summaryrefslogtreecommitdiffstats
path: root/media/libopus/silk/fixed/solve_LS_FIX.c
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /media/libopus/silk/fixed/solve_LS_FIX.c
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libopus/silk/fixed/solve_LS_FIX.c')
-rw-r--r--media/libopus/silk/fixed/solve_LS_FIX.c249
1 files changed, 249 insertions, 0 deletions
diff --git a/media/libopus/silk/fixed/solve_LS_FIX.c b/media/libopus/silk/fixed/solve_LS_FIX.c
new file mode 100644
index 000000000..51d7d49d0
--- /dev/null
+++ b/media/libopus/silk/fixed/solve_LS_FIX.c
@@ -0,0 +1,249 @@
+/***********************************************************************
+Copyright (c) 2006-2011, Skype Limited. All rights reserved.
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+- Redistributions of source code must retain the above copyright notice,
+this list of conditions and the following disclaimer.
+- Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+- Neither the name of Internet Society, IETF or IETF Trust, nor the
+names of specific contributors, may be used to endorse or promote
+products derived from this software without specific prior written
+permission.
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+***********************************************************************/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "main_FIX.h"
+#include "stack_alloc.h"
+#include "tuning_parameters.h"
+
+/*****************************/
+/* Internal function headers */
+/*****************************/
+
+typedef struct {
+ opus_int32 Q36_part;
+ opus_int32 Q48_part;
+} inv_D_t;
+
+/* Factorize square matrix A into LDL form */
+static OPUS_INLINE void silk_LDL_factorize_FIX(
+ opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */
+ opus_int M, /* I Size of Matrix */
+ opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */
+ inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */
+);
+
+/* Solve Lx = b, when L is lower triangular and has ones on the diagonal */
+static OPUS_INLINE void silk_LS_SolveFirst_FIX(
+ const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
+ opus_int M, /* I Dim of Matrix equation */
+ const opus_int32 *b, /* I b Vector */
+ opus_int32 *x_Q16 /* O x Vector */
+);
+
+/* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */
+static OPUS_INLINE void silk_LS_SolveLast_FIX(
+ const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
+ const opus_int M, /* I Dim of Matrix equation */
+ const opus_int32 *b, /* I b Vector */
+ opus_int32 *x_Q16 /* O x Vector */
+);
+
+static OPUS_INLINE void silk_LS_divide_Q16_FIX(
+ opus_int32 T[], /* I/O Numenator vector */
+ inv_D_t *inv_D, /* I 1 / D vector */
+ opus_int M /* I dimension */
+);
+
+/* Solves Ax = b, assuming A is symmetric */
+void silk_solve_LDL_FIX(
+ opus_int32 *A, /* I Pointer to symetric square matrix A */
+ opus_int M, /* I Size of matrix */
+ const opus_int32 *b, /* I Pointer to b vector */
+ opus_int32 *x_Q16 /* O Pointer to x solution vector */
+)
+{
+ VARDECL( opus_int32, L_Q16 );
+ opus_int32 Y[ MAX_MATRIX_SIZE ];
+ inv_D_t inv_D[ MAX_MATRIX_SIZE ];
+ SAVE_STACK;
+
+ silk_assert( M <= MAX_MATRIX_SIZE );
+ ALLOC( L_Q16, M * M, opus_int32 );
+
+ /***************************************************
+ Factorize A by LDL such that A = L*D*L',
+ where L is lower triangular with ones on diagonal
+ ****************************************************/
+ silk_LDL_factorize_FIX( A, M, L_Q16, inv_D );
+
+ /****************************************************
+ * substitute D*L'*x = Y. ie:
+ L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b
+ ******************************************************/
+ silk_LS_SolveFirst_FIX( L_Q16, M, b, Y );
+
+ /****************************************************
+ D*L'*x = Y <=> L'*x = inv(D)*Y, because D is
+ diagonal just multiply with 1/d_i
+ ****************************************************/
+ silk_LS_divide_Q16_FIX( Y, inv_D, M );
+
+ /****************************************************
+ x = inv(L') * inv(D) * Y
+ *****************************************************/
+ silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 );
+ RESTORE_STACK;
+}
+
+static OPUS_INLINE void silk_LDL_factorize_FIX(
+ opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */
+ opus_int M, /* I Size of Matrix */
+ opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */
+ inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */
+)
+{
+ opus_int i, j, k, status, loop_count;
+ const opus_int32 *ptr1, *ptr2;
+ opus_int32 diag_min_value, tmp_32, err;
+ opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ];
+ opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48;
+
+ silk_assert( M <= MAX_MATRIX_SIZE );
+
+ status = 1;
+ diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SMULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 );
+ for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) {
+ status = 0;
+ for( j = 0; j < M; j++ ) {
+ ptr1 = matrix_adr( L_Q16, j, 0, M );
+ tmp_32 = 0;
+ for( i = 0; i < j; i++ ) {
+ v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 */
+ tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */
+ }
+ tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 );
+
+ if( tmp_32 < diag_min_value ) {
+ tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value ), tmp_32 );
+ /* Matrix not positive semi-definite, or ill conditioned */
+ for( i = 0; i < M; i++ ) {
+ matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i, M ), tmp_32 );
+ }
+ status = 1;
+ break;
+ }
+ D_Q0[ j ] = tmp_32; /* always < max(Correlation) */
+
+ /* two-step division */
+ one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 ); /* Q36 */
+ one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 ); /* Q40 */
+ err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_diag_Q40 ) ); /* Q24 */
+ one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 ); /* Q48 */
+
+ /* Save 1/Ds */
+ inv_D[ j ].Q36_part = one_div_diag_Q36;
+ inv_D[ j ].Q48_part = one_div_diag_Q48;
+
+ matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */
+ ptr1 = matrix_adr( A, j, 0, M );
+ ptr2 = matrix_adr( L_Q16, j + 1, 0, M );
+ for( i = j + 1; i < M; i++ ) {
+ tmp_32 = 0;
+ for( k = 0; k < j; k++ ) {
+ tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */
+ }
+ tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */
+
+ /* tmp_32 / D_Q0[j] : Divide to Q16 */
+ matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ),
+ silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) );
+
+ /* go to next column */
+ ptr2 += M;
+ }
+ }
+ }
+
+ silk_assert( status == 0 );
+}
+
+static OPUS_INLINE void silk_LS_divide_Q16_FIX(
+ opus_int32 T[], /* I/O Numenator vector */
+ inv_D_t *inv_D, /* I 1 / D vector */
+ opus_int M /* I dimension */
+)
+{
+ opus_int i;
+ opus_int32 tmp_32;
+ opus_int32 one_div_diag_Q36, one_div_diag_Q48;
+
+ for( i = 0; i < M; i++ ) {
+ one_div_diag_Q36 = inv_D[ i ].Q36_part;
+ one_div_diag_Q48 = inv_D[ i ].Q48_part;
+
+ tmp_32 = T[ i ];
+ T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) );
+ }
+}
+
+/* Solve Lx = b, when L is lower triangular and has ones on the diagonal */
+static OPUS_INLINE void silk_LS_SolveFirst_FIX(
+ const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
+ opus_int M, /* I Dim of Matrix equation */
+ const opus_int32 *b, /* I b Vector */
+ opus_int32 *x_Q16 /* O x Vector */
+)
+{
+ opus_int i, j;
+ const opus_int32 *ptr32;
+ opus_int32 tmp_32;
+
+ for( i = 0; i < M; i++ ) {
+ ptr32 = matrix_adr( L_Q16, i, 0, M );
+ tmp_32 = 0;
+ for( j = 0; j < i; j++ ) {
+ tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] );
+ }
+ x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 );
+ }
+}
+
+/* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */
+static OPUS_INLINE void silk_LS_SolveLast_FIX(
+ const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
+ const opus_int M, /* I Dim of Matrix equation */
+ const opus_int32 *b, /* I b Vector */
+ opus_int32 *x_Q16 /* O x Vector */
+)
+{
+ opus_int i, j;
+ const opus_int32 *ptr32;
+ opus_int32 tmp_32;
+
+ for( i = M - 1; i >= 0; i-- ) {
+ ptr32 = matrix_adr( L_Q16, 0, i, M );
+ tmp_32 = 0;
+ for( j = M - 1; j > i; j-- ) {
+ tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j ] );
+ }
+ x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 );
+ }
+}