diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /media/libvpx/vp9/encoder/vp9_pickmode.c | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libvpx/vp9/encoder/vp9_pickmode.c')
-rw-r--r-- | media/libvpx/vp9/encoder/vp9_pickmode.c | 1885 |
1 files changed, 1885 insertions, 0 deletions
diff --git a/media/libvpx/vp9/encoder/vp9_pickmode.c b/media/libvpx/vp9/encoder/vp9_pickmode.c new file mode 100644 index 000000000..2c7883183 --- /dev/null +++ b/media/libvpx/vp9/encoder/vp9_pickmode.c @@ -0,0 +1,1885 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include <assert.h> +#include <limits.h> +#include <math.h> +#include <stdio.h> + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_scan.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_pickmode.h" +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_rd.h" + +typedef struct { + uint8_t *data; + int stride; + int in_use; +} PRED_BUFFER; + +static int mv_refs_rt(const VP9_COMMON *cm, const MACROBLOCKD *xd, + const TileInfo *const tile, + MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, + int_mv *mv_ref_list, + int mi_row, int mi_col) { + const int *ref_sign_bias = cm->ref_frame_sign_bias; + int i, refmv_count = 0; + + const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type]; + + int different_ref_found = 0; + int context_counter = 0; + int const_motion = 0; + + // Blank the reference vector list + memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES); + + // The nearest 2 blocks are treated differently + // if the size < 8x8 we get the mv from the bmi substructure, + // and we also need to keep a mode count. + for (i = 0; i < 2; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row * + xd->mi_stride]; + const MB_MODE_INFO *const candidate = &candidate_mi->mbmi; + // Keep counts for entropy encoding. + context_counter += mode_2_counter[candidate->mode]; + different_ref_found = 1; + + if (candidate->ref_frame[0] == ref_frame) + ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1), + refmv_count, mv_ref_list, Done); + } + } + + const_motion = 1; + + // Check the rest of the neighbors in much the same way + // as before except we don't need to keep track of sub blocks or + // mode counts. + for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row * + xd->mi_stride]->mbmi; + different_ref_found = 1; + + if (candidate->ref_frame[0] == ref_frame) + ADD_MV_REF_LIST(candidate->mv[0], refmv_count, mv_ref_list, Done); + } + } + + // Since we couldn't find 2 mvs from the same reference frame + // go back through the neighbors and find motion vectors from + // different reference frames. + if (different_ref_found && !refmv_count) { + for (i = 0; i < MVREF_NEIGHBOURS; ++i) { + const POSITION *mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row + * xd->mi_stride]->mbmi; + + // If the candidate is INTRA we don't want to consider its mv. + IF_DIFF_REF_FRAME_ADD_MV(candidate, ref_frame, ref_sign_bias, + refmv_count, mv_ref_list, Done); + } + } + } + + Done: + + mi->mbmi.mode_context[ref_frame] = counter_to_context[context_counter]; + + // Clamp vectors + for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) + clamp_mv_ref(&mv_ref_list[i].as_mv, xd); + + return const_motion; +} + +static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int_mv *tmp_mv, int *rate_mv, + int64_t best_rd_sofar) { + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; + struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}}; + const int step_param = cpi->sf.mv.fullpel_search_step_param; + const int sadpb = x->sadperbit16; + MV mvp_full; + const int ref = mbmi->ref_frame[0]; + const MV ref_mv = mbmi->ref_mvs[ref][0].as_mv; + int dis; + int rate_mode; + const int tmp_col_min = x->mv_col_min; + const int tmp_col_max = x->mv_col_max; + const int tmp_row_min = x->mv_row_min; + const int tmp_row_max = x->mv_row_max; + int rv = 0; + int cost_list[5]; + const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi, + ref); + if (scaled_ref_frame) { + int i; + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // motion search code to be used without additional modifications. + for (i = 0; i < MAX_MB_PLANE; i++) + backup_yv12[i] = xd->plane[i].pre[0]; + vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); + } + vp9_set_mv_search_range(x, &ref_mv); + + assert(x->mv_best_ref_index[ref] <= 2); + if (x->mv_best_ref_index[ref] < 2) + mvp_full = mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv; + else + mvp_full = x->pred_mv[ref]; + + mvp_full.col >>= 3; + mvp_full.row >>= 3; + + vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb, + cond_cost_list(cpi, cost_list), + &ref_mv, &tmp_mv->as_mv, INT_MAX, 0); + + x->mv_col_min = tmp_col_min; + x->mv_col_max = tmp_col_max; + x->mv_row_min = tmp_row_min; + x->mv_row_max = tmp_row_max; + + // calculate the bit cost on motion vector + mvp_full.row = tmp_mv->as_mv.row * 8; + mvp_full.col = tmp_mv->as_mv.col * 8; + + *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + + rate_mode = cpi->inter_mode_cost[mbmi->mode_context[ref]] + [INTER_OFFSET(NEWMV)]; + rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) > + best_rd_sofar); + + if (rv) { + cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv, + cpi->common.allow_high_precision_mv, + x->errorperbit, + &cpi->fn_ptr[bsize], + cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, + cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, + &dis, &x->pred_sse[ref], NULL, 0, 0); + *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } + + if (scaled_ref_frame) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) + xd->plane[i].pre[0] = backup_yv12[i]; + } + return rv; +} + +static void block_variance(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + int w, int h, unsigned int *sse, int *sum, + int block_size, unsigned int *sse8x8, + int *sum8x8, unsigned int *var8x8) { + int i, j, k = 0; + + *sse = 0; + *sum = 0; + + for (i = 0; i < h; i += block_size) { + for (j = 0; j < w; j += block_size) { + vpx_get8x8var(src + src_stride * i + j, src_stride, + ref + ref_stride * i + j, ref_stride, + &sse8x8[k], &sum8x8[k]); + *sse += sse8x8[k]; + *sum += sum8x8[k]; + var8x8[k] = sse8x8[k] - (((unsigned int)sum8x8[k] * sum8x8[k]) >> 6); + k++; + } + } +} + +static void calculate_variance(int bw, int bh, TX_SIZE tx_size, + unsigned int *sse_i, int *sum_i, + unsigned int *var_o, unsigned int *sse_o, + int *sum_o) { + const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; + const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); + const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); + int i, j, k = 0; + + for (i = 0; i < nh; i += 2) { + for (j = 0; j < nw; j += 2) { + sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + + sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; + sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + + sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; + var_o[k] = sse_o[k] - (((unsigned int)sum_o[k] * sum_o[k]) >> + (b_width_log2_lookup[unit_size] + + b_height_log2_lookup[unit_size] + 6)); + k++; + } + } +} + +static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, + int *out_rate_sum, int64_t *out_dist_sum, + unsigned int *var_y, unsigned int *sse_y, + int mi_row, int mi_col, int *early_term) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + unsigned int sse; + int rate; + int64_t dist; + struct macroblock_plane *const p = &x->plane[0]; + struct macroblockd_plane *const pd = &xd->plane[0]; + const uint32_t dc_quant = pd->dequant[0]; + const uint32_t ac_quant = pd->dequant[1]; + const int64_t dc_thr = dc_quant * dc_quant >> 6; + const int64_t ac_thr = ac_quant * ac_quant >> 6; + unsigned int var; + int sum; + int skip_dc = 0; + + const int bw = b_width_log2_lookup[bsize]; + const int bh = b_height_log2_lookup[bsize]; + const int num8x8 = 1 << (bw + bh - 2); + unsigned int sse8x8[64] = {0}; + int sum8x8[64] = {0}; + unsigned int var8x8[64] = {0}; + TX_SIZE tx_size; + int i, k; + + // Calculate variance for whole partition, and also save 8x8 blocks' variance + // to be used in following transform skipping test. + block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, + 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8); + var = sse - (((int64_t)sum * sum) >> (bw + bh + 4)); + + *var_y = var; + *sse_y = sse; + + if (cpi->common.tx_mode == TX_MODE_SELECT) { + if (sse > (var << 2)) + tx_size = MIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + else + tx_size = TX_8X8; + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && + cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id)) + tx_size = TX_8X8; + else if (tx_size > TX_16X16) + tx_size = TX_16X16; + } else { + tx_size = MIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + } + + assert(tx_size >= TX_8X8); + xd->mi[0]->mbmi.tx_size = tx_size; + + // Evaluate if the partition block is a skippable block in Y plane. + { + unsigned int sse16x16[16] = {0}; + int sum16x16[16] = {0}; + unsigned int var16x16[16] = {0}; + const int num16x16 = num8x8 >> 2; + + unsigned int sse32x32[4] = {0}; + int sum32x32[4] = {0}; + unsigned int var32x32[4] = {0}; + const int num32x32 = num8x8 >> 4; + + int ac_test = 1; + int dc_test = 1; + const int num = (tx_size == TX_8X8) ? num8x8 : + ((tx_size == TX_16X16) ? num16x16 : num32x32); + const unsigned int *sse_tx = (tx_size == TX_8X8) ? sse8x8 : + ((tx_size == TX_16X16) ? sse16x16 : sse32x32); + const unsigned int *var_tx = (tx_size == TX_8X8) ? var8x8 : + ((tx_size == TX_16X16) ? var16x16 : var32x32); + + // Calculate variance if tx_size > TX_8X8 + if (tx_size >= TX_16X16) + calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, + sum16x16); + if (tx_size == TX_32X32) + calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32, + sse32x32, sum32x32); + + // Skipping test + x->skip_txfm[0] = 0; + for (k = 0; k < num; k++) + // Check if all ac coefficients can be quantized to zero. + if (!(var_tx[k] < ac_thr || var == 0)) { + ac_test = 0; + break; + } + + for (k = 0; k < num; k++) + // Check if dc coefficient can be quantized to zero. + if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { + dc_test = 0; + break; + } + + if (ac_test) { + x->skip_txfm[0] = 2; + + if (dc_test) + x->skip_txfm[0] = 1; + } else if (dc_test) { + skip_dc = 1; + } + } + + if (x->skip_txfm[0] == 1) { + int skip_uv[2] = {0}; + unsigned int var_uv[2]; + unsigned int sse_uv[2]; + + *out_rate_sum = 0; + *out_dist_sum = sse << 4; + + // Transform skipping test in UV planes. + for (i = 1; i <= 2; i++) { + struct macroblock_plane *const p = &x->plane[i]; + struct macroblockd_plane *const pd = &xd->plane[i]; + const TX_SIZE uv_tx_size = get_uv_tx_size(&xd->mi[0]->mbmi, pd); + const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size]; + const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd); + const int uv_bw = b_width_log2_lookup[uv_bsize]; + const int uv_bh = b_height_log2_lookup[uv_bsize]; + const int sf = (uv_bw - b_width_log2_lookup[unit_size]) + + (uv_bh - b_height_log2_lookup[unit_size]); + const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf); + const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf); + int j = i - 1; + + vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i); + var_uv[j] = cpi->fn_ptr[uv_bsize].vf(p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride, &sse_uv[j]); + + if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && + (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) + skip_uv[j] = 1; + else + break; + } + + // If the transform in YUV planes are skippable, the mode search checks + // fewer inter modes and doesn't check intra modes. + if (skip_uv[0] & skip_uv[1]) { + *early_term = 1; + } + + return; + } + + if (!skip_dc) { +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> (xd->bd - 5), &rate, &dist); + } else { + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> 3, &rate, &dist); + } +#else + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> 3, &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + if (!skip_dc) { + *out_rate_sum = rate >> 1; + *out_dist_sum = dist << 3; + } else { + *out_rate_sum = 0; + *out_dist_sum = (sse - var) << 4; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], + ac_quant >> (xd->bd - 5), &rate, &dist); + } else { + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], + ac_quant >> 3, &rate, &dist); + } +#else + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], + ac_quant >> 3, &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + + *out_rate_sum += rate; + *out_dist_sum += dist << 4; +} + +static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, + int *out_rate_sum, int64_t *out_dist_sum, + unsigned int *var_y, unsigned int *sse_y) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + unsigned int sse; + int rate; + int64_t dist; + struct macroblock_plane *const p = &x->plane[0]; + struct macroblockd_plane *const pd = &xd->plane[0]; + const int64_t dc_thr = p->quant_thred[0] >> 6; + const int64_t ac_thr = p->quant_thred[1] >> 6; + const uint32_t dc_quant = pd->dequant[0]; + const uint32_t ac_quant = pd->dequant[1]; + unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride, &sse); + int skip_dc = 0; + + *var_y = var; + *sse_y = sse; + + if (cpi->common.tx_mode == TX_MODE_SELECT) { + if (sse > (var << 2)) + xd->mi[0]->mbmi.tx_size = + MIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + else + xd->mi[0]->mbmi.tx_size = TX_8X8; + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && + cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id)) + xd->mi[0]->mbmi.tx_size = TX_8X8; + else if (xd->mi[0]->mbmi.tx_size > TX_16X16) + xd->mi[0]->mbmi.tx_size = TX_16X16; + } else { + xd->mi[0]->mbmi.tx_size = + MIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + } + + // Evaluate if the partition block is a skippable block in Y plane. + { + const BLOCK_SIZE unit_size = + txsize_to_bsize[xd->mi[0]->mbmi.tx_size]; + const unsigned int num_blk_log2 = + (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) + + (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]); + const unsigned int sse_tx = sse >> num_blk_log2; + const unsigned int var_tx = var >> num_blk_log2; + + x->skip_txfm[0] = 0; + // Check if all ac coefficients can be quantized to zero. + if (var_tx < ac_thr || var == 0) { + x->skip_txfm[0] = 2; + // Check if dc coefficient can be quantized to zero. + if (sse_tx - var_tx < dc_thr || sse == var) + x->skip_txfm[0] = 1; + } else { + if (sse_tx - var_tx < dc_thr || sse == var) + skip_dc = 1; + } + } + + if (x->skip_txfm[0] == 1) { + *out_rate_sum = 0; + *out_dist_sum = sse << 4; + return; + } + + if (!skip_dc) { +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> (xd->bd - 5), &rate, &dist); + } else { + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> 3, &rate, &dist); + } +#else + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> 3, &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + if (!skip_dc) { + *out_rate_sum = rate >> 1; + *out_dist_sum = dist << 3; + } else { + *out_rate_sum = 0; + *out_dist_sum = (sse - var) << 4; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], + ac_quant >> (xd->bd - 5), &rate, &dist); + } else { + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], + ac_quant >> 3, &rate, &dist); + } +#else + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], + ac_quant >> 3, &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + + *out_rate_sum += rate; + *out_dist_sum += dist << 4; +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist, + int *skippable, int64_t *sse, int plane, + BLOCK_SIZE bsize, TX_SIZE tx_size) { + MACROBLOCKD *xd = &x->e_mbd; + unsigned int var_y, sse_y; + (void)plane; + (void)tx_size; + model_rd_for_sb_y(cpi, bsize, x, xd, rate, dist, &var_y, &sse_y); + *sse = INT_MAX; + *skippable = 0; + return; +} +#else +static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist, + int *skippable, int64_t *sse, int plane, + BLOCK_SIZE bsize, TX_SIZE tx_size) { + MACROBLOCKD *xd = &x->e_mbd; + const struct macroblockd_plane *pd = &xd->plane[plane]; + const struct macroblock_plane *const p = &x->plane[plane]; + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + const int step = 1 << (tx_size << 1); + const int block_step = (1 << tx_size); + int block = 0, r, c; + int shift = tx_size == TX_32X32 ? 0 : 2; + const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : + xd->mb_to_right_edge >> (5 + pd->subsampling_x)); + const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : + xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); + int eob_cost = 0; + + (void)cpi; + vp9_subtract_plane(x, bsize, plane); + *skippable = 1; + // Keep track of the row and column of the blocks we use so that we know + // if we are in the unrestricted motion border. + for (r = 0; r < max_blocks_high; r += block_step) { + for (c = 0; c < num_4x4_w; c += block_step) { + if (c < max_blocks_wide) { + const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint16_t *const eob = &p->eobs[block]; + const int diff_stride = 4 * num_4x4_blocks_wide_lookup[bsize]; + const int16_t *src_diff; + src_diff = &p->src_diff[(r * diff_stride + c) << 2]; + + switch (tx_size) { + case TX_32X32: + vp9_fdct32x32_rd(src_diff, coeff, diff_stride); + vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin, + p->round_fp, p->quant_fp, p->quant_shift, + qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + case TX_16X16: + vp9_hadamard_16x16(src_diff, diff_stride, (int16_t *)coeff); + vp9_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp, + p->quant_fp, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + case TX_8X8: + vp9_hadamard_8x8(src_diff, diff_stride, (int16_t *)coeff); + vp9_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp, + p->quant_fp, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + case TX_4X4: + x->fwd_txm4x4(src_diff, coeff, diff_stride); + vp9_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp, + p->quant_fp, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + default: + assert(0); + break; + } + *skippable &= (*eob == 0); + eob_cost += 1; + } + block += step; + } + } + + if (*skippable && *sse < INT64_MAX) { + *rate = 0; + *dist = (*sse << 6) >> shift; + *sse = *dist; + return; + } + + block = 0; + *rate = 0; + *dist = 0; + *sse = (*sse << 6) >> shift; + for (r = 0; r < max_blocks_high; r += block_step) { + for (c = 0; c < num_4x4_w; c += block_step) { + if (c < max_blocks_wide) { + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint16_t *const eob = &p->eobs[block]; + + if (*eob == 1) + *rate += (int)abs(qcoeff[0]); + else if (*eob > 1) + *rate += (int)vp9_satd((const int16_t *)qcoeff, step << 4); + + *dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> shift; + } + block += step; + } + } + + if (*skippable == 0) { + *rate <<= 10; + *rate += (eob_cost << 8); + } +} +#endif + +static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, + int *out_rate_sum, int64_t *out_dist_sum, + unsigned int *var_y, unsigned int *sse_y) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + unsigned int sse; + int rate; + int64_t dist; + int i; + + *out_rate_sum = 0; + *out_dist_sum = 0; + + for (i = 1; i <= 2; ++i) { + struct macroblock_plane *const p = &x->plane[i]; + struct macroblockd_plane *const pd = &xd->plane[i]; + const uint32_t dc_quant = pd->dequant[0]; + const uint32_t ac_quant = pd->dequant[1]; + const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); + unsigned int var; + + if (!x->color_sensitivity[i - 1]) + continue; + + var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride, &sse); + *var_y += var; + *sse_y += sse; + + #if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], + dc_quant >> (xd->bd - 5), &rate, &dist); + } else { + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], + dc_quant >> 3, &rate, &dist); + } + #else + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], + dc_quant >> 3, &rate, &dist); + #endif // CONFIG_VP9_HIGHBITDEPTH + + *out_rate_sum += rate >> 1; + *out_dist_sum += dist << 3; + + #if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], + ac_quant >> (xd->bd - 5), &rate, &dist); + } else { + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], + ac_quant >> 3, &rate, &dist); + } + #else + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], + ac_quant >> 3, &rate, &dist); + #endif // CONFIG_VP9_HIGHBITDEPTH + + *out_rate_sum += rate; + *out_dist_sum += dist << 4; + } +} + +static int get_pred_buffer(PRED_BUFFER *p, int len) { + int i; + + for (i = 0; i < len; i++) { + if (!p[i].in_use) { + p[i].in_use = 1; + return i; + } + } + return -1; +} + +static void free_pred_buffer(PRED_BUFFER *p) { + if (p != NULL) + p->in_use = 0; +} + +static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + MV_REFERENCE_FRAME ref_frame, + PREDICTION_MODE this_mode, + unsigned int var_y, unsigned int sse_y, + struct buf_2d yv12_mb[][MAX_MB_PLANE], + int *rate, int64_t *dist) { + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; + + const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]); + unsigned int var = var_y, sse = sse_y; + // Skipping threshold for ac. + unsigned int thresh_ac; + // Skipping threshold for dc. + unsigned int thresh_dc; + if (x->encode_breakout > 0) { + // Set a maximum for threshold to avoid big PSNR loss in low bit rate + // case. Use extreme low threshold for static frames to limit + // skipping. + const unsigned int max_thresh = 36000; + // The encode_breakout input + const unsigned int min_thresh = + MIN(((unsigned int)x->encode_breakout << 4), max_thresh); +#if CONFIG_VP9_HIGHBITDEPTH + const int shift = (xd->bd << 1) - 16; +#endif + + // Calculate threshold according to dequant value. + thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3; +#if CONFIG_VP9_HIGHBITDEPTH + if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { + thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + thresh_ac = clamp(thresh_ac, min_thresh, max_thresh); + + // Adjust ac threshold according to partition size. + thresh_ac >>= + 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); + + thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6); +#if CONFIG_VP9_HIGHBITDEPTH + if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { + thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } else { + thresh_ac = 0; + thresh_dc = 0; + } + + // Y skipping condition checking for ac and dc. + if (var <= thresh_ac && (sse - var) <= thresh_dc) { + unsigned int sse_u, sse_v; + unsigned int var_u, var_v; + + // Skip UV prediction unless breakout is zero (lossless) to save + // computation with low impact on the result + if (x->encode_breakout == 0) { + xd->plane[1].pre[0] = yv12_mb[ref_frame][1]; + xd->plane[2].pre[0] = yv12_mb[ref_frame][2]; + vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize); + } + + var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, + x->plane[1].src.stride, + xd->plane[1].dst.buf, + xd->plane[1].dst.stride, &sse_u); + + // U skipping condition checking + if (((var_u << 2) <= thresh_ac) && (sse_u - var_u <= thresh_dc)) { + var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf, + x->plane[2].src.stride, + xd->plane[2].dst.buf, + xd->plane[2].dst.stride, &sse_v); + + // V skipping condition checking + if (((var_v << 2) <= thresh_ac) && (sse_v - var_v <= thresh_dc)) { + x->skip = 1; + + // The cost of skip bit needs to be added. + *rate = cpi->inter_mode_cost[mbmi->mode_context[ref_frame]] + [INTER_OFFSET(this_mode)]; + + // More on this part of rate + // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + + // Scaling factor for SSE from spatial domain to frequency + // domain is 16. Adjust distortion accordingly. + // TODO(yunqingwang): In this function, only y-plane dist is + // calculated. + *dist = (sse << 4); // + ((sse_u + sse_v) << 4); + + // *disable_skip = 1; + } + } + } +} + +struct estimate_block_intra_args { + VP9_COMP *cpi; + MACROBLOCK *x; + PREDICTION_MODE mode; + int rate; + int64_t dist; +}; + +static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, void *arg) { + struct estimate_block_intra_args* const args = arg; + VP9_COMP *const cpi = args->cpi; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = &x->plane[0]; + struct macroblockd_plane *const pd = &xd->plane[0]; + const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; + uint8_t *const src_buf_base = p->src.buf; + uint8_t *const dst_buf_base = pd->dst.buf; + const int src_stride = p->src.stride; + const int dst_stride = pd->dst.stride; + int i, j; + int rate; + int64_t dist; + int64_t this_sse = INT64_MAX; + int is_skippable; + + txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j); + assert(plane == 0); + (void) plane; + + p->src.buf = &src_buf_base[4 * (j * src_stride + i)]; + pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)]; + // Use source buffer as an approximation for the fully reconstructed buffer. + vp9_predict_intra_block(xd, block >> (2 * tx_size), + b_width_log2_lookup[plane_bsize], + tx_size, args->mode, + x->skip_encode ? p->src.buf : pd->dst.buf, + x->skip_encode ? src_stride : dst_stride, + pd->dst.buf, dst_stride, + i, j, 0); + + // TODO(jingning): This needs further refactoring. + block_yrd(cpi, x, &rate, &dist, &is_skippable, &this_sse, 0, + bsize_tx, MIN(tx_size, TX_16X16)); + x->skip_txfm[0] = is_skippable; + rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), is_skippable); + + p->src.buf = src_buf_base; + pd->dst.buf = dst_buf_base; + args->rate += rate; + args->dist += dist; +} + +static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][4] = { + {THR_DC, THR_V_PRED, THR_H_PRED, THR_TM}, + {THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV}, + {THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG}, +}; + +static const PREDICTION_MODE intra_mode_list[] = { + DC_PRED, V_PRED, H_PRED, TM_PRED +}; + +static int mode_offset(const PREDICTION_MODE mode) { + if (mode >= NEARESTMV) { + return INTER_OFFSET(mode); + } else { + switch (mode) { + case DC_PRED: + return 0; + case V_PRED: + return 1; + case H_PRED: + return 2; + case TM_PRED: + return 3; + default: + return -1; + } + } +} + +static INLINE void update_thresh_freq_fact(VP9_COMP *cpi, + TileDataEnc *tile_data, + BLOCK_SIZE bsize, + MV_REFERENCE_FRAME ref_frame, + THR_MODES best_mode_idx, + PREDICTION_MODE mode) { + THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; + int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx]; + if (thr_mode_idx == best_mode_idx) + *freq_fact -= (*freq_fact >> 4); + else + *freq_fact = MIN(*freq_fact + RD_THRESH_INC, + cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); +} + +void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; + RD_COST this_rdc, best_rdc; + PREDICTION_MODE this_mode; + struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 }; + const TX_SIZE intra_tx_size = + MIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + MODE_INFO *const mic = xd->mi[0]; + int *bmode_costs; + const MODE_INFO *above_mi = xd->mi[-xd->mi_stride]; + const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL; + const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0); + const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0); + bmode_costs = cpi->y_mode_costs[A][L]; + + (void) ctx; + vp9_rd_cost_reset(&best_rdc); + vp9_rd_cost_reset(&this_rdc); + + mbmi->ref_frame[0] = INTRA_FRAME; + mbmi->mv[0].as_int = INVALID_MV; + mbmi->uv_mode = DC_PRED; + memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); + + // Change the limit of this loop to add other intra prediction + // mode tests. + for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) { + args.mode = this_mode; + args.rate = 0; + args.dist = 0; + mbmi->tx_size = intra_tx_size; + vp9_foreach_transformed_block_in_plane(xd, bsize, 0, + estimate_block_intra, &args); + this_rdc.rate = args.rate; + this_rdc.dist = args.dist; + this_rdc.rate += bmode_costs[this_mode]; + this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, + this_rdc.rate, this_rdc.dist); + + if (this_rdc.rdcost < best_rdc.rdcost) { + best_rdc = this_rdc; + mbmi->mode = this_mode; + } + } + + *rd_cost = best_rdc; +} + +static void init_ref_frame_cost(VP9_COMMON *const cm, + MACROBLOCKD *const xd, + int ref_frame_cost[MAX_REF_FRAMES]) { + vp9_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd); + vp9_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); + vp9_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); + + ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); + ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] = + ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1); + + ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); + ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); + ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); + ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); + ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); +} + +typedef struct { + MV_REFERENCE_FRAME ref_frame; + PREDICTION_MODE pred_mode; +} REF_MODE; + +#define RT_INTER_MODES 8 +static const REF_MODE ref_mode_set[RT_INTER_MODES] = { + {LAST_FRAME, ZEROMV}, + {LAST_FRAME, NEARESTMV}, + {GOLDEN_FRAME, ZEROMV}, + {LAST_FRAME, NEARMV}, + {LAST_FRAME, NEWMV}, + {GOLDEN_FRAME, NEARESTMV}, + {GOLDEN_FRAME, NEARMV}, + {GOLDEN_FRAME, NEWMV} +}; + +// TODO(jingning) placeholder for inter-frame non-RD mode decision. +// this needs various further optimizations. to be continued.. +void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, + TileDataEnc *tile_data, + int mi_row, int mi_col, RD_COST *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { + VP9_COMMON *const cm = &cpi->common; + SPEED_FEATURES *const sf = &cpi->sf; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; + struct macroblockd_plane *const pd = &xd->plane[0]; + PREDICTION_MODE best_mode = ZEROMV; + MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME; + MV_REFERENCE_FRAME usable_ref_frame; + TX_SIZE best_tx_size = TX_SIZES; + INTERP_FILTER best_pred_filter = EIGHTTAP; + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; + struct buf_2d yv12_mb[4][MAX_MB_PLANE]; + static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, + VP9_ALT_FLAG }; + RD_COST this_rdc, best_rdc; + uint8_t skip_txfm = 0, best_mode_skip_txfm = 0; + // var_y and sse_y are saved to be used in skipping checking + unsigned int var_y = UINT_MAX; + unsigned int sse_y = UINT_MAX; + // Reduce the intra cost penalty for small blocks (<=16x16). + const int reduction_fac = (bsize <= BLOCK_16X16) ? + ((bsize <= BLOCK_8X8) ? 4 : 2) : 0; + const int intra_cost_penalty = vp9_get_intra_cost_penalty( + cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) >> reduction_fac; + const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv, + intra_cost_penalty, 0); + const int *const rd_threshes = cpi->rd.threshes[mbmi->segment_id][bsize]; + const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; + INTERP_FILTER filter_ref; + const int bsl = mi_width_log2_lookup[bsize]; + const int pred_filter_search = cm->interp_filter == SWITCHABLE ? + (((mi_row + mi_col) >> bsl) + + get_chessboard_index(cm->current_video_frame)) & 0x1 : 0; + int const_motion[MAX_REF_FRAMES] = { 0 }; + const int bh = num_4x4_blocks_high_lookup[bsize] << 2; + const int bw = num_4x4_blocks_wide_lookup[bsize] << 2; + // For speed 6, the result of interp filter is reused later in actual encoding + // process. + // tmp[3] points to dst buffer, and the other 3 point to allocated buffers. + PRED_BUFFER tmp[4]; + DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]); +#endif + struct buf_2d orig_dst = pd->dst; + PRED_BUFFER *best_pred = NULL; + PRED_BUFFER *this_mode_pred = NULL; + const int pixels_in_block = bh * bw; + int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready; + int ref_frame_skip_mask = 0; + int idx; + int best_pred_sad = INT_MAX; + int best_early_term = 0; + int ref_frame_cost[MAX_REF_FRAMES]; + + init_ref_frame_cost(cm, xd, ref_frame_cost); + + if (reuse_inter_pred) { + int i; + for (i = 0; i < 3; i++) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]); + else + tmp[i].data = &pred_buf[pixels_in_block * i]; +#else + tmp[i].data = &pred_buf[pixels_in_block * i]; +#endif // CONFIG_VP9_HIGHBITDEPTH + tmp[i].stride = bw; + tmp[i].in_use = 0; + } + tmp[3].data = pd->dst.buf; + tmp[3].stride = pd->dst.stride; + tmp[3].in_use = 0; + } + + x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; + x->skip = 0; + + if (xd->up_available) + filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter; + else if (xd->left_available) + filter_ref = xd->mi[-1]->mbmi.interp_filter; + else + filter_ref = cm->interp_filter; + + // initialize mode decisions + vp9_rd_cost_reset(&best_rdc); + vp9_rd_cost_reset(rd_cost); + mbmi->sb_type = bsize; + mbmi->ref_frame[0] = NONE; + mbmi->ref_frame[1] = NONE; + mbmi->tx_size = MIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cm->tx_mode]); + +#if CONFIG_VP9_TEMPORAL_DENOISING + vp9_denoiser_reset_frame_stats(ctx); +#endif + + if (cpi->rc.frames_since_golden == 0) { + usable_ref_frame = LAST_FRAME; + } else { + usable_ref_frame = GOLDEN_FRAME; + } + + for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) { + const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); + + x->pred_mv_sad[ref_frame] = INT_MAX; + frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; + frame_mv[ZEROMV][ref_frame].as_int = 0; + + if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { + int_mv *const candidates = mbmi->ref_mvs[ref_frame]; + const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; + + vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, + sf, sf); + + if (cm->use_prev_frame_mvs) + vp9_find_mv_refs(cm, xd, tile_info, xd->mi[0], ref_frame, + candidates, mi_row, mi_col, NULL, NULL); + else + const_motion[ref_frame] = mv_refs_rt(cm, xd, tile_info, + xd->mi[0], + ref_frame, candidates, + mi_row, mi_col); + + vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, + &frame_mv[NEARESTMV][ref_frame], + &frame_mv[NEARMV][ref_frame]); + + if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8) + vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, + ref_frame, bsize); + } else { + ref_frame_skip_mask |= (1 << ref_frame); + } + } + + for (idx = 0; idx < RT_INTER_MODES; ++idx) { + int rate_mv = 0; + int mode_rd_thresh; + int mode_index; + int i; + PREDICTION_MODE this_mode = ref_mode_set[idx].pred_mode; + int64_t this_sse; + int is_skippable; + int this_early_term = 0; + + if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode))) + continue; + + ref_frame = ref_mode_set[idx].ref_frame; + if (!(cpi->ref_frame_flags & flag_list[ref_frame])) + continue; + if (const_motion[ref_frame] && this_mode == NEARMV) + continue; + + i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME; + if ((cpi->ref_frame_flags & flag_list[i]) && sf->reference_masking) + if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1)) + ref_frame_skip_mask |= (1 << ref_frame); + if (ref_frame_skip_mask & (1 << ref_frame)) + continue; + + // Select prediction reference frames. + for (i = 0; i < MAX_MB_PLANE; i++) + xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; + + mbmi->ref_frame[0] = ref_frame; + set_ref_ptrs(cm, xd, ref_frame, NONE); + + mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)]; + mode_rd_thresh = best_mode_skip_txfm ? + rd_threshes[mode_index] << 1 : rd_threshes[mode_index]; + if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, + rd_thresh_freq_fact[mode_index])) + continue; + + if (this_mode == NEWMV) { + if (ref_frame > LAST_FRAME) { + int tmp_sad; + int dis, cost_list[5]; + + if (bsize < BLOCK_16X16) + continue; + + tmp_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col); + + if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) + continue; + if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) + continue; + + frame_mv[NEWMV][ref_frame].as_int = mbmi->mv[0].as_int; + rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, + &mbmi->ref_mvs[ref_frame][0].as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; + frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; + + cpi->find_fractional_mv_step(x, &frame_mv[NEWMV][ref_frame].as_mv, + &mbmi->ref_mvs[ref_frame][0].as_mv, + cpi->common.allow_high_precision_mv, + x->errorperbit, + &cpi->fn_ptr[bsize], + cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, + cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &dis, + &x->pred_sse[ref_frame], NULL, 0, 0); + } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, + &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost)) { + continue; + } + } + + if (this_mode == NEWMV && ref_frame == LAST_FRAME && + frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) { + const int pre_stride = xd->plane[0].pre[0].stride; + const uint8_t * const pre_buf = xd->plane[0].pre[0].buf + + (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride + + (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3); + best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, + x->plane[0].src.stride, + pre_buf, pre_stride); + x->pred_mv_sad[LAST_FRAME] = best_pred_sad; + } + + if (this_mode != NEARESTMV && + frame_mv[this_mode][ref_frame].as_int == + frame_mv[NEARESTMV][ref_frame].as_int) + continue; + + mbmi->mode = this_mode; + mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int; + + // Search for the best prediction filter type, when the resulting + // motion vector is at sub-pixel accuracy level for luma component, i.e., + // the last three bits are all zeros. + if (reuse_inter_pred) { + if (!this_mode_pred) { + this_mode_pred = &tmp[3]; + } else { + this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; + pd->dst.buf = this_mode_pred->data; + pd->dst.stride = bw; + } + } + + if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && pred_filter_search + && (ref_frame == LAST_FRAME) + && (((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07) != 0)) { + int pf_rate[3]; + int64_t pf_dist[3]; + unsigned int pf_var[3]; + unsigned int pf_sse[3]; + TX_SIZE pf_tx_size[3]; + int64_t best_cost = INT64_MAX; + INTERP_FILTER best_filter = SWITCHABLE, filter; + PRED_BUFFER *current_pred = this_mode_pred; + + for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) { + int64_t cost; + mbmi->interp_filter = filter; + vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); + model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter], + &pf_var[filter], &pf_sse[filter]); + pf_rate[filter] += vp9_get_switchable_rate(cpi, xd); + cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]); + pf_tx_size[filter] = mbmi->tx_size; + if (cost < best_cost) { + best_filter = filter; + best_cost = cost; + skip_txfm = x->skip_txfm[0]; + + if (reuse_inter_pred) { + if (this_mode_pred != current_pred) { + free_pred_buffer(this_mode_pred); + this_mode_pred = current_pred; + } + + if (filter < EIGHTTAP_SHARP) { + current_pred = &tmp[get_pred_buffer(tmp, 3)]; + pd->dst.buf = current_pred->data; + pd->dst.stride = bw; + } + } + } + } + + if (reuse_inter_pred && this_mode_pred != current_pred) + free_pred_buffer(current_pred); + + mbmi->interp_filter = best_filter; + mbmi->tx_size = pf_tx_size[best_filter]; + this_rdc.rate = pf_rate[best_filter]; + this_rdc.dist = pf_dist[best_filter]; + var_y = pf_var[best_filter]; + sse_y = pf_sse[best_filter]; + x->skip_txfm[0] = skip_txfm; + if (reuse_inter_pred) { + pd->dst.buf = this_mode_pred->data; + pd->dst.stride = this_mode_pred->stride; + } + } else { + mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref; + vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); + + // For large partition blocks, extra testing is done. + if (bsize > BLOCK_32X32 && + !cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id) && + cm->base_qindex) { + model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate, + &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col, + &this_early_term); + } else { + model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, + &var_y, &sse_y); + } + } + + if (!this_early_term) { + this_sse = (int64_t)sse_y; + block_yrd(cpi, x, &this_rdc.rate, &this_rdc.dist, &is_skippable, + &this_sse, 0, bsize, MIN(mbmi->tx_size, TX_16X16)); + x->skip_txfm[0] = is_skippable; + if (is_skippable) { + this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + } else { + if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) < + RDCOST(x->rdmult, x->rddiv, 0, this_sse)) { + this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0); + } else { + this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + this_rdc.dist = this_sse; + x->skip_txfm[0] = 1; + } + } + + if (cm->interp_filter == SWITCHABLE) { + if ((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07) + this_rdc.rate += vp9_get_switchable_rate(cpi, xd); + } + } else { + this_rdc.rate += cm->interp_filter == SWITCHABLE ? + vp9_get_switchable_rate(cpi, xd) : 0; + this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + } + + if (x->color_sensitivity[0] || x->color_sensitivity[1]) { + int uv_rate = 0; + int64_t uv_dist = 0; + if (x->color_sensitivity[0]) + vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1); + if (x->color_sensitivity[1]) + vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2); + model_rd_for_sb_uv(cpi, bsize, x, xd, &uv_rate, &uv_dist, + &var_y, &sse_y); + this_rdc.rate += uv_rate; + this_rdc.dist += uv_dist; + } + + this_rdc.rate += rate_mv; + this_rdc.rate += + cpi->inter_mode_cost[mbmi->mode_context[ref_frame]][INTER_OFFSET( + this_mode)]; + this_rdc.rate += ref_frame_cost[ref_frame]; + this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); + + // Skipping checking: test to see if this block can be reconstructed by + // prediction only. + if (cpi->allow_encode_breakout) { + encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode, + var_y, sse_y, yv12_mb, &this_rdc.rate, + &this_rdc.dist); + if (x->skip) { + this_rdc.rate += rate_mv; + this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, + this_rdc.dist); + } + } + +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0) + vp9_denoiser_update_frame_stats(mbmi, sse_y, this_mode, ctx); +#else + (void)ctx; +#endif + + if (this_rdc.rdcost < best_rdc.rdcost || x->skip) { + best_rdc = this_rdc; + best_mode = this_mode; + best_pred_filter = mbmi->interp_filter; + best_tx_size = mbmi->tx_size; + best_ref_frame = ref_frame; + best_mode_skip_txfm = x->skip_txfm[0]; + best_early_term = this_early_term; + + if (reuse_inter_pred) { + free_pred_buffer(best_pred); + best_pred = this_mode_pred; + } + } else { + if (reuse_inter_pred) + free_pred_buffer(this_mode_pred); + } + + if (x->skip) + break; + + // If early termination flag is 1 and at least 2 modes are checked, + // the mode search is terminated. + if (best_early_term && idx > 0) { + x->skip = 1; + break; + } + } + + mbmi->mode = best_mode; + mbmi->interp_filter = best_pred_filter; + mbmi->tx_size = best_tx_size; + mbmi->ref_frame[0] = best_ref_frame; + mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int; + xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int; + x->skip_txfm[0] = best_mode_skip_txfm; + + // Perform intra prediction search, if the best SAD is above a certain + // threshold. + if (best_rdc.rdcost == INT64_MAX || + (!x->skip && best_rdc.rdcost > inter_mode_thresh && + bsize <= cpi->sf.max_intra_bsize)) { + struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 }; + const TX_SIZE intra_tx_size = + MIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + int i; + TX_SIZE best_intra_tx_size = TX_SIZES; + + if (reuse_inter_pred && best_pred != NULL) { + if (best_pred->data == orig_dst.buf) { + this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + vp9_highbd_convolve_copy(best_pred->data, best_pred->stride, + this_mode_pred->data, this_mode_pred->stride, + NULL, 0, NULL, 0, bw, bh, xd->bd); + else + vp9_convolve_copy(best_pred->data, best_pred->stride, + this_mode_pred->data, this_mode_pred->stride, + NULL, 0, NULL, 0, bw, bh); +#else + vp9_convolve_copy(best_pred->data, best_pred->stride, + this_mode_pred->data, this_mode_pred->stride, + NULL, 0, NULL, 0, bw, bh); +#endif // CONFIG_VP9_HIGHBITDEPTH + best_pred = this_mode_pred; + } + } + pd->dst = orig_dst; + + for (i = 0; i < 4; ++i) { + const PREDICTION_MODE this_mode = intra_mode_list[i]; + THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; + int mode_rd_thresh = rd_threshes[mode_index]; + + if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize])) + continue; + + if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, + rd_thresh_freq_fact[mode_index])) + continue; + + mbmi->mode = this_mode; + mbmi->ref_frame[0] = INTRA_FRAME; + args.mode = this_mode; + args.rate = 0; + args.dist = 0; + mbmi->tx_size = intra_tx_size; + vp9_foreach_transformed_block_in_plane(xd, bsize, 0, + estimate_block_intra, &args); + this_rdc.rate = args.rate; + this_rdc.dist = args.dist; + this_rdc.rate += cpi->mbmode_cost[this_mode]; + this_rdc.rate += ref_frame_cost[INTRA_FRAME]; + this_rdc.rate += intra_cost_penalty; + this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, + this_rdc.rate, this_rdc.dist); + + if (this_rdc.rdcost < best_rdc.rdcost) { + best_rdc = this_rdc; + best_mode = this_mode; + best_intra_tx_size = mbmi->tx_size; + best_ref_frame = INTRA_FRAME; + mbmi->uv_mode = this_mode; + mbmi->mv[0].as_int = INVALID_MV; + best_mode_skip_txfm = x->skip_txfm[0]; + } + } + + // Reset mb_mode_info to the best inter mode. + if (best_ref_frame != INTRA_FRAME) { + mbmi->tx_size = best_tx_size; + } else { + mbmi->tx_size = best_intra_tx_size; + } + } + + pd->dst = orig_dst; + mbmi->mode = best_mode; + mbmi->ref_frame[0] = best_ref_frame; + x->skip_txfm[0] = best_mode_skip_txfm; + + if (reuse_inter_pred && best_pred != NULL) { + if (best_pred->data != orig_dst.buf && is_inter_mode(mbmi->mode)) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + vp9_highbd_convolve_copy(best_pred->data, best_pred->stride, + pd->dst.buf, pd->dst.stride, NULL, 0, + NULL, 0, bw, bh, xd->bd); + else + vp9_convolve_copy(best_pred->data, best_pred->stride, + pd->dst.buf, pd->dst.stride, NULL, 0, + NULL, 0, bw, bh); +#else + vp9_convolve_copy(best_pred->data, best_pred->stride, + pd->dst.buf, pd->dst.stride, NULL, 0, + NULL, 0, bw, bh); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + + if (cpi->sf.adaptive_rd_thresh) { + THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mbmi->mode)]; + + if (best_ref_frame == INTRA_FRAME) { + // Only consider the modes that are included in the intra_mode_list. + int intra_modes = sizeof(intra_mode_list)/sizeof(PREDICTION_MODE); + int i; + + // TODO(yunqingwang): Check intra mode mask and only update freq_fact + // for those valid modes. + for (i = 0; i < intra_modes; i++) { + update_thresh_freq_fact(cpi, tile_data, bsize, INTRA_FRAME, + best_mode_idx, intra_mode_list[i]); + } + } else { + for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { + PREDICTION_MODE this_mode; + if (best_ref_frame != ref_frame) continue; + for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { + update_thresh_freq_fact(cpi, tile_data, bsize, ref_frame, + best_mode_idx, this_mode); + } + } + } + } + + *rd_cost = best_rdc; +} + +void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x, + TileDataEnc *tile_data, + int mi_row, int mi_col, RD_COST *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; + const struct segmentation *const seg = &cm->seg; + MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE; + MV_REFERENCE_FRAME best_ref_frame = NONE; + unsigned char segment_id = mbmi->segment_id; + struct buf_2d yv12_mb[4][MAX_MB_PLANE]; + static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, + VP9_ALT_FLAG }; + int64_t best_rd = INT64_MAX; + b_mode_info bsi[MAX_REF_FRAMES][4]; + int ref_frame_skip_mask = 0; + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + + x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; + ctx->pred_pixel_ready = 0; + + for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { + const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); + int_mv dummy_mv[2]; + x->pred_mv_sad[ref_frame] = INT_MAX; + + if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { + int_mv *const candidates = mbmi->ref_mvs[ref_frame]; + const struct scale_factors *const sf = + &cm->frame_refs[ref_frame - 1].sf; + vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, + sf, sf); + vp9_find_mv_refs(cm, xd, tile_info, xd->mi[0], ref_frame, + candidates, mi_row, mi_col, NULL, NULL); + + vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, + &dummy_mv[0], &dummy_mv[1]); + } else { + ref_frame_skip_mask |= (1 << ref_frame); + } + } + + mbmi->sb_type = bsize; + mbmi->tx_size = TX_4X4; + mbmi->uv_mode = DC_PRED; + mbmi->ref_frame[0] = LAST_FRAME; + mbmi->ref_frame[1] = NONE; + mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP + : cm->interp_filter; + + for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { + int64_t this_rd = 0; + int plane; + + if (ref_frame_skip_mask & (1 << ref_frame)) + continue; + + // TODO(jingning, agrange): Scaling reference frame not supported for + // sub8x8 blocks. Is this supported now? + if (ref_frame > INTRA_FRAME && + vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) + continue; + + // If the segment reference frame feature is enabled.... + // then do nothing if the current ref frame is not allowed.. + if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && + vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) + continue; + + mbmi->ref_frame[0] = ref_frame; + x->skip = 0; + set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); + + // Select prediction reference frames. + for (plane = 0; plane < MAX_MB_PLANE; plane++) + xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane]; + + for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { + for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { + int_mv b_mv[MB_MODE_COUNT]; + int64_t b_best_rd = INT64_MAX; + const int i = idy * 2 + idx; + PREDICTION_MODE this_mode; + RD_COST this_rdc; + unsigned int var_y, sse_y; + + struct macroblock_plane *p = &x->plane[0]; + struct macroblockd_plane *pd = &xd->plane[0]; + + const struct buf_2d orig_src = p->src; + const struct buf_2d orig_dst = pd->dst; + struct buf_2d orig_pre[2]; + memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre)); + + // set buffer pointers for sub8x8 motion search. + p->src.buf = + &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; + pd->dst.buf = + &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; + pd->pre[0].buf = + &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8, + i, pd->pre[0].stride)]; + + b_mv[ZEROMV].as_int = 0; + b_mv[NEWMV].as_int = INVALID_MV; + vp9_append_sub8x8_mvs_for_idx(cm, xd, tile_info, i, 0, mi_row, mi_col, + &b_mv[NEARESTMV], + &b_mv[NEARMV]); + + for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { + int b_rate = 0; + xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int; + + if (this_mode == NEWMV) { + const int step_param = cpi->sf.mv.fullpel_search_step_param; + MV mvp_full; + MV tmp_mv; + int cost_list[5]; + const int tmp_col_min = x->mv_col_min; + const int tmp_col_max = x->mv_col_max; + const int tmp_row_min = x->mv_row_min; + const int tmp_row_max = x->mv_row_max; + int dummy_dist; + + if (i == 0) { + mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3; + mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3; + } else { + mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3; + mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3; + } + + vp9_set_mv_search_range(x, &mbmi->ref_mvs[0]->as_mv); + + vp9_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, x->sadperbit4, + cond_cost_list(cpi, cost_list), + &mbmi->ref_mvs[ref_frame][0].as_mv, &tmp_mv, + INT_MAX, 0); + + x->mv_col_min = tmp_col_min; + x->mv_col_max = tmp_col_max; + x->mv_row_min = tmp_row_min; + x->mv_row_max = tmp_row_max; + + // calculate the bit cost on motion vector + mvp_full.row = tmp_mv.row * 8; + mvp_full.col = tmp_mv.col * 8; + + b_rate += vp9_mv_bit_cost(&mvp_full, + &mbmi->ref_mvs[ref_frame][0].as_mv, + x->nmvjointcost, x->mvcost, + MV_COST_WEIGHT); + + b_rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]] + [INTER_OFFSET(NEWMV)]; + if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd) + continue; + + cpi->find_fractional_mv_step(x, &tmp_mv, + &mbmi->ref_mvs[ref_frame][0].as_mv, + cpi->common.allow_high_precision_mv, + x->errorperbit, + &cpi->fn_ptr[bsize], + cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, + cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, + &dummy_dist, + &x->pred_sse[ref_frame], NULL, 0, 0); + + xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv; + } else { + b_rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]] + [INTER_OFFSET(this_mode)]; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_highbd_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride, + pd->dst.buf, pd->dst.stride, + &xd->mi[0]->bmi[i].as_mv[0].as_mv, + &xd->block_refs[0]->sf, + 4 * num_4x4_blocks_wide, + 4 * num_4x4_blocks_high, 0, + vp9_get_interp_kernel(mbmi->interp_filter), + MV_PRECISION_Q3, + mi_col * MI_SIZE + 4 * (i & 0x01), + mi_row * MI_SIZE + 4 * (i >> 1), xd->bd); + } else { +#endif + vp9_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride, + pd->dst.buf, pd->dst.stride, + &xd->mi[0]->bmi[i].as_mv[0].as_mv, + &xd->block_refs[0]->sf, + 4 * num_4x4_blocks_wide, + 4 * num_4x4_blocks_high, 0, + vp9_get_interp_kernel(mbmi->interp_filter), + MV_PRECISION_Q3, + mi_col * MI_SIZE + 4 * (i & 0x01), + mi_row * MI_SIZE + 4 * (i >> 1)); + +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif + + model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, + &var_y, &sse_y); + + this_rdc.rate += b_rate; + this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, + this_rdc.rate, this_rdc.dist); + if (this_rdc.rdcost < b_best_rd) { + b_best_rd = this_rdc.rdcost; + bsi[ref_frame][i].as_mode = this_mode; + bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv; + } + } // mode search + + // restore source and prediction buffer pointers. + p->src = orig_src; + pd->pre[0] = orig_pre[0]; + pd->dst = orig_dst; + this_rd += b_best_rd; + + xd->mi[0]->bmi[i] = bsi[ref_frame][i]; + if (num_4x4_blocks_wide > 1) + xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i]; + if (num_4x4_blocks_high > 1) + xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i]; + } + } // loop through sub8x8 blocks + + if (this_rd < best_rd) { + best_rd = this_rd; + best_ref_frame = ref_frame; + } + } // reference frames + + mbmi->tx_size = TX_4X4; + mbmi->ref_frame[0] = best_ref_frame; + for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { + for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { + const int block = idy * 2 + idx; + xd->mi[0]->bmi[block] = bsi[best_ref_frame][block]; + if (num_4x4_blocks_wide > 1) + xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block]; + if (num_4x4_blocks_high > 1) + xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block]; + } + } + mbmi->mode = xd->mi[0]->bmi[3].as_mode; + ctx->mic = *(xd->mi[0]); + ctx->skip_txfm[0] = 0; + ctx->skip = 0; + // Dummy assignment for speed -5. No effect in speed -6. + rd_cost->rdcost = best_rd; +} |