diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /media/libvpx/vp9/encoder/vp9_dct.c | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libvpx/vp9/encoder/vp9_dct.c')
-rw-r--r-- | media/libvpx/vp9/encoder/vp9_dct.c | 1592 |
1 files changed, 1592 insertions, 0 deletions
diff --git a/media/libvpx/vp9/encoder/vp9_dct.c b/media/libvpx/vp9/encoder/vp9_dct.c new file mode 100644 index 000000000..414d2bb15 --- /dev/null +++ b/media/libvpx/vp9/encoder/vp9_dct.c @@ -0,0 +1,1592 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include <assert.h> +#include <math.h> + +#include "./vpx_config.h" +#include "./vp9_rtcd.h" + +#include "vpx_ports/mem.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_idct.h" +#include "vp9/common/vp9_systemdependent.h" +#include "vp9/encoder/vp9_dct.h" + +static INLINE tran_high_t fdct_round_shift(tran_high_t input) { + tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); + // TODO(debargha, peter.derivaz): Find new bounds for this assert + // and make the bounds consts. + // assert(INT16_MIN <= rv && rv <= INT16_MAX); + return rv; +} + +void vp9_fdct4(const tran_low_t *input, tran_low_t *output) { + tran_high_t step[4]; + tran_high_t temp1, temp2; + + step[0] = input[0] + input[3]; + step[1] = input[1] + input[2]; + step[2] = input[1] - input[2]; + step[3] = input[0] - input[3]; + + temp1 = (step[0] + step[1]) * cospi_16_64; + temp2 = (step[0] - step[1]) * cospi_16_64; + output[0] = (tran_low_t)fdct_round_shift(temp1); + output[2] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; + temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; + output[1] = (tran_low_t)fdct_round_shift(temp1); + output[3] = (tran_low_t)fdct_round_shift(temp2); +} + +void vp9_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) { + int r, c; + tran_low_t sum = 0; + for (r = 0; r < 4; ++r) + for (c = 0; c < 4; ++c) + sum += input[r * stride + c]; + + output[0] = sum << 1; + output[1] = 0; +} + +void vp9_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { + // The 2D transform is done with two passes which are actually pretty + // similar. In the first one, we transform the columns and transpose + // the results. In the second one, we transform the rows. To achieve that, + // as the first pass results are transposed, we transpose the columns (that + // is the transposed rows) and transpose the results (so that it goes back + // in normal/row positions). + int pass; + // We need an intermediate buffer between passes. + tran_low_t intermediate[4 * 4]; + const int16_t *in_pass0 = input; + const tran_low_t *in = NULL; + tran_low_t *out = intermediate; + // Do the two transform/transpose passes + for (pass = 0; pass < 2; ++pass) { + tran_high_t input[4]; // canbe16 + tran_high_t step[4]; // canbe16 + tran_high_t temp1, temp2; // needs32 + int i; + for (i = 0; i < 4; ++i) { + // Load inputs. + if (0 == pass) { + input[0] = in_pass0[0 * stride] * 16; + input[1] = in_pass0[1 * stride] * 16; + input[2] = in_pass0[2 * stride] * 16; + input[3] = in_pass0[3 * stride] * 16; + if (i == 0 && input[0]) { + input[0] += 1; + } + } else { + input[0] = in[0 * 4]; + input[1] = in[1 * 4]; + input[2] = in[2 * 4]; + input[3] = in[3 * 4]; + } + // Transform. + step[0] = input[0] + input[3]; + step[1] = input[1] + input[2]; + step[2] = input[1] - input[2]; + step[3] = input[0] - input[3]; + temp1 = (step[0] + step[1]) * cospi_16_64; + temp2 = (step[0] - step[1]) * cospi_16_64; + out[0] = (tran_low_t)fdct_round_shift(temp1); + out[2] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; + temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; + out[1] = (tran_low_t)fdct_round_shift(temp1); + out[3] = (tran_low_t)fdct_round_shift(temp2); + // Do next column (which is a transposed row in second/horizontal pass) + in_pass0++; + in++; + out += 4; + } + // Setup in/out for next pass. + in = intermediate; + out = output; + } + + { + int i, j; + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) + output[j + i * 4] = (output[j + i * 4] + 1) >> 2; + } + } +} + +void vp9_fadst4(const tran_low_t *input, tran_low_t *output) { + tran_high_t x0, x1, x2, x3; + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; + + x0 = input[0]; + x1 = input[1]; + x2 = input[2]; + x3 = input[3]; + + if (!(x0 | x1 | x2 | x3)) { + output[0] = output[1] = output[2] = output[3] = 0; + return; + } + + s0 = sinpi_1_9 * x0; + s1 = sinpi_4_9 * x0; + s2 = sinpi_2_9 * x1; + s3 = sinpi_1_9 * x1; + s4 = sinpi_3_9 * x2; + s5 = sinpi_4_9 * x3; + s6 = sinpi_2_9 * x3; + s7 = x0 + x1 - x3; + + x0 = s0 + s2 + s5; + x1 = sinpi_3_9 * s7; + x2 = s1 - s3 + s6; + x3 = s4; + + s0 = x0 + x3; + s1 = x1; + s2 = x2 - x3; + s3 = x2 - x0 + x3; + + // 1-D transform scaling factor is sqrt(2). + output[0] = (tran_low_t)fdct_round_shift(s0); + output[1] = (tran_low_t)fdct_round_shift(s1); + output[2] = (tran_low_t)fdct_round_shift(s2); + output[3] = (tran_low_t)fdct_round_shift(s3); +} + +void vp9_fht4x4_c(const int16_t *input, tran_low_t *output, + int stride, int tx_type) { + if (tx_type == DCT_DCT) { + vp9_fdct4x4_c(input, output, stride); + } else { + tran_low_t out[4 * 4]; + int i, j; + tran_low_t temp_in[4], temp_out[4]; + const transform_2d ht = FHT_4[tx_type]; + + // Columns + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) + temp_in[j] = input[j * stride + i] * 16; + if (i == 0 && temp_in[0]) + temp_in[0] += 1; + ht.cols(temp_in, temp_out); + for (j = 0; j < 4; ++j) + out[j * 4 + i] = temp_out[j]; + } + + // Rows + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) + temp_in[j] = out[j + i * 4]; + ht.rows(temp_in, temp_out); + for (j = 0; j < 4; ++j) + output[j + i * 4] = (temp_out[j] + 1) >> 2; + } + } +} + +void vp9_fdct8(const tran_low_t *input, tran_low_t *output) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + // stage 1 + s0 = input[0] + input[7]; + s1 = input[1] + input[6]; + s2 = input[2] + input[5]; + s3 = input[3] + input[4]; + s4 = input[3] - input[4]; + s5 = input[2] - input[5]; + s6 = input[1] - input[6]; + s7 = input[0] - input[7]; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0] = (tran_low_t)fdct_round_shift(t0); + output[2] = (tran_low_t)fdct_round_shift(t2); + output[4] = (tran_low_t)fdct_round_shift(t1); + output[6] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = (tran_low_t)fdct_round_shift(t0); + t3 = (tran_low_t)fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1] = (tran_low_t)fdct_round_shift(t0); + output[3] = (tran_low_t)fdct_round_shift(t2); + output[5] = (tran_low_t)fdct_round_shift(t1); + output[7] = (tran_low_t)fdct_round_shift(t3); +} + +void vp9_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) { + int r, c; + tran_low_t sum = 0; + for (r = 0; r < 8; ++r) + for (c = 0; c < 8; ++c) + sum += input[r * stride + c]; + + output[0] = sum; + output[1] = 0; +} + +void vp9_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { + int i, j; + tran_low_t intermediate[64]; + + // Transform columns + { + tran_low_t *output = intermediate; + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + int i; + for (i = 0; i < 8; i++) { + // stage 1 + s0 = (input[0 * stride] + input[7 * stride]) * 4; + s1 = (input[1 * stride] + input[6 * stride]) * 4; + s2 = (input[2 * stride] + input[5 * stride]) * 4; + s3 = (input[3 * stride] + input[4 * stride]) * 4; + s4 = (input[3 * stride] - input[4 * stride]) * 4; + s5 = (input[2 * stride] - input[5 * stride]) * 4; + s6 = (input[1 * stride] - input[6 * stride]) * 4; + s7 = (input[0 * stride] - input[7 * stride]) * 4; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0 * 8] = (tran_low_t)fdct_round_shift(t0); + output[2 * 8] = (tran_low_t)fdct_round_shift(t2); + output[4 * 8] = (tran_low_t)fdct_round_shift(t1); + output[6 * 8] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1 * 8] = (tran_low_t)fdct_round_shift(t0); + output[3 * 8] = (tran_low_t)fdct_round_shift(t2); + output[5 * 8] = (tran_low_t)fdct_round_shift(t1); + output[7 * 8] = (tran_low_t)fdct_round_shift(t3); + input++; + output++; + } + } + + // Rows + for (i = 0; i < 8; ++i) { + vp9_fdct8(&intermediate[i * 8], &final_output[i * 8]); + for (j = 0; j < 8; ++j) + final_output[j + i * 8] /= 2; + } +} + +void vp9_fdct8x8_quant_c(const int16_t *input, int stride, + tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, + const int16_t *zbin_ptr, const int16_t *round_ptr, + const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, + uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + int eob = -1; + + int i, j; + tran_low_t intermediate[64]; + + // Transform columns + { + tran_low_t *output = intermediate; + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + int i; + for (i = 0; i < 8; i++) { + // stage 1 + s0 = (input[0 * stride] + input[7 * stride]) * 4; + s1 = (input[1 * stride] + input[6 * stride]) * 4; + s2 = (input[2 * stride] + input[5 * stride]) * 4; + s3 = (input[3 * stride] + input[4 * stride]) * 4; + s4 = (input[3 * stride] - input[4 * stride]) * 4; + s5 = (input[2 * stride] - input[5 * stride]) * 4; + s6 = (input[1 * stride] - input[6 * stride]) * 4; + s7 = (input[0 * stride] - input[7 * stride]) * 4; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0 * 8] = (tran_low_t)fdct_round_shift(t0); + output[2 * 8] = (tran_low_t)fdct_round_shift(t2); + output[4 * 8] = (tran_low_t)fdct_round_shift(t1); + output[6 * 8] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1 * 8] = (tran_low_t)fdct_round_shift(t0); + output[3 * 8] = (tran_low_t)fdct_round_shift(t2); + output[5 * 8] = (tran_low_t)fdct_round_shift(t1); + output[7 * 8] = (tran_low_t)fdct_round_shift(t3); + input++; + output++; + } + } + + // Rows + for (i = 0; i < 8; ++i) { + vp9_fdct8(&intermediate[i * 8], &coeff_ptr[i * 8]); + for (j = 0; j < 8; ++j) + coeff_ptr[j + i * 8] /= 2; + } + + // TODO(jingning) Decide the need of these arguments after the + // quantization process is completed. + (void)zbin_ptr; + (void)quant_shift_ptr; + (void)iscan; + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (!skip_block) { + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < n_coeffs; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + + int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX); + tmp = (tmp * quant_ptr[rc != 0]) >> 16; + + qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; + + if (tmp) + eob = i; + } + } + *eob_ptr = eob + 1; +} + +void vp9_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) { + int r, c; + tran_low_t sum = 0; + for (r = 0; r < 16; ++r) + for (c = 0; c < 16; ++c) + sum += input[r * stride + c]; + + output[0] = sum >> 1; + output[1] = 0; +} + +void vp9_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) { + // The 2D transform is done with two passes which are actually pretty + // similar. In the first one, we transform the columns and transpose + // the results. In the second one, we transform the rows. To achieve that, + // as the first pass results are transposed, we transpose the columns (that + // is the transposed rows) and transpose the results (so that it goes back + // in normal/row positions). + int pass; + // We need an intermediate buffer between passes. + tran_low_t intermediate[256]; + const int16_t *in_pass0 = input; + const tran_low_t *in = NULL; + tran_low_t *out = intermediate; + // Do the two transform/transpose passes + for (pass = 0; pass < 2; ++pass) { + tran_high_t step1[8]; // canbe16 + tran_high_t step2[8]; // canbe16 + tran_high_t step3[8]; // canbe16 + tran_high_t input[8]; // canbe16 + tran_high_t temp1, temp2; // needs32 + int i; + for (i = 0; i < 16; i++) { + if (0 == pass) { + // Calculate input for the first 8 results. + input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4; + input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4; + input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4; + input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4; + input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4; + input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4; + input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4; + input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4; + // Calculate input for the next 8 results. + step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4; + step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4; + step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4; + step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4; + step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4; + step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4; + step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4; + step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4; + } else { + // Calculate input for the first 8 results. + input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2); + input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2); + input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2); + input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2); + input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2); + input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2); + input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2); + input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2); + // Calculate input for the next 8 results. + step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2); + step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2); + step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2); + step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2); + step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2); + step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2); + step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2); + step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2); + } + // Work on the first eight values; fdct8(input, even_results); + { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + // stage 1 + s0 = input[0] + input[7]; + s1 = input[1] + input[6]; + s2 = input[2] + input[5]; + s3 = input[3] + input[4]; + s4 = input[3] - input[4]; + s5 = input[2] - input[5]; + s6 = input[1] - input[6]; + s7 = input[0] - input[7]; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x3 * cospi_8_64 + x2 * cospi_24_64; + t3 = x3 * cospi_24_64 - x2 * cospi_8_64; + out[0] = (tran_low_t)fdct_round_shift(t0); + out[4] = (tran_low_t)fdct_round_shift(t2); + out[8] = (tran_low_t)fdct_round_shift(t1); + out[12] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + out[2] = (tran_low_t)fdct_round_shift(t0); + out[6] = (tran_low_t)fdct_round_shift(t2); + out[10] = (tran_low_t)fdct_round_shift(t1); + out[14] = (tran_low_t)fdct_round_shift(t3); + } + // Work on the next eight values; step1 -> odd_results + { + // step 2 + temp1 = (step1[5] - step1[2]) * cospi_16_64; + temp2 = (step1[4] - step1[3]) * cospi_16_64; + step2[2] = fdct_round_shift(temp1); + step2[3] = fdct_round_shift(temp2); + temp1 = (step1[4] + step1[3]) * cospi_16_64; + temp2 = (step1[5] + step1[2]) * cospi_16_64; + step2[4] = fdct_round_shift(temp1); + step2[5] = fdct_round_shift(temp2); + // step 3 + step3[0] = step1[0] + step2[3]; + step3[1] = step1[1] + step2[2]; + step3[2] = step1[1] - step2[2]; + step3[3] = step1[0] - step2[3]; + step3[4] = step1[7] - step2[4]; + step3[5] = step1[6] - step2[5]; + step3[6] = step1[6] + step2[5]; + step3[7] = step1[7] + step2[4]; + // step 4 + temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; + temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; + step2[1] = fdct_round_shift(temp1); + step2[2] = fdct_round_shift(temp2); + temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; + temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; + step2[5] = fdct_round_shift(temp1); + step2[6] = fdct_round_shift(temp2); + // step 5 + step1[0] = step3[0] + step2[1]; + step1[1] = step3[0] - step2[1]; + step1[2] = step3[3] + step2[2]; + step1[3] = step3[3] - step2[2]; + step1[4] = step3[4] - step2[5]; + step1[5] = step3[4] + step2[5]; + step1[6] = step3[7] - step2[6]; + step1[7] = step3[7] + step2[6]; + // step 6 + temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; + temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; + out[1] = (tran_low_t)fdct_round_shift(temp1); + out[9] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; + temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; + out[5] = (tran_low_t)fdct_round_shift(temp1); + out[13] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; + temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; + out[3] = (tran_low_t)fdct_round_shift(temp1); + out[11] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; + temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; + out[7] = (tran_low_t)fdct_round_shift(temp1); + out[15] = (tran_low_t)fdct_round_shift(temp2); + } + // Do next column (which is a transposed row in second/horizontal pass) + in++; + in_pass0++; + out += 16; + } + // Setup in/out for next pass. + in = intermediate; + out = output; + } +} + +void vp9_fadst8(const tran_low_t *input, tran_low_t *output) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; + + tran_high_t x0 = input[7]; + tran_high_t x1 = input[0]; + tran_high_t x2 = input[5]; + tran_high_t x3 = input[2]; + tran_high_t x4 = input[3]; + tran_high_t x5 = input[4]; + tran_high_t x6 = input[1]; + tran_high_t x7 = input[6]; + + // stage 1 + s0 = cospi_2_64 * x0 + cospi_30_64 * x1; + s1 = cospi_30_64 * x0 - cospi_2_64 * x1; + s2 = cospi_10_64 * x2 + cospi_22_64 * x3; + s3 = cospi_22_64 * x2 - cospi_10_64 * x3; + s4 = cospi_18_64 * x4 + cospi_14_64 * x5; + s5 = cospi_14_64 * x4 - cospi_18_64 * x5; + s6 = cospi_26_64 * x6 + cospi_6_64 * x7; + s7 = cospi_6_64 * x6 - cospi_26_64 * x7; + + x0 = fdct_round_shift(s0 + s4); + x1 = fdct_round_shift(s1 + s5); + x2 = fdct_round_shift(s2 + s6); + x3 = fdct_round_shift(s3 + s7); + x4 = fdct_round_shift(s0 - s4); + x5 = fdct_round_shift(s1 - s5); + x6 = fdct_round_shift(s2 - s6); + x7 = fdct_round_shift(s3 - s7); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = cospi_8_64 * x4 + cospi_24_64 * x5; + s5 = cospi_24_64 * x4 - cospi_8_64 * x5; + s6 = - cospi_24_64 * x6 + cospi_8_64 * x7; + s7 = cospi_8_64 * x6 + cospi_24_64 * x7; + + x0 = s0 + s2; + x1 = s1 + s3; + x2 = s0 - s2; + x3 = s1 - s3; + x4 = fdct_round_shift(s4 + s6); + x5 = fdct_round_shift(s5 + s7); + x6 = fdct_round_shift(s4 - s6); + x7 = fdct_round_shift(s5 - s7); + + // stage 3 + s2 = cospi_16_64 * (x2 + x3); + s3 = cospi_16_64 * (x2 - x3); + s6 = cospi_16_64 * (x6 + x7); + s7 = cospi_16_64 * (x6 - x7); + + x2 = fdct_round_shift(s2); + x3 = fdct_round_shift(s3); + x6 = fdct_round_shift(s6); + x7 = fdct_round_shift(s7); + + output[0] = (tran_low_t)x0; + output[1] = (tran_low_t)-x4; + output[2] = (tran_low_t)x6; + output[3] = (tran_low_t)-x2; + output[4] = (tran_low_t)x3; + output[5] = (tran_low_t)-x7; + output[6] = (tran_low_t)x5; + output[7] = (tran_low_t)-x1; +} + +void vp9_fht8x8_c(const int16_t *input, tran_low_t *output, + int stride, int tx_type) { + if (tx_type == DCT_DCT) { + vp9_fdct8x8_c(input, output, stride); + } else { + tran_low_t out[64]; + int i, j; + tran_low_t temp_in[8], temp_out[8]; + const transform_2d ht = FHT_8[tx_type]; + + // Columns + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) + temp_in[j] = input[j * stride + i] * 4; + ht.cols(temp_in, temp_out); + for (j = 0; j < 8; ++j) + out[j * 8 + i] = temp_out[j]; + } + + // Rows + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) + temp_in[j] = out[j + i * 8]; + ht.rows(temp_in, temp_out); + for (j = 0; j < 8; ++j) + output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; + } + } +} + +/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per + pixel. */ +void vp9_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) { + int i; + tran_high_t a1, b1, c1, d1, e1; + const int16_t *ip_pass0 = input; + const tran_low_t *ip = NULL; + tran_low_t *op = output; + + for (i = 0; i < 4; i++) { + a1 = ip_pass0[0 * stride]; + b1 = ip_pass0[1 * stride]; + c1 = ip_pass0[2 * stride]; + d1 = ip_pass0[3 * stride]; + + a1 += b1; + d1 = d1 - c1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= c1; + d1 += b1; + op[0] = (tran_low_t)a1; + op[4] = (tran_low_t)c1; + op[8] = (tran_low_t)d1; + op[12] = (tran_low_t)b1; + + ip_pass0++; + op++; + } + ip = output; + op = output; + + for (i = 0; i < 4; i++) { + a1 = ip[0]; + b1 = ip[1]; + c1 = ip[2]; + d1 = ip[3]; + + a1 += b1; + d1 -= c1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= c1; + d1 += b1; + op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR); + op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR); + op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR); + op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR); + + ip += 4; + op += 4; + } +} + +// Rewrote to use same algorithm as others. +void vp9_fdct16(const tran_low_t in[16], tran_low_t out[16]) { + tran_high_t step1[8]; // canbe16 + tran_high_t step2[8]; // canbe16 + tran_high_t step3[8]; // canbe16 + tran_high_t input[8]; // canbe16 + tran_high_t temp1, temp2; // needs32 + + // step 1 + input[0] = in[0] + in[15]; + input[1] = in[1] + in[14]; + input[2] = in[2] + in[13]; + input[3] = in[3] + in[12]; + input[4] = in[4] + in[11]; + input[5] = in[5] + in[10]; + input[6] = in[6] + in[ 9]; + input[7] = in[7] + in[ 8]; + + step1[0] = in[7] - in[ 8]; + step1[1] = in[6] - in[ 9]; + step1[2] = in[5] - in[10]; + step1[3] = in[4] - in[11]; + step1[4] = in[3] - in[12]; + step1[5] = in[2] - in[13]; + step1[6] = in[1] - in[14]; + step1[7] = in[0] - in[15]; + + // fdct8(step, step); + { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + // stage 1 + s0 = input[0] + input[7]; + s1 = input[1] + input[6]; + s2 = input[2] + input[5]; + s3 = input[3] + input[4]; + s4 = input[3] - input[4]; + s5 = input[2] - input[5]; + s6 = input[1] - input[6]; + s7 = input[0] - input[7]; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x3 * cospi_8_64 + x2 * cospi_24_64; + t3 = x3 * cospi_24_64 - x2 * cospi_8_64; + out[0] = (tran_low_t)fdct_round_shift(t0); + out[4] = (tran_low_t)fdct_round_shift(t2); + out[8] = (tran_low_t)fdct_round_shift(t1); + out[12] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + out[2] = (tran_low_t)fdct_round_shift(t0); + out[6] = (tran_low_t)fdct_round_shift(t2); + out[10] = (tran_low_t)fdct_round_shift(t1); + out[14] = (tran_low_t)fdct_round_shift(t3); + } + + // step 2 + temp1 = (step1[5] - step1[2]) * cospi_16_64; + temp2 = (step1[4] - step1[3]) * cospi_16_64; + step2[2] = fdct_round_shift(temp1); + step2[3] = fdct_round_shift(temp2); + temp1 = (step1[4] + step1[3]) * cospi_16_64; + temp2 = (step1[5] + step1[2]) * cospi_16_64; + step2[4] = fdct_round_shift(temp1); + step2[5] = fdct_round_shift(temp2); + + // step 3 + step3[0] = step1[0] + step2[3]; + step3[1] = step1[1] + step2[2]; + step3[2] = step1[1] - step2[2]; + step3[3] = step1[0] - step2[3]; + step3[4] = step1[7] - step2[4]; + step3[5] = step1[6] - step2[5]; + step3[6] = step1[6] + step2[5]; + step3[7] = step1[7] + step2[4]; + + // step 4 + temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; + temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; + step2[1] = fdct_round_shift(temp1); + step2[2] = fdct_round_shift(temp2); + temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; + temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; + step2[5] = fdct_round_shift(temp1); + step2[6] = fdct_round_shift(temp2); + + // step 5 + step1[0] = step3[0] + step2[1]; + step1[1] = step3[0] - step2[1]; + step1[2] = step3[3] + step2[2]; + step1[3] = step3[3] - step2[2]; + step1[4] = step3[4] - step2[5]; + step1[5] = step3[4] + step2[5]; + step1[6] = step3[7] - step2[6]; + step1[7] = step3[7] + step2[6]; + + // step 6 + temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; + temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; + out[1] = (tran_low_t)fdct_round_shift(temp1); + out[9] = (tran_low_t)fdct_round_shift(temp2); + + temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; + temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; + out[5] = (tran_low_t)fdct_round_shift(temp1); + out[13] = (tran_low_t)fdct_round_shift(temp2); + + temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; + temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; + out[3] = (tran_low_t)fdct_round_shift(temp1); + out[11] = (tran_low_t)fdct_round_shift(temp2); + + temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; + temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; + out[7] = (tran_low_t)fdct_round_shift(temp1); + out[15] = (tran_low_t)fdct_round_shift(temp2); +} + +void vp9_fadst16(const tran_low_t *input, tran_low_t *output) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; + tran_high_t s9, s10, s11, s12, s13, s14, s15; + + tran_high_t x0 = input[15]; + tran_high_t x1 = input[0]; + tran_high_t x2 = input[13]; + tran_high_t x3 = input[2]; + tran_high_t x4 = input[11]; + tran_high_t x5 = input[4]; + tran_high_t x6 = input[9]; + tran_high_t x7 = input[6]; + tran_high_t x8 = input[7]; + tran_high_t x9 = input[8]; + tran_high_t x10 = input[5]; + tran_high_t x11 = input[10]; + tran_high_t x12 = input[3]; + tran_high_t x13 = input[12]; + tran_high_t x14 = input[1]; + tran_high_t x15 = input[14]; + + // stage 1 + s0 = x0 * cospi_1_64 + x1 * cospi_31_64; + s1 = x0 * cospi_31_64 - x1 * cospi_1_64; + s2 = x2 * cospi_5_64 + x3 * cospi_27_64; + s3 = x2 * cospi_27_64 - x3 * cospi_5_64; + s4 = x4 * cospi_9_64 + x5 * cospi_23_64; + s5 = x4 * cospi_23_64 - x5 * cospi_9_64; + s6 = x6 * cospi_13_64 + x7 * cospi_19_64; + s7 = x6 * cospi_19_64 - x7 * cospi_13_64; + s8 = x8 * cospi_17_64 + x9 * cospi_15_64; + s9 = x8 * cospi_15_64 - x9 * cospi_17_64; + s10 = x10 * cospi_21_64 + x11 * cospi_11_64; + s11 = x10 * cospi_11_64 - x11 * cospi_21_64; + s12 = x12 * cospi_25_64 + x13 * cospi_7_64; + s13 = x12 * cospi_7_64 - x13 * cospi_25_64; + s14 = x14 * cospi_29_64 + x15 * cospi_3_64; + s15 = x14 * cospi_3_64 - x15 * cospi_29_64; + + x0 = fdct_round_shift(s0 + s8); + x1 = fdct_round_shift(s1 + s9); + x2 = fdct_round_shift(s2 + s10); + x3 = fdct_round_shift(s3 + s11); + x4 = fdct_round_shift(s4 + s12); + x5 = fdct_round_shift(s5 + s13); + x6 = fdct_round_shift(s6 + s14); + x7 = fdct_round_shift(s7 + s15); + x8 = fdct_round_shift(s0 - s8); + x9 = fdct_round_shift(s1 - s9); + x10 = fdct_round_shift(s2 - s10); + x11 = fdct_round_shift(s3 - s11); + x12 = fdct_round_shift(s4 - s12); + x13 = fdct_round_shift(s5 - s13); + x14 = fdct_round_shift(s6 - s14); + x15 = fdct_round_shift(s7 - s15); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4; + s5 = x5; + s6 = x6; + s7 = x7; + s8 = x8 * cospi_4_64 + x9 * cospi_28_64; + s9 = x8 * cospi_28_64 - x9 * cospi_4_64; + s10 = x10 * cospi_20_64 + x11 * cospi_12_64; + s11 = x10 * cospi_12_64 - x11 * cospi_20_64; + s12 = - x12 * cospi_28_64 + x13 * cospi_4_64; + s13 = x12 * cospi_4_64 + x13 * cospi_28_64; + s14 = - x14 * cospi_12_64 + x15 * cospi_20_64; + s15 = x14 * cospi_20_64 + x15 * cospi_12_64; + + x0 = s0 + s4; + x1 = s1 + s5; + x2 = s2 + s6; + x3 = s3 + s7; + x4 = s0 - s4; + x5 = s1 - s5; + x6 = s2 - s6; + x7 = s3 - s7; + x8 = fdct_round_shift(s8 + s12); + x9 = fdct_round_shift(s9 + s13); + x10 = fdct_round_shift(s10 + s14); + x11 = fdct_round_shift(s11 + s15); + x12 = fdct_round_shift(s8 - s12); + x13 = fdct_round_shift(s9 - s13); + x14 = fdct_round_shift(s10 - s14); + x15 = fdct_round_shift(s11 - s15); + + // stage 3 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4 * cospi_8_64 + x5 * cospi_24_64; + s5 = x4 * cospi_24_64 - x5 * cospi_8_64; + s6 = - x6 * cospi_24_64 + x7 * cospi_8_64; + s7 = x6 * cospi_8_64 + x7 * cospi_24_64; + s8 = x8; + s9 = x9; + s10 = x10; + s11 = x11; + s12 = x12 * cospi_8_64 + x13 * cospi_24_64; + s13 = x12 * cospi_24_64 - x13 * cospi_8_64; + s14 = - x14 * cospi_24_64 + x15 * cospi_8_64; + s15 = x14 * cospi_8_64 + x15 * cospi_24_64; + + x0 = s0 + s2; + x1 = s1 + s3; + x2 = s0 - s2; + x3 = s1 - s3; + x4 = fdct_round_shift(s4 + s6); + x5 = fdct_round_shift(s5 + s7); + x6 = fdct_round_shift(s4 - s6); + x7 = fdct_round_shift(s5 - s7); + x8 = s8 + s10; + x9 = s9 + s11; + x10 = s8 - s10; + x11 = s9 - s11; + x12 = fdct_round_shift(s12 + s14); + x13 = fdct_round_shift(s13 + s15); + x14 = fdct_round_shift(s12 - s14); + x15 = fdct_round_shift(s13 - s15); + + // stage 4 + s2 = (- cospi_16_64) * (x2 + x3); + s3 = cospi_16_64 * (x2 - x3); + s6 = cospi_16_64 * (x6 + x7); + s7 = cospi_16_64 * (- x6 + x7); + s10 = cospi_16_64 * (x10 + x11); + s11 = cospi_16_64 * (- x10 + x11); + s14 = (- cospi_16_64) * (x14 + x15); + s15 = cospi_16_64 * (x14 - x15); + + x2 = fdct_round_shift(s2); + x3 = fdct_round_shift(s3); + x6 = fdct_round_shift(s6); + x7 = fdct_round_shift(s7); + x10 = fdct_round_shift(s10); + x11 = fdct_round_shift(s11); + x14 = fdct_round_shift(s14); + x15 = fdct_round_shift(s15); + + output[0] = (tran_low_t)x0; + output[1] = (tran_low_t)-x8; + output[2] = (tran_low_t)x12; + output[3] = (tran_low_t)-x4; + output[4] = (tran_low_t)x6; + output[5] = (tran_low_t)x14; + output[6] = (tran_low_t)x10; + output[7] = (tran_low_t)x2; + output[8] = (tran_low_t)x3; + output[9] = (tran_low_t)x11; + output[10] = (tran_low_t)x15; + output[11] = (tran_low_t)x7; + output[12] = (tran_low_t)x5; + output[13] = (tran_low_t)-x13; + output[14] = (tran_low_t)x9; + output[15] = (tran_low_t)-x1; +} + +void vp9_fht16x16_c(const int16_t *input, tran_low_t *output, + int stride, int tx_type) { + if (tx_type == DCT_DCT) { + vp9_fdct16x16_c(input, output, stride); + } else { + tran_low_t out[256]; + int i, j; + tran_low_t temp_in[16], temp_out[16]; + const transform_2d ht = FHT_16[tx_type]; + + // Columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) + temp_in[j] = input[j * stride + i] * 4; + ht.cols(temp_in, temp_out); + for (j = 0; j < 16; ++j) + out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; + } + + // Rows + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) + temp_in[j] = out[j + i * 16]; + ht.rows(temp_in, temp_out); + for (j = 0; j < 16; ++j) + output[j + i * 16] = temp_out[j]; + } + } +} + +static INLINE tran_high_t dct_32_round(tran_high_t input) { + tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); + // TODO(debargha, peter.derivaz): Find new bounds for this assert, + // and make the bounds consts. + // assert(-131072 <= rv && rv <= 131071); + return rv; +} + +static INLINE tran_high_t half_round_shift(tran_high_t input) { + tran_high_t rv = (input + 1 + (input < 0)) >> 2; + return rv; +} + +void vp9_fdct32(const tran_high_t *input, tran_high_t *output, int round) { + tran_high_t step[32]; + // Stage 1 + step[0] = input[0] + input[(32 - 1)]; + step[1] = input[1] + input[(32 - 2)]; + step[2] = input[2] + input[(32 - 3)]; + step[3] = input[3] + input[(32 - 4)]; + step[4] = input[4] + input[(32 - 5)]; + step[5] = input[5] + input[(32 - 6)]; + step[6] = input[6] + input[(32 - 7)]; + step[7] = input[7] + input[(32 - 8)]; + step[8] = input[8] + input[(32 - 9)]; + step[9] = input[9] + input[(32 - 10)]; + step[10] = input[10] + input[(32 - 11)]; + step[11] = input[11] + input[(32 - 12)]; + step[12] = input[12] + input[(32 - 13)]; + step[13] = input[13] + input[(32 - 14)]; + step[14] = input[14] + input[(32 - 15)]; + step[15] = input[15] + input[(32 - 16)]; + step[16] = -input[16] + input[(32 - 17)]; + step[17] = -input[17] + input[(32 - 18)]; + step[18] = -input[18] + input[(32 - 19)]; + step[19] = -input[19] + input[(32 - 20)]; + step[20] = -input[20] + input[(32 - 21)]; + step[21] = -input[21] + input[(32 - 22)]; + step[22] = -input[22] + input[(32 - 23)]; + step[23] = -input[23] + input[(32 - 24)]; + step[24] = -input[24] + input[(32 - 25)]; + step[25] = -input[25] + input[(32 - 26)]; + step[26] = -input[26] + input[(32 - 27)]; + step[27] = -input[27] + input[(32 - 28)]; + step[28] = -input[28] + input[(32 - 29)]; + step[29] = -input[29] + input[(32 - 30)]; + step[30] = -input[30] + input[(32 - 31)]; + step[31] = -input[31] + input[(32 - 32)]; + + // Stage 2 + output[0] = step[0] + step[16 - 1]; + output[1] = step[1] + step[16 - 2]; + output[2] = step[2] + step[16 - 3]; + output[3] = step[3] + step[16 - 4]; + output[4] = step[4] + step[16 - 5]; + output[5] = step[5] + step[16 - 6]; + output[6] = step[6] + step[16 - 7]; + output[7] = step[7] + step[16 - 8]; + output[8] = -step[8] + step[16 - 9]; + output[9] = -step[9] + step[16 - 10]; + output[10] = -step[10] + step[16 - 11]; + output[11] = -step[11] + step[16 - 12]; + output[12] = -step[12] + step[16 - 13]; + output[13] = -step[13] + step[16 - 14]; + output[14] = -step[14] + step[16 - 15]; + output[15] = -step[15] + step[16 - 16]; + + output[16] = step[16]; + output[17] = step[17]; + output[18] = step[18]; + output[19] = step[19]; + + output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); + output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); + output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); + output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); + + output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); + output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); + output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); + output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); + + output[28] = step[28]; + output[29] = step[29]; + output[30] = step[30]; + output[31] = step[31]; + + // dump the magnitude by 4, hence the intermediate values are within + // the range of 16 bits. + if (round) { + output[0] = half_round_shift(output[0]); + output[1] = half_round_shift(output[1]); + output[2] = half_round_shift(output[2]); + output[3] = half_round_shift(output[3]); + output[4] = half_round_shift(output[4]); + output[5] = half_round_shift(output[5]); + output[6] = half_round_shift(output[6]); + output[7] = half_round_shift(output[7]); + output[8] = half_round_shift(output[8]); + output[9] = half_round_shift(output[9]); + output[10] = half_round_shift(output[10]); + output[11] = half_round_shift(output[11]); + output[12] = half_round_shift(output[12]); + output[13] = half_round_shift(output[13]); + output[14] = half_round_shift(output[14]); + output[15] = half_round_shift(output[15]); + + output[16] = half_round_shift(output[16]); + output[17] = half_round_shift(output[17]); + output[18] = half_round_shift(output[18]); + output[19] = half_round_shift(output[19]); + output[20] = half_round_shift(output[20]); + output[21] = half_round_shift(output[21]); + output[22] = half_round_shift(output[22]); + output[23] = half_round_shift(output[23]); + output[24] = half_round_shift(output[24]); + output[25] = half_round_shift(output[25]); + output[26] = half_round_shift(output[26]); + output[27] = half_round_shift(output[27]); + output[28] = half_round_shift(output[28]); + output[29] = half_round_shift(output[29]); + output[30] = half_round_shift(output[30]); + output[31] = half_round_shift(output[31]); + } + + // Stage 3 + step[0] = output[0] + output[(8 - 1)]; + step[1] = output[1] + output[(8 - 2)]; + step[2] = output[2] + output[(8 - 3)]; + step[3] = output[3] + output[(8 - 4)]; + step[4] = -output[4] + output[(8 - 5)]; + step[5] = -output[5] + output[(8 - 6)]; + step[6] = -output[6] + output[(8 - 7)]; + step[7] = -output[7] + output[(8 - 8)]; + step[8] = output[8]; + step[9] = output[9]; + step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); + step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); + step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); + step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); + step[14] = output[14]; + step[15] = output[15]; + + step[16] = output[16] + output[23]; + step[17] = output[17] + output[22]; + step[18] = output[18] + output[21]; + step[19] = output[19] + output[20]; + step[20] = -output[20] + output[19]; + step[21] = -output[21] + output[18]; + step[22] = -output[22] + output[17]; + step[23] = -output[23] + output[16]; + step[24] = -output[24] + output[31]; + step[25] = -output[25] + output[30]; + step[26] = -output[26] + output[29]; + step[27] = -output[27] + output[28]; + step[28] = output[28] + output[27]; + step[29] = output[29] + output[26]; + step[30] = output[30] + output[25]; + step[31] = output[31] + output[24]; + + // Stage 4 + output[0] = step[0] + step[3]; + output[1] = step[1] + step[2]; + output[2] = -step[2] + step[1]; + output[3] = -step[3] + step[0]; + output[4] = step[4]; + output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); + output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); + output[7] = step[7]; + output[8] = step[8] + step[11]; + output[9] = step[9] + step[10]; + output[10] = -step[10] + step[9]; + output[11] = -step[11] + step[8]; + output[12] = -step[12] + step[15]; + output[13] = -step[13] + step[14]; + output[14] = step[14] + step[13]; + output[15] = step[15] + step[12]; + + output[16] = step[16]; + output[17] = step[17]; + output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); + output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); + output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); + output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); + output[22] = step[22]; + output[23] = step[23]; + output[24] = step[24]; + output[25] = step[25]; + output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); + output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); + output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); + output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); + output[30] = step[30]; + output[31] = step[31]; + + // Stage 5 + step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); + step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); + step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); + step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); + step[4] = output[4] + output[5]; + step[5] = -output[5] + output[4]; + step[6] = -output[6] + output[7]; + step[7] = output[7] + output[6]; + step[8] = output[8]; + step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); + step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); + step[11] = output[11]; + step[12] = output[12]; + step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); + step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); + step[15] = output[15]; + + step[16] = output[16] + output[19]; + step[17] = output[17] + output[18]; + step[18] = -output[18] + output[17]; + step[19] = -output[19] + output[16]; + step[20] = -output[20] + output[23]; + step[21] = -output[21] + output[22]; + step[22] = output[22] + output[21]; + step[23] = output[23] + output[20]; + step[24] = output[24] + output[27]; + step[25] = output[25] + output[26]; + step[26] = -output[26] + output[25]; + step[27] = -output[27] + output[24]; + step[28] = -output[28] + output[31]; + step[29] = -output[29] + output[30]; + step[30] = output[30] + output[29]; + step[31] = output[31] + output[28]; + + // Stage 6 + output[0] = step[0]; + output[1] = step[1]; + output[2] = step[2]; + output[3] = step[3]; + output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); + output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); + output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); + output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); + output[8] = step[8] + step[9]; + output[9] = -step[9] + step[8]; + output[10] = -step[10] + step[11]; + output[11] = step[11] + step[10]; + output[12] = step[12] + step[13]; + output[13] = -step[13] + step[12]; + output[14] = -step[14] + step[15]; + output[15] = step[15] + step[14]; + + output[16] = step[16]; + output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); + output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); + output[19] = step[19]; + output[20] = step[20]; + output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); + output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); + output[23] = step[23]; + output[24] = step[24]; + output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); + output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); + output[27] = step[27]; + output[28] = step[28]; + output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); + output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); + output[31] = step[31]; + + // Stage 7 + step[0] = output[0]; + step[1] = output[1]; + step[2] = output[2]; + step[3] = output[3]; + step[4] = output[4]; + step[5] = output[5]; + step[6] = output[6]; + step[7] = output[7]; + step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); + step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); + step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); + step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); + step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); + step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); + step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); + step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); + + step[16] = output[16] + output[17]; + step[17] = -output[17] + output[16]; + step[18] = -output[18] + output[19]; + step[19] = output[19] + output[18]; + step[20] = output[20] + output[21]; + step[21] = -output[21] + output[20]; + step[22] = -output[22] + output[23]; + step[23] = output[23] + output[22]; + step[24] = output[24] + output[25]; + step[25] = -output[25] + output[24]; + step[26] = -output[26] + output[27]; + step[27] = output[27] + output[26]; + step[28] = output[28] + output[29]; + step[29] = -output[29] + output[28]; + step[30] = -output[30] + output[31]; + step[31] = output[31] + output[30]; + + // Final stage --- outputs indices are bit-reversed. + output[0] = step[0]; + output[16] = step[1]; + output[8] = step[2]; + output[24] = step[3]; + output[4] = step[4]; + output[20] = step[5]; + output[12] = step[6]; + output[28] = step[7]; + output[2] = step[8]; + output[18] = step[9]; + output[10] = step[10]; + output[26] = step[11]; + output[6] = step[12]; + output[22] = step[13]; + output[14] = step[14]; + output[30] = step[15]; + + output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); + output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); + output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); + output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); + output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); + output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); + output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); + output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); + output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); + output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); + output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); + output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); + output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); + output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); + output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); + output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); +} + +void vp9_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) { + int r, c; + tran_low_t sum = 0; + for (r = 0; r < 32; ++r) + for (c = 0; c < 32; ++c) + sum += input[r * stride + c]; + + output[0] = sum >> 3; + output[1] = 0; +} + +void vp9_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { + int i, j; + tran_high_t output[32 * 32]; + + // Columns + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) + temp_in[j] = input[j * stride + i] * 4; + vp9_fdct32(temp_in, temp_out, 0); + for (j = 0; j < 32; ++j) + output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; + } + + // Rows + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) + temp_in[j] = output[j + i * 32]; + vp9_fdct32(temp_in, temp_out, 0); + for (j = 0; j < 32; ++j) + out[j + i * 32] = + (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); + } +} + +// Note that although we use dct_32_round in dct32 computation flow, +// this 2d fdct32x32 for rate-distortion optimization loop is operating +// within 16 bits precision. +void vp9_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) { + int i, j; + tran_high_t output[32 * 32]; + + // Columns + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) + temp_in[j] = input[j * stride + i] * 4; + vp9_fdct32(temp_in, temp_out, 0); + for (j = 0; j < 32; ++j) + // TODO(cd): see quality impact of only doing + // output[j * 32 + i] = (temp_out[j] + 1) >> 2; + // PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c + output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; + } + + // Rows + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) + temp_in[j] = output[j + i * 32]; + vp9_fdct32(temp_in, temp_out, 1); + for (j = 0; j < 32; ++j) + out[j + i * 32] = (tran_low_t)temp_out[j]; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, + int stride) { + vp9_fdct4x4_c(input, output, stride); +} + +void vp9_highbd_fht4x4_c(const int16_t *input, tran_low_t *output, + int stride, int tx_type) { + vp9_fht4x4_c(input, output, stride, tx_type); +} + +void vp9_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output, + int stride) { + vp9_fdct8x8_1_c(input, final_output, stride); +} + +void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, + int stride) { + vp9_fdct8x8_c(input, final_output, stride); +} + +void vp9_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output, + int stride) { + vp9_fdct16x16_1_c(input, output, stride); +} + +void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output, + int stride) { + vp9_fdct16x16_c(input, output, stride); +} + +void vp9_highbd_fht8x8_c(const int16_t *input, tran_low_t *output, + int stride, int tx_type) { + vp9_fht8x8_c(input, output, stride, tx_type); +} + +void vp9_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output, + int stride) { + vp9_fwht4x4_c(input, output, stride); +} + +void vp9_highbd_fht16x16_c(const int16_t *input, tran_low_t *output, + int stride, int tx_type) { + vp9_fht16x16_c(input, output, stride, tx_type); +} + +void vp9_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out, + int stride) { + vp9_fdct32x32_1_c(input, out, stride); +} + +void vp9_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { + vp9_fdct32x32_c(input, out, stride); +} + +void vp9_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, + int stride) { + vp9_fdct32x32_rd_c(input, out, stride); +} +#endif // CONFIG_VP9_HIGHBITDEPTH |