diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /media/libopus/silk/fixed/solve_LS_FIX.c | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libopus/silk/fixed/solve_LS_FIX.c')
-rw-r--r-- | media/libopus/silk/fixed/solve_LS_FIX.c | 249 |
1 files changed, 249 insertions, 0 deletions
diff --git a/media/libopus/silk/fixed/solve_LS_FIX.c b/media/libopus/silk/fixed/solve_LS_FIX.c new file mode 100644 index 000000000..51d7d49d0 --- /dev/null +++ b/media/libopus/silk/fixed/solve_LS_FIX.c @@ -0,0 +1,249 @@ +/*********************************************************************** +Copyright (c) 2006-2011, Skype Limited. All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "main_FIX.h" +#include "stack_alloc.h" +#include "tuning_parameters.h" + +/*****************************/ +/* Internal function headers */ +/*****************************/ + +typedef struct { + opus_int32 Q36_part; + opus_int32 Q48_part; +} inv_D_t; + +/* Factorize square matrix A into LDL form */ +static OPUS_INLINE void silk_LDL_factorize_FIX( + opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ + opus_int M, /* I Size of Matrix */ + opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ + inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ +); + +/* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ +static OPUS_INLINE void silk_LS_SolveFirst_FIX( + const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ + opus_int M, /* I Dim of Matrix equation */ + const opus_int32 *b, /* I b Vector */ + opus_int32 *x_Q16 /* O x Vector */ +); + +/* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ +static OPUS_INLINE void silk_LS_SolveLast_FIX( + const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ + const opus_int M, /* I Dim of Matrix equation */ + const opus_int32 *b, /* I b Vector */ + opus_int32 *x_Q16 /* O x Vector */ +); + +static OPUS_INLINE void silk_LS_divide_Q16_FIX( + opus_int32 T[], /* I/O Numenator vector */ + inv_D_t *inv_D, /* I 1 / D vector */ + opus_int M /* I dimension */ +); + +/* Solves Ax = b, assuming A is symmetric */ +void silk_solve_LDL_FIX( + opus_int32 *A, /* I Pointer to symetric square matrix A */ + opus_int M, /* I Size of matrix */ + const opus_int32 *b, /* I Pointer to b vector */ + opus_int32 *x_Q16 /* O Pointer to x solution vector */ +) +{ + VARDECL( opus_int32, L_Q16 ); + opus_int32 Y[ MAX_MATRIX_SIZE ]; + inv_D_t inv_D[ MAX_MATRIX_SIZE ]; + SAVE_STACK; + + silk_assert( M <= MAX_MATRIX_SIZE ); + ALLOC( L_Q16, M * M, opus_int32 ); + + /*************************************************** + Factorize A by LDL such that A = L*D*L', + where L is lower triangular with ones on diagonal + ****************************************************/ + silk_LDL_factorize_FIX( A, M, L_Q16, inv_D ); + + /**************************************************** + * substitute D*L'*x = Y. ie: + L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b + ******************************************************/ + silk_LS_SolveFirst_FIX( L_Q16, M, b, Y ); + + /**************************************************** + D*L'*x = Y <=> L'*x = inv(D)*Y, because D is + diagonal just multiply with 1/d_i + ****************************************************/ + silk_LS_divide_Q16_FIX( Y, inv_D, M ); + + /**************************************************** + x = inv(L') * inv(D) * Y + *****************************************************/ + silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 ); + RESTORE_STACK; +} + +static OPUS_INLINE void silk_LDL_factorize_FIX( + opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ + opus_int M, /* I Size of Matrix */ + opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ + inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ +) +{ + opus_int i, j, k, status, loop_count; + const opus_int32 *ptr1, *ptr2; + opus_int32 diag_min_value, tmp_32, err; + opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ]; + opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48; + + silk_assert( M <= MAX_MATRIX_SIZE ); + + status = 1; + diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SMULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 ); + for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) { + status = 0; + for( j = 0; j < M; j++ ) { + ptr1 = matrix_adr( L_Q16, j, 0, M ); + tmp_32 = 0; + for( i = 0; i < j; i++ ) { + v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 */ + tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */ + } + tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 ); + + if( tmp_32 < diag_min_value ) { + tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value ), tmp_32 ); + /* Matrix not positive semi-definite, or ill conditioned */ + for( i = 0; i < M; i++ ) { + matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i, M ), tmp_32 ); + } + status = 1; + break; + } + D_Q0[ j ] = tmp_32; /* always < max(Correlation) */ + + /* two-step division */ + one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 ); /* Q36 */ + one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 ); /* Q40 */ + err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_diag_Q40 ) ); /* Q24 */ + one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 ); /* Q48 */ + + /* Save 1/Ds */ + inv_D[ j ].Q36_part = one_div_diag_Q36; + inv_D[ j ].Q48_part = one_div_diag_Q48; + + matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */ + ptr1 = matrix_adr( A, j, 0, M ); + ptr2 = matrix_adr( L_Q16, j + 1, 0, M ); + for( i = j + 1; i < M; i++ ) { + tmp_32 = 0; + for( k = 0; k < j; k++ ) { + tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */ + } + tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */ + + /* tmp_32 / D_Q0[j] : Divide to Q16 */ + matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), + silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); + + /* go to next column */ + ptr2 += M; + } + } + } + + silk_assert( status == 0 ); +} + +static OPUS_INLINE void silk_LS_divide_Q16_FIX( + opus_int32 T[], /* I/O Numenator vector */ + inv_D_t *inv_D, /* I 1 / D vector */ + opus_int M /* I dimension */ +) +{ + opus_int i; + opus_int32 tmp_32; + opus_int32 one_div_diag_Q36, one_div_diag_Q48; + + for( i = 0; i < M; i++ ) { + one_div_diag_Q36 = inv_D[ i ].Q36_part; + one_div_diag_Q48 = inv_D[ i ].Q48_part; + + tmp_32 = T[ i ]; + T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); + } +} + +/* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ +static OPUS_INLINE void silk_LS_SolveFirst_FIX( + const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ + opus_int M, /* I Dim of Matrix equation */ + const opus_int32 *b, /* I b Vector */ + opus_int32 *x_Q16 /* O x Vector */ +) +{ + opus_int i, j; + const opus_int32 *ptr32; + opus_int32 tmp_32; + + for( i = 0; i < M; i++ ) { + ptr32 = matrix_adr( L_Q16, i, 0, M ); + tmp_32 = 0; + for( j = 0; j < i; j++ ) { + tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] ); + } + x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); + } +} + +/* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ +static OPUS_INLINE void silk_LS_SolveLast_FIX( + const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ + const opus_int M, /* I Dim of Matrix equation */ + const opus_int32 *b, /* I b Vector */ + opus_int32 *x_Q16 /* O x Vector */ +) +{ + opus_int i, j; + const opus_int32 *ptr32; + opus_int32 tmp_32; + + for( i = M - 1; i >= 0; i-- ) { + ptr32 = matrix_adr( L_Q16, 0, i, M ); + tmp_32 = 0; + for( j = M - 1; j > i; j-- ) { + tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j ] ); + } + x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); + } +} |