptr);
+ }
+
+ {
+ __m128i coeff0_sign, coeff1_sign;
+ __m128i qcoeff0, qcoeff1;
+ __m128i qtmp0, qtmp1;
+ __m128i cmp_mask0, cmp_mask1;
+ // Do DC and first 15 AC
+ coeff0 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs));
+ coeff1 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs) + 1);
+
+ // Poor man's sign extract
+ coeff0_sign = _mm_srai_epi16(coeff0, 15);
+ coeff1_sign = _mm_srai_epi16(coeff1, 15);
+ qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
+ zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
+ cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
+ qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+ round = _mm_unpackhi_epi64(round, round);
+ qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+ qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+ quant = _mm_unpackhi_epi64(quant, quant);
+ qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+ qtmp0 = _mm_add_epi16(qtmp0, qcoeff0);
+ qtmp1 = _mm_add_epi16(qtmp1, qcoeff1);
+ qcoeff0 = _mm_mulhi_epi16(qtmp0, shift);
+ shift = _mm_unpackhi_epi64(shift, shift);
+ qcoeff1 = _mm_mulhi_epi16(qtmp1, shift);
+
+ // Reinsert signs
+ qcoeff0 = _mm_xor_si128(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(qcoeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ // Mask out zbin threshold coeffs
+ qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
+ qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
+
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+ coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+ dequant = _mm_unpackhi_epi64(dequant, dequant);
+ coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+ }
+
+ {
+ // Scan for eob
+ __m128i zero_coeff0, zero_coeff1;
+ __m128i nzero_coeff0, nzero_coeff1;
+ __m128i iscan0, iscan1;
+ __m128i eob1;
+ zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+ zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+ nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+ nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+ iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+ iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+ // Add one to convert from indices to counts
+ iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+ iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+ eob = _mm_and_si128(iscan0, nzero_coeff0);
+ eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+ eob = _mm_max_epi16(eob, eob1);
+ }
+ n_coeffs += 8 * 2;
+ }
+
+ // AC only loop
+ while (n_coeffs < 0) {
+ __m128i coeff0, coeff1;
+ {
+ __m128i coeff0_sign, coeff1_sign;
+ __m128i qcoeff0, qcoeff1;
+ __m128i qtmp0, qtmp1;
+ __m128i cmp_mask0, cmp_mask1;
+
+ coeff0 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs));
+ coeff1 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs) + 1);
+
+ // Poor man's sign extract
+ coeff0_sign = _mm_srai_epi16(coeff0, 15);
+ coeff1_sign = _mm_srai_epi16(coeff1, 15);
+ qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
+ cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
+ qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+ qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+ qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+ qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+ qtmp0 = _mm_add_epi16(qtmp0, qcoeff0);
+ qtmp1 = _mm_add_epi16(qtmp1, qcoeff1);
+ qcoeff0 = _mm_mulhi_epi16(qtmp0, shift);
+ qcoeff1 = _mm_mulhi_epi16(qtmp1, shift);
+
+ // Reinsert signs
+ qcoeff0 = _mm_xor_si128(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(qcoeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ // Mask out zbin threshold coeffs
+ qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
+ qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
+
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+ coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+ coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+ }
+
+ {
+ // Scan for eob
+ __m128i zero_coeff0, zero_coeff1;
+ __m128i nzero_coeff0, nzero_coeff1;
+ __m128i iscan0, iscan1;
+ __m128i eob0, eob1;
+ zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+ zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+ nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+ nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+ iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+ iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+ // Add one to convert from indices to counts
+ iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+ iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+ eob0 = _mm_and_si128(iscan0, nzero_coeff0);
+ eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+ eob0 = _mm_max_epi16(eob0, eob1);
+ eob = _mm_max_epi16(eob, eob0);
+ }
+ n_coeffs += 8 * 2;
+ }
+
+ // Accumulate EOB
+ {
+ __m128i eob_shuffled;
+ eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ *eob_ptr = _mm_extract_epi16(eob, 1);
+ }
+ } else {
+ do {
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+ n_coeffs += 8 * 2;
+ } while (n_coeffs < 0);
+ *eob_ptr = 0;
+ }
+}
+
+void vp9_quantize_fp_sse2(const int16_t* coeff_ptr, intptr_t n_coeffs,
+ int skip_block, const int16_t* zbin_ptr,
+ const int16_t* round_ptr, const int16_t* quant_ptr,
+ const int16_t* quant_shift_ptr, int16_t* qcoeff_ptr,
+ int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
+ uint16_t* eob_ptr,
+ const int16_t* scan_ptr,
+ const int16_t* iscan_ptr) {
+ __m128i zero;
+ __m128i thr;
+ int16_t nzflag;
+ (void)scan_ptr;
+ (void)zbin_ptr;
+ (void)quant_shift_ptr;
+
+ coeff_ptr += n_coeffs;
+ iscan_ptr += n_coeffs;
+ qcoeff_ptr += n_coeffs;
+ dqcoeff_ptr += n_coeffs;
+ n_coeffs = -n_coeffs;
+ zero = _mm_setzero_si128();
+
+ if (!skip_block) {
+ __m128i eob;
+ __m128i round, quant, dequant;
+ {
+ __m128i coeff0, coeff1;
+
+ // Setup global values
+ {
+ round = _mm_load_si128((const __m128i*)round_ptr);
+ quant = _mm_load_si128((const __m128i*)quant_ptr);
+ dequant = _mm_load_si128((const __m128i*)dequant_ptr);
+ }
+
+ {
+ __m128i coeff0_sign, coeff1_sign;
+ __m128i qcoeff0, qcoeff1;
+ __m128i qtmp0, qtmp1;
+ // Do DC and first 15 AC
+ coeff0 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs));
+ coeff1 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs) + 1);
+
+ // Poor man's sign extract
+ coeff0_sign = _mm_srai_epi16(coeff0, 15);
+ coeff1_sign = _mm_srai_epi16(coeff1, 15);
+ qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+ round = _mm_unpackhi_epi64(round, round);
+ qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+ qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+ quant = _mm_unpackhi_epi64(quant, quant);
+ qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+ // Reinsert signs
+ qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+ coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+ dequant = _mm_unpackhi_epi64(dequant, dequant);
+ coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+ }
+
+ {
+ // Scan for eob
+ __m128i zero_coeff0, zero_coeff1;
+ __m128i nzero_coeff0, nzero_coeff1;
+ __m128i iscan0, iscan1;
+ __m128i eob1;
+ zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+ zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+ nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+ nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+ iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+ iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+ // Add one to convert from indices to counts
+ iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+ iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+ eob = _mm_and_si128(iscan0, nzero_coeff0);
+ eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+ eob = _mm_max_epi16(eob, eob1);
+ }
+ n_coeffs += 8 * 2;
+ }
+
+ thr = _mm_srai_epi16(dequant, 1);
+
+ // AC only loop
+ while (n_coeffs < 0) {
+ __m128i coeff0, coeff1;
+ {
+ __m128i coeff0_sign, coeff1_sign;
+ __m128i qcoeff0, qcoeff1;
+ __m128i qtmp0, qtmp1;
+
+ coeff0 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs));
+ coeff1 = _mm_load_si128((const __m128i*)(coeff_ptr + n_coeffs) + 1);
+
+ // Poor man's sign extract
+ coeff0_sign = _mm_srai_epi16(coeff0, 15);
+ coeff1_sign = _mm_srai_epi16(coeff1, 15);
+ qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
+ _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
+
+ if (nzflag) {
+ qcoeff0 = _mm_adds_epi16(qcoeff0, round);
+ qcoeff1 = _mm_adds_epi16(qcoeff1, round);
+ qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
+ qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
+
+ // Reinsert signs
+ qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
+ qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
+ qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
+ qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
+
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
+
+ coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
+ coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
+ } else {
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+ }
+ }
+
+ if (nzflag) {
+ // Scan for eob
+ __m128i zero_coeff0, zero_coeff1;
+ __m128i nzero_coeff0, nzero_coeff1;
+ __m128i iscan0, iscan1;
+ __m128i eob0, eob1;
+ zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
+ zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
+ nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
+ nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
+ iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
+ iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
+ // Add one to convert from indices to counts
+ iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
+ iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
+ eob0 = _mm_and_si128(iscan0, nzero_coeff0);
+ eob1 = _mm_and_si128(iscan1, nzero_coeff1);
+ eob0 = _mm_max_epi16(eob0, eob1);
+ eob = _mm_max_epi16(eob, eob0);
+ }
+ n_coeffs += 8 * 2;
+ }
+
+ // Accumulate EOB
+ {
+ __m128i eob_shuffled;
+ eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
+ eob = _mm_max_epi16(eob, eob_shuffled);
+ *eob_ptr = _mm_extract_epi16(eob, 1);
+ }
+ } else {
+ do {
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
+ _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
+ n_coeffs += 8 * 2;
+ } while (n_coeffs < 0);
+ *eob_ptr = 0;
+ }
+}
diff --git a/media/libvpx/vp9/encoder/x86/vp9_quantize_ssse3_x86_64.asm b/media/libvpx/vp9/encoder/x86/vp9_quantize_ssse3_x86_64.asm
new file mode 100644
index 000000000..449d52b22
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_quantize_ssse3_x86_64.asm
@@ -0,0 +1,399 @@
+;
+; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION_RODATA
+pw_1: times 8 dw 1
+
+SECTION .text
+
+; TODO(yunqingwang)fix quantize_b code for skip=1 case.
+%macro QUANTIZE_FN 2
+cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
+ shift, qcoeff, dqcoeff, dequant, \
+ eob, scan, iscan
+ cmp dword skipm, 0
+ jne .blank
+
+ ; actual quantize loop - setup pointers, rounders, etc.
+ movifnidn coeffq, coeffmp
+ movifnidn ncoeffq, ncoeffmp
+ mov r2, dequantmp
+ movifnidn zbinq, zbinmp
+ movifnidn roundq, roundmp
+ movifnidn quantq, quantmp
+ mova m0, [zbinq] ; m0 = zbin
+ mova m1, [roundq] ; m1 = round
+ mova m2, [quantq] ; m2 = quant
+%ifidn %1, b_32x32
+ pcmpeqw m5, m5
+ psrlw m5, 15
+ paddw m0, m5
+ paddw m1, m5
+ psrlw m0, 1 ; m0 = (m0 + 1) / 2
+ psrlw m1, 1 ; m1 = (m1 + 1) / 2
+%endif
+ mova m3, [r2q] ; m3 = dequant
+ psubw m0, [pw_1]
+ mov r2, shiftmp
+ mov r3, qcoeffmp
+ mova m4, [r2] ; m4 = shift
+ mov r4, dqcoeffmp
+ mov r5, iscanmp
+%ifidn %1, b_32x32
+ psllw m4, 1
+%endif
+ pxor m5, m5 ; m5 = dedicated zero
+ DEFINE_ARGS coeff, ncoeff, d1, qcoeff, dqcoeff, iscan, d2, d3, d4, d5, eob
+ lea coeffq, [ coeffq+ncoeffq*2]
+ lea iscanq, [ iscanq+ncoeffq*2]
+ lea qcoeffq, [ qcoeffq+ncoeffq*2]
+ lea dqcoeffq, [dqcoeffq+ncoeffq*2]
+ neg ncoeffq
+
+ ; get DC and first 15 AC coeffs
+ mova m9, [ coeffq+ncoeffq*2+ 0] ; m9 = c[i]
+ mova m10, [ coeffq+ncoeffq*2+16] ; m10 = c[i]
+ pabsw m6, m9 ; m6 = abs(m9)
+ pabsw m11, m10 ; m11 = abs(m10)
+ pcmpgtw m7, m6, m0 ; m7 = c[i] >= zbin
+ punpckhqdq m0, m0
+ pcmpgtw m12, m11, m0 ; m12 = c[i] >= zbin
+ paddsw m6, m1 ; m6 += round
+ punpckhqdq m1, m1
+ paddsw m11, m1 ; m11 += round
+ pmulhw m8, m6, m2 ; m8 = m6*q>>16
+ punpckhqdq m2, m2
+ pmulhw m13, m11, m2 ; m13 = m11*q>>16
+ paddw m8, m6 ; m8 += m6
+ paddw m13, m11 ; m13 += m11
+ pmulhw m8, m4 ; m8 = m8*qsh>>16
+ punpckhqdq m4, m4
+ pmulhw m13, m4 ; m13 = m13*qsh>>16
+ psignw m8, m9 ; m8 = reinsert sign
+ psignw m13, m10 ; m13 = reinsert sign
+ pand m8, m7
+ pand m13, m12
+ mova [qcoeffq+ncoeffq*2+ 0], m8
+ mova [qcoeffq+ncoeffq*2+16], m13
+%ifidn %1, b_32x32
+ pabsw m8, m8
+ pabsw m13, m13
+%endif
+ pmullw m8, m3 ; dqc[i] = qc[i] * q
+ punpckhqdq m3, m3
+ pmullw m13, m3 ; dqc[i] = qc[i] * q
+%ifidn %1, b_32x32
+ psrlw m8, 1
+ psrlw m13, 1
+ psignw m8, m9
+ psignw m13, m10
+%endif
+ mova [dqcoeffq+ncoeffq*2+ 0], m8
+ mova [dqcoeffq+ncoeffq*2+16], m13
+ pcmpeqw m8, m5 ; m8 = c[i] == 0
+ pcmpeqw m13, m5 ; m13 = c[i] == 0
+ mova m6, [ iscanq+ncoeffq*2+ 0] ; m6 = scan[i]
+ mova m11, [ iscanq+ncoeffq*2+16] ; m11 = scan[i]
+ psubw m6, m7 ; m6 = scan[i] + 1
+ psubw m11, m12 ; m11 = scan[i] + 1
+ pandn m8, m6 ; m8 = max(eob)
+ pandn m13, m11 ; m13 = max(eob)
+ pmaxsw m8, m13
+ add ncoeffq, mmsize
+ jz .accumulate_eob
+
+.ac_only_loop:
+ mova m9, [ coeffq+ncoeffq*2+ 0] ; m9 = c[i]
+ mova m10, [ coeffq+ncoeffq*2+16] ; m10 = c[i]
+ pabsw m6, m9 ; m6 = abs(m9)
+ pabsw m11, m10 ; m11 = abs(m10)
+ pcmpgtw m7, m6, m0 ; m7 = c[i] >= zbin
+ pcmpgtw m12, m11, m0 ; m12 = c[i] >= zbin
+%ifidn %1, b_32x32
+ pmovmskb r6d, m7
+ pmovmskb r2d, m12
+ or r6, r2
+ jz .skip_iter
+%endif
+ paddsw m6, m1 ; m6 += round
+ paddsw m11, m1 ; m11 += round
+ pmulhw m14, m6, m2 ; m14 = m6*q>>16
+ pmulhw m13, m11, m2 ; m13 = m11*q>>16
+ paddw m14, m6 ; m14 += m6
+ paddw m13, m11 ; m13 += m11
+ pmulhw m14, m4 ; m14 = m14*qsh>>16
+ pmulhw m13, m4 ; m13 = m13*qsh>>16
+ psignw m14, m9 ; m14 = reinsert sign
+ psignw m13, m10 ; m13 = reinsert sign
+ pand m14, m7
+ pand m13, m12
+ mova [qcoeffq+ncoeffq*2+ 0], m14
+ mova [qcoeffq+ncoeffq*2+16], m13
+%ifidn %1, b_32x32
+ pabsw m14, m14
+ pabsw m13, m13
+%endif
+ pmullw m14, m3 ; dqc[i] = qc[i] * q
+ pmullw m13, m3 ; dqc[i] = qc[i] * q
+%ifidn %1, b_32x32
+ psrlw m14, 1
+ psrlw m13, 1
+ psignw m14, m9
+ psignw m13, m10
+%endif
+ mova [dqcoeffq+ncoeffq*2+ 0], m14
+ mova [dqcoeffq+ncoeffq*2+16], m13
+ pcmpeqw m14, m5 ; m14 = c[i] == 0
+ pcmpeqw m13, m5 ; m13 = c[i] == 0
+ mova m6, [ iscanq+ncoeffq*2+ 0] ; m6 = scan[i]
+ mova m11, [ iscanq+ncoeffq*2+16] ; m11 = scan[i]
+ psubw m6, m7 ; m6 = scan[i] + 1
+ psubw m11, m12 ; m11 = scan[i] + 1
+ pandn m14, m6 ; m14 = max(eob)
+ pandn m13, m11 ; m13 = max(eob)
+ pmaxsw m8, m14
+ pmaxsw m8, m13
+ add ncoeffq, mmsize
+ jl .ac_only_loop
+
+%ifidn %1, b_32x32
+ jmp .accumulate_eob
+.skip_iter:
+ mova [qcoeffq+ncoeffq*2+ 0], m5
+ mova [qcoeffq+ncoeffq*2+16], m5
+ mova [dqcoeffq+ncoeffq*2+ 0], m5
+ mova [dqcoeffq+ncoeffq*2+16], m5
+ add ncoeffq, mmsize
+ jl .ac_only_loop
+%endif
+
+.accumulate_eob:
+ ; horizontally accumulate/max eobs and write into [eob] memory pointer
+ mov r2, eobmp
+ pshufd m7, m8, 0xe
+ pmaxsw m8, m7
+ pshuflw m7, m8, 0xe
+ pmaxsw m8, m7
+ pshuflw m7, m8, 0x1
+ pmaxsw m8, m7
+ pextrw r6, m8, 0
+ mov [r2], r6
+ RET
+
+ ; skip-block, i.e. just write all zeroes
+.blank:
+ mov r0, dqcoeffmp
+ movifnidn ncoeffq, ncoeffmp
+ mov r2, qcoeffmp
+ mov r3, eobmp
+ DEFINE_ARGS dqcoeff, ncoeff, qcoeff, eob
+ lea dqcoeffq, [dqcoeffq+ncoeffq*2]
+ lea qcoeffq, [ qcoeffq+ncoeffq*2]
+ neg ncoeffq
+ pxor m7, m7
+.blank_loop:
+ mova [dqcoeffq+ncoeffq*2+ 0], m7
+ mova [dqcoeffq+ncoeffq*2+16], m7
+ mova [qcoeffq+ncoeffq*2+ 0], m7
+ mova [qcoeffq+ncoeffq*2+16], m7
+ add ncoeffq, mmsize
+ jl .blank_loop
+ mov word [eobq], 0
+ RET
+%endmacro
+
+INIT_XMM ssse3
+QUANTIZE_FN b, 7
+QUANTIZE_FN b_32x32, 7
+
+%macro QUANTIZE_FP 2
+cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \
+ shift, qcoeff, dqcoeff, dequant, \
+ eob, scan, iscan
+ cmp dword skipm, 0
+ jne .blank
+
+ ; actual quantize loop - setup pointers, rounders, etc.
+ movifnidn coeffq, coeffmp
+ movifnidn ncoeffq, ncoeffmp
+ mov r2, dequantmp
+ movifnidn zbinq, zbinmp
+ movifnidn roundq, roundmp
+ movifnidn quantq, quantmp
+ mova m1, [roundq] ; m1 = round
+ mova m2, [quantq] ; m2 = quant
+%ifidn %1, fp_32x32
+ pcmpeqw m5, m5
+ psrlw m5, 15
+ paddw m1, m5
+ psrlw m1, 1 ; m1 = (m1 + 1) / 2
+%endif
+ mova m3, [r2q] ; m3 = dequant
+ mov r3, qcoeffmp
+ mov r4, dqcoeffmp
+ mov r5, iscanmp
+%ifidn %1, fp_32x32
+ psllw m2, 1
+%endif
+ pxor m5, m5 ; m5 = dedicated zero
+
+ lea coeffq, [ coeffq+ncoeffq*2]
+ lea r5q, [ r5q+ncoeffq*2]
+ lea r3q, [ r3q+ncoeffq*2]
+ lea r4q, [r4q+ncoeffq*2]
+ neg ncoeffq
+
+ ; get DC and first 15 AC coeffs
+ mova m9, [ coeffq+ncoeffq*2+ 0] ; m9 = c[i]
+ mova m10, [ coeffq+ncoeffq*2+16] ; m10 = c[i]
+ pabsw m6, m9 ; m6 = abs(m9)
+ pabsw m11, m10 ; m11 = abs(m10)
+ pcmpeqw m7, m7
+
+ paddsw m6, m1 ; m6 += round
+ punpckhqdq m1, m1
+ paddsw m11, m1 ; m11 += round
+ pmulhw m8, m6, m2 ; m8 = m6*q>>16
+ punpckhqdq m2, m2
+ pmulhw m13, m11, m2 ; m13 = m11*q>>16
+ psignw m8, m9 ; m8 = reinsert sign
+ psignw m13, m10 ; m13 = reinsert sign
+ mova [r3q+ncoeffq*2+ 0], m8
+ mova [r3q+ncoeffq*2+16], m13
+%ifidn %1, fp_32x32
+ pabsw m8, m8
+ pabsw m13, m13
+%endif
+ pmullw m8, m3 ; r4[i] = r3[i] * q
+ punpckhqdq m3, m3
+ pmullw m13, m3 ; r4[i] = r3[i] * q
+%ifidn %1, fp_32x32
+ psrlw m8, 1
+ psrlw m13, 1
+ psignw m8, m9
+ psignw m13, m10
+ psrlw m0, m3, 2
+%else
+ psrlw m0, m3, 1
+%endif
+ mova [r4q+ncoeffq*2+ 0], m8
+ mova [r4q+ncoeffq*2+16], m13
+ pcmpeqw m8, m5 ; m8 = c[i] == 0
+ pcmpeqw m13, m5 ; m13 = c[i] == 0
+ mova m6, [ r5q+ncoeffq*2+ 0] ; m6 = scan[i]
+ mova m11, [ r5q+ncoeffq*2+16] ; m11 = scan[i]
+ psubw m6, m7 ; m6 = scan[i] + 1
+ psubw m11, m7 ; m11 = scan[i] + 1
+ pandn m8, m6 ; m8 = max(eob)
+ pandn m13, m11 ; m13 = max(eob)
+ pmaxsw m8, m13
+ add ncoeffq, mmsize
+ jz .accumulate_eob
+
+.ac_only_loop:
+ mova m9, [ coeffq+ncoeffq*2+ 0] ; m9 = c[i]
+ mova m10, [ coeffq+ncoeffq*2+16] ; m10 = c[i]
+ pabsw m6, m9 ; m6 = abs(m9)
+ pabsw m11, m10 ; m11 = abs(m10)
+
+ pcmpgtw m7, m6, m0
+ pcmpgtw m12, m11, m0
+ pmovmskb r6d, m7
+ pmovmskb r2d, m12
+
+ or r6, r2
+ jz .skip_iter
+
+ pcmpeqw m7, m7
+
+ paddsw m6, m1 ; m6 += round
+ paddsw m11, m1 ; m11 += round
+ pmulhw m14, m6, m2 ; m14 = m6*q>>16
+ pmulhw m13, m11, m2 ; m13 = m11*q>>16
+ psignw m14, m9 ; m14 = reinsert sign
+ psignw m13, m10 ; m13 = reinsert sign
+ mova [r3q+ncoeffq*2+ 0], m14
+ mova [r3q+ncoeffq*2+16], m13
+%ifidn %1, fp_32x32
+ pabsw m14, m14
+ pabsw m13, m13
+%endif
+ pmullw m14, m3 ; r4[i] = r3[i] * q
+ pmullw m13, m3 ; r4[i] = r3[i] * q
+%ifidn %1, fp_32x32
+ psrlw m14, 1
+ psrlw m13, 1
+ psignw m14, m9
+ psignw m13, m10
+%endif
+ mova [r4q+ncoeffq*2+ 0], m14
+ mova [r4q+ncoeffq*2+16], m13
+ pcmpeqw m14, m5 ; m14 = c[i] == 0
+ pcmpeqw m13, m5 ; m13 = c[i] == 0
+ mova m6, [ r5q+ncoeffq*2+ 0] ; m6 = scan[i]
+ mova m11, [ r5q+ncoeffq*2+16] ; m11 = scan[i]
+ psubw m6, m7 ; m6 = scan[i] + 1
+ psubw m11, m7 ; m11 = scan[i] + 1
+ pandn m14, m6 ; m14 = max(eob)
+ pandn m13, m11 ; m13 = max(eob)
+ pmaxsw m8, m14
+ pmaxsw m8, m13
+ add ncoeffq, mmsize
+ jl .ac_only_loop
+
+ jmp .accumulate_eob
+.skip_iter:
+ mova [r3q+ncoeffq*2+ 0], m5
+ mova [r3q+ncoeffq*2+16], m5
+ mova [r4q+ncoeffq*2+ 0], m5
+ mova [r4q+ncoeffq*2+16], m5
+ add ncoeffq, mmsize
+ jl .ac_only_loop
+
+.accumulate_eob:
+ ; horizontally accumulate/max eobs and write into [eob] memory pointer
+ mov r2, eobmp
+ pshufd m7, m8, 0xe
+ pmaxsw m8, m7
+ pshuflw m7, m8, 0xe
+ pmaxsw m8, m7
+ pshuflw m7, m8, 0x1
+ pmaxsw m8, m7
+ pextrw r6, m8, 0
+ mov [r2], r6
+ RET
+
+ ; skip-block, i.e. just write all zeroes
+.blank:
+ mov r0, dqcoeffmp
+ movifnidn ncoeffq, ncoeffmp
+ mov r2, qcoeffmp
+ mov r3, eobmp
+
+ lea r0q, [r0q+ncoeffq*2]
+ lea r2q, [r2q+ncoeffq*2]
+ neg ncoeffq
+ pxor m7, m7
+.blank_loop:
+ mova [r0q+ncoeffq*2+ 0], m7
+ mova [r0q+ncoeffq*2+16], m7
+ mova [r2q+ncoeffq*2+ 0], m7
+ mova [r2q+ncoeffq*2+16], m7
+ add ncoeffq, mmsize
+ jl .blank_loop
+ mov word [r3q], 0
+ RET
+%endmacro
+
+INIT_XMM ssse3
+QUANTIZE_FP fp, 7
+QUANTIZE_FP fp_32x32, 7
diff --git a/media/libvpx/vp9/encoder/x86/vp9_ssim_opt_x86_64.asm b/media/libvpx/vp9/encoder/x86/vp9_ssim_opt_x86_64.asm
new file mode 100644
index 000000000..455d10d2c
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_ssim_opt_x86_64.asm
@@ -0,0 +1,216 @@
+;
+; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+
+%include "vpx_ports/x86_abi_support.asm"
+
+; tabulate_ssim - sums sum_s,sum_r,sum_sq_s,sum_sq_r, sum_sxr
+%macro TABULATE_SSIM 0
+ paddusw xmm15, xmm3 ; sum_s
+ paddusw xmm14, xmm4 ; sum_r
+ movdqa xmm1, xmm3
+ pmaddwd xmm1, xmm1
+ paddd xmm13, xmm1 ; sum_sq_s
+ movdqa xmm2, xmm4
+ pmaddwd xmm2, xmm2
+ paddd xmm12, xmm2 ; sum_sq_r
+ pmaddwd xmm3, xmm4
+ paddd xmm11, xmm3 ; sum_sxr
+%endmacro
+
+; Sum across the register %1 starting with q words
+%macro SUM_ACROSS_Q 1
+ movdqa xmm2,%1
+ punpckldq %1,xmm0
+ punpckhdq xmm2,xmm0
+ paddq %1,xmm2
+ movdqa xmm2,%1
+ punpcklqdq %1,xmm0
+ punpckhqdq xmm2,xmm0
+ paddq %1,xmm2
+%endmacro
+
+; Sum across the register %1 starting with q words
+%macro SUM_ACROSS_W 1
+ movdqa xmm1, %1
+ punpcklwd %1,xmm0
+ punpckhwd xmm1,xmm0
+ paddd %1, xmm1
+ SUM_ACROSS_Q %1
+%endmacro
+;void ssim_parms_sse2(
+; unsigned char *s,
+; int sp,
+; unsigned char *r,
+; int rp
+; unsigned long *sum_s,
+; unsigned long *sum_r,
+; unsigned long *sum_sq_s,
+; unsigned long *sum_sq_r,
+; unsigned long *sum_sxr);
+;
+; TODO: Use parm passing through structure, probably don't need the pxors
+; ( calling app will initialize to 0 ) could easily fit everything in sse2
+; without too much hastle, and can probably do better estimates with psadw
+; or pavgb At this point this is just meant to be first pass for calculating
+; all the parms needed for 16x16 ssim so we can play with dssim as distortion
+; in mode selection code.
+global sym(vp9_ssim_parms_16x16_sse2) PRIVATE
+sym(vp9_ssim_parms_16x16_sse2):
+ push rbp
+ mov rbp, rsp
+ SHADOW_ARGS_TO_STACK 9
+ SAVE_XMM 15
+ push rsi
+ push rdi
+ ; end prolog
+
+ mov rsi, arg(0) ;s
+ mov rcx, arg(1) ;sp
+ mov rdi, arg(2) ;r
+ mov rax, arg(3) ;rp
+
+ pxor xmm0, xmm0
+ pxor xmm15,xmm15 ;sum_s
+ pxor xmm14,xmm14 ;sum_r
+ pxor xmm13,xmm13 ;sum_sq_s
+ pxor xmm12,xmm12 ;sum_sq_r
+ pxor xmm11,xmm11 ;sum_sxr
+
+ mov rdx, 16 ;row counter
+.NextRow:
+
+ ;grab source and reference pixels
+ movdqu xmm5, [rsi]
+ movdqu xmm6, [rdi]
+ movdqa xmm3, xmm5
+ movdqa xmm4, xmm6
+ punpckhbw xmm3, xmm0 ; high_s
+ punpckhbw xmm4, xmm0 ; high_r
+
+ TABULATE_SSIM
+
+ movdqa xmm3, xmm5
+ movdqa xmm4, xmm6
+ punpcklbw xmm3, xmm0 ; low_s
+ punpcklbw xmm4, xmm0 ; low_r
+
+ TABULATE_SSIM
+
+ add rsi, rcx ; next s row
+ add rdi, rax ; next r row
+
+ dec rdx ; counter
+ jnz .NextRow
+
+ SUM_ACROSS_W xmm15
+ SUM_ACROSS_W xmm14
+ SUM_ACROSS_Q xmm13
+ SUM_ACROSS_Q xmm12
+ SUM_ACROSS_Q xmm11
+
+ mov rdi,arg(4)
+ movd [rdi], xmm15;
+ mov rdi,arg(5)
+ movd [rdi], xmm14;
+ mov rdi,arg(6)
+ movd [rdi], xmm13;
+ mov rdi,arg(7)
+ movd [rdi], xmm12;
+ mov rdi,arg(8)
+ movd [rdi], xmm11;
+
+ ; begin epilog
+ pop rdi
+ pop rsi
+ RESTORE_XMM
+ UNSHADOW_ARGS
+ pop rbp
+ ret
+
+;void ssim_parms_sse2(
+; unsigned char *s,
+; int sp,
+; unsigned char *r,
+; int rp
+; unsigned long *sum_s,
+; unsigned long *sum_r,
+; unsigned long *sum_sq_s,
+; unsigned long *sum_sq_r,
+; unsigned long *sum_sxr);
+;
+; TODO: Use parm passing through structure, probably don't need the pxors
+; ( calling app will initialize to 0 ) could easily fit everything in sse2
+; without too much hastle, and can probably do better estimates with psadw
+; or pavgb At this point this is just meant to be first pass for calculating
+; all the parms needed for 16x16 ssim so we can play with dssim as distortion
+; in mode selection code.
+global sym(vp9_ssim_parms_8x8_sse2) PRIVATE
+sym(vp9_ssim_parms_8x8_sse2):
+ push rbp
+ mov rbp, rsp
+ SHADOW_ARGS_TO_STACK 9
+ SAVE_XMM 15
+ push rsi
+ push rdi
+ ; end prolog
+
+ mov rsi, arg(0) ;s
+ mov rcx, arg(1) ;sp
+ mov rdi, arg(2) ;r
+ mov rax, arg(3) ;rp
+
+ pxor xmm0, xmm0
+ pxor xmm15,xmm15 ;sum_s
+ pxor xmm14,xmm14 ;sum_r
+ pxor xmm13,xmm13 ;sum_sq_s
+ pxor xmm12,xmm12 ;sum_sq_r
+ pxor xmm11,xmm11 ;sum_sxr
+
+ mov rdx, 8 ;row counter
+.NextRow:
+
+ ;grab source and reference pixels
+ movq xmm3, [rsi]
+ movq xmm4, [rdi]
+ punpcklbw xmm3, xmm0 ; low_s
+ punpcklbw xmm4, xmm0 ; low_r
+
+ TABULATE_SSIM
+
+ add rsi, rcx ; next s row
+ add rdi, rax ; next r row
+
+ dec rdx ; counter
+ jnz .NextRow
+
+ SUM_ACROSS_W xmm15
+ SUM_ACROSS_W xmm14
+ SUM_ACROSS_Q xmm13
+ SUM_ACROSS_Q xmm12
+ SUM_ACROSS_Q xmm11
+
+ mov rdi,arg(4)
+ movd [rdi], xmm15;
+ mov rdi,arg(5)
+ movd [rdi], xmm14;
+ mov rdi,arg(6)
+ movd [rdi], xmm13;
+ mov rdi,arg(7)
+ movd [rdi], xmm12;
+ mov rdi,arg(8)
+ movd [rdi], xmm11;
+
+ ; begin epilog
+ pop rdi
+ pop rsi
+ RESTORE_XMM
+ UNSHADOW_ARGS
+ pop rbp
+ ret
diff --git a/media/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm b/media/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm
new file mode 100644
index 000000000..292cf34d1
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_subpel_variance.asm
@@ -0,0 +1,1396 @@
+;
+; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION_RODATA
+pw_8: times 8 dw 8
+bilin_filter_m_sse2: times 8 dw 16
+ times 8 dw 0
+ times 8 dw 14
+ times 8 dw 2
+ times 8 dw 12
+ times 8 dw 4
+ times 8 dw 10
+ times 8 dw 6
+ times 16 dw 8
+ times 8 dw 6
+ times 8 dw 10
+ times 8 dw 4
+ times 8 dw 12
+ times 8 dw 2
+ times 8 dw 14
+
+bilin_filter_m_ssse3: times 8 db 16, 0
+ times 8 db 14, 2
+ times 8 db 12, 4
+ times 8 db 10, 6
+ times 16 db 8
+ times 8 db 6, 10
+ times 8 db 4, 12
+ times 8 db 2, 14
+
+SECTION .text
+
+; int vp9_sub_pixel_varianceNxh(const uint8_t *src, ptrdiff_t src_stride,
+; int x_offset, int y_offset,
+; const uint8_t *dst, ptrdiff_t dst_stride,
+; int height, unsigned int *sse);
+;
+; This function returns the SE and stores SSE in the given pointer.
+
+%macro SUM_SSE 6 ; src1, dst1, src2, dst2, sum, sse
+ psubw %3, %4
+ psubw %1, %2
+ paddw %5, %3
+ pmaddwd %3, %3
+ paddw %5, %1
+ pmaddwd %1, %1
+ paddd %6, %3
+ paddd %6, %1
+%endmacro
+
+%macro STORE_AND_RET 0
+%if mmsize == 16
+ ; if H=64 and W=16, we have 8 words of each 2(1bit)x64(6bit)x9bit=16bit
+ ; in m6, i.e. it _exactly_ fits in a signed word per word in the xmm reg.
+ ; We have to sign-extend it before adding the words within the register
+ ; and outputing to a dword.
+ pcmpgtw m5, m6 ; mask for 0 > x
+ movhlps m3, m7
+ punpcklwd m4, m6, m5
+ punpckhwd m6, m5 ; sign-extend m6 word->dword
+ paddd m7, m3
+ paddd m6, m4
+ pshufd m3, m7, 0x1
+ movhlps m4, m6
+ paddd m7, m3
+ paddd m6, m4
+ mov r1, ssem ; r1 = unsigned int *sse
+ pshufd m4, m6, 0x1
+ movd [r1], m7 ; store sse
+ paddd m6, m4
+ movd raxd, m6 ; store sum as return value
+%else ; mmsize == 8
+ pshufw m4, m6, 0xe
+ pshufw m3, m7, 0xe
+ paddw m6, m4
+ paddd m7, m3
+ pcmpgtw m5, m6 ; mask for 0 > x
+ mov r1, ssem ; r1 = unsigned int *sse
+ punpcklwd m6, m5 ; sign-extend m6 word->dword
+ movd [r1], m7 ; store sse
+ pshufw m4, m6, 0xe
+ paddd m6, m4
+ movd raxd, m6 ; store sum as return value
+%endif
+ RET
+%endmacro
+
+%macro INC_SRC_BY_SRC_STRIDE 0
+%if ARCH_X86=1 && CONFIG_PIC=1
+ add srcq, src_stridemp
+%else
+ add srcq, src_strideq
+%endif
+%endmacro
+
+%macro SUBPEL_VARIANCE 1-2 0 ; W
+%if cpuflag(ssse3)
+%define bilin_filter_m bilin_filter_m_ssse3
+%define filter_idx_shift 4
+%else
+%define bilin_filter_m bilin_filter_m_sse2
+%define filter_idx_shift 5
+%endif
+; FIXME(rbultje) only bilinear filters use >8 registers, and ssse3 only uses
+; 11, not 13, if the registers are ordered correctly. May make a minor speed
+; difference on Win64
+
+%ifdef PIC ; 64bit PIC
+ %if %2 == 1 ; avg
+ cglobal sub_pixel_avg_variance%1xh, 9, 10, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, height, sse
+ %define sec_str sec_strideq
+ %else
+ cglobal sub_pixel_variance%1xh, 7, 8, 13, src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, height, sse
+ %endif
+ %define h heightd
+ %define bilin_filter sseq
+%else
+ %if ARCH_X86=1 && CONFIG_PIC=1
+ %if %2 == 1 ; avg
+ cglobal sub_pixel_avg_variance%1xh, 7, 7, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, \
+ height, sse, g_bilin_filter, g_pw_8
+ %define h dword heightm
+ %define sec_str sec_stridemp
+
+ ;Store bilin_filter and pw_8 location in stack
+ GET_GOT eax
+ add esp, 4 ; restore esp
+
+ lea ecx, [GLOBAL(bilin_filter_m)]
+ mov g_bilin_filterm, ecx
+
+ lea ecx, [GLOBAL(pw_8)]
+ mov g_pw_8m, ecx
+
+ LOAD_IF_USED 0, 1 ; load eax, ecx back
+ %else
+ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, height, sse, \
+ g_bilin_filter, g_pw_8
+ %define h heightd
+
+ ;Store bilin_filter and pw_8 location in stack
+ GET_GOT eax
+ add esp, 4 ; restore esp
+
+ lea ecx, [GLOBAL(bilin_filter_m)]
+ mov g_bilin_filterm, ecx
+
+ lea ecx, [GLOBAL(pw_8)]
+ mov g_pw_8m, ecx
+
+ LOAD_IF_USED 0, 1 ; load eax, ecx back
+ %endif
+ %else
+ %if %2 == 1 ; avg
+ cglobal sub_pixel_avg_variance%1xh, 7 + 2 * ARCH_X86_64, \
+ 7 + 2 * ARCH_X86_64, 13, src, src_stride, \
+ x_offset, y_offset, \
+ dst, dst_stride, \
+ sec, sec_stride, \
+ height, sse
+ %if ARCH_X86_64
+ %define h heightd
+ %define sec_str sec_strideq
+ %else
+ %define h dword heightm
+ %define sec_str sec_stridemp
+ %endif
+ %else
+ cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, height, sse
+ %define h heightd
+ %endif
+
+ %define bilin_filter bilin_filter_m
+ %endif
+%endif
+
+ ASSERT %1 <= 16 ; m6 overflows if w > 16
+ pxor m6, m6 ; sum
+ pxor m7, m7 ; sse
+ ; FIXME(rbultje) if both filters are bilinear, we don't actually use m5; we
+ ; could perhaps use it for something more productive then
+ pxor m5, m5 ; dedicated zero register
+%if %1 < 16
+ sar h, 1
+%if %2 == 1 ; avg
+ shl sec_str, 1
+%endif
+%endif
+
+ ; FIXME(rbultje) replace by jumptable?
+ test x_offsetd, x_offsetd
+ jnz .x_nonzero
+ ; x_offset == 0
+ test y_offsetd, y_offsetd
+ jnz .x_zero_y_nonzero
+
+ ; x_offset == 0 && y_offset == 0
+.x_zero_y_zero_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ mova m1, [dstq]
+%if %2 == 1 ; avg
+ pavgb m0, [secq]
+ punpckhbw m3, m1, m5
+ punpcklbw m1, m5
+%endif
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%if %2 == 0 ; !avg
+ punpckhbw m3, m1, m5
+ punpcklbw m1, m5
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ add srcq, src_strideq
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+%if %2 == 1 ; avg
+%if mmsize == 16
+ movhps m0, [srcq+src_strideq]
+%else ; mmsize == 8
+ punpckldq m0, [srcq+src_strideq]
+%endif
+%else ; !avg
+ movh m2, [srcq+src_strideq]
+%endif
+ movh m1, [dstq]
+ movh m3, [dstq+dst_strideq]
+%if %2 == 1 ; avg
+ pavgb m0, [secq]
+ punpcklbw m3, m5
+ punpcklbw m1, m5
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%else ; !avg
+ punpcklbw m0, m5
+ punpcklbw m2, m5
+ punpcklbw m3, m5
+ punpcklbw m1, m5
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_zero_y_zero_loop
+ STORE_AND_RET
+
+.x_zero_y_nonzero:
+ cmp y_offsetd, 8
+ jne .x_zero_y_nonhalf
+
+ ; x_offset == 0 && y_offset == 0.5
+.x_zero_y_half_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m4, [srcq+src_strideq]
+ mova m1, [dstq]
+ pavgb m0, m4
+ punpckhbw m3, m1, m5
+%if %2 == 1 ; avg
+ pavgb m0, [secq]
+%endif
+ punpcklbw m1, m5
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ add srcq, src_strideq
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+ movh m2, [srcq+src_strideq]
+%if %2 == 1 ; avg
+%if mmsize == 16
+ movhps m2, [srcq+src_strideq*2]
+%else ; mmsize == 8
+%if %1 == 4
+ movh m1, [srcq+src_strideq*2]
+ punpckldq m2, m1
+%else
+ punpckldq m2, [srcq+src_strideq*2]
+%endif
+%endif
+ movh m1, [dstq]
+%if mmsize == 16
+ movlhps m0, m2
+%else ; mmsize == 8
+ punpckldq m0, m2
+%endif
+ movh m3, [dstq+dst_strideq]
+ pavgb m0, m2
+ punpcklbw m1, m5
+ pavgb m0, [secq]
+ punpcklbw m3, m5
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%else ; !avg
+ movh m4, [srcq+src_strideq*2]
+ movh m1, [dstq]
+ pavgb m0, m2
+ movh m3, [dstq+dst_strideq]
+ pavgb m2, m4
+ punpcklbw m0, m5
+ punpcklbw m2, m5
+ punpcklbw m3, m5
+ punpcklbw m1, m5
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_zero_y_half_loop
+ STORE_AND_RET
+
+.x_zero_y_nonhalf:
+ ; x_offset == 0 && y_offset == bilin interpolation
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl y_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+y_offsetq]
+%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64
+ mova m9, [bilin_filter+y_offsetq+16]
+%endif
+ mova m10, [pw_8]
+%define filter_y_a m8
+%define filter_y_b m9
+%define filter_rnd m10
+%else ; x86-32 or mmx
+%if ARCH_X86=1 && CONFIG_PIC=1
+; x_offset == 0, reuse x_offset reg
+%define tempq x_offsetq
+ add y_offsetq, g_bilin_filterm
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add y_offsetq, bilin_filter
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+.x_zero_y_other_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m4, [srcq+src_strideq]
+ mova m1, [dstq]
+%if cpuflag(ssse3)
+ punpckhbw m2, m0, m4
+ punpcklbw m0, m4
+ pmaddubsw m2, filter_y_a
+ pmaddubsw m0, filter_y_a
+ paddw m2, filter_rnd
+ paddw m0, filter_rnd
+%else
+ punpckhbw m2, m0, m5
+ punpckhbw m3, m4, m5
+ punpcklbw m0, m5
+ punpcklbw m4, m5
+ ; FIXME(rbultje) instead of out=((num-x)*in1+x*in2+rnd)>>log2(num), we can
+ ; also do out=in1+(((num-x)*(in2-in1)+rnd)>>log2(num)). Total number of
+ ; instructions is the same (5), but it is 1 mul instead of 2, so might be
+ ; slightly faster because of pmullw latency. It would also cut our rodata
+ ; tables in half for this function, and save 1-2 registers on x86-64.
+ pmullw m2, filter_y_a
+ pmullw m3, filter_y_b
+ paddw m2, filter_rnd
+ pmullw m0, filter_y_a
+ pmullw m4, filter_y_b
+ paddw m0, filter_rnd
+ paddw m2, m3
+ paddw m0, m4
+%endif
+ psraw m2, 4
+ psraw m0, 4
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ punpckhbw m3, m1, m5
+ punpcklbw m1, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ add srcq, src_strideq
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+ movh m2, [srcq+src_strideq]
+ movh m4, [srcq+src_strideq*2]
+ movh m3, [dstq+dst_strideq]
+%if cpuflag(ssse3)
+ movh m1, [dstq]
+ punpcklbw m0, m2
+ punpcklbw m2, m4
+ pmaddubsw m0, filter_y_a
+ pmaddubsw m2, filter_y_a
+ punpcklbw m3, m5
+ paddw m2, filter_rnd
+ paddw m0, filter_rnd
+%else
+ punpcklbw m0, m5
+ punpcklbw m2, m5
+ punpcklbw m4, m5
+ pmullw m0, filter_y_a
+ pmullw m1, m2, filter_y_b
+ punpcklbw m3, m5
+ paddw m0, filter_rnd
+ pmullw m2, filter_y_a
+ pmullw m4, filter_y_b
+ paddw m0, m1
+ paddw m2, filter_rnd
+ movh m1, [dstq]
+ paddw m2, m4
+%endif
+ psraw m0, 4
+ psraw m2, 4
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ punpcklbw m1, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_zero_y_other_loop
+%undef filter_y_a
+%undef filter_y_b
+%undef filter_rnd
+ STORE_AND_RET
+
+.x_nonzero:
+ cmp x_offsetd, 8
+ jne .x_nonhalf
+ ; x_offset == 0.5
+ test y_offsetd, y_offsetd
+ jnz .x_half_y_nonzero
+
+ ; x_offset == 0.5 && y_offset == 0
+.x_half_y_zero_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m4, [srcq+1]
+ mova m1, [dstq]
+ pavgb m0, m4
+ punpckhbw m3, m1, m5
+%if %2 == 1 ; avg
+ pavgb m0, [secq]
+%endif
+ punpcklbw m1, m5
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ add srcq, src_strideq
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+ movh m4, [srcq+1]
+%if %2 == 1 ; avg
+%if mmsize == 16
+ movhps m0, [srcq+src_strideq]
+ movhps m4, [srcq+src_strideq+1]
+%else ; mmsize == 8
+ punpckldq m0, [srcq+src_strideq]
+ punpckldq m4, [srcq+src_strideq+1]
+%endif
+ movh m1, [dstq]
+ movh m3, [dstq+dst_strideq]
+ pavgb m0, m4
+ punpcklbw m3, m5
+ pavgb m0, [secq]
+ punpcklbw m1, m5
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%else ; !avg
+ movh m2, [srcq+src_strideq]
+ movh m1, [dstq]
+ pavgb m0, m4
+ movh m4, [srcq+src_strideq+1]
+ movh m3, [dstq+dst_strideq]
+ pavgb m2, m4
+ punpcklbw m0, m5
+ punpcklbw m2, m5
+ punpcklbw m3, m5
+ punpcklbw m1, m5
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_half_y_zero_loop
+ STORE_AND_RET
+
+.x_half_y_nonzero:
+ cmp y_offsetd, 8
+ jne .x_half_y_nonhalf
+
+ ; x_offset == 0.5 && y_offset == 0.5
+%if %1 == 16
+ movu m0, [srcq]
+ movu m3, [srcq+1]
+ add srcq, src_strideq
+ pavgb m0, m3
+.x_half_y_half_loop:
+ movu m4, [srcq]
+ movu m3, [srcq+1]
+ mova m1, [dstq]
+ pavgb m4, m3
+ punpckhbw m3, m1, m5
+ pavgb m0, m4
+%if %2 == 1 ; avg
+ punpcklbw m1, m5
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%else
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+ punpcklbw m1, m5
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+ mova m0, m4
+
+ add srcq, src_strideq
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+ movh m3, [srcq+1]
+ add srcq, src_strideq
+ pavgb m0, m3
+.x_half_y_half_loop:
+ movh m2, [srcq]
+ movh m3, [srcq+1]
+%if %2 == 1 ; avg
+%if mmsize == 16
+ movhps m2, [srcq+src_strideq]
+ movhps m3, [srcq+src_strideq+1]
+%else
+%if %1 == 4
+ movh m1, [srcq+src_strideq]
+ punpckldq m2, m1
+ movh m1, [srcq+src_strideq+1]
+ punpckldq m3, m1
+%else
+ punpckldq m2, [srcq+src_strideq]
+ punpckldq m3, [srcq+src_strideq+1]
+%endif
+%endif
+ pavgb m2, m3
+%if mmsize == 16
+ movlhps m0, m2
+ movhlps m4, m2
+%else ; mmsize == 8
+ punpckldq m0, m2
+ pshufw m4, m2, 0xe
+%endif
+ movh m1, [dstq]
+ pavgb m0, m2
+ movh m3, [dstq+dst_strideq]
+ pavgb m0, [secq]
+ punpcklbw m3, m5
+ punpcklbw m1, m5
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%else ; !avg
+ movh m4, [srcq+src_strideq]
+ movh m1, [srcq+src_strideq+1]
+ pavgb m2, m3
+ pavgb m4, m1
+ pavgb m0, m2
+ pavgb m2, m4
+ movh m1, [dstq]
+ movh m3, [dstq+dst_strideq]
+ punpcklbw m0, m5
+ punpcklbw m2, m5
+ punpcklbw m3, m5
+ punpcklbw m1, m5
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+ mova m0, m4
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_half_y_half_loop
+ STORE_AND_RET
+
+.x_half_y_nonhalf:
+ ; x_offset == 0.5 && y_offset == bilin interpolation
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl y_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+y_offsetq]
+%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64
+ mova m9, [bilin_filter+y_offsetq+16]
+%endif
+ mova m10, [pw_8]
+%define filter_y_a m8
+%define filter_y_b m9
+%define filter_rnd m10
+%else ;x86_32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; x_offset == 0.5. We can reuse x_offset reg
+%define tempq x_offsetq
+ add y_offsetq, g_bilin_filterm
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add y_offsetq, bilin_filter
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+%if %1 == 16
+ movu m0, [srcq]
+ movu m3, [srcq+1]
+ add srcq, src_strideq
+ pavgb m0, m3
+.x_half_y_other_loop:
+ movu m4, [srcq]
+ movu m2, [srcq+1]
+ mova m1, [dstq]
+ pavgb m4, m2
+%if cpuflag(ssse3)
+ punpckhbw m2, m0, m4
+ punpcklbw m0, m4
+ pmaddubsw m2, filter_y_a
+ pmaddubsw m0, filter_y_a
+ paddw m2, filter_rnd
+ paddw m0, filter_rnd
+ psraw m2, 4
+%else
+ punpckhbw m2, m0, m5
+ punpckhbw m3, m4, m5
+ pmullw m2, filter_y_a
+ pmullw m3, filter_y_b
+ paddw m2, filter_rnd
+ punpcklbw m0, m5
+ paddw m2, m3
+ punpcklbw m3, m4, m5
+ pmullw m0, filter_y_a
+ pmullw m3, filter_y_b
+ paddw m0, filter_rnd
+ psraw m2, 4
+ paddw m0, m3
+%endif
+ punpckhbw m3, m1, m5
+ psraw m0, 4
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ punpcklbw m1, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+ mova m0, m4
+
+ add srcq, src_strideq
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+ movh m3, [srcq+1]
+ add srcq, src_strideq
+ pavgb m0, m3
+%if notcpuflag(ssse3)
+ punpcklbw m0, m5
+%endif
+.x_half_y_other_loop:
+ movh m2, [srcq]
+ movh m1, [srcq+1]
+ movh m4, [srcq+src_strideq]
+ movh m3, [srcq+src_strideq+1]
+ pavgb m2, m1
+ pavgb m4, m3
+ movh m3, [dstq+dst_strideq]
+%if cpuflag(ssse3)
+ movh m1, [dstq]
+ punpcklbw m0, m2
+ punpcklbw m2, m4
+ pmaddubsw m0, filter_y_a
+ pmaddubsw m2, filter_y_a
+ punpcklbw m3, m5
+ paddw m0, filter_rnd
+ paddw m2, filter_rnd
+%else
+ punpcklbw m2, m5
+ punpcklbw m4, m5
+ pmullw m0, filter_y_a
+ pmullw m1, m2, filter_y_b
+ punpcklbw m3, m5
+ paddw m0, filter_rnd
+ pmullw m2, filter_y_a
+ paddw m0, m1
+ pmullw m1, m4, filter_y_b
+ paddw m2, filter_rnd
+ paddw m2, m1
+ movh m1, [dstq]
+%endif
+ psraw m0, 4
+ psraw m2, 4
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ punpcklbw m1, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+ mova m0, m4
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_half_y_other_loop
+%undef filter_y_a
+%undef filter_y_b
+%undef filter_rnd
+ STORE_AND_RET
+
+.x_nonhalf:
+ test y_offsetd, y_offsetd
+ jnz .x_nonhalf_y_nonzero
+
+ ; x_offset == bilin interpolation && y_offset == 0
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl x_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+x_offsetq]
+%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64
+ mova m9, [bilin_filter+x_offsetq+16]
+%endif
+ mova m10, [pw_8]
+%define filter_x_a m8
+%define filter_x_b m9
+%define filter_rnd m10
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+;y_offset == 0. We can reuse y_offset reg.
+%define tempq y_offsetq
+ add x_offsetq, g_bilin_filterm
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add x_offsetq, bilin_filter
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+.x_other_y_zero_loop:
+%if %1 == 16
+ movu m0, [srcq]
+ movu m4, [srcq+1]
+ mova m1, [dstq]
+%if cpuflag(ssse3)
+ punpckhbw m2, m0, m4
+ punpcklbw m0, m4
+ pmaddubsw m2, filter_x_a
+ pmaddubsw m0, filter_x_a
+ paddw m2, filter_rnd
+ paddw m0, filter_rnd
+%else
+ punpckhbw m2, m0, m5
+ punpckhbw m3, m4, m5
+ punpcklbw m0, m5
+ punpcklbw m4, m5
+ pmullw m2, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m2, filter_rnd
+ pmullw m0, filter_x_a
+ pmullw m4, filter_x_b
+ paddw m0, filter_rnd
+ paddw m2, m3
+ paddw m0, m4
+%endif
+ psraw m2, 4
+ psraw m0, 4
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ punpckhbw m3, m1, m5
+ punpcklbw m1, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ add srcq, src_strideq
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+ movh m1, [srcq+1]
+ movh m2, [srcq+src_strideq]
+ movh m4, [srcq+src_strideq+1]
+ movh m3, [dstq+dst_strideq]
+%if cpuflag(ssse3)
+ punpcklbw m0, m1
+ movh m1, [dstq]
+ punpcklbw m2, m4
+ pmaddubsw m0, filter_x_a
+ pmaddubsw m2, filter_x_a
+ punpcklbw m3, m5
+ paddw m0, filter_rnd
+ paddw m2, filter_rnd
+%else
+ punpcklbw m0, m5
+ punpcklbw m1, m5
+ punpcklbw m2, m5
+ punpcklbw m4, m5
+ pmullw m0, filter_x_a
+ pmullw m1, filter_x_b
+ punpcklbw m3, m5
+ paddw m0, filter_rnd
+ pmullw m2, filter_x_a
+ pmullw m4, filter_x_b
+ paddw m0, m1
+ paddw m2, filter_rnd
+ movh m1, [dstq]
+ paddw m2, m4
+%endif
+ psraw m0, 4
+ psraw m2, 4
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ punpcklbw m1, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_other_y_zero_loop
+%undef filter_x_a
+%undef filter_x_b
+%undef filter_rnd
+ STORE_AND_RET
+
+.x_nonhalf_y_nonzero:
+ cmp y_offsetd, 8
+ jne .x_nonhalf_y_nonhalf
+
+ ; x_offset == bilin interpolation && y_offset == 0.5
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl x_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+x_offsetq]
+%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64
+ mova m9, [bilin_filter+x_offsetq+16]
+%endif
+ mova m10, [pw_8]
+%define filter_x_a m8
+%define filter_x_b m9
+%define filter_rnd m10
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; y_offset == 0.5. We can reuse y_offset reg.
+%define tempq y_offsetq
+ add x_offsetq, g_bilin_filterm
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add x_offsetq, bilin_filter
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq+1]
+%if cpuflag(ssse3)
+ punpckhbw m2, m0, m1
+ punpcklbw m0, m1
+ pmaddubsw m2, filter_x_a
+ pmaddubsw m0, filter_x_a
+ paddw m2, filter_rnd
+ paddw m0, filter_rnd
+%else
+ punpckhbw m2, m0, m5
+ punpckhbw m3, m1, m5
+ punpcklbw m0, m5
+ punpcklbw m1, m5
+ pmullw m0, filter_x_a
+ pmullw m1, filter_x_b
+ paddw m0, filter_rnd
+ pmullw m2, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m2, filter_rnd
+ paddw m0, m1
+ paddw m2, m3
+%endif
+ psraw m0, 4
+ psraw m2, 4
+ add srcq, src_strideq
+ packuswb m0, m2
+.x_other_y_half_loop:
+ movu m4, [srcq]
+ movu m3, [srcq+1]
+%if cpuflag(ssse3)
+ mova m1, [dstq]
+ punpckhbw m2, m4, m3
+ punpcklbw m4, m3
+ pmaddubsw m2, filter_x_a
+ pmaddubsw m4, filter_x_a
+ paddw m2, filter_rnd
+ paddw m4, filter_rnd
+ psraw m2, 4
+ psraw m4, 4
+ packuswb m4, m2
+ pavgb m0, m4
+ punpckhbw m3, m1, m5
+ punpcklbw m1, m5
+%else
+ punpckhbw m2, m4, m5
+ punpckhbw m1, m3, m5
+ punpcklbw m4, m5
+ punpcklbw m3, m5
+ pmullw m4, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m4, filter_rnd
+ pmullw m2, filter_x_a
+ pmullw m1, filter_x_b
+ paddw m2, filter_rnd
+ paddw m4, m3
+ paddw m2, m1
+ mova m1, [dstq]
+ psraw m4, 4
+ psraw m2, 4
+ punpckhbw m3, m1, m5
+ ; FIXME(rbultje) the repeated pack/unpack here around m0/m2 is because we
+ ; have a 1-register shortage to be able to store the backup of the bilin
+ ; filtered second line as words as cache for the next line. Packing into
+ ; a byte costs 1 pack and 2 unpacks, but saves a register.
+ packuswb m4, m2
+ punpcklbw m1, m5
+ pavgb m0, m4
+%endif
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ pavgb m0, [secq]
+%endif
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+ mova m0, m4
+
+ add srcq, src_strideq
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+ movh m1, [srcq+1]
+%if cpuflag(ssse3)
+ punpcklbw m0, m1
+ pmaddubsw m0, filter_x_a
+ paddw m0, filter_rnd
+%else
+ punpcklbw m0, m5
+ punpcklbw m1, m5
+ pmullw m0, filter_x_a
+ pmullw m1, filter_x_b
+ paddw m0, filter_rnd
+ paddw m0, m1
+%endif
+ add srcq, src_strideq
+ psraw m0, 4
+.x_other_y_half_loop:
+ movh m2, [srcq]
+ movh m1, [srcq+1]
+ movh m4, [srcq+src_strideq]
+ movh m3, [srcq+src_strideq+1]
+%if cpuflag(ssse3)
+ punpcklbw m2, m1
+ punpcklbw m4, m3
+ pmaddubsw m2, filter_x_a
+ pmaddubsw m4, filter_x_a
+ movh m1, [dstq]
+ movh m3, [dstq+dst_strideq]
+ paddw m2, filter_rnd
+ paddw m4, filter_rnd
+%else
+ punpcklbw m2, m5
+ punpcklbw m1, m5
+ punpcklbw m4, m5
+ punpcklbw m3, m5
+ pmullw m2, filter_x_a
+ pmullw m1, filter_x_b
+ paddw m2, filter_rnd
+ pmullw m4, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m4, filter_rnd
+ paddw m2, m1
+ movh m1, [dstq]
+ paddw m4, m3
+ movh m3, [dstq+dst_strideq]
+%endif
+ psraw m2, 4
+ psraw m4, 4
+ pavgw m0, m2
+ pavgw m2, m4
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline - also consider going to bytes here
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ punpcklbw m3, m5
+ punpcklbw m1, m5
+ SUM_SSE m0, m1, m2, m3, m6, m7
+ mova m0, m4
+
+ lea srcq, [srcq+src_strideq*2]
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_other_y_half_loop
+%undef filter_x_a
+%undef filter_x_b
+%undef filter_rnd
+ STORE_AND_RET
+
+.x_nonhalf_y_nonhalf:
+%ifdef PIC
+ lea bilin_filter, [bilin_filter_m]
+%endif
+ shl x_offsetd, filter_idx_shift
+ shl y_offsetd, filter_idx_shift
+%if ARCH_X86_64 && mmsize == 16
+ mova m8, [bilin_filter+x_offsetq]
+%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64
+ mova m9, [bilin_filter+x_offsetq+16]
+%endif
+ mova m10, [bilin_filter+y_offsetq]
+%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64
+ mova m11, [bilin_filter+y_offsetq+16]
+%endif
+ mova m12, [pw_8]
+%define filter_x_a m8
+%define filter_x_b m9
+%define filter_y_a m10
+%define filter_y_b m11
+%define filter_rnd m12
+%else ; x86-32
+%if ARCH_X86=1 && CONFIG_PIC=1
+; In this case, there is NO unused register. Used src_stride register. Later,
+; src_stride has to be loaded from stack when it is needed.
+%define tempq src_strideq
+ mov tempq, g_bilin_filterm
+ add x_offsetq, tempq
+ add y_offsetq, tempq
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+
+ mov tempq, g_pw_8m
+%define filter_rnd [tempq]
+%else
+ add x_offsetq, bilin_filter
+ add y_offsetq, bilin_filter
+%define filter_x_a [x_offsetq]
+%define filter_x_b [x_offsetq+16]
+%define filter_y_a [y_offsetq]
+%define filter_y_b [y_offsetq+16]
+%define filter_rnd [pw_8]
+%endif
+%endif
+
+ ; x_offset == bilin interpolation && y_offset == bilin interpolation
+%if %1 == 16
+ movu m0, [srcq]
+ movu m1, [srcq+1]
+%if cpuflag(ssse3)
+ punpckhbw m2, m0, m1
+ punpcklbw m0, m1
+ pmaddubsw m2, filter_x_a
+ pmaddubsw m0, filter_x_a
+ paddw m2, filter_rnd
+ paddw m0, filter_rnd
+%else
+ punpckhbw m2, m0, m5
+ punpckhbw m3, m1, m5
+ punpcklbw m0, m5
+ punpcklbw m1, m5
+ pmullw m0, filter_x_a
+ pmullw m1, filter_x_b
+ paddw m0, filter_rnd
+ pmullw m2, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m2, filter_rnd
+ paddw m0, m1
+ paddw m2, m3
+%endif
+ psraw m0, 4
+ psraw m2, 4
+
+ INC_SRC_BY_SRC_STRIDE
+
+ packuswb m0, m2
+.x_other_y_other_loop:
+%if cpuflag(ssse3)
+ movu m4, [srcq]
+ movu m3, [srcq+1]
+ mova m1, [dstq]
+ punpckhbw m2, m4, m3
+ punpcklbw m4, m3
+ pmaddubsw m2, filter_x_a
+ pmaddubsw m4, filter_x_a
+ punpckhbw m3, m1, m5
+ paddw m2, filter_rnd
+ paddw m4, filter_rnd
+ psraw m2, 4
+ psraw m4, 4
+ packuswb m4, m2
+ punpckhbw m2, m0, m4
+ punpcklbw m0, m4
+ pmaddubsw m2, filter_y_a
+ pmaddubsw m0, filter_y_a
+ punpcklbw m1, m5
+ paddw m2, filter_rnd
+ paddw m0, filter_rnd
+ psraw m2, 4
+ psraw m0, 4
+%else
+ movu m3, [srcq]
+ movu m4, [srcq+1]
+ punpckhbw m1, m3, m5
+ punpckhbw m2, m4, m5
+ punpcklbw m3, m5
+ punpcklbw m4, m5
+ pmullw m3, filter_x_a
+ pmullw m4, filter_x_b
+ paddw m3, filter_rnd
+ pmullw m1, filter_x_a
+ pmullw m2, filter_x_b
+ paddw m1, filter_rnd
+ paddw m3, m4
+ paddw m1, m2
+ psraw m3, 4
+ psraw m1, 4
+ packuswb m4, m3, m1
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+ pmullw m2, filter_y_a
+ pmullw m1, filter_y_b
+ paddw m2, filter_rnd
+ pmullw m0, filter_y_a
+ pmullw m3, filter_y_b
+ paddw m2, m1
+ mova m1, [dstq]
+ paddw m0, filter_rnd
+ psraw m2, 4
+ paddw m0, m3
+ punpckhbw m3, m1, m5
+ psraw m0, 4
+ punpcklbw m1, m5
+%endif
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+ mova m0, m4
+
+ INC_SRC_BY_SRC_STRIDE
+ add dstq, dst_strideq
+%else ; %1 < 16
+ movh m0, [srcq]
+ movh m1, [srcq+1]
+%if cpuflag(ssse3)
+ punpcklbw m0, m1
+ pmaddubsw m0, filter_x_a
+ paddw m0, filter_rnd
+%else
+ punpcklbw m0, m5
+ punpcklbw m1, m5
+ pmullw m0, filter_x_a
+ pmullw m1, filter_x_b
+ paddw m0, filter_rnd
+ paddw m0, m1
+%endif
+ psraw m0, 4
+%if cpuflag(ssse3)
+ packuswb m0, m0
+%endif
+
+ INC_SRC_BY_SRC_STRIDE
+
+.x_other_y_other_loop:
+ movh m2, [srcq]
+ movh m1, [srcq+1]
+
+ INC_SRC_BY_SRC_STRIDE
+ movh m4, [srcq]
+ movh m3, [srcq+1]
+
+%if cpuflag(ssse3)
+ punpcklbw m2, m1
+ punpcklbw m4, m3
+ pmaddubsw m2, filter_x_a
+ pmaddubsw m4, filter_x_a
+ movh m3, [dstq+dst_strideq]
+ movh m1, [dstq]
+ paddw m2, filter_rnd
+ paddw m4, filter_rnd
+ psraw m2, 4
+ psraw m4, 4
+ packuswb m2, m2
+ packuswb m4, m4
+ punpcklbw m0, m2
+ punpcklbw m2, m4
+ pmaddubsw m0, filter_y_a
+ pmaddubsw m2, filter_y_a
+ punpcklbw m3, m5
+ paddw m0, filter_rnd
+ paddw m2, filter_rnd
+ psraw m0, 4
+ psraw m2, 4
+ punpcklbw m1, m5
+%else
+ punpcklbw m2, m5
+ punpcklbw m1, m5
+ punpcklbw m4, m5
+ punpcklbw m3, m5
+ pmullw m2, filter_x_a
+ pmullw m1, filter_x_b
+ paddw m2, filter_rnd
+ pmullw m4, filter_x_a
+ pmullw m3, filter_x_b
+ paddw m4, filter_rnd
+ paddw m2, m1
+ paddw m4, m3
+ psraw m2, 4
+ psraw m4, 4
+ pmullw m0, filter_y_a
+ pmullw m3, m2, filter_y_b
+ paddw m0, filter_rnd
+ pmullw m2, filter_y_a
+ pmullw m1, m4, filter_y_b
+ paddw m2, filter_rnd
+ paddw m0, m3
+ movh m3, [dstq+dst_strideq]
+ paddw m2, m1
+ movh m1, [dstq]
+ psraw m0, 4
+ psraw m2, 4
+ punpcklbw m3, m5
+ punpcklbw m1, m5
+%endif
+%if %2 == 1 ; avg
+ ; FIXME(rbultje) pipeline
+ packuswb m0, m2
+ pavgb m0, [secq]
+ punpckhbw m2, m0, m5
+ punpcklbw m0, m5
+%endif
+ SUM_SSE m0, m1, m2, m3, m6, m7
+ mova m0, m4
+
+ INC_SRC_BY_SRC_STRIDE
+ lea dstq, [dstq+dst_strideq*2]
+%endif
+%if %2 == 1 ; avg
+ add secq, sec_str
+%endif
+ dec h
+ jg .x_other_y_other_loop
+%undef filter_x_a
+%undef filter_x_b
+%undef filter_y_a
+%undef filter_y_b
+%undef filter_rnd
+ STORE_AND_RET
+%endmacro
+
+; FIXME(rbultje) the non-bilinear versions (i.e. x=0,8&&y=0,8) are identical
+; between the ssse3 and non-ssse3 version. It may make sense to merge their
+; code in the sense that the ssse3 version would jump to the appropriate
+; location in the sse/2 version, rather than duplicating that code in the
+; binary.
+
+INIT_MMX sse
+SUBPEL_VARIANCE 4
+INIT_XMM sse2
+SUBPEL_VARIANCE 8
+SUBPEL_VARIANCE 16
+
+INIT_MMX ssse3
+SUBPEL_VARIANCE 4
+INIT_XMM ssse3
+SUBPEL_VARIANCE 8
+SUBPEL_VARIANCE 16
+
+INIT_MMX sse
+SUBPEL_VARIANCE 4, 1
+INIT_XMM sse2
+SUBPEL_VARIANCE 8, 1
+SUBPEL_VARIANCE 16, 1
+
+INIT_MMX ssse3
+SUBPEL_VARIANCE 4, 1
+INIT_XMM ssse3
+SUBPEL_VARIANCE 8, 1
+SUBPEL_VARIANCE 16, 1
diff --git a/media/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c b/media/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c
new file mode 100644
index 000000000..b1c797520
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c
@@ -0,0 +1,525 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <immintrin.h> // AVX2
+
+#include "./vp9_rtcd.h"
+#include "vpx_ports/mem.h"
+#include "vp9/encoder/vp9_variance.h"
+
+DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = {
+ 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0,
+ 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0,
+ 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
+ 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
+ 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
+ 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
+ 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
+ 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
+ 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
+ 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
+ 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
+ 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
+ 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
+};
+
+#define FILTER_SRC(filter) \
+ /* filter the source */ \
+ exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); \
+ exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); \
+ \
+ /* add 8 to source */ \
+ exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); \
+ exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); \
+ \
+ /* divide source by 16 */ \
+ exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); \
+ exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
+
+#define MERGE_WITH_SRC(src_reg, reg) \
+ exp_src_lo = _mm256_unpacklo_epi8(src_reg, reg); \
+ exp_src_hi = _mm256_unpackhi_epi8(src_reg, reg);
+
+#define LOAD_SRC_DST \
+ /* load source and destination */ \
+ src_reg = _mm256_loadu_si256((__m256i const *) (src)); \
+ dst_reg = _mm256_loadu_si256((__m256i const *) (dst));
+
+#define AVG_NEXT_SRC(src_reg, size_stride) \
+ src_next_reg = _mm256_loadu_si256((__m256i const *) \
+ (src + size_stride)); \
+ /* average between current and next stride source */ \
+ src_reg = _mm256_avg_epu8(src_reg, src_next_reg);
+
+#define MERGE_NEXT_SRC(src_reg, size_stride) \
+ src_next_reg = _mm256_loadu_si256((__m256i const *) \
+ (src + size_stride)); \
+ MERGE_WITH_SRC(src_reg, src_next_reg)
+
+#define CALC_SUM_SSE_INSIDE_LOOP \
+ /* expand each byte to 2 bytes */ \
+ exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); \
+ exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); \
+ /* source - dest */ \
+ exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); \
+ exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); \
+ /* caculate sum */ \
+ sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); \
+ exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); \
+ sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); \
+ exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); \
+ /* calculate sse */ \
+ sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); \
+ sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
+
+// final calculation to sum and sse
+#define CALC_SUM_AND_SSE \
+ res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg); \
+ sse_reg_hi = _mm256_srli_si256(sse_reg, 8); \
+ sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp); \
+ sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp); \
+ sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \
+ sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi); \
+ \
+ sse_reg_hi = _mm256_srli_si256(sse_reg, 4); \
+ sum_reg_hi = _mm256_srli_si256(sum_reg, 8); \
+ \
+ sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \
+ sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \
+ *((int*)sse)= _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) + \
+ _mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1)); \
+ sum_reg_hi = _mm256_srli_si256(sum_reg, 4); \
+ sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \
+ sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) + \
+ _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1));
+
+
+unsigned int vp9_sub_pixel_variance32xh_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ int height,
+ unsigned int *sse) {
+ __m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
+ __m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
+ __m256i zero_reg;
+ int i, sum;
+ sum_reg = _mm256_set1_epi16(0);
+ sse_reg = _mm256_set1_epi16(0);
+ zero_reg = _mm256_set1_epi16(0);
+
+ // x_offset = 0 and y_offset = 0
+ if (x_offset == 0) {
+ if (y_offset == 0) {
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ // expend each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 0 and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i src_next_reg;
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, src_stride)
+ // expend each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 0 and y_offset = bilin interpolation
+ } else {
+ __m256i filter, pw8, src_next_reg;
+
+ y_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, src_stride)
+ FILTER_SRC(filter)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ }
+ // x_offset = 8 and y_offset = 0
+ } else if (x_offset == 8) {
+ if (y_offset == 0) {
+ __m256i src_next_reg;
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 8 and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i src_next_reg, src_avg;
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ AVG_NEXT_SRC(src_reg, 1)
+ for (i = 0; i < height ; i++) {
+ src_avg = src_reg;
+ src+= src_stride;
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ // average between previous average to current average
+ src_avg = _mm256_avg_epu8(src_avg, src_reg);
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_avg, zero_reg)
+ // save current source average
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ // x_offset = 8 and y_offset = bilin interpolation
+ } else {
+ __m256i filter, pw8, src_next_reg, src_avg;
+ y_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ AVG_NEXT_SRC(src_reg, 1)
+ for (i = 0; i < height ; i++) {
+ // save current source average
+ src_avg = src_reg;
+ src+= src_stride;
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ MERGE_WITH_SRC(src_avg, src_reg)
+ FILTER_SRC(filter)
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ }
+ // x_offset = bilin interpolation and y_offset = 0
+ } else {
+ if (y_offset == 0) {
+ __m256i filter, pw8, src_next_reg;
+ x_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ pw8 = _mm256_set1_epi16(8);
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = bilin interpolation and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i filter, pw8, src_next_reg, src_pack;
+ x_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ pw8 = _mm256_set1_epi16(8);
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ // convert each 16 bit to 8 bit to each low and high lane source
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ for (i = 0; i < height ; i++) {
+ src+= src_stride;
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ // average between previous pack to the current
+ src_pack = _mm256_avg_epu8(src_pack, src_reg);
+ MERGE_WITH_SRC(src_pack, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src_pack = src_reg;
+ dst+= dst_stride;
+ }
+ // x_offset = bilin interpolation and y_offset = bilin interpolation
+ } else {
+ __m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
+ x_offset <<= 5;
+ xfilter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ y_offset <<= 5;
+ yfilter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ MERGE_NEXT_SRC(src_reg, 1)
+
+ FILTER_SRC(xfilter)
+ // convert each 16 bit to 8 bit to each low and high lane source
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ for (i = 0; i < height ; i++) {
+ src+= src_stride;
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(xfilter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ // merge previous pack to current pack source
+ MERGE_WITH_SRC(src_pack, src_reg)
+ // filter the source
+ FILTER_SRC(yfilter)
+ src_pack = src_reg;
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ }
+ }
+ CALC_SUM_AND_SSE
+ return sum;
+}
+
+unsigned int vp9_sub_pixel_avg_variance32xh_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ const uint8_t *sec,
+ int sec_stride,
+ int height,
+ unsigned int *sse) {
+ __m256i sec_reg;
+ __m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
+ __m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
+ __m256i zero_reg;
+ int i, sum;
+ sum_reg = _mm256_set1_epi16(0);
+ sse_reg = _mm256_set1_epi16(0);
+ zero_reg = _mm256_set1_epi16(0);
+
+ // x_offset = 0 and y_offset = 0
+ if (x_offset == 0) {
+ if (y_offset == 0) {
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ sec+= sec_stride;
+ // expend each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ } else if (y_offset == 8) {
+ __m256i src_next_reg;
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, src_stride)
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ sec+= sec_stride;
+ // expend each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 0 and y_offset = bilin interpolation
+ } else {
+ __m256i filter, pw8, src_next_reg;
+
+ y_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, src_stride)
+ FILTER_SRC(filter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ sec+= sec_stride;
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ }
+ // x_offset = 8 and y_offset = 0
+ } else if (x_offset == 8) {
+ if (y_offset == 0) {
+ __m256i src_next_reg;
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ sec+= sec_stride;
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = 8 and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i src_next_reg, src_avg;
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ AVG_NEXT_SRC(src_reg, 1)
+ for (i = 0; i < height ; i++) {
+ // save current source average
+ src_avg = src_reg;
+ src+= src_stride;
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ // average between previous average to current average
+ src_avg = _mm256_avg_epu8(src_avg, src_reg);
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_avg = _mm256_avg_epu8(src_avg, sec_reg);
+ sec+= sec_stride;
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_avg, zero_reg)
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ // x_offset = 8 and y_offset = bilin interpolation
+ } else {
+ __m256i filter, pw8, src_next_reg, src_avg;
+ y_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ AVG_NEXT_SRC(src_reg, 1)
+ for (i = 0; i < height ; i++) {
+ // save current source average
+ src_avg = src_reg;
+ src+= src_stride;
+ LOAD_SRC_DST
+ AVG_NEXT_SRC(src_reg, 1)
+ MERGE_WITH_SRC(src_avg, src_reg)
+ FILTER_SRC(filter)
+ src_avg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_avg = _mm256_avg_epu8(src_avg, sec_reg);
+ // expand each byte to 2 bytes
+ MERGE_WITH_SRC(src_avg, zero_reg)
+ sec+= sec_stride;
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ }
+ // x_offset = bilin interpolation and y_offset = 0
+ } else {
+ if (y_offset == 0) {
+ __m256i filter, pw8, src_next_reg;
+ x_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ pw8 = _mm256_set1_epi16(8);
+ for (i = 0; i < height ; i++) {
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_reg = _mm256_avg_epu8(src_reg, sec_reg);
+ MERGE_WITH_SRC(src_reg, zero_reg)
+ sec+= sec_stride;
+ CALC_SUM_SSE_INSIDE_LOOP
+ src+= src_stride;
+ dst+= dst_stride;
+ }
+ // x_offset = bilin interpolation and y_offset = 8
+ } else if (y_offset == 8) {
+ __m256i filter, pw8, src_next_reg, src_pack;
+ x_offset <<= 5;
+ filter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ pw8 = _mm256_set1_epi16(8);
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ // convert each 16 bit to 8 bit to each low and high lane source
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ for (i = 0; i < height ; i++) {
+ src+= src_stride;
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(filter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ // average between previous pack to the current
+ src_pack = _mm256_avg_epu8(src_pack, src_reg);
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_pack = _mm256_avg_epu8(src_pack, sec_reg);
+ sec+= sec_stride;
+ MERGE_WITH_SRC(src_pack, zero_reg)
+ src_pack = src_reg;
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ // x_offset = bilin interpolation and y_offset = bilin interpolation
+ } else {
+ __m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
+ x_offset <<= 5;
+ xfilter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + x_offset));
+ y_offset <<= 5;
+ yfilter = _mm256_load_si256((__m256i const *)
+ (bilinear_filters_avx2 + y_offset));
+ pw8 = _mm256_set1_epi16(8);
+ // load source and another source starting from the next
+ // following byte
+ src_reg = _mm256_loadu_si256((__m256i const *) (src));
+ MERGE_NEXT_SRC(src_reg, 1)
+
+ FILTER_SRC(xfilter)
+ // convert each 16 bit to 8 bit to each low and high lane source
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ for (i = 0; i < height ; i++) {
+ src+= src_stride;
+ LOAD_SRC_DST
+ MERGE_NEXT_SRC(src_reg, 1)
+ FILTER_SRC(xfilter)
+ src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ // merge previous pack to current pack source
+ MERGE_WITH_SRC(src_pack, src_reg)
+ // filter the source
+ FILTER_SRC(yfilter)
+ src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
+ sec_reg = _mm256_loadu_si256((__m256i const *) (sec));
+ src_pack = _mm256_avg_epu8(src_pack, sec_reg);
+ MERGE_WITH_SRC(src_pack, zero_reg)
+ src_pack = src_reg;
+ sec+= sec_stride;
+ CALC_SUM_SSE_INSIDE_LOOP
+ dst+= dst_stride;
+ }
+ }
+ }
+ CALC_SUM_AND_SSE
+ return sum;
+}
diff --git a/media/libvpx/vp9/encoder/x86/vp9_subtract_sse2.asm b/media/libvpx/vp9/encoder/x86/vp9_subtract_sse2.asm
new file mode 100644
index 000000000..982408083
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_subtract_sse2.asm
@@ -0,0 +1,127 @@
+;
+; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+
+%include "third_party/x86inc/x86inc.asm"
+
+SECTION .text
+
+; void vp9_subtract_block(int rows, int cols,
+; int16_t *diff, ptrdiff_t diff_stride,
+; const uint8_t *src, ptrdiff_t src_stride,
+; const uint8_t *pred, ptrdiff_t pred_stride)
+
+INIT_XMM sse2
+cglobal subtract_block, 7, 7, 8, \
+ rows, cols, diff, diff_stride, src, src_stride, \
+ pred, pred_stride
+%define pred_str colsq
+ pxor m7, m7 ; dedicated zero register
+ cmp colsd, 4
+ je .case_4
+ cmp colsd, 8
+ je .case_8
+ cmp colsd, 16
+ je .case_16
+ cmp colsd, 32
+ je .case_32
+
+%macro loop16 6
+ mova m0, [srcq+%1]
+ mova m4, [srcq+%2]
+ mova m1, [predq+%3]
+ mova m5, [predq+%4]
+ punpckhbw m2, m0, m7
+ punpckhbw m3, m1, m7
+ punpcklbw m0, m7
+ punpcklbw m1, m7
+ psubw m2, m3
+ psubw m0, m1
+ punpckhbw m1, m4, m7
+ punpckhbw m3, m5, m7
+ punpcklbw m4, m7
+ punpcklbw m5, m7
+ psubw m1, m3
+ psubw m4, m5
+ mova [diffq+mmsize*0+%5], m0
+ mova [diffq+mmsize*1+%5], m2
+ mova [diffq+mmsize*0+%6], m4
+ mova [diffq+mmsize*1+%6], m1
+%endmacro
+
+ mov pred_str, pred_stridemp
+.loop_64:
+ loop16 0*mmsize, 1*mmsize, 0*mmsize, 1*mmsize, 0*mmsize, 2*mmsize
+ loop16 2*mmsize, 3*mmsize, 2*mmsize, 3*mmsize, 4*mmsize, 6*mmsize
+ lea diffq, [diffq+diff_strideq*2]
+ add predq, pred_str
+ add srcq, src_strideq
+ dec rowsd
+ jg .loop_64
+ RET
+
+.case_32:
+ mov pred_str, pred_stridemp
+.loop_32:
+ loop16 0, mmsize, 0, mmsize, 0, 2*mmsize
+ lea diffq, [diffq+diff_strideq*2]
+ add predq, pred_str
+ add srcq, src_strideq
+ dec rowsd
+ jg .loop_32
+ RET
+
+.case_16:
+ mov pred_str, pred_stridemp
+.loop_16:
+ loop16 0, src_strideq, 0, pred_str, 0, diff_strideq*2
+ lea diffq, [diffq+diff_strideq*4]
+ lea predq, [predq+pred_str*2]
+ lea srcq, [srcq+src_strideq*2]
+ sub rowsd, 2
+ jg .loop_16
+ RET
+
+%macro loop_h 0
+ movh m0, [srcq]
+ movh m2, [srcq+src_strideq]
+ movh m1, [predq]
+ movh m3, [predq+pred_str]
+ punpcklbw m0, m7
+ punpcklbw m1, m7
+ punpcklbw m2, m7
+ punpcklbw m3, m7
+ psubw m0, m1
+ psubw m2, m3
+ mova [diffq], m0
+ mova [diffq+diff_strideq*2], m2
+%endmacro
+
+.case_8:
+ mov pred_str, pred_stridemp
+.loop_8:
+ loop_h
+ lea diffq, [diffq+diff_strideq*4]
+ lea srcq, [srcq+src_strideq*2]
+ lea predq, [predq+pred_str*2]
+ sub rowsd, 2
+ jg .loop_8
+ RET
+
+INIT_MMX
+.case_4:
+ mov pred_str, pred_stridemp
+.loop_4:
+ loop_h
+ lea diffq, [diffq+diff_strideq*4]
+ lea srcq, [srcq+src_strideq*2]
+ lea predq, [predq+pred_str*2]
+ sub rowsd, 2
+ jg .loop_4
+ RET
diff --git a/media/libvpx/vp9/encoder/x86/vp9_temporal_filter_apply_sse2.asm b/media/libvpx/vp9/encoder/x86/vp9_temporal_filter_apply_sse2.asm
new file mode 100644
index 000000000..21aaa9383
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_temporal_filter_apply_sse2.asm
@@ -0,0 +1,212 @@
+;
+; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+;
+; Use of this source code is governed by a BSD-style license
+; that can be found in the LICENSE file in the root of the source
+; tree. An additional intellectual property rights grant can be found
+; in the file PATENTS. All contributing project authors may
+; be found in the AUTHORS file in the root of the source tree.
+;
+
+
+%include "vpx_ports/x86_abi_support.asm"
+
+; void vp9_temporal_filter_apply_sse2 | arg
+; (unsigned char *frame1, | 0
+; unsigned int stride, | 1
+; unsigned char *frame2, | 2
+; unsigned int block_width, | 3
+; unsigned int block_height, | 4
+; int strength, | 5
+; int filter_weight, | 6
+; unsigned int *accumulator, | 7
+; unsigned short *count) | 8
+global sym(vp9_temporal_filter_apply_sse2) PRIVATE
+sym(vp9_temporal_filter_apply_sse2):
+
+ push rbp
+ mov rbp, rsp
+ SHADOW_ARGS_TO_STACK 9
+ SAVE_XMM 7
+ GET_GOT rbx
+ push rsi
+ push rdi
+ ALIGN_STACK 16, rax
+ %define block_width 0
+ %define block_height 16
+ %define strength 32
+ %define filter_weight 48
+ %define rounding_bit 64
+ %define rbp_backup 80
+ %define stack_size 96
+ sub rsp, stack_size
+ mov [rsp + rbp_backup], rbp
+ ; end prolog
+
+ mov edx, arg(3)
+ mov [rsp + block_width], rdx
+ mov edx, arg(4)
+ mov [rsp + block_height], rdx
+ movd xmm6, arg(5)
+ movdqa [rsp + strength], xmm6 ; where strength is used, all 16 bytes are read
+
+ ; calculate the rounding bit outside the loop
+ ; 0x8000 >> (16 - strength)
+ mov rdx, 16
+ sub rdx, arg(5) ; 16 - strength
+ movq xmm4, rdx ; can't use rdx w/ shift
+ movdqa xmm5, [GLOBAL(_const_top_bit)]
+ psrlw xmm5, xmm4
+ movdqa [rsp + rounding_bit], xmm5
+
+ mov rsi, arg(0) ; src/frame1
+ mov rdx, arg(2) ; predictor frame
+ mov rdi, arg(7) ; accumulator
+ mov rax, arg(8) ; count
+
+ ; dup the filter weight and store for later
+ movd xmm0, arg(6) ; filter_weight
+ pshuflw xmm0, xmm0, 0
+ punpcklwd xmm0, xmm0
+ movdqa [rsp + filter_weight], xmm0
+
+ mov rbp, arg(1) ; stride
+ pxor xmm7, xmm7 ; zero for extraction
+
+ mov rcx, [rsp + block_width]
+ imul rcx, [rsp + block_height]
+ add rcx, rdx
+ cmp dword ptr [rsp + block_width], 8
+ jne .temporal_filter_apply_load_16
+
+.temporal_filter_apply_load_8:
+ movq xmm0, [rsi] ; first row
+ lea rsi, [rsi + rbp] ; += stride
+ punpcklbw xmm0, xmm7 ; src[ 0- 7]
+ movq xmm1, [rsi] ; second row
+ lea rsi, [rsi + rbp] ; += stride
+ punpcklbw xmm1, xmm7 ; src[ 8-15]
+ jmp .temporal_filter_apply_load_finished
+
+.temporal_filter_apply_load_16:
+ movdqa xmm0, [rsi] ; src (frame1)
+ lea rsi, [rsi + rbp] ; += stride
+ movdqa xmm1, xmm0
+ punpcklbw xmm0, xmm7 ; src[ 0- 7]
+ punpckhbw xmm1, xmm7 ; src[ 8-15]
+
+.temporal_filter_apply_load_finished:
+ movdqa xmm2, [rdx] ; predictor (frame2)
+ movdqa xmm3, xmm2
+ punpcklbw xmm2, xmm7 ; pred[ 0- 7]
+ punpckhbw xmm3, xmm7 ; pred[ 8-15]
+
+ ; modifier = src_byte - pixel_value
+ psubw xmm0, xmm2 ; src - pred[ 0- 7]
+ psubw xmm1, xmm3 ; src - pred[ 8-15]
+
+ ; modifier *= modifier
+ pmullw xmm0, xmm0 ; modifer[ 0- 7]^2
+ pmullw xmm1, xmm1 ; modifer[ 8-15]^2
+
+ ; modifier *= 3
+ pmullw xmm0, [GLOBAL(_const_3w)]
+ pmullw xmm1, [GLOBAL(_const_3w)]
+
+ ; modifer += 0x8000 >> (16 - strength)
+ paddw xmm0, [rsp + rounding_bit]
+ paddw xmm1, [rsp + rounding_bit]
+
+ ; modifier >>= strength
+ psrlw xmm0, [rsp + strength]
+ psrlw xmm1, [rsp + strength]
+
+ ; modifier = 16 - modifier
+ ; saturation takes care of modifier > 16
+ movdqa xmm3, [GLOBAL(_const_16w)]
+ movdqa xmm2, [GLOBAL(_const_16w)]
+ psubusw xmm3, xmm1
+ psubusw xmm2, xmm0
+
+ ; modifier *= filter_weight
+ pmullw xmm2, [rsp + filter_weight]
+ pmullw xmm3, [rsp + filter_weight]
+
+ ; count
+ movdqa xmm4, [rax]
+ movdqa xmm5, [rax+16]
+ ; += modifier
+ paddw xmm4, xmm2
+ paddw xmm5, xmm3
+ ; write back
+ movdqa [rax], xmm4
+ movdqa [rax+16], xmm5
+ lea rax, [rax + 16*2] ; count += 16*(sizeof(short))
+
+ ; load and extract the predictor up to shorts
+ pxor xmm7, xmm7
+ movdqa xmm0, [rdx]
+ lea rdx, [rdx + 16*1] ; pred += 16*(sizeof(char))
+ movdqa xmm1, xmm0
+ punpcklbw xmm0, xmm7 ; pred[ 0- 7]
+ punpckhbw xmm1, xmm7 ; pred[ 8-15]
+
+ ; modifier *= pixel_value
+ pmullw xmm0, xmm2
+ pmullw xmm1, xmm3
+
+ ; expand to double words
+ movdqa xmm2, xmm0
+ punpcklwd xmm0, xmm7 ; [ 0- 3]
+ punpckhwd xmm2, xmm7 ; [ 4- 7]
+ movdqa xmm3, xmm1
+ punpcklwd xmm1, xmm7 ; [ 8-11]
+ punpckhwd xmm3, xmm7 ; [12-15]
+
+ ; accumulator
+ movdqa xmm4, [rdi]
+ movdqa xmm5, [rdi+16]
+ movdqa xmm6, [rdi+32]
+ movdqa xmm7, [rdi+48]
+ ; += modifier
+ paddd xmm4, xmm0
+ paddd xmm5, xmm2
+ paddd xmm6, xmm1
+ paddd xmm7, xmm3
+ ; write back
+ movdqa [rdi], xmm4
+ movdqa [rdi+16], xmm5
+ movdqa [rdi+32], xmm6
+ movdqa [rdi+48], xmm7
+ lea rdi, [rdi + 16*4] ; accumulator += 16*(sizeof(int))
+
+ cmp rdx, rcx
+ je .temporal_filter_apply_epilog
+ pxor xmm7, xmm7 ; zero for extraction
+ cmp dword ptr [rsp + block_width], 16
+ je .temporal_filter_apply_load_16
+ jmp .temporal_filter_apply_load_8
+
+.temporal_filter_apply_epilog:
+ ; begin epilog
+ mov rbp, [rsp + rbp_backup]
+ add rsp, stack_size
+ pop rsp
+ pop rdi
+ pop rsi
+ RESTORE_GOT
+ RESTORE_XMM
+ UNSHADOW_ARGS
+ pop rbp
+ ret
+
+SECTION_RODATA
+align 16
+_const_3w:
+ times 8 dw 3
+align 16
+_const_top_bit:
+ times 8 dw 1<<15
+align 16
+_const_16w
+ times 8 dw 16
diff --git a/media/libvpx/vp9/encoder/x86/vp9_variance_avx2.c b/media/libvpx/vp9/encoder/x86/vp9_variance_avx2.c
new file mode 100644
index 000000000..8cd071de5
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_variance_avx2.c
@@ -0,0 +1,104 @@
+/*
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include "./vp9_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vp9/encoder/vp9_variance.h"
+#include "vpx_ports/mem.h"
+
+unsigned int vp9_sub_pixel_variance32xh_avx2(const uint8_t *src, int src_stride,
+ int x_offset, int y_offset,
+ const uint8_t *dst, int dst_stride,
+ int height,
+ unsigned int *sse);
+
+unsigned int vp9_sub_pixel_avg_variance32xh_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ const uint8_t *sec,
+ int sec_stride,
+ int height,
+ unsigned int *sseptr);
+
+unsigned int vp9_sub_pixel_variance64x64_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse) {
+ unsigned int sse1;
+ const int se1 = vp9_sub_pixel_variance32xh_avx2(src, src_stride, x_offset,
+ y_offset, dst, dst_stride,
+ 64, &sse1);
+ unsigned int sse2;
+ const int se2 = vp9_sub_pixel_variance32xh_avx2(src + 32, src_stride,
+ x_offset, y_offset,
+ dst + 32, dst_stride,
+ 64, &sse2);
+ const int se = se1 + se2;
+ *sse = sse1 + sse2;
+ return *sse - (((int64_t)se * se) >> 12);
+}
+
+unsigned int vp9_sub_pixel_variance32x32_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse) {
+ const int se = vp9_sub_pixel_variance32xh_avx2(src, src_stride, x_offset,
+ y_offset, dst, dst_stride,
+ 32, sse);
+ return *sse - (((int64_t)se * se) >> 10);
+}
+
+unsigned int vp9_sub_pixel_avg_variance64x64_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse,
+ const uint8_t *sec) {
+ unsigned int sse1;
+ const int se1 = vp9_sub_pixel_avg_variance32xh_avx2(src, src_stride, x_offset,
+ y_offset, dst, dst_stride,
+ sec, 64, 64, &sse1);
+ unsigned int sse2;
+ const int se2 =
+ vp9_sub_pixel_avg_variance32xh_avx2(src + 32, src_stride, x_offset,
+ y_offset, dst + 32, dst_stride,
+ sec + 32, 64, 64, &sse2);
+ const int se = se1 + se2;
+
+ *sse = sse1 + sse2;
+
+ return *sse - (((int64_t)se * se) >> 12);
+}
+
+unsigned int vp9_sub_pixel_avg_variance32x32_avx2(const uint8_t *src,
+ int src_stride,
+ int x_offset,
+ int y_offset,
+ const uint8_t *dst,
+ int dst_stride,
+ unsigned int *sse,
+ const uint8_t *sec) {
+ // processing 32 element in parallel
+ const int se = vp9_sub_pixel_avg_variance32xh_avx2(src, src_stride, x_offset,
+ y_offset, dst, dst_stride,
+ sec, 32, 32, sse);
+ return *sse - (((int64_t)se * se) >> 10);
+}
diff --git a/media/libvpx/vp9/encoder/x86/vp9_variance_sse2.c b/media/libvpx/vp9/encoder/x86/vp9_variance_sse2.c
new file mode 100644
index 000000000..961efe34e
--- /dev/null
+++ b/media/libvpx/vp9/encoder/x86/vp9_variance_sse2.c
@@ -0,0 +1,182 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <emmintrin.h> // SSE2
+
+#include "./vp9_rtcd.h"
+#include "./vpx_config.h"
+
+#include "vp9/encoder/vp9_variance.h"
+#include "vpx_ports/mem.h"
+
+// The 2 unused parameters are place holders for PIC enabled build.
+#define DECL(w, opt) \
+int vp9_sub_pixel_variance##w##xh_##opt(const uint8_t *src, \
+ ptrdiff_t src_stride, \
+ int x_offset, int y_offset, \
+ const uint8_t *dst, \
+ ptrdiff_t dst_stride, \
+ int height, unsigned int *sse, \
+ void *unused0, void *unused)
+#define DECLS(opt1, opt2) \
+DECL(4, opt2); \
+DECL(8, opt1); \
+DECL(16, opt1)
+
+DECLS(sse2, sse);
+DECLS(ssse3, ssse3);
+#undef DECLS
+#undef DECL
+
+#define FN(w, h, wf, wlog2, hlog2, opt, cast) \
+unsigned int vp9_sub_pixel_variance##w##x##h##_##opt(const uint8_t *src, \
+ int src_stride, \
+ int x_offset, \
+ int y_offset, \
+ const uint8_t *dst, \
+ int dst_stride, \
+ unsigned int *sse_ptr) { \
+ unsigned int sse; \
+ int se = vp9_sub_pixel_variance##wf##xh_##opt(src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, \
+ h, &sse, NULL, NULL); \
+ if (w > wf) { \
+ unsigned int sse2; \
+ int se2 = vp9_sub_pixel_variance##wf##xh_##opt(src + 16, src_stride, \
+ x_offset, y_offset, \
+ dst + 16, dst_stride, \
+ h, &sse2, NULL, NULL); \
+ se += se2; \
+ sse += sse2; \
+ if (w > wf * 2) { \
+ se2 = vp9_sub_pixel_variance##wf##xh_##opt(src + 32, src_stride, \
+ x_offset, y_offset, \
+ dst + 32, dst_stride, \
+ h, &sse2, NULL, NULL); \
+ se += se2; \
+ sse += sse2; \
+ se2 = vp9_sub_pixel_variance##wf##xh_##opt(src + 48, src_stride, \
+ x_offset, y_offset, \
+ dst + 48, dst_stride, \
+ h, &sse2, NULL, NULL); \
+ se += se2; \
+ sse += sse2; \
+ } \
+ } \
+ *sse_ptr = sse; \
+ return sse - ((cast se * se) >> (wlog2 + hlog2)); \
+}
+
+#define FNS(opt1, opt2) \
+FN(64, 64, 16, 6, 6, opt1, (int64_t)); \
+FN(64, 32, 16, 6, 5, opt1, (int64_t)); \
+FN(32, 64, 16, 5, 6, opt1, (int64_t)); \
+FN(32, 32, 16, 5, 5, opt1, (int64_t)); \
+FN(32, 16, 16, 5, 4, opt1, (int64_t)); \
+FN(16, 32, 16, 4, 5, opt1, (int64_t)); \
+FN(16, 16, 16, 4, 4, opt1, (unsigned int)); \
+FN(16, 8, 16, 4, 3, opt1, (unsigned int)); \
+FN(8, 16, 8, 3, 4, opt1, (unsigned int)); \
+FN(8, 8, 8, 3, 3, opt1, (unsigned int)); \
+FN(8, 4, 8, 3, 2, opt1, (unsigned int)); \
+FN(4, 8, 4, 2, 3, opt2, (unsigned int)); \
+FN(4, 4, 4, 2, 2, opt2, (unsigned int))
+
+FNS(sse2, sse);
+FNS(ssse3, ssse3);
+
+#undef FNS
+#undef FN
+
+// The 2 unused parameters are place holders for PIC enabled build.
+#define DECL(w, opt) \
+int vp9_sub_pixel_avg_variance##w##xh_##opt(const uint8_t *src, \
+ ptrdiff_t src_stride, \
+ int x_offset, int y_offset, \
+ const uint8_t *dst, \
+ ptrdiff_t dst_stride, \
+ const uint8_t *sec, \
+ ptrdiff_t sec_stride, \
+ int height, unsigned int *sse, \
+ void *unused0, void *unused)
+#define DECLS(opt1, opt2) \
+DECL(4, opt2); \
+DECL(8, opt1); \
+DECL(16, opt1)
+
+DECLS(sse2, sse);
+DECLS(ssse3, ssse3);
+#undef DECL
+#undef DECLS
+
+#define FN(w, h, wf, wlog2, hlog2, opt, cast) \
+unsigned int vp9_sub_pixel_avg_variance##w##x##h##_##opt(const uint8_t *src, \
+ int src_stride, \
+ int x_offset, \
+ int y_offset, \
+ const uint8_t *dst, \
+ int dst_stride, \
+ unsigned int *sseptr, \
+ const uint8_t *sec) { \
+ unsigned int sse; \
+ int se = vp9_sub_pixel_avg_variance##wf##xh_##opt(src, src_stride, x_offset, \
+ y_offset, dst, dst_stride, \
+ sec, w, h, &sse, NULL, \
+ NULL); \
+ if (w > wf) { \
+ unsigned int sse2; \
+ int se2 = vp9_sub_pixel_avg_variance##wf##xh_##opt(src + 16, src_stride, \
+ x_offset, y_offset, \
+ dst + 16, dst_stride, \
+ sec + 16, w, h, &sse2, \
+ NULL, NULL); \
+ se += se2; \
+ sse += sse2; \
+ if (w > wf * 2) { \
+ se2 = vp9_sub_pixel_avg_variance##wf##xh_##opt(src + 32, src_stride, \
+ x_offset, y_offset, \
+ dst + 32, dst_stride, \
+ sec + 32, w, h, &sse2, \
+ NULL, NULL); \
+ se += se2; \
+ sse += sse2; \
+ se2 = vp9_sub_pixel_avg_variance##wf##xh_##opt(src + 48, src_stride, \
+ x_offset, y_offset, \
+ dst + 48, dst_stride, \
+ sec + 48, w, h, &sse2, \
+ NULL, NULL); \
+ se += se2; \
+ sse += sse2; \
+ } \
+ } \
+ *sseptr = sse; \
+ return sse - ((cast se * se) >> (wlog2 + hlog2)); \
+}
+
+#define FNS(opt1, opt2) \
+FN(64, 64, 16, 6, 6, opt1, (int64_t)); \
+FN(64, 32, 16, 6, 5, opt1, (int64_t)); \
+FN(32, 64, 16, 5, 6, opt1, (int64_t)); \
+FN(32, 32, 16, 5, 5, opt1, (int64_t)); \
+FN(32, 16, 16, 5, 4, opt1, (int64_t)); \
+FN(16, 32, 16, 4, 5, opt1, (int64_t)); \
+FN(16, 16, 16, 4, 4, opt1, (unsigned int)); \
+FN(16, 8, 16, 4, 3, opt1, (unsigned int)); \
+FN(8, 16, 8, 3, 4, opt1, (unsigned int)); \
+FN(8, 8, 8, 3, 3, opt1, (unsigned int)); \
+FN(8, 4, 8, 3, 2, opt1, (unsigned int)); \
+FN(4, 8, 4, 2, 3, opt2, (unsigned int)); \
+FN(4, 4, 4, 2, 2, opt2, (unsigned int))
+
+FNS(sse2, sse);
+FNS(ssse3, ssse3);
+
+#undef FNS
+#undef FN