summaryrefslogtreecommitdiffstats
path: root/media/libcubeb/tests/test_resampler.cpp
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /media/libcubeb/tests/test_resampler.cpp
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'media/libcubeb/tests/test_resampler.cpp')
-rw-r--r--media/libcubeb/tests/test_resampler.cpp554
1 files changed, 554 insertions, 0 deletions
diff --git a/media/libcubeb/tests/test_resampler.cpp b/media/libcubeb/tests/test_resampler.cpp
new file mode 100644
index 000000000..7e62a3572
--- /dev/null
+++ b/media/libcubeb/tests/test_resampler.cpp
@@ -0,0 +1,554 @@
+/*
+ * Copyright © 2016 Mozilla Foundation
+ *
+ * This program is made available under an ISC-style license. See the
+ * accompanying file LICENSE for details.
+ */
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif // NOMINMAX
+
+#ifdef NDEBUG
+#undef NDEBUG
+#endif
+#include "cubeb_resampler_internal.h"
+#include <assert.h>
+#include <stdio.h>
+#include <algorithm>
+#include <iostream>
+
+/* Windows cmath USE_MATH_DEFINE thing... */
+const float PI = 3.14159265359f;
+
+/* Testing all sample rates is very long, so if THOROUGH_TESTING is not defined,
+ * only part of the test suite is ran. */
+#ifdef THOROUGH_TESTING
+/* Some standard sample rates we're testing with. */
+const uint32_t sample_rates[] = {
+ 8000,
+ 16000,
+ 32000,
+ 44100,
+ 48000,
+ 88200,
+ 96000,
+ 192000
+};
+/* The maximum number of channels we're resampling. */
+const uint32_t max_channels = 2;
+/* The minimum an maximum number of milliseconds we're resampling for. This is
+ * used to simulate the fact that the audio stream is resampled in chunks,
+ * because audio is delivered using callbacks. */
+const uint32_t min_chunks = 10; /* ms */
+const uint32_t max_chunks = 30; /* ms */
+const uint32_t chunk_increment = 1;
+
+#else
+
+const uint32_t sample_rates[] = {
+ 8000,
+ 44100,
+ 48000,
+};
+const uint32_t max_channels = 2;
+const uint32_t min_chunks = 10; /* ms */
+const uint32_t max_chunks = 30; /* ms */
+const uint32_t chunk_increment = 10;
+#endif
+
+#define DUMP_ARRAYS
+#ifdef DUMP_ARRAYS
+/**
+ * Files produced by dump(...) can be converted to .wave files using:
+ *
+ * sox -c <channel_count> -r <rate> -e float -b 32 file.raw file.wav
+ *
+ * for floating-point audio, or:
+ *
+ * sox -c <channel_count> -r <rate> -e unsigned -b 16 file.raw file.wav
+ *
+ * for 16bit integer audio.
+ */
+
+/* Use the correct implementation of fopen, depending on the platform. */
+void fopen_portable(FILE ** f, const char * name, const char * mode)
+{
+#ifdef WIN32
+ fopen_s(f, name, mode);
+#else
+ *f = fopen(name, mode);
+#endif
+}
+
+template<typename T>
+void dump(const char * name, T * frames, size_t count)
+{
+ FILE * file;
+ fopen_portable(&file, name, "wb");
+
+ if (!file) {
+ fprintf(stderr, "error opening %s\n", name);
+ return;
+ }
+
+ if (count != fwrite(frames, sizeof(T), count, file)) {
+ fprintf(stderr, "error writing to %s\n", name);
+ }
+ fclose(file);
+}
+#else
+template<typename T>
+void dump(const char * name, T * frames, size_t count)
+{ }
+#endif
+
+// The more the ratio is far from 1, the more we accept a big error.
+float epsilon_tweak_ratio(float ratio)
+{
+ return ratio >= 1 ? ratio : 1 / ratio;
+}
+
+// Epsilon values for comparing resampled data to expected data.
+// The bigger the resampling ratio is, the more lax we are about errors.
+template<typename T>
+T epsilon(float ratio);
+
+template<>
+float epsilon(float ratio) {
+ return 0.08f * epsilon_tweak_ratio(ratio);
+}
+
+template<>
+int16_t epsilon(float ratio) {
+ return static_cast<int16_t>(10 * epsilon_tweak_ratio(ratio));
+}
+
+void test_delay_lines(uint32_t delay_frames, uint32_t channels, uint32_t chunk_ms)
+{
+ const size_t length_s = 2;
+ const size_t rate = 44100;
+ const size_t length_frames = rate * length_s;
+ delay_line<float> delay(delay_frames, channels);
+ auto_array<float> input;
+ auto_array<float> output;
+ uint32_t chunk_length = channels * chunk_ms * rate / 1000;
+ uint32_t output_offset = 0;
+ uint32_t channel = 0;
+
+ /** Generate diracs every 100 frames, and check they are delayed. */
+ input.push_silence(length_frames * channels);
+ for (uint32_t i = 0; i < input.length() - 1; i+=100) {
+ input.data()[i + channel] = 0.5;
+ channel = (channel + 1) % channels;
+ }
+ dump("input.raw", input.data(), input.length());
+ while(input.length()) {
+ uint32_t to_pop = std::min<uint32_t>(input.length(), chunk_length * channels);
+ float * in = delay.input_buffer(to_pop / channels);
+ input.pop(in, to_pop);
+ delay.written(to_pop / channels);
+ output.push_silence(to_pop);
+ delay.output(output.data() + output_offset, to_pop / channels);
+ output_offset += to_pop;
+ }
+
+ // Check the diracs have been shifted by `delay_frames` frames.
+ for (uint32_t i = 0; i < output.length() - delay_frames * channels + 1; i+=100) {
+ assert(output.data()[i + channel + delay_frames * channels] == 0.5);
+ channel = (channel + 1) % channels;
+ }
+
+ dump("output.raw", output.data(), output.length());
+}
+/**
+ * This takes sine waves with a certain `channels` count, `source_rate`, and
+ * resample them, by chunk of `chunk_duration` milliseconds, to `target_rate`.
+ * Then a sample-wise comparison is performed against a sine wave generated at
+ * the correct rate.
+ */
+template<typename T>
+void test_resampler_one_way(uint32_t channels, uint32_t source_rate, uint32_t target_rate, float chunk_duration)
+{
+ size_t chunk_duration_in_source_frames = static_cast<uint32_t>(ceil(chunk_duration * source_rate / 1000.));
+ float resampling_ratio = static_cast<float>(source_rate) / target_rate;
+ cubeb_resampler_speex_one_way<T> resampler(channels, source_rate, target_rate, 3);
+ auto_array<T> source(channels * source_rate * 10);
+ auto_array<T> destination(channels * target_rate * 10);
+ auto_array<T> expected(channels * target_rate * 10);
+ uint32_t phase_index = 0;
+ uint32_t offset = 0;
+ const uint32_t buf_len = 2; /* seconds */
+
+ // generate a sine wave in each channel, at the source sample rate
+ source.push_silence(channels * source_rate * buf_len);
+ while(offset != source.length()) {
+ float p = phase_index++ / static_cast<float>(source_rate);
+ for (uint32_t j = 0; j < channels; j++) {
+ source.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
+ }
+ }
+
+ dump("input.raw", source.data(), source.length());
+
+ expected.push_silence(channels * target_rate * buf_len);
+ // generate a sine wave in each channel, at the target sample rate.
+ // Insert silent samples at the beginning to account for the resampler latency.
+ offset = resampler.latency() * channels;
+ for (uint32_t i = 0; i < offset; i++) {
+ expected.data()[i] = 0.0f;
+ }
+ phase_index = 0;
+ while (offset != expected.length()) {
+ float p = phase_index++ / static_cast<float>(target_rate);
+ for (uint32_t j = 0; j < channels; j++) {
+ expected.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
+ }
+ }
+
+ dump("expected.raw", expected.data(), expected.length());
+
+ // resample by chunk
+ uint32_t write_offset = 0;
+ destination.push_silence(channels * target_rate * buf_len);
+ while (write_offset < destination.length())
+ {
+ size_t output_frames = static_cast<uint32_t>(floor(chunk_duration_in_source_frames / resampling_ratio));
+ uint32_t input_frames = resampler.input_needed_for_output(output_frames);
+ resampler.input(source.data(), input_frames);
+ source.pop(nullptr, input_frames * channels);
+ resampler.output(destination.data() + write_offset,
+ std::min(output_frames, (destination.length() - write_offset) / channels));
+ write_offset += output_frames * channels;
+ }
+
+ dump("output.raw", destination.data(), expected.length());
+
+ // compare, taking the latency into account
+ bool fuzzy_equal = true;
+ for (uint32_t i = resampler.latency() + 1; i < expected.length(); i++) {
+ float diff = fabs(expected.data()[i] - destination.data()[i]);
+ if (diff > epsilon<T>(resampling_ratio)) {
+ fprintf(stderr, "divergence at %d: %f %f (delta %f)\n", i, expected.data()[i], destination.data()[i], diff);
+ fuzzy_equal = false;
+ }
+ }
+ assert(fuzzy_equal);
+}
+
+template<typename T>
+cubeb_sample_format cubeb_format();
+
+template<>
+cubeb_sample_format cubeb_format<float>()
+{
+ return CUBEB_SAMPLE_FLOAT32NE;
+}
+
+template<>
+cubeb_sample_format cubeb_format<short>()
+{
+ return CUBEB_SAMPLE_S16NE;
+}
+
+struct osc_state {
+ osc_state()
+ : input_phase_index(0)
+ , output_phase_index(0)
+ , output_offset(0)
+ , input_channels(0)
+ , output_channels(0)
+ {}
+ uint32_t input_phase_index;
+ uint32_t max_output_phase_index;
+ uint32_t output_phase_index;
+ uint32_t output_offset;
+ uint32_t input_channels;
+ uint32_t output_channels;
+ uint32_t output_rate;
+ uint32_t target_rate;
+ auto_array<float> input;
+ auto_array<float> output;
+};
+
+uint32_t fill_with_sine(float * buf, uint32_t rate, uint32_t channels,
+ uint32_t frames, uint32_t initial_phase)
+{
+ uint32_t offset = 0;
+ for (uint32_t i = 0; i < frames; i++) {
+ float p = initial_phase++ / static_cast<float>(rate);
+ for (uint32_t j = 0; j < channels; j++) {
+ buf[offset++] = 0.5 * sin(440. * 2 * PI * p);
+ }
+ }
+ return initial_phase;
+}
+
+long data_cb(cubeb_stream * /*stm*/, void * user_ptr,
+ const void * input_buffer, void * output_buffer, long frame_count)
+{
+ osc_state * state = reinterpret_cast<osc_state*>(user_ptr);
+ const float * in = reinterpret_cast<const float*>(input_buffer);
+ float * out = reinterpret_cast<float*>(output_buffer);
+
+
+ state->input.push(in, frame_count * state->input_channels);
+
+ /* Check how much output frames we need to write */
+ uint32_t remaining = state->max_output_phase_index - state->output_phase_index;
+ uint32_t to_write = std::min<uint32_t>(remaining, frame_count);
+ state->output_phase_index = fill_with_sine(out,
+ state->target_rate,
+ state->output_channels,
+ to_write,
+ state->output_phase_index);
+
+ return to_write;
+}
+
+template<typename T>
+bool array_fuzzy_equal(const auto_array<T>& lhs, const auto_array<T>& rhs, T epsi)
+{
+ uint32_t len = std::min(lhs.length(), rhs.length());
+
+ for (uint32_t i = 0; i < len; i++) {
+ if (fabs(lhs.at(i) - rhs.at(i)) > epsi) {
+ std::cout << "not fuzzy equal at index: " << i
+ << " lhs: " << lhs.at(i) << " rhs: " << rhs.at(i)
+ << " delta: " << fabs(lhs.at(i) - rhs.at(i))
+ << " epsilon: "<< epsi << std::endl;
+ return false;
+ }
+ }
+ return true;
+}
+
+template<typename T>
+void test_resampler_duplex(uint32_t input_channels, uint32_t output_channels,
+ uint32_t input_rate, uint32_t output_rate,
+ uint32_t target_rate, float chunk_duration)
+{
+ cubeb_stream_params input_params;
+ cubeb_stream_params output_params;
+ osc_state state;
+
+ input_params.format = output_params.format = cubeb_format<T>();
+ state.input_channels = input_params.channels = input_channels;
+ state.output_channels = output_params.channels = output_channels;
+ input_params.rate = input_rate;
+ state.output_rate = output_params.rate = output_rate;
+ state.target_rate = target_rate;
+ long got;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params, target_rate,
+ data_cb, (void*)&state, CUBEB_RESAMPLER_QUALITY_VOIP);
+
+ long latency = cubeb_resampler_latency(resampler);
+
+ const uint32_t duration_s = 2;
+ int32_t duration_frames = duration_s * target_rate;
+ uint32_t input_array_frame_count = ceil(chunk_duration * input_rate / 1000) + ceilf(static_cast<float>(input_rate) / target_rate) * 2;
+ uint32_t output_array_frame_count = chunk_duration * output_rate / 1000;
+ auto_array<float> input_buffer(input_channels * input_array_frame_count);
+ auto_array<float> output_buffer(output_channels * output_array_frame_count);
+ auto_array<float> expected_resampled_input(input_channels * duration_frames);
+ auto_array<float> expected_resampled_output(output_channels * output_rate * duration_s);
+
+ state.max_output_phase_index = duration_s * target_rate;
+
+ expected_resampled_input.push_silence(input_channels * duration_frames);
+ expected_resampled_output.push_silence(output_channels * output_rate * duration_s);
+
+ /* expected output is a 440Hz sine wave at 16kHz */
+ fill_with_sine(expected_resampled_input.data() + latency,
+ target_rate, input_channels, duration_frames - latency, 0);
+ /* expected output is a 440Hz sine wave at 32kHz */
+ fill_with_sine(expected_resampled_output.data() + latency,
+ output_rate, output_channels, output_rate * duration_s - latency, 0);
+
+
+ while (state.output_phase_index != state.max_output_phase_index) {
+ uint32_t leftover_samples = input_buffer.length() * input_channels;
+ input_buffer.reserve(input_array_frame_count);
+ state.input_phase_index = fill_with_sine(input_buffer.data() + leftover_samples,
+ input_rate,
+ input_channels,
+ input_array_frame_count - leftover_samples,
+ state.input_phase_index);
+ long input_consumed = input_array_frame_count;
+ input_buffer.set_length(input_array_frame_count);
+
+ got = cubeb_resampler_fill(resampler,
+ input_buffer.data(), &input_consumed,
+ output_buffer.data(), output_array_frame_count);
+
+ /* handle leftover input */
+ if (input_array_frame_count != static_cast<uint32_t>(input_consumed)) {
+ input_buffer.pop(nullptr, input_consumed * input_channels);
+ } else {
+ input_buffer.clear();
+ }
+
+ state.output.push(output_buffer.data(), got * state.output_channels);
+ }
+
+ dump("input_expected.raw", expected_resampled_input.data(), expected_resampled_input.length());
+ dump("output_expected.raw", expected_resampled_output.data(), expected_resampled_output.length());
+ dump("input.raw", state.input.data(), state.input.length());
+ dump("output.raw", state.output.data(), state.output.length());
+
+ assert(array_fuzzy_equal(state.input, expected_resampled_input, epsilon<T>(input_rate/target_rate)));
+ assert(array_fuzzy_equal(state.output, expected_resampled_output, epsilon<T>(output_rate/target_rate)));
+
+ cubeb_resampler_destroy(resampler);
+}
+
+#define array_size(x) (sizeof(x) / sizeof(x[0]))
+
+void test_resamplers_one_way()
+{
+ /* Test one way resamplers */
+ for (uint32_t channels = 1; channels <= max_channels; channels++) {
+ for (uint32_t source_rate = 0; source_rate < array_size(sample_rates); source_rate++) {
+ for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) {
+ for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) {
+ printf("one_way: channels: %d, source_rate: %d, dest_rate: %d, chunk_duration: %d\n",
+ channels, sample_rates[source_rate], sample_rates[dest_rate], chunk_duration);
+ test_resampler_one_way<float>(channels, sample_rates[source_rate],
+ sample_rates[dest_rate], chunk_duration);
+ }
+ }
+ }
+ }
+}
+
+void test_resamplers_duplex()
+{
+ /* Test duplex resamplers */
+ for (uint32_t input_channels = 1; input_channels <= max_channels; input_channels++) {
+ for (uint32_t output_channels = 1; output_channels <= max_channels; output_channels++) {
+ for (uint32_t source_rate_input = 0; source_rate_input < array_size(sample_rates); source_rate_input++) {
+ for (uint32_t source_rate_output = 0; source_rate_output < array_size(sample_rates); source_rate_output++) {
+ for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) {
+ for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) {
+ printf("input channels:%d output_channels:%d input_rate:%d "
+ "output_rate:%d target_rate:%d chunk_ms:%d\n",
+ input_channels, output_channels,
+ sample_rates[source_rate_input],
+ sample_rates[source_rate_output],
+ sample_rates[dest_rate],
+ chunk_duration);
+ test_resampler_duplex<float>(input_channels, output_channels,
+ sample_rates[source_rate_input],
+ sample_rates[source_rate_output],
+ sample_rates[dest_rate],
+ chunk_duration);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void test_delay_line()
+{
+ for (uint32_t channel = 1; channel <= 2; channel++) {
+ for (uint32_t delay_frames = 4; delay_frames <= 40; delay_frames+=chunk_increment) {
+ for (uint32_t chunk_size = 10; chunk_size <= 30; chunk_size++) {
+ printf("channel: %d, delay_frames: %d, chunk_size: %d\n",
+ channel, delay_frames, chunk_size);
+ test_delay_lines(delay_frames, channel, chunk_size);
+ }
+ }
+ }
+}
+
+long test_output_only_noop_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/,
+ const void * input_buffer,
+ void * output_buffer, long frame_count)
+{
+ assert(output_buffer);
+ assert(!input_buffer);
+ return frame_count;
+}
+
+void test_output_only_noop()
+{
+ cubeb_stream_params output_params;
+ int target_rate;
+
+ output_params.rate = 44100;
+ output_params.channels = 1;
+ output_params.format = CUBEB_SAMPLE_FLOAT32NE;
+ target_rate = output_params.rate;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate,
+ test_output_only_noop_data_cb, nullptr,
+ CUBEB_RESAMPLER_QUALITY_VOIP);
+
+ const long out_frames = 128;
+ float out_buffer[out_frames];
+ long got;
+
+ got = cubeb_resampler_fill(resampler, nullptr, nullptr,
+ out_buffer, out_frames);
+
+ assert(got == out_frames);
+
+ cubeb_resampler_destroy(resampler);
+}
+
+long test_drain_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/,
+ const void * input_buffer,
+ void * output_buffer, long frame_count)
+{
+ assert(output_buffer);
+ assert(!input_buffer);
+ return frame_count - 10;
+}
+
+void test_resampler_drain()
+{
+ cubeb_stream_params output_params;
+ int target_rate;
+
+ output_params.rate = 44100;
+ output_params.channels = 1;
+ output_params.format = CUBEB_SAMPLE_FLOAT32NE;
+ target_rate = 48000;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate,
+ test_drain_data_cb, nullptr,
+ CUBEB_RESAMPLER_QUALITY_VOIP);
+
+ const long out_frames = 128;
+ float out_buffer[out_frames];
+ long got;
+
+ do {
+ got = cubeb_resampler_fill(resampler, nullptr, nullptr,
+ out_buffer, out_frames);
+ } while (got == out_frames);
+
+ /* If the above is not an infinite loop, the drain was a success, just mark
+ * this test as such. */
+ assert(true);
+
+ cubeb_resampler_destroy(resampler);
+}
+
+int main()
+{
+ test_resamplers_one_way();
+ test_delay_line();
+ // This is disabled because the latency estimation in the resampler code is
+ // slightly off so we can generate expected vectors.
+ // test_resamplers_duplex();
+ test_output_only_noop();
+ test_resampler_drain();
+
+ return 0;
+}