summaryrefslogtreecommitdiffstats
path: root/media/libjpeg/simd/jchuff-sse2.asm
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /media/libjpeg/simd/jchuff-sse2.asm
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libjpeg/simd/jchuff-sse2.asm')
-rw-r--r--media/libjpeg/simd/jchuff-sse2.asm426
1 files changed, 426 insertions, 0 deletions
diff --git a/media/libjpeg/simd/jchuff-sse2.asm b/media/libjpeg/simd/jchuff-sse2.asm
new file mode 100644
index 000000000..36d1f2db6
--- /dev/null
+++ b/media/libjpeg/simd/jchuff-sse2.asm
@@ -0,0 +1,426 @@
+;
+; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
+;
+; Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
+; Copyright (C) 2015, Matthieu Darbois.
+;
+; Based on the x86 SIMD extension for IJG JPEG library
+; Copyright (C) 1999-2006, MIYASAKA Masaru.
+; For conditions of distribution and use, see copyright notice in jsimdext.inc
+;
+; This file should be assembled with NASM (Netwide Assembler),
+; can *not* be assembled with Microsoft's MASM or any compatible
+; assembler (including Borland's Turbo Assembler).
+; NASM is available from http://nasm.sourceforge.net/ or
+; http://sourceforge.net/project/showfiles.php?group_id=6208
+;
+; This file contains an SSE2 implementation for Huffman coding of one block.
+; The following code is based directly on jchuff.c; see jchuff.c for more
+; details.
+;
+; [TAB8]
+
+%include "jsimdext.inc"
+
+; --------------------------------------------------------------------------
+ SECTION SEG_CONST
+
+ alignz 16
+ global EXTN(jconst_huff_encode_one_block)
+
+EXTN(jconst_huff_encode_one_block):
+
+%include "jpeg_nbits_table.inc"
+
+ alignz 16
+
+; --------------------------------------------------------------------------
+ SECTION SEG_TEXT
+ BITS 32
+
+; These macros perform the same task as the emit_bits() function in the
+; original libjpeg code. In addition to reducing overhead by explicitly
+; inlining the code, additional performance is achieved by taking into
+; account the size of the bit buffer and waiting until it is almost full
+; before emptying it. This mostly benefits 64-bit platforms, since 6
+; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
+
+%macro EMIT_BYTE 0
+ sub put_bits, 8 ; put_bits -= 8;
+ mov edx, put_buffer
+ mov ecx, put_bits
+ shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
+ mov byte [eax], dl ; *buffer++ = c;
+ add eax, 1
+ cmp dl, 0xFF ; need to stuff a zero byte?
+ jne %%.EMIT_BYTE_END
+ mov byte [eax], 0 ; *buffer++ = 0;
+ add eax, 1
+%%.EMIT_BYTE_END:
+%endmacro
+
+%macro PUT_BITS 1
+ add put_bits, ecx ; put_bits += size;
+ shl put_buffer, cl ; put_buffer = (put_buffer << size);
+ or put_buffer, %1
+%endmacro
+
+%macro CHECKBUF15 0
+ cmp put_bits, 16 ; if (put_bits > 31) {
+ jl %%.CHECKBUF15_END
+ mov eax, POINTER [esp+buffer]
+ EMIT_BYTE
+ EMIT_BYTE
+ mov POINTER [esp+buffer], eax
+%%.CHECKBUF15_END:
+%endmacro
+
+%macro EMIT_BITS 1
+ PUT_BITS %1
+ CHECKBUF15
+%endmacro
+
+%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
+ pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128();
+ pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128();
+ pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128();
+ pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128();
+ pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0];
+ pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8];
+ pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16];
+ pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24];
+ pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1];
+ pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9];
+ pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17];
+ pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25];
+ pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2];
+ pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10];
+ pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18];
+ pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26];
+ pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3];
+ pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11];
+ pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19];
+ pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27];
+ pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4];
+ pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12];
+ pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20];
+ pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28];
+ pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5];
+ pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13];
+ pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21];
+ pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29];
+ pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6];
+ pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14];
+ pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22];
+ pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30];
+ pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7];
+ pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15];
+ pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23];
+%if %1 != 32
+ pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31];
+%else
+ pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31];
+%endif
+ pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1);
+ pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1);
+ pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1);
+ pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1);
+ paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg);
+ paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg);
+ paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg);
+ paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg);
+ pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg);
+ pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg);
+ pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg);
+ pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg);
+ pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1);
+ pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1);
+ pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1);
+ pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1);
+ movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
+ movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
+ movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
+ movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
+ movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
+ movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
+ movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
+ movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
+%endmacro
+
+;
+; Encode a single block's worth of coefficients.
+;
+; GLOBAL(JOCTET*)
+; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer,
+; JCOEFPTR block, int last_dc_val,
+; c_derived_tbl *dctbl, c_derived_tbl *actbl)
+;
+
+; eax + 8 = working_state *state
+; eax + 12 = JOCTET *buffer
+; eax + 16 = JCOEFPTR block
+; eax + 20 = int last_dc_val
+; eax + 24 = c_derived_tbl *dctbl
+; eax + 28 = c_derived_tbl *actbl
+
+%define pad 6*SIZEOF_DWORD ; Align to 16 bytes
+%define t1 pad
+%define t2 t1+(DCTSIZE2*SIZEOF_WORD)
+%define block t2+(DCTSIZE2*SIZEOF_WORD)
+%define actbl block+SIZEOF_DWORD
+%define buffer actbl+SIZEOF_DWORD
+%define temp buffer+SIZEOF_DWORD
+%define temp2 temp+SIZEOF_DWORD
+%define temp3 temp2+SIZEOF_DWORD
+%define temp4 temp3+SIZEOF_DWORD
+%define temp5 temp4+SIZEOF_DWORD
+%define gotptr temp5+SIZEOF_DWORD ; void *gotptr
+%define put_buffer ebx
+%define put_bits edi
+
+ align 16
+ global EXTN(jsimd_huff_encode_one_block_sse2)
+
+EXTN(jsimd_huff_encode_one_block_sse2):
+ push ebp
+ mov eax,esp ; eax = original ebp
+ sub esp, byte 4
+ and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
+ mov [esp],eax
+ mov ebp,esp ; ebp = aligned ebp
+ sub esp, temp5+9*SIZEOF_DWORD-pad
+ push ebx
+ push ecx
+; push edx ; need not be preserved
+ push esi
+ push edi
+ push ebp
+
+ mov esi, POINTER [eax+8] ; (working_state *state)
+ mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer;
+ mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits;
+ push esi ; esi is now scratch
+
+ get_GOT edx ; get GOT address
+ movpic POINTER [esp+gotptr], edx ; save GOT address
+
+ mov ecx, POINTER [eax+28]
+ mov edx, POINTER [eax+16]
+ mov esi, POINTER [eax+12]
+ mov POINTER [esp+actbl], ecx
+ mov POINTER [esp+block], edx
+ mov POINTER [esp+buffer], esi
+
+ ; Encode the DC coefficient difference per section F.1.2.1
+ mov esi, POINTER [esp+block] ; block
+ movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val;
+ sub ecx, DWORD [eax+20]
+ mov esi, ecx
+
+ ; This is a well-known technique for obtaining the absolute value
+ ; without a branch. It is derived from an assembly language technique
+ ; presented in "How to Optimize for the Pentium Processors",
+ ; Copyright (c) 1996, 1997 by Agner Fog.
+ mov edx, ecx
+ sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
+ xor ecx, edx ; temp ^= temp3;
+ sub ecx, edx ; temp -= temp3;
+
+ ; For a negative input, want temp2 = bitwise complement of abs(input)
+ ; This code assumes we are on a two's complement machine
+ add esi, edx ; temp2 += temp3;
+ mov DWORD [esp+temp], esi ; backup temp2 in temp
+
+ ; Find the number of bits needed for the magnitude of the coefficient
+ movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp)
+ movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp);
+ mov DWORD [esp+temp2], edx ; backup nbits in temp2
+
+ ; Emit the Huffman-coded symbol for the number of bits
+ mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore
+ mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits];
+ movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits];
+ EMIT_BITS eax ; EMIT_BITS(code, size)
+
+ mov ecx, DWORD [esp+temp2] ; restore nbits
+
+ ; Mask off any extra bits in code
+ mov eax, 1
+ shl eax, cl
+ dec eax
+ and eax, DWORD [esp+temp] ; temp2 &= (((JLONG) 1)<<nbits) - 1;
+
+ ; Emit that number of bits of the value, if positive,
+ ; or the complement of its magnitude, if negative.
+ EMIT_BITS eax ; EMIT_BITS(temp2, nbits)
+
+ ; Prepare data
+ xor ecx, ecx
+ mov esi, POINTER [esp+block]
+ kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \
+ 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \
+ 27, 20, 13, 6, 7, 14, 21, 28, 35, \
+ xmm0, xmm1, xmm2, xmm3
+ kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
+ 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
+ 53, 60, 61, 54, 47, 55, 62, 63, 63, \
+ xmm0, xmm1, xmm2, xmm3
+
+ pxor xmm7, xmm7
+ movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
+ movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
+ movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
+ movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
+ pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
+ pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
+ pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
+ pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
+ packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
+ packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
+ pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
+ pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
+ shl ecx, 16
+ or edx, ecx
+ not edx ; index = ~index;
+
+ lea esi, [esp+t1]
+ mov ebp, POINTER [esp+actbl] ; ebp = actbl
+
+.BLOOP:
+ bsf ecx, edx ; r = __builtin_ctzl(index);
+ jz .ELOOP
+ lea esi, [esi+ecx*2] ; k += r;
+ shr edx, cl ; index >>= r;
+ mov DWORD [esp+temp3], edx
+.BRLOOP:
+ cmp ecx, 16 ; while (r > 15) {
+ jl .ERLOOP
+ sub ecx, 16 ; r -= 16;
+ mov DWORD [esp+temp], ecx
+ mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
+ movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
+ EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
+ mov ecx, DWORD [esp+temp]
+ jmp .BRLOOP
+.ERLOOP:
+ movsx eax, word [esi] ; temp = t1[k];
+ movpic edx, POINTER [esp+gotptr] ; load GOT address (edx)
+ movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp);
+ mov DWORD [esp+temp2], eax
+ ; Emit Huffman symbol for run length / number of bits
+ shl ecx, 4 ; temp3 = (r << 4) + nbits;
+ add ecx, eax
+ mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
+ movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
+ EMIT_BITS eax
+
+ movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
+ ; Mask off any extra bits in code
+ mov ecx, DWORD [esp+temp2]
+ mov eax, 1
+ shl eax, cl
+ dec eax
+ and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
+ EMIT_BITS eax ; PUT_BITS(temp2, nbits)
+ mov edx, DWORD [esp+temp3]
+ add esi, 2 ; ++k;
+ shr edx, 1 ; index >>= 1;
+
+ jmp .BLOOP
+.ELOOP:
+ movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
+ movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
+ movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
+ movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
+ pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
+ pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
+ pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
+ pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
+ packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
+ packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
+ pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
+ pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
+ shl ecx, 16
+ or edx, ecx
+ not edx ; index = ~index;
+
+ lea eax, [esp + t1 + (DCTSIZE2/2) * 2]
+ sub eax, esi
+ shr eax, 1
+ bsf ecx, edx ; r = __builtin_ctzl(index);
+ jz .ELOOP2
+ shr edx, cl ; index >>= r;
+ add ecx, eax
+ lea esi, [esi+ecx*2] ; k += r;
+ mov DWORD [esp+temp3], edx
+ jmp .BRLOOP2
+.BLOOP2:
+ bsf ecx, edx ; r = __builtin_ctzl(index);
+ jz .ELOOP2
+ lea esi, [esi+ecx*2] ; k += r;
+ shr edx, cl ; index >>= r;
+ mov DWORD [esp+temp3], edx
+.BRLOOP2:
+ cmp ecx, 16 ; while (r > 15) {
+ jl .ERLOOP2
+ sub ecx, 16 ; r -= 16;
+ mov DWORD [esp+temp], ecx
+ mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0];
+ movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0];
+ EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0)
+ mov ecx, DWORD [esp+temp]
+ jmp .BRLOOP2
+.ERLOOP2:
+ movsx eax, word [esi] ; temp = t1[k];
+ bsr eax, eax ; nbits = 32 - __builtin_clz(temp);
+ inc eax
+ mov DWORD [esp+temp2], eax
+ ; Emit Huffman symbol for run length / number of bits
+ shl ecx, 4 ; temp3 = (r << 4) + nbits;
+ add ecx, eax
+ mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3];
+ movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3];
+ EMIT_BITS eax
+
+ movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k];
+ ; Mask off any extra bits in code
+ mov ecx, DWORD [esp+temp2]
+ mov eax, 1
+ shl eax, cl
+ dec eax
+ and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1;
+ EMIT_BITS eax ; PUT_BITS(temp2, nbits)
+ mov edx, DWORD [esp+temp3]
+ add esi, 2 ; ++k;
+ shr edx, 1 ; index >>= 1;
+
+ jmp .BLOOP2
+.ELOOP2:
+ ; If the last coef(s) were zero, emit an end-of-block code
+ lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k;
+ cmp edx, esi ; if (r > 0) {
+ je .EFN
+ mov eax, INT [ebp] ; code = actbl->ehufco[0];
+ movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0];
+ EMIT_BITS eax
+.EFN:
+ mov eax, [esp+buffer]
+ pop esi
+ ; Save put_buffer & put_bits
+ mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer;
+ mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits;
+
+ pop ebp
+ pop edi
+ pop esi
+; pop edx ; need not be preserved
+ pop ecx
+ pop ebx
+ mov esp,ebp ; esp <- aligned ebp
+ pop esp ; esp <- original ebp
+ pop ebp
+ ret
+
+; For some reason, the OS X linker does not honor the request to align the
+; segment unless we do this.
+ align 16