diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c')
-rw-r--r-- | media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c | 471 |
1 files changed, 471 insertions, 0 deletions
diff --git a/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c b/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c new file mode 100644 index 000000000..96038fee1 --- /dev/null +++ b/media/libvpx/vp9/encoder/x86/vp9_dct_ssse3.c @@ -0,0 +1,471 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include <assert.h> +#if defined(_MSC_VER) && _MSC_VER <= 1500 +// Need to include math.h before calling tmmintrin.h/intrin.h +// in certain versions of MSVS. +#include <math.h> +#endif +#include <tmmintrin.h> // SSSE3 + +#include "./vp9_rtcd.h" +#include "vp9/common/x86/vp9_idct_intrin_sse2.h" + +void vp9_fdct8x8_quant_ssse3(const int16_t *input, int stride, + int16_t* coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t* zbin_ptr, + const int16_t* round_ptr, const int16_t* quant_ptr, + const int16_t* quant_shift_ptr, + int16_t* qcoeff_ptr, + int16_t* dqcoeff_ptr, const int16_t* dequant_ptr, + uint16_t* eob_ptr, + const int16_t* scan_ptr, + const int16_t* iscan_ptr) { + __m128i zero; + int pass; + // Constants + // When we use them, in one case, they are all the same. In all others + // it's a pair of them that we need to repeat four times. This is done + // by constructing the 32 bit constant corresponding to that pair. + const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170); + const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + // Load input + __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); + __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); + __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); + __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); + __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); + __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); + __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); + __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); + __m128i *in[8]; + int index = 0; + + (void)scan_ptr; + (void)zbin_ptr; + (void)quant_shift_ptr; + (void)coeff_ptr; + + // Pre-condition input (shift by two) + in0 = _mm_slli_epi16(in0, 2); + in1 = _mm_slli_epi16(in1, 2); + in2 = _mm_slli_epi16(in2, 2); + in3 = _mm_slli_epi16(in3, 2); + in4 = _mm_slli_epi16(in4, 2); + in5 = _mm_slli_epi16(in5, 2); + in6 = _mm_slli_epi16(in6, 2); + in7 = _mm_slli_epi16(in7, 2); + + in[0] = &in0; + in[1] = &in1; + in[2] = &in2; + in[3] = &in3; + in[4] = &in4; + in[5] = &in5; + in[6] = &in6; + in[7] = &in7; + + // We do two passes, first the columns, then the rows. The results of the + // first pass are transposed so that the same column code can be reused. The + // results of the second pass are also transposed so that the rows (processed + // as columns) are put back in row positions. + for (pass = 0; pass < 2; pass++) { + // To store results of each pass before the transpose. + __m128i res0, res1, res2, res3, res4, res5, res6, res7; + // Add/subtract + const __m128i q0 = _mm_add_epi16(in0, in7); + const __m128i q1 = _mm_add_epi16(in1, in6); + const __m128i q2 = _mm_add_epi16(in2, in5); + const __m128i q3 = _mm_add_epi16(in3, in4); + const __m128i q4 = _mm_sub_epi16(in3, in4); + const __m128i q5 = _mm_sub_epi16(in2, in5); + const __m128i q6 = _mm_sub_epi16(in1, in6); + const __m128i q7 = _mm_sub_epi16(in0, in7); + // Work on first four results + { + // Add/subtract + const __m128i r0 = _mm_add_epi16(q0, q3); + const __m128i r1 = _mm_add_epi16(q1, q2); + const __m128i r2 = _mm_sub_epi16(q1, q2); + const __m128i r3 = _mm_sub_epi16(q0, q3); + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i t0 = _mm_unpacklo_epi16(r0, r1); + const __m128i t1 = _mm_unpackhi_epi16(r0, r1); + const __m128i t2 = _mm_unpacklo_epi16(r2, r3); + const __m128i t3 = _mm_unpackhi_epi16(r2, r3); + + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); + + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); + // dct_const_round_shift + + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + + res0 = _mm_packs_epi32(w0, w1); + res4 = _mm_packs_epi32(w2, w3); + res2 = _mm_packs_epi32(w4, w5); + res6 = _mm_packs_epi32(w6, w7); + } + // Work on next four results + { + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i d0 = _mm_sub_epi16(q6, q5); + const __m128i d1 = _mm_add_epi16(q6, q5); + const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16); + const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16); + + // Add/subtract + const __m128i x0 = _mm_add_epi16(q4, r0); + const __m128i x1 = _mm_sub_epi16(q4, r0); + const __m128i x2 = _mm_sub_epi16(q7, r1); + const __m128i x3 = _mm_add_epi16(q7, r1); + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i t0 = _mm_unpacklo_epi16(x0, x3); + const __m128i t1 = _mm_unpackhi_epi16(x0, x3); + const __m128i t2 = _mm_unpacklo_epi16(x1, x2); + const __m128i t3 = _mm_unpackhi_epi16(x1, x2); + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); + // dct_const_round_shift + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + res1 = _mm_packs_epi32(w0, w1); + res7 = _mm_packs_epi32(w2, w3); + res5 = _mm_packs_epi32(w4, w5); + res3 = _mm_packs_epi32(w6, w7); + } + // Transpose the 8x8. + { + // 00 01 02 03 04 05 06 07 + // 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 + // 30 31 32 33 34 35 36 37 + // 40 41 42 43 44 45 46 47 + // 50 51 52 53 54 55 56 57 + // 60 61 62 63 64 65 66 67 + // 70 71 72 73 74 75 76 77 + const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); + const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); + const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); + const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); + const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); + const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); + const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); + const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); + // 00 10 01 11 02 12 03 13 + // 20 30 21 31 22 32 23 33 + // 04 14 05 15 06 16 07 17 + // 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 + // 60 70 61 71 62 72 63 73 + // 54 54 55 55 56 56 57 57 + // 64 74 65 75 66 76 67 77 + const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); + const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); + const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); + const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); + const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); + const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); + const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); + const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); + // 00 10 20 30 01 11 21 31 + // 40 50 60 70 41 51 61 71 + // 02 12 22 32 03 13 23 33 + // 42 52 62 72 43 53 63 73 + // 04 14 24 34 05 15 21 36 + // 44 54 64 74 45 55 61 76 + // 06 16 26 36 07 17 27 37 + // 46 56 66 76 47 57 67 77 + in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); + in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); + in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); + in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); + in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); + in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); + in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); + in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 + // 07 17 27 37 47 57 67 77 + } + } + // Post-condition output and store it + { + // Post-condition (division by two) + // division of two 16 bits signed numbers using shifts + // n / 2 = (n - (n >> 15)) >> 1 + const __m128i sign_in0 = _mm_srai_epi16(in0, 15); + const __m128i sign_in1 = _mm_srai_epi16(in1, 15); + const __m128i sign_in2 = _mm_srai_epi16(in2, 15); + const __m128i sign_in3 = _mm_srai_epi16(in3, 15); + const __m128i sign_in4 = _mm_srai_epi16(in4, 15); + const __m128i sign_in5 = _mm_srai_epi16(in5, 15); + const __m128i sign_in6 = _mm_srai_epi16(in6, 15); + const __m128i sign_in7 = _mm_srai_epi16(in7, 15); + in0 = _mm_sub_epi16(in0, sign_in0); + in1 = _mm_sub_epi16(in1, sign_in1); + in2 = _mm_sub_epi16(in2, sign_in2); + in3 = _mm_sub_epi16(in3, sign_in3); + in4 = _mm_sub_epi16(in4, sign_in4); + in5 = _mm_sub_epi16(in5, sign_in5); + in6 = _mm_sub_epi16(in6, sign_in6); + in7 = _mm_sub_epi16(in7, sign_in7); + in0 = _mm_srai_epi16(in0, 1); + in1 = _mm_srai_epi16(in1, 1); + in2 = _mm_srai_epi16(in2, 1); + in3 = _mm_srai_epi16(in3, 1); + in4 = _mm_srai_epi16(in4, 1); + in5 = _mm_srai_epi16(in5, 1); + in6 = _mm_srai_epi16(in6, 1); + in7 = _mm_srai_epi16(in7, 1); + } + + iscan_ptr += n_coeffs; + qcoeff_ptr += n_coeffs; + dqcoeff_ptr += n_coeffs; + n_coeffs = -n_coeffs; + zero = _mm_setzero_si128(); + + if (!skip_block) { + __m128i eob; + __m128i round, quant, dequant, thr; + int16_t nzflag; + { + __m128i coeff0, coeff1; + + // Setup global values + { + round = _mm_load_si128((const __m128i*)round_ptr); + quant = _mm_load_si128((const __m128i*)quant_ptr); + dequant = _mm_load_si128((const __m128i*)dequant_ptr); + } + + { + __m128i coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i qtmp0, qtmp1; + // Do DC and first 15 AC + coeff0 = *in[0]; + coeff1 = *in[1]; + + // Poor man's sign extract + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + qcoeff0 = _mm_adds_epi16(qcoeff0, round); + round = _mm_unpackhi_epi64(round, round); + qcoeff1 = _mm_adds_epi16(qcoeff1, round); + qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); + quant = _mm_unpackhi_epi64(quant, quant); + qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0); + _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1); + + coeff0 = _mm_mullo_epi16(qcoeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = _mm_mullo_epi16(qcoeff1, dequant); + + _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0); + _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1); + } + + { + // Scan for eob + __m128i zero_coeff0, zero_coeff1; + __m128i nzero_coeff0, nzero_coeff1; + __m128i iscan0, iscan1; + __m128i eob1; + zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs)); + iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); + iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); + eob = _mm_and_si128(iscan0, nzero_coeff0); + eob1 = _mm_and_si128(iscan1, nzero_coeff1); + eob = _mm_max_epi16(eob, eob1); + } + n_coeffs += 8 * 2; + } + + // AC only loop + index = 2; + thr = _mm_srai_epi16(dequant, 1); + while (n_coeffs < 0) { + __m128i coeff0, coeff1; + { + __m128i coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i qtmp0, qtmp1; + + assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1); + coeff0 = *in[index]; + coeff1 = *in[index + 1]; + + // Poor man's sign extract + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) | + _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr)); + + if (nzflag) { + qcoeff0 = _mm_adds_epi16(qcoeff0, round); + qcoeff1 = _mm_adds_epi16(qcoeff1, round); + qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); + qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0); + _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1); + + coeff0 = _mm_mullo_epi16(qcoeff0, dequant); + coeff1 = _mm_mullo_epi16(qcoeff1, dequant); + + _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0); + _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1); + } else { + _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero); + _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero); + + _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero); + _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero); + } + } + + if (nzflag) { + // Scan for eob + __m128i zero_coeff0, zero_coeff1; + __m128i nzero_coeff0, nzero_coeff1; + __m128i iscan0, iscan1; + __m128i eob0, eob1; + zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs)); + iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); + iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); + eob0 = _mm_and_si128(iscan0, nzero_coeff0); + eob1 = _mm_and_si128(iscan1, nzero_coeff1); + eob0 = _mm_max_epi16(eob0, eob1); + eob = _mm_max_epi16(eob, eob0); + } + n_coeffs += 8 * 2; + index += 2; + } + + // Accumulate EOB + { + __m128i eob_shuffled; + eob_shuffled = _mm_shuffle_epi32(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); + eob = _mm_max_epi16(eob, eob_shuffled); + *eob_ptr = _mm_extract_epi16(eob, 1); + } + } else { + do { + _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero); + _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero); + _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero); + _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero); + n_coeffs += 8 * 2; + } while (n_coeffs < 0); + *eob_ptr = 0; + } +} |