summaryrefslogtreecommitdiffstats
path: root/media/libaom/src/av1/encoder/rdopt.c
diff options
context:
space:
mode:
authorMatt A. Tobin <email@mattatobin.com>2020-04-07 23:30:51 -0400
committerwolfbeast <mcwerewolf@wolfbeast.com>2020-04-14 13:26:42 +0200
commit277f2116b6660e9bbe7f5d67524be57eceb49b8b (patch)
tree4595f7cc71418f71b9a97dfaeb03a30aa60f336a /media/libaom/src/av1/encoder/rdopt.c
parentd270404436f6e84ffa3b92af537ac721bf10d66e (diff)
downloadUXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.tar
UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.tar.gz
UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.tar.lz
UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.tar.xz
UXP-277f2116b6660e9bbe7f5d67524be57eceb49b8b.zip
Move aom source to a sub-directory under media/libaom
There is no damned reason to treat this differently than any other media lib given its license and there never was.
Diffstat (limited to 'media/libaom/src/av1/encoder/rdopt.c')
-rw-r--r--media/libaom/src/av1/encoder/rdopt.c12199
1 files changed, 12199 insertions, 0 deletions
diff --git a/media/libaom/src/av1/encoder/rdopt.c b/media/libaom/src/av1/encoder/rdopt.c
new file mode 100644
index 000000000..c2d15534f
--- /dev/null
+++ b/media/libaom/src/av1/encoder/rdopt.c
@@ -0,0 +1,12199 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <assert.h>
+#include <math.h>
+
+#include "config/aom_dsp_rtcd.h"
+#include "config/av1_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_dsp/blend.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/aom_timer.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+
+#include "av1/common/cfl.h"
+#include "av1/common/common.h"
+#include "av1/common/common_data.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/idct.h"
+#include "av1/common/mvref_common.h"
+#include "av1/common/obmc.h"
+#include "av1/common/pred_common.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h"
+#include "av1/common/reconintra.h"
+#include "av1/common/scan.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/txb_common.h"
+#include "av1/common/warped_motion.h"
+
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/av1_quantize.h"
+#include "av1/encoder/cost.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/encodetxb.h"
+#include "av1/encoder/hybrid_fwd_txfm.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/ml.h"
+#include "av1/encoder/palette.h"
+#include "av1/encoder/pustats.h"
+#include "av1/encoder/random.h"
+#include "av1/encoder/ratectrl.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/rdopt.h"
+#include "av1/encoder/reconinter_enc.h"
+#include "av1/encoder/tokenize.h"
+#include "av1/encoder/tx_prune_model_weights.h"
+
+typedef void (*model_rd_for_sb_type)(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist);
+typedef void (*model_rd_from_sse_type)(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x,
+ BLOCK_SIZE plane_bsize, int plane,
+ int64_t sse, int num_samples, int *rate,
+ int64_t *dist);
+
+static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
+ int plane_to, int mi_row, int mi_col,
+ int *out_rate_sum, int64_t *out_dist_sum,
+ int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse,
+ int64_t *plane_dist);
+static void model_rd_for_sb_with_curvfit(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist);
+static void model_rd_for_sb_with_surffit(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist);
+static void model_rd_for_sb_with_dnn(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist);
+static void model_rd_for_sb_with_fullrdy(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist);
+static void model_rd_from_sse(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x, BLOCK_SIZE plane_bsize,
+ int plane, int64_t sse, int num_samples,
+ int *rate, int64_t *dist);
+static void model_rd_with_dnn(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x, BLOCK_SIZE plane_bsize,
+ int plane, int64_t sse, int num_samples,
+ int *rate, int64_t *dist);
+static void model_rd_with_curvfit(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x,
+ BLOCK_SIZE plane_bsize, int plane,
+ int64_t sse, int num_samples, int *rate,
+ int64_t *dist);
+static void model_rd_with_surffit(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x,
+ BLOCK_SIZE plane_bsize, int plane,
+ int64_t sse, int num_samples, int *rate,
+ int64_t *dist);
+
+typedef enum {
+ MODELRD_LEGACY,
+ MODELRD_CURVFIT,
+ MODELRD_SUFFIT,
+ MODELRD_DNN,
+ MODELRD_FULLRDY,
+ MODELRD_TYPES
+} ModelRdType;
+
+static model_rd_for_sb_type model_rd_sb_fn[MODELRD_TYPES] = {
+ model_rd_for_sb, model_rd_for_sb_with_curvfit, model_rd_for_sb_with_surffit,
+ model_rd_for_sb_with_dnn, model_rd_for_sb_with_fullrdy
+};
+
+static model_rd_from_sse_type model_rd_sse_fn[MODELRD_TYPES] = {
+ model_rd_from_sse, model_rd_with_curvfit, model_rd_with_surffit,
+ model_rd_with_dnn, NULL
+};
+
+// 0: Legacy model
+// 1: Curve fit model
+// 2: Surface fit model
+// 3: DNN regression model
+// 4: Full rd model
+#define MODELRD_TYPE_INTERP_FILTER 1
+#define MODELRD_TYPE_TX_SEARCH_PRUNE 2
+#define MODELRD_TYPE_MASKED_COMPOUND 1
+#define MODELRD_TYPE_INTERINTRA 1
+#define MODELRD_TYPE_INTRA 1
+#define MODELRD_TYPE_JNT_COMPOUND 1
+
+#define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS)
+static const InterpFilters filter_sets[DUAL_FILTER_SET_SIZE] = {
+ 0x00000000, 0x00010000, 0x00020000, // y = 0
+ 0x00000001, 0x00010001, 0x00020001, // y = 1
+ 0x00000002, 0x00010002, 0x00020002, // y = 2
+};
+
+#define SECOND_REF_FRAME_MASK \
+ ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | \
+ (1 << GOLDEN_FRAME) | (1 << LAST2_FRAME) | 0x01)
+
+#define ANGLE_SKIP_THRESH 10
+
+static const double ADST_FLIP_SVM[8] = {
+ /* vertical */
+ -6.6623, -2.8062, -3.2531, 3.1671,
+ /* horizontal */
+ -7.7051, -3.2234, -3.6193, 3.4533
+};
+
+typedef struct {
+ PREDICTION_MODE mode;
+ MV_REFERENCE_FRAME ref_frame[2];
+} MODE_DEFINITION;
+
+typedef struct {
+ MV_REFERENCE_FRAME ref_frame[2];
+} REF_DEFINITION;
+
+typedef enum {
+ FTXS_NONE = 0,
+ FTXS_DCT_AND_1D_DCT_ONLY = 1 << 0,
+ FTXS_DISABLE_TRELLIS_OPT = 1 << 1,
+ FTXS_USE_TRANSFORM_DOMAIN = 1 << 2
+} FAST_TX_SEARCH_MODE;
+
+static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, int64_t ref_best_rd);
+
+static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int64_t non_skip_ref_best_rd,
+ int64_t skip_ref_best_rd,
+ FAST_TX_SEARCH_MODE ftxs_mode);
+
+struct rdcost_block_args {
+ const AV1_COMP *cpi;
+ MACROBLOCK *x;
+ ENTROPY_CONTEXT t_above[MAX_MIB_SIZE];
+ ENTROPY_CONTEXT t_left[MAX_MIB_SIZE];
+ RD_STATS rd_stats;
+ int64_t this_rd;
+ int64_t best_rd;
+ int exit_early;
+ int incomplete_exit;
+ int use_fast_coef_costing;
+ FAST_TX_SEARCH_MODE ftxs_mode;
+};
+
+#define LAST_NEW_MV_INDEX 6
+static const MODE_DEFINITION av1_mode_order[MAX_MODES] = {
+ { NEARESTMV, { LAST_FRAME, NONE_FRAME } },
+ { NEARESTMV, { LAST2_FRAME, NONE_FRAME } },
+ { NEARESTMV, { LAST3_FRAME, NONE_FRAME } },
+ { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } },
+ { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } },
+ { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } },
+ { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } },
+
+ { NEWMV, { LAST_FRAME, NONE_FRAME } },
+ { NEWMV, { LAST2_FRAME, NONE_FRAME } },
+ { NEWMV, { LAST3_FRAME, NONE_FRAME } },
+ { NEWMV, { BWDREF_FRAME, NONE_FRAME } },
+ { NEWMV, { ALTREF2_FRAME, NONE_FRAME } },
+ { NEWMV, { ALTREF_FRAME, NONE_FRAME } },
+ { NEWMV, { GOLDEN_FRAME, NONE_FRAME } },
+
+ { NEARMV, { LAST_FRAME, NONE_FRAME } },
+ { NEARMV, { LAST2_FRAME, NONE_FRAME } },
+ { NEARMV, { LAST3_FRAME, NONE_FRAME } },
+ { NEARMV, { BWDREF_FRAME, NONE_FRAME } },
+ { NEARMV, { ALTREF2_FRAME, NONE_FRAME } },
+ { NEARMV, { ALTREF_FRAME, NONE_FRAME } },
+ { NEARMV, { GOLDEN_FRAME, NONE_FRAME } },
+
+ { GLOBALMV, { LAST_FRAME, NONE_FRAME } },
+ { GLOBALMV, { LAST2_FRAME, NONE_FRAME } },
+ { GLOBALMV, { LAST3_FRAME, NONE_FRAME } },
+ { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } },
+ { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } },
+ { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } },
+ { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } },
+
+ // TODO(zoeliu): May need to reconsider the order on the modes to check
+
+ { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
+ { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
+ { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
+ { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
+ { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } },
+ { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } },
+ { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } },
+ { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
+
+ { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } },
+ { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } },
+ { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } },
+ { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } },
+
+ { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
+ { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
+ { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
+ { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
+ { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } },
+
+ { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
+ { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
+ { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
+ { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
+ { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } },
+
+ { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
+ { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
+ { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
+ { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
+ { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } },
+
+ { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+ { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+ { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+ { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+ { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+ { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } },
+
+ { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
+ { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
+ { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
+ { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
+ { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
+ { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } },
+
+ { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
+ { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
+ { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
+ { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
+ { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
+ { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } },
+
+ { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
+ { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
+ { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
+ { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
+ { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
+ { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } },
+
+ { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
+ { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
+ { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
+ { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
+ { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
+ { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
+ { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } },
+
+ { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } },
+ { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } },
+ { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
+ { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } },
+ { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
+ { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } },
+
+ { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } },
+ { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } },
+ { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
+ { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } },
+ { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
+ { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } },
+
+ { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } },
+ { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } },
+ { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
+ { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } },
+ { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
+ { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } },
+
+ { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
+ { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
+ { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
+ { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
+ { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
+ { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
+ { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
+
+ { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } },
+ { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } },
+ { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } },
+ { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } },
+ { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } },
+ { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } },
+
+ { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } },
+ { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } },
+ { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } },
+ { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } },
+ { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } },
+ { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } },
+
+ { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } },
+ { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } },
+ { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
+ { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } },
+ { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
+ { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
+ { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } },
+
+ { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } },
+ { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } },
+ { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
+ { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } },
+ { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
+ { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
+ { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } },
+
+ // intra modes
+ { DC_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { H_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { V_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { D135_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { D203_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { D157_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { D67_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { D113_PRED, { INTRA_FRAME, NONE_FRAME } },
+ { D45_PRED, { INTRA_FRAME, NONE_FRAME } },
+};
+
+static const int16_t intra_to_mode_idx[INTRA_MODE_NUM] = {
+ 7, // DC_PRED,
+ 134, // V_PRED,
+ 133, // H_PRED,
+ 140, // D45_PRED,
+ 135, // D135_PRED,
+ 139, // D113_PRED,
+ 137, // D157_PRED,
+ 136, // D203_PRED,
+ 138, // D67_PRED,
+ 46, // SMOOTH_PRED,
+ 47, // SMOOTH_V_PRED,
+ 48, // SMOOTH_H_PRED,
+ 45, // PAETH_PRED,
+};
+
+/* clang-format off */
+static const int16_t single_inter_to_mode_idx[SINGLE_INTER_MODE_NUM]
+ [REF_FRAMES] = {
+ // NEARESTMV,
+ { -1, 0, 1, 2, 6, 3, 4, 5, },
+ // NEARMV,
+ { -1, 15, 16, 17, 21, 18, 19, 20, },
+ // GLOBALMV,
+ { -1, 22, 23, 24, 27, 25, 26, 28, },
+ // NEWMV,
+ { -1, 8, 9, 10, 14, 11, 12, 13, },
+};
+/* clang-format on */
+
+/* clang-format off */
+static const int16_t comp_inter_to_mode_idx[COMP_INTER_MODE_NUM][REF_FRAMES]
+ [REF_FRAMES] = {
+ // NEAREST_NEARESTMV,
+ {
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, 41, 42, 43, 33, 37, 29, },
+ { -1, -1, -1, -1, -1, 34, 38, 30, },
+ { -1, -1, -1, -1, -1, 35, 39, 31, },
+ { -1, -1, -1, -1, -1, 36, 40, 32, },
+ { -1, -1, -1, -1, -1, -1, -1, 44, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ },
+ // NEAR_NEARMV,
+ {
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, 141, 148, 155, 77, 105, 49, },
+ { -1, -1, -1, -1, -1, 84, 112, 56, },
+ { -1, -1, -1, -1, -1, 91, 119, 63, },
+ { -1, -1, -1, -1, -1, 98, 126, 70, },
+ { -1, -1, -1, -1, -1, -1, -1, 162, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ },
+ // NEAREST_NEWMV,
+ {
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, 143, 150, 157, 79, 107, 51, },
+ { -1, -1, -1, -1, -1, 86, 114, 58, },
+ { -1, -1, -1, -1, -1, 93, 121, 65, },
+ { -1, -1, -1, -1, -1, 100, 128, 72, },
+ { -1, -1, -1, -1, -1, -1, -1, 164, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ },
+ // NEW_NEARESTMV,
+ {
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, 142, 149, 156, 78, 106, 50, },
+ { -1, -1, -1, -1, -1, 85, 113, 57, },
+ { -1, -1, -1, -1, -1, 92, 120, 64, },
+ { -1, -1, -1, -1, -1, 99, 127, 71, },
+ { -1, -1, -1, -1, -1, -1, -1, 163, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ },
+ // NEAR_NEWMV,
+ {
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, 145, 152, 159, 81, 109, 53, },
+ { -1, -1, -1, -1, -1, 88, 116, 60, },
+ { -1, -1, -1, -1, -1, 95, 123, 67, },
+ { -1, -1, -1, -1, -1, 102, 130, 74, },
+ { -1, -1, -1, -1, -1, -1, -1, 166, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ },
+ // NEW_NEARMV,
+ {
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, 144, 151, 158, 80, 108, 52, },
+ { -1, -1, -1, -1, -1, 87, 115, 59, },
+ { -1, -1, -1, -1, -1, 94, 122, 66, },
+ { -1, -1, -1, -1, -1, 101, 129, 73, },
+ { -1, -1, -1, -1, -1, -1, -1, 165, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ },
+ // GLOBAL_GLOBALMV,
+ {
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, 147, 154, 161, 83, 111, 55, },
+ { -1, -1, -1, -1, -1, 90, 118, 62, },
+ { -1, -1, -1, -1, -1, 97, 125, 69, },
+ { -1, -1, -1, -1, -1, 104, 132, 76, },
+ { -1, -1, -1, -1, -1, -1, -1, 168, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ },
+ // NEW_NEWMV,
+ {
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, 146, 153, 160, 82, 110, 54, },
+ { -1, -1, -1, -1, -1, 89, 117, 61, },
+ { -1, -1, -1, -1, -1, 96, 124, 68, },
+ { -1, -1, -1, -1, -1, 103, 131, 75, },
+ { -1, -1, -1, -1, -1, -1, -1, 167, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ { -1, -1, -1, -1, -1, -1, -1, -1, },
+ },
+};
+/* clang-format on */
+
+static int get_prediction_mode_idx(PREDICTION_MODE this_mode,
+ MV_REFERENCE_FRAME ref_frame,
+ MV_REFERENCE_FRAME second_ref_frame) {
+ if (this_mode < INTRA_MODE_END) {
+ assert(ref_frame == INTRA_FRAME);
+ assert(second_ref_frame == NONE_FRAME);
+ return intra_to_mode_idx[this_mode - INTRA_MODE_START];
+ }
+ if (this_mode >= SINGLE_INTER_MODE_START &&
+ this_mode < SINGLE_INTER_MODE_END) {
+ assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME));
+ return single_inter_to_mode_idx[this_mode - SINGLE_INTER_MODE_START]
+ [ref_frame];
+ }
+ if (this_mode >= COMP_INTER_MODE_START && this_mode < COMP_INTER_MODE_END) {
+ assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME));
+ assert((second_ref_frame > INTRA_FRAME) &&
+ (second_ref_frame <= ALTREF_FRAME));
+ return comp_inter_to_mode_idx[this_mode - COMP_INTER_MODE_START][ref_frame]
+ [second_ref_frame];
+ }
+ assert(0);
+ return -1;
+}
+
+static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = {
+ DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED,
+ SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED,
+ D67_PRED, D113_PRED, D45_PRED,
+};
+
+static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = {
+ UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED,
+ UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED,
+ UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED,
+ UV_D113_PRED, UV_D45_PRED,
+};
+
+typedef struct SingleInterModeState {
+ int64_t rd;
+ MV_REFERENCE_FRAME ref_frame;
+ int valid;
+} SingleInterModeState;
+
+typedef struct InterModeSearchState {
+ int64_t best_rd;
+ MB_MODE_INFO best_mbmode;
+ int best_rate_y;
+ int best_rate_uv;
+ int best_mode_skippable;
+ int best_skip2;
+ int best_mode_index;
+ int skip_intra_modes;
+ int num_available_refs;
+ int64_t dist_refs[REF_FRAMES];
+ int dist_order_refs[REF_FRAMES];
+ int64_t mode_threshold[MAX_MODES];
+ PREDICTION_MODE best_intra_mode;
+ int64_t best_intra_rd;
+ int angle_stats_ready;
+ uint8_t directional_mode_skip_mask[INTRA_MODES];
+ unsigned int best_pred_sse;
+ int rate_uv_intra[TX_SIZES_ALL];
+ int rate_uv_tokenonly[TX_SIZES_ALL];
+ int64_t dist_uvs[TX_SIZES_ALL];
+ int skip_uvs[TX_SIZES_ALL];
+ UV_PREDICTION_MODE mode_uv[TX_SIZES_ALL];
+ PALETTE_MODE_INFO pmi_uv[TX_SIZES_ALL];
+ int8_t uv_angle_delta[TX_SIZES_ALL];
+ int64_t best_pred_rd[REFERENCE_MODES];
+ int64_t best_pred_diff[REFERENCE_MODES];
+ // Save a set of single_newmv for each checked ref_mv.
+ int_mv single_newmv[MAX_REF_MV_SERCH][REF_FRAMES];
+ int single_newmv_rate[MAX_REF_MV_SERCH][REF_FRAMES];
+ int single_newmv_valid[MAX_REF_MV_SERCH][REF_FRAMES];
+ int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SERCH][REF_FRAMES];
+ // The rd of simple translation in single inter modes
+ int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SERCH][REF_FRAMES];
+
+ // Single search results by [directions][modes][reference frames]
+ SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
+ int single_state_cnt[2][SINGLE_INTER_MODE_NUM];
+ SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM]
+ [FWD_REFS];
+ int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM];
+
+ MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
+} InterModeSearchState;
+
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+int inter_mode_data_block_idx(BLOCK_SIZE bsize) {
+ if (bsize == BLOCK_8X8) return 1;
+ if (bsize == BLOCK_16X16) return 2;
+ if (bsize == BLOCK_32X32) return 3;
+ return -1;
+}
+
+void av1_inter_mode_data_init(TileDataEnc *tile_data) {
+ for (int i = 0; i < BLOCK_SIZES_ALL; ++i) {
+ InterModeRdModel *md = &tile_data->inter_mode_rd_models[i];
+ md->ready = 0;
+ md->num = 0;
+ md->dist_sum = 0;
+ md->ld_sum = 0;
+ md->sse_sum = 0;
+ md->sse_sse_sum = 0;
+ md->sse_ld_sum = 0;
+ }
+}
+
+static int get_est_rate_dist(TileDataEnc *tile_data, BLOCK_SIZE bsize,
+ int64_t sse, int *est_residue_cost,
+ int64_t *est_dist) {
+ aom_clear_system_state();
+ const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
+ if (md->ready) {
+ const double est_ld = md->a * sse + md->b;
+ if (sse < md->dist_mean) {
+ *est_residue_cost = 0;
+ *est_dist = sse;
+ } else {
+ *est_residue_cost = (int)round((sse - md->dist_mean) / est_ld);
+ *est_dist = (int64_t)round(md->dist_mean);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+static int64_t get_est_rd(TileDataEnc *tile_data, BLOCK_SIZE bsize, int rdmult,
+ int64_t sse, int curr_cost) {
+ int est_residue_cost;
+ int64_t est_dist;
+ if (get_est_rate_dist(tile_data, bsize, sse, &est_residue_cost, &est_dist)) {
+ int rate = est_residue_cost + curr_cost;
+ int64_t est_rd = RDCOST(rdmult, rate, est_dist);
+ return est_rd;
+ }
+ return 0;
+}
+
+void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) {
+ aom_clear_system_state();
+ for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
+ const int block_idx = inter_mode_data_block_idx(bsize);
+ InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
+ if (block_idx == -1) continue;
+ if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) {
+ continue;
+ } else {
+ if (md->ready == 0) {
+ md->dist_mean = md->dist_sum / md->num;
+ md->ld_mean = md->ld_sum / md->num;
+ md->sse_mean = md->sse_sum / md->num;
+ md->sse_sse_mean = md->sse_sse_sum / md->num;
+ md->sse_ld_mean = md->sse_ld_sum / md->num;
+ } else {
+ const double factor = 3;
+ md->dist_mean =
+ (md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1);
+ md->ld_mean =
+ (md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1);
+ md->sse_mean =
+ (md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1);
+ md->sse_sse_mean =
+ (md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) /
+ (factor + 1);
+ md->sse_ld_mean =
+ (md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) /
+ (factor + 1);
+ }
+
+ const double my = md->ld_mean;
+ const double mx = md->sse_mean;
+ const double dx = sqrt(md->sse_sse_mean);
+ const double dxy = md->sse_ld_mean;
+
+ md->a = (dxy - mx * my) / (dx * dx - mx * mx);
+ md->b = my - md->a * mx;
+ md->ready = 1;
+
+ md->num = 0;
+ md->dist_sum = 0;
+ md->ld_sum = 0;
+ md->sse_sum = 0;
+ md->sse_sse_sum = 0;
+ md->sse_ld_sum = 0;
+ }
+ (void)rdmult;
+ }
+}
+
+static void inter_mode_data_push(TileDataEnc *tile_data, BLOCK_SIZE bsize,
+ int64_t sse, int64_t dist, int residue_cost) {
+ if (residue_cost == 0 || sse == dist) return;
+ const int block_idx = inter_mode_data_block_idx(bsize);
+ if (block_idx == -1) return;
+ InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize];
+ if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) {
+ aom_clear_system_state();
+ const double ld = (sse - dist) * 1. / residue_cost;
+ ++rd_model->num;
+ rd_model->dist_sum += dist;
+ rd_model->ld_sum += ld;
+ rd_model->sse_sum += sse;
+ rd_model->sse_sse_sum += sse * sse;
+ rd_model->sse_ld_sum += sse * ld;
+ }
+}
+
+static void inter_modes_info_push(InterModesInfo *inter_modes_info,
+ int mode_rate, int64_t sse, int64_t est_rd,
+ const MB_MODE_INFO *mbmi) {
+ const int num = inter_modes_info->num;
+ assert(num < MAX_INTER_MODES);
+ inter_modes_info->mbmi_arr[num] = *mbmi;
+ inter_modes_info->mode_rate_arr[num] = mode_rate;
+ inter_modes_info->sse_arr[num] = sse;
+ inter_modes_info->est_rd_arr[num] = est_rd;
+ ++inter_modes_info->num;
+}
+
+static int compare_rd_idx_pair(const void *a, const void *b) {
+ if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) {
+ return 0;
+ } else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) {
+ return 1;
+ } else {
+ return -1;
+ }
+}
+
+static void inter_modes_info_sort(const InterModesInfo *inter_modes_info,
+ RdIdxPair *rd_idx_pair_arr) {
+ if (inter_modes_info->num == 0) {
+ return;
+ }
+ for (int i = 0; i < inter_modes_info->num; ++i) {
+ rd_idx_pair_arr[i].idx = i;
+ rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i];
+ }
+ qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]),
+ compare_rd_idx_pair);
+}
+#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS
+
+static INLINE int write_uniform_cost(int n, int v) {
+ const int l = get_unsigned_bits(n);
+ const int m = (1 << l) - n;
+ if (l == 0) return 0;
+ if (v < m)
+ return av1_cost_literal(l - 1);
+ else
+ return av1_cost_literal(l);
+}
+
+// Similar to store_cfl_required(), but for use during the RDO process,
+// where we haven't yet determined whether this block uses CfL.
+static INLINE CFL_ALLOWED_TYPE store_cfl_required_rdo(const AV1_COMMON *cm,
+ const MACROBLOCK *x) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+
+ if (cm->seq_params.monochrome || x->skip_chroma_rd) return CFL_DISALLOWED;
+
+ if (!xd->cfl.is_chroma_reference) {
+ // For non-chroma-reference blocks, we should always store the luma pixels,
+ // in case the corresponding chroma-reference block uses CfL.
+ // Note that this can only happen for block sizes which are <8 on
+ // their shortest side, as otherwise they would be chroma reference
+ // blocks.
+ return CFL_ALLOWED;
+ }
+
+ // For chroma reference blocks, we should store data in the encoder iff we're
+ // allowed to try out CfL.
+ return is_cfl_allowed(xd);
+}
+
+// constants for prune 1 and prune 2 decision boundaries
+#define FAST_EXT_TX_CORR_MID 0.0
+#define FAST_EXT_TX_EDST_MID 0.1
+#define FAST_EXT_TX_CORR_MARGIN 0.5
+#define FAST_EXT_TX_EDST_MARGIN 0.3
+
+static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode);
+
+static unsigned pixel_dist_visible_only(
+ const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src,
+ const int src_stride, const uint8_t *dst, const int dst_stride,
+ const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows,
+ int visible_cols) {
+ unsigned sse;
+
+ if (txb_rows == visible_rows && txb_cols == visible_cols) {
+ cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
+ return sse;
+ }
+ const MACROBLOCKD *xd = &x->e_mbd;
+
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride,
+ visible_cols, visible_rows);
+ return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2);
+ }
+ sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols,
+ visible_rows);
+ return sse;
+}
+
+#if CONFIG_DIST_8X8
+static uint64_t cdef_dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src,
+ int sstride, int coeff_shift) {
+ uint64_t svar = 0;
+ uint64_t dvar = 0;
+ uint64_t sum_s = 0;
+ uint64_t sum_d = 0;
+ uint64_t sum_s2 = 0;
+ uint64_t sum_d2 = 0;
+ uint64_t sum_sd = 0;
+ uint64_t dist = 0;
+
+ int i, j;
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 8; j++) {
+ sum_s += src[i * sstride + j];
+ sum_d += dst[i * dstride + j];
+ sum_s2 += src[i * sstride + j] * src[i * sstride + j];
+ sum_d2 += dst[i * dstride + j] * dst[i * dstride + j];
+ sum_sd += src[i * sstride + j] * dst[i * dstride + j];
+ }
+ }
+ /* Compute the variance -- the calculation cannot go negative. */
+ svar = sum_s2 - ((sum_s * sum_s + 32) >> 6);
+ dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6);
+
+ // Tuning of jm's original dering distortion metric used in CDEF tool,
+ // suggested by jm
+ const uint64_t a = 4;
+ const uint64_t b = 2;
+ const uint64_t c1 = (400 * a << 2 * coeff_shift);
+ const uint64_t c2 = (b * 20000 * a * a << 4 * coeff_shift);
+
+ dist = (uint64_t)floor(.5 + (sum_d2 + sum_s2 - 2 * sum_sd) * .5 *
+ (svar + dvar + c1) /
+ (sqrt(svar * (double)dvar + c2)));
+
+ // Calibrate dist to have similar rate for the same QP with MSE only
+ // distortion (as in master branch)
+ dist = (uint64_t)((float)dist * 0.75);
+
+ return dist;
+}
+
+static int od_compute_var_4x4(uint16_t *x, int stride) {
+ int sum;
+ int s2;
+ int i;
+ sum = 0;
+ s2 = 0;
+ for (i = 0; i < 4; i++) {
+ int j;
+ for (j = 0; j < 4; j++) {
+ int t;
+
+ t = x[i * stride + j];
+ sum += t;
+ s2 += t * t;
+ }
+ }
+
+ return (s2 - (sum * sum >> 4)) >> 4;
+}
+
+/* OD_DIST_LP_MID controls the frequency weighting filter used for computing
+ the distortion. For a value X, the filter is [1 X 1]/(X + 2) and
+ is applied both horizontally and vertically. For X=5, the filter is
+ a good approximation for the OD_QM8_Q4_HVS quantization matrix. */
+#define OD_DIST_LP_MID (5)
+#define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2)
+
+static double od_compute_dist_8x8(int use_activity_masking, uint16_t *x,
+ uint16_t *y, od_coeff *e_lp, int stride) {
+ double sum;
+ int min_var;
+ double mean_var;
+ double var_stat;
+ double activity;
+ double calibration;
+ int i;
+ int j;
+ double vardist;
+
+ vardist = 0;
+
+#if 1
+ min_var = INT_MAX;
+ mean_var = 0;
+ for (i = 0; i < 3; i++) {
+ for (j = 0; j < 3; j++) {
+ int varx;
+ int vary;
+ varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride);
+ vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride);
+ min_var = OD_MINI(min_var, varx);
+ mean_var += 1. / (1 + varx);
+ /* The cast to (double) is to avoid an overflow before the sqrt.*/
+ vardist += varx - 2 * sqrt(varx * (double)vary) + vary;
+ }
+ }
+ /* We use a different variance statistic depending on whether activity
+ masking is used, since the harmonic mean appeared slightly worse with
+ masking off. The calibration constant just ensures that we preserve the
+ rate compared to activity=1. */
+ if (use_activity_masking) {
+ calibration = 1.95;
+ var_stat = 9. / mean_var;
+ } else {
+ calibration = 1.62;
+ var_stat = min_var;
+ }
+ /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the
+ activity masking constant. */
+ activity = calibration * pow(.25 + var_stat, -1. / 6);
+#else
+ activity = 1;
+#endif // 1
+ sum = 0;
+ for (i = 0; i < 8; i++) {
+ for (j = 0; j < 8; j++)
+ sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j];
+ }
+ /* Normalize the filter to unit DC response. */
+ sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM *
+ OD_DIST_LP_NORM);
+ return activity * activity * (sum + vardist);
+}
+
+// Note : Inputs x and y are in a pixel domain
+static double od_compute_dist_common(int activity_masking, uint16_t *x,
+ uint16_t *y, int bsize_w, int bsize_h,
+ int qindex, od_coeff *tmp,
+ od_coeff *e_lp) {
+ int i, j;
+ double sum = 0;
+ const int mid = OD_DIST_LP_MID;
+
+ for (j = 0; j < bsize_w; j++) {
+ e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j];
+ e_lp[(bsize_h - 1) * bsize_w + j] = mid * tmp[(bsize_h - 1) * bsize_w + j] +
+ 2 * tmp[(bsize_h - 2) * bsize_w + j];
+ }
+ for (i = 1; i < bsize_h - 1; i++) {
+ for (j = 0; j < bsize_w; j++) {
+ e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] +
+ tmp[(i - 1) * bsize_w + j] +
+ tmp[(i + 1) * bsize_w + j];
+ }
+ }
+ for (i = 0; i < bsize_h; i += 8) {
+ for (j = 0; j < bsize_w; j += 8) {
+ sum += od_compute_dist_8x8(activity_masking, &x[i * bsize_w + j],
+ &y[i * bsize_w + j], &e_lp[i * bsize_w + j],
+ bsize_w);
+ }
+ }
+ /* Scale according to linear regression against SSE, for 8x8 blocks. */
+ if (activity_masking) {
+ sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) +
+ (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0);
+ } else {
+ sum *= qindex >= 128
+ ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128)
+ : qindex <= 43 ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43)
+ : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43);
+ }
+
+ return sum;
+}
+
+static double od_compute_dist(uint16_t *x, uint16_t *y, int bsize_w,
+ int bsize_h, int qindex) {
+ assert(bsize_w >= 8 && bsize_h >= 8);
+
+ int activity_masking = 0;
+
+ int i, j;
+ DECLARE_ALIGNED(16, od_coeff, e[MAX_SB_SQUARE]);
+ DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]);
+ DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]);
+ for (i = 0; i < bsize_h; i++) {
+ for (j = 0; j < bsize_w; j++) {
+ e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j];
+ }
+ }
+ int mid = OD_DIST_LP_MID;
+ for (i = 0; i < bsize_h; i++) {
+ tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1];
+ tmp[i * bsize_w + bsize_w - 1] =
+ mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2];
+ for (j = 1; j < bsize_w - 1; j++) {
+ tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] +
+ e[i * bsize_w + j + 1];
+ }
+ }
+ return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h,
+ qindex, tmp, e_lp);
+}
+
+static double od_compute_dist_diff(uint16_t *x, int16_t *e, int bsize_w,
+ int bsize_h, int qindex) {
+ assert(bsize_w >= 8 && bsize_h >= 8);
+
+ int activity_masking = 0;
+
+ DECLARE_ALIGNED(16, uint16_t, y[MAX_SB_SQUARE]);
+ DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]);
+ DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]);
+ int i, j;
+ for (i = 0; i < bsize_h; i++) {
+ for (j = 0; j < bsize_w; j++) {
+ y[i * bsize_w + j] = x[i * bsize_w + j] - e[i * bsize_w + j];
+ }
+ }
+ int mid = OD_DIST_LP_MID;
+ for (i = 0; i < bsize_h; i++) {
+ tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1];
+ tmp[i * bsize_w + bsize_w - 1] =
+ mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2];
+ for (j = 1; j < bsize_w - 1; j++) {
+ tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] +
+ e[i * bsize_w + j + 1];
+ }
+ }
+ return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h,
+ qindex, tmp, e_lp);
+}
+
+int64_t av1_dist_8x8(const AV1_COMP *const cpi, const MACROBLOCK *x,
+ const uint8_t *src, int src_stride, const uint8_t *dst,
+ int dst_stride, const BLOCK_SIZE tx_bsize, int bsw,
+ int bsh, int visible_w, int visible_h, int qindex) {
+ int64_t d = 0;
+ int i, j;
+ const MACROBLOCKD *xd = &x->e_mbd;
+
+ DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]);
+ DECLARE_ALIGNED(16, uint16_t, rec[MAX_SB_SQUARE]);
+
+ assert(bsw >= 8);
+ assert(bsh >= 8);
+ assert((bsw & 0x07) == 0);
+ assert((bsh & 0x07) == 0);
+
+ if (x->tune_metric == AOM_TUNE_CDEF_DIST ||
+ x->tune_metric == AOM_TUNE_DAALA_DIST) {
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ for (j = 0; j < bsh; j++)
+ for (i = 0; i < bsw; i++)
+ orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
+
+ if ((bsw == visible_w) && (bsh == visible_h)) {
+ for (j = 0; j < bsh; j++)
+ for (i = 0; i < bsw; i++)
+ rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];
+ } else {
+ for (j = 0; j < visible_h; j++)
+ for (i = 0; i < visible_w; i++)
+ rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];
+
+ if (visible_w < bsw) {
+ for (j = 0; j < bsh; j++)
+ for (i = visible_w; i < bsw; i++)
+ rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
+ }
+
+ if (visible_h < bsh) {
+ for (j = visible_h; j < bsh; j++)
+ for (i = 0; i < bsw; i++)
+ rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
+ }
+ }
+ } else {
+ for (j = 0; j < bsh; j++)
+ for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i];
+
+ if ((bsw == visible_w) && (bsh == visible_h)) {
+ for (j = 0; j < bsh; j++)
+ for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i];
+ } else {
+ for (j = 0; j < visible_h; j++)
+ for (i = 0; i < visible_w; i++)
+ rec[j * bsw + i] = dst[j * dst_stride + i];
+
+ if (visible_w < bsw) {
+ for (j = 0; j < bsh; j++)
+ for (i = visible_w; i < bsw; i++)
+ rec[j * bsw + i] = src[j * src_stride + i];
+ }
+
+ if (visible_h < bsh) {
+ for (j = visible_h; j < bsh; j++)
+ for (i = 0; i < bsw; i++)
+ rec[j * bsw + i] = src[j * src_stride + i];
+ }
+ }
+ }
+ }
+
+ if (x->tune_metric == AOM_TUNE_DAALA_DIST) {
+ d = (int64_t)od_compute_dist(orig, rec, bsw, bsh, qindex);
+ } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) {
+ int coeff_shift = AOMMAX(xd->bd - 8, 0);
+
+ for (i = 0; i < bsh; i += 8) {
+ for (j = 0; j < bsw; j += 8) {
+ d += cdef_dist_8x8_16bit(&rec[i * bsw + j], bsw, &orig[i * bsw + j],
+ bsw, coeff_shift);
+ }
+ }
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ d = ((uint64_t)d) >> 2 * coeff_shift;
+ } else {
+ // Otherwise, MSE by default
+ d = pixel_dist_visible_only(cpi, x, src, src_stride, dst, dst_stride,
+ tx_bsize, bsh, bsw, visible_h, visible_w);
+ }
+
+ return d;
+}
+
+static int64_t dist_8x8_diff(const MACROBLOCK *x, const uint8_t *src,
+ int src_stride, const int16_t *diff,
+ int diff_stride, int bsw, int bsh, int visible_w,
+ int visible_h, int qindex) {
+ int64_t d = 0;
+ int i, j;
+ const MACROBLOCKD *xd = &x->e_mbd;
+
+ DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]);
+ DECLARE_ALIGNED(16, int16_t, diff16[MAX_SB_SQUARE]);
+
+ assert(bsw >= 8);
+ assert(bsh >= 8);
+ assert((bsw & 0x07) == 0);
+ assert((bsh & 0x07) == 0);
+
+ if (x->tune_metric == AOM_TUNE_CDEF_DIST ||
+ x->tune_metric == AOM_TUNE_DAALA_DIST) {
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ for (j = 0; j < bsh; j++)
+ for (i = 0; i < bsw; i++)
+ orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
+ } else {
+ for (j = 0; j < bsh; j++)
+ for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i];
+ }
+
+ if ((bsw == visible_w) && (bsh == visible_h)) {
+ for (j = 0; j < bsh; j++)
+ for (i = 0; i < bsw; i++)
+ diff16[j * bsw + i] = diff[j * diff_stride + i];
+ } else {
+ for (j = 0; j < visible_h; j++)
+ for (i = 0; i < visible_w; i++)
+ diff16[j * bsw + i] = diff[j * diff_stride + i];
+
+ if (visible_w < bsw) {
+ for (j = 0; j < bsh; j++)
+ for (i = visible_w; i < bsw; i++) diff16[j * bsw + i] = 0;
+ }
+
+ if (visible_h < bsh) {
+ for (j = visible_h; j < bsh; j++)
+ for (i = 0; i < bsw; i++) diff16[j * bsw + i] = 0;
+ }
+ }
+ }
+
+ if (x->tune_metric == AOM_TUNE_DAALA_DIST) {
+ d = (int64_t)od_compute_dist_diff(orig, diff16, bsw, bsh, qindex);
+ } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) {
+ int coeff_shift = AOMMAX(xd->bd - 8, 0);
+ DECLARE_ALIGNED(16, uint16_t, dst16[MAX_SB_SQUARE]);
+
+ for (i = 0; i < bsh; i++) {
+ for (j = 0; j < bsw; j++) {
+ dst16[i * bsw + j] = orig[i * bsw + j] - diff16[i * bsw + j];
+ }
+ }
+
+ for (i = 0; i < bsh; i += 8) {
+ for (j = 0; j < bsw; j += 8) {
+ d += cdef_dist_8x8_16bit(&dst16[i * bsw + j], bsw, &orig[i * bsw + j],
+ bsw, coeff_shift);
+ }
+ }
+ // Don't scale 'd' for HBD since it will be done by caller side for diff
+ // input
+ } else {
+ // Otherwise, MSE by default
+ d = aom_sum_squares_2d_i16(diff, diff_stride, visible_w, visible_h);
+ }
+
+ return d;
+}
+#endif // CONFIG_DIST_8X8
+
+static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize,
+ const uint8_t *src, int src_stride,
+ const uint8_t *dst, int dst_stride,
+ int need_4th, double *hordist,
+ double *verdist) {
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+
+ if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) {
+ // Special cases: calculate 'esq' values manually, as we don't have 'vf'
+ // functions for the 16 (very small) sub-blocks of this block.
+ const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3;
+ const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3;
+ assert(bw <= 32);
+ assert(bh <= 32);
+ assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15);
+ if (cpi->common.seq_params.use_highbitdepth) {
+ const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
+ const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
+ for (int i = 0; i < bh; ++i)
+ for (int j = 0; j < bw; ++j) {
+ const int index = (j >> w_shift) + ((i >> h_shift) << 2);
+ esq[index] +=
+ (src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
+ (src16[j + i * src_stride] - dst16[j + i * dst_stride]);
+ }
+ } else {
+ for (int i = 0; i < bh; ++i)
+ for (int j = 0; j < bw; ++j) {
+ const int index = (j >> w_shift) + ((i >> h_shift) << 2);
+ esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
+ (src[j + i * src_stride] - dst[j + i * dst_stride]);
+ }
+ }
+ } else { // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks.
+ const int f_index =
+ (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16;
+ assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL);
+ const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index;
+ assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]);
+ assert(block_size_high[bsize] == 4 * block_size_high[subsize]);
+ cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]);
+ cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
+ &esq[1]);
+ cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
+ &esq[2]);
+ cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
+ dst_stride, &esq[3]);
+ src += bh / 4 * src_stride;
+ dst += bh / 4 * dst_stride;
+
+ cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]);
+ cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
+ &esq[5]);
+ cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
+ &esq[6]);
+ cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
+ dst_stride, &esq[7]);
+ src += bh / 4 * src_stride;
+ dst += bh / 4 * dst_stride;
+
+ cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]);
+ cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
+ &esq[9]);
+ cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
+ &esq[10]);
+ cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
+ dst_stride, &esq[11]);
+ src += bh / 4 * src_stride;
+ dst += bh / 4 * dst_stride;
+
+ cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]);
+ cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
+ &esq[13]);
+ cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
+ &esq[14]);
+ cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
+ dst_stride, &esq[15]);
+ }
+
+ double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] +
+ esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] +
+ esq[12] + esq[13] + esq[14] + esq[15];
+ if (total > 0) {
+ const double e_recip = 1.0 / total;
+ hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip;
+ hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip;
+ hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip;
+ if (need_4th) {
+ hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip;
+ }
+ verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip;
+ verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip;
+ verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip;
+ if (need_4th) {
+ verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip;
+ }
+ } else {
+ hordist[0] = verdist[0] = 0.25;
+ hordist[1] = verdist[1] = 0.25;
+ hordist[2] = verdist[2] = 0.25;
+ if (need_4th) {
+ hordist[3] = verdist[3] = 0.25;
+ }
+ }
+}
+
+static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize,
+ const uint8_t *src, int src_stride,
+ const uint8_t *dst, int dst_stride) {
+ int prune_bitmask = 0;
+ double svm_proj_h = 0, svm_proj_v = 0;
+ double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 };
+ get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride, 0,
+ hdist, vdist);
+
+ svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] +
+ vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3];
+ svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] +
+ hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7];
+ if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
+ prune_bitmask |= 1 << FLIPADST_1D;
+ else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
+ prune_bitmask |= 1 << ADST_1D;
+
+ if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
+ prune_bitmask |= 1 << (FLIPADST_1D + 8);
+ else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
+ prune_bitmask |= 1 << (ADST_1D + 8);
+
+ return prune_bitmask;
+}
+
+static void get_horver_correlation(const int16_t *diff, int stride, int w,
+ int h, double *hcorr, double *vcorr) {
+ // Returns hor/ver correlation coefficient
+ const int num = (h - 1) * (w - 1);
+ double num_r;
+ int i, j;
+ int64_t xy_sum = 0, xz_sum = 0;
+ int64_t x_sum = 0, y_sum = 0, z_sum = 0;
+ int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0;
+ double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n;
+ *hcorr = *vcorr = 1;
+
+ assert(num > 0);
+ num_r = 1.0 / num;
+ for (i = 1; i < h; ++i) {
+ for (j = 1; j < w; ++j) {
+ const int16_t x = diff[i * stride + j];
+ const int16_t y = diff[i * stride + j - 1];
+ const int16_t z = diff[(i - 1) * stride + j];
+ xy_sum += x * y;
+ xz_sum += x * z;
+ x_sum += x;
+ y_sum += y;
+ z_sum += z;
+ x2_sum += x * x;
+ y2_sum += y * y;
+ z2_sum += z * z;
+ }
+ }
+ x_var_n = x2_sum - (x_sum * x_sum) * num_r;
+ y_var_n = y2_sum - (y_sum * y_sum) * num_r;
+ z_var_n = z2_sum - (z_sum * z_sum) * num_r;
+ xy_var_n = xy_sum - (x_sum * y_sum) * num_r;
+ xz_var_n = xz_sum - (x_sum * z_sum) * num_r;
+ if (x_var_n > 0 && y_var_n > 0) {
+ *hcorr = xy_var_n / sqrt(x_var_n * y_var_n);
+ *hcorr = *hcorr < 0 ? 0 : *hcorr;
+ }
+ if (x_var_n > 0 && z_var_n > 0) {
+ *vcorr = xz_var_n / sqrt(x_var_n * z_var_n);
+ *vcorr = *vcorr < 0 ? 0 : *vcorr;
+ }
+}
+
+static int dct_vs_idtx(const int16_t *diff, int stride, int w, int h) {
+ double hcorr, vcorr;
+ int prune_bitmask = 0;
+ get_horver_correlation(diff, stride, w, h, &hcorr, &vcorr);
+
+ if (vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
+ prune_bitmask |= 1 << IDTX_1D;
+ else if (vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
+ prune_bitmask |= 1 << DCT_1D;
+
+ if (hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
+ prune_bitmask |= 1 << (IDTX_1D + 8);
+ else if (hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
+ prune_bitmask |= 1 << (DCT_1D + 8);
+ return prune_bitmask;
+}
+
+// Performance drop: 0.5%, Speed improvement: 24%
+static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, const MACROBLOCKD *xd,
+ int adst_flipadst, int dct_idtx) {
+ int prune = 0;
+
+ if (adst_flipadst) {
+ const struct macroblock_plane *const p = &x->plane[0];
+ const struct macroblockd_plane *const pd = &xd->plane[0];
+ prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride,
+ pd->dst.buf, pd->dst.stride);
+ }
+ if (dct_idtx) {
+ av1_subtract_plane(x, bsize, 0);
+ const struct macroblock_plane *const p = &x->plane[0];
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ prune |= dct_vs_idtx(p->src_diff, bw, bw, bh);
+ }
+
+ return prune;
+}
+
+// Performance drop: 0.3%, Speed improvement: 5%
+static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
+ const MACROBLOCK *x, const MACROBLOCKD *xd) {
+ const struct macroblock_plane *const p = &x->plane[0];
+ const struct macroblockd_plane *const pd = &xd->plane[0];
+ return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf,
+ pd->dst.stride);
+}
+
+// 1D Transforms used in inter set, this needs to be changed if
+// ext_tx_used_inter is changed
+static const int ext_tx_used_inter_1D[EXT_TX_SETS_INTER][TX_TYPES_1D] = {
+ { 1, 0, 0, 0 },
+ { 1, 1, 1, 1 },
+ { 1, 1, 1, 1 },
+ { 1, 0, 0, 1 },
+};
+
+static void get_energy_distribution_finer(const int16_t *diff, int stride,
+ int bw, int bh, float *hordist,
+ float *verdist) {
+ // First compute downscaled block energy values (esq); downscale factors
+ // are defined by w_shift and h_shift.
+ unsigned int esq[256];
+ const int w_shift = bw <= 8 ? 0 : 1;
+ const int h_shift = bh <= 8 ? 0 : 1;
+ const int esq_w = bw >> w_shift;
+ const int esq_h = bh >> h_shift;
+ const int esq_sz = esq_w * esq_h;
+ int i, j;
+ memset(esq, 0, esq_sz * sizeof(esq[0]));
+ if (w_shift) {
+ for (i = 0; i < bh; i++) {
+ unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
+ const int16_t *cur_diff_row = diff + i * stride;
+ for (j = 0; j < bw; j += 2) {
+ cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] +
+ cur_diff_row[j + 1] * cur_diff_row[j + 1]);
+ }
+ }
+ } else {
+ for (i = 0; i < bh; i++) {
+ unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
+ const int16_t *cur_diff_row = diff + i * stride;
+ for (j = 0; j < bw; j++) {
+ cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j];
+ }
+ }
+ }
+
+ uint64_t total = 0;
+ for (i = 0; i < esq_sz; i++) total += esq[i];
+
+ // Output hordist and verdist arrays are normalized 1D projections of esq
+ if (total == 0) {
+ float hor_val = 1.0f / esq_w;
+ for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val;
+ float ver_val = 1.0f / esq_h;
+ for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val;
+ return;
+ }
+
+ const float e_recip = 1.0f / (float)total;
+ memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0]));
+ memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0]));
+ const unsigned int *cur_esq_row;
+ for (i = 0; i < esq_h - 1; i++) {
+ cur_esq_row = esq + i * esq_w;
+ for (j = 0; j < esq_w - 1; j++) {
+ hordist[j] += (float)cur_esq_row[j];
+ verdist[i] += (float)cur_esq_row[j];
+ }
+ verdist[i] += (float)cur_esq_row[j];
+ }
+ cur_esq_row = esq + i * esq_w;
+ for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j];
+
+ for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip;
+ for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip;
+}
+
+// Similar to get_horver_correlation, but also takes into account first
+// row/column, when computing horizontal/vertical correlation.
+static void get_horver_correlation_full(const int16_t *diff, int stride, int w,
+ int h, float *hcorr, float *vcorr) {
+ const float num_hor = (float)(h * (w - 1));
+ const float num_ver = (float)((h - 1) * w);
+ int i, j;
+
+ // The following notation is used:
+ // x - current pixel
+ // y - left neighbor pixel
+ // z - top neighbor pixel
+ int64_t xy_sum = 0, xz_sum = 0;
+ int64_t xhor_sum = 0, xver_sum = 0, y_sum = 0, z_sum = 0;
+ int64_t x2hor_sum = 0, x2ver_sum = 0, y2_sum = 0, z2_sum = 0;
+
+ int16_t x, y, z;
+ for (j = 1; j < w; ++j) {
+ x = diff[j];
+ y = diff[j - 1];
+ xy_sum += x * y;
+ xhor_sum += x;
+ y_sum += y;
+ x2hor_sum += x * x;
+ y2_sum += y * y;
+ }
+ for (i = 1; i < h; ++i) {
+ x = diff[i * stride];
+ z = diff[(i - 1) * stride];
+ xz_sum += x * z;
+ xver_sum += x;
+ z_sum += z;
+ x2ver_sum += x * x;
+ z2_sum += z * z;
+ for (j = 1; j < w; ++j) {
+ x = diff[i * stride + j];
+ y = diff[i * stride + j - 1];
+ z = diff[(i - 1) * stride + j];
+ xy_sum += x * y;
+ xz_sum += x * z;
+ xhor_sum += x;
+ xver_sum += x;
+ y_sum += y;
+ z_sum += z;
+ x2hor_sum += x * x;
+ x2ver_sum += x * x;
+ y2_sum += y * y;
+ z2_sum += z * z;
+ }
+ }
+ const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
+ const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
+ const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
+ const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
+ const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
+ const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;
+
+ *hcorr = *vcorr = 1;
+ if (xhor_var_n > 0 && y_var_n > 0) {
+ *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
+ *hcorr = *hcorr < 0 ? 0 : *hcorr;
+ }
+ if (xver_var_n > 0 && z_var_n > 0) {
+ *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
+ *vcorr = *vcorr < 0 ? 0 : *vcorr;
+ }
+}
+
+// Transforms raw scores into a probability distribution across 16 TX types
+static void score_2D_transform_pow8(float *scores_2D, float shift) {
+ float sum = 0.0f;
+ int i;
+
+ for (i = 0; i < 16; i++) {
+ float v, v2, v4;
+ v = AOMMAX(scores_2D[i] + shift, 0.0f);
+ v2 = v * v;
+ v4 = v2 * v2;
+ scores_2D[i] = v4 * v4;
+ sum += scores_2D[i];
+ }
+ for (i = 0; i < 16; i++) scores_2D[i] /= sum;
+}
+
+// These thresholds were calibrated to provide a certain number of TX types
+// pruned by the model on average, i.e. selecting a threshold with index i
+// will lead to pruning i+1 TX types on average
+static const float *prune_2D_adaptive_thresholds[] = {
+ // TX_4X4
+ (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f,
+ 0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f,
+ 0.09778f, 0.11780f },
+ // TX_8X8
+ (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f,
+ 0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f,
+ 0.10803f, 0.14124f },
+ // TX_16X16
+ (float[]){ 0.01404f, 0.02820f, 0.04211f, 0.05164f, 0.05798f, 0.06335f,
+ 0.06897f, 0.07629f, 0.08875f, 0.11169f },
+ // TX_32X32
+ NULL,
+ // TX_64X64
+ NULL,
+ // TX_4X8
+ (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f,
+ 0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f,
+ 0.10168f, 0.12585f },
+ // TX_8X4
+ (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f,
+ 0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f,
+ 0.10583f, 0.13123f },
+ // TX_8X16
+ (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f,
+ 0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f,
+ 0.10730f, 0.14221f },
+ // TX_16X8
+ (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f,
+ 0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f,
+ 0.10339f, 0.13464f },
+ // TX_16X32
+ NULL,
+ // TX_32X16
+ NULL,
+ // TX_32X64
+ NULL,
+ // TX_64X32
+ NULL,
+ // TX_4X16
+ (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f,
+ 0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f,
+ 0.10242f, 0.12878f },
+ // TX_16X4
+ (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f,
+ 0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f,
+ 0.10217f, 0.12610f },
+ // TX_8X32
+ NULL,
+ // TX_32X8
+ NULL,
+ // TX_16X64
+ NULL,
+ // TX_64X16
+ NULL,
+};
+
+static uint16_t prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size,
+ int blk_row, int blk_col, TxSetType tx_set_type,
+ TX_TYPE_PRUNE_MODE prune_mode) {
+ static const int tx_type_table_2D[16] = {
+ DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT,
+ ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST,
+ FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
+ H_DCT, H_ADST, H_FLIPADST, IDTX
+ };
+ if (tx_set_type != EXT_TX_SET_ALL16 &&
+ tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT)
+ return 0;
+ const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
+ const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
+ if (!nn_config_hor || !nn_config_ver) return 0; // Model not established yet.
+
+ aom_clear_system_state();
+ float hfeatures[16], vfeatures[16];
+ float hscores[4], vscores[4];
+ float scores_2D[16];
+ const int bw = tx_size_wide[tx_size];
+ const int bh = tx_size_high[tx_size];
+ const int hfeatures_num = bw <= 8 ? bw : bw / 2;
+ const int vfeatures_num = bh <= 8 ? bh : bh / 2;
+ assert(hfeatures_num <= 16);
+ assert(vfeatures_num <= 16);
+
+ const struct macroblock_plane *const p = &x->plane[0];
+ const int diff_stride = block_size_wide[bsize];
+ const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
+ get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures,
+ vfeatures);
+ get_horver_correlation_full(diff, diff_stride, bw, bh,
+ &hfeatures[hfeatures_num - 1],
+ &vfeatures[vfeatures_num - 1]);
+ av1_nn_predict(hfeatures, nn_config_hor, hscores);
+ av1_nn_predict(vfeatures, nn_config_ver, vscores);
+
+ float score_2D_average = 0.0f;
+ for (int i = 0; i < 4; i++) {
+ float *cur_scores_2D = scores_2D + i * 4;
+ cur_scores_2D[0] = vscores[i] * hscores[0];
+ cur_scores_2D[1] = vscores[i] * hscores[1];
+ cur_scores_2D[2] = vscores[i] * hscores[2];
+ cur_scores_2D[3] = vscores[i] * hscores[3];
+ score_2D_average += cur_scores_2D[0] + cur_scores_2D[1] + cur_scores_2D[2] +
+ cur_scores_2D[3];
+ }
+ score_2D_average /= 16;
+
+ const int prune_aggr_table[2][2] = { { 6, 4 }, { 10, 7 } };
+ int pruning_aggressiveness = 1;
+ if (tx_set_type == EXT_TX_SET_ALL16) {
+ score_2D_transform_pow8(scores_2D, (10 - score_2D_average));
+ pruning_aggressiveness =
+ prune_aggr_table[prune_mode - PRUNE_2D_ACCURATE][0];
+ } else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT) {
+ score_2D_transform_pow8(scores_2D, (20 - score_2D_average));
+ pruning_aggressiveness =
+ prune_aggr_table[prune_mode - PRUNE_2D_ACCURATE][1];
+ }
+
+ // Always keep the TX type with the highest score, prune all others with
+ // score below score_thresh.
+ int max_score_i = 0;
+ float max_score = 0.0f;
+ for (int i = 0; i < 16; i++) {
+ if (scores_2D[i] > max_score &&
+ av1_ext_tx_used[tx_set_type][tx_type_table_2D[i]]) {
+ max_score = scores_2D[i];
+ max_score_i = i;
+ }
+ }
+
+ const float score_thresh =
+ prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness - 1];
+
+ uint16_t prune_bitmask = 0;
+ for (int i = 0; i < 16; i++) {
+ if (scores_2D[i] < score_thresh && i != max_score_i)
+ prune_bitmask |= (1 << tx_type_table_2D[i]);
+ }
+ return prune_bitmask;
+}
+
+// ((prune >> vtx_tab[tx_type]) & 1)
+static const uint16_t prune_v_mask[] = {
+ 0x0000, 0x0425, 0x108a, 0x14af, 0x4150, 0x4575, 0x51da, 0x55ff,
+ 0xaa00, 0xae25, 0xba8a, 0xbeaf, 0xeb50, 0xef75, 0xfbda, 0xffff,
+};
+
+// ((prune >> (htx_tab[tx_type] + 8)) & 1)
+static const uint16_t prune_h_mask[] = {
+ 0x0000, 0x0813, 0x210c, 0x291f, 0x80e0, 0x88f3, 0xa1ec, 0xa9ff,
+ 0x5600, 0x5e13, 0x770c, 0x7f1f, 0xd6e0, 0xdef3, 0xf7ec, 0xffff,
+};
+
+static INLINE uint16_t gen_tx_search_prune_mask(int tx_search_prune) {
+ uint8_t prune_v = tx_search_prune & 0x0F;
+ uint8_t prune_h = (tx_search_prune >> 8) & 0x0F;
+ return (prune_v_mask[prune_v] & prune_h_mask[prune_h]);
+}
+
+static void prune_tx(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
+ const MACROBLOCKD *const xd, int tx_set_type) {
+ x->tx_search_prune[tx_set_type] = 0;
+ x->tx_split_prune_flag = 0;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ if (!is_inter_block(mbmi) || cpi->sf.tx_type_search.prune_mode == NO_PRUNE ||
+ x->use_default_inter_tx_type || xd->lossless[mbmi->segment_id] ||
+ x->cb_partition_scan)
+ return;
+ int tx_set = ext_tx_set_index[1][tx_set_type];
+ assert(tx_set >= 0);
+ const int *tx_set_1D = ext_tx_used_inter_1D[tx_set];
+ int prune = 0;
+ switch (cpi->sf.tx_type_search.prune_mode) {
+ case NO_PRUNE: return;
+ case PRUNE_ONE:
+ if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) return;
+ prune = prune_one_for_sby(cpi, bsize, x, xd);
+ x->tx_search_prune[tx_set_type] = gen_tx_search_prune_mask(prune);
+ break;
+ case PRUNE_TWO:
+ if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) {
+ if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return;
+ prune = prune_two_for_sby(cpi, bsize, x, xd, 0, 1);
+ } else if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) {
+ prune = prune_two_for_sby(cpi, bsize, x, xd, 1, 0);
+ } else {
+ prune = prune_two_for_sby(cpi, bsize, x, xd, 1, 1);
+ }
+ x->tx_search_prune[tx_set_type] = gen_tx_search_prune_mask(prune);
+ break;
+ case PRUNE_2D_ACCURATE:
+ case PRUNE_2D_FAST: break;
+ default: assert(0);
+ }
+}
+
+static void model_rd_from_sse(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x, BLOCK_SIZE plane_bsize,
+ int plane, int64_t sse, int num_samples,
+ int *rate, int64_t *dist) {
+ (void)num_samples;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int dequant_shift =
+ (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
+
+ // Fast approximate the modelling function.
+ if (cpi->sf.simple_model_rd_from_var) {
+ const int64_t square_error = sse;
+ int quantizer = pd->dequant_Q3[1] >> dequant_shift;
+ if (quantizer < 120)
+ *rate = (int)AOMMIN(
+ (square_error * (280 - quantizer)) >> (16 - AV1_PROB_COST_SHIFT),
+ INT_MAX);
+ else
+ *rate = 0;
+ assert(*rate >= 0);
+ *dist = (square_error * quantizer) >> 8;
+ } else {
+ av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[plane_bsize],
+ pd->dequant_Q3[1] >> dequant_shift, rate,
+ dist);
+ }
+ *dist <<= 4;
+}
+
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ int64_t total_sse = 0;
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE bs = get_plane_block_size(mbmi->sb_type, pd->subsampling_x,
+ pd->subsampling_y);
+ unsigned int sse;
+
+ if (x->skip_chroma_rd && plane) continue;
+
+ cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
+ &sse);
+ total_sse += sse;
+ }
+ total_sse <<= 4;
+ return total_sse;
+}
+#endif
+
+static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
+ int plane_to, int mi_row, int mi_col,
+ int *out_rate_sum, int64_t *out_dist_sum,
+ int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse,
+ int64_t *plane_dist) {
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ int plane;
+ (void)mi_row;
+ (void)mi_col;
+ const int ref = xd->mi[0]->ref_frame[0];
+
+ int64_t rate_sum = 0;
+ int64_t dist_sum = 0;
+ int64_t total_sse = 0;
+
+ for (plane = plane_from; plane <= plane_to; ++plane) {
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ const int bw = block_size_wide[plane_bsize];
+ const int bh = block_size_high[plane_bsize];
+ int64_t sse;
+ int rate;
+ int64_t dist;
+
+ if (x->skip_chroma_rd && plane) continue;
+
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf,
+ pd->dst.stride, bw, bh);
+ } else {
+ sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw,
+ bh);
+ }
+ sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
+
+ model_rd_from_sse(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist);
+
+ if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
+
+ total_sse += sse;
+ rate_sum += rate;
+ dist_sum += dist;
+ if (plane_rate) plane_rate[plane] = rate;
+ if (plane_sse) plane_sse[plane] = sse;
+ if (plane_dist) plane_dist[plane] = dist;
+ assert(rate_sum >= 0);
+ }
+
+ if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0;
+ if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
+ rate_sum = AOMMIN(rate_sum, INT_MAX);
+ *out_rate_sum = (int)rate_sum;
+ *out_dist_sum = dist_sum;
+}
+
+static void check_block_skip(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
+ int plane_to, int *skip_txfm_sb) {
+ *skip_txfm_sb = 1;
+ for (int plane = plane_from; plane <= plane_to; ++plane) {
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE bs =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ unsigned int sse;
+
+ if (x->skip_chroma_rd && plane) continue;
+
+ // Since fast HBD variance functions scale down sse by 4 bit, we first use
+ // fast vf implementation to rule out blocks with non-zero scaled sse. Then,
+ // only if the source is HBD and the scaled sse is 0, accurate sse
+ // computation is applied to determine if the sse is really 0. This step is
+ // necessary for HBD lossless coding.
+ cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
+ &sse);
+ if (sse) {
+ *skip_txfm_sb = 0;
+ return;
+ } else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ uint64_t sse64 = aom_highbd_sse_odd_size(
+ p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
+ block_size_wide[bs], block_size_high[bs]);
+
+ if (sse64) {
+ *skip_txfm_sb = 0;
+ return;
+ }
+ }
+ }
+ return;
+}
+
+int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
+ intptr_t block_size, int64_t *ssz) {
+ int i;
+ int64_t error = 0, sqcoeff = 0;
+
+ for (i = 0; i < block_size; i++) {
+ const int diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ sqcoeff += coeff[i] * coeff[i];
+ }
+
+ *ssz = sqcoeff;
+ return error;
+}
+
+int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
+ const tran_low_t *dqcoeff, intptr_t block_size,
+ int64_t *ssz, int bd) {
+ int i;
+ int64_t error = 0, sqcoeff = 0;
+ int shift = 2 * (bd - 8);
+ int rounding = shift > 0 ? 1 << (shift - 1) : 0;
+
+ for (i = 0; i < block_size; i++) {
+ const int64_t diff = coeff[i] - dqcoeff[i];
+ error += diff * diff;
+ sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
+ }
+ assert(error >= 0 && sqcoeff >= 0);
+ error = (error + rounding) >> shift;
+ sqcoeff = (sqcoeff + rounding) >> shift;
+
+ *ssz = sqcoeff;
+ return error;
+}
+
+// Get transform block visible dimensions cropped to the MI units.
+static void get_txb_dimensions(const MACROBLOCKD *xd, int plane,
+ BLOCK_SIZE plane_bsize, int blk_row, int blk_col,
+ BLOCK_SIZE tx_bsize, int *width, int *height,
+ int *visible_width, int *visible_height) {
+ assert(tx_bsize <= plane_bsize);
+ int txb_height = block_size_high[tx_bsize];
+ int txb_width = block_size_wide[tx_bsize];
+ const int block_height = block_size_high[plane_bsize];
+ const int block_width = block_size_wide[plane_bsize];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ // TODO(aconverse@google.com): Investigate using crop_width/height here rather
+ // than the MI size
+ const int block_rows =
+ (xd->mb_to_bottom_edge >= 0)
+ ? block_height
+ : (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height;
+ const int block_cols =
+ (xd->mb_to_right_edge >= 0)
+ ? block_width
+ : (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width;
+ const int tx_unit_size = tx_size_wide_log2[0];
+ if (width) *width = txb_width;
+ if (height) *height = txb_height;
+ *visible_width = clamp(block_cols - (blk_col << tx_unit_size), 0, txb_width);
+ *visible_height =
+ clamp(block_rows - (blk_row << tx_unit_size), 0, txb_height);
+}
+
+// Compute the pixel domain distortion from src and dst on all visible 4x4s in
+// the
+// transform block.
+static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x,
+ int plane, const uint8_t *src, const int src_stride,
+ const uint8_t *dst, const int dst_stride,
+ int blk_row, int blk_col,
+ const BLOCK_SIZE plane_bsize,
+ const BLOCK_SIZE tx_bsize) {
+ int txb_rows, txb_cols, visible_rows, visible_cols;
+ const MACROBLOCKD *xd = &x->e_mbd;
+
+ get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize,
+ &txb_cols, &txb_rows, &visible_cols, &visible_rows);
+ assert(visible_rows > 0);
+ assert(visible_cols > 0);
+
+#if CONFIG_DIST_8X8
+ if (x->using_dist_8x8 && plane == 0)
+ return (unsigned)av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride,
+ tx_bsize, txb_cols, txb_rows, visible_cols,
+ visible_rows, x->qindex);
+#endif // CONFIG_DIST_8X8
+
+ unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst,
+ dst_stride, tx_bsize, txb_rows,
+ txb_cols, visible_rows, visible_cols);
+
+ return sse;
+}
+
+// Compute the pixel domain distortion from diff on all visible 4x4s in the
+// transform block.
+static INLINE int64_t pixel_diff_dist(const MACROBLOCK *x, int plane,
+ int blk_row, int blk_col,
+ const BLOCK_SIZE plane_bsize,
+ const BLOCK_SIZE tx_bsize) {
+ int visible_rows, visible_cols;
+ const MACROBLOCKD *xd = &x->e_mbd;
+ get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
+ NULL, &visible_cols, &visible_rows);
+ const int diff_stride = block_size_wide[plane_bsize];
+ const int16_t *diff = x->plane[plane].src_diff;
+#if CONFIG_DIST_8X8
+ int txb_height = block_size_high[tx_bsize];
+ int txb_width = block_size_wide[tx_bsize];
+ if (x->using_dist_8x8 && plane == 0) {
+ const int src_stride = x->plane[plane].src.stride;
+ const int src_idx = (blk_row * src_stride + blk_col)
+ << tx_size_wide_log2[0];
+ const int diff_idx = (blk_row * diff_stride + blk_col)
+ << tx_size_wide_log2[0];
+ const uint8_t *src = &x->plane[plane].src.buf[src_idx];
+ return dist_8x8_diff(x, src, src_stride, diff + diff_idx, diff_stride,
+ txb_width, txb_height, visible_cols, visible_rows,
+ x->qindex);
+ }
+#endif
+ diff += ((blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]);
+ return aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows);
+}
+
+int av1_count_colors(const uint8_t *src, int stride, int rows, int cols,
+ int *val_count) {
+ const int max_pix_val = 1 << 8;
+ memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
+ for (int r = 0; r < rows; ++r) {
+ for (int c = 0; c < cols; ++c) {
+ const int this_val = src[r * stride + c];
+ assert(this_val < max_pix_val);
+ ++val_count[this_val];
+ }
+ }
+ int n = 0;
+ for (int i = 0; i < max_pix_val; ++i) {
+ if (val_count[i]) ++n;
+ }
+ return n;
+}
+
+int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols,
+ int bit_depth, int *val_count) {
+ assert(bit_depth <= 12);
+ const int max_pix_val = 1 << bit_depth;
+ const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
+ for (int r = 0; r < rows; ++r) {
+ for (int c = 0; c < cols; ++c) {
+ const int this_val = src[r * stride + c];
+ assert(this_val < max_pix_val);
+ if (this_val >= max_pix_val) return 0;
+ ++val_count[this_val];
+ }
+ }
+ int n = 0;
+ for (int i = 0; i < max_pix_val; ++i) {
+ if (val_count[i]) ++n;
+ }
+ return n;
+}
+
+static void inverse_transform_block_facade(MACROBLOCKD *xd, int plane,
+ int block, int blk_row, int blk_col,
+ int eob, int reduced_tx_set) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+ const PLANE_TYPE plane_type = get_plane_type(plane);
+ const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
+ const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col,
+ tx_size, reduced_tx_set);
+ const int dst_stride = pd->dst.stride;
+ uint8_t *dst =
+ &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
+ av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
+ dst_stride, eob, reduced_tx_set);
+}
+
+static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, const uint32_t hash);
+
+static uint32_t get_intra_txb_hash(MACROBLOCK *x, int plane, int blk_row,
+ int blk_col, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size) {
+ int16_t tmp_data[64 * 64];
+ const int diff_stride = block_size_wide[plane_bsize];
+ const int16_t *diff = x->plane[plane].src_diff;
+ const int16_t *cur_diff_row = diff + 4 * blk_row * diff_stride + 4 * blk_col;
+ const int txb_w = tx_size_wide[tx_size];
+ const int txb_h = tx_size_high[tx_size];
+ uint8_t *hash_data = (uint8_t *)cur_diff_row;
+ if (txb_w != diff_stride) {
+ int16_t *cur_hash_row = tmp_data;
+ for (int i = 0; i < txb_h; i++) {
+ memcpy(cur_hash_row, cur_diff_row, sizeof(*diff) * txb_w);
+ cur_hash_row += txb_w;
+ cur_diff_row += diff_stride;
+ }
+ hash_data = (uint8_t *)tmp_data;
+ }
+ CRC32C *crc = &x->mb_rd_record.crc_calculator;
+ const uint32_t hash = av1_get_crc32c_value(crc, hash_data, 2 * txb_w * txb_h);
+ return (hash << 5) + tx_size;
+}
+
+static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block,
+ TX_SIZE tx_size, int64_t *out_dist,
+ int64_t *out_sse) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ // Transform domain distortion computation is more efficient as it does
+ // not involve an inverse transform, but it is less accurate.
+ const int buffer_length = av1_get_max_eob(tx_size);
+ int64_t this_sse;
+ // TX-domain results need to shift down to Q2/D10 to match pixel
+ // domain distortion values which are in Q2^2
+ int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2;
+ tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
+ tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse,
+ xd->bd);
+ else
+ *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse);
+
+ *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift);
+ *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift);
+}
+
+static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x,
+ int plane, BLOCK_SIZE plane_bsize,
+ int block, int blk_row, int blk_col,
+ TX_SIZE tx_size) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const uint16_t eob = p->eobs[block];
+ const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
+ const int bsw = block_size_wide[tx_bsize];
+ const int bsh = block_size_high[tx_bsize];
+ const int src_stride = x->plane[plane].src.stride;
+ const int dst_stride = xd->plane[plane].dst.stride;
+ // Scale the transform block index to pixel unit.
+ const int src_idx = (blk_row * src_stride + blk_col) << tx_size_wide_log2[0];
+ const int dst_idx = (blk_row * dst_stride + blk_col) << tx_size_wide_log2[0];
+ const uint8_t *src = &x->plane[plane].src.buf[src_idx];
+ const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
+ const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
+
+ assert(cpi != NULL);
+ assert(tx_size_wide_log2[0] == tx_size_high_log2[0]);
+
+ uint8_t *recon;
+ DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);
+
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ recon = CONVERT_TO_BYTEPTR(recon16);
+ av1_highbd_convolve_2d_copy_sr(CONVERT_TO_SHORTPTR(dst), dst_stride,
+ CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw,
+ bsh, NULL, NULL, 0, 0, NULL, xd->bd);
+ } else {
+ recon = (uint8_t *)recon16;
+ av1_convolve_2d_copy_sr(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh, NULL,
+ NULL, 0, 0, NULL);
+ }
+
+ const PLANE_TYPE plane_type = get_plane_type(plane);
+ TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size,
+ cpi->common.reduced_tx_set_used);
+ av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon,
+ MAX_TX_SIZE, eob,
+ cpi->common.reduced_tx_set_used);
+
+ return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE,
+ blk_row, blk_col, plane_bsize, tx_bsize);
+}
+
+static double get_mean(const int16_t *diff, int stride, int w, int h) {
+ double sum = 0.0;
+ for (int j = 0; j < h; ++j) {
+ for (int i = 0; i < w; ++i) {
+ sum += diff[j * stride + i];
+ }
+ }
+ assert(w > 0 && h > 0);
+ return sum / (w * h);
+}
+
+static double get_sse_norm(const int16_t *diff, int stride, int w, int h) {
+ double sum = 0.0;
+ for (int j = 0; j < h; ++j) {
+ for (int i = 0; i < w; ++i) {
+ const int err = diff[j * stride + i];
+ sum += err * err;
+ }
+ }
+ assert(w > 0 && h > 0);
+ return sum / (w * h);
+}
+
+static double get_sad_norm(const int16_t *diff, int stride, int w, int h) {
+ double sum = 0.0;
+ for (int j = 0; j < h; ++j) {
+ for (int i = 0; i < w; ++i) {
+ sum += abs(diff[j * stride + i]);
+ }
+ }
+ assert(w > 0 && h > 0);
+ return sum / (w * h);
+}
+
+static void get_2x2_normalized_sses_and_sads(
+ const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src,
+ int src_stride, const uint8_t *const dst, int dst_stride,
+ const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr,
+ double *const sad_norm_arr) {
+ const BLOCK_SIZE tx_bsize_half =
+ get_partition_subsize(tx_bsize, PARTITION_SPLIT);
+ if (tx_bsize_half == BLOCK_INVALID) { // manually calculate stats
+ const int half_width = block_size_wide[tx_bsize] / 2;
+ const int half_height = block_size_high[tx_bsize] / 2;
+ for (int row = 0; row < 2; ++row) {
+ for (int col = 0; col < 2; ++col) {
+ const int16_t *const this_src_diff =
+ src_diff + row * half_height * diff_stride + col * half_width;
+ if (sse_norm_arr) {
+ sse_norm_arr[row * 2 + col] =
+ get_sse_norm(this_src_diff, diff_stride, half_width, half_height);
+ }
+ if (sad_norm_arr) {
+ sad_norm_arr[row * 2 + col] =
+ get_sad_norm(this_src_diff, diff_stride, half_width, half_height);
+ }
+ }
+ }
+ } else { // use function pointers to calculate stats
+ const int half_width = block_size_wide[tx_bsize_half];
+ const int half_height = block_size_high[tx_bsize_half];
+ const int num_samples_half = half_width * half_height;
+ for (int row = 0; row < 2; ++row) {
+ for (int col = 0; col < 2; ++col) {
+ const uint8_t *const this_src =
+ src + row * half_height * src_stride + col * half_width;
+ const uint8_t *const this_dst =
+ dst + row * half_height * dst_stride + col * half_width;
+
+ if (sse_norm_arr) {
+ unsigned int this_sse;
+ cpi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst,
+ dst_stride, &this_sse);
+ sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half;
+ }
+
+ if (sad_norm_arr) {
+ const unsigned int this_sad = cpi->fn_ptr[tx_bsize_half].sdf(
+ this_src, src_stride, this_dst, dst_stride);
+ sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half;
+ }
+ }
+ }
+ }
+}
+
+// NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values
+// 0: Do not collect any RD stats
+// 1: Collect RD stats for transform units
+// 2: Collect RD stats for partition units
+#if CONFIG_COLLECT_RD_STATS
+
+#if CONFIG_COLLECT_RD_STATS == 1
+static void PrintTransformUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x,
+ const RD_STATS *const rd_stats, int blk_row,
+ int blk_col, BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, TX_TYPE tx_type,
+ int64_t rd) {
+ if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
+
+ // Generate small sample to restrict output size.
+ static unsigned int seed = 21743;
+ if (lcg_rand16(&seed) % 256 > 0) return;
+
+ const char output_file[] = "tu_stats.txt";
+ FILE *fout = fopen(output_file, "a");
+ if (!fout) return;
+
+ const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const int plane = 0;
+ struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int txw = tx_size_wide[tx_size];
+ const int txh = tx_size_high[tx_size];
+ const int dequant_shift =
+ (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
+ const int q_step = pd->dequant_Q3[1] >> dequant_shift;
+ const double num_samples = txw * txh;
+
+ const double rate_norm = (double)rd_stats->rate / num_samples;
+ const double dist_norm = (double)rd_stats->dist / num_samples;
+
+ fprintf(fout, "%g %g", rate_norm, dist_norm);
+
+ const int src_stride = p->src.stride;
+ const uint8_t *const src =
+ &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
+ const int dst_stride = pd->dst.stride;
+ const uint8_t *const dst =
+ &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
+ unsigned int sse;
+ cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
+ const double sse_norm = (double)sse / num_samples;
+
+ const unsigned int sad =
+ cpi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride);
+ const double sad_norm = (double)sad / num_samples;
+
+ fprintf(fout, " %g %g", sse_norm, sad_norm);
+
+ const int diff_stride = block_size_wide[plane_bsize];
+ const int16_t *const src_diff =
+ &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
+
+ double sse_norm_arr[4], sad_norm_arr[4];
+ get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst,
+ dst_stride, src_diff, diff_stride,
+ sse_norm_arr, sad_norm_arr);
+ for (int i = 0; i < 4; ++i) {
+ fprintf(fout, " %g", sse_norm_arr[i]);
+ }
+ for (int i = 0; i < 4; ++i) {
+ fprintf(fout, " %g", sad_norm_arr[i]);
+ }
+
+ const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
+ const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
+
+ fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size],
+ tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col);
+
+ int model_rate;
+ int64_t model_dist;
+ model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples,
+ &model_rate, &model_dist);
+ const double model_rate_norm = (double)model_rate / num_samples;
+ const double model_dist_norm = (double)model_dist / num_samples;
+ fprintf(fout, " %g %g", model_rate_norm, model_dist_norm);
+
+ const double mean = get_mean(src_diff, diff_stride, txw, txh);
+ double hor_corr, vert_corr;
+ get_horver_correlation(src_diff, diff_stride, txw, txh, &hor_corr,
+ &vert_corr);
+ fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
+
+ double hdist[4] = { 0 }, vdist[4] = { 0 };
+ get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride,
+ 1, hdist, vdist);
+ fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
+ hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
+
+ fprintf(fout, " %d %" PRId64, x->rdmult, rd);
+
+ fprintf(fout, "\n");
+ fclose(fout);
+}
+#endif // CONFIG_COLLECT_RD_STATS == 1
+
+#if CONFIG_COLLECT_RD_STATS >= 2
+static void PrintPredictionUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x,
+ const RD_STATS *const rd_stats,
+ BLOCK_SIZE plane_bsize) {
+ if (rd_stats->invalid_rate) return;
+ if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
+
+ // Generate small sample to restrict output size.
+ static unsigned int seed = 95014;
+ if (lcg_rand16(&seed) % 256 > 0) return;
+
+ const char output_file[] = "pu_stats.txt";
+ FILE *fout = fopen(output_file, "a");
+ if (!fout) return;
+
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const int plane = 0;
+ struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int diff_stride = block_size_wide[plane_bsize];
+ int bw, bh;
+ get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
+ &bh);
+ const int num_samples = bw * bh;
+ const int dequant_shift =
+ (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
+ const int q_step = pd->dequant_Q3[1] >> dequant_shift;
+
+ const double rate_norm = (double)rd_stats->rate / num_samples;
+ const double dist_norm = (double)rd_stats->dist / num_samples;
+ const double rdcost_norm =
+ (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples;
+
+ fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm);
+
+ const int src_stride = p->src.stride;
+ const uint8_t *const src = p->src.buf;
+ const int dst_stride = pd->dst.stride;
+ const uint8_t *const dst = pd->dst.buf;
+ const int16_t *const src_diff = p->src_diff;
+ const int shift = (xd->bd - 8);
+
+ int64_t sse = aom_sum_squares_2d_i16(src_diff, diff_stride, bw, bh);
+ sse = ROUND_POWER_OF_TWO(sse, shift * 2);
+ const double sse_norm = (double)sse / num_samples;
+
+ const unsigned int sad =
+ cpi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride);
+ const double sad_norm =
+ (double)sad / (1 << num_pels_log2_lookup[plane_bsize]);
+
+ fprintf(fout, " %g %g", sse_norm, sad_norm);
+
+ double sse_norm_arr[4], sad_norm_arr[4];
+ get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst,
+ dst_stride, src_diff, diff_stride,
+ sse_norm_arr, sad_norm_arr);
+ if (shift) {
+ for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift));
+ for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift);
+ }
+ for (int i = 0; i < 4; ++i) {
+ fprintf(fout, " %g", sse_norm_arr[i]);
+ }
+ for (int i = 0; i < 4; ++i) {
+ fprintf(fout, " %g", sad_norm_arr[i]);
+ }
+
+ fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh);
+
+ int model_rate;
+ int64_t model_dist;
+ model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples,
+ &model_rate, &model_dist);
+ const double model_rdcost_norm =
+ (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples;
+ const double model_rate_norm = (double)model_rate / num_samples;
+ const double model_dist_norm = (double)model_dist / num_samples;
+ fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm,
+ model_rdcost_norm);
+
+ double mean = get_mean(src_diff, diff_stride, bw, bh);
+ mean /= (1 << shift);
+ double hor_corr, vert_corr;
+ get_horver_correlation(src_diff, diff_stride, bw, bh, &hor_corr, &vert_corr);
+ fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
+
+ double hdist[4] = { 0 }, vdist[4] = { 0 };
+ get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst,
+ dst_stride, 1, hdist, vdist);
+ fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
+ hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
+
+ fprintf(fout, "\n");
+ fclose(fout);
+}
+#endif // CONFIG_COLLECT_RD_STATS >= 2
+#endif // CONFIG_COLLECT_RD_STATS
+
+static void model_rd_with_dnn(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x, BLOCK_SIZE plane_bsize,
+ int plane, int64_t sse, int num_samples,
+ int *rate, int64_t *dist) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int log_numpels = num_pels_log2_lookup[plane_bsize];
+
+ const int dequant_shift =
+ (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
+ const int q_step = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1);
+
+ const struct macroblock_plane *const p = &x->plane[plane];
+ int bw, bh;
+ get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
+ &bh);
+ const int src_stride = p->src.stride;
+ const uint8_t *const src = p->src.buf;
+ const int dst_stride = pd->dst.stride;
+ const uint8_t *const dst = pd->dst.buf;
+ const int16_t *const src_diff = p->src_diff;
+ const int diff_stride = block_size_wide[plane_bsize];
+ const int shift = (xd->bd - 8);
+
+ if (sse == 0) {
+ if (rate) *rate = 0;
+ if (dist) *dist = 0;
+ return;
+ }
+ if (plane) {
+ int model_rate;
+ int64_t model_dist;
+ model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, num_samples,
+ &model_rate, &model_dist);
+ if (rate) *rate = model_rate;
+ if (dist) *dist = model_dist;
+ return;
+ }
+
+ aom_clear_system_state();
+ const double sse_norm = (double)sse / num_samples;
+
+ double sse_norm_arr[4];
+ get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst,
+ dst_stride, src_diff, diff_stride,
+ sse_norm_arr, NULL);
+ double mean = get_mean(src_diff, bw, bw, bh);
+ if (shift) {
+ for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift));
+ mean /= (1 << shift);
+ }
+ double sse_norm_sum = 0.0, sse_frac_arr[3];
+ for (int k = 0; k < 4; ++k) sse_norm_sum += sse_norm_arr[k];
+ for (int k = 0; k < 3; ++k)
+ sse_frac_arr[k] =
+ sse_norm_sum > 0.0 ? sse_norm_arr[k] / sse_norm_sum : 0.25;
+ const double q_sqr = (double)(q_step * q_step);
+ const double q_sqr_by_sse_norm = q_sqr / (sse_norm + 1.0);
+ const double mean_sqr_by_sse_norm = mean * mean / (sse_norm + 1.0);
+ double hor_corr, vert_corr;
+ get_horver_correlation(src_diff, diff_stride, bw, bh, &hor_corr, &vert_corr);
+
+ float features[NUM_FEATURES_PUSTATS];
+ features[0] = (float)hor_corr;
+ features[1] = (float)log_numpels;
+ features[2] = (float)mean_sqr_by_sse_norm;
+ features[3] = (float)q_sqr_by_sse_norm;
+ features[4] = (float)sse_frac_arr[0];
+ features[5] = (float)sse_frac_arr[1];
+ features[6] = (float)sse_frac_arr[2];
+ features[7] = (float)vert_corr;
+
+ float rate_f, dist_by_sse_norm_f;
+ av1_nn_predict(features, &av1_pustats_dist_nnconfig, &dist_by_sse_norm_f);
+ av1_nn_predict(features, &av1_pustats_rate_nnconfig, &rate_f);
+ const float dist_f = (float)((double)dist_by_sse_norm_f * (1.0 + sse_norm));
+ int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5);
+ int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5);
+ aom_clear_system_state();
+
+ // Check if skip is better
+ if (rate_i == 0) {
+ dist_i = sse << 4;
+ } else if (RDCOST(x->rdmult, rate_i, dist_i) >=
+ RDCOST(x->rdmult, 0, sse << 4)) {
+ rate_i = 0;
+ dist_i = sse << 4;
+ }
+
+ if (rate) *rate = rate_i;
+ if (dist) *dist = dist_i;
+ return;
+}
+
+static void model_rd_for_sb_with_dnn(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) {
+ (void)mi_row;
+ (void)mi_col;
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ const int ref = xd->mi[0]->ref_frame[0];
+
+ int64_t rate_sum = 0;
+ int64_t dist_sum = 0;
+ int64_t total_sse = 0;
+
+ for (int plane = plane_from; plane <= plane_to; ++plane) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ int64_t dist, sse;
+ int rate;
+
+ if (x->skip_chroma_rd && plane) continue;
+
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const int shift = (xd->bd - 8);
+ int bw, bh;
+ get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL,
+ &bw, &bh);
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf,
+ pd->dst.stride, bw, bh);
+ } else {
+ sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw,
+ bh);
+ }
+ sse = ROUND_POWER_OF_TWO(sse, shift * 2);
+
+ model_rd_with_dnn(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist);
+
+ if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
+
+ total_sse += sse;
+ rate_sum += rate;
+ dist_sum += dist;
+
+ if (plane_rate) plane_rate[plane] = rate;
+ if (plane_sse) plane_sse[plane] = sse;
+ if (plane_dist) plane_dist[plane] = dist;
+ }
+
+ if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0;
+ if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
+ *out_rate_sum = (int)rate_sum;
+ *out_dist_sum = dist_sum;
+}
+
+// Fits a surface for rate and distortion using as features:
+// log2(sse_norm + 1) and log2(sse_norm/qstep^2)
+static void model_rd_with_surffit(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x,
+ BLOCK_SIZE plane_bsize, int plane,
+ int64_t sse, int num_samples, int *rate,
+ int64_t *dist) {
+ (void)cpi;
+ (void)plane_bsize;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int dequant_shift =
+ (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
+ const int qstep = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1);
+ if (sse == 0) {
+ if (rate) *rate = 0;
+ if (dist) *dist = 0;
+ return;
+ }
+ aom_clear_system_state();
+ const double sse_norm = (double)sse / num_samples;
+ const double qstepsqr = (double)qstep * qstep;
+ const double xm = log(sse_norm + 1.0) / log(2.0);
+ const double yl = log(sse_norm / qstepsqr) / log(2.0);
+ double rate_f, dist_by_sse_norm_f;
+
+ av1_model_rd_surffit(xm, yl, &rate_f, &dist_by_sse_norm_f);
+
+ const double dist_f = dist_by_sse_norm_f * sse_norm;
+ int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5);
+ int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5);
+ aom_clear_system_state();
+
+ // Check if skip is better
+ if (rate_i == 0) {
+ dist_i = sse << 4;
+ } else if (RDCOST(x->rdmult, rate_i, dist_i) >=
+ RDCOST(x->rdmult, 0, sse << 4)) {
+ rate_i = 0;
+ dist_i = sse << 4;
+ }
+
+ if (rate) *rate = rate_i;
+ if (dist) *dist = dist_i;
+}
+
+static void model_rd_for_sb_with_surffit(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) {
+ (void)mi_row;
+ (void)mi_col;
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ const int ref = xd->mi[0]->ref_frame[0];
+
+ int64_t rate_sum = 0;
+ int64_t dist_sum = 0;
+ int64_t total_sse = 0;
+
+ for (int plane = plane_from; plane <= plane_to; ++plane) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ int64_t dist, sse;
+ int rate;
+
+ if (x->skip_chroma_rd && plane) continue;
+
+ int bw, bh;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const int shift = (xd->bd - 8);
+ get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL,
+ &bw, &bh);
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf,
+ pd->dst.stride, bw, bh);
+ } else {
+ sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw,
+ bh);
+ }
+ sse = ROUND_POWER_OF_TWO(sse, shift * 2);
+
+ model_rd_with_surffit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate,
+ &dist);
+
+ if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
+
+ total_sse += sse;
+ rate_sum += rate;
+ dist_sum += dist;
+
+ if (plane_rate) plane_rate[plane] = rate;
+ if (plane_sse) plane_sse[plane] = sse;
+ if (plane_dist) plane_dist[plane] = dist;
+ }
+
+ if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0;
+ if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
+ *out_rate_sum = (int)rate_sum;
+ *out_dist_sum = dist_sum;
+}
+
+// Fits a curve for rate and distortion using as feature:
+// log2(sse_norm/qstep^2)
+static void model_rd_with_curvfit(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x,
+ BLOCK_SIZE plane_bsize, int plane,
+ int64_t sse, int num_samples, int *rate,
+ int64_t *dist) {
+ (void)cpi;
+ (void)plane_bsize;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const int dequant_shift =
+ (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
+ const int qstep = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1);
+
+ if (sse == 0) {
+ if (rate) *rate = 0;
+ if (dist) *dist = 0;
+ return;
+ }
+ aom_clear_system_state();
+ const double sse_norm = (double)sse / num_samples;
+ const double qstepsqr = (double)qstep * qstep;
+ const double xqr = log(sse_norm / qstepsqr) / log(2.0);
+
+ double rate_f, dist_by_sse_norm_f;
+ av1_model_rd_curvfit(xqr, &rate_f, &dist_by_sse_norm_f);
+
+ const double dist_f = dist_by_sse_norm_f * sse_norm;
+ int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5);
+ int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5);
+ aom_clear_system_state();
+
+ // Check if skip is better
+ if (rate_i == 0) {
+ dist_i = sse << 4;
+ } else if (RDCOST(x->rdmult, rate_i, dist_i) >=
+ RDCOST(x->rdmult, 0, sse << 4)) {
+ rate_i = 0;
+ dist_i = sse << 4;
+ }
+
+ if (rate) *rate = rate_i;
+ if (dist) *dist = dist_i;
+}
+
+static void model_rd_for_sb_with_curvfit(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) {
+ (void)mi_row;
+ (void)mi_col;
+ // Note our transform coeffs are 8 times an orthogonal transform.
+ // Hence quantizer step is also 8 times. To get effective quantizer
+ // we need to divide by 8 before sending to modeling function.
+ const int ref = xd->mi[0]->ref_frame[0];
+
+ int64_t rate_sum = 0;
+ int64_t dist_sum = 0;
+ int64_t total_sse = 0;
+
+ for (int plane = plane_from; plane <= plane_to; ++plane) {
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ int64_t dist, sse;
+ int rate;
+
+ if (x->skip_chroma_rd && plane) continue;
+
+ int bw, bh;
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const int shift = (xd->bd - 8);
+ get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL,
+ &bw, &bh);
+
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf,
+ pd->dst.stride, bw, bh);
+ } else {
+ sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw,
+ bh);
+ }
+
+ sse = ROUND_POWER_OF_TWO(sse, shift * 2);
+ model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate,
+ &dist);
+
+ if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
+
+ total_sse += sse;
+ rate_sum += rate;
+ dist_sum += dist;
+
+ if (plane_rate) plane_rate[plane] = rate;
+ if (plane_sse) plane_sse[plane] = sse;
+ if (plane_dist) plane_dist[plane] = dist;
+ }
+
+ if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0;
+ if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
+ *out_rate_sum = (int)rate_sum;
+ *out_dist_sum = dist_sum;
+}
+
+static void model_rd_for_sb_with_fullrdy(
+ const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd,
+ int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum,
+ int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb,
+ int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) {
+ const int ref = xd->mi[0]->ref_frame[0];
+
+ int64_t rate_sum = 0;
+ int64_t dist_sum = 0;
+ int64_t total_sse = 0;
+
+ for (int plane = plane_from; plane <= plane_to; ++plane) {
+ struct macroblock_plane *const p = &x->plane[plane];
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ const int bw = block_size_wide[plane_bsize];
+ const int bh = block_size_high[plane_bsize];
+ int64_t sse;
+ int rate;
+ int64_t dist;
+
+ if (x->skip_chroma_rd && plane) continue;
+
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf,
+ pd->dst.stride, bw, bh);
+ } else {
+ sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw,
+ bh);
+ }
+ sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
+
+ RD_STATS rd_stats;
+ if (plane == 0) {
+ select_tx_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, INT64_MAX);
+ if (rd_stats.invalid_rate) {
+ rate = 0;
+ dist = sse << 4;
+ } else {
+ rate = rd_stats.rate;
+ dist = rd_stats.dist;
+ }
+ } else {
+ model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate,
+ &dist);
+ }
+
+ if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
+
+ total_sse += sse;
+ rate_sum += rate;
+ dist_sum += dist;
+
+ if (plane_rate) plane_rate[plane] = rate;
+ if (plane_sse) plane_sse[plane] = sse;
+ if (plane_dist) plane_dist[plane] = dist;
+ }
+
+ if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0;
+ if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
+ *out_rate_sum = (int)rate_sum;
+ *out_dist_sum = dist_sum;
+}
+
+static int64_t search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
+ int block, int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ const TXB_CTX *const txb_ctx,
+ FAST_TX_SEARCH_MODE ftxs_mode,
+ int use_fast_coef_costing, int64_t ref_best_rd,
+ RD_STATS *best_rd_stats) {
+ const AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ struct macroblockd_plane *const pd = &xd->plane[plane];
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const int is_inter = is_inter_block(mbmi);
+ int64_t best_rd = INT64_MAX;
+ uint16_t best_eob = 0;
+ TX_TYPE best_tx_type = DCT_DCT;
+ TX_TYPE last_tx_type = TX_TYPES;
+ const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY;
+ // The buffer used to swap dqcoeff in macroblockd_plane so we can keep dqcoeff
+ // of the best tx_type
+ DECLARE_ALIGNED(32, tran_low_t, this_dqcoeff[MAX_SB_SQUARE]);
+ tran_low_t *orig_dqcoeff = pd->dqcoeff;
+ tran_low_t *best_dqcoeff = this_dqcoeff;
+ const int txk_type_idx =
+ av1_get_txk_type_index(plane_bsize, blk_row, blk_col);
+ av1_invalid_rd_stats(best_rd_stats);
+
+ TXB_RD_INFO *intra_txb_rd_info = NULL;
+ uint16_t cur_joint_ctx = 0;
+ const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
+ const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
+ const int within_border =
+ mi_row >= xd->tile.mi_row_start &&
+ (mi_row + mi_size_high[plane_bsize] < xd->tile.mi_row_end) &&
+ mi_col >= xd->tile.mi_col_start &&
+ (mi_col + mi_size_wide[plane_bsize] < xd->tile.mi_col_end);
+ if (within_border && cpi->sf.use_intra_txb_hash && frame_is_intra_only(cm) &&
+ !is_inter && plane == 0 &&
+ tx_size_wide[tx_size] == tx_size_high[tx_size]) {
+ const uint32_t intra_hash =
+ get_intra_txb_hash(x, plane, blk_row, blk_col, plane_bsize, tx_size);
+ const int intra_hash_idx =
+ find_tx_size_rd_info(&x->txb_rd_record_intra, intra_hash);
+ intra_txb_rd_info = &x->txb_rd_record_intra.tx_rd_info[intra_hash_idx];
+
+ cur_joint_ctx = (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx;
+ if (intra_txb_rd_info->entropy_context == cur_joint_ctx &&
+ x->txb_rd_record_intra.tx_rd_info[intra_hash_idx].valid) {
+ mbmi->txk_type[txk_type_idx] = intra_txb_rd_info->tx_type;
+ const TX_TYPE ref_tx_type =
+ av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col,
+ tx_size, cpi->common.reduced_tx_set_used);
+ if (ref_tx_type == intra_txb_rd_info->tx_type) {
+ best_rd_stats->rate = intra_txb_rd_info->rate;
+ best_rd_stats->dist = intra_txb_rd_info->dist;
+ best_rd_stats->sse = intra_txb_rd_info->sse;
+ best_rd_stats->skip = intra_txb_rd_info->eob == 0;
+ x->plane[plane].eobs[block] = intra_txb_rd_info->eob;
+ x->plane[plane].txb_entropy_ctx[block] =
+ intra_txb_rd_info->txb_entropy_ctx;
+ best_rd = RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->dist);
+ best_eob = intra_txb_rd_info->eob;
+ best_tx_type = intra_txb_rd_info->tx_type;
+ update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
+ best_tx_type);
+ goto RECON_INTRA;
+ }
+ }
+ }
+
+ int rate_cost = 0;
+ TX_TYPE txk_start = DCT_DCT;
+ TX_TYPE txk_end = TX_TYPES - 1;
+ if ((!is_inter && x->use_default_intra_tx_type) ||
+ (is_inter && x->use_default_inter_tx_type)) {
+ txk_start = txk_end = get_default_tx_type(0, xd, tx_size);
+ } else if (x->rd_model == LOW_TXFM_RD || x->cb_partition_scan) {
+ if (plane == 0) txk_end = DCT_DCT;
+ }
+
+ uint8_t best_txb_ctx = 0;
+ const TxSetType tx_set_type =
+ av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used);
+
+ TX_TYPE uv_tx_type = DCT_DCT;
+ if (plane) {
+ // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y
+ uv_tx_type = txk_start = txk_end =
+ av1_get_tx_type(get_plane_type(plane), xd, blk_row, blk_col, tx_size,
+ cm->reduced_tx_set_used);
+ }
+ const uint16_t ext_tx_used_flag = av1_ext_tx_used_flag[tx_set_type];
+ if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 ||
+ ext_tx_used_flag == 0x0001) {
+ txk_start = txk_end = DCT_DCT;
+ }
+ uint16_t allowed_tx_mask = 0; // 1: allow; 0: skip.
+ if (txk_start == txk_end) {
+ allowed_tx_mask = 1 << txk_start;
+ allowed_tx_mask &= ext_tx_used_flag;
+ } else if (fast_tx_search) {
+ allowed_tx_mask = 0x0c01; // V_DCT, H_DCT, DCT_DCT
+ allowed_tx_mask &= ext_tx_used_flag;
+ } else {
+ assert(plane == 0);
+ allowed_tx_mask = ext_tx_used_flag;
+ // !fast_tx_search && txk_end != txk_start && plane == 0
+ const int do_prune = cpi->sf.tx_type_search.prune_mode > NO_PRUNE;
+ if (do_prune && is_inter) {
+ if (cpi->sf.tx_type_search.prune_mode >= PRUNE_2D_ACCURATE) {
+ const uint16_t prune =
+ prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type,
+ cpi->sf.tx_type_search.prune_mode);
+ allowed_tx_mask &= (~prune);
+ } else {
+ allowed_tx_mask &= (~x->tx_search_prune[tx_set_type]);
+ }
+ }
+ }
+ // Need to have at least one transform type allowed.
+ if (allowed_tx_mask == 0) {
+ txk_start = txk_end = (plane ? uv_tx_type : DCT_DCT);
+ allowed_tx_mask = (1 << txk_start);
+ }
+
+ int use_transform_domain_distortion =
+ (cpi->sf.use_transform_domain_distortion > 0) &&
+ // Any 64-pt transforms only preserves half the coefficients.
+ // Therefore transform domain distortion is not valid for these
+ // transform sizes.
+ txsize_sqr_up_map[tx_size] != TX_64X64;
+#if CONFIG_DIST_8X8
+ if (x->using_dist_8x8) use_transform_domain_distortion = 0;
+#endif
+ int calc_pixel_domain_distortion_final =
+ cpi->sf.use_transform_domain_distortion == 1 &&
+ use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD &&
+ !x->cb_partition_scan;
+ if (calc_pixel_domain_distortion_final &&
+ (txk_start == txk_end || allowed_tx_mask == 0x0001))
+ calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0;
+
+ const uint16_t *eobs_ptr = x->plane[plane].eobs;
+
+ const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
+ int64_t block_sse =
+ pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize, tx_bsize);
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2);
+ block_sse *= 16;
+
+ for (TX_TYPE tx_type = txk_start; tx_type <= txk_end; ++tx_type) {
+ if (!(allowed_tx_mask & (1 << tx_type))) continue;
+ if (plane == 0) mbmi->txk_type[txk_type_idx] = tx_type;
+ RD_STATS this_rd_stats;
+ av1_invalid_rd_stats(&this_rd_stats);
+
+ if (!cpi->optimize_seg_arr[mbmi->segment_id]) {
+ av1_xform_quant(
+ cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type,
+ USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP);
+ rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type,
+ txb_ctx, use_fast_coef_costing);
+ } else {
+ av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
+ tx_size, tx_type, AV1_XFORM_QUANT_FP);
+ if (cpi->sf.optimize_b_precheck && best_rd < INT64_MAX &&
+ eobs_ptr[block] >= 4) {
+ // Calculate distortion quickly in transform domain.
+ dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist,
+ &this_rd_stats.sse);
+
+ const int64_t best_rd_ = AOMMIN(best_rd, ref_best_rd);
+ const int64_t dist_cost_estimate =
+ RDCOST(x->rdmult, 0, AOMMIN(this_rd_stats.dist, this_rd_stats.sse));
+ if (dist_cost_estimate - (dist_cost_estimate >> 3) > best_rd_) continue;
+
+ rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type,
+ txb_ctx, use_fast_coef_costing);
+ const int64_t rd_estimate =
+ AOMMIN(RDCOST(x->rdmult, rate_cost, this_rd_stats.dist),
+ RDCOST(x->rdmult, 0, this_rd_stats.sse));
+ if (rd_estimate - (rd_estimate >> 3) > best_rd_) continue;
+ }
+ av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx, 1,
+ &rate_cost);
+ }
+ if (eobs_ptr[block] == 0) {
+ // When eob is 0, pixel domain distortion is more efficient and accurate.
+ this_rd_stats.dist = this_rd_stats.sse = block_sse;
+ } else if (use_transform_domain_distortion) {
+ dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist,
+ &this_rd_stats.sse);
+ } else {
+ this_rd_stats.dist = dist_block_px_domain(
+ cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
+ this_rd_stats.sse = block_sse;
+ }
+
+ this_rd_stats.rate = rate_cost;
+
+ const int64_t rd =
+ RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
+
+ if (rd < best_rd) {
+ best_rd = rd;
+ *best_rd_stats = this_rd_stats;
+ best_tx_type = tx_type;
+ best_txb_ctx = x->plane[plane].txb_entropy_ctx[block];
+ best_eob = x->plane[plane].eobs[block];
+ last_tx_type = best_tx_type;
+
+ // Swap qcoeff and dqcoeff buffers
+ tran_low_t *const tmp_dqcoeff = best_dqcoeff;
+ best_dqcoeff = pd->dqcoeff;
+ pd->dqcoeff = tmp_dqcoeff;
+ }
+
+#if CONFIG_COLLECT_RD_STATS == 1
+ if (plane == 0) {
+ PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col,
+ plane_bsize, tx_size, tx_type, rd);
+ }
+#endif // CONFIG_COLLECT_RD_STATS == 1
+
+ if (cpi->sf.adaptive_txb_search_level) {
+ if ((best_rd - (best_rd >> cpi->sf.adaptive_txb_search_level)) >
+ ref_best_rd) {
+ break;
+ }
+ }
+
+ // Skip transform type search when we found the block has been quantized to
+ // all zero and at the same time, it has better rdcost than doing transform.
+ if (cpi->sf.tx_type_search.skip_tx_search && !best_eob) break;
+ }
+
+ assert(best_rd != INT64_MAX);
+
+ best_rd_stats->skip = best_eob == 0;
+ if (plane == 0) {
+ update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
+ best_tx_type);
+ }
+ x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx;
+ x->plane[plane].eobs[block] = best_eob;
+
+ pd->dqcoeff = best_dqcoeff;
+
+ if (calc_pixel_domain_distortion_final && best_eob) {
+ best_rd_stats->dist = dist_block_px_domain(
+ cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
+ best_rd_stats->sse = block_sse;
+ }
+
+ if (intra_txb_rd_info != NULL) {
+ intra_txb_rd_info->valid = 1;
+ intra_txb_rd_info->entropy_context = cur_joint_ctx;
+ intra_txb_rd_info->rate = best_rd_stats->rate;
+ intra_txb_rd_info->dist = best_rd_stats->dist;
+ intra_txb_rd_info->sse = best_rd_stats->sse;
+ intra_txb_rd_info->eob = best_eob;
+ intra_txb_rd_info->txb_entropy_ctx = best_txb_ctx;
+ if (plane == 0) intra_txb_rd_info->tx_type = best_tx_type;
+ }
+
+RECON_INTRA:
+ if (!is_inter && best_eob &&
+ (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] ||
+ blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) {
+ // intra mode needs decoded result such that the next transform block
+ // can use it for prediction.
+ // if the last search tx_type is the best tx_type, we don't need to
+ // do this again
+ if (best_tx_type != last_tx_type) {
+ if (!cpi->optimize_seg_arr[mbmi->segment_id]) {
+ av1_xform_quant(
+ cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
+ best_tx_type,
+ USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP);
+ } else {
+ av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
+ tx_size, best_tx_type, AV1_XFORM_QUANT_FP);
+ av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx, 1,
+ &rate_cost);
+ }
+ }
+
+ inverse_transform_block_facade(xd, plane, block, blk_row, blk_col,
+ x->plane[plane].eobs[block],
+ cm->reduced_tx_set_used);
+
+ // This may happen because of hash collision. The eob stored in the hash
+ // table is non-zero, but the real eob is zero. We need to make sure tx_type
+ // is DCT_DCT in this case.
+ if (plane == 0 && x->plane[plane].eobs[block] == 0 &&
+ best_tx_type != DCT_DCT) {
+ update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
+ DCT_DCT);
+ }
+ }
+ pd->dqcoeff = orig_dqcoeff;
+
+ return best_rd;
+}
+
+static void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
+ struct rdcost_block_args *args = arg;
+ MACROBLOCK *const x = args->x;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const AV1_COMP *cpi = args->cpi;
+ ENTROPY_CONTEXT *a = args->t_above + blk_col;
+ ENTROPY_CONTEXT *l = args->t_left + blk_row;
+ const AV1_COMMON *cm = &cpi->common;
+ int64_t rd1, rd2, rd;
+ RD_STATS this_rd_stats;
+
+ av1_init_rd_stats(&this_rd_stats);
+
+ if (args->exit_early) {
+ args->incomplete_exit = 1;
+ return;
+ }
+
+ if (!is_inter_block(mbmi)) {
+ av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
+ av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
+ }
+ TXB_CTX txb_ctx;
+ get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
+ search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
+ &txb_ctx, args->ftxs_mode, args->use_fast_coef_costing,
+ args->best_rd - args->this_rd, &this_rd_stats);
+
+ if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
+ assert(!is_inter_block(mbmi) || plane_bsize < BLOCK_8X8);
+ cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
+ }
+
+#if CONFIG_RD_DEBUG
+ av1_update_txb_coeff_cost(&this_rd_stats, plane, tx_size, blk_row, blk_col,
+ this_rd_stats.rate);
+#endif // CONFIG_RD_DEBUG
+ av1_set_txb_context(x, plane, block, tx_size, a, l);
+
+ const int blk_idx =
+ blk_row * (block_size_wide[plane_bsize] >> tx_size_wide_log2[0]) +
+ blk_col;
+
+ if (plane == 0)
+ set_blk_skip(x, plane, blk_idx, x->plane[plane].eobs[block] == 0);
+ else
+ set_blk_skip(x, plane, blk_idx, 0);
+
+ rd1 = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
+ rd2 = RDCOST(x->rdmult, 0, this_rd_stats.sse);
+
+ // TODO(jingning): temporarily enabled only for luma component
+ rd = AOMMIN(rd1, rd2);
+
+ this_rd_stats.skip &= !x->plane[plane].eobs[block];
+
+ av1_merge_rd_stats(&args->rd_stats, &this_rd_stats);
+
+ args->this_rd += rd;
+
+ if (args->this_rd > args->best_rd) {
+ args->exit_early = 1;
+ return;
+ }
+}
+
+static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi,
+ RD_STATS *rd_stats, int64_t ref_best_rd, int plane,
+ BLOCK_SIZE bsize, TX_SIZE tx_size,
+ int use_fast_coef_casting,
+ FAST_TX_SEARCH_MODE ftxs_mode) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ struct rdcost_block_args args;
+ av1_zero(args);
+ args.x = x;
+ args.cpi = cpi;
+ args.best_rd = ref_best_rd;
+ args.use_fast_coef_costing = use_fast_coef_casting;
+ args.ftxs_mode = ftxs_mode;
+ av1_init_rd_stats(&args.rd_stats);
+
+ if (plane == 0) xd->mi[0]->tx_size = tx_size;
+
+ av1_get_entropy_contexts(bsize, pd, args.t_above, args.t_left);
+
+ av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm,
+ &args);
+
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int is_inter = is_inter_block(mbmi);
+ const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early;
+
+ if (invalid_rd) {
+ av1_invalid_rd_stats(rd_stats);
+ } else {
+ *rd_stats = args.rd_stats;
+ }
+}
+
+static int tx_size_cost(const AV1_COMMON *const cm, const MACROBLOCK *const x,
+ BLOCK_SIZE bsize, TX_SIZE tx_size) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+
+ if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type)) {
+ const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
+ const int depth = tx_size_to_depth(tx_size, bsize);
+ const int tx_size_ctx = get_tx_size_context(xd);
+ int r_tx_size = x->tx_size_cost[tx_size_cat][tx_size_ctx][depth];
+ return r_tx_size;
+ } else {
+ return 0;
+ }
+}
+
+static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, int64_t ref_best_rd, BLOCK_SIZE bs,
+ TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int64_t rd = INT64_MAX;
+ const int skip_ctx = av1_get_skip_context(xd);
+ int s0, s1;
+ const int is_inter = is_inter_block(mbmi);
+ const int tx_select =
+ cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type);
+ int ctx = txfm_partition_context(
+ xd->above_txfm_context, xd->left_txfm_context, mbmi->sb_type, tx_size);
+ const int r_tx_size = is_inter ? x->txfm_partition_cost[ctx][0]
+ : tx_size_cost(cm, x, bs, tx_size);
+
+ assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs)));
+
+ s0 = x->skip_cost[skip_ctx][0];
+ s1 = x->skip_cost[skip_ctx][1];
+
+ mbmi->tx_size = tx_size;
+ txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs, tx_size,
+ cpi->sf.use_fast_coef_costing, ftxs_mode);
+ if (rd_stats->rate == INT_MAX) return INT64_MAX;
+
+ if (rd_stats->skip) {
+ if (is_inter) {
+ rd = RDCOST(x->rdmult, s1, rd_stats->sse);
+ } else {
+ rd = RDCOST(x->rdmult, s1 + r_tx_size * tx_select, rd_stats->sse);
+ }
+ } else {
+ rd = RDCOST(x->rdmult, rd_stats->rate + s0 + r_tx_size * tx_select,
+ rd_stats->dist);
+ }
+
+ if (tx_select) rd_stats->rate += r_tx_size;
+
+ if (is_inter && !xd->lossless[xd->mi[0]->segment_id] && !(rd_stats->skip))
+ rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse));
+
+ return rd;
+}
+
+static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs,
+ MACROBLOCK *x, int *r, int64_t *d, int *s,
+ int64_t *sse, int64_t ref_best_rd) {
+ RD_STATS rd_stats;
+ av1_subtract_plane(x, bs, 0);
+ x->rd_model = LOW_TXFM_RD;
+ int64_t rd = txfm_yrd(cpi, x, &rd_stats, ref_best_rd, bs,
+ max_txsize_rect_lookup[bs], FTXS_NONE);
+ x->rd_model = FULL_TXFM_RD;
+ *r = rd_stats.rate;
+ *d = rd_stats.dist;
+ *s = rd_stats.skip;
+ *sse = rd_stats.sse;
+ return rd;
+}
+
+static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, int64_t ref_best_rd,
+ BLOCK_SIZE bs) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int is_inter = is_inter_block(mbmi);
+ mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode);
+ const TxSetType tx_set_type =
+ av1_get_ext_tx_set_type(mbmi->tx_size, is_inter, cm->reduced_tx_set_used);
+ prune_tx(cpi, bs, x, xd, tx_set_type);
+ txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs,
+ mbmi->tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE);
+ // Reset the pruning flags.
+ av1_zero(x->tx_search_prune);
+ x->tx_split_prune_flag = 0;
+}
+
+static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, int64_t ref_best_rd,
+ BLOCK_SIZE bs) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+
+ mbmi->tx_size = TX_4X4;
+ txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size,
+ cpi->sf.use_fast_coef_costing, FTXS_NONE);
+}
+
+static INLINE int bsize_to_num_blk(BLOCK_SIZE bsize) {
+ int num_blk = 1 << (num_pels_log2_lookup[bsize] - 2 * tx_size_wide_log2[0]);
+ return num_blk;
+}
+
+static int get_search_init_depth(int mi_width, int mi_height, int is_inter,
+ const SPEED_FEATURES *sf) {
+ if (sf->tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH;
+
+ if (sf->tx_size_search_lgr_block) {
+ if (mi_width > mi_size_wide[BLOCK_64X64] ||
+ mi_height > mi_size_high[BLOCK_64X64])
+ return MAX_VARTX_DEPTH;
+ }
+
+ if (is_inter) {
+ return (mi_height != mi_width) ? sf->inter_tx_size_search_init_depth_rect
+ : sf->inter_tx_size_search_init_depth_sqr;
+ } else {
+ return (mi_height != mi_width) ? sf->intra_tx_size_search_init_depth_rect
+ : sf->intra_tx_size_search_init_depth_sqr;
+ }
+}
+
+static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi,
+ MACROBLOCK *x, RD_STATS *rd_stats,
+ int64_t ref_best_rd, BLOCK_SIZE bs) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int64_t rd = INT64_MAX;
+ int n;
+ int start_tx;
+ int depth;
+ int64_t best_rd = INT64_MAX;
+ const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs];
+ TX_SIZE best_tx_size = max_rect_tx_size;
+ TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN];
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ const int n4 = bsize_to_num_blk(bs);
+ const int tx_select = cm->tx_mode == TX_MODE_SELECT;
+
+ av1_invalid_rd_stats(rd_stats);
+
+ if (tx_select) {
+ start_tx = max_rect_tx_size;
+ depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs],
+ is_inter_block(mbmi), &cpi->sf);
+ } else {
+ const TX_SIZE chosen_tx_size = tx_size_from_tx_mode(bs, cm->tx_mode);
+ start_tx = chosen_tx_size;
+ depth = MAX_TX_DEPTH;
+ }
+
+ prune_tx(cpi, bs, x, xd, EXT_TX_SET_ALL16);
+
+ for (n = start_tx; depth <= MAX_TX_DEPTH; depth++, n = sub_tx_size_map[n]) {
+#if CONFIG_DIST_8X8
+ if (x->using_dist_8x8) {
+ if (tx_size_wide[n] < 8 || tx_size_high[n] < 8) continue;
+ }
+#endif
+ RD_STATS this_rd_stats;
+ if (mbmi->ref_mv_idx > 0) x->rd_model = LOW_TXFM_RD;
+ rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, n, FTXS_NONE);
+ x->rd_model = FULL_TXFM_RD;
+
+ if (rd < best_rd) {
+ memcpy(best_txk_type, mbmi->txk_type,
+ sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN);
+ memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4);
+ best_tx_size = n;
+ best_rd = rd;
+ *rd_stats = this_rd_stats;
+ }
+ if (n == TX_4X4) break;
+ }
+
+ if (rd_stats->rate != INT_MAX) {
+ mbmi->tx_size = best_tx_size;
+ memcpy(mbmi->txk_type, best_txk_type,
+ sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN);
+ memcpy(x->blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * n4);
+ }
+
+ // Reset the pruning flags.
+ av1_zero(x->tx_search_prune);
+ x->tx_split_prune_flag = 0;
+}
+
+static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bs,
+ int64_t ref_best_rd) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ av1_init_rd_stats(rd_stats);
+
+ assert(bs == xd->mi[0]->sb_type);
+
+ if (xd->lossless[xd->mi[0]->segment_id]) {
+ choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
+ } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
+ choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
+ } else {
+ choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs);
+ }
+}
+
+// Return the rate cost for luma prediction mode info. of intra blocks.
+static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x,
+ const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
+ int mode_cost) {
+ int total_rate = mode_cost;
+ const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0;
+ const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra;
+ const int use_intrabc = mbmi->use_intrabc;
+ // Can only activate one mode.
+ assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc +
+ use_filter_intra) <= 1);
+ const int try_palette =
+ av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type);
+ if (try_palette && mbmi->mode == DC_PRED) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
+ const int mode_ctx = av1_get_palette_mode_ctx(xd);
+ total_rate += x->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette];
+ if (use_palette) {
+ const uint8_t *const color_map = xd->plane[0].color_index_map;
+ int block_width, block_height, rows, cols;
+ av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
+ &cols);
+ const int plt_size = mbmi->palette_mode_info.palette_size[0];
+ int palette_mode_cost =
+ x->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
+ write_uniform_cost(plt_size, color_map[0]);
+ uint16_t color_cache[2 * PALETTE_MAX_SIZE];
+ const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
+ palette_mode_cost +=
+ av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache,
+ n_cache, cpi->common.seq_params.bit_depth);
+ palette_mode_cost +=
+ av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP);
+ total_rate += palette_mode_cost;
+ }
+ }
+ if (av1_filter_intra_allowed(&cpi->common, mbmi)) {
+ total_rate += x->filter_intra_cost[mbmi->sb_type][use_filter_intra];
+ if (use_filter_intra) {
+ total_rate += x->filter_intra_mode_cost[mbmi->filter_intra_mode_info
+ .filter_intra_mode];
+ }
+ }
+ if (av1_is_directional_mode(mbmi->mode)) {
+ if (av1_use_angle_delta(bsize)) {
+ total_rate += x->angle_delta_cost[mbmi->mode - V_PRED]
+ [MAX_ANGLE_DELTA +
+ mbmi->angle_delta[PLANE_TYPE_Y]];
+ }
+ }
+ if (av1_allow_intrabc(&cpi->common))
+ total_rate += x->intrabc_cost[use_intrabc];
+ return total_rate;
+}
+
+// Return the rate cost for chroma prediction mode info. of intra blocks.
+static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x,
+ const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
+ int mode_cost) {
+ int total_rate = mode_cost;
+ const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0;
+ const UV_PREDICTION_MODE mode = mbmi->uv_mode;
+ // Can only activate one mode.
+ assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1);
+
+ const int try_palette =
+ av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type);
+ if (try_palette && mode == UV_DC_PRED) {
+ const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info;
+ total_rate +=
+ x->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette];
+ if (use_palette) {
+ const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
+ const int plt_size = pmi->palette_size[1];
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const uint8_t *const color_map = xd->plane[1].color_index_map;
+ int palette_mode_cost =
+ x->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
+ write_uniform_cost(plt_size, color_map[0]);
+ uint16_t color_cache[2 * PALETTE_MAX_SIZE];
+ const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
+ palette_mode_cost += av1_palette_color_cost_uv(
+ pmi, color_cache, n_cache, cpi->common.seq_params.bit_depth);
+ palette_mode_cost +=
+ av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP);
+ total_rate += palette_mode_cost;
+ }
+ }
+ if (av1_is_directional_mode(get_uv_mode(mode))) {
+ if (av1_use_angle_delta(bsize)) {
+ total_rate +=
+ x->angle_delta_cost[mode - V_PRED][mbmi->angle_delta[PLANE_TYPE_UV] +
+ MAX_ANGLE_DELTA];
+ }
+ }
+ return total_rate;
+}
+
+static int conditional_skipintra(PREDICTION_MODE mode,
+ PREDICTION_MODE best_intra_mode) {
+ if (mode == D113_PRED && best_intra_mode != V_PRED &&
+ best_intra_mode != D135_PRED)
+ return 1;
+ if (mode == D67_PRED && best_intra_mode != V_PRED &&
+ best_intra_mode != D45_PRED)
+ return 1;
+ if (mode == D203_PRED && best_intra_mode != H_PRED &&
+ best_intra_mode != D45_PRED)
+ return 1;
+ if (mode == D157_PRED && best_intra_mode != H_PRED &&
+ best_intra_mode != D135_PRED)
+ return 1;
+ return 0;
+}
+
+// Model based RD estimation for luma intra blocks.
+static int64_t intra_model_yrd(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ BLOCK_SIZE bsize, int mode_cost, int mi_row,
+ int mi_col) {
+ const AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ RD_STATS this_rd_stats;
+ int row, col;
+ int64_t temp_sse, this_rd;
+ TX_SIZE tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode);
+ const int stepr = tx_size_high_unit[tx_size];
+ const int stepc = tx_size_wide_unit[tx_size];
+ const int max_blocks_wide = max_block_wide(xd, bsize, 0);
+ const int max_blocks_high = max_block_high(xd, bsize, 0);
+ mbmi->tx_size = tx_size;
+ // Prediction.
+ for (row = 0; row < max_blocks_high; row += stepr) {
+ for (col = 0; col < max_blocks_wide; col += stepc) {
+ av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size);
+ }
+ }
+ // RD estimation.
+ model_rd_sb_fn[MODELRD_TYPE_INTRA](
+ cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &this_rd_stats.rate,
+ &this_rd_stats.dist, &this_rd_stats.skip, &temp_sse, NULL, NULL, NULL);
+ if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
+ mode_cost +=
+ x->angle_delta_cost[mbmi->mode - V_PRED]
+ [MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]];
+ }
+ if (mbmi->mode == DC_PRED &&
+ av1_filter_intra_allowed_bsize(cm, mbmi->sb_type)) {
+ if (mbmi->filter_intra_mode_info.use_filter_intra) {
+ const int mode = mbmi->filter_intra_mode_info.filter_intra_mode;
+ mode_cost += x->filter_intra_cost[mbmi->sb_type][1] +
+ x->filter_intra_mode_cost[mode];
+ } else {
+ mode_cost += x->filter_intra_cost[mbmi->sb_type][0];
+ }
+ }
+ this_rd =
+ RDCOST(x->rdmult, this_rd_stats.rate + mode_cost, this_rd_stats.dist);
+ return this_rd;
+}
+
+// Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x
+// new_height'. Extra rows and columns are filled in by copying last valid
+// row/column.
+static void extend_palette_color_map(uint8_t *const color_map, int orig_width,
+ int orig_height, int new_width,
+ int new_height) {
+ int j;
+ assert(new_width >= orig_width);
+ assert(new_height >= orig_height);
+ if (new_width == orig_width && new_height == orig_height) return;
+
+ for (j = orig_height - 1; j >= 0; --j) {
+ memmove(color_map + j * new_width, color_map + j * orig_width, orig_width);
+ // Copy last column to extra columns.
+ memset(color_map + j * new_width + orig_width,
+ color_map[j * new_width + orig_width - 1], new_width - orig_width);
+ }
+ // Copy last row to extra rows.
+ for (j = orig_height; j < new_height; ++j) {
+ memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width,
+ new_width);
+ }
+}
+
+// Bias toward using colors in the cache.
+// TODO(huisu): Try other schemes to improve compression.
+static void optimize_palette_colors(uint16_t *color_cache, int n_cache,
+ int n_colors, int stride, int *centroids) {
+ if (n_cache <= 0) return;
+ for (int i = 0; i < n_colors * stride; i += stride) {
+ int min_diff = abs(centroids[i] - (int)color_cache[0]);
+ int idx = 0;
+ for (int j = 1; j < n_cache; ++j) {
+ const int this_diff = abs(centroids[i] - color_cache[j]);
+ if (this_diff < min_diff) {
+ min_diff = this_diff;
+ idx = j;
+ }
+ }
+ if (min_diff <= 1) centroids[i] = color_cache[idx];
+ }
+}
+
+// Given the base colors as specified in centroids[], calculate the RD cost
+// of palette mode.
+static void palette_rd_y(const AV1_COMP *const cpi, MACROBLOCK *x,
+ MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, int dc_mode_cost, const int *data,
+ int *centroids, int n, uint16_t *color_cache,
+ int n_cache, MB_MODE_INFO *best_mbmi,
+ uint8_t *best_palette_color_map, int64_t *best_rd,
+ int64_t *best_model_rd, int *rate, int *rate_tokenonly,
+ int *rate_overhead, int64_t *distortion,
+ int *skippable, PICK_MODE_CONTEXT *ctx,
+ uint8_t *blk_skip) {
+ optimize_palette_colors(color_cache, n_cache, n, 1, centroids);
+ int k = av1_remove_duplicates(centroids, n);
+ if (k < PALETTE_MIN_SIZE) {
+ // Too few unique colors to create a palette. And DC_PRED will work
+ // well for that case anyway. So skip.
+ return;
+ }
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ if (cpi->common.seq_params.use_highbitdepth)
+ for (int i = 0; i < k; ++i)
+ pmi->palette_colors[i] = clip_pixel_highbd(
+ (int)centroids[i], cpi->common.seq_params.bit_depth);
+ else
+ for (int i = 0; i < k; ++i)
+ pmi->palette_colors[i] = clip_pixel(centroids[i]);
+ pmi->palette_size[0] = k;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ uint8_t *const color_map = xd->plane[0].color_index_map;
+ int block_width, block_height, rows, cols;
+ av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
+ &cols);
+ av1_calc_indices(data, centroids, color_map, rows * cols, k, 1);
+ extend_palette_color_map(color_map, cols, rows, block_width, block_height);
+ const int palette_mode_cost =
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost);
+ int64_t this_model_rd =
+ intra_model_yrd(cpi, x, bsize, palette_mode_cost, mi_row, mi_col);
+ if (*best_model_rd != INT64_MAX &&
+ this_model_rd > *best_model_rd + (*best_model_rd >> 1))
+ return;
+ if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd;
+ RD_STATS tokenonly_rd_stats;
+ super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
+ if (tokenonly_rd_stats.rate == INT_MAX) return;
+ int this_rate = tokenonly_rd_stats.rate + palette_mode_cost;
+ int64_t this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+ if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) {
+ tokenonly_rd_stats.rate -=
+ tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size);
+ }
+ if (this_rd < *best_rd) {
+ *best_rd = this_rd;
+ memcpy(best_palette_color_map, color_map,
+ block_width * block_height * sizeof(color_map[0]));
+ *best_mbmi = *mbmi;
+ memcpy(blk_skip, x->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ *rate_overhead = this_rate - tokenonly_rd_stats.rate;
+ if (rate) *rate = this_rate;
+ if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate;
+ if (distortion) *distortion = tokenonly_rd_stats.dist;
+ if (skippable) *skippable = tokenonly_rd_stats.skip;
+ }
+}
+
+static int rd_pick_palette_intra_sby(
+ const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, int dc_mode_cost, MB_MODE_INFO *best_mbmi,
+ uint8_t *best_palette_color_map, int64_t *best_rd, int64_t *best_model_rd,
+ int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable,
+ PICK_MODE_CONTEXT *ctx, uint8_t *best_blk_skip) {
+ int rate_overhead = 0;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ assert(av1_allow_palette(cpi->common.allow_screen_content_tools, bsize));
+ const SequenceHeader *const seq_params = &cpi->common.seq_params;
+ int colors, n;
+ const int src_stride = x->plane[0].src.stride;
+ const uint8_t *const src = x->plane[0].src.buf;
+ uint8_t *const color_map = xd->plane[0].color_index_map;
+ int block_width, block_height, rows, cols;
+ av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
+ &cols);
+
+ int count_buf[1 << 12]; // Maximum (1 << 12) color levels.
+ if (seq_params->use_highbitdepth)
+ colors = av1_count_colors_highbd(src, src_stride, rows, cols,
+ seq_params->bit_depth, count_buf);
+ else
+ colors = av1_count_colors(src, src_stride, rows, cols, count_buf);
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+
+ if (colors > 1 && colors <= 64) {
+ int r, c, i;
+ const int max_itr = 50;
+ int *const data = x->palette_buffer->kmeans_data_buf;
+ int centroids[PALETTE_MAX_SIZE];
+ int lb, ub, val;
+ uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
+ if (seq_params->use_highbitdepth)
+ lb = ub = src16[0];
+ else
+ lb = ub = src[0];
+
+ if (seq_params->use_highbitdepth) {
+ for (r = 0; r < rows; ++r) {
+ for (c = 0; c < cols; ++c) {
+ val = src16[r * src_stride + c];
+ data[r * cols + c] = val;
+ if (val < lb)
+ lb = val;
+ else if (val > ub)
+ ub = val;
+ }
+ }
+ } else {
+ for (r = 0; r < rows; ++r) {
+ for (c = 0; c < cols; ++c) {
+ val = src[r * src_stride + c];
+ data[r * cols + c] = val;
+ if (val < lb)
+ lb = val;
+ else if (val > ub)
+ ub = val;
+ }
+ }
+ }
+
+ mbmi->mode = DC_PRED;
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+
+ uint16_t color_cache[2 * PALETTE_MAX_SIZE];
+ const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
+
+ // Find the dominant colors, stored in top_colors[].
+ int top_colors[PALETTE_MAX_SIZE] = { 0 };
+ for (i = 0; i < AOMMIN(colors, PALETTE_MAX_SIZE); ++i) {
+ int max_count = 0;
+ for (int j = 0; j < (1 << seq_params->bit_depth); ++j) {
+ if (count_buf[j] > max_count) {
+ max_count = count_buf[j];
+ top_colors[i] = j;
+ }
+ }
+ assert(max_count > 0);
+ count_buf[top_colors[i]] = 0;
+ }
+
+ // Try the dominant colors directly.
+ // TODO(huisu@google.com): Try to avoid duplicate computation in cases
+ // where the dominant colors and the k-means results are similar.
+ for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) {
+ for (i = 0; i < n; ++i) centroids[i] = top_colors[i];
+ palette_rd_y(cpi, x, mbmi, bsize, mi_row, mi_col, dc_mode_cost, data,
+ centroids, n, color_cache, n_cache, best_mbmi,
+ best_palette_color_map, best_rd, best_model_rd, rate,
+ rate_tokenonly, &rate_overhead, distortion, skippable, ctx,
+ best_blk_skip);
+ }
+
+ // K-means clustering.
+ for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) {
+ if (colors == PALETTE_MIN_SIZE) {
+ // Special case: These colors automatically become the centroids.
+ assert(colors == n);
+ assert(colors == 2);
+ centroids[0] = lb;
+ centroids[1] = ub;
+ } else {
+ for (i = 0; i < n; ++i) {
+ centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2;
+ }
+ av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr);
+ }
+ palette_rd_y(cpi, x, mbmi, bsize, mi_row, mi_col, dc_mode_cost, data,
+ centroids, n, color_cache, n_cache, best_mbmi,
+ best_palette_color_map, best_rd, best_model_rd, rate,
+ rate_tokenonly, &rate_overhead, distortion, skippable, ctx,
+ best_blk_skip);
+ }
+ }
+
+ if (best_mbmi->palette_mode_info.palette_size[0] > 0) {
+ memcpy(color_map, best_palette_color_map,
+ block_width * block_height * sizeof(best_palette_color_map[0]));
+ }
+ *mbmi = *best_mbmi;
+ return rate_overhead;
+}
+
+// Return 1 if an filter intra mode is selected; return 0 otherwise.
+static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int mi_row, int mi_col, int *rate,
+ int *rate_tokenonly, int64_t *distortion,
+ int *skippable, BLOCK_SIZE bsize,
+ int mode_cost, int64_t *best_rd,
+ int64_t *best_model_rd,
+ PICK_MODE_CONTEXT *ctx) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ int filter_intra_selected_flag = 0;
+ FILTER_INTRA_MODE mode;
+ TX_SIZE best_tx_size = TX_8X8;
+ FILTER_INTRA_MODE_INFO filter_intra_mode_info;
+ TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN];
+ (void)ctx;
+ av1_zero(filter_intra_mode_info);
+ mbmi->filter_intra_mode_info.use_filter_intra = 1;
+ mbmi->mode = DC_PRED;
+ mbmi->palette_mode_info.palette_size[0] = 0;
+
+ for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
+ int64_t this_rd, this_model_rd;
+ RD_STATS tokenonly_rd_stats;
+ mbmi->filter_intra_mode_info.filter_intra_mode = mode;
+ this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost, mi_row, mi_col);
+ if (*best_model_rd != INT64_MAX &&
+ this_model_rd > *best_model_rd + (*best_model_rd >> 1))
+ continue;
+ if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd;
+ super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
+ if (tokenonly_rd_stats.rate == INT_MAX) continue;
+ const int this_rate =
+ tokenonly_rd_stats.rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost);
+ this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+
+ if (this_rd < *best_rd) {
+ *best_rd = this_rd;
+ best_tx_size = mbmi->tx_size;
+ filter_intra_mode_info = mbmi->filter_intra_mode_info;
+ memcpy(best_txk_type, mbmi->txk_type,
+ sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN);
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ *rate = this_rate;
+ *rate_tokenonly = tokenonly_rd_stats.rate;
+ *distortion = tokenonly_rd_stats.dist;
+ *skippable = tokenonly_rd_stats.skip;
+ filter_intra_selected_flag = 1;
+ }
+ }
+
+ if (filter_intra_selected_flag) {
+ mbmi->mode = DC_PRED;
+ mbmi->tx_size = best_tx_size;
+ mbmi->filter_intra_mode_info = filter_intra_mode_info;
+ memcpy(mbmi->txk_type, best_txk_type,
+ sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN);
+ return 1;
+ } else {
+ return 0;
+ }
+}
+
+// Run RD calculation with given luma intra prediction angle., and return
+// the RD cost. Update the best mode info. if the RD cost is the best so far.
+static int64_t calc_rd_given_intra_angle(
+ const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, int mode_cost, int64_t best_rd_in, int8_t angle_delta,
+ int max_angle_delta, int *rate, RD_STATS *rd_stats, int *best_angle_delta,
+ TX_SIZE *best_tx_size, int64_t *best_rd, int64_t *best_model_rd,
+ TX_TYPE *best_txk_type, uint8_t *best_blk_skip) {
+ RD_STATS tokenonly_rd_stats;
+ int64_t this_rd, this_model_rd;
+ MB_MODE_INFO *mbmi = x->e_mbd.mi[0];
+ const int n4 = bsize_to_num_blk(bsize);
+ assert(!is_inter_block(mbmi));
+ mbmi->angle_delta[PLANE_TYPE_Y] = angle_delta;
+ this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost, mi_row, mi_col);
+ if (*best_model_rd != INT64_MAX &&
+ this_model_rd > *best_model_rd + (*best_model_rd >> 1))
+ return INT64_MAX;
+ if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd;
+ super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in);
+ if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX;
+
+ int this_rate =
+ mode_cost + tokenonly_rd_stats.rate +
+ x->angle_delta_cost[mbmi->mode - V_PRED][max_angle_delta + angle_delta];
+ this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+
+ if (this_rd < *best_rd) {
+ memcpy(best_txk_type, mbmi->txk_type,
+ sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
+ memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4);
+ *best_rd = this_rd;
+ *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_Y];
+ *best_tx_size = mbmi->tx_size;
+ *rate = this_rate;
+ rd_stats->rate = tokenonly_rd_stats.rate;
+ rd_stats->dist = tokenonly_rd_stats.dist;
+ rd_stats->skip = tokenonly_rd_stats.skip;
+ }
+ return this_rd;
+}
+
+// With given luma directional intra prediction mode, pick the best angle delta
+// Return the RD cost corresponding to the best angle delta.
+static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int mi_row, int mi_col, int *rate,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int mode_cost, int64_t best_rd,
+ int64_t *best_model_rd) {
+ MB_MODE_INFO *mbmi = x->e_mbd.mi[0];
+ assert(!is_inter_block(mbmi));
+
+ int best_angle_delta = 0;
+ int64_t rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
+ TX_SIZE best_tx_size = mbmi->tx_size;
+ TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN];
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+
+ for (int i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;
+
+ int first_try = 1;
+ for (int angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
+ for (int i = 0; i < 2; ++i) {
+ const int64_t best_rd_in =
+ (best_rd == INT64_MAX) ? INT64_MAX
+ : (best_rd + (best_rd >> (first_try ? 3 : 5)));
+ const int64_t this_rd = calc_rd_given_intra_angle(
+ cpi, x, bsize, mi_row, mi_col, mode_cost, best_rd_in,
+ (1 - 2 * i) * angle_delta, MAX_ANGLE_DELTA, rate, rd_stats,
+ &best_angle_delta, &best_tx_size, &best_rd, best_model_rd,
+ best_txk_type, best_blk_skip);
+ rd_cost[2 * angle_delta + i] = this_rd;
+ if (first_try && this_rd == INT64_MAX) return best_rd;
+ first_try = 0;
+ if (angle_delta == 0) {
+ rd_cost[1] = this_rd;
+ break;
+ }
+ }
+ }
+
+ assert(best_rd != INT64_MAX);
+ for (int angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
+ for (int i = 0; i < 2; ++i) {
+ int skip_search = 0;
+ const int64_t rd_thresh = best_rd + (best_rd >> 5);
+ if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
+ rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
+ skip_search = 1;
+ if (!skip_search) {
+ calc_rd_given_intra_angle(cpi, x, bsize, mi_row, mi_col, mode_cost,
+ best_rd, (1 - 2 * i) * angle_delta,
+ MAX_ANGLE_DELTA, rate, rd_stats,
+ &best_angle_delta, &best_tx_size, &best_rd,
+ best_model_rd, best_txk_type, best_blk_skip);
+ }
+ }
+ }
+
+ if (rd_stats->rate != INT_MAX) {
+ mbmi->tx_size = best_tx_size;
+ mbmi->angle_delta[PLANE_TYPE_Y] = best_angle_delta;
+ memcpy(mbmi->txk_type, best_txk_type,
+ sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
+ memcpy(x->blk_skip, best_blk_skip,
+ sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize));
+ }
+ return best_rd;
+}
+
+// Indices are sign, integer, and fractional part of the gradient value
+static const uint8_t gradient_to_angle_bin[2][7][16] = {
+ {
+ { 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 },
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
+ { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
+ { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
+ },
+ {
+ { 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 },
+ { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 },
+ { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
+ { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
+ { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
+ { 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
+ { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
+ },
+};
+
+/* clang-format off */
+static const uint8_t mode_to_angle_bin[INTRA_MODES] = {
+ 0, 2, 6, 0, 4, 3, 5, 7, 1, 0,
+ 0,
+};
+/* clang-format on */
+
+static void angle_estimation(const uint8_t *src, int src_stride, int rows,
+ int cols, BLOCK_SIZE bsize,
+ uint8_t *directional_mode_skip_mask) {
+ memset(directional_mode_skip_mask, 0,
+ INTRA_MODES * sizeof(*directional_mode_skip_mask));
+ // Check if angle_delta is used
+ if (!av1_use_angle_delta(bsize)) return;
+ uint64_t hist[DIRECTIONAL_MODES];
+ memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
+ src += src_stride;
+ int r, c, dx, dy;
+ for (r = 1; r < rows; ++r) {
+ for (c = 1; c < cols; ++c) {
+ dx = src[c] - src[c - 1];
+ dy = src[c] - src[c - src_stride];
+ int index;
+ const int temp = dx * dx + dy * dy;
+ if (dy == 0) {
+ index = 2;
+ } else {
+ const int sn = (dx > 0) ^ (dy > 0);
+ dx = abs(dx);
+ dy = abs(dy);
+ const int remd = (dx % dy) * 16 / dy;
+ const int quot = dx / dy;
+ index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
+ }
+ hist[index] += temp;
+ }
+ src += src_stride;
+ }
+
+ int i;
+ uint64_t hist_sum = 0;
+ for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
+ for (i = 0; i < INTRA_MODES; ++i) {
+ if (av1_is_directional_mode(i)) {
+ const uint8_t angle_bin = mode_to_angle_bin[i];
+ uint64_t score = 2 * hist[angle_bin];
+ int weight = 2;
+ if (angle_bin > 0) {
+ score += hist[angle_bin - 1];
+ ++weight;
+ }
+ if (angle_bin < DIRECTIONAL_MODES - 1) {
+ score += hist[angle_bin + 1];
+ ++weight;
+ }
+ if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
+ directional_mode_skip_mask[i] = 1;
+ }
+ }
+}
+
+static void highbd_angle_estimation(const uint8_t *src8, int src_stride,
+ int rows, int cols, BLOCK_SIZE bsize,
+ uint8_t *directional_mode_skip_mask) {
+ memset(directional_mode_skip_mask, 0,
+ INTRA_MODES * sizeof(*directional_mode_skip_mask));
+ // Check if angle_delta is used
+ if (!av1_use_angle_delta(bsize)) return;
+ uint16_t *src = CONVERT_TO_SHORTPTR(src8);
+ uint64_t hist[DIRECTIONAL_MODES];
+ memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
+ src += src_stride;
+ int r, c, dx, dy;
+ for (r = 1; r < rows; ++r) {
+ for (c = 1; c < cols; ++c) {
+ dx = src[c] - src[c - 1];
+ dy = src[c] - src[c - src_stride];
+ int index;
+ const int temp = dx * dx + dy * dy;
+ if (dy == 0) {
+ index = 2;
+ } else {
+ const int sn = (dx > 0) ^ (dy > 0);
+ dx = abs(dx);
+ dy = abs(dy);
+ const int remd = (dx % dy) * 16 / dy;
+ const int quot = dx / dy;
+ index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
+ }
+ hist[index] += temp;
+ }
+ src += src_stride;
+ }
+
+ int i;
+ uint64_t hist_sum = 0;
+ for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
+ for (i = 0; i < INTRA_MODES; ++i) {
+ if (av1_is_directional_mode(i)) {
+ const uint8_t angle_bin = mode_to_angle_bin[i];
+ uint64_t score = 2 * hist[angle_bin];
+ int weight = 2;
+ if (angle_bin > 0) {
+ score += hist[angle_bin - 1];
+ ++weight;
+ }
+ if (angle_bin < DIRECTIONAL_MODES - 1) {
+ score += hist[angle_bin + 1];
+ ++weight;
+ }
+ if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
+ directional_mode_skip_mask[i] = 1;
+ }
+ }
+}
+
+// Given selected prediction mode, search for the best tx type and size.
+static void intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, const int *bmode_costs,
+ int64_t *best_rd, int *rate, int *rate_tokenonly,
+ int64_t *distortion, int *skippable,
+ MB_MODE_INFO *best_mbmi, PICK_MODE_CONTEXT *ctx) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ RD_STATS rd_stats;
+ super_block_yrd(cpi, x, &rd_stats, bsize, *best_rd);
+ if (rd_stats.rate == INT_MAX) return;
+ int this_rate_tokenonly = rd_stats.rate;
+ if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) {
+ // super_block_yrd above includes the cost of the tx_size in the
+ // tokenonly rate, but for intra blocks, tx_size is always coded
+ // (prediction granularity), so we account for it in the full rate,
+ // not the tokenonly rate.
+ this_rate_tokenonly -= tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size);
+ }
+ const int this_rate =
+ rd_stats.rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]);
+ const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist);
+ if (this_rd < *best_rd) {
+ *best_mbmi = *mbmi;
+ *best_rd = this_rd;
+ *rate = this_rate;
+ *rate_tokenonly = this_rate_tokenonly;
+ *distortion = rd_stats.dist;
+ *skippable = rd_stats.skip;
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ }
+}
+
+// This function is used only for intra_only frames
+static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int mi_row, int mi_col, int *rate,
+ int *rate_tokenonly, int64_t *distortion,
+ int *skippable, BLOCK_SIZE bsize,
+ int64_t best_rd, PICK_MODE_CONTEXT *ctx) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ int64_t best_model_rd = INT64_MAX;
+ const int rows = block_size_high[bsize];
+ const int cols = block_size_wide[bsize];
+ int is_directional_mode;
+ uint8_t directional_mode_skip_mask[INTRA_MODES];
+ const int src_stride = x->plane[0].src.stride;
+ const uint8_t *src = x->plane[0].src.buf;
+ int beat_best_rd = 0;
+ const int *bmode_costs;
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const int try_palette =
+ av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type);
+ uint8_t *best_palette_color_map =
+ try_palette ? x->palette_buffer->best_palette_color_map : NULL;
+ const MB_MODE_INFO *above_mi = xd->above_mbmi;
+ const MB_MODE_INFO *left_mi = xd->left_mbmi;
+ const PREDICTION_MODE A = av1_above_block_mode(above_mi);
+ const PREDICTION_MODE L = av1_left_block_mode(left_mi);
+ const int above_ctx = intra_mode_context[A];
+ const int left_ctx = intra_mode_context[L];
+ bmode_costs = x->y_mode_costs[above_ctx][left_ctx];
+
+ mbmi->angle_delta[PLANE_TYPE_Y] = 0;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ highbd_angle_estimation(src, src_stride, rows, cols, bsize,
+ directional_mode_skip_mask);
+ else
+ angle_estimation(src, src_stride, rows, cols, bsize,
+ directional_mode_skip_mask);
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ pmi->palette_size[0] = 0;
+
+ if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
+ x->use_default_intra_tx_type = 1;
+ else
+ x->use_default_intra_tx_type = 0;
+
+ MB_MODE_INFO best_mbmi = *mbmi;
+ /* Y Search for intra prediction mode */
+ for (int mode_idx = INTRA_MODE_START; mode_idx < INTRA_MODE_END; ++mode_idx) {
+ RD_STATS this_rd_stats;
+ int this_rate, this_rate_tokenonly, s;
+ int64_t this_distortion, this_rd, this_model_rd;
+ mbmi->mode = intra_rd_search_mode_order[mode_idx];
+ mbmi->angle_delta[PLANE_TYPE_Y] = 0;
+ this_model_rd =
+ intra_model_yrd(cpi, x, bsize, bmode_costs[mbmi->mode], mi_row, mi_col);
+ if (best_model_rd != INT64_MAX &&
+ this_model_rd > best_model_rd + (best_model_rd >> 1))
+ continue;
+ if (this_model_rd < best_model_rd) best_model_rd = this_model_rd;
+ is_directional_mode = av1_is_directional_mode(mbmi->mode);
+ if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue;
+ if (is_directional_mode && av1_use_angle_delta(bsize)) {
+ this_rd_stats.rate = INT_MAX;
+ rd_pick_intra_angle_sby(cpi, x, mi_row, mi_col, &this_rate,
+ &this_rd_stats, bsize, bmode_costs[mbmi->mode],
+ best_rd, &best_model_rd);
+ } else {
+ super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd);
+ }
+ this_rate_tokenonly = this_rd_stats.rate;
+ this_distortion = this_rd_stats.dist;
+ s = this_rd_stats.skip;
+
+ if (this_rate_tokenonly == INT_MAX) continue;
+
+ if (!xd->lossless[mbmi->segment_id] &&
+ block_signals_txsize(mbmi->sb_type)) {
+ // super_block_yrd above includes the cost of the tx_size in the
+ // tokenonly rate, but for intra blocks, tx_size is always coded
+ // (prediction granularity), so we account for it in the full rate,
+ // not the tokenonly rate.
+ this_rate_tokenonly -=
+ tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size);
+ }
+ this_rate =
+ this_rd_stats.rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]);
+ this_rd = RDCOST(x->rdmult, this_rate, this_distortion);
+ if (this_rd < best_rd) {
+ best_mbmi = *mbmi;
+ best_rd = this_rd;
+ beat_best_rd = 1;
+ *rate = this_rate;
+ *rate_tokenonly = this_rate_tokenonly;
+ *distortion = this_distortion;
+ *skippable = s;
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ }
+ }
+
+ if (try_palette) {
+ rd_pick_palette_intra_sby(
+ cpi, x, bsize, mi_row, mi_col, bmode_costs[DC_PRED], &best_mbmi,
+ best_palette_color_map, &best_rd, &best_model_rd, rate, rate_tokenonly,
+ distortion, skippable, ctx, ctx->blk_skip);
+ }
+
+ if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) {
+ if (rd_pick_filter_intra_sby(
+ cpi, x, mi_row, mi_col, rate, rate_tokenonly, distortion, skippable,
+ bsize, bmode_costs[DC_PRED], &best_rd, &best_model_rd, ctx)) {
+ best_mbmi = *mbmi;
+ }
+ }
+
+ // If previous searches use only the default tx type, do an extra search for
+ // the best tx type.
+ if (x->use_default_intra_tx_type) {
+ *mbmi = best_mbmi;
+ x->use_default_intra_tx_type = 0;
+ intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, rate_tokenonly,
+ distortion, skippable, &best_mbmi, ctx);
+ }
+
+ *mbmi = best_mbmi;
+ return best_rd;
+}
+
+// Return value 0: early termination triggered, no valid rd cost available;
+// 1: rd cost values are valid.
+static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int64_t ref_best_rd) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
+ const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
+ int plane;
+ int is_cost_valid = 1;
+ av1_init_rd_stats(rd_stats);
+
+ if (ref_best_rd < 0) is_cost_valid = 0;
+
+ if (x->skip_chroma_rd) return is_cost_valid;
+
+ bsize = scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y);
+
+ if (is_inter_block(mbmi) && is_cost_valid) {
+ for (plane = 1; plane < MAX_MB_PLANE; ++plane)
+ av1_subtract_plane(x, bsize, plane);
+ }
+
+ if (is_cost_valid) {
+ for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
+ RD_STATS pn_rd_stats;
+ txfm_rd_in_plane(x, cpi, &pn_rd_stats, ref_best_rd, plane, bsize,
+ uv_tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE);
+ if (pn_rd_stats.rate == INT_MAX) {
+ is_cost_valid = 0;
+ break;
+ }
+ av1_merge_rd_stats(rd_stats, &pn_rd_stats);
+ if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) > ref_best_rd &&
+ RDCOST(x->rdmult, 0, rd_stats->sse) > ref_best_rd) {
+ is_cost_valid = 0;
+ break;
+ }
+ }
+ }
+
+ if (!is_cost_valid) {
+ // reset cost value
+ av1_invalid_rd_stats(rd_stats);
+ }
+
+ return is_cost_valid;
+}
+
+static void tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size,
+ int blk_row, int blk_col, int plane, int block,
+ int plane_bsize, TXB_CTX *txb_ctx, RD_STATS *rd_stats,
+ FAST_TX_SEARCH_MODE ftxs_mode, int64_t ref_rdcost,
+ TXB_RD_INFO *rd_info_array) {
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const uint16_t cur_joint_ctx =
+ (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx;
+ const int txk_type_idx =
+ av1_get_txk_type_index(plane_bsize, blk_row, blk_col);
+ // Look up RD and terminate early in case when we've already processed exactly
+ // the same residual with exactly the same entropy context.
+ if (rd_info_array != NULL && rd_info_array->valid &&
+ rd_info_array->entropy_context == cur_joint_ctx) {
+ if (plane == 0)
+ x->e_mbd.mi[0]->txk_type[txk_type_idx] = rd_info_array->tx_type;
+ const TX_TYPE ref_tx_type =
+ av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col,
+ tx_size, cpi->common.reduced_tx_set_used);
+ if (ref_tx_type == rd_info_array->tx_type) {
+ rd_stats->rate += rd_info_array->rate;
+ rd_stats->dist += rd_info_array->dist;
+ rd_stats->sse += rd_info_array->sse;
+ rd_stats->skip &= rd_info_array->eob == 0;
+ p->eobs[block] = rd_info_array->eob;
+ p->txb_entropy_ctx[block] = rd_info_array->txb_entropy_ctx;
+ return;
+ }
+ }
+
+ RD_STATS this_rd_stats;
+ search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
+ txb_ctx, ftxs_mode, 0, ref_rdcost, &this_rd_stats);
+
+ av1_merge_rd_stats(rd_stats, &this_rd_stats);
+
+ // Save RD results for possible reuse in future.
+ if (rd_info_array != NULL) {
+ rd_info_array->valid = 1;
+ rd_info_array->entropy_context = cur_joint_ctx;
+ rd_info_array->rate = this_rd_stats.rate;
+ rd_info_array->dist = this_rd_stats.dist;
+ rd_info_array->sse = this_rd_stats.sse;
+ rd_info_array->eob = p->eobs[block];
+ rd_info_array->txb_entropy_ctx = p->txb_entropy_ctx[block];
+ if (plane == 0) {
+ rd_info_array->tx_type = x->e_mbd.mi[0]->txk_type[txk_type_idx];
+ }
+ }
+}
+
+static void get_mean_and_dev(const int16_t *data, int stride, int bw, int bh,
+ float *mean, float *dev) {
+ int x_sum = 0;
+ uint64_t x2_sum = 0;
+ for (int i = 0; i < bh; ++i) {
+ for (int j = 0; j < bw; ++j) {
+ const int val = data[j];
+ x_sum += val;
+ x2_sum += val * val;
+ }
+ data += stride;
+ }
+
+ const int num = bw * bh;
+ const float e_x = (float)x_sum / num;
+ const float e_x2 = (float)((double)x2_sum / num);
+ const float diff = e_x2 - e_x * e_x;
+ *dev = (diff > 0) ? sqrtf(diff) : 0;
+ *mean = e_x;
+}
+
+static void get_mean_and_dev_float(const float *data, int stride, int bw,
+ int bh, float *mean, float *dev) {
+ float x_sum = 0;
+ float x2_sum = 0;
+ for (int i = 0; i < bh; ++i) {
+ for (int j = 0; j < bw; ++j) {
+ const float val = data[j];
+ x_sum += val;
+ x2_sum += val * val;
+ }
+ data += stride;
+ }
+
+ const int num = bw * bh;
+ const float e_x = x_sum / num;
+ const float e_x2 = x2_sum / num;
+ const float diff = e_x2 - e_x * e_x;
+ *dev = (diff > 0) ? sqrtf(diff) : 0;
+ *mean = e_x;
+}
+
+// Feature used by the model to predict tx split: the mean and standard
+// deviation values of the block and sub-blocks.
+static void get_mean_dev_features(const int16_t *data, int stride, int bw,
+ int bh, int levels, float *feature) {
+ int feature_idx = 0;
+ int width = bw;
+ int height = bh;
+ const int16_t *const data_ptr = &data[0];
+ for (int lv = 0; lv < levels; ++lv) {
+ if (width < 2 || height < 2) break;
+ float mean_buf[16];
+ float dev_buf[16];
+ int blk_idx = 0;
+ for (int row = 0; row < bh; row += height) {
+ for (int col = 0; col < bw; col += width) {
+ float mean, dev;
+ get_mean_and_dev(data_ptr + row * stride + col, stride, width, height,
+ &mean, &dev);
+ feature[feature_idx++] = mean;
+ feature[feature_idx++] = dev;
+ mean_buf[blk_idx] = mean;
+ dev_buf[blk_idx++] = dev;
+ }
+ }
+ if (blk_idx > 1) {
+ float mean, dev;
+ // Deviation of means.
+ get_mean_and_dev_float(mean_buf, 1, 1, blk_idx, &mean, &dev);
+ feature[feature_idx++] = dev;
+ // Mean of deviations.
+ get_mean_and_dev_float(dev_buf, 1, 1, blk_idx, &mean, &dev);
+ feature[feature_idx++] = mean;
+ }
+ // Reduce the block size when proceeding to the next level.
+ if (height == width) {
+ height = height >> 1;
+ width = width >> 1;
+ } else if (height > width) {
+ height = height >> 1;
+ } else {
+ width = width >> 1;
+ }
+ }
+}
+
+static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row,
+ int blk_col, TX_SIZE tx_size) {
+ const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size];
+ if (!nn_config) return -1;
+
+ const int diff_stride = block_size_wide[bsize];
+ const int16_t *diff =
+ x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
+ const int bw = tx_size_wide[tx_size];
+ const int bh = tx_size_high[tx_size];
+ aom_clear_system_state();
+
+ float features[64] = { 0.0f };
+ get_mean_dev_features(diff, diff_stride, bw, bh, 2, features);
+
+ float score = 0.0f;
+ av1_nn_predict(features, nn_config, &score);
+ if (score > 8.0f) return 100;
+ if (score < -8.0f) return 0;
+ score = 1.0f / (1.0f + (float)exp(-score));
+ return (int)(score * 100);
+}
+
+typedef struct {
+ int64_t rd;
+ int txb_entropy_ctx;
+ TX_TYPE tx_type;
+} TxCandidateInfo;
+
+static void try_tx_block_no_split(
+ const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
+ TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize,
+ const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl,
+ int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd,
+ FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node,
+ TxCandidateInfo *no_split) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ struct macroblock_plane *const p = &x->plane[0];
+ const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
+
+ no_split->rd = INT64_MAX;
+ no_split->txb_entropy_ctx = 0;
+ no_split->tx_type = TX_TYPES;
+
+ const ENTROPY_CONTEXT *const pta = ta + blk_col;
+ const ENTROPY_CONTEXT *const ptl = tl + blk_row;
+
+ const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
+ TXB_CTX txb_ctx;
+ get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx);
+ const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_Y]
+ .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
+
+ rd_stats->ref_rdcost = ref_best_rd;
+ rd_stats->zero_rate = zero_blk_rate;
+ const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
+ mbmi->inter_tx_size[index] = tx_size;
+ tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize,
+ &txb_ctx, rd_stats, ftxs_mode, ref_best_rd,
+ rd_info_node != NULL ? rd_info_node->rd_info_array : NULL);
+ assert(rd_stats->rate < INT_MAX);
+
+ if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
+ RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
+ rd_stats->skip == 1) &&
+ !xd->lossless[mbmi->segment_id]) {
+#if CONFIG_RD_DEBUG
+ av1_update_txb_coeff_cost(rd_stats, plane, tx_size, blk_row, blk_col,
+ zero_blk_rate - rd_stats->rate);
+#endif // CONFIG_RD_DEBUG
+ rd_stats->rate = zero_blk_rate;
+ rd_stats->dist = rd_stats->sse;
+ rd_stats->skip = 1;
+ set_blk_skip(x, 0, blk_row * bw + blk_col, 1);
+ p->eobs[block] = 0;
+ update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
+ DCT_DCT);
+ } else {
+ set_blk_skip(x, 0, blk_row * bw + blk_col, 0);
+ rd_stats->skip = 0;
+ }
+
+ if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
+ rd_stats->rate += x->txfm_partition_cost[txfm_partition_ctx][0];
+
+ no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ no_split->txb_entropy_ctx = p->txb_entropy_ctx[block];
+ const int txk_type_idx =
+ av1_get_txk_type_index(plane_bsize, blk_row, blk_col);
+ no_split->tx_type = mbmi->txk_type[txk_type_idx];
+}
+
+static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
+ int blk_col, int block, TX_SIZE tx_size, int depth,
+ BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
+ ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above,
+ TXFM_CONTEXT *tx_left, RD_STATS *rd_stats,
+ int64_t ref_best_rd, int *is_cost_valid,
+ FAST_TX_SEARCH_MODE ftxs_mode,
+ TXB_RD_INFO_NODE *rd_info_node);
+
+static void try_tx_block_split(
+ const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
+ TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
+ ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
+ int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd,
+ FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node,
+ RD_STATS *split_rd_stats, int64_t *split_rd) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsw = tx_size_wide_unit[sub_txs];
+ const int bsh = tx_size_high_unit[sub_txs];
+ const int sub_step = bsw * bsh;
+ RD_STATS this_rd_stats;
+ int this_cost_valid = 1;
+ int64_t tmp_rd = 0;
+
+ split_rd_stats->rate = x->txfm_partition_cost[txfm_partition_ctx][1];
+
+ assert(tx_size < TX_SIZES_ALL);
+
+ int blk_idx = 0;
+ for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
+ for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw, ++blk_idx) {
+ const int offsetr = blk_row + r;
+ const int offsetc = blk_col + c;
+ if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
+ assert(blk_idx < 4);
+ select_tx_block(
+ cpi, x, offsetr, offsetc, block, sub_txs, depth + 1, plane_bsize, ta,
+ tl, tx_above, tx_left, &this_rd_stats, ref_best_rd - tmp_rd,
+ &this_cost_valid, ftxs_mode,
+ (rd_info_node != NULL) ? rd_info_node->children[blk_idx] : NULL);
+
+ if (!this_cost_valid) goto LOOP_EXIT;
+
+ av1_merge_rd_stats(split_rd_stats, &this_rd_stats);
+
+ tmp_rd = RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist);
+
+ if (no_split_rd < tmp_rd) {
+ this_cost_valid = 0;
+ goto LOOP_EXIT;
+ }
+ block += sub_step;
+ }
+ }
+
+LOOP_EXIT : {}
+
+ if (this_cost_valid) *split_rd = tmp_rd;
+}
+
+// Search for the best tx partition/type for a given luma block.
+static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
+ int blk_col, int block, TX_SIZE tx_size, int depth,
+ BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
+ ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above,
+ TXFM_CONTEXT *tx_left, RD_STATS *rd_stats,
+ int64_t ref_best_rd, int *is_cost_valid,
+ FAST_TX_SEARCH_MODE ftxs_mode,
+ TXB_RD_INFO_NODE *rd_info_node) {
+ assert(tx_size < TX_SIZES_ALL);
+ av1_init_rd_stats(rd_stats);
+ if (ref_best_rd < 0) {
+ *is_cost_valid = 0;
+ return;
+ }
+
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
+ mbmi->sb_type, tx_size);
+ struct macroblock_plane *const p = &x->plane[0];
+
+ const int try_no_split = 1;
+ int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH;
+#if CONFIG_DIST_8X8
+ if (x->using_dist_8x8)
+ try_split &= tx_size_wide[tx_size] >= 16 && tx_size_high[tx_size] >= 16;
+#endif
+ TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES };
+
+ // TX no split
+ if (try_no_split) {
+ try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
+ plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd,
+ ftxs_mode, rd_info_node, &no_split);
+
+ if (cpi->sf.adaptive_txb_search_level &&
+ (no_split.rd -
+ (no_split.rd >> (1 + cpi->sf.adaptive_txb_search_level))) >
+ ref_best_rd) {
+ *is_cost_valid = 0;
+ return;
+ }
+
+ if (cpi->sf.txb_split_cap) {
+ if (p->eobs[block] == 0) try_split = 0;
+ }
+ }
+
+ if (x->e_mbd.bd == 8 && !x->cb_partition_scan && try_split) {
+ const int threshold = cpi->sf.tx_type_search.ml_tx_split_thresh;
+ if (threshold >= 0) {
+ const int split_score =
+ ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size);
+ if (split_score >= 0 && split_score < threshold) try_split = 0;
+ }
+ }
+
+ // TX split
+ int64_t split_rd = INT64_MAX;
+ RD_STATS split_rd_stats;
+ av1_init_rd_stats(&split_rd_stats);
+ if (try_split) {
+ try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
+ plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd,
+ AOMMIN(no_split.rd, ref_best_rd), ftxs_mode,
+ rd_info_node, &split_rd_stats, &split_rd);
+ }
+
+ if (no_split.rd < split_rd) {
+ ENTROPY_CONTEXT *pta = ta + blk_col;
+ ENTROPY_CONTEXT *ptl = tl + blk_row;
+ const TX_SIZE tx_size_selected = tx_size;
+ p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx;
+ av1_set_txb_context(x, 0, block, tx_size_selected, pta, ptl);
+ txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
+ tx_size);
+ for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
+ for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
+ const int index =
+ av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx);
+ mbmi->inter_tx_size[index] = tx_size_selected;
+ }
+ }
+ mbmi->tx_size = tx_size_selected;
+ update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
+ no_split.tx_type);
+ set_blk_skip(x, 0, blk_row * bw + blk_col, rd_stats->skip);
+ } else {
+ *rd_stats = split_rd_stats;
+ if (split_rd == INT64_MAX) *is_cost_valid = 0;
+ }
+}
+
+static void select_inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int64_t ref_best_rd,
+ FAST_TX_SEARCH_MODE ftxs_mode,
+ TXB_RD_INFO_NODE *rd_info_tree) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int is_cost_valid = 1;
+ int64_t this_rd = 0, skip_rd = 0;
+
+ if (ref_best_rd < 0) is_cost_valid = 0;
+
+ av1_init_rd_stats(rd_stats);
+
+ if (is_cost_valid) {
+ const struct macroblockd_plane *const pd = &xd->plane[0];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ const int mi_width = mi_size_wide[plane_bsize];
+ const int mi_height = mi_size_high[plane_bsize];
+ const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
+ const int bh = tx_size_high_unit[max_tx_size];
+ const int bw = tx_size_wide_unit[max_tx_size];
+ int idx, idy;
+ int block = 0;
+ int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
+ ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
+ ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
+ TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
+ TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
+
+ RD_STATS pn_rd_stats;
+ const int init_depth =
+ get_search_init_depth(mi_width, mi_height, 1, &cpi->sf);
+ av1_init_rd_stats(&pn_rd_stats);
+
+ av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
+ memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
+ memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
+ const int skip_ctx = av1_get_skip_context(xd);
+ const int s0 = x->skip_cost[skip_ctx][0];
+ const int s1 = x->skip_cost[skip_ctx][1];
+
+ skip_rd = RDCOST(x->rdmult, s1, 0);
+ this_rd = RDCOST(x->rdmult, s0, 0);
+ for (idy = 0; idy < mi_height; idy += bh) {
+ for (idx = 0; idx < mi_width; idx += bw) {
+ int64_t best_rd_sofar = (ref_best_rd - (AOMMIN(skip_rd, this_rd)));
+ select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth,
+ plane_bsize, ctxa, ctxl, tx_above, tx_left,
+ &pn_rd_stats, best_rd_sofar, &is_cost_valid, ftxs_mode,
+ rd_info_tree);
+ if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) {
+ av1_invalid_rd_stats(rd_stats);
+ return;
+ }
+ av1_merge_rd_stats(rd_stats, &pn_rd_stats);
+ skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse);
+ this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist);
+ block += step;
+ if (rd_info_tree != NULL) rd_info_tree += 1;
+ }
+ }
+ if (skip_rd <= this_rd) {
+ rd_stats->rate = 0;
+ rd_stats->dist = rd_stats->sse;
+ rd_stats->skip = 1;
+ } else {
+ rd_stats->skip = 0;
+ }
+ }
+
+ if (!is_cost_valid) {
+ // reset cost value
+ av1_invalid_rd_stats(rd_stats);
+ }
+}
+
+static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int64_t ref_best_rd,
+ TXB_RD_INFO_NODE *rd_info_tree) {
+ const int fast_tx_search = cpi->sf.tx_size_search_method > USE_FULL_RD;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int is_inter = is_inter_block(mbmi);
+ const int skip_ctx = av1_get_skip_context(xd);
+ int s0 = x->skip_cost[skip_ctx][0];
+ int s1 = x->skip_cost[skip_ctx][1];
+ int64_t rd;
+
+ // TODO(debargha): enable this as a speed feature where the
+ // select_inter_block_yrd() function above will use a simplified search
+ // such as not using full optimize, but the inter_block_yrd() function
+ // will use more complex search given that the transform partitions have
+ // already been decided.
+
+ int64_t rd_thresh = ref_best_rd;
+ if (fast_tx_search && rd_thresh < INT64_MAX) {
+ if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3);
+ }
+ assert(rd_thresh > 0);
+
+ FAST_TX_SEARCH_MODE ftxs_mode =
+ fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE;
+ select_inter_block_yrd(cpi, x, rd_stats, bsize, rd_thresh, ftxs_mode,
+ rd_info_tree);
+ if (rd_stats->rate == INT_MAX) return INT64_MAX;
+
+ // If fast_tx_search is true, only DCT and 1D DCT were tested in
+ // select_inter_block_yrd() above. Do a better search for tx type with
+ // tx sizes already decided.
+ if (fast_tx_search) {
+ if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE))
+ return INT64_MAX;
+ }
+
+ if (rd_stats->skip)
+ rd = RDCOST(x->rdmult, s1, rd_stats->sse);
+ else
+ rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist);
+
+ if (is_inter && !xd->lossless[xd->mi[0]->segment_id] && !(rd_stats->skip))
+ rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse));
+
+ return rd;
+}
+
+// Finds rd cost for a y block, given the transform size partitions
+static void tx_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
+ int blk_col, int block, TX_SIZE tx_size,
+ BLOCK_SIZE plane_bsize, int depth,
+ ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx,
+ TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
+ int64_t ref_best_rd, RD_STATS *rd_stats,
+ FAST_TX_SEARCH_MODE ftxs_mode) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
+
+ assert(tx_size < TX_SIZES_ALL);
+
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(
+ plane_bsize, blk_row, blk_col)];
+
+ int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
+ mbmi->sb_type, tx_size);
+
+ av1_init_rd_stats(rd_stats);
+ if (tx_size == plane_tx_size) {
+ ENTROPY_CONTEXT *ta = above_ctx + blk_col;
+ ENTROPY_CONTEXT *tl = left_ctx + blk_row;
+ const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
+ TXB_CTX txb_ctx;
+ get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx);
+
+ const int zero_blk_rate = x->coeff_costs[txs_ctx][get_plane_type(0)]
+ .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
+ rd_stats->zero_rate = zero_blk_rate;
+ rd_stats->ref_rdcost = ref_best_rd;
+ tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize,
+ &txb_ctx, rd_stats, ftxs_mode, ref_best_rd, NULL);
+ const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
+ if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
+ RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
+ rd_stats->skip == 1) {
+ rd_stats->rate = zero_blk_rate;
+ rd_stats->dist = rd_stats->sse;
+ rd_stats->skip = 1;
+ set_blk_skip(x, 0, blk_row * mi_width + blk_col, 1);
+ x->plane[0].eobs[block] = 0;
+ x->plane[0].txb_entropy_ctx[block] = 0;
+ update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
+ DCT_DCT);
+ } else {
+ rd_stats->skip = 0;
+ set_blk_skip(x, 0, blk_row * mi_width + blk_col, 0);
+ }
+ if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
+ rd_stats->rate += x->txfm_partition_cost[ctx][0];
+ av1_set_txb_context(x, 0, block, tx_size, ta, tl);
+ txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
+ tx_size);
+ } else {
+ const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
+ const int bsw = tx_size_wide_unit[sub_txs];
+ const int bsh = tx_size_high_unit[sub_txs];
+ const int step = bsh * bsw;
+ RD_STATS pn_rd_stats;
+ int64_t this_rd = 0;
+ assert(bsw > 0 && bsh > 0);
+
+ for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
+ for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
+ const int offsetr = blk_row + row;
+ const int offsetc = blk_col + col;
+
+ if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
+
+ av1_init_rd_stats(&pn_rd_stats);
+ tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize,
+ depth + 1, above_ctx, left_ctx, tx_above, tx_left,
+ ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode);
+ if (pn_rd_stats.rate == INT_MAX) {
+ av1_invalid_rd_stats(rd_stats);
+ return;
+ }
+ av1_merge_rd_stats(rd_stats, &pn_rd_stats);
+ this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist);
+ block += step;
+ }
+ }
+
+ if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
+ rd_stats->rate += x->txfm_partition_cost[ctx][1];
+ }
+}
+
+// Return value 0: early termination triggered, no valid rd cost available;
+// 1: rd cost values are valid.
+static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int is_cost_valid = 1;
+ int64_t this_rd = 0;
+
+ if (ref_best_rd < 0) is_cost_valid = 0;
+
+ av1_init_rd_stats(rd_stats);
+
+ if (is_cost_valid) {
+ const struct macroblockd_plane *const pd = &xd->plane[0];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ const int mi_width = mi_size_wide[plane_bsize];
+ const int mi_height = mi_size_high[plane_bsize];
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
+ const int bh = tx_size_high_unit[max_tx_size];
+ const int bw = tx_size_wide_unit[max_tx_size];
+ const int init_depth =
+ get_search_init_depth(mi_width, mi_height, 1, &cpi->sf);
+ int idx, idy;
+ int block = 0;
+ int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
+ ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
+ ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
+ TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
+ TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
+ RD_STATS pn_rd_stats;
+
+ av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
+ memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
+ memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
+
+ for (idy = 0; idy < mi_height; idy += bh) {
+ for (idx = 0; idx < mi_width; idx += bw) {
+ av1_init_rd_stats(&pn_rd_stats);
+ tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, plane_bsize,
+ init_depth, ctxa, ctxl, tx_above, tx_left,
+ ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode);
+ if (pn_rd_stats.rate == INT_MAX) {
+ av1_invalid_rd_stats(rd_stats);
+ return 0;
+ }
+ av1_merge_rd_stats(rd_stats, &pn_rd_stats);
+ this_rd +=
+ AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist),
+ RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse));
+ block += step;
+ }
+ }
+ }
+
+ const int skip_ctx = av1_get_skip_context(xd);
+ const int s0 = x->skip_cost[skip_ctx][0];
+ const int s1 = x->skip_cost[skip_ctx][1];
+ int64_t skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse);
+ this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist);
+ if (skip_rd < this_rd) {
+ this_rd = skip_rd;
+ rd_stats->rate = 0;
+ rd_stats->dist = rd_stats->sse;
+ rd_stats->skip = 1;
+ }
+ if (this_rd > ref_best_rd) is_cost_valid = 0;
+
+ if (!is_cost_valid) {
+ // reset cost value
+ av1_invalid_rd_stats(rd_stats);
+ }
+ return is_cost_valid;
+}
+
+static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) {
+ const int rows = block_size_high[bsize];
+ const int cols = block_size_wide[bsize];
+ const int16_t *diff = x->plane[0].src_diff;
+ const uint32_t hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator,
+ (uint8_t *)diff, 2 * rows * cols);
+ return (hash << 5) + bsize;
+}
+
+static void save_tx_rd_info(int n4, uint32_t hash, const MACROBLOCK *const x,
+ const RD_STATS *const rd_stats,
+ MB_RD_RECORD *tx_rd_record) {
+ int index;
+ if (tx_rd_record->num < RD_RECORD_BUFFER_LEN) {
+ index =
+ (tx_rd_record->index_start + tx_rd_record->num) % RD_RECORD_BUFFER_LEN;
+ ++tx_rd_record->num;
+ } else {
+ index = tx_rd_record->index_start;
+ tx_rd_record->index_start =
+ (tx_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN;
+ }
+ MB_RD_INFO *const tx_rd_info = &tx_rd_record->tx_rd_info[index];
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ tx_rd_info->hash_value = hash;
+ tx_rd_info->tx_size = mbmi->tx_size;
+ memcpy(tx_rd_info->blk_skip, x->blk_skip,
+ sizeof(tx_rd_info->blk_skip[0]) * n4);
+ av1_copy(tx_rd_info->inter_tx_size, mbmi->inter_tx_size);
+ av1_copy(tx_rd_info->txk_type, mbmi->txk_type);
+ tx_rd_info->rd_stats = *rd_stats;
+}
+
+static void fetch_tx_rd_info(int n4, const MB_RD_INFO *const tx_rd_info,
+ RD_STATS *const rd_stats, MACROBLOCK *const x) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ mbmi->tx_size = tx_rd_info->tx_size;
+ memcpy(x->blk_skip, tx_rd_info->blk_skip,
+ sizeof(tx_rd_info->blk_skip[0]) * n4);
+ av1_copy(mbmi->inter_tx_size, tx_rd_info->inter_tx_size);
+ av1_copy(mbmi->txk_type, tx_rd_info->txk_type);
+ *rd_stats = tx_rd_info->rd_stats;
+}
+
+static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record,
+ const uint32_t hash) {
+ // Linear search through the circular buffer to find matching hash.
+ for (int i = cur_record->index_start - 1; i >= 0; i--) {
+ if (cur_record->hash_vals[i] == hash) return i;
+ }
+ for (int i = cur_record->num - 1; i >= cur_record->index_start; i--) {
+ if (cur_record->hash_vals[i] == hash) return i;
+ }
+ int index;
+ // If not found - add new RD info into the buffer and return its index
+ if (cur_record->num < TX_SIZE_RD_RECORD_BUFFER_LEN) {
+ index = (cur_record->index_start + cur_record->num) %
+ TX_SIZE_RD_RECORD_BUFFER_LEN;
+ cur_record->num++;
+ } else {
+ index = cur_record->index_start;
+ cur_record->index_start =
+ (cur_record->index_start + 1) % TX_SIZE_RD_RECORD_BUFFER_LEN;
+ }
+
+ cur_record->hash_vals[index] = hash;
+ av1_zero(cur_record->tx_rd_info[index]);
+ return index;
+}
+
+typedef struct {
+ int leaf;
+ int8_t children[4];
+} RD_RECORD_IDX_NODE;
+
+static const RD_RECORD_IDX_NODE rd_record_tree_8x8[] = {
+ { 1, { 0 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_8x16[] = {
+ { 0, { 1, 2, -1, -1 } },
+ { 1, { 0, 0, 0, 0 } },
+ { 1, { 0, 0, 0, 0 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_16x8[] = {
+ { 0, { 1, 2, -1, -1 } },
+ { 1, { 0 } },
+ { 1, { 0 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_16x16[] = {
+ { 0, { 1, 2, 3, 4 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_1_2[] = {
+ { 0, { 1, 2, -1, -1 } },
+ { 0, { 3, 4, 5, 6 } },
+ { 0, { 7, 8, 9, 10 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_2_1[] = {
+ { 0, { 1, 2, -1, -1 } },
+ { 0, { 3, 4, 7, 8 } },
+ { 0, { 5, 6, 9, 10 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_sqr[] = {
+ { 0, { 1, 2, 3, 4 } }, { 0, { 5, 6, 9, 10 } }, { 0, { 7, 8, 11, 12 } },
+ { 0, { 13, 14, 17, 18 } }, { 0, { 15, 16, 19, 20 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_64x128[] = {
+ { 0, { 2, 3, 4, 5 } }, { 0, { 6, 7, 8, 9 } },
+ { 0, { 10, 11, 14, 15 } }, { 0, { 12, 13, 16, 17 } },
+ { 0, { 18, 19, 22, 23 } }, { 0, { 20, 21, 24, 25 } },
+ { 0, { 26, 27, 30, 31 } }, { 0, { 28, 29, 32, 33 } },
+ { 0, { 34, 35, 38, 39 } }, { 0, { 36, 37, 40, 41 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_128x64[] = {
+ { 0, { 2, 3, 6, 7 } }, { 0, { 4, 5, 8, 9 } },
+ { 0, { 10, 11, 18, 19 } }, { 0, { 12, 13, 20, 21 } },
+ { 0, { 14, 15, 22, 23 } }, { 0, { 16, 17, 24, 25 } },
+ { 0, { 26, 27, 34, 35 } }, { 0, { 28, 29, 36, 37 } },
+ { 0, { 30, 31, 38, 39 } }, { 0, { 32, 33, 40, 41 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_128x128[] = {
+ { 0, { 4, 5, 8, 9 } }, { 0, { 6, 7, 10, 11 } },
+ { 0, { 12, 13, 16, 17 } }, { 0, { 14, 15, 18, 19 } },
+ { 0, { 20, 21, 28, 29 } }, { 0, { 22, 23, 30, 31 } },
+ { 0, { 24, 25, 32, 33 } }, { 0, { 26, 27, 34, 35 } },
+ { 0, { 36, 37, 44, 45 } }, { 0, { 38, 39, 46, 47 } },
+ { 0, { 40, 41, 48, 49 } }, { 0, { 42, 43, 50, 51 } },
+ { 0, { 52, 53, 60, 61 } }, { 0, { 54, 55, 62, 63 } },
+ { 0, { 56, 57, 64, 65 } }, { 0, { 58, 59, 66, 67 } },
+ { 0, { 68, 69, 76, 77 } }, { 0, { 70, 71, 78, 79 } },
+ { 0, { 72, 73, 80, 81 } }, { 0, { 74, 75, 82, 83 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_1_4[] = {
+ { 0, { 1, -1, 2, -1 } },
+ { 0, { 3, 4, -1, -1 } },
+ { 0, { 5, 6, -1, -1 } },
+};
+
+static const RD_RECORD_IDX_NODE rd_record_tree_4_1[] = {
+ { 0, { 1, 2, -1, -1 } },
+ { 0, { 3, 4, -1, -1 } },
+ { 0, { 5, 6, -1, -1 } },
+};
+
+static const RD_RECORD_IDX_NODE *rd_record_tree[BLOCK_SIZES_ALL] = {
+ NULL, // BLOCK_4X4
+ NULL, // BLOCK_4X8
+ NULL, // BLOCK_8X4
+ rd_record_tree_8x8, // BLOCK_8X8
+ rd_record_tree_8x16, // BLOCK_8X16
+ rd_record_tree_16x8, // BLOCK_16X8
+ rd_record_tree_16x16, // BLOCK_16X16
+ rd_record_tree_1_2, // BLOCK_16X32
+ rd_record_tree_2_1, // BLOCK_32X16
+ rd_record_tree_sqr, // BLOCK_32X32
+ rd_record_tree_1_2, // BLOCK_32X64
+ rd_record_tree_2_1, // BLOCK_64X32
+ rd_record_tree_sqr, // BLOCK_64X64
+ rd_record_tree_64x128, // BLOCK_64X128
+ rd_record_tree_128x64, // BLOCK_128X64
+ rd_record_tree_128x128, // BLOCK_128X128
+ NULL, // BLOCK_4X16
+ NULL, // BLOCK_16X4
+ rd_record_tree_1_4, // BLOCK_8X32
+ rd_record_tree_4_1, // BLOCK_32X8
+ rd_record_tree_1_4, // BLOCK_16X64
+ rd_record_tree_4_1, // BLOCK_64X16
+};
+
+static const int rd_record_tree_size[BLOCK_SIZES_ALL] = {
+ 0, // BLOCK_4X4
+ 0, // BLOCK_4X8
+ 0, // BLOCK_8X4
+ sizeof(rd_record_tree_8x8) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X8
+ sizeof(rd_record_tree_8x16) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X16
+ sizeof(rd_record_tree_16x8) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X8
+ sizeof(rd_record_tree_16x16) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X16
+ sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X32
+ sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X16
+ sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X32
+ sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X64
+ sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X32
+ sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X64
+ sizeof(rd_record_tree_64x128) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X128
+ sizeof(rd_record_tree_128x64) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_128X64
+ sizeof(rd_record_tree_128x128) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_128X128
+ 0, // BLOCK_4X16
+ 0, // BLOCK_16X4
+ sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X32
+ sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X8
+ sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X64
+ sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X16
+};
+
+static INLINE void init_rd_record_tree(TXB_RD_INFO_NODE *tree,
+ BLOCK_SIZE bsize) {
+ const RD_RECORD_IDX_NODE *rd_record = rd_record_tree[bsize];
+ const int size = rd_record_tree_size[bsize];
+ for (int i = 0; i < size; ++i) {
+ if (rd_record[i].leaf) {
+ av1_zero(tree[i].children);
+ } else {
+ for (int j = 0; j < 4; ++j) {
+ const int8_t idx = rd_record[i].children[j];
+ tree[i].children[j] = idx > 0 ? &tree[idx] : NULL;
+ }
+ }
+ }
+}
+
+// Go through all TX blocks that could be used in TX size search, compute
+// residual hash values for them and find matching RD info that stores previous
+// RD search results for these TX blocks. The idea is to prevent repeated
+// rate/distortion computations that happen because of the combination of
+// partition and TX size search. The resulting RD info records are returned in
+// the form of a quadtree for easier access in actual TX size search.
+static int find_tx_size_rd_records(MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, TXB_RD_INFO_NODE *dst_rd_info) {
+ TXB_RD_RECORD *rd_records_table[4] = { x->txb_rd_record_8X8,
+ x->txb_rd_record_16X16,
+ x->txb_rd_record_32X32,
+ x->txb_rd_record_64X64 };
+ const TX_SIZE max_square_tx_size = max_txsize_lookup[bsize];
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+
+ // Hashing is performed only for square TX sizes larger than TX_4X4
+ if (max_square_tx_size < TX_8X8) return 0;
+ const int diff_stride = bw;
+ const struct macroblock_plane *const p = &x->plane[0];
+ const int16_t *diff = &p->src_diff[0];
+ init_rd_record_tree(dst_rd_info, bsize);
+ // Coordinates of the top-left corner of current block within the superblock
+ // measured in pixels:
+ const int mi_row_in_sb = (mi_row % MAX_MIB_SIZE) << MI_SIZE_LOG2;
+ const int mi_col_in_sb = (mi_col % MAX_MIB_SIZE) << MI_SIZE_LOG2;
+ int cur_rd_info_idx = 0;
+ int cur_tx_depth = 0;
+ TX_SIZE cur_tx_size = max_txsize_rect_lookup[bsize];
+ while (cur_tx_depth <= MAX_VARTX_DEPTH) {
+ const int cur_tx_bw = tx_size_wide[cur_tx_size];
+ const int cur_tx_bh = tx_size_high[cur_tx_size];
+ if (cur_tx_bw < 8 || cur_tx_bh < 8) break;
+ const TX_SIZE next_tx_size = sub_tx_size_map[cur_tx_size];
+ const int tx_size_idx = cur_tx_size - TX_8X8;
+ for (int row = 0; row < bh; row += cur_tx_bh) {
+ for (int col = 0; col < bw; col += cur_tx_bw) {
+ if (cur_tx_bw != cur_tx_bh) {
+ // Use dummy nodes for all rectangular transforms within the
+ // TX size search tree.
+ dst_rd_info[cur_rd_info_idx].rd_info_array = NULL;
+ } else {
+ // Get spatial location of this TX block within the superblock
+ // (measured in cur_tx_bsize units).
+ const int row_in_sb = (mi_row_in_sb + row) / cur_tx_bh;
+ const int col_in_sb = (mi_col_in_sb + col) / cur_tx_bw;
+
+ int16_t hash_data[MAX_SB_SQUARE];
+ int16_t *cur_hash_row = hash_data;
+ const int16_t *cur_diff_row = diff + row * diff_stride + col;
+ for (int i = 0; i < cur_tx_bh; i++) {
+ memcpy(cur_hash_row, cur_diff_row, sizeof(*hash_data) * cur_tx_bw);
+ cur_hash_row += cur_tx_bw;
+ cur_diff_row += diff_stride;
+ }
+ const int hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator,
+ (uint8_t *)hash_data,
+ 2 * cur_tx_bw * cur_tx_bh);
+ // Find corresponding RD info based on the hash value.
+ const int record_idx =
+ row_in_sb * (MAX_MIB_SIZE >> (tx_size_idx + 1)) + col_in_sb;
+ TXB_RD_RECORD *records = &rd_records_table[tx_size_idx][record_idx];
+ int idx = find_tx_size_rd_info(records, hash);
+ dst_rd_info[cur_rd_info_idx].rd_info_array =
+ &records->tx_rd_info[idx];
+ }
+ ++cur_rd_info_idx;
+ }
+ }
+ cur_tx_size = next_tx_size;
+ ++cur_tx_depth;
+ }
+ return 1;
+}
+
+// origin_threshold * 128 / 100
+static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = {
+ {
+ 64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68,
+ 68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68,
+ },
+ {
+ 88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68,
+ 68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68,
+ },
+ {
+ 90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74,
+ 74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74,
+ },
+};
+
+// lookup table for predict_skip_flag
+// int max_tx_size = max_txsize_rect_lookup[bsize];
+// if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16)
+// max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16);
+static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = {
+ TX_4X4, TX_4X8, TX_8X4, TX_8X8, TX_8X16, TX_16X8,
+ TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16,
+ TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16, TX_16X4,
+ TX_8X8, TX_8X8, TX_16X16, TX_16X16,
+};
+
+// Uses simple features on top of DCT coefficients to quickly predict
+// whether optimal RD decision is to skip encoding the residual.
+// The sse value is stored in dist.
+static int predict_skip_flag(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist,
+ int reduced_tx_set) {
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd);
+
+ *dist = pixel_diff_dist(x, 0, 0, 0, bsize, bsize);
+ const int64_t mse = *dist / bw / bh;
+ // Normalized quantizer takes the transform upscaling factor (8 for tx size
+ // smaller than 32) into account.
+ const int16_t normalized_dc_q = dc_q >> 3;
+ const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8;
+ // Predict not to skip when mse is larger than threshold.
+ if (mse > mse_thresh) return 0;
+
+ const int max_tx_size = max_predict_sf_tx_size[bsize];
+ const int tx_h = tx_size_high[max_tx_size];
+ const int tx_w = tx_size_wide[max_tx_size];
+ DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]);
+ TxfmParam param;
+ param.tx_type = DCT_DCT;
+ param.tx_size = max_tx_size;
+ param.bd = xd->bd;
+ param.is_hbd = get_bitdepth_data_path_index(xd);
+ param.lossless = 0;
+ param.tx_set_type = av1_get_ext_tx_set_type(
+ param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set);
+ const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2);
+ const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize];
+ const int16_t *src_diff = x->plane[0].src_diff;
+ const int n_coeff = tx_w * tx_h;
+ const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
+ const uint32_t dc_thresh = max_qcoef_thresh * dc_q;
+ const uint32_t ac_thresh = max_qcoef_thresh * ac_q;
+ for (int row = 0; row < bh; row += tx_h) {
+ for (int col = 0; col < bw; col += tx_w) {
+ av1_fwd_txfm(src_diff + col, coefs, bw, &param);
+ // Operating on TX domain, not pixels; we want the QTX quantizers
+ const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7);
+ if (dc_coef >= dc_thresh) return 0;
+ for (int i = 1; i < n_coeff; ++i) {
+ const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7);
+ if (ac_coef >= ac_thresh) return 0;
+ }
+ }
+ src_diff += tx_h * bw;
+ }
+ return 1;
+}
+
+// Used to set proper context for early termination with skip = 1.
+static void set_skip_flag(MACROBLOCK *x, RD_STATS *rd_stats, int bsize,
+ int64_t dist) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int n4 = bsize_to_num_blk(bsize);
+ const TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
+ memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN);
+ memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size));
+ mbmi->tx_size = tx_size;
+ for (int i = 0; i < n4; ++i) set_blk_skip(x, 0, i, 1);
+ rd_stats->skip = 1;
+ rd_stats->rate = 0;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2);
+ rd_stats->dist = rd_stats->sse = (dist << 4);
+}
+
+static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, int64_t ref_best_rd) {
+ const AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int64_t rd = INT64_MAX;
+ int64_t best_rd = INT64_MAX;
+ const int is_inter = is_inter_block(mbmi);
+ const int n4 = bsize_to_num_blk(bsize);
+ // Get the tx_size 1 level down
+ const TX_SIZE min_tx_size = sub_tx_size_map[max_txsize_rect_lookup[bsize]];
+ const TxSetType tx_set_type =
+ av1_get_ext_tx_set_type(min_tx_size, is_inter, cm->reduced_tx_set_used);
+ const int within_border =
+ mi_row >= xd->tile.mi_row_start &&
+ (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) &&
+ mi_col >= xd->tile.mi_col_start &&
+ (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end);
+
+ av1_invalid_rd_stats(rd_stats);
+
+ if (cpi->sf.model_based_prune_tx_search_level && ref_best_rd != INT64_MAX) {
+ int model_rate;
+ int64_t model_dist;
+ int model_skip;
+ model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE](
+ cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &model_rate, &model_dist,
+ &model_skip, NULL, NULL, NULL, NULL);
+ const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist);
+ // If the modeled rd is a lot worse than the best so far, breakout.
+ // TODO(debargha, urvang): Improve the model and make the check below
+ // tighter.
+ assert(cpi->sf.model_based_prune_tx_search_level >= 0 &&
+ cpi->sf.model_based_prune_tx_search_level <= 2);
+ static const int prune_factor_by8[] = { 2 + MODELRD_TYPE_TX_SEARCH_PRUNE,
+ 4 + MODELRD_TYPE_TX_SEARCH_PRUNE };
+ if (!model_skip &&
+ ((model_rd *
+ prune_factor_by8[cpi->sf.model_based_prune_tx_search_level - 1]) >>
+ 3) > ref_best_rd)
+ return;
+ }
+
+ const uint32_t hash = get_block_residue_hash(x, bsize);
+ MB_RD_RECORD *mb_rd_record = &x->mb_rd_record;
+
+ if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_mb_rd_hash) {
+ for (int i = 0; i < mb_rd_record->num; ++i) {
+ const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN;
+ // If there is a match in the tx_rd_record, fetch the RD decision and
+ // terminate early.
+ if (mb_rd_record->tx_rd_info[index].hash_value == hash) {
+ MB_RD_INFO *tx_rd_info = &mb_rd_record->tx_rd_info[index];
+ fetch_tx_rd_info(n4, tx_rd_info, rd_stats, x);
+ return;
+ }
+ }
+ }
+
+ // If we predict that skip is the optimal RD decision - set the respective
+ // context and terminate early.
+ int64_t dist;
+ if (is_inter && cpi->sf.tx_type_search.use_skip_flag_prediction &&
+ predict_skip_flag(x, bsize, &dist, cm->reduced_tx_set_used)) {
+ set_skip_flag(x, rd_stats, bsize, dist);
+ // Save the RD search results into tx_rd_record.
+ if (within_border) save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record);
+ return;
+ }
+
+ // Precompute residual hashes and find existing or add new RD records to
+ // store and reuse rate and distortion values to speed up TX size search.
+ TXB_RD_INFO_NODE matched_rd_info[4 + 16 + 64];
+ int found_rd_info = 0;
+ if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_inter_txb_hash) {
+ found_rd_info =
+ find_tx_size_rd_records(x, bsize, mi_row, mi_col, matched_rd_info);
+ }
+
+ prune_tx(cpi, bsize, x, xd, tx_set_type);
+
+ int found = 0;
+
+ RD_STATS this_rd_stats;
+ av1_init_rd_stats(&this_rd_stats);
+
+ rd = select_tx_size_fix_type(cpi, x, &this_rd_stats, bsize, ref_best_rd,
+ found_rd_info ? matched_rd_info : NULL);
+ assert(IMPLIES(this_rd_stats.skip && !this_rd_stats.invalid_rate,
+ this_rd_stats.rate == 0));
+
+ ref_best_rd = AOMMIN(rd, ref_best_rd);
+ if (rd < best_rd) {
+ *rd_stats = this_rd_stats;
+ found = 1;
+ }
+
+ // Reset the pruning flags.
+ av1_zero(x->tx_search_prune);
+ x->tx_split_prune_flag = 0;
+
+ // We should always find at least one candidate unless ref_best_rd is less
+ // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type
+ // might have failed to find something better)
+ assert(IMPLIES(!found, ref_best_rd != INT64_MAX));
+ if (!found) return;
+
+ // Save the RD search results into tx_rd_record.
+ if (within_border && cpi->sf.use_mb_rd_hash)
+ save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record);
+}
+
+static void tx_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
+ int blk_col, int plane, int block, TX_SIZE tx_size,
+ BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx,
+ ENTROPY_CONTEXT *left_ctx, RD_STATS *rd_stats,
+ FAST_TX_SEARCH_MODE ftxs_mode) {
+ assert(plane > 0);
+ assert(tx_size < TX_SIZES_ALL);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
+ const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
+ if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
+
+ ENTROPY_CONTEXT *ta = above_ctx + blk_col;
+ ENTROPY_CONTEXT *tl = left_ctx + blk_row;
+ TXB_CTX txb_ctx;
+ get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx);
+ const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
+ const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_UV]
+ .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
+ tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, plane_bsize,
+ &txb_ctx, rd_stats, ftxs_mode, INT64_MAX, NULL);
+
+ const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
+ const int blk_idx = blk_row * mi_width + blk_col;
+
+ av1_set_txb_context(x, plane, block, tx_size, ta, tl);
+ if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
+ RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
+ rd_stats->skip == 1) &&
+ !xd->lossless[mbmi->segment_id]) {
+ rd_stats->rate = zero_blk_rate;
+ rd_stats->dist = rd_stats->sse;
+ }
+
+ // Set chroma blk_skip to 0
+ set_blk_skip(x, plane, blk_idx, 0);
+}
+
+// Return value 0: early termination triggered, no valid rd cost available;
+// 1: rd cost values are valid.
+static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_stats, BLOCK_SIZE bsize,
+ int64_t non_skip_ref_best_rd,
+ int64_t skip_ref_best_rd,
+ FAST_TX_SEARCH_MODE ftxs_mode) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int plane;
+ int is_cost_valid = 1;
+ int64_t this_rd = 0;
+ int64_t skip_rd = 0;
+
+ if ((non_skip_ref_best_rd < 0) && (skip_ref_best_rd < 0)) is_cost_valid = 0;
+
+ av1_init_rd_stats(rd_stats);
+
+ if (x->skip_chroma_rd) {
+ if (!is_cost_valid) av1_invalid_rd_stats(rd_stats);
+
+ return is_cost_valid;
+ }
+
+ const BLOCK_SIZE bsizec = scale_chroma_bsize(
+ bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
+
+ if (is_inter_block(mbmi) && is_cost_valid) {
+ for (plane = 1; plane < MAX_MB_PLANE; ++plane)
+ av1_subtract_plane(x, bsizec, plane);
+ }
+
+ if (is_cost_valid) {
+ for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y);
+ const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
+ const int mi_height =
+ block_size_high[plane_bsize] >> tx_size_high_log2[0];
+ const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
+ const int bh = tx_size_high_unit[max_tx_size];
+ const int bw = tx_size_wide_unit[max_tx_size];
+ int idx, idy;
+ int block = 0;
+ const int step = bh * bw;
+ ENTROPY_CONTEXT ta[MAX_MIB_SIZE];
+ ENTROPY_CONTEXT tl[MAX_MIB_SIZE];
+ av1_get_entropy_contexts(bsizec, pd, ta, tl);
+
+ for (idy = 0; idy < mi_height; idy += bh) {
+ for (idx = 0; idx < mi_width; idx += bw) {
+ RD_STATS pn_rd_stats;
+ av1_init_rd_stats(&pn_rd_stats);
+ tx_block_uvrd(cpi, x, idy, idx, plane, block, max_tx_size,
+ plane_bsize, ta, tl, &pn_rd_stats, ftxs_mode);
+ if (pn_rd_stats.rate == INT_MAX) {
+ av1_invalid_rd_stats(rd_stats);
+ return 0;
+ }
+ av1_merge_rd_stats(rd_stats, &pn_rd_stats);
+ this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ skip_rd = RDCOST(x->rdmult, 0, rd_stats->sse);
+ if ((this_rd > non_skip_ref_best_rd) &&
+ (skip_rd > skip_ref_best_rd)) {
+ av1_invalid_rd_stats(rd_stats);
+ return 0;
+ }
+ block += step;
+ }
+ }
+ }
+ } else {
+ // reset cost value
+ av1_invalid_rd_stats(rd_stats);
+ }
+
+ return is_cost_valid;
+}
+
+static void rd_pick_palette_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int dc_mode_cost,
+ uint8_t *best_palette_color_map,
+ MB_MODE_INFO *const best_mbmi,
+ int64_t *best_rd, int *rate,
+ int *rate_tokenonly, int64_t *distortion,
+ int *skippable) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ assert(
+ av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type));
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ const SequenceHeader *const seq_params = &cpi->common.seq_params;
+ int this_rate;
+ int64_t this_rd;
+ int colors_u, colors_v, colors;
+ const int src_stride = x->plane[1].src.stride;
+ const uint8_t *const src_u = x->plane[1].src.buf;
+ const uint8_t *const src_v = x->plane[2].src.buf;
+ uint8_t *const color_map = xd->plane[1].color_index_map;
+ RD_STATS tokenonly_rd_stats;
+ int plane_block_width, plane_block_height, rows, cols;
+ av1_get_block_dimensions(bsize, 1, xd, &plane_block_width,
+ &plane_block_height, &rows, &cols);
+
+ mbmi->uv_mode = UV_DC_PRED;
+
+ int count_buf[1 << 12]; // Maximum (1 << 12) color levels.
+ if (seq_params->use_highbitdepth) {
+ colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols,
+ seq_params->bit_depth, count_buf);
+ colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols,
+ seq_params->bit_depth, count_buf);
+ } else {
+ colors_u = av1_count_colors(src_u, src_stride, rows, cols, count_buf);
+ colors_v = av1_count_colors(src_v, src_stride, rows, cols, count_buf);
+ }
+
+ uint16_t color_cache[2 * PALETTE_MAX_SIZE];
+ const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
+
+ colors = colors_u > colors_v ? colors_u : colors_v;
+ if (colors > 1 && colors <= 64) {
+ int r, c, n, i, j;
+ const int max_itr = 50;
+ int lb_u, ub_u, val_u;
+ int lb_v, ub_v, val_v;
+ int *const data = x->palette_buffer->kmeans_data_buf;
+ int centroids[2 * PALETTE_MAX_SIZE];
+
+ uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u);
+ uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v);
+ if (seq_params->use_highbitdepth) {
+ lb_u = src_u16[0];
+ ub_u = src_u16[0];
+ lb_v = src_v16[0];
+ ub_v = src_v16[0];
+ } else {
+ lb_u = src_u[0];
+ ub_u = src_u[0];
+ lb_v = src_v[0];
+ ub_v = src_v[0];
+ }
+
+ for (r = 0; r < rows; ++r) {
+ for (c = 0; c < cols; ++c) {
+ if (seq_params->use_highbitdepth) {
+ val_u = src_u16[r * src_stride + c];
+ val_v = src_v16[r * src_stride + c];
+ data[(r * cols + c) * 2] = val_u;
+ data[(r * cols + c) * 2 + 1] = val_v;
+ } else {
+ val_u = src_u[r * src_stride + c];
+ val_v = src_v[r * src_stride + c];
+ data[(r * cols + c) * 2] = val_u;
+ data[(r * cols + c) * 2 + 1] = val_v;
+ }
+ if (val_u < lb_u)
+ lb_u = val_u;
+ else if (val_u > ub_u)
+ ub_u = val_u;
+ if (val_v < lb_v)
+ lb_v = val_v;
+ else if (val_v > ub_v)
+ ub_v = val_v;
+ }
+ }
+
+ for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2;
+ --n) {
+ for (i = 0; i < n; ++i) {
+ centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2;
+ centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2;
+ }
+ av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr);
+ optimize_palette_colors(color_cache, n_cache, n, 2, centroids);
+ // Sort the U channel colors in ascending order.
+ for (i = 0; i < 2 * (n - 1); i += 2) {
+ int min_idx = i;
+ int min_val = centroids[i];
+ for (j = i + 2; j < 2 * n; j += 2)
+ if (centroids[j] < min_val) min_val = centroids[j], min_idx = j;
+ if (min_idx != i) {
+ int temp_u = centroids[i], temp_v = centroids[i + 1];
+ centroids[i] = centroids[min_idx];
+ centroids[i + 1] = centroids[min_idx + 1];
+ centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v;
+ }
+ }
+ av1_calc_indices(data, centroids, color_map, rows * cols, n, 2);
+ extend_palette_color_map(color_map, cols, rows, plane_block_width,
+ plane_block_height);
+ pmi->palette_size[1] = n;
+ for (i = 1; i < 3; ++i) {
+ for (j = 0; j < n; ++j) {
+ if (seq_params->use_highbitdepth)
+ pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd(
+ (int)centroids[j * 2 + i - 1], seq_params->bit_depth);
+ else
+ pmi->palette_colors[i * PALETTE_MAX_SIZE + j] =
+ clip_pixel((int)centroids[j * 2 + i - 1]);
+ }
+ }
+
+ super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
+ if (tokenonly_rd_stats.rate == INT_MAX) continue;
+ this_rate = tokenonly_rd_stats.rate +
+ intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost);
+ this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+ if (this_rd < *best_rd) {
+ *best_rd = this_rd;
+ *best_mbmi = *mbmi;
+ memcpy(best_palette_color_map, color_map,
+ plane_block_width * plane_block_height *
+ sizeof(best_palette_color_map[0]));
+ *rate = this_rate;
+ *distortion = tokenonly_rd_stats.dist;
+ *rate_tokenonly = tokenonly_rd_stats.rate;
+ *skippable = tokenonly_rd_stats.skip;
+ }
+ }
+ }
+ if (best_mbmi->palette_mode_info.palette_size[1] > 0) {
+ memcpy(color_map, best_palette_color_map,
+ plane_block_width * plane_block_height *
+ sizeof(best_palette_color_map[0]));
+ }
+}
+
+// Run RD calculation with given chroma intra prediction angle., and return
+// the RD cost. Update the best mode info. if the RD cost is the best so far.
+static int64_t pick_intra_angle_routine_sbuv(
+ const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
+ int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats,
+ int *best_angle_delta, int64_t *best_rd) {
+ MB_MODE_INFO *mbmi = x->e_mbd.mi[0];
+ assert(!is_inter_block(mbmi));
+ int this_rate;
+ int64_t this_rd;
+ RD_STATS tokenonly_rd_stats;
+
+ if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in))
+ return INT64_MAX;
+ this_rate = tokenonly_rd_stats.rate +
+ intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead);
+ this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+ if (this_rd < *best_rd) {
+ *best_rd = this_rd;
+ *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
+ *rate = this_rate;
+ rd_stats->rate = tokenonly_rd_stats.rate;
+ rd_stats->dist = tokenonly_rd_stats.dist;
+ rd_stats->skip = tokenonly_rd_stats.skip;
+ }
+ return this_rd;
+}
+
+// With given chroma directional intra prediction mode, pick the best angle
+// delta. Return true if a RD cost that is smaller than the input one is found.
+static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int rate_overhead,
+ int64_t best_rd, int *rate,
+ RD_STATS *rd_stats) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ int i, angle_delta, best_angle_delta = 0;
+ int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
+
+ rd_stats->rate = INT_MAX;
+ rd_stats->skip = 0;
+ rd_stats->dist = INT64_MAX;
+ for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;
+
+ for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
+ for (i = 0; i < 2; ++i) {
+ best_rd_in = (best_rd == INT64_MAX)
+ ? INT64_MAX
+ : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5)));
+ mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
+ this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead,
+ best_rd_in, rate, rd_stats,
+ &best_angle_delta, &best_rd);
+ rd_cost[2 * angle_delta + i] = this_rd;
+ if (angle_delta == 0) {
+ if (this_rd == INT64_MAX) return 0;
+ rd_cost[1] = this_rd;
+ break;
+ }
+ }
+ }
+
+ assert(best_rd != INT64_MAX);
+ for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
+ int64_t rd_thresh;
+ for (i = 0; i < 2; ++i) {
+ int skip_search = 0;
+ rd_thresh = best_rd + (best_rd >> 5);
+ if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
+ rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
+ skip_search = 1;
+ if (!skip_search) {
+ mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
+ pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd,
+ rate, rd_stats, &best_angle_delta,
+ &best_rd);
+ }
+ }
+ }
+
+ mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta;
+ return rd_stats->rate != INT_MAX;
+}
+
+#define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \
+ (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1)
+static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi,
+ TX_SIZE tx_size, int64_t best_rd) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+#if CONFIG_DEBUG
+ assert(is_cfl_allowed(xd));
+ const int ssx = xd->plane[AOM_PLANE_U].subsampling_x;
+ const int ssy = xd->plane[AOM_PLANE_U].subsampling_y;
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, ssx, ssy);
+ (void)plane_bsize;
+ assert(plane_bsize < BLOCK_SIZES_ALL);
+ if (!xd->lossless[mbmi->segment_id]) {
+ assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
+ assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
+ }
+#endif // CONFIG_DEBUG
+
+ xd->cfl.use_dc_pred_cache = 1;
+ const int64_t mode_rd =
+ RDCOST(x->rdmult,
+ x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED], 0);
+ int64_t best_rd_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
+ int best_c[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
+#if CONFIG_DEBUG
+ int best_rate_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
+#endif // CONFIG_DEBUG
+
+ for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
+ RD_STATS rd_stats;
+ av1_init_rd_stats(&rd_stats);
+ for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
+ best_rd_uv[joint_sign][plane] = INT64_MAX;
+ best_c[joint_sign][plane] = 0;
+ }
+ // Collect RD stats for an alpha value of zero in this plane.
+ // Skip i == CFL_SIGN_ZERO as (0, 0) is invalid.
+ for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) {
+ const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, CFL_SIGN_ZERO, i);
+ if (i == CFL_SIGN_NEG) {
+ mbmi->cfl_alpha_idx = 0;
+ mbmi->cfl_alpha_signs = joint_sign;
+ txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize, tx_size,
+ cpi->sf.use_fast_coef_costing, FTXS_NONE);
+ if (rd_stats.rate == INT_MAX) break;
+ }
+ const int alpha_rate = x->cfl_cost[joint_sign][plane][0];
+ best_rd_uv[joint_sign][plane] =
+ RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
+#if CONFIG_DEBUG
+ best_rate_uv[joint_sign][plane] = rd_stats.rate;
+#endif // CONFIG_DEBUG
+ }
+ }
+
+ int best_joint_sign = -1;
+
+ for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
+ for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) {
+ int progress = 0;
+ for (int c = 0; c < CFL_ALPHABET_SIZE; c++) {
+ int flag = 0;
+ RD_STATS rd_stats;
+ if (c > 2 && progress < c) break;
+ av1_init_rd_stats(&rd_stats);
+ for (int i = 0; i < CFL_SIGNS; i++) {
+ const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, pn_sign, i);
+ if (i == 0) {
+ mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c;
+ mbmi->cfl_alpha_signs = joint_sign;
+ txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize,
+ tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE);
+ if (rd_stats.rate == INT_MAX) break;
+ }
+ const int alpha_rate = x->cfl_cost[joint_sign][plane][c];
+ int64_t this_rd =
+ RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
+ if (this_rd >= best_rd_uv[joint_sign][plane]) continue;
+ best_rd_uv[joint_sign][plane] = this_rd;
+ best_c[joint_sign][plane] = c;
+#if CONFIG_DEBUG
+ best_rate_uv[joint_sign][plane] = rd_stats.rate;
+#endif // CONFIG_DEBUG
+ flag = 2;
+ if (best_rd_uv[joint_sign][!plane] == INT64_MAX) continue;
+ this_rd += mode_rd + best_rd_uv[joint_sign][!plane];
+ if (this_rd >= best_rd) continue;
+ best_rd = this_rd;
+ best_joint_sign = joint_sign;
+ }
+ progress += flag;
+ }
+ }
+ }
+
+ int best_rate_overhead = INT_MAX;
+ int ind = 0;
+ if (best_joint_sign >= 0) {
+ const int u = best_c[best_joint_sign][CFL_PRED_U];
+ const int v = best_c[best_joint_sign][CFL_PRED_V];
+ ind = (u << CFL_ALPHABET_SIZE_LOG2) + v;
+ best_rate_overhead = x->cfl_cost[best_joint_sign][CFL_PRED_U][u] +
+ x->cfl_cost[best_joint_sign][CFL_PRED_V][v];
+#if CONFIG_DEBUG
+ xd->cfl.rate = x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED] +
+ best_rate_overhead +
+ best_rate_uv[best_joint_sign][CFL_PRED_U] +
+ best_rate_uv[best_joint_sign][CFL_PRED_V];
+#endif // CONFIG_DEBUG
+ } else {
+ best_joint_sign = 0;
+ }
+
+ mbmi->cfl_alpha_idx = ind;
+ mbmi->cfl_alpha_signs = best_joint_sign;
+ xd->cfl.use_dc_pred_cache = 0;
+ xd->cfl.dc_pred_is_cached[0] = 0;
+ xd->cfl.dc_pred_is_cached[1] = 0;
+ return best_rate_overhead;
+}
+
+static void init_sbuv_mode(MB_MODE_INFO *const mbmi) {
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->palette_mode_info.palette_size[1] = 0;
+}
+
+static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
+ int *rate, int *rate_tokenonly,
+ int64_t *distortion, int *skippable,
+ BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ assert(!is_inter_block(mbmi));
+ MB_MODE_INFO best_mbmi = *mbmi;
+ int64_t best_rd = INT64_MAX, this_rd;
+
+ for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) {
+ int this_rate;
+ RD_STATS tokenonly_rd_stats;
+ UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx];
+ const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode));
+ if (!(cpi->sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] &
+ (1 << mode)))
+ continue;
+
+ mbmi->uv_mode = mode;
+ int cfl_alpha_rate = 0;
+ if (mode == UV_CFL_PRED) {
+ if (!is_cfl_allowed(xd)) continue;
+ assert(!is_directional_mode);
+ const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
+ cfl_alpha_rate = cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd);
+ if (cfl_alpha_rate == INT_MAX) continue;
+ }
+ mbmi->angle_delta[PLANE_TYPE_UV] = 0;
+ if (is_directional_mode && av1_use_angle_delta(mbmi->sb_type)) {
+ const int rate_overhead =
+ x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode];
+ if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd,
+ &this_rate, &tokenonly_rd_stats))
+ continue;
+ } else {
+ if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) {
+ continue;
+ }
+ }
+ const int mode_cost =
+ x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode] +
+ cfl_alpha_rate;
+ this_rate = tokenonly_rd_stats.rate +
+ intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost);
+ if (mode == UV_CFL_PRED) {
+ assert(is_cfl_allowed(xd));
+#if CONFIG_DEBUG
+ if (!xd->lossless[mbmi->segment_id])
+ assert(xd->cfl.rate == tokenonly_rd_stats.rate + mode_cost);
+#endif // CONFIG_DEBUG
+ }
+ this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
+
+ if (this_rd < best_rd) {
+ best_mbmi = *mbmi;
+ best_rd = this_rd;
+ *rate = this_rate;
+ *rate_tokenonly = tokenonly_rd_stats.rate;
+ *distortion = tokenonly_rd_stats.dist;
+ *skippable = tokenonly_rd_stats.skip;
+ }
+ }
+
+ const int try_palette =
+ av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type);
+ if (try_palette) {
+ uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map;
+ rd_pick_palette_intra_sbuv(
+ cpi, x,
+ x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED],
+ best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly,
+ distortion, skippable);
+ }
+
+ *mbmi = best_mbmi;
+ // Make sure we actually chose a mode
+ assert(best_rd < INT64_MAX);
+ return best_rd;
+}
+
+static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ BLOCK_SIZE bsize, TX_SIZE max_tx_size,
+ int *rate_uv, int *rate_uv_tokenonly,
+ int64_t *dist_uv, int *skip_uv,
+ UV_PREDICTION_MODE *mode_uv) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
+ const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
+ // Use an estimated rd for uv_intra based on DC_PRED if the
+ // appropriate speed flag is set.
+ init_sbuv_mode(mbmi);
+ if (x->skip_chroma_rd) {
+ *rate_uv = 0;
+ *rate_uv_tokenonly = 0;
+ *dist_uv = 0;
+ *skip_uv = 1;
+ *mode_uv = UV_DC_PRED;
+ return;
+ }
+ xd->cfl.is_chroma_reference =
+ is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x,
+ cm->seq_params.subsampling_y);
+ bsize = scale_chroma_bsize(bsize, xd->plane[AOM_PLANE_U].subsampling_x,
+ xd->plane[AOM_PLANE_U].subsampling_y);
+ // Only store reconstructed luma when there's chroma RDO. When there's no
+ // chroma RDO, the reconstructed luma will be stored in encode_superblock().
+ xd->cfl.store_y = store_cfl_required_rdo(cm, x);
+ if (xd->cfl.store_y) {
+ // Restore reconstructed luma values.
+ av1_encode_intra_block_plane(cpi, x, mbmi->sb_type, AOM_PLANE_Y,
+ cpi->optimize_seg_arr[mbmi->segment_id],
+ mi_row, mi_col);
+ xd->cfl.store_y = 0;
+ }
+ rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
+ bsize, max_tx_size);
+ *mode_uv = mbmi->uv_mode;
+}
+
+static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode,
+ int16_t mode_context) {
+ if (is_inter_compound_mode(mode)) {
+ return x
+ ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
+ }
+
+ int mode_cost = 0;
+ int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
+
+ assert(is_inter_mode(mode));
+
+ if (mode == NEWMV) {
+ mode_cost = x->newmv_mode_cost[mode_ctx][0];
+ return mode_cost;
+ } else {
+ mode_cost = x->newmv_mode_cost[mode_ctx][1];
+ mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
+
+ if (mode == GLOBALMV) {
+ mode_cost += x->zeromv_mode_cost[mode_ctx][0];
+ return mode_cost;
+ } else {
+ mode_cost += x->zeromv_mode_cost[mode_ctx][1];
+ mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
+ mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
+ return mode_cost;
+ }
+ }
+}
+
+static int get_interinter_compound_mask_rate(const MACROBLOCK *const x,
+ const MB_MODE_INFO *const mbmi) {
+ switch (mbmi->interinter_comp.type) {
+ case COMPOUND_AVERAGE: return 0;
+ case COMPOUND_WEDGE:
+ return get_interinter_wedge_bits(mbmi->sb_type) > 0
+ ? av1_cost_literal(1) +
+ x->wedge_idx_cost[mbmi->sb_type]
+ [mbmi->interinter_comp.wedge_index]
+ : 0;
+ case COMPOUND_DIFFWTD: return av1_cost_literal(1);
+ default: assert(0); return 0;
+ }
+}
+
+typedef struct {
+ int eobs;
+ int brate;
+ int byrate;
+ int64_t bdist;
+ int64_t bsse;
+ int64_t brdcost;
+ int_mv mvs[2];
+ int_mv pred_mv[2];
+ int_mv ref_mv[2];
+
+ ENTROPY_CONTEXT ta[2];
+ ENTROPY_CONTEXT tl[2];
+} SEG_RDSTAT;
+
+typedef struct {
+ int_mv *ref_mv[2];
+ int_mv mvp;
+
+ int64_t segment_rd;
+ int r;
+ int64_t d;
+ int64_t sse;
+ int segment_yrate;
+ PREDICTION_MODE modes[4];
+ SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES];
+ int mvthresh;
+} BEST_SEG_INFO;
+
+static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) {
+ return (mv->row >> 3) < mv_limits->row_min ||
+ (mv->row >> 3) > mv_limits->row_max ||
+ (mv->col >> 3) < mv_limits->col_min ||
+ (mv->col >> 3) > mv_limits->col_max;
+}
+
+static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode,
+ int ref_idx, int is_comp_pred) {
+ PREDICTION_MODE single_mode;
+ if (is_comp_pred) {
+ single_mode =
+ ref_idx ? compound_ref1_mode(this_mode) : compound_ref0_mode(this_mode);
+ } else {
+ single_mode = this_mode;
+ }
+ return single_mode;
+}
+
+static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int_mv *cur_mv, int mi_row,
+ int mi_col, int_mv *ref_mv_sub8x8[2],
+ const uint8_t *mask, int mask_stride,
+ int *rate_mv, const int block) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const int pw = block_size_wide[bsize];
+ const int ph = block_size_high[bsize];
+ const int plane = 0;
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ // This function should only ever be called for compound modes
+ assert(has_second_ref(mbmi));
+ const int_mv init_mv[2] = { cur_mv[0], cur_mv[1] };
+ const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] };
+ int_mv ref_mv[2];
+ int ite, ref;
+ // ic and ir are the 4x4 coordinates of the sub8x8 at index "block"
+ const int ic = block & 1;
+ const int ir = (block - ic) >> 1;
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic;
+ const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir;
+
+ ConvolveParams conv_params = get_conv_params(0, plane, xd->bd);
+ conv_params.use_jnt_comp_avg = 0;
+ WarpTypesAllowed warp_types[2];
+ for (ref = 0; ref < 2; ++ref) {
+ const WarpedMotionParams *const wm =
+ &xd->global_motion[xd->mi[0]->ref_frame[ref]];
+ const int is_global = is_global_mv_block(xd->mi[0], wm->wmtype);
+ warp_types[ref].global_warp_allowed = is_global;
+ warp_types[ref].local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL;
+ }
+
+ // Do joint motion search in compound mode to get more accurate mv.
+ struct buf_2d backup_yv12[2][MAX_MB_PLANE];
+ int last_besterr[2] = { INT_MAX, INT_MAX };
+ const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
+ av1_get_scaled_ref_frame(cpi, refs[0]),
+ av1_get_scaled_ref_frame(cpi, refs[1])
+ };
+
+ // Prediction buffer from second frame.
+ DECLARE_ALIGNED(16, uint8_t, second_pred16[MAX_SB_SQUARE * sizeof(uint16_t)]);
+ uint8_t *second_pred = get_buf_by_bd(xd, second_pred16);
+ (void)ref_mv_sub8x8;
+
+ const int have_newmv = have_nearmv_in_inter_mode(mbmi->mode);
+ const int ref_mv_idx = mbmi->ref_mv_idx + (have_newmv ? 1 : 0);
+ MV *const best_mv = &x->best_mv.as_mv;
+ const int search_range = SEARCH_RANGE_8P;
+ const int sadpb = x->sadperbit16;
+ // Allow joint search multiple times iteratively for each reference frame
+ // and break out of the search loop if it couldn't find a better mv.
+ for (ite = 0; ite < 4; ite++) {
+ struct buf_2d ref_yv12[2];
+ int bestsme = INT_MAX;
+ MvLimits tmp_mv_limits = x->mv_limits;
+ int id = ite % 2; // Even iterations search in the first reference frame,
+ // odd iterations search in the second. The predictor
+ // found for the 'other' reference frame is factored in.
+ if (ite >= 2 && cur_mv[!id].as_int == init_mv[!id].as_int) {
+ if (cur_mv[id].as_int == init_mv[id].as_int) {
+ break;
+ } else {
+ int_mv cur_int_mv, init_int_mv;
+ cur_int_mv.as_mv.col = cur_mv[id].as_mv.col >> 3;
+ cur_int_mv.as_mv.row = cur_mv[id].as_mv.col >> 3;
+ init_int_mv.as_mv.row = init_mv[id].as_mv.row >> 3;
+ init_int_mv.as_mv.col = init_mv[id].as_mv.col >> 3;
+ if (cur_int_mv.as_int == init_int_mv.as_int) {
+ break;
+ }
+ }
+ }
+ for (ref = 0; ref < 2; ++ref) {
+ ref_mv[ref] = av1_get_ref_mv(x, ref);
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // motion search code to be used without additional modifications.
+ if (scaled_ref_frame[ref]) {
+ int i;
+ for (i = 0; i < num_planes; i++)
+ backup_yv12[ref][i] = xd->plane[i].pre[ref];
+ av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
+ NULL, num_planes);
+ }
+ }
+
+ assert(IMPLIES(scaled_ref_frame[0] != NULL,
+ cm->width == scaled_ref_frame[0]->y_crop_width &&
+ cm->height == scaled_ref_frame[0]->y_crop_height));
+ assert(IMPLIES(scaled_ref_frame[1] != NULL,
+ cm->width == scaled_ref_frame[1]->y_crop_width &&
+ cm->height == scaled_ref_frame[1]->y_crop_height));
+
+ // Initialize based on (possibly scaled) prediction buffers.
+ ref_yv12[0] = xd->plane[plane].pre[0];
+ ref_yv12[1] = xd->plane[plane].pre[1];
+
+ // Get the prediction block from the 'other' reference frame.
+ const InterpFilters interp_filters = EIGHTTAP_REGULAR;
+
+ // Since we have scaled the reference frames to match the size of the
+ // current frame we must use a unit scaling factor during mode selection.
+ av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
+ second_pred, pw, &cur_mv[!id].as_mv,
+ &cm->sf_identity, pw, ph, &conv_params,
+ interp_filters, &warp_types[!id], p_col, p_row,
+ plane, !id, MV_PRECISION_Q3, mi_col * MI_SIZE,
+ mi_row * MI_SIZE, xd, cm->allow_warped_motion);
+
+ const int order_idx = id != 0;
+ av1_jnt_comp_weight_assign(cm, mbmi, order_idx, &xd->jcp_param.fwd_offset,
+ &xd->jcp_param.bck_offset,
+ &xd->jcp_param.use_jnt_comp_avg, 1);
+
+ // Do full-pixel compound motion search on the current reference frame.
+ if (id) xd->plane[plane].pre[0] = ref_yv12[id];
+ av1_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv);
+
+ // Use the mv result from the single mode as mv predictor.
+ *best_mv = cur_mv[id].as_mv;
+
+ best_mv->col >>= 3;
+ best_mv->row >>= 3;
+
+ av1_set_mvcost(x, id, ref_mv_idx);
+
+ // Small-range full-pixel motion search.
+ bestsme = av1_refining_search_8p_c(x, sadpb, search_range,
+ &cpi->fn_ptr[bsize], mask, mask_stride,
+ id, &ref_mv[id].as_mv, second_pred);
+ if (bestsme < INT_MAX) {
+ if (mask)
+ bestsme = av1_get_mvpred_mask_var(x, best_mv, &ref_mv[id].as_mv,
+ second_pred, mask, mask_stride, id,
+ &cpi->fn_ptr[bsize], 1);
+ else
+ bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv,
+ second_pred, &cpi->fn_ptr[bsize], 1);
+ }
+
+ x->mv_limits = tmp_mv_limits;
+
+ // Restore the pointer to the first (possibly scaled) prediction buffer.
+ if (id) xd->plane[plane].pre[0] = ref_yv12[0];
+
+ for (ref = 0; ref < 2; ++ref) {
+ if (scaled_ref_frame[ref]) {
+ // Swap back the original buffers for subpel motion search.
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[ref] = backup_yv12[ref][i];
+ }
+ // Re-initialize based on unscaled prediction buffers.
+ ref_yv12[ref] = xd->plane[plane].pre[ref];
+ }
+ }
+
+ // Do sub-pixel compound motion search on the current reference frame.
+ if (id) xd->plane[plane].pre[0] = ref_yv12[id];
+
+ if (cpi->common.cur_frame_force_integer_mv) {
+ x->best_mv.as_mv.row *= 8;
+ x->best_mv.as_mv.col *= 8;
+ }
+ if (bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0) {
+ int dis; /* TODO: use dis in distortion calculation later. */
+ unsigned int sse;
+ bestsme = cpi->find_fractional_mv_step(
+ x, cm, mi_row, mi_col, &ref_mv[id].as_mv,
+ cpi->common.allow_high_precision_mv, x->errorperbit,
+ &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL,
+ x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask,
+ mask_stride, id, pw, ph, cpi->sf.use_accurate_subpel_search);
+ }
+
+ // Restore the pointer to the first prediction buffer.
+ if (id) xd->plane[plane].pre[0] = ref_yv12[0];
+ if (bestsme < last_besterr[id]) {
+ cur_mv[id].as_mv = *best_mv;
+ last_besterr[id] = bestsme;
+ } else {
+ break;
+ }
+ }
+
+ *rate_mv = 0;
+
+ for (ref = 0; ref < 2; ++ref) {
+ av1_set_mvcost(x, ref, ref_mv_idx);
+ const int_mv curr_ref_mv = av1_get_ref_mv(x, ref);
+ *rate_mv += av1_mv_bit_cost(&cur_mv[ref].as_mv, &curr_ref_mv.as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+ }
+}
+
+static void estimate_ref_frame_costs(
+ const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x,
+ int segment_id, unsigned int *ref_costs_single,
+ unsigned int (*ref_costs_comp)[REF_FRAMES]) {
+ int seg_ref_active =
+ segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
+ if (seg_ref_active) {
+ memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
+ int ref_frame;
+ for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
+ memset(ref_costs_comp[ref_frame], 0,
+ REF_FRAMES * sizeof((*ref_costs_comp)[0]));
+ } else {
+ int intra_inter_ctx = av1_get_intra_inter_context(xd);
+ ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0];
+ unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1];
+
+ for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
+ ref_costs_single[i] = base_cost;
+
+ const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd);
+ const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd);
+ const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd);
+ const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd);
+ const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd);
+ const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd);
+
+ // Determine cost of a single ref frame, where frame types are represented
+ // by a tree:
+ // Level 0: add cost whether this ref is a forward or backward ref
+ ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0];
+ ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0];
+ ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0];
+ ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0];
+ ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1];
+ ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1];
+ ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1];
+
+ // Level 1: if this ref is forward ref,
+ // add cost whether it is last/last2 or last3/golden
+ ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0];
+ ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0];
+ ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1];
+ ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1];
+
+ // Level 1: if this ref is backward ref
+ // then add cost whether this ref is altref or backward ref
+ ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0];
+ ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0];
+ ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1];
+
+ // Level 2: further add cost whether this ref is last or last2
+ ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0];
+ ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1];
+
+ // Level 2: last3 or golden
+ ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0];
+ ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1];
+
+ // Level 2: bwdref or altref2
+ ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0];
+ ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1];
+
+ if (cm->reference_mode != SINGLE_REFERENCE) {
+ // Similar to single ref, determine cost of compound ref frames.
+ // cost_compound_refs = cost_first_ref + cost_second_ref
+ const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
+ const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
+ const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
+ const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
+ const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);
+
+ const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
+ unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };
+
+ ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
+ ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
+ base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1];
+ ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
+ ref_bicomp_costs[ALTREF_FRAME] = 0;
+
+ // cost of first ref frame
+ ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0];
+ ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0];
+ ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1];
+ ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1];
+
+ ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0];
+ ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1];
+
+ ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0];
+ ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1];
+
+ // cost of second ref frame
+ ref_bicomp_costs[BWDREF_FRAME] +=
+ x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
+ ref_bicomp_costs[ALTREF2_FRAME] +=
+ x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
+ ref_bicomp_costs[ALTREF_FRAME] +=
+ x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];
+
+ ref_bicomp_costs[BWDREF_FRAME] +=
+ x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
+ ref_bicomp_costs[ALTREF2_FRAME] +=
+ x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];
+
+ // cost: if one ref frame is forward ref, the other ref is backward ref
+ int ref0, ref1;
+ for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
+ for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
+ ref_costs_comp[ref0][ref1] =
+ ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
+ }
+ }
+
+ // cost: if both ref frames are the same side.
+ const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
+ const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
+ const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
+ ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
+ base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
+ ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
+ base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
+ ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
+ base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
+ ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
+ base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
+ x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
+ } else {
+ int ref0, ref1;
+ for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
+ for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
+ ref_costs_comp[ref0][ref1] = 512;
+ }
+ ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
+ ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
+ ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
+ ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
+ }
+ }
+}
+
+static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
+ int mode_index,
+ int64_t comp_pred_diff[REFERENCE_MODES],
+ int skippable) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ // Take a snapshot of the coding context so it can be
+ // restored if we decide to encode this way
+ ctx->skip = x->skip;
+ ctx->skippable = skippable;
+ ctx->best_mode_index = mode_index;
+ ctx->mic = *xd->mi[0];
+ ctx->mbmi_ext = *x->mbmi_ext;
+ ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
+ ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
+ ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
+}
+
+static void setup_buffer_ref_mvs_inter(
+ const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
+ BLOCK_SIZE block_size, int mi_row, int mi_col,
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
+ MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+
+ assert(yv12 != NULL);
+
+ // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
+ // use the UV scaling factors.
+ av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf,
+ num_planes);
+
+ // Gets an initial list of candidate vectors from neighbours and orders them
+ av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
+ mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row,
+ mi_col, mbmi_ext->mode_context);
+
+ // Further refinement that is encode side only to test the top few candidates
+ // in full and choose the best as the centre point for subsequent searches.
+ // The current implementation doesn't support scaling.
+ (void)block_size;
+ av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
+ block_size);
+}
+
+static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ int ref_idx, int *rate_mv) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
+ int bestsme = INT_MAX;
+ int step_param;
+ int sadpb = x->sadperbit16;
+ MV mvp_full;
+ int ref = mbmi->ref_frame[ref_idx];
+ MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv;
+
+ MvLimits tmp_mv_limits = x->mv_limits;
+ int cost_list[5];
+
+ const YV12_BUFFER_CONFIG *scaled_ref_frame =
+ av1_get_scaled_ref_frame(cpi, ref);
+
+ if (scaled_ref_frame) {
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // full-pixel motion search code to be used without additional
+ // modifications.
+ for (int i = 0; i < num_planes; i++) {
+ backup_yv12[i] = xd->plane[i].pre[ref_idx];
+ }
+ av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL,
+ num_planes);
+ }
+
+ av1_set_mvcost(
+ x, ref_idx,
+ mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0));
+
+ // Work out the size of the first step in the mv step search.
+ // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc.
+ if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
+ // Take the weighted average of the step_params based on the last frame's
+ // max mv magnitude and that based on the best ref mvs of the current
+ // block for the given reference.
+ step_param =
+ (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
+ 2;
+ } else {
+ step_param = cpi->mv_step_param;
+ }
+
+ if (cpi->sf.adaptive_motion_search && bsize < cm->seq_params.sb_size) {
+ int boffset =
+ 2 * (mi_size_wide_log2[cm->seq_params.sb_size] -
+ AOMMIN(mi_size_high_log2[bsize], mi_size_wide_log2[bsize]));
+ step_param = AOMMAX(step_param, boffset);
+ }
+
+ if (cpi->sf.adaptive_motion_search) {
+ int bwl = mi_size_wide_log2[bsize];
+ int bhl = mi_size_high_log2[bsize];
+ int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
+
+ if (tlevel < 5) {
+ step_param += 2;
+ step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 1);
+ }
+
+ // prev_mv_sad is not setup for dynamically scaled frames.
+ if (cpi->oxcf.resize_mode != RESIZE_RANDOM) {
+ int i;
+ for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
+ if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
+ x->pred_mv[ref].row = 0;
+ x->pred_mv[ref].col = 0;
+ x->best_mv.as_int = INVALID_MV;
+
+ if (scaled_ref_frame) {
+ // Swap back the original buffers before returning.
+ for (int j = 0; j < num_planes; ++j)
+ xd->plane[j].pre[ref_idx] = backup_yv12[j];
+ }
+ return;
+ }
+ }
+ }
+ }
+
+ // Note: MV limits are modified here. Always restore the original values
+ // after full-pixel motion search.
+ av1_set_mv_search_range(&x->mv_limits, &ref_mv);
+
+ if (mbmi->motion_mode != SIMPLE_TRANSLATION)
+ mvp_full = mbmi->mv[0].as_mv;
+ else
+ mvp_full = ref_mv;
+
+ mvp_full.col >>= 3;
+ mvp_full.row >>= 3;
+
+ x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV;
+
+ switch (mbmi->motion_mode) {
+ case SIMPLE_TRANSLATION:
+ bestsme = av1_full_pixel_search(
+ cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0,
+ sadpb, cond_cost_list(cpi, cost_list), &ref_mv, INT_MAX, 1,
+ (MI_SIZE * mi_col), (MI_SIZE * mi_row), 0);
+ break;
+ case OBMC_CAUSAL:
+ bestsme = av1_obmc_full_pixel_search(cpi, x, &mvp_full, step_param, sadpb,
+ MAX_MVSEARCH_STEPS - 1 - step_param,
+ 1, &cpi->fn_ptr[bsize], &ref_mv,
+ &(x->best_mv.as_mv), 0);
+ break;
+ default: assert(0 && "Invalid motion mode!\n");
+ }
+
+ if (scaled_ref_frame) {
+ // Swap back the original buffers for subpel motion search.
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[ref_idx] = backup_yv12[i];
+ }
+ }
+
+ x->mv_limits = tmp_mv_limits;
+
+ if (cpi->common.cur_frame_force_integer_mv) {
+ x->best_mv.as_mv.row *= 8;
+ x->best_mv.as_mv.col *= 8;
+ }
+ const int use_fractional_mv =
+ bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0;
+ if (use_fractional_mv) {
+ int dis; /* TODO: use dis in distortion calculation later. */
+ switch (mbmi->motion_mode) {
+ case SIMPLE_TRANSLATION:
+ if (cpi->sf.use_accurate_subpel_search) {
+ int best_mv_var;
+ const int try_second = x->second_best_mv.as_int != INVALID_MV &&
+ x->second_best_mv.as_int != x->best_mv.as_int;
+ const int pw = block_size_wide[bsize];
+ const int ph = block_size_high[bsize];
+
+ best_mv_var = cpi->find_fractional_mv_step(
+ x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
+ x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
+ cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
+ x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL,
+ 0, 0, pw, ph, 1);
+
+ if (try_second) {
+ const int minc =
+ AOMMAX(x->mv_limits.col_min * 8, ref_mv.col - MV_MAX);
+ const int maxc =
+ AOMMIN(x->mv_limits.col_max * 8, ref_mv.col + MV_MAX);
+ const int minr =
+ AOMMAX(x->mv_limits.row_min * 8, ref_mv.row - MV_MAX);
+ const int maxr =
+ AOMMIN(x->mv_limits.row_max * 8, ref_mv.row + MV_MAX);
+ int this_var;
+ MV best_mv = x->best_mv.as_mv;
+
+ x->best_mv = x->second_best_mv;
+ if (x->best_mv.as_mv.row * 8 <= maxr &&
+ x->best_mv.as_mv.row * 8 >= minr &&
+ x->best_mv.as_mv.col * 8 <= maxc &&
+ x->best_mv.as_mv.col * 8 >= minc) {
+ this_var = cpi->find_fractional_mv_step(
+ x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
+ x->errorperbit, &cpi->fn_ptr[bsize],
+ cpi->sf.mv.subpel_force_stop,
+ cpi->sf.mv.subpel_iters_per_step,
+ cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
+ &dis, &x->pred_sse[ref], NULL, NULL, 0, 0, pw, ph, 1);
+ if (this_var < best_mv_var) best_mv = x->best_mv.as_mv;
+ x->best_mv.as_mv = best_mv;
+ }
+ }
+ } else {
+ cpi->find_fractional_mv_step(
+ x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
+ x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
+ cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
+ x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL,
+ 0, 0, 0, 0, 0);
+ }
+ break;
+ case OBMC_CAUSAL:
+ av1_find_best_obmc_sub_pixel_tree_up(
+ x, cm, mi_row, mi_col, &x->best_mv.as_mv, &ref_mv,
+ cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize],
+ cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step,
+ x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], 0,
+ cpi->sf.use_accurate_subpel_search);
+ break;
+ default: assert(0 && "Invalid motion mode!\n");
+ }
+ }
+ *rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost,
+ x->mvcost, MV_COST_WEIGHT);
+
+ if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION)
+ x->pred_mv[ref] = x->best_mv.as_mv;
+}
+
+static INLINE void restore_dst_buf(MACROBLOCKD *xd, BUFFER_SET dst,
+ const int num_planes) {
+ int i;
+ for (i = 0; i < num_planes; i++) {
+ xd->plane[i].dst.buf = dst.plane[i];
+ xd->plane[i].dst.stride = dst.stride[i];
+ }
+}
+
+static void build_second_inter_pred(const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, const MV *other_mv,
+ int mi_row, int mi_col, const int block,
+ int ref_idx, uint8_t *second_pred) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int pw = block_size_wide[bsize];
+ const int ph = block_size_high[bsize];
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const int other_ref = mbmi->ref_frame[!ref_idx];
+ struct macroblockd_plane *const pd = &xd->plane[0];
+ // ic and ir are the 4x4 coordinates of the sub8x8 at index "block"
+ const int ic = block & 1;
+ const int ir = (block - ic) >> 1;
+ const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic;
+ const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir;
+ const WarpedMotionParams *const wm = &xd->global_motion[other_ref];
+ int is_global = is_global_mv_block(xd->mi[0], wm->wmtype);
+
+ // This function should only ever be called for compound modes
+ assert(has_second_ref(mbmi));
+
+ const int plane = 0;
+ struct buf_2d ref_yv12 = xd->plane[plane].pre[!ref_idx];
+
+ struct scale_factors sf;
+ av1_setup_scale_factors_for_frame(&sf, ref_yv12.width, ref_yv12.height,
+ cm->width, cm->height);
+
+ ConvolveParams conv_params = get_conv_params(0, plane, xd->bd);
+ WarpTypesAllowed warp_types;
+ warp_types.global_warp_allowed = is_global;
+ warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL;
+
+ // Get the prediction block from the 'other' reference frame.
+ av1_build_inter_predictor(ref_yv12.buf, ref_yv12.stride, second_pred, pw,
+ other_mv, &sf, pw, ph, &conv_params,
+ mbmi->interp_filters, &warp_types, p_col, p_row,
+ plane, !ref_idx, MV_PRECISION_Q3, mi_col * MI_SIZE,
+ mi_row * MI_SIZE, xd, cm->allow_warped_motion);
+
+ av1_jnt_comp_weight_assign(cm, mbmi, 0, &xd->jcp_param.fwd_offset,
+ &xd->jcp_param.bck_offset,
+ &xd->jcp_param.use_jnt_comp_avg, 1);
+}
+
+// Search for the best mv for one component of a compound,
+// given that the other component is fixed.
+static void compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, MV *this_mv,
+ int mi_row, int mi_col,
+ const uint8_t *second_pred,
+ const uint8_t *mask, int mask_stride,
+ int *rate_mv, int ref_idx) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const int pw = block_size_wide[bsize];
+ const int ph = block_size_high[bsize];
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const int ref = mbmi->ref_frame[ref_idx];
+ const int_mv ref_mv = av1_get_ref_mv(x, ref_idx);
+ struct macroblockd_plane *const pd = &xd->plane[0];
+
+ struct buf_2d backup_yv12[MAX_MB_PLANE];
+ const YV12_BUFFER_CONFIG *const scaled_ref_frame =
+ av1_get_scaled_ref_frame(cpi, ref);
+
+ // Check that this is either an interinter or an interintra block
+ assert(has_second_ref(mbmi) || (ref_idx == 0 && is_interintra_mode(mbmi)));
+
+ // Store the first prediction buffer.
+ struct buf_2d orig_yv12;
+ if (ref_idx) {
+ orig_yv12 = pd->pre[0];
+ pd->pre[0] = pd->pre[ref_idx];
+ }
+
+ if (scaled_ref_frame) {
+ int i;
+ // Swap out the reference frame for a version that's been scaled to
+ // match the resolution of the current frame, allowing the existing
+ // full-pixel motion search code to be used without additional
+ // modifications.
+ for (i = 0; i < num_planes; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx];
+ av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL,
+ num_planes);
+ }
+
+ int bestsme = INT_MAX;
+ int sadpb = x->sadperbit16;
+ MV *const best_mv = &x->best_mv.as_mv;
+ int search_range = SEARCH_RANGE_8P;
+
+ MvLimits tmp_mv_limits = x->mv_limits;
+
+ // Do compound motion search on the current reference frame.
+ av1_set_mv_search_range(&x->mv_limits, &ref_mv.as_mv);
+
+ // Use the mv result from the single mode as mv predictor.
+ *best_mv = *this_mv;
+
+ best_mv->col >>= 3;
+ best_mv->row >>= 3;
+
+ av1_set_mvcost(
+ x, ref_idx,
+ mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0));
+
+ // Small-range full-pixel motion search.
+ bestsme = av1_refining_search_8p_c(x, sadpb, search_range,
+ &cpi->fn_ptr[bsize], mask, mask_stride,
+ ref_idx, &ref_mv.as_mv, second_pred);
+ if (bestsme < INT_MAX) {
+ if (mask)
+ bestsme =
+ av1_get_mvpred_mask_var(x, best_mv, &ref_mv.as_mv, second_pred, mask,
+ mask_stride, ref_idx, &cpi->fn_ptr[bsize], 1);
+ else
+ bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv.as_mv, second_pred,
+ &cpi->fn_ptr[bsize], 1);
+ }
+
+ x->mv_limits = tmp_mv_limits;
+
+ if (scaled_ref_frame) {
+ // Swap back the original buffers for subpel motion search.
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[ref_idx] = backup_yv12[i];
+ }
+ }
+
+ if (cpi->common.cur_frame_force_integer_mv) {
+ x->best_mv.as_mv.row *= 8;
+ x->best_mv.as_mv.col *= 8;
+ }
+ const int use_fractional_mv =
+ bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0;
+ if (use_fractional_mv) {
+ int dis; /* TODO: use dis in distortion calculation later. */
+ unsigned int sse;
+ bestsme = cpi->find_fractional_mv_step(
+ x, cm, mi_row, mi_col, &ref_mv.as_mv,
+ cpi->common.allow_high_precision_mv, x->errorperbit,
+ &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL,
+ x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask, mask_stride,
+ ref_idx, pw, ph, cpi->sf.use_accurate_subpel_search);
+ }
+
+ // Restore the pointer to the first unscaled prediction buffer.
+ if (ref_idx) pd->pre[0] = orig_yv12;
+
+ if (bestsme < INT_MAX) *this_mv = *best_mv;
+
+ *rate_mv = 0;
+
+ av1_set_mvcost(
+ x, ref_idx,
+ mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0));
+ *rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, x->nmvjointcost,
+ x->mvcost, MV_COST_WEIGHT);
+}
+
+// Wrapper for compound_single_motion_search, for the common case
+// where the second prediction is also an inter mode.
+static void compound_single_motion_search_interinter(
+ const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv,
+ int mi_row, int mi_col, const uint8_t *mask, int mask_stride, int *rate_mv,
+ const int block, int ref_idx) {
+ MACROBLOCKD *xd = &x->e_mbd;
+ // This function should only ever be called for compound modes
+ assert(has_second_ref(xd->mi[0]));
+
+ // Prediction buffer from second frame.
+ DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]);
+ uint8_t *second_pred;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
+ else
+ second_pred = (uint8_t *)second_pred_alloc_16;
+
+ MV *this_mv = &cur_mv[ref_idx].as_mv;
+ const MV *other_mv = &cur_mv[!ref_idx].as_mv;
+
+ build_second_inter_pred(cpi, x, bsize, other_mv, mi_row, mi_col, block,
+ ref_idx, second_pred);
+
+ compound_single_motion_search(cpi, x, bsize, this_mv, mi_row, mi_col,
+ second_pred, mask, mask_stride, rate_mv,
+ ref_idx);
+}
+
+static void do_masked_motion_search_indexed(
+ const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
+ const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize,
+ int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int which) {
+ // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ BLOCK_SIZE sb_type = mbmi->sb_type;
+ const uint8_t *mask;
+ const int mask_stride = block_size_wide[bsize];
+
+ mask = av1_get_compound_type_mask(comp_data, sb_type);
+
+ tmp_mv[0].as_int = cur_mv[0].as_int;
+ tmp_mv[1].as_int = cur_mv[1].as_int;
+ if (which == 0 || which == 1) {
+ compound_single_motion_search_interinter(cpi, x, bsize, tmp_mv, mi_row,
+ mi_col, mask, mask_stride, rate_mv,
+ 0, which);
+ } else if (which == 2) {
+ joint_motion_search(cpi, x, bsize, tmp_mv, mi_row, mi_col, NULL, mask,
+ mask_stride, rate_mv, 0);
+ }
+}
+
+#define USE_DISCOUNT_NEWMV_TEST 0
+#if USE_DISCOUNT_NEWMV_TEST
+// In some situations we want to discount the apparent cost of a new motion
+// vector. Where there is a subtle motion field and especially where there is
+// low spatial complexity then it can be hard to cover the cost of a new motion
+// vector in a single block, even if that motion vector reduces distortion.
+// However, once established that vector may be usable through the nearest and
+// near mv modes to reduce distortion in subsequent blocks and also improve
+// visual quality.
+#define NEW_MV_DISCOUNT_FACTOR 8
+static INLINE void get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode,
+ int ref_idx, int ref_mv_idx,
+ const MV_REFERENCE_FRAME *ref_frame,
+ const MB_MODE_INFO_EXT *mbmi_ext);
+static int discount_newmv_test(const AV1_COMP *const cpi, const MACROBLOCK *x,
+ PREDICTION_MODE this_mode, int_mv this_mv) {
+ if (this_mode == NEWMV && this_mv.as_int != 0 &&
+ !cpi->rc.is_src_frame_alt_ref) {
+ // Only discount new_mv when nearst_mv and all near_mv are zero, and the
+ // new_mv is not equal to global_mv
+ const AV1_COMMON *const cm = &cpi->common;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const MV_REFERENCE_FRAME tmp_ref_frames[2] = { mbmi->ref_frame[0],
+ NONE_FRAME };
+ const uint8_t ref_frame_type = av1_ref_frame_type(tmp_ref_frames);
+ int_mv nearest_mv;
+ get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
+ int ret = nearest_mv.as_int == 0;
+ for (int ref_mv_idx = 0;
+ ref_mv_idx < x->mbmi_ext->ref_mv_count[ref_frame_type]; ++ref_mv_idx) {
+ int_mv near_mv;
+ get_this_mv(&near_mv, NEARMV, 0, ref_mv_idx, tmp_ref_frames, x->mbmi_ext);
+ ret &= near_mv.as_int == 0;
+ }
+ if (cm->global_motion[tmp_ref_frames[0]].wmtype <= TRANSLATION) {
+ int_mv global_mv;
+ get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
+ ret &= global_mv.as_int != this_mv.as_int;
+ }
+ return ret;
+ }
+ return 0;
+}
+#endif
+
+#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
+#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
+
+// TODO(jingning): this mv clamping function should be block size dependent.
+static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
+ clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
+ xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
+ xd->mb_to_top_edge - LEFT_TOP_MARGIN,
+ xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN);
+}
+
+static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x,
+ const BLOCK_SIZE bsize, const uint8_t *pred0,
+ int stride0, const uint8_t *pred1, int stride1) {
+ static const BLOCK_SIZE split_qtr[BLOCK_SIZES_ALL] = {
+ // 4X4
+ BLOCK_INVALID,
+ // 4X8, 8X4, 8X8
+ BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X4,
+ // 8X16, 16X8, 16X16
+ BLOCK_4X8, BLOCK_8X4, BLOCK_8X8,
+ // 16X32, 32X16, 32X32
+ BLOCK_8X16, BLOCK_16X8, BLOCK_16X16,
+ // 32X64, 64X32, 64X64
+ BLOCK_16X32, BLOCK_32X16, BLOCK_32X32,
+ // 64x128, 128x64, 128x128
+ BLOCK_32X64, BLOCK_64X32, BLOCK_64X64,
+ // 4X16, 16X4, 8X32
+ BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X16,
+ // 32X8, 16X64, 64X16
+ BLOCK_16X4, BLOCK_8X32, BLOCK_32X8
+ };
+ const struct macroblock_plane *const p = &x->plane[0];
+ const uint8_t *src = p->src.buf;
+ int src_stride = p->src.stride;
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ uint32_t esq[2][4];
+ int64_t tl, br;
+
+ const BLOCK_SIZE f_index = split_qtr[bsize];
+ assert(f_index != BLOCK_INVALID);
+
+ if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ pred0 = CONVERT_TO_BYTEPTR(pred0);
+ pred1 = CONVERT_TO_BYTEPTR(pred1);
+ }
+
+ cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]);
+ cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2, stride0,
+ &esq[0][1]);
+ cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride,
+ pred0 + bh / 2 * stride0, stride0, &esq[0][2]);
+ cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride,
+ pred0 + bh / 2 * stride0 + bw / 2, stride0,
+ &esq[0][3]);
+ cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]);
+ cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2, stride1,
+ &esq[1][1]);
+ cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride,
+ pred1 + bh / 2 * stride1, stride0, &esq[1][2]);
+ cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride,
+ pred1 + bh / 2 * stride1 + bw / 2, stride0,
+ &esq[1][3]);
+
+ tl = ((int64_t)esq[0][0] + esq[0][1] + esq[0][2]) -
+ ((int64_t)esq[1][0] + esq[1][1] + esq[1][2]);
+ br = ((int64_t)esq[1][3] + esq[1][1] + esq[1][2]) -
+ ((int64_t)esq[0][3] + esq[0][1] + esq[0][2]);
+ return (tl + br > 0);
+}
+
+// Choose the best wedge index and sign
+static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x,
+ const BLOCK_SIZE bsize, const uint8_t *const p0,
+ const int16_t *const residual1,
+ const int16_t *const diff10,
+ int *const best_wedge_sign,
+ int *const best_wedge_index) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const struct buf_2d *const src = &x->plane[0].src;
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ const int N = bw * bh;
+ assert(N >= 64);
+ int rate;
+ int64_t dist;
+ int64_t rd, best_rd = INT64_MAX;
+ int wedge_index;
+ int wedge_sign;
+ int wedge_types = (1 << get_wedge_bits_lookup(bsize));
+ const uint8_t *mask;
+ uint64_t sse;
+ const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
+ const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
+
+ DECLARE_ALIGNED(32, int16_t, residual0[MAX_SB_SQUARE]); // src - pred0
+ if (hbd) {
+ aom_highbd_subtract_block(bh, bw, residual0, bw, src->buf, src->stride,
+ CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
+ } else {
+ aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw);
+ }
+
+ int64_t sign_limit = ((int64_t)aom_sum_squares_i16(residual0, N) -
+ (int64_t)aom_sum_squares_i16(residual1, N)) *
+ (1 << WEDGE_WEIGHT_BITS) / 2;
+ int16_t *ds = residual0;
+
+ av1_wedge_compute_delta_squares(ds, residual0, residual1, N);
+
+ for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
+ mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize);
+
+ wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit);
+
+ mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
+ sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N);
+ sse = ROUND_POWER_OF_TWO(sse, bd_round);
+
+ model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
+ &rate, &dist);
+ // int rate2;
+ // int64_t dist2;
+ // model_rd_with_curvfit(cpi, x, bsize, 0, sse, N, &rate2, &dist2);
+ // printf("sse %"PRId64": leagacy: %d %"PRId64", curvfit %d %"PRId64"\n",
+ // sse, rate, dist, rate2, dist2); dist = dist2;
+ // rate = rate2;
+
+ rate += x->wedge_idx_cost[bsize][wedge_index];
+ rd = RDCOST(x->rdmult, rate, dist);
+
+ if (rd < best_rd) {
+ *best_wedge_index = wedge_index;
+ *best_wedge_sign = wedge_sign;
+ best_rd = rd;
+ }
+ }
+
+ return best_rd -
+ RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0);
+}
+
+// Choose the best wedge index the specified sign
+static int64_t pick_wedge_fixed_sign(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x,
+ const BLOCK_SIZE bsize,
+ const int16_t *const residual1,
+ const int16_t *const diff10,
+ const int wedge_sign,
+ int *const best_wedge_index) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ const int N = bw * bh;
+ assert(N >= 64);
+ int rate;
+ int64_t dist;
+ int64_t rd, best_rd = INT64_MAX;
+ int wedge_index;
+ int wedge_types = (1 << get_wedge_bits_lookup(bsize));
+ const uint8_t *mask;
+ uint64_t sse;
+ const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
+ const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
+ for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
+ mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
+ sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N);
+ sse = ROUND_POWER_OF_TWO(sse, bd_round);
+
+ model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
+ &rate, &dist);
+ rate += x->wedge_idx_cost[bsize][wedge_index];
+ rd = RDCOST(x->rdmult, rate, dist);
+
+ if (rd < best_rd) {
+ *best_wedge_index = wedge_index;
+ best_rd = rd;
+ }
+ }
+ return best_rd -
+ RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0);
+}
+
+static int64_t pick_interinter_wedge(
+ const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize,
+ const uint8_t *const p0, const uint8_t *const p1,
+ const int16_t *const residual1, const int16_t *const diff10) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int bw = block_size_wide[bsize];
+
+ int64_t rd;
+ int wedge_index = -1;
+ int wedge_sign = 0;
+
+ assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
+ assert(cpi->common.seq_params.enable_masked_compound);
+
+ if (cpi->sf.fast_wedge_sign_estimate) {
+ wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw);
+ rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, wedge_sign,
+ &wedge_index);
+ } else {
+ rd = pick_wedge(cpi, x, bsize, p0, residual1, diff10, &wedge_sign,
+ &wedge_index);
+ }
+
+ mbmi->interinter_comp.wedge_sign = wedge_sign;
+ mbmi->interinter_comp.wedge_index = wedge_index;
+ return rd;
+}
+
+static int64_t pick_interinter_seg(const AV1_COMP *const cpi,
+ MACROBLOCK *const x, const BLOCK_SIZE bsize,
+ const uint8_t *const p0,
+ const uint8_t *const p1,
+ const int16_t *const residual1,
+ const int16_t *const diff10) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ const int N = 1 << num_pels_log2_lookup[bsize];
+ int rate;
+ int64_t dist;
+ DIFFWTD_MASK_TYPE cur_mask_type;
+ int64_t best_rd = INT64_MAX;
+ DIFFWTD_MASK_TYPE best_mask_type = 0;
+ const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
+ const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
+ DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
+ uint8_t *tmp_mask[2] = { xd->seg_mask, seg_mask };
+ // try each mask type and its inverse
+ for (cur_mask_type = 0; cur_mask_type < DIFFWTD_MASK_TYPES; cur_mask_type++) {
+ // build mask and inverse
+ if (hbd)
+ av1_build_compound_diffwtd_mask_highbd(
+ tmp_mask[cur_mask_type], cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw,
+ CONVERT_TO_BYTEPTR(p1), bw, bh, bw, xd->bd);
+ else
+ av1_build_compound_diffwtd_mask(tmp_mask[cur_mask_type], cur_mask_type,
+ p0, bw, p1, bw, bh, bw);
+
+ // compute rd for mask
+ uint64_t sse = av1_wedge_sse_from_residuals(residual1, diff10,
+ tmp_mask[cur_mask_type], N);
+ sse = ROUND_POWER_OF_TWO(sse, bd_round);
+
+ model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
+ &rate, &dist);
+ const int64_t rd0 = RDCOST(x->rdmult, rate, dist);
+
+ if (rd0 < best_rd) {
+ best_mask_type = cur_mask_type;
+ best_rd = rd0;
+ }
+ }
+ mbmi->interinter_comp.mask_type = best_mask_type;
+ if (best_mask_type == DIFFWTD_38_INV) {
+ memcpy(xd->seg_mask, seg_mask, N * 2);
+ }
+ return best_rd;
+}
+
+static int64_t pick_interintra_wedge(const AV1_COMP *const cpi,
+ const MACROBLOCK *const x,
+ const BLOCK_SIZE bsize,
+ const uint8_t *const p0,
+ const uint8_t *const p1) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(is_interintra_wedge_used(bsize));
+ assert(cpi->common.seq_params.enable_interintra_compound);
+
+ const struct buf_2d *const src = &x->plane[0].src;
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ DECLARE_ALIGNED(32, int16_t, residual1[MAX_SB_SQUARE]); // src - pred1
+ DECLARE_ALIGNED(32, int16_t, diff10[MAX_SB_SQUARE]); // pred1 - pred0
+ if (get_bitdepth_data_path_index(xd)) {
+ aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride,
+ CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
+ aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(p1), bw,
+ CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
+ } else {
+ aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw);
+ aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw);
+ }
+ int wedge_index = -1;
+ int64_t rd =
+ pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, 0, &wedge_index);
+
+ mbmi->interintra_wedge_sign = 0;
+ mbmi->interintra_wedge_index = wedge_index;
+ return rd;
+}
+
+static int64_t pick_interinter_mask(const AV1_COMP *const cpi, MACROBLOCK *x,
+ const BLOCK_SIZE bsize,
+ const uint8_t *const p0,
+ const uint8_t *const p1,
+ const int16_t *const residual1,
+ const int16_t *const diff10) {
+ const COMPOUND_TYPE compound_type = x->e_mbd.mi[0]->interinter_comp.type;
+ switch (compound_type) {
+ case COMPOUND_WEDGE:
+ return pick_interinter_wedge(cpi, x, bsize, p0, p1, residual1, diff10);
+ case COMPOUND_DIFFWTD:
+ return pick_interinter_seg(cpi, x, bsize, p0, p1, residual1, diff10);
+ default: assert(0); return 0;
+ }
+}
+
+static int interinter_compound_motion_search(const AV1_COMP *const cpi,
+ MACROBLOCK *x,
+ const int_mv *const cur_mv,
+ const BLOCK_SIZE bsize,
+ const PREDICTION_MODE this_mode,
+ int mi_row, int mi_col) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int_mv tmp_mv[2];
+ int tmp_rate_mv = 0;
+ mbmi->interinter_comp.seg_mask = xd->seg_mask;
+ const INTERINTER_COMPOUND_DATA *compound_data = &mbmi->interinter_comp;
+
+ if (this_mode == NEW_NEWMV) {
+ do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
+ mi_row, mi_col, tmp_mv, &tmp_rate_mv, 2);
+ mbmi->mv[0].as_int = tmp_mv[0].as_int;
+ mbmi->mv[1].as_int = tmp_mv[1].as_int;
+ } else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) {
+ do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
+ mi_row, mi_col, tmp_mv, &tmp_rate_mv, 0);
+ mbmi->mv[0].as_int = tmp_mv[0].as_int;
+ } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
+ do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
+ mi_row, mi_col, tmp_mv, &tmp_rate_mv, 1);
+ mbmi->mv[1].as_int = tmp_mv[1].as_int;
+ }
+ return tmp_rate_mv;
+}
+
+static void get_inter_predictors_masked_compound(
+ const AV1_COMP *const cpi, MACROBLOCK *x, const BLOCK_SIZE bsize,
+ int mi_row, int mi_col, uint8_t **preds0, uint8_t **preds1,
+ int16_t *residual1, int16_t *diff10, int *strides) {
+ const AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ const int bw = block_size_wide[bsize];
+ const int bh = block_size_high[bsize];
+ int can_use_previous = cm->allow_warped_motion;
+ // get inter predictors to use for masked compound modes
+ av1_build_inter_predictors_for_planes_single_buf(
+ xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides, can_use_previous);
+ av1_build_inter_predictors_for_planes_single_buf(
+ xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides, can_use_previous);
+ const struct buf_2d *const src = &x->plane[0].src;
+ if (get_bitdepth_data_path_index(xd)) {
+ aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride,
+ CONVERT_TO_BYTEPTR(*preds1), bw, xd->bd);
+ aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(*preds1),
+ bw, CONVERT_TO_BYTEPTR(*preds0), bw, xd->bd);
+ } else {
+ aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, *preds1,
+ bw);
+ aom_subtract_block(bh, bw, diff10, bw, *preds1, bw, *preds0, bw);
+ }
+}
+
+static int64_t build_and_cost_compound_type(
+ const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
+ const BLOCK_SIZE bsize, const PREDICTION_MODE this_mode, int *rs2,
+ int rate_mv, BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0,
+ uint8_t **preds1, int16_t *residual1, int16_t *diff10, int *strides,
+ int mi_row, int mi_col, int mode_rate, int64_t ref_best_rd,
+ int *calc_pred_masked_compound) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int rate_sum;
+ int64_t dist_sum;
+ int64_t best_rd_cur = INT64_MAX;
+ int64_t rd = INT64_MAX;
+ int tmp_skip_txfm_sb;
+ int64_t tmp_skip_sse_sb;
+ const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type;
+
+ if (*calc_pred_masked_compound) {
+ get_inter_predictors_masked_compound(cpi, x, bsize, mi_row, mi_col, preds0,
+ preds1, residual1, diff10, strides);
+ *calc_pred_masked_compound = 0;
+ }
+
+ best_rd_cur =
+ pick_interinter_mask(cpi, x, bsize, *preds0, *preds1, residual1, diff10);
+ *rs2 += get_interinter_compound_mask_rate(x, mbmi);
+ best_rd_cur += RDCOST(x->rdmult, *rs2 + rate_mv, 0);
+
+ // Although the true rate_mv might be different after motion search, but it
+ // is unlikely to be the best mode considering the transform rd cost and other
+ // mode overhead cost
+ int64_t mode_rd = RDCOST(x->rdmult, *rs2 + mode_rate, 0);
+ if (mode_rd > ref_best_rd) return INT64_MAX;
+
+ if (have_newmv_in_inter_mode(this_mode) && compound_type == COMPOUND_WEDGE) {
+ *out_rate_mv = interinter_compound_motion_search(cpi, x, cur_mv, bsize,
+ this_mode, mi_row, mi_col);
+ av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize);
+ model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND](
+ cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum,
+ &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL);
+ rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum);
+ if (rd >= best_rd_cur) {
+ mbmi->mv[0].as_int = cur_mv[0].as_int;
+ mbmi->mv[1].as_int = cur_mv[1].as_int;
+ *out_rate_mv = rate_mv;
+ av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
+ preds1, strides);
+ }
+ rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
+ &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
+ if (rd != INT64_MAX)
+ rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum);
+ best_rd_cur = rd;
+
+ } else {
+ av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
+ preds1, strides);
+ rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
+ &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
+ if (rd != INT64_MAX)
+ rd = RDCOST(x->rdmult, *rs2 + rate_mv + rate_sum, dist_sum);
+ best_rd_cur = rd;
+ }
+ return best_rd_cur;
+}
+
+typedef struct {
+ // OBMC secondary prediction buffers and respective strides
+ uint8_t *above_pred_buf[MAX_MB_PLANE];
+ int above_pred_stride[MAX_MB_PLANE];
+ uint8_t *left_pred_buf[MAX_MB_PLANE];
+ int left_pred_stride[MAX_MB_PLANE];
+ int_mv (*single_newmv)[REF_FRAMES];
+ // Pointer to array of motion vectors to use for each ref and their rates
+ // Should point to first of 2 arrays in 2D array
+ int (*single_newmv_rate)[REF_FRAMES];
+ int (*single_newmv_valid)[REF_FRAMES];
+ // Pointer to array of predicted rate-distortion
+ // Should point to first of 2 arrays in 2D array
+ int64_t (*modelled_rd)[MAX_REF_MV_SERCH][REF_FRAMES];
+ InterpFilter single_filter[MB_MODE_COUNT][REF_FRAMES];
+ int ref_frame_cost;
+ int single_comp_cost;
+ int64_t (*simple_rd)[MAX_REF_MV_SERCH][REF_FRAMES];
+ int skip_motion_mode;
+ INTERINTRA_MODE *inter_intra_mode;
+} HandleInterModeArgs;
+
+/* If the current mode shares the same mv with other modes with higher cost,
+ * skip this mode. */
+static int skip_repeated_mv(const AV1_COMMON *const cm,
+ const MACROBLOCK *const x,
+ PREDICTION_MODE this_mode,
+ const MV_REFERENCE_FRAME ref_frames[2],
+ InterModeSearchState *search_state) {
+ const int is_comp_pred = ref_frames[1] > INTRA_FRAME;
+ const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames);
+ const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+ const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
+ PREDICTION_MODE compare_mode = MB_MODE_COUNT;
+ if (!is_comp_pred) {
+ if (this_mode == NEARMV) {
+ if (ref_mv_count == 0) {
+ // NEARMV has the same motion vector as NEARESTMV
+ compare_mode = NEARESTMV;
+ }
+ if (ref_mv_count == 1 &&
+ cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
+ // NEARMV has the same motion vector as GLOBALMV
+ compare_mode = GLOBALMV;
+ }
+ }
+ if (this_mode == GLOBALMV) {
+ if (ref_mv_count == 0 &&
+ cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
+ // GLOBALMV has the same motion vector as NEARESTMV
+ compare_mode = NEARESTMV;
+ }
+ if (ref_mv_count == 1) {
+ // GLOBALMV has the same motion vector as NEARMV
+ compare_mode = NEARMV;
+ }
+ }
+
+ if (compare_mode != MB_MODE_COUNT) {
+ // Use modelled_rd to check whether compare mode was searched
+ if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] !=
+ INT64_MAX) {
+ const int16_t mode_ctx =
+ av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames);
+ const int compare_cost = cost_mv_ref(x, compare_mode, mode_ctx);
+ const int this_cost = cost_mv_ref(x, this_mode, mode_ctx);
+
+ // Only skip if the mode cost is larger than compare mode cost
+ if (this_cost > compare_cost) {
+ search_state->modelled_rd[this_mode][0][ref_frames[0]] =
+ search_state->modelled_rd[compare_mode][0][ref_frames[0]];
+ return 1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv,
+ const AV1_COMMON *cm,
+ const MACROBLOCK *x) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ *out_mv = in_mv;
+ lower_mv_precision(&out_mv->as_mv, cm->allow_high_precision_mv,
+ cm->cur_frame_force_integer_mv);
+ clamp_mv2(&out_mv->as_mv, xd);
+ return !mv_check_bounds(&x->mv_limits, &out_mv->as_mv);
+}
+
+static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ const BLOCK_SIZE bsize, int_mv *cur_mv,
+ const int mi_row, const int mi_col,
+ int *const rate_mv,
+ HandleInterModeArgs *const args) {
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int is_comp_pred = has_second_ref(mbmi);
+ const PREDICTION_MODE this_mode = mbmi->mode;
+ const int refs[2] = { mbmi->ref_frame[0],
+ mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
+ const int ref_mv_idx = mbmi->ref_mv_idx;
+ int i;
+
+ (void)args;
+
+ if (is_comp_pred) {
+ if (this_mode == NEW_NEWMV) {
+ cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
+ cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
+
+ if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
+ joint_motion_search(cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, NULL,
+ 0, rate_mv, 0);
+ } else {
+ *rate_mv = 0;
+ for (i = 0; i < 2; ++i) {
+ const int_mv ref_mv = av1_get_ref_mv(x, i);
+ av1_set_mvcost(x, i, mbmi->ref_mv_idx);
+ *rate_mv +=
+ av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv, x->nmvjointcost,
+ x->mvcost, MV_COST_WEIGHT);
+ }
+ }
+ } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
+ cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
+ if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
+ compound_single_motion_search_interinter(
+ cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 1);
+ } else {
+ av1_set_mvcost(x, 1,
+ mbmi->ref_mv_idx + (this_mode == NEAR_NEWMV ? 1 : 0));
+ const int_mv ref_mv = av1_get_ref_mv(x, 1);
+ *rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+ }
+ } else {
+ assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV);
+ cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
+ if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
+ compound_single_motion_search_interinter(
+ cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 0);
+ } else {
+ const int_mv ref_mv = av1_get_ref_mv(x, 0);
+ av1_set_mvcost(x, 0,
+ mbmi->ref_mv_idx + (this_mode == NEW_NEARMV ? 1 : 0));
+ *rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+ }
+ }
+ } else {
+ single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, rate_mv);
+ if (x->best_mv.as_int == INVALID_MV) return INT64_MAX;
+
+ args->single_newmv[ref_mv_idx][refs[0]] = x->best_mv;
+ args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv;
+ args->single_newmv_valid[ref_mv_idx][refs[0]] = 1;
+
+ cur_mv[0].as_int = x->best_mv.as_int;
+
+#if USE_DISCOUNT_NEWMV_TEST
+ // Estimate the rate implications of a new mv but discount this
+ // under certain circumstances where we want to help initiate a weak
+ // motion field, where the distortion gain for a single block may not
+ // be enough to overcome the cost of a new mv.
+ if (discount_newmv_test(cpi, x, this_mode, x->best_mv)) {
+ *rate_mv = AOMMAX(*rate_mv / NEW_MV_DISCOUNT_FACTOR, 1);
+ }
+#endif
+ }
+
+ return 0;
+}
+
+static INLINE void swap_dst_buf(MACROBLOCKD *xd, const BUFFER_SET *dst_bufs[2],
+ int num_planes) {
+ const BUFFER_SET *buf0 = dst_bufs[0];
+ dst_bufs[0] = dst_bufs[1];
+ dst_bufs[1] = buf0;
+ restore_dst_buf(xd, *dst_bufs[0], num_planes);
+}
+
+static INLINE int get_switchable_rate(MACROBLOCK *const x,
+ const InterpFilters filters,
+ const int ctx[2]) {
+ int inter_filter_cost;
+ const InterpFilter filter0 = av1_extract_interp_filter(filters, 0);
+ const InterpFilter filter1 = av1_extract_interp_filter(filters, 1);
+ inter_filter_cost = x->switchable_interp_costs[ctx[0]][filter0];
+ inter_filter_cost += x->switchable_interp_costs[ctx[1]][filter1];
+ return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost;
+}
+
+// calculate the rdcost of given interpolation_filter
+static INLINE int64_t interpolation_filter_rd(
+ MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd,
+ int *const switchable_rate, int *const skip_txfm_sb,
+ int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], int filter_idx,
+ const int switchable_ctx[2], const int skip_pred, int *rate,
+ int64_t *dist) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int tmp_rate[2], tmp_skip_sb[2] = { 1, 1 };
+ int64_t tmp_dist[2], tmp_skip_sse[2] = { 0, 0 };
+
+ const InterpFilters last_best = mbmi->interp_filters;
+ mbmi->interp_filters = filter_sets[filter_idx];
+ const int tmp_rs =
+ get_switchable_rate(x, mbmi->interp_filters, switchable_ctx);
+
+ assert(skip_pred != 2);
+ assert((skip_pred >= 0) && (skip_pred <= cpi->default_interp_skip_flags));
+ assert(rate[0] >= 0);
+ assert(dist[0] >= 0);
+ assert((skip_txfm_sb[0] == 0) || (skip_txfm_sb[0] == 1));
+ assert(skip_sse_sb[0] >= 0);
+ assert(rate[1] >= 0);
+ assert(dist[1] >= 0);
+ assert((skip_txfm_sb[1] == 0) || (skip_txfm_sb[1] == 1));
+ assert(skip_sse_sb[1] >= 0);
+
+ if (skip_pred != cpi->default_interp_skip_flags) {
+ if (skip_pred != DEFAULT_LUMA_INTERP_SKIP_FLAG) {
+ av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize);
+#if CONFIG_COLLECT_RD_STATS == 3
+ RD_STATS rd_stats_y;
+ select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, INT64_MAX);
+ PrintPredictionUnitStats(cpi, x, &rd_stats_y, bsize);
+#endif // CONFIG_COLLECT_RD_STATS == 3
+ model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER](
+ cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &tmp_rate[0], &tmp_dist[0],
+ &tmp_skip_sb[0], &tmp_skip_sse[0], NULL, NULL, NULL);
+ tmp_rate[1] = tmp_rate[0];
+ tmp_dist[1] = tmp_dist[0];
+ } else {
+ // only luma MC is skipped
+ tmp_rate[1] = rate[0];
+ tmp_dist[1] = dist[0];
+ }
+ if (num_planes > 1) {
+ for (int plane = 1; plane < num_planes; ++plane) {
+ int tmp_rate_uv, tmp_skip_sb_uv;
+ int64_t tmp_dist_uv, tmp_skip_sse_uv;
+ int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate[1], tmp_dist[1]);
+ if (tmp_rd >= *rd) {
+ mbmi->interp_filters = last_best;
+ return 0;
+ }
+ av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, orig_dst, bsize,
+ plane);
+ model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER](
+ cpi, bsize, x, xd, plane, plane, mi_row, mi_col, &tmp_rate_uv,
+ &tmp_dist_uv, &tmp_skip_sb_uv, &tmp_skip_sse_uv, NULL, NULL, NULL);
+ tmp_rate[1] =
+ (int)AOMMIN(((int64_t)tmp_rate[1] + (int64_t)tmp_rate_uv), INT_MAX);
+ tmp_dist[1] += tmp_dist_uv;
+ tmp_skip_sb[1] &= tmp_skip_sb_uv;
+ tmp_skip_sse[1] += tmp_skip_sse_uv;
+ }
+ }
+ } else {
+ // both luma and chroma MC is skipped
+ tmp_rate[1] = rate[1];
+ tmp_dist[1] = dist[1];
+ }
+ int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate[1], tmp_dist[1]);
+
+ if (tmp_rd < *rd) {
+ *rd = tmp_rd;
+ *switchable_rate = tmp_rs;
+ if (skip_pred != cpi->default_interp_skip_flags) {
+ if (skip_pred == 0) {
+ // Overwrite the data as current filter is the best one
+ tmp_skip_sb[1] = tmp_skip_sb[0] & tmp_skip_sb[1];
+ tmp_skip_sse[1] = tmp_skip_sse[0] + tmp_skip_sse[1];
+ memcpy(rate, tmp_rate, sizeof(*rate) * 2);
+ memcpy(dist, tmp_dist, sizeof(*dist) * 2);
+ memcpy(skip_txfm_sb, tmp_skip_sb, sizeof(*skip_txfm_sb) * 2);
+ memcpy(skip_sse_sb, tmp_skip_sse, sizeof(*skip_sse_sb) * 2);
+ // As luma MC data is computed, no need to recompute after the search
+ x->recalc_luma_mc_data = 0;
+ } else if (skip_pred == DEFAULT_LUMA_INTERP_SKIP_FLAG) {
+ // As luma MC data is not computed, update of luma data can be skipped
+ rate[1] = tmp_rate[1];
+ dist[1] = tmp_dist[1];
+ skip_txfm_sb[1] = skip_txfm_sb[0] & tmp_skip_sb[1];
+ skip_sse_sb[1] = skip_sse_sb[0] + tmp_skip_sse[1];
+ // As luma MC data is not recomputed and current filter is the best,
+ // indicate the possibility of recomputing MC data
+ // If current buffer contains valid MC data, toggle to indicate that
+ // luma MC data needs to be recomputed
+ x->recalc_luma_mc_data ^= 1;
+ }
+ swap_dst_buf(xd, dst_bufs, num_planes);
+ }
+ return 1;
+ }
+ mbmi->interp_filters = last_best;
+ return 0;
+}
+
+// Find the best rd filter in horizontal direction
+static INLINE int find_best_horiz_interp_filter_rd(
+ MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd,
+ int *const switchable_rate, int *const skip_txfm_sb,
+ int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2],
+ const int switchable_ctx[2], const int skip_hor, int *rate, int64_t *dist,
+ int best_dual_mode) {
+ int i;
+ const int bw = block_size_wide[bsize];
+ assert(best_dual_mode == 0);
+ if ((bw <= 4) && (skip_hor != cpi->default_interp_skip_flags)) {
+ int skip_pred = cpi->default_interp_skip_flags;
+ // Process the filters in reverse order to enable reusing rate and
+ // distortion (calcuated during EIGHTTAP_REGULAR) for MULTITAP_SHARP
+ for (i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) {
+ if (interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
+ switchable_rate, skip_txfm_sb, skip_sse_sb,
+ dst_bufs, i, switchable_ctx, skip_pred, rate,
+ dist)) {
+ best_dual_mode = i;
+ }
+ skip_pred = skip_hor;
+ }
+ } else {
+ for (i = 1; i < SWITCHABLE_FILTERS; ++i) {
+ if (interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
+ switchable_rate, skip_txfm_sb, skip_sse_sb,
+ dst_bufs, i, switchable_ctx, skip_hor, rate,
+ dist)) {
+ best_dual_mode = i;
+ }
+ }
+ }
+ return best_dual_mode;
+}
+
+// Find the best rd filter in vertical direction
+static INLINE void find_best_vert_interp_filter_rd(
+ MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd,
+ int *const switchable_rate, int *const skip_txfm_sb,
+ int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2],
+ const int switchable_ctx[2], const int skip_ver, int *rate, int64_t *dist,
+ int best_dual_mode, int filter_set_size) {
+ int i;
+ const int bh = block_size_high[bsize];
+ if ((bh <= 4) && (skip_ver != cpi->default_interp_skip_flags)) {
+ int skip_pred = cpi->default_interp_skip_flags;
+ // Process the filters in reverse order to enable reusing rate and
+ // distortion (calcuated during EIGHTTAP_REGULAR) for MULTITAP_SHARP
+ assert(filter_set_size == DUAL_FILTER_SET_SIZE);
+ for (i = (filter_set_size - SWITCHABLE_FILTERS + best_dual_mode);
+ i >= (best_dual_mode + SWITCHABLE_FILTERS); i -= SWITCHABLE_FILTERS) {
+ interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
+ switchable_rate, skip_txfm_sb, skip_sse_sb,
+ dst_bufs, i, switchable_ctx, skip_pred, rate,
+ dist);
+ skip_pred = skip_ver;
+ }
+ } else {
+ for (i = best_dual_mode + SWITCHABLE_FILTERS; i < filter_set_size;
+ i += SWITCHABLE_FILTERS) {
+ interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
+ switchable_rate, skip_txfm_sb, skip_sse_sb,
+ dst_bufs, i, switchable_ctx, skip_ver, rate,
+ dist);
+ }
+ }
+}
+
+// check if there is saved result match with this search
+static INLINE int is_interp_filter_match(const INTERPOLATION_FILTER_STATS *st,
+ MB_MODE_INFO *const mi) {
+ for (int i = 0; i < 2; ++i) {
+ if ((st->ref_frames[i] != mi->ref_frame[i]) ||
+ (st->mv[i].as_int != mi->mv[i].as_int)) {
+ return 0;
+ }
+ }
+ if (has_second_ref(mi) && st->comp_type != mi->interinter_comp.type) return 0;
+ return 1;
+}
+
+static INLINE int find_interp_filter_in_stats(MACROBLOCK *x,
+ MB_MODE_INFO *const mbmi) {
+ const int comp_idx = mbmi->compound_idx;
+ const int offset = x->interp_filter_stats_idx[comp_idx];
+ for (int j = 0; j < offset; ++j) {
+ const INTERPOLATION_FILTER_STATS *st = &x->interp_filter_stats[comp_idx][j];
+ if (is_interp_filter_match(st, mbmi)) {
+ mbmi->interp_filters = st->filters;
+ return j;
+ }
+ }
+ return -1; // no match result found
+}
+
+static INLINE void save_interp_filter_search_stat(MACROBLOCK *x,
+ MB_MODE_INFO *const mbmi) {
+ const int comp_idx = mbmi->compound_idx;
+ const int offset = x->interp_filter_stats_idx[comp_idx];
+ if (offset < MAX_INTERP_FILTER_STATS) {
+ INTERPOLATION_FILTER_STATS stat = { mbmi->interp_filters,
+ { mbmi->mv[0], mbmi->mv[1] },
+ { mbmi->ref_frame[0],
+ mbmi->ref_frame[1] },
+ mbmi->interinter_comp.type };
+ x->interp_filter_stats[comp_idx][offset] = stat;
+ x->interp_filter_stats_idx[comp_idx]++;
+ }
+}
+
+static int64_t interpolation_filter_search(
+ MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
+ int mi_row, int mi_col, const BUFFER_SET *const tmp_dst,
+ BUFFER_SET *const orig_dst, InterpFilter (*const single_filter)[REF_FRAMES],
+ int64_t *const rd, int *const switchable_rate, int *const skip_txfm_sb,
+ int64_t *const skip_sse_sb, const int skip_build_pred,
+ HandleInterModeArgs *args, int64_t ref_best_rd) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int need_search =
+ av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd);
+ int i;
+ // Index 0 corresponds to luma rd data and index 1 corresponds to cummulative
+ // data of all planes
+ int tmp_rate[2] = { 0, 0 };
+ int64_t tmp_dist[2] = { 0, 0 };
+ int best_skip_txfm_sb[2] = { 1, 1 };
+ int64_t best_skip_sse_sb[2] = { 0, 0 };
+ const int ref_frame = xd->mi[0]->ref_frame[0];
+
+ (void)single_filter;
+ int match_found = -1;
+ const InterpFilter assign_filter = cm->interp_filter;
+ if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) {
+ match_found = find_interp_filter_in_stats(x, mbmi);
+ }
+ if (!need_search || match_found == -1) {
+ set_default_interp_filters(mbmi, assign_filter);
+ }
+ int switchable_ctx[2];
+ switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0);
+ switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1);
+ *switchable_rate =
+ get_switchable_rate(x, mbmi->interp_filters, switchable_ctx);
+ if (!skip_build_pred)
+ av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize);
+
+#if CONFIG_COLLECT_RD_STATS == 3
+ RD_STATS rd_stats_y;
+ select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, INT64_MAX);
+ PrintPredictionUnitStats(cpi, x, &rd_stats_y, bsize);
+#endif // CONFIG_COLLECT_RD_STATS == 3
+ model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER](
+ cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &tmp_rate[0], &tmp_dist[0],
+ &best_skip_txfm_sb[0], &best_skip_sse_sb[0], NULL, NULL, NULL);
+ if (num_planes > 1)
+ model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER](
+ cpi, bsize, x, xd, 1, num_planes - 1, mi_row, mi_col, &tmp_rate[1],
+ &tmp_dist[1], &best_skip_txfm_sb[1], &best_skip_sse_sb[1], NULL, NULL,
+ NULL);
+ tmp_rate[1] =
+ (int)AOMMIN((int64_t)tmp_rate[0] + (int64_t)tmp_rate[1], INT_MAX);
+ assert(tmp_rate[1] >= 0);
+ tmp_dist[1] = tmp_dist[0] + tmp_dist[1];
+ best_skip_txfm_sb[1] = best_skip_txfm_sb[0] & best_skip_txfm_sb[1];
+ best_skip_sse_sb[1] = best_skip_sse_sb[0] + best_skip_sse_sb[1];
+ *rd = RDCOST(x->rdmult, (*switchable_rate + tmp_rate[1]), tmp_dist[1]);
+ *skip_txfm_sb = best_skip_txfm_sb[1];
+ *skip_sse_sb = best_skip_sse_sb[1];
+ x->pred_sse[ref_frame] = (unsigned int)(best_skip_sse_sb[0] >> 4);
+
+ if (assign_filter != SWITCHABLE || match_found != -1) {
+ return 0;
+ }
+ if (!need_search) {
+ assert(mbmi->interp_filters ==
+ av1_broadcast_interp_filter(EIGHTTAP_REGULAR));
+ return 0;
+ }
+ if (args->modelled_rd != NULL) {
+ if (has_second_ref(mbmi)) {
+ const int ref_mv_idx = mbmi->ref_mv_idx;
+ int refs[2] = { mbmi->ref_frame[0],
+ (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
+ const int mode0 = compound_ref0_mode(mbmi->mode);
+ const int mode1 = compound_ref1_mode(mbmi->mode);
+ const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]],
+ args->modelled_rd[mode1][ref_mv_idx][refs[1]]);
+ if ((*rd >> 1) > mrd && ref_best_rd < INT64_MAX) {
+ return INT64_MAX;
+ }
+ }
+ }
+
+ x->recalc_luma_mc_data = 0;
+ // skip_flag=xx (in binary form)
+ // Setting 0th flag corresonds to skipping luma MC and setting 1st bt
+ // corresponds to skipping chroma MC skip_flag=0 corresponds to "Don't skip
+ // luma and chroma MC" Skip flag=1 corresponds to "Skip Luma MC only"
+ // Skip_flag=2 is not a valid case
+ // skip_flag=3 corresponds to "Skip both luma and chroma MC"
+ int skip_hor = cpi->default_interp_skip_flags;
+ int skip_ver = cpi->default_interp_skip_flags;
+ const int is_compound = has_second_ref(mbmi);
+ assert(is_intrabc_block(mbmi) == 0);
+ for (int j = 0; j < 1 + is_compound; ++j) {
+ const RefBuffer *ref_buf = &cm->frame_refs[mbmi->ref_frame[j] - LAST_FRAME];
+ const struct scale_factors *const sf = &ref_buf->sf;
+ // TODO(any): Refine skip flag calculation considering scaling
+ if (av1_is_scaled(sf)) {
+ skip_hor = 0;
+ skip_ver = 0;
+ break;
+ }
+ const MV mv = mbmi->mv[j].as_mv;
+ int skip_hor_plane = 0;
+ int skip_ver_plane = 0;
+ for (int k = 0; k < AOMMAX(1, (num_planes - 1)); ++k) {
+ struct macroblockd_plane *const pd = &xd->plane[k];
+ const int bw = pd->width;
+ const int bh = pd->height;
+ const MV mv_q4 = clamp_mv_to_umv_border_sb(
+ xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
+ const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
+ const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
+ skip_hor_plane |= ((sub_x == 0) << k);
+ skip_ver_plane |= ((sub_y == 0) << k);
+ }
+ skip_hor = skip_hor & skip_hor_plane;
+ skip_ver = skip_ver & skip_ver_plane;
+ // It is not valid that "luma MV is sub-pel, whereas chroma MV is not"
+ assert(skip_hor != 2);
+ assert(skip_ver != 2);
+ }
+ // When compond prediction type is compound segment wedge, luma MC and chroma
+ // MC need to go hand in hand as mask generated during luma MC is reuired for
+ // chroma MC. If skip_hor = 0 and skip_ver = 1, mask used for chroma MC during
+ // vertical filter decision may be incorrect as temporary MC evaluation
+ // overwrites the mask. Make skip_ver as 0 for this case so that mask is
+ // populated during luma MC
+ if (is_compound && mbmi->compound_idx == 1 &&
+ mbmi->interinter_comp.type == COMPOUND_DIFFWTD) {
+ assert(mbmi->comp_group_idx == 1);
+ if (skip_hor == 0 && skip_ver == 1) skip_ver = 0;
+ }
+ // do interp_filter search
+ const int filter_set_size = DUAL_FILTER_SET_SIZE;
+ restore_dst_buf(xd, *tmp_dst, num_planes);
+ const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst };
+ if (cpi->sf.use_fast_interpolation_filter_search &&
+ cm->seq_params.enable_dual_filter) {
+ // default to (R,R): EIGHTTAP_REGULARxEIGHTTAP_REGULAR
+ int best_dual_mode = 0;
+ // Find best of {R}x{R,Sm,Sh}
+ // EIGHTTAP_REGULAR mode is calculated beforehand
+ best_dual_mode = find_best_horiz_interp_filter_rd(
+ x, cpi, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate,
+ best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, switchable_ctx, skip_hor,
+ tmp_rate, tmp_dist, best_dual_mode);
+
+ // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes
+ find_best_vert_interp_filter_rd(
+ x, cpi, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate,
+ best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, switchable_ctx, skip_ver,
+ tmp_rate, tmp_dist, best_dual_mode, filter_set_size);
+ } else {
+ // EIGHTTAP_REGULAR mode is calculated beforehand
+ for (i = 1; i < filter_set_size; ++i) {
+ if (cm->seq_params.enable_dual_filter == 0) {
+ const int16_t filter_y = filter_sets[i] & 0xffff;
+ const int16_t filter_x = filter_sets[i] >> 16;
+ if (filter_x != filter_y) continue;
+ }
+ interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
+ switchable_rate, best_skip_txfm_sb,
+ best_skip_sse_sb, dst_bufs, i, switchable_ctx, 0,
+ tmp_rate, tmp_dist);
+ assert(x->recalc_luma_mc_data == 0);
+ }
+ }
+ swap_dst_buf(xd, dst_bufs, num_planes);
+ // Recompute final MC data if required
+ if (x->recalc_luma_mc_data == 1) {
+ // Recomputing final luma MC data is required only if the same was skipped
+ // in either of the directions Condition below is necessary, but not
+ // sufficient
+ assert((skip_hor == 1) || (skip_ver == 1));
+ av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize);
+ }
+ *skip_txfm_sb = best_skip_txfm_sb[1];
+ *skip_sse_sb = best_skip_sse_sb[1];
+ x->pred_sse[ref_frame] = (unsigned int)(best_skip_sse_sb[0] >> 4);
+
+ // save search results
+ if (cpi->sf.skip_repeat_interpolation_filter_search) {
+ assert(match_found == -1);
+ save_interp_filter_search_stat(x, mbmi);
+ }
+ return 0;
+}
+
+static int txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
+ int mi_row, int mi_col, RD_STATS *rd_stats,
+ RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv,
+ int mode_rate, int64_t ref_best_rd) {
+ /*
+ * This function combines y and uv planes' transform search processes
+ * together, when the prediction is generated. It first does subtration to
+ * obtain the prediction error. Then it calls
+ * select_tx_type_yrd/super_block_yrd and inter_block_uvrd sequentially and
+ * handles the early terminations happen in those functions. At the end, it
+ * computes the rd_stats/_y/_uv accordingly.
+ */
+ const AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ int skip_txfm_sb = 0;
+ const int num_planes = av1_num_planes(cm);
+ const int ref_frame_1 = mbmi->ref_frame[1];
+ const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0);
+ const int64_t rd_thresh =
+ ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd;
+ const int skip_ctx = av1_get_skip_context(xd);
+ const int64_t min_header_rate =
+ mode_rate + AOMMIN(x->skip_cost[skip_ctx][0], x->skip_cost[skip_ctx][1]);
+ // Account for minimum skip and non_skip rd.
+ // Eventually either one of them will be added to mode_rate
+ const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0);
+
+ if (min_header_rd_possible > ref_best_rd) {
+ av1_invalid_rd_stats(rd_stats_y);
+ av1_invalid_rd_stats(rd_stats);
+ return 0;
+ }
+
+ av1_init_rd_stats(rd_stats);
+ av1_init_rd_stats(rd_stats_y);
+ av1_init_rd_stats(rd_stats_uv);
+ rd_stats->rate = mode_rate;
+
+ if (!cpi->common.all_lossless)
+ check_block_skip(cpi, bsize, x, xd, 0, num_planes - 1, &skip_txfm_sb);
+ if (!skip_txfm_sb) {
+ int64_t non_skip_rdcosty = INT64_MAX;
+ int64_t skip_rdcosty = INT64_MAX;
+ int64_t min_rdcosty = INT64_MAX;
+ int is_cost_valid_uv = 0;
+
+ // cost and distortion
+ av1_subtract_plane(x, bsize, 0);
+ if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) {
+ // Motion mode
+ select_tx_type_yrd(cpi, x, rd_stats_y, bsize, mi_row, mi_col, rd_thresh);
+#if CONFIG_COLLECT_RD_STATS == 2
+ PrintPredictionUnitStats(cpi, x, rd_stats_y, bsize);
+#endif // CONFIG_COLLECT_RD_STATS == 2
+ } else {
+ super_block_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
+ memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
+ for (int i = 0; i < xd->n4_h * xd->n4_w; ++i)
+ set_blk_skip(x, 0, i, rd_stats_y->skip);
+ }
+
+ if (rd_stats_y->rate == INT_MAX) {
+ av1_invalid_rd_stats(rd_stats);
+ // TODO(angiebird): check if we need this
+ // restore_dst_buf(xd, *orig_dst, num_planes);
+ mbmi->ref_frame[1] = ref_frame_1;
+ return 0;
+ }
+
+ av1_merge_rd_stats(rd_stats, rd_stats_y);
+
+ non_skip_rdcosty = RDCOST(
+ x->rdmult, rd_stats->rate + x->skip_cost[skip_ctx][0], rd_stats->dist);
+ skip_rdcosty =
+ RDCOST(x->rdmult, mode_rate + x->skip_cost[skip_ctx][1], rd_stats->sse);
+ min_rdcosty = AOMMIN(non_skip_rdcosty, skip_rdcosty);
+
+ if (min_rdcosty > ref_best_rd) {
+ int64_t tokenonly_rdy =
+ AOMMIN(RDCOST(x->rdmult, rd_stats_y->rate, rd_stats_y->dist),
+ RDCOST(x->rdmult, 0, rd_stats_y->sse));
+ // Invalidate rd_stats_y to skip the rest of the motion modes search
+ if (tokenonly_rdy - (tokenonly_rdy >> cpi->sf.adaptive_txb_search_level) >
+ rd_thresh)
+ av1_invalid_rd_stats(rd_stats_y);
+ mbmi->ref_frame[1] = ref_frame_1;
+ return 0;
+ }
+
+ if (num_planes > 1) {
+ /* clang-format off */
+ is_cost_valid_uv =
+ inter_block_uvrd(cpi, x, rd_stats_uv, bsize,
+ ref_best_rd - non_skip_rdcosty,
+ ref_best_rd - skip_rdcosty, FTXS_NONE);
+ if (!is_cost_valid_uv) {
+ mbmi->ref_frame[1] = ref_frame_1;
+ return 0;
+ }
+ /* clang-format on */
+ av1_merge_rd_stats(rd_stats, rd_stats_uv);
+ } else {
+ av1_init_rd_stats(rd_stats_uv);
+ }
+ if (rd_stats->skip) {
+ rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate;
+ rd_stats_y->rate = 0;
+ rd_stats_uv->rate = 0;
+ rd_stats->rate += x->skip_cost[skip_ctx][1];
+ mbmi->skip = 0;
+ // here mbmi->skip temporarily plays a role as what this_skip2 does
+
+ int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ if (tmprd > ref_best_rd) {
+ mbmi->ref_frame[1] = ref_frame_1;
+ return 0;
+ }
+ } else if (!xd->lossless[mbmi->segment_id] &&
+ (RDCOST(x->rdmult,
+ rd_stats_y->rate + rd_stats_uv->rate +
+ x->skip_cost[skip_ctx][0],
+ rd_stats->dist) >=
+ RDCOST(x->rdmult, x->skip_cost[skip_ctx][1], rd_stats->sse))) {
+ rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate;
+ rd_stats->rate += x->skip_cost[skip_ctx][1];
+ rd_stats->dist = rd_stats->sse;
+ rd_stats_y->rate = 0;
+ rd_stats_uv->rate = 0;
+ mbmi->skip = 1;
+ } else {
+ rd_stats->rate += x->skip_cost[skip_ctx][0];
+ mbmi->skip = 0;
+ }
+ } else {
+ x->skip = 1;
+ mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode);
+ // The cost of skip bit needs to be added.
+ mbmi->skip = 0;
+ rd_stats->rate += x->skip_cost[skip_ctx][1];
+
+ rd_stats->dist = 0;
+ rd_stats->sse = 0;
+ rd_stats_y->rate = 0;
+ rd_stats_uv->rate = 0;
+ rd_stats->skip = 1;
+ int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ if (tmprd > ref_best_rd) {
+ mbmi->ref_frame[1] = ref_frame_1;
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int handle_inter_intra_mode(const AV1_COMP *const cpi,
+ MACROBLOCK *const x, BLOCK_SIZE bsize,
+ int mi_row, int mi_col, MB_MODE_INFO *mbmi,
+ HandleInterModeArgs *args,
+ int64_t ref_best_rd, int *rate_mv,
+ int *tmp_rate2, BUFFER_SET *orig_dst) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *xd = &x->e_mbd;
+
+ INTERINTRA_MODE best_interintra_mode = II_DC_PRED;
+ int64_t rd, best_interintra_rd = INT64_MAX;
+ int rmode, rate_sum;
+ int64_t dist_sum;
+ int tmp_rate_mv = 0;
+ int tmp_skip_txfm_sb;
+ int bw = block_size_wide[bsize];
+ int64_t tmp_skip_sse_sb;
+ DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_INTERINTRA_SB_SQUARE]);
+ DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_INTERINTRA_SB_SQUARE]);
+ uint8_t *tmp_buf = get_buf_by_bd(xd, tmp_buf_);
+ uint8_t *intrapred = get_buf_by_bd(xd, intrapred_);
+ const int *const interintra_mode_cost =
+ x->interintra_mode_cost[size_group_lookup[bsize]];
+ const int_mv mv0 = mbmi->mv[0];
+ const int is_wedge_used = is_interintra_wedge_used(bsize);
+ int rwedge = is_wedge_used ? x->wedge_interintra_cost[bsize][0] : 0;
+ mbmi->ref_frame[1] = NONE_FRAME;
+ xd->plane[0].dst.buf = tmp_buf;
+ xd->plane[0].dst.stride = bw;
+ av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, NULL, bsize);
+
+ restore_dst_buf(xd, *orig_dst, num_planes);
+ mbmi->ref_frame[1] = INTRA_FRAME;
+ mbmi->use_wedge_interintra = 0;
+ best_interintra_mode = args->inter_intra_mode[mbmi->ref_frame[0]];
+ int j = 0;
+ if (cpi->sf.reuse_inter_intra_mode == 0 ||
+ best_interintra_mode == INTERINTRA_MODES) {
+ for (j = 0; j < INTERINTRA_MODES; ++j) {
+ mbmi->interintra_mode = (INTERINTRA_MODE)j;
+ rmode = interintra_mode_cost[mbmi->interintra_mode];
+ av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
+ intrapred, bw);
+ av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
+ model_rd_sb_fn[MODELRD_TYPE_INTERINTRA](
+ cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum,
+ &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL);
+ rd = RDCOST(x->rdmult, tmp_rate_mv + rate_sum + rmode, dist_sum);
+ if (rd < best_interintra_rd) {
+ best_interintra_rd = rd;
+ best_interintra_mode = mbmi->interintra_mode;
+ }
+ }
+ args->inter_intra_mode[mbmi->ref_frame[0]] = best_interintra_mode;
+ }
+ if (j == 0 || best_interintra_mode != II_SMOOTH_PRED) {
+ mbmi->interintra_mode = best_interintra_mode;
+ rmode = interintra_mode_cost[mbmi->interintra_mode];
+ av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
+ intrapred, bw);
+ av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
+ }
+ rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
+ &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
+ if (rd != INT64_MAX)
+ rd = RDCOST(x->rdmult, *rate_mv + rmode + rate_sum + rwedge, dist_sum);
+ best_interintra_rd = rd;
+ if (ref_best_rd < INT64_MAX && (best_interintra_rd >> 1) > ref_best_rd) {
+ return -1;
+ }
+ if (is_wedge_used) {
+ int64_t best_interintra_rd_nowedge = rd;
+ int64_t best_interintra_rd_wedge = INT64_MAX;
+ int_mv tmp_mv;
+ // Disable wedge search if source variance is small
+ if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) {
+ mbmi->use_wedge_interintra = 1;
+
+ rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) +
+ x->wedge_interintra_cost[bsize][1];
+
+ best_interintra_rd_wedge =
+ pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
+
+ best_interintra_rd_wedge +=
+ RDCOST(x->rdmult, rmode + *rate_mv + rwedge, 0);
+ rd = INT64_MAX;
+ // Refine motion vector.
+ if (have_newmv_in_inter_mode(mbmi->mode)) {
+ // get negative of mask
+ const uint8_t *mask = av1_get_contiguous_soft_mask(
+ mbmi->interintra_wedge_index, 1, bsize);
+ tmp_mv = mbmi->mv[0];
+ compound_single_motion_search(cpi, x, bsize, &tmp_mv.as_mv, mi_row,
+ mi_col, intrapred, mask, bw, &tmp_rate_mv,
+ 0);
+ if (mbmi->mv[0].as_int != tmp_mv.as_int) {
+ mbmi->mv[0].as_int = tmp_mv.as_int;
+ av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst,
+ bsize);
+ model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND](
+ cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum,
+ &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL);
+ rd = RDCOST(x->rdmult, tmp_rate_mv + rmode + rate_sum + rwedge,
+ dist_sum);
+ }
+ }
+ if (rd >= best_interintra_rd_wedge) {
+ tmp_mv.as_int = mv0.as_int;
+ tmp_rate_mv = *rate_mv;
+ av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
+ }
+ // Evaluate closer to true rd
+ rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
+ &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
+ if (rd != INT64_MAX)
+ rd = RDCOST(x->rdmult, rmode + tmp_rate_mv + rwedge + rate_sum,
+ dist_sum);
+ best_interintra_rd_wedge = rd;
+ if (best_interintra_rd_wedge < best_interintra_rd_nowedge) {
+ mbmi->use_wedge_interintra = 1;
+ mbmi->mv[0].as_int = tmp_mv.as_int;
+ *tmp_rate2 += tmp_rate_mv - *rate_mv;
+ *rate_mv = tmp_rate_mv;
+ } else {
+ mbmi->use_wedge_interintra = 0;
+ mbmi->mv[0].as_int = mv0.as_int;
+ av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize);
+ }
+ } else {
+ mbmi->use_wedge_interintra = 0;
+ }
+ } // if (is_interintra_wedge_used(bsize))
+ if (num_planes > 1) {
+ av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, orig_dst, bsize);
+ }
+ return 0;
+}
+
+// TODO(afergs): Refactor the MBMI references in here - there's four
+// TODO(afergs): Refactor optional args - add them to a struct or remove
+static int64_t motion_mode_rd(const AV1_COMP *const cpi, MACROBLOCK *const x,
+ BLOCK_SIZE bsize, RD_STATS *rd_stats,
+ RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv,
+ int *disable_skip, int mi_row, int mi_col,
+ HandleInterModeArgs *const args,
+ int64_t ref_best_rd, const int *refs,
+ int *rate_mv, BUFFER_SET *orig_dst
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ ,
+ TileDataEnc *tile_data, int64_t *best_est_rd,
+ int do_tx_search, InterModesInfo *inter_modes_info
+#endif
+) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const int is_comp_pred = has_second_ref(mbmi);
+ const PREDICTION_MODE this_mode = mbmi->mode;
+ const int rate2_nocoeff = rd_stats->rate;
+ int best_xskip, best_disable_skip = 0;
+ RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
+ MB_MODE_INFO base_mbmi, best_mbmi;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ const int rate_mv0 = *rate_mv;
+
+ int interintra_allowed = cm->seq_params.enable_interintra_compound &&
+ is_interintra_allowed(mbmi) && mbmi->compound_idx;
+ int pts0[SAMPLES_ARRAY_SIZE], pts_inref0[SAMPLES_ARRAY_SIZE];
+
+ assert(mbmi->ref_frame[1] != INTRA_FRAME);
+ const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1];
+ av1_invalid_rd_stats(&best_rd_stats);
+ aom_clear_system_state();
+ mbmi->num_proj_ref = 1; // assume num_proj_ref >=1
+ MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
+ if (cm->switchable_motion_mode) {
+ last_motion_mode_allowed = motion_mode_allowed(xd->global_motion, xd, mbmi,
+ cm->allow_warped_motion);
+ }
+ if (last_motion_mode_allowed == WARPED_CAUSAL) {
+ mbmi->num_proj_ref = findSamples(cm, xd, mi_row, mi_col, pts0, pts_inref0);
+ }
+ int total_samples = mbmi->num_proj_ref;
+ if (total_samples == 0) {
+ last_motion_mode_allowed = OBMC_CAUSAL;
+ }
+ base_mbmi = *mbmi;
+
+ const int switchable_rate =
+ av1_is_interp_needed(xd) ? av1_get_switchable_rate(cm, x, xd) : 0;
+ int64_t best_rd = INT64_MAX;
+ int best_rate_mv = rate_mv0;
+ for (int mode_index = (int)SIMPLE_TRANSLATION;
+ mode_index <= (int)last_motion_mode_allowed + interintra_allowed;
+ mode_index++) {
+ if (args->skip_motion_mode && mode_index) continue;
+ int64_t tmp_rd = INT64_MAX;
+ int tmp_rate2 = rate2_nocoeff;
+ int is_interintra_mode = mode_index > (int)last_motion_mode_allowed;
+ int skip_txfm_sb = 0;
+ int tmp_rate_mv = rate_mv0;
+
+ *mbmi = base_mbmi;
+ if (is_interintra_mode) {
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ } else {
+ mbmi->motion_mode = (MOTION_MODE)mode_index;
+ assert(mbmi->ref_frame[1] != INTRA_FRAME);
+ }
+
+ if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) {
+ // SIMPLE_TRANSLATION mode: no need to recalculate.
+ // The prediction is calculated before motion_mode_rd() is called in
+ // handle_inter_mode()
+ } else if (mbmi->motion_mode == OBMC_CAUSAL) {
+ uint32_t cur_mv = mbmi->mv[0].as_int;
+ assert(!is_comp_pred);
+ if (have_newmv_in_inter_mode(this_mode)) {
+ single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, &tmp_rate_mv);
+ mbmi->mv[0].as_int = x->best_mv.as_int;
+#if USE_DISCOUNT_NEWMV_TEST
+ if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) {
+ tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
+ }
+#endif
+ tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
+ }
+ if (mbmi->mv[0].as_int != cur_mv) {
+ av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize);
+ }
+ av1_build_obmc_inter_prediction(
+ cm, xd, mi_row, mi_col, args->above_pred_buf, args->above_pred_stride,
+ args->left_pred_buf, args->left_pred_stride);
+ } else if (mbmi->motion_mode == WARPED_CAUSAL) {
+ int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
+ mbmi->motion_mode = WARPED_CAUSAL;
+ mbmi->wm_params.wmtype = DEFAULT_WMTYPE;
+ mbmi->interp_filters = av1_broadcast_interp_filter(
+ av1_unswitchable_filter(cm->interp_filter));
+
+ memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
+ memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
+ // Select the samples according to motion vector difference
+ if (mbmi->num_proj_ref > 1) {
+ mbmi->num_proj_ref = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
+ mbmi->num_proj_ref, bsize);
+ }
+
+ if (!find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
+ mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
+ &mbmi->wm_params, mi_row, mi_col)) {
+ // Refine MV for NEWMV mode
+ assert(!is_comp_pred);
+ if (have_newmv_in_inter_mode(this_mode)) {
+ const int_mv mv0 = mbmi->mv[0];
+ const WarpedMotionParams wm_params0 = mbmi->wm_params;
+ int num_proj_ref0 = mbmi->num_proj_ref;
+
+ // Refine MV in a small range.
+ av1_refine_warped_mv(cpi, x, bsize, mi_row, mi_col, pts0, pts_inref0,
+ total_samples);
+
+ // Keep the refined MV and WM parameters.
+ if (mv0.as_int != mbmi->mv[0].as_int) {
+ const int ref = refs[0];
+ const int_mv ref_mv = av1_get_ref_mv(x, 0);
+ tmp_rate_mv =
+ av1_mv_bit_cost(&mbmi->mv[0].as_mv, &ref_mv.as_mv,
+ x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
+
+ if (cpi->sf.adaptive_motion_search)
+ x->pred_mv[ref] = mbmi->mv[0].as_mv;
+
+#if USE_DISCOUNT_NEWMV_TEST
+ if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) {
+ tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
+ }
+#endif
+ tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
+ } else {
+ // Restore the old MV and WM parameters.
+ mbmi->mv[0] = mv0;
+ mbmi->wm_params = wm_params0;
+ mbmi->num_proj_ref = num_proj_ref0;
+ }
+ }
+
+ av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
+ } else {
+ continue;
+ }
+ } else if (is_interintra_mode) {
+ const int ret = handle_inter_intra_mode(
+ cpi, x, bsize, mi_row, mi_col, mbmi, args, ref_best_rd, &tmp_rate_mv,
+ &tmp_rate2, orig_dst);
+ if (ret < 0) continue;
+ }
+
+ if (!cpi->common.all_lossless)
+ check_block_skip(cpi, bsize, x, xd, 0, num_planes - 1, &skip_txfm_sb);
+
+ x->skip = 0;
+
+ rd_stats->dist = 0;
+ rd_stats->sse = 0;
+ rd_stats->skip = 1;
+ rd_stats->rate = tmp_rate2;
+ if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate;
+ if (interintra_allowed) {
+ rd_stats->rate += x->interintra_cost[size_group_lookup[bsize]]
+ [mbmi->ref_frame[1] == INTRA_FRAME];
+ if (mbmi->ref_frame[1] == INTRA_FRAME) {
+ rd_stats->rate += x->interintra_mode_cost[size_group_lookup[bsize]]
+ [mbmi->interintra_mode];
+ if (is_interintra_wedge_used(bsize)) {
+ rd_stats->rate +=
+ x->wedge_interintra_cost[bsize][mbmi->use_wedge_interintra];
+ if (mbmi->use_wedge_interintra) {
+ rd_stats->rate +=
+ av1_cost_literal(get_interintra_wedge_bits(bsize));
+ }
+ }
+ }
+ }
+ if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) &&
+ (mbmi->ref_frame[1] != INTRA_FRAME)) {
+ if (last_motion_mode_allowed == WARPED_CAUSAL) {
+ rd_stats->rate += x->motion_mode_cost[bsize][mbmi->motion_mode];
+ } else {
+ rd_stats->rate += x->motion_mode_cost1[bsize][mbmi->motion_mode];
+ }
+ }
+
+ if (!skip_txfm_sb) {
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ int64_t est_rd = 0;
+ int est_skip = 0;
+ if (cpi->sf.inter_mode_rd_model_estimation && cm->tile_cols == 1 &&
+ cm->tile_rows == 1) {
+ InterModeRdModel *md = &tile_data->inter_mode_rd_models[mbmi->sb_type];
+ if (md->ready) {
+ const int64_t curr_sse = get_sse(cpi, x);
+ est_rd = get_est_rd(tile_data, mbmi->sb_type, x->rdmult, curr_sse,
+ rd_stats->rate);
+ est_skip = est_rd * 0.8 > *best_est_rd;
+ if (est_skip) {
+ mbmi->ref_frame[1] = ref_frame_1;
+ continue;
+ } else {
+ if (est_rd < *best_est_rd) {
+ *best_est_rd = est_rd;
+ }
+ }
+ }
+ }
+#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS
+ }
+
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ if (!do_tx_search) {
+ const int64_t curr_sse = get_sse(cpi, x);
+ int est_residue_cost = 0;
+ int64_t est_dist = 0;
+ const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse,
+ &est_residue_cost, &est_dist);
+ (void)has_est_rd;
+ assert(has_est_rd);
+ const int mode_rate = rd_stats->rate;
+ rd_stats->rate += est_residue_cost;
+ rd_stats->dist = est_dist;
+ rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ if (cm->reference_mode == SINGLE_REFERENCE) {
+ if (!is_comp_pred) {
+ inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
+ rd_stats->rdcost, mbmi);
+ }
+ } else {
+ inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
+ rd_stats->rdcost, mbmi);
+ }
+ } else {
+#endif
+ int mode_rate = rd_stats->rate;
+ if (!txfm_search(cpi, x, bsize, mi_row, mi_col, rd_stats, rd_stats_y,
+ rd_stats_uv, mode_rate, ref_best_rd)) {
+ if (rd_stats_y->rate == INT_MAX && mode_index == 0) {
+ return INT64_MAX;
+ }
+ continue;
+ }
+ if (!skip_txfm_sb) {
+ const int64_t curr_rd =
+ RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ if (curr_rd < ref_best_rd) {
+ ref_best_rd = curr_rd;
+ }
+ *disable_skip = 0;
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ if (cpi->sf.inter_mode_rd_model_estimation) {
+ const int skip_ctx = av1_get_skip_context(xd);
+ inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats->sse,
+ rd_stats->dist,
+ rd_stats_y->rate + rd_stats_uv->rate +
+ x->skip_cost[skip_ctx][mbmi->skip]);
+ }
+#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS
+ } else {
+ *disable_skip = 1;
+ }
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ }
+#endif
+
+ if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) {
+ if (is_nontrans_global_motion(xd, xd->mi[0])) {
+ mbmi->interp_filters = av1_broadcast_interp_filter(
+ av1_unswitchable_filter(cm->interp_filter));
+ }
+ }
+
+ tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ if (mode_index == 0)
+ args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd;
+ if ((mode_index == 0) || (tmp_rd < best_rd)) {
+ best_mbmi = *mbmi;
+ best_rd = tmp_rd;
+ best_rd_stats = *rd_stats;
+ best_rd_stats_y = *rd_stats_y;
+ best_rate_mv = tmp_rate_mv;
+ if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv;
+ memcpy(best_blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w);
+ best_xskip = x->skip;
+ best_disable_skip = *disable_skip;
+ if (best_xskip) break;
+ }
+ }
+ mbmi->ref_frame[1] = ref_frame_1;
+ *rate_mv = best_rate_mv;
+ if (best_rd == INT64_MAX) {
+ av1_invalid_rd_stats(rd_stats);
+ restore_dst_buf(xd, *orig_dst, num_planes);
+ return INT64_MAX;
+ }
+ *mbmi = best_mbmi;
+ *rd_stats = best_rd_stats;
+ *rd_stats_y = best_rd_stats_y;
+ if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv;
+ memcpy(x->blk_skip, best_blk_skip,
+ sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w);
+ x->skip = best_xskip;
+ *disable_skip = best_disable_skip;
+
+ restore_dst_buf(xd, *orig_dst, num_planes);
+ return 0;
+}
+
+static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi,
+ MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row,
+ int mi_col, BUFFER_SET *const orig_dst) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize);
+
+ int64_t total_sse = 0;
+ for (int plane = 0; plane < num_planes; ++plane) {
+ const struct macroblock_plane *const p = &x->plane[plane];
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
+ const int bw = block_size_wide[plane_bsize];
+ const int bh = block_size_high[plane_bsize];
+
+ av1_subtract_plane(x, bsize, plane);
+ int64_t sse = aom_sum_squares_2d_i16(p->src_diff, bw, bw, bh);
+ sse = sse << 4;
+ total_sse += sse;
+ }
+ const int skip_mode_ctx = av1_get_skip_mode_context(xd);
+ rd_stats->dist = rd_stats->sse = total_sse;
+ rd_stats->rate = x->skip_mode_cost[skip_mode_ctx][1];
+ rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+
+ restore_dst_buf(xd, *orig_dst, num_planes);
+ return 0;
+}
+
+static INLINE int get_ref_mv_offset(PREDICTION_MODE single_mode,
+ uint8_t ref_mv_idx) {
+ assert(is_inter_singleref_mode(single_mode));
+ int ref_mv_offset;
+ if (single_mode == NEARESTMV) {
+ ref_mv_offset = 0;
+ } else if (single_mode == NEARMV) {
+ ref_mv_offset = ref_mv_idx + 1;
+ } else {
+ ref_mv_offset = -1;
+ }
+ return ref_mv_offset;
+}
+
+static INLINE void get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode,
+ int ref_idx, int ref_mv_idx,
+ const MV_REFERENCE_FRAME *ref_frame,
+ const MB_MODE_INFO_EXT *mbmi_ext) {
+ const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
+ const int is_comp_pred = ref_frame[1] > INTRA_FRAME;
+ const PREDICTION_MODE single_mode =
+ get_single_mode(this_mode, ref_idx, is_comp_pred);
+ assert(is_inter_singleref_mode(single_mode));
+ if (single_mode == NEWMV) {
+ this_mv->as_int = INVALID_MV;
+ } else if (single_mode == GLOBALMV) {
+ *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
+ } else {
+ assert(single_mode == NEARMV || single_mode == NEARESTMV);
+ const int ref_mv_offset = get_ref_mv_offset(single_mode, ref_mv_idx);
+ if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) {
+ assert(ref_mv_offset >= 0);
+ if (ref_idx == 0) {
+ *this_mv =
+ mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv;
+ } else {
+ *this_mv =
+ mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv;
+ }
+ } else {
+ *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
+ }
+ }
+}
+
+// This function update the non-new mv for the current prediction mode
+static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode,
+ const AV1_COMMON *cm, const MACROBLOCK *x) {
+ const MACROBLOCKD *xd = &x->e_mbd;
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ const int is_comp_pred = has_second_ref(mbmi);
+ int ret = 1;
+ for (int i = 0; i < is_comp_pred + 1; ++i) {
+ int_mv this_mv;
+ get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx, mbmi->ref_frame,
+ x->mbmi_ext);
+ const PREDICTION_MODE single_mode =
+ get_single_mode(this_mode, i, is_comp_pred);
+ if (single_mode == NEWMV) {
+ cur_mv[i] = this_mv;
+ } else {
+ ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x);
+ }
+ }
+ return ret;
+}
+
+static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi,
+ const MB_MODE_INFO_EXT *mbmi_ext,
+ int (*drl_mode_cost0)[2],
+ int8_t ref_frame_type) {
+ int cost = 0;
+ if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
+ for (int idx = 0; idx < 2; ++idx) {
+ if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
+ uint8_t drl_ctx =
+ av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
+ cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx];
+ if (mbmi->ref_mv_idx == idx) return cost;
+ }
+ }
+ return cost;
+ }
+
+ if (have_nearmv_in_inter_mode(mbmi->mode)) {
+ for (int idx = 1; idx < 3; ++idx) {
+ if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
+ uint8_t drl_ctx =
+ av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
+ cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)];
+ if (mbmi->ref_mv_idx == (idx - 1)) return cost;
+ }
+ }
+ return cost;
+ }
+ return cost;
+}
+
+// Struct for buffers used by compound_type_rd() function.
+// For sizes and alignment of these arrays, refer to
+// alloc_compound_type_rd_buffers() function.
+typedef struct {
+ uint8_t *pred0;
+ uint8_t *pred1;
+ int16_t *residual1; // src - pred1
+ int16_t *diff10; // pred1 - pred0
+ uint8_t *tmp_best_mask_buf; // backup of the best segmentation mask
+} CompoundTypeRdBuffers;
+
+static int compound_type_rd(const AV1_COMP *const cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mi_col, int mi_row,
+ int_mv *cur_mv, int masked_compound_used,
+ BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst,
+ CompoundTypeRdBuffers *buffers, int *rate_mv,
+ int64_t *rd, RD_STATS *rd_stats,
+ int64_t ref_best_rd) {
+ const AV1_COMMON *cm = &cpi->common;
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const PREDICTION_MODE this_mode = mbmi->mode;
+ const int bw = block_size_wide[bsize];
+ int rate_sum, rs2;
+ int64_t dist_sum;
+
+ int_mv best_mv[2];
+ int best_tmp_rate_mv = *rate_mv;
+ int tmp_skip_txfm_sb;
+ int64_t tmp_skip_sse_sb;
+ INTERINTER_COMPOUND_DATA best_compound_data;
+ best_compound_data.type = COMPOUND_AVERAGE;
+ uint8_t *preds0[1] = { buffers->pred0 };
+ uint8_t *preds1[1] = { buffers->pred1 };
+ int strides[1] = { bw };
+ int tmp_rate_mv;
+ const int num_pix = 1 << num_pels_log2_lookup[bsize];
+ const int mask_len = 2 * num_pix * sizeof(uint8_t);
+ COMPOUND_TYPE cur_type;
+ int best_compmode_interinter_cost = 0;
+ int calc_pred_masked_compound = 1;
+
+ best_mv[0].as_int = cur_mv[0].as_int;
+ best_mv[1].as_int = cur_mv[1].as_int;
+ *rd = INT64_MAX;
+ for (cur_type = COMPOUND_AVERAGE; cur_type < COMPOUND_TYPES; cur_type++) {
+ if (cur_type != COMPOUND_AVERAGE && !masked_compound_used) break;
+ if (!is_interinter_compound_used(cur_type, bsize)) continue;
+ tmp_rate_mv = *rate_mv;
+ int64_t best_rd_cur = INT64_MAX;
+ mbmi->interinter_comp.type = cur_type;
+ int masked_type_cost = 0;
+
+ const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
+ const int comp_index_ctx = get_comp_index_context(cm, xd);
+ mbmi->compound_idx = 1;
+ if (cur_type == COMPOUND_AVERAGE) {
+ mbmi->comp_group_idx = 0;
+ if (masked_compound_used) {
+ masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][0];
+ }
+ masked_type_cost += x->comp_idx_cost[comp_index_ctx][1];
+ rs2 = masked_type_cost;
+ const int64_t mode_rd = RDCOST(x->rdmult, rs2 + rd_stats->rate, 0);
+ if (mode_rd < ref_best_rd) {
+ av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize);
+ int64_t est_rd =
+ estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
+ &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
+ if (est_rd != INT64_MAX)
+ best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + rate_sum, dist_sum);
+ }
+ // use spare buffer for following compound type try
+ restore_dst_buf(xd, *tmp_dst, 1);
+ } else {
+ mbmi->comp_group_idx = 1;
+ masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][1];
+ masked_type_cost += x->compound_type_cost[bsize][cur_type - 1];
+ rs2 = masked_type_cost;
+ if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh &&
+ *rd / 3 < ref_best_rd) {
+ best_rd_cur = build_and_cost_compound_type(
+ cpi, x, cur_mv, bsize, this_mode, &rs2, *rate_mv, orig_dst,
+ &tmp_rate_mv, preds0, preds1, buffers->residual1, buffers->diff10,
+ strides, mi_row, mi_col, rd_stats->rate, ref_best_rd,
+ &calc_pred_masked_compound);
+ }
+ }
+ if (best_rd_cur < *rd) {
+ *rd = best_rd_cur;
+ best_compound_data = mbmi->interinter_comp;
+ if (masked_compound_used && cur_type != COMPOUND_TYPES - 1) {
+ memcpy(buffers->tmp_best_mask_buf, xd->seg_mask, mask_len);
+ }
+ best_compmode_interinter_cost = rs2;
+ if (have_newmv_in_inter_mode(this_mode)) {
+ if (cur_type == COMPOUND_WEDGE) {
+ best_tmp_rate_mv = tmp_rate_mv;
+ best_mv[0].as_int = mbmi->mv[0].as_int;
+ best_mv[1].as_int = mbmi->mv[1].as_int;
+ } else {
+ best_mv[0].as_int = cur_mv[0].as_int;
+ best_mv[1].as_int = cur_mv[1].as_int;
+ }
+ }
+ }
+ // reset to original mvs for next iteration
+ mbmi->mv[0].as_int = cur_mv[0].as_int;
+ mbmi->mv[1].as_int = cur_mv[1].as_int;
+ }
+ if (mbmi->interinter_comp.type != best_compound_data.type) {
+ mbmi->comp_group_idx =
+ (best_compound_data.type == COMPOUND_AVERAGE) ? 0 : 1;
+ mbmi->interinter_comp = best_compound_data;
+ memcpy(xd->seg_mask, buffers->tmp_best_mask_buf, mask_len);
+ }
+ if (have_newmv_in_inter_mode(this_mode)) {
+ mbmi->mv[0].as_int = best_mv[0].as_int;
+ mbmi->mv[1].as_int = best_mv[1].as_int;
+ if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
+ rd_stats->rate += best_tmp_rate_mv - *rate_mv;
+ *rate_mv = best_tmp_rate_mv;
+ }
+ }
+ restore_dst_buf(xd, *orig_dst, 1);
+ return best_compmode_interinter_cost;
+}
+
+static INLINE int is_single_newmv_valid(HandleInterModeArgs *args,
+ MB_MODE_INFO *mbmi,
+ PREDICTION_MODE this_mode) {
+ for (int ref_idx = 0; ref_idx < 2; ++ref_idx) {
+ const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx, 1);
+ const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx];
+ if (single_mode == NEWMV &&
+ args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int get_drl_refmv_count(const MACROBLOCK *const x,
+ const MV_REFERENCE_FRAME *ref_frame,
+ PREDICTION_MODE mode) {
+ MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+ const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
+ const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0;
+ const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
+ const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV);
+ const int has_drl =
+ (has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1);
+ const int ref_set =
+ has_drl ? AOMMIN(MAX_REF_MV_SERCH, ref_mv_count - has_nearmv) : 1;
+
+ return ref_set;
+}
+
+typedef struct {
+ int64_t rd;
+ int drl_cost;
+ int rate_mv;
+ int_mv mv;
+} inter_mode_info;
+
+static int64_t handle_inter_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, RD_STATS *rd_stats,
+ RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv,
+ int *disable_skip, int mi_row, int mi_col,
+ HandleInterModeArgs *args, int64_t ref_best_rd,
+ uint8_t *const tmp_buf,
+ CompoundTypeRdBuffers *rd_buffers
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ ,
+ TileDataEnc *tile_data, int64_t *best_est_rd,
+ const int do_tx_search,
+ InterModesInfo *inter_modes_info
+#endif
+) {
+ const AV1_COMMON *cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *xd = &x->e_mbd;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+ const int is_comp_pred = has_second_ref(mbmi);
+ const PREDICTION_MODE this_mode = mbmi->mode;
+ int i;
+ int refs[2] = { mbmi->ref_frame[0],
+ (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
+ int rate_mv = 0;
+ int64_t rd = INT64_MAX;
+
+ // do first prediction into the destination buffer. Do the next
+ // prediction into a temporary buffer. Then keep track of which one
+ // of these currently holds the best predictor, and use the other
+ // one for future predictions. In the end, copy from tmp_buf to
+ // dst if necessary.
+ struct macroblockd_plane *p = xd->plane;
+ BUFFER_SET orig_dst = {
+ { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf },
+ { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride },
+ };
+ const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
+ tmp_buf + 2 * MAX_SB_SQUARE },
+ { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };
+
+ int skip_txfm_sb = 0;
+ int64_t skip_sse_sb = INT64_MAX;
+ int16_t mode_ctx;
+ const int masked_compound_used = is_any_masked_compound_used(bsize) &&
+ cm->seq_params.enable_masked_compound;
+ int64_t ret_val = INT64_MAX;
+ const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
+ int64_t best_rd = INT64_MAX;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ MB_MODE_INFO best_mbmi = *mbmi;
+ int best_disable_skip;
+ int best_xskip;
+ int64_t newmv_ret_val = INT64_MAX;
+ int_mv backup_mv[2] = { { 0 } };
+ int backup_rate_mv = 0;
+ inter_mode_info mode_info[MAX_REF_MV_SERCH];
+
+ int comp_idx;
+ const int search_jnt_comp = is_comp_pred & cm->seq_params.enable_jnt_comp &
+ (mbmi->mode != GLOBAL_GLOBALMV);
+
+ // TODO(jingning): This should be deprecated shortly.
+ const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
+ const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
+
+ for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
+ mode_info[ref_mv_idx].mv.as_int = INVALID_MV;
+ mode_info[ref_mv_idx].rd = INT64_MAX;
+
+ if (cpi->sf.reduce_inter_modes && ref_mv_idx > 0) {
+ if (mbmi->ref_frame[0] == LAST2_FRAME ||
+ mbmi->ref_frame[0] == LAST3_FRAME ||
+ mbmi->ref_frame[1] == LAST2_FRAME ||
+ mbmi->ref_frame[1] == LAST3_FRAME) {
+ if (mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx + has_nearmv]
+ .weight < REF_CAT_LEVEL) {
+ continue;
+ }
+ }
+ }
+
+ av1_init_rd_stats(rd_stats);
+
+ mbmi->interinter_comp.type = COMPOUND_AVERAGE;
+ mbmi->comp_group_idx = 0;
+ mbmi->compound_idx = 1;
+ if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME;
+
+ mode_ctx =
+ av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
+
+ mbmi->num_proj_ref = 0;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->ref_mv_idx = ref_mv_idx;
+
+ if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, this_mode))) {
+ continue;
+ }
+
+ rd_stats->rate += args->ref_frame_cost + args->single_comp_cost;
+ const int drl_cost =
+ get_drl_cost(mbmi, mbmi_ext, x->drl_mode_cost0, ref_frame_type);
+ rd_stats->rate += drl_cost;
+ mode_info[ref_mv_idx].drl_cost = drl_cost;
+
+ if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd &&
+ mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
+ continue;
+ }
+
+ int64_t best_rd2 = INT64_MAX;
+
+ const RD_STATS backup_rd_stats = *rd_stats;
+ // If !search_jnt_comp, we need to force mbmi->compound_idx = 1.
+ for (comp_idx = 1; comp_idx >= !search_jnt_comp; --comp_idx) {
+ int rs = 0;
+ int compmode_interinter_cost = 0;
+ mbmi->compound_idx = comp_idx;
+ if (is_comp_pred && comp_idx == 0) {
+ *rd_stats = backup_rd_stats;
+ mbmi->interinter_comp.type = COMPOUND_AVERAGE;
+ if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME;
+ mbmi->num_proj_ref = 0;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->comp_group_idx = 0;
+
+ const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
+ const int comp_index_ctx = get_comp_index_context(cm, xd);
+ if (masked_compound_used) {
+ compmode_interinter_cost +=
+ x->comp_group_idx_cost[comp_group_idx_ctx][0];
+ }
+ compmode_interinter_cost += x->comp_idx_cost[comp_index_ctx][0];
+ }
+
+ int_mv cur_mv[2];
+ if (!build_cur_mv(cur_mv, this_mode, cm, x)) {
+ continue;
+ }
+ if (have_newmv_in_inter_mode(this_mode)) {
+ if (comp_idx == 0) {
+ cur_mv[0] = backup_mv[0];
+ cur_mv[1] = backup_mv[1];
+ rate_mv = backup_rate_mv;
+ }
+
+ // when jnt_comp_skip_mv_search flag is on, new mv will be searched once
+ if (!(search_jnt_comp && cpi->sf.jnt_comp_skip_mv_search &&
+ comp_idx == 0)) {
+ newmv_ret_val = handle_newmv(cpi, x, bsize, cur_mv, mi_row, mi_col,
+ &rate_mv, args);
+
+ // Store cur_mv and rate_mv so that they can be restored in the next
+ // iteration of the loop
+ backup_mv[0] = cur_mv[0];
+ backup_mv[1] = cur_mv[1];
+ backup_rate_mv = rate_mv;
+ }
+
+ if (newmv_ret_val != 0) {
+ continue;
+ } else {
+ rd_stats->rate += rate_mv;
+ }
+
+ if (cpi->sf.skip_repeated_newmv) {
+ if (!is_comp_pred && this_mode == NEWMV && ref_mv_idx > 0) {
+ int skip = 0;
+ int this_rate_mv = 0;
+ for (i = 0; i < ref_mv_idx; ++i) {
+ // Check if the motion search result same as previous results
+ if (cur_mv[0].as_int == args->single_newmv[i][refs[0]].as_int) {
+ // If the compared mode has no valid rd, it is unlikely this
+ // mode will be the best mode
+ if (mode_info[i].rd == INT64_MAX) {
+ skip = 1;
+ break;
+ }
+ // Compare the cost difference including drl cost and mv cost
+ if (mode_info[i].mv.as_int != INVALID_MV) {
+ const int compare_cost =
+ mode_info[i].rate_mv + mode_info[i].drl_cost;
+ const int_mv ref_mv = av1_get_ref_mv(x, 0);
+ this_rate_mv = av1_mv_bit_cost(&mode_info[i].mv.as_mv,
+ &ref_mv.as_mv, x->nmvjointcost,
+ x->mvcost, MV_COST_WEIGHT);
+ const int this_cost = this_rate_mv + drl_cost;
+
+ if (compare_cost < this_cost) {
+ skip = 1;
+ break;
+ } else {
+ // If the cost is less than current best result, make this
+ // the best and update corresponding variables
+ if (best_mbmi.ref_mv_idx == i) {
+ assert(best_rd != INT64_MAX);
+ best_mbmi.ref_mv_idx = ref_mv_idx;
+ best_rd_stats.rate += this_cost - compare_cost;
+ best_rd = RDCOST(x->rdmult, best_rd_stats.rate,
+ best_rd_stats.dist);
+ if (best_rd < ref_best_rd) ref_best_rd = best_rd;
+
+ skip = 1;
+ break;
+ }
+ }
+ }
+ }
+ }
+ if (skip) {
+ args->modelled_rd[this_mode][ref_mv_idx][refs[0]] =
+ args->modelled_rd[this_mode][i][refs[0]];
+ args->simple_rd[this_mode][ref_mv_idx][refs[0]] =
+ args->simple_rd[this_mode][i][refs[0]];
+ mode_info[ref_mv_idx].rd = mode_info[i].rd;
+ mode_info[ref_mv_idx].rate_mv = this_rate_mv;
+ mode_info[ref_mv_idx].mv.as_int = mode_info[i].mv.as_int;
+
+ restore_dst_buf(xd, orig_dst, num_planes);
+ continue;
+ }
+ }
+ }
+ }
+ for (i = 0; i < is_comp_pred + 1; ++i) {
+ mbmi->mv[i].as_int = cur_mv[i].as_int;
+ }
+ const int ref_mv_cost = cost_mv_ref(x, this_mode, mode_ctx);
+#if USE_DISCOUNT_NEWMV_TEST
+ // We don't include the cost of the second reference here, because there
+ // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in
+ // other words if you present them in that order, the second one is always
+ // known if the first is known.
+ //
+ // Under some circumstances we discount the cost of new mv mode to
+ // encourage initiation of a motion field.
+ if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) {
+ // discount_newmv_test only applies discount on NEWMV mode.
+ assert(this_mode == NEWMV);
+ rd_stats->rate += AOMMIN(cost_mv_ref(x, this_mode, mode_ctx),
+ cost_mv_ref(x, NEARESTMV, mode_ctx));
+ } else {
+ rd_stats->rate += ref_mv_cost;
+ }
+#else
+ rd_stats->rate += ref_mv_cost;
+#endif
+
+ if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd &&
+ mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
+ continue;
+ }
+
+ int skip_build_pred = 0;
+ if (is_comp_pred && comp_idx) {
+ // Find matching interp filter or set to default interp filter
+ const int need_search =
+ av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd);
+ int match_found = -1;
+ const InterpFilter assign_filter = cm->interp_filter;
+ if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) {
+ match_found = find_interp_filter_in_stats(x, mbmi);
+ }
+ if (!need_search || match_found == -1) {
+ set_default_interp_filters(mbmi, assign_filter);
+ }
+
+ int64_t best_rd_compound;
+ compmode_interinter_cost = compound_type_rd(
+ cpi, x, bsize, mi_col, mi_row, cur_mv, masked_compound_used,
+ &orig_dst, &tmp_dst, rd_buffers, &rate_mv, &best_rd_compound,
+ rd_stats, ref_best_rd);
+ if (ref_best_rd < INT64_MAX && best_rd_compound / 3 > ref_best_rd) {
+ restore_dst_buf(xd, orig_dst, num_planes);
+ continue;
+ }
+ // No need to call av1_build_inter_predictors_sby if
+ // COMPOUND_AVERAGE is selected because it is the first
+ // candidate in compound_type_rd, and the following
+ // compound types searching uses tmp_dst buffer
+ if (mbmi->interinter_comp.type == COMPOUND_AVERAGE) {
+ if (num_planes > 1)
+ av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, &orig_dst,
+ bsize);
+ skip_build_pred = 1;
+ }
+ }
+
+ ret_val = interpolation_filter_search(
+ x, cpi, bsize, mi_row, mi_col, &tmp_dst, &orig_dst,
+ args->single_filter, &rd, &rs, &skip_txfm_sb, &skip_sse_sb,
+ skip_build_pred, args, ref_best_rd);
+ if (args->modelled_rd != NULL && !is_comp_pred) {
+ args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd;
+ }
+ if (ret_val != 0) {
+ restore_dst_buf(xd, orig_dst, num_planes);
+ continue;
+ } else if (cpi->sf.model_based_post_interp_filter_breakout &&
+ ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) {
+ restore_dst_buf(xd, orig_dst, num_planes);
+ if ((rd >> 3) * 2 > ref_best_rd) break;
+ continue;
+ }
+
+ if (search_jnt_comp) {
+ // if 1/2 model rd is larger than best_rd in jnt_comp mode,
+ // use jnt_comp mode, save additional search
+ if ((rd >> 3) * 4 > best_rd) {
+ restore_dst_buf(xd, orig_dst, num_planes);
+ continue;
+ }
+ }
+
+ if (!is_comp_pred)
+ args->single_filter[this_mode][refs[0]] =
+ av1_extract_interp_filter(mbmi->interp_filters, 0);
+
+ if (args->modelled_rd != NULL) {
+ if (is_comp_pred) {
+ const int mode0 = compound_ref0_mode(this_mode);
+ const int mode1 = compound_ref1_mode(this_mode);
+ const int64_t mrd =
+ AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]],
+ args->modelled_rd[mode1][ref_mv_idx][refs[1]]);
+ if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) {
+ restore_dst_buf(xd, orig_dst, num_planes);
+ continue;
+ }
+ }
+ }
+ rd_stats->rate += compmode_interinter_cost;
+
+ if (search_jnt_comp && cpi->sf.jnt_comp_fast_tx_search && comp_idx == 0) {
+ // TODO(chengchen): this speed feature introduces big loss.
+ // Need better estimation of rate distortion.
+ int dummy_rate;
+ int64_t dummy_dist;
+ int plane_rate[MAX_MB_PLANE] = { 0 };
+ int64_t plane_sse[MAX_MB_PLANE] = { 0 };
+ int64_t plane_dist[MAX_MB_PLANE] = { 0 };
+
+ model_rd_sb_fn[MODELRD_TYPE_JNT_COMPOUND](
+ cpi, bsize, x, xd, 0, num_planes - 1, mi_row, mi_col, &dummy_rate,
+ &dummy_dist, &skip_txfm_sb, &skip_sse_sb, plane_rate, plane_sse,
+ plane_dist);
+
+ rd_stats->rate += rs;
+ rd_stats->rate += plane_rate[0] + plane_rate[1] + plane_rate[2];
+ rd_stats_y->rate = plane_rate[0];
+ rd_stats_uv->rate = plane_rate[1] + plane_rate[2];
+ rd_stats->sse = plane_sse[0] + plane_sse[1] + plane_sse[2];
+ rd_stats_y->sse = plane_sse[0];
+ rd_stats_uv->sse = plane_sse[1] + plane_sse[2];
+ rd_stats->dist = plane_dist[0] + plane_dist[1] + plane_dist[2];
+ rd_stats_y->dist = plane_dist[0];
+ rd_stats_uv->dist = plane_dist[1] + plane_dist[2];
+ } else {
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ ret_val = motion_mode_rd(
+ cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv, disable_skip,
+ mi_row, mi_col, args, ref_best_rd, refs, &rate_mv, &orig_dst,
+ tile_data, best_est_rd, do_tx_search, inter_modes_info);
+#else
+ ret_val = motion_mode_rd(cpi, x, bsize, rd_stats, rd_stats_y,
+ rd_stats_uv, disable_skip, mi_row, mi_col,
+ args, ref_best_rd, refs, &rate_mv, &orig_dst);
+#endif
+ }
+ mode_info[ref_mv_idx].mv.as_int = mbmi->mv[0].as_int;
+ mode_info[ref_mv_idx].rate_mv = rate_mv;
+ if (ret_val != INT64_MAX) {
+ int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ mode_info[ref_mv_idx].rd = tmp_rd;
+ if (tmp_rd < best_rd) {
+ best_rd_stats = *rd_stats;
+ best_rd_stats_y = *rd_stats_y;
+ best_rd_stats_uv = *rd_stats_uv;
+ best_rd = tmp_rd;
+ best_mbmi = *mbmi;
+ best_disable_skip = *disable_skip;
+ best_xskip = x->skip;
+ memcpy(best_blk_skip, x->blk_skip,
+ sizeof(best_blk_skip[0]) * xd->n4_h * xd->n4_w);
+ }
+
+ if (tmp_rd < best_rd2) {
+ best_rd2 = tmp_rd;
+ }
+
+ if (tmp_rd < ref_best_rd) {
+ ref_best_rd = tmp_rd;
+ }
+ }
+ restore_dst_buf(xd, orig_dst, num_planes);
+ }
+ }
+
+ if (best_rd == INT64_MAX) return INT64_MAX;
+
+ // re-instate status of the best choice
+ *rd_stats = best_rd_stats;
+ *rd_stats_y = best_rd_stats_y;
+ *rd_stats_uv = best_rd_stats_uv;
+ *mbmi = best_mbmi;
+ *disable_skip = best_disable_skip;
+ x->skip = best_xskip;
+ assert(IMPLIES(mbmi->comp_group_idx == 1,
+ mbmi->interinter_comp.type != COMPOUND_AVERAGE));
+ memcpy(x->blk_skip, best_blk_skip,
+ sizeof(best_blk_skip[0]) * xd->n4_h * xd->n4_w);
+
+ return RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+}
+
+static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
+ RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ int64_t best_rd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ if (!av1_allow_intrabc(cm)) return INT64_MAX;
+ const int num_planes = av1_num_planes(cm);
+
+ MACROBLOCKD *const xd = &x->e_mbd;
+ const TileInfo *tile = &xd->tile;
+ MB_MODE_INFO *mbmi = xd->mi[0];
+ const int mi_row = -xd->mb_to_top_edge / (8 * MI_SIZE);
+ const int mi_col = -xd->mb_to_left_edge / (8 * MI_SIZE);
+ const int w = block_size_wide[bsize];
+ const int h = block_size_high[bsize];
+ const int sb_row = mi_row >> cm->seq_params.mib_size_log2;
+ const int sb_col = mi_col >> cm->seq_params.mib_size_log2;
+
+ MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+ MV_REFERENCE_FRAME ref_frame = INTRA_FRAME;
+ av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
+ mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row,
+ mi_col, mbmi_ext->mode_context);
+
+ int_mv nearestmv, nearmv;
+ av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv,
+ 0);
+
+ if (nearestmv.as_int == INVALID_MV) {
+ nearestmv.as_int = 0;
+ }
+ if (nearmv.as_int == INVALID_MV) {
+ nearmv.as_int = 0;
+ }
+
+ int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
+ if (dv_ref.as_int == 0)
+ av1_find_ref_dv(&dv_ref, tile, cm->seq_params.mib_size, mi_row, mi_col);
+ // Ref DV should not have sub-pel.
+ assert((dv_ref.as_mv.col & 7) == 0);
+ assert((dv_ref.as_mv.row & 7) == 0);
+ mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref;
+
+ struct buf_2d yv12_mb[MAX_MB_PLANE];
+ av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, mi_row, mi_col, NULL, NULL,
+ num_planes);
+ for (int i = 0; i < num_planes; ++i) {
+ xd->plane[i].pre[0] = yv12_mb[i];
+ }
+
+ enum IntrabcMotionDirection {
+ IBC_MOTION_ABOVE,
+ IBC_MOTION_LEFT,
+ IBC_MOTION_DIRECTIONS
+ };
+
+ MB_MODE_INFO best_mbmi = *mbmi;
+ RD_STATS best_rdcost = *rd_cost;
+ int best_skip = x->skip;
+
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 };
+ for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE;
+ dir < IBC_MOTION_DIRECTIONS; ++dir) {
+ const MvLimits tmp_mv_limits = x->mv_limits;
+ switch (dir) {
+ case IBC_MOTION_ABOVE:
+ x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE;
+ x->mv_limits.col_max = (tile->mi_col_end - mi_col) * MI_SIZE - w;
+ x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE;
+ x->mv_limits.row_max =
+ (sb_row * cm->seq_params.mib_size - mi_row) * MI_SIZE - h;
+ break;
+ case IBC_MOTION_LEFT:
+ x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE;
+ x->mv_limits.col_max =
+ (sb_col * cm->seq_params.mib_size - mi_col) * MI_SIZE - w;
+ // TODO(aconverse@google.com): Minimize the overlap between above and
+ // left areas.
+ x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE;
+ int bottom_coded_mi_edge =
+ AOMMIN((sb_row + 1) * cm->seq_params.mib_size, tile->mi_row_end);
+ x->mv_limits.row_max = (bottom_coded_mi_edge - mi_row) * MI_SIZE - h;
+ break;
+ default: assert(0);
+ }
+ assert(x->mv_limits.col_min >= tmp_mv_limits.col_min);
+ assert(x->mv_limits.col_max <= tmp_mv_limits.col_max);
+ assert(x->mv_limits.row_min >= tmp_mv_limits.row_min);
+ assert(x->mv_limits.row_max <= tmp_mv_limits.row_max);
+ av1_set_mv_search_range(&x->mv_limits, &dv_ref.as_mv);
+
+ if (x->mv_limits.col_max < x->mv_limits.col_min ||
+ x->mv_limits.row_max < x->mv_limits.row_min) {
+ x->mv_limits = tmp_mv_limits;
+ continue;
+ }
+
+ int step_param = cpi->mv_step_param;
+ MV mvp_full = dv_ref.as_mv;
+ mvp_full.col >>= 3;
+ mvp_full.row >>= 3;
+ int sadpb = x->sadperbit16;
+ int cost_list[5];
+ int bestsme = av1_full_pixel_search(
+ cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0,
+ sadpb, cond_cost_list(cpi, cost_list), &dv_ref.as_mv, INT_MAX, 1,
+ (MI_SIZE * mi_col), (MI_SIZE * mi_row), 1);
+
+ x->mv_limits = tmp_mv_limits;
+ if (bestsme == INT_MAX) continue;
+ mvp_full = x->best_mv.as_mv;
+ MV dv = { .row = mvp_full.row * 8, .col = mvp_full.col * 8 };
+ if (mv_check_bounds(&x->mv_limits, &dv)) continue;
+ if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize,
+ cm->seq_params.mib_size_log2))
+ continue;
+
+ // DV should not have sub-pel.
+ assert((dv.col & 7) == 0);
+ assert((dv.row & 7) == 0);
+ memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info));
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->use_intrabc = 1;
+ mbmi->mode = DC_PRED;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->mv[0].as_mv = dv;
+ mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
+ mbmi->skip = 0;
+ x->skip = 0;
+ av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
+
+ int *dvcost[2] = { (int *)&cpi->dv_cost[0][MV_MAX],
+ (int *)&cpi->dv_cost[1][MV_MAX] };
+ // TODO(aconverse@google.com): The full motion field defining discount
+ // in MV_COST_WEIGHT is too large. Explore other values.
+ int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, cpi->dv_joint_cost,
+ dvcost, MV_COST_WEIGHT_SUB);
+ const int rate_mode = x->intrabc_cost[1];
+ RD_STATS rd_stats, rd_stats_uv;
+ av1_subtract_plane(x, bsize, 0);
+ if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) {
+ // Intrabc
+ select_tx_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, INT64_MAX);
+ } else {
+ super_block_yrd(cpi, x, &rd_stats, bsize, INT64_MAX);
+ memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
+ for (int i = 0; i < xd->n4_h * xd->n4_w; ++i)
+ set_blk_skip(x, 0, i, rd_stats.skip);
+ }
+ if (num_planes > 1) {
+ super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
+ av1_merge_rd_stats(&rd_stats, &rd_stats_uv);
+ }
+#if CONFIG_RD_DEBUG
+ mbmi->rd_stats = rd_stats;
+#endif
+
+ const int skip_ctx = av1_get_skip_context(xd);
+
+ RD_STATS rdc_noskip;
+ av1_init_rd_stats(&rdc_noskip);
+ rdc_noskip.rate =
+ rate_mode + rate_mv + rd_stats.rate + x->skip_cost[skip_ctx][0];
+ rdc_noskip.dist = rd_stats.dist;
+ rdc_noskip.rdcost = RDCOST(x->rdmult, rdc_noskip.rate, rdc_noskip.dist);
+ if (rdc_noskip.rdcost < best_rd) {
+ best_rd = rdc_noskip.rdcost;
+ best_mbmi = *mbmi;
+ best_skip = x->skip;
+ best_rdcost = rdc_noskip;
+ memcpy(best_blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w);
+ }
+
+ if (!xd->lossless[mbmi->segment_id]) {
+ x->skip = 1;
+ mbmi->skip = 1;
+ RD_STATS rdc_skip;
+ av1_init_rd_stats(&rdc_skip);
+ rdc_skip.rate = rate_mode + rate_mv + x->skip_cost[skip_ctx][1];
+ rdc_skip.dist = rd_stats.sse;
+ rdc_skip.rdcost = RDCOST(x->rdmult, rdc_skip.rate, rdc_skip.dist);
+ if (rdc_skip.rdcost < best_rd) {
+ best_rd = rdc_skip.rdcost;
+ best_mbmi = *mbmi;
+ best_skip = x->skip;
+ best_rdcost = rdc_skip;
+ memcpy(best_blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w);
+ }
+ }
+ }
+ *mbmi = best_mbmi;
+ *rd_cost = best_rdcost;
+ x->skip = best_skip;
+ memcpy(x->blk_skip, best_blk_skip,
+ sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w);
+ return best_rd;
+}
+
+void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row,
+ int mi_col, RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int num_planes = av1_num_planes(cm);
+ int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
+ int y_skip = 0, uv_skip = 0;
+ int64_t dist_y = 0, dist_uv = 0;
+ TX_SIZE max_uv_tx_size;
+
+ ctx->skip = 0;
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ mbmi->ref_frame[1] = NONE_FRAME;
+ mbmi->use_intrabc = 0;
+ mbmi->mv[0].as_int = 0;
+
+ const int64_t intra_yrd =
+ rd_pick_intra_sby_mode(cpi, x, mi_row, mi_col, &rate_y, &rate_y_tokenonly,
+ &dist_y, &y_skip, bsize, best_rd, ctx);
+
+ if (intra_yrd < best_rd) {
+ // Only store reconstructed luma when there's chroma RDO. When there's no
+ // chroma RDO, the reconstructed luma will be stored in encode_superblock().
+ xd->cfl.is_chroma_reference =
+ is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x,
+ cm->seq_params.subsampling_y);
+ xd->cfl.store_y = store_cfl_required_rdo(cm, x);
+ if (xd->cfl.store_y) {
+ // Restore reconstructed luma values.
+ memcpy(x->blk_skip, ctx->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ av1_encode_intra_block_plane(cpi, x, bsize, AOM_PLANE_Y,
+ cpi->optimize_seg_arr[mbmi->segment_id],
+ mi_row, mi_col);
+ xd->cfl.store_y = 0;
+ }
+ if (num_planes > 1) {
+ max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
+ init_sbuv_mode(mbmi);
+ if (!x->skip_chroma_rd)
+ rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv,
+ &uv_skip, bsize, max_uv_tx_size);
+ }
+
+ if (y_skip && (uv_skip || x->skip_chroma_rd)) {
+ rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
+ x->skip_cost[av1_get_skip_context(xd)][1];
+ rd_cost->dist = dist_y + dist_uv;
+ } else {
+ rd_cost->rate =
+ rate_y + rate_uv + x->skip_cost[av1_get_skip_context(xd)][0];
+ rd_cost->dist = dist_y + dist_uv;
+ }
+ rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
+ } else {
+ rd_cost->rate = INT_MAX;
+ }
+
+ if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd)
+ best_rd = rd_cost->rdcost;
+ if (rd_pick_intrabc_mode_sb(cpi, x, rd_cost, bsize, best_rd) < best_rd) {
+ ctx->skip = x->skip;
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ assert(rd_cost->rate != INT_MAX);
+ }
+ if (rd_cost->rate == INT_MAX) return;
+
+ ctx->mic = *xd->mi[0];
+ ctx->mbmi_ext = *x->mbmi_ext;
+}
+
+static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ int src_stride = x->plane[1].src.stride;
+ const uint8_t *const src_u = x->plane[1].src.buf;
+ const uint8_t *const src_v = x->plane[2].src.buf;
+ int *const data = x->palette_buffer->kmeans_data_buf;
+ int centroids[2 * PALETTE_MAX_SIZE];
+ uint8_t *const color_map = xd->plane[1].color_index_map;
+ int r, c;
+ const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u);
+ const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v);
+ int plane_block_width, plane_block_height, rows, cols;
+ av1_get_block_dimensions(bsize, 1, xd, &plane_block_width,
+ &plane_block_height, &rows, &cols);
+
+ for (r = 0; r < rows; ++r) {
+ for (c = 0; c < cols; ++c) {
+ if (cpi->common.seq_params.use_highbitdepth) {
+ data[(r * cols + c) * 2] = src_u16[r * src_stride + c];
+ data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c];
+ } else {
+ data[(r * cols + c) * 2] = src_u[r * src_stride + c];
+ data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c];
+ }
+ }
+ }
+
+ for (r = 1; r < 3; ++r) {
+ for (c = 0; c < pmi->palette_size[1]; ++c) {
+ centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c];
+ }
+ }
+
+ av1_calc_indices(data, centroids, color_map, rows * cols,
+ pmi->palette_size[1], 2);
+ extend_palette_color_map(color_map, cols, rows, plane_block_width,
+ plane_block_height);
+}
+
+static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x,
+ const MACROBLOCKD *xd, int mi_row,
+ int mi_col, const uint8_t *above,
+ int above_stride, const uint8_t *left,
+ int left_stride);
+
+static const int ref_frame_flag_list[REF_FRAMES] = { 0,
+ AOM_LAST_FLAG,
+ AOM_LAST2_FLAG,
+ AOM_LAST3_FLAG,
+ AOM_GOLD_FLAG,
+ AOM_BWD_FLAG,
+ AOM_ALT2_FLAG,
+ AOM_ALT_FLAG };
+
+static void rd_pick_skip_mode(RD_STATS *rd_cost,
+ InterModeSearchState *search_state,
+ const AV1_COMP *const cpi, MACROBLOCK *const x,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+
+ x->compound_idx = 1; // COMPOUND_AVERAGE
+ RD_STATS skip_mode_rd_stats;
+ av1_invalid_rd_stats(&skip_mode_rd_stats);
+
+ if (cm->ref_frame_idx_0 == INVALID_IDX ||
+ cm->ref_frame_idx_1 == INVALID_IDX) {
+ return;
+ }
+
+ const MV_REFERENCE_FRAME ref_frame = LAST_FRAME + cm->ref_frame_idx_0;
+ const MV_REFERENCE_FRAME second_ref_frame = LAST_FRAME + cm->ref_frame_idx_1;
+ const PREDICTION_MODE this_mode = NEAREST_NEARESTMV;
+ const int mode_index =
+ get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame);
+
+ if (mode_index == -1) {
+ return;
+ }
+
+ mbmi->mode = this_mode;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->ref_frame[0] = ref_frame;
+ mbmi->ref_frame[1] = second_ref_frame;
+ const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
+ if (x->mbmi_ext->ref_mv_count[ref_frame_type] == UINT8_MAX) {
+ if (x->mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX ||
+ x->mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) {
+ return;
+ }
+ MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
+ av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count,
+ mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row,
+ mi_col, mbmi_ext->mode_context);
+ }
+
+ assert(this_mode == NEAREST_NEARESTMV);
+ if (!build_cur_mv(mbmi->mv, this_mode, cm, x)) {
+ return;
+ }
+
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
+ mbmi->comp_group_idx = 0;
+ mbmi->compound_idx = x->compound_idx;
+ mbmi->interinter_comp.type = COMPOUND_AVERAGE;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->ref_mv_idx = 0;
+ mbmi->skip_mode = mbmi->skip = 1;
+
+ set_default_interp_filters(mbmi, cm->interp_filter);
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
+ xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
+ }
+
+ BUFFER_SET orig_dst;
+ for (int i = 0; i < num_planes; i++) {
+ orig_dst.plane[i] = xd->plane[i].dst.buf;
+ orig_dst.stride[i] = xd->plane[i].dst.stride;
+ }
+
+ // Obtain the rdcost for skip_mode.
+ skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, mi_row, mi_col, &orig_dst);
+
+ // Compare the use of skip_mode with the best intra/inter mode obtained.
+ const int skip_mode_ctx = av1_get_skip_mode_context(xd);
+ const int64_t best_intra_inter_mode_cost =
+ (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX)
+ ? RDCOST(x->rdmult,
+ rd_cost->rate + x->skip_mode_cost[skip_mode_ctx][0],
+ rd_cost->dist)
+ : INT64_MAX;
+
+ if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost) {
+ assert(mode_index != -1);
+ search_state->best_mbmode.skip_mode = 1;
+ search_state->best_mbmode = *mbmi;
+
+ search_state->best_mbmode.skip_mode = search_state->best_mbmode.skip = 1;
+ search_state->best_mbmode.mode = NEAREST_NEARESTMV;
+ search_state->best_mbmode.ref_frame[0] = mbmi->ref_frame[0];
+ search_state->best_mbmode.ref_frame[1] = mbmi->ref_frame[1];
+ search_state->best_mbmode.mv[0].as_int = mbmi->mv[0].as_int;
+ search_state->best_mbmode.mv[1].as_int = mbmi->mv[1].as_int;
+ search_state->best_mbmode.ref_mv_idx = 0;
+
+ // Set up tx_size related variables for skip-specific loop filtering.
+ search_state->best_mbmode.tx_size =
+ block_signals_txsize(bsize) ? tx_size_from_tx_mode(bsize, cm->tx_mode)
+ : max_txsize_rect_lookup[bsize];
+ memset(search_state->best_mbmode.inter_tx_size,
+ search_state->best_mbmode.tx_size,
+ sizeof(search_state->best_mbmode.inter_tx_size));
+ set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->n4_w, xd->n4_h,
+ search_state->best_mbmode.skip && is_inter_block(mbmi), xd);
+
+ // Set up color-related variables for skip mode.
+ search_state->best_mbmode.uv_mode = UV_DC_PRED;
+ search_state->best_mbmode.palette_mode_info.palette_size[0] = 0;
+ search_state->best_mbmode.palette_mode_info.palette_size[1] = 0;
+
+ search_state->best_mbmode.comp_group_idx = 0;
+ search_state->best_mbmode.compound_idx = x->compound_idx;
+ search_state->best_mbmode.interinter_comp.type = COMPOUND_AVERAGE;
+ search_state->best_mbmode.motion_mode = SIMPLE_TRANSLATION;
+
+ search_state->best_mbmode.interintra_mode =
+ (INTERINTRA_MODE)(II_DC_PRED - 1);
+ search_state->best_mbmode.filter_intra_mode_info.use_filter_intra = 0;
+
+ set_default_interp_filters(&search_state->best_mbmode, cm->interp_filter);
+
+ search_state->best_mode_index = mode_index;
+
+ // Update rd_cost
+ rd_cost->rate = skip_mode_rd_stats.rate;
+ rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist;
+ rd_cost->rdcost = skip_mode_rd_stats.rdcost;
+
+ search_state->best_rd = rd_cost->rdcost;
+ search_state->best_skip2 = 1;
+ search_state->best_mode_skippable = (skip_mode_rd_stats.sse == 0);
+
+ x->skip = 1;
+ }
+}
+
+// speed feature: fast intra/inter transform type search
+// Used for speed >= 2
+// When this speed feature is on, in rd mode search, only DCT is used.
+// After the mode is determined, this function is called, to select
+// transform types and get accurate rdcost.
+static void sf_refine_fast_tx_type_search(
+ const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col,
+ RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
+ int best_mode_index, MB_MODE_INFO *best_mbmode,
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int best_rate_y,
+ int best_rate_uv, int *best_skip2) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int num_planes = av1_num_planes(cm);
+
+ if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 &&
+ ((sf->tx_type_search.fast_inter_tx_type_search == 1 &&
+ is_inter_mode(best_mbmode->mode)) ||
+ (sf->tx_type_search.fast_intra_tx_type_search == 1 &&
+ !is_inter_mode(best_mbmode->mode)))) {
+ int skip_blk = 0;
+ RD_STATS rd_stats_y, rd_stats_uv;
+
+ x->use_default_inter_tx_type = 0;
+ x->use_default_intra_tx_type = 0;
+
+ *mbmi = *best_mbmode;
+
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+
+ // Select prediction reference frames.
+ for (int i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
+ if (has_second_ref(mbmi))
+ xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
+ }
+
+ if (is_inter_mode(mbmi->mode)) {
+ av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
+ if (mbmi->motion_mode == OBMC_CAUSAL)
+ av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
+
+ av1_subtract_plane(x, bsize, 0);
+ if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) {
+ // av1_rd_pick_inter_mode_sb
+ select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col,
+ INT64_MAX);
+ assert(rd_stats_y.rate != INT_MAX);
+ } else {
+ super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
+ memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
+ for (int i = 0; i < xd->n4_h * xd->n4_w; ++i)
+ set_blk_skip(x, 0, i, rd_stats_y.skip);
+ }
+ if (num_planes > 1) {
+ inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX, INT64_MAX,
+ FTXS_NONE);
+ } else {
+ av1_init_rd_stats(&rd_stats_uv);
+ }
+ } else {
+ super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
+ if (num_planes > 1) {
+ super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
+ } else {
+ av1_init_rd_stats(&rd_stats_uv);
+ }
+ }
+
+ if (RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate,
+ (rd_stats_y.dist + rd_stats_uv.dist)) >
+ RDCOST(x->rdmult, 0, (rd_stats_y.sse + rd_stats_uv.sse))) {
+ skip_blk = 1;
+ rd_stats_y.rate = x->skip_cost[av1_get_skip_context(xd)][1];
+ rd_stats_uv.rate = 0;
+ rd_stats_y.dist = rd_stats_y.sse;
+ rd_stats_uv.dist = rd_stats_uv.sse;
+ } else {
+ skip_blk = 0;
+ rd_stats_y.rate += x->skip_cost[av1_get_skip_context(xd)][0];
+ }
+
+ if (RDCOST(x->rdmult, best_rate_y + best_rate_uv, rd_cost->dist) >
+ RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate,
+ (rd_stats_y.dist + rd_stats_uv.dist))) {
+ best_mbmode->tx_size = mbmi->tx_size;
+ av1_copy(best_mbmode->inter_tx_size, mbmi->inter_tx_size);
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ av1_copy(best_mbmode->txk_type, mbmi->txk_type);
+ rd_cost->rate +=
+ (rd_stats_y.rate + rd_stats_uv.rate - best_rate_y - best_rate_uv);
+ rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist;
+ rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
+ *best_skip2 = skip_blk;
+ }
+ }
+}
+
+// Please add/modify parameter setting in this function, making it consistent
+// and easy to read and maintain.
+static void set_params_rd_pick_inter_mode(
+ const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args,
+ BLOCK_SIZE bsize, int mi_row, int mi_col, uint16_t ref_frame_skip_mask[2],
+ uint32_t mode_skip_mask[REF_FRAMES], int skip_ref_frame_mask,
+ unsigned int ref_costs_single[REF_FRAMES],
+ unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES],
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
+ const struct segmentation *const seg = &cm->seg;
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ unsigned char segment_id = mbmi->segment_id;
+ int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
+ int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
+ MAX_SB_SIZE >> 1 };
+ int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
+ MAX_SB_SIZE >> 1 };
+ int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
+
+ for (int i = 0; i < MB_MODE_COUNT; ++i)
+ for (int k = 0; k < REF_FRAMES; ++k) args->single_filter[i][k] = SWITCHABLE;
+
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ int len = sizeof(uint16_t);
+ args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(x->above_pred_buf);
+ args->above_pred_buf[1] =
+ CONVERT_TO_BYTEPTR(x->above_pred_buf + (MAX_SB_SQUARE >> 1) * len);
+ args->above_pred_buf[2] =
+ CONVERT_TO_BYTEPTR(x->above_pred_buf + MAX_SB_SQUARE * len);
+ args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(x->left_pred_buf);
+ args->left_pred_buf[1] =
+ CONVERT_TO_BYTEPTR(x->left_pred_buf + (MAX_SB_SQUARE >> 1) * len);
+ args->left_pred_buf[2] =
+ CONVERT_TO_BYTEPTR(x->left_pred_buf + MAX_SB_SQUARE * len);
+ } else {
+ args->above_pred_buf[0] = x->above_pred_buf;
+ args->above_pred_buf[1] = x->above_pred_buf + (MAX_SB_SQUARE >> 1);
+ args->above_pred_buf[2] = x->above_pred_buf + MAX_SB_SQUARE;
+ args->left_pred_buf[0] = x->left_pred_buf;
+ args->left_pred_buf[1] = x->left_pred_buf + (MAX_SB_SQUARE >> 1);
+ args->left_pred_buf[2] = x->left_pred_buf + MAX_SB_SQUARE;
+ }
+
+ av1_collect_neighbors_ref_counts(xd);
+
+ estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single,
+ ref_costs_comp);
+
+ MV_REFERENCE_FRAME ref_frame;
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ x->pred_mv_sad[ref_frame] = INT_MAX;
+ x->mbmi_ext->mode_context[ref_frame] = 0;
+ x->mbmi_ext->compound_mode_context[ref_frame] = 0;
+ mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
+ if (cpi->ref_frame_flags & ref_frame_flag_list[ref_frame]) {
+ if (mbmi->partition != PARTITION_NONE &&
+ mbmi->partition != PARTITION_SPLIT) {
+ if (skip_ref_frame_mask & (1 << ref_frame)) {
+ int skip = 1;
+ for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) {
+ if (!(skip_ref_frame_mask & (1 << r))) {
+ const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES];
+ if (rf[0] == ref_frame || rf[1] == ref_frame) {
+ skip = 0;
+ break;
+ }
+ }
+ }
+ if (skip) continue;
+ }
+ }
+ assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
+ setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
+ yv12_mb);
+ }
+ }
+ // ref_frame = ALTREF_FRAME
+ for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
+ x->mbmi_ext->mode_context[ref_frame] = 0;
+ mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
+ const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES];
+ if (!((cpi->ref_frame_flags & ref_frame_flag_list[rf[0]]) &&
+ (cpi->ref_frame_flags & ref_frame_flag_list[rf[1]]))) {
+ continue;
+ }
+
+ if (mbmi->partition != PARTITION_NONE &&
+ mbmi->partition != PARTITION_SPLIT) {
+ if (skip_ref_frame_mask & (1 << ref_frame)) {
+ continue;
+ }
+ }
+ av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
+ mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row,
+ mi_col, mbmi_ext->mode_context);
+ }
+
+ av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col);
+
+ if (check_num_overlappable_neighbors(mbmi) &&
+ is_motion_variation_allowed_bsize(bsize)) {
+ av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col,
+ args->above_pred_buf, dst_width1,
+ dst_height1, args->above_pred_stride);
+ av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col,
+ args->left_pred_buf, dst_width2,
+ dst_height2, args->left_pred_stride);
+ av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
+ mi_col, 0, num_planes);
+ calc_target_weighted_pred(
+ cm, x, xd, mi_row, mi_col, args->above_pred_buf[0],
+ args->above_pred_stride[0], args->left_pred_buf[0],
+ args->left_pred_stride[0]);
+ }
+
+ int min_pred_mv_sad = INT_MAX;
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
+ min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]);
+
+ for (int i = 0; i < 2; ++i) {
+ ref_frame_skip_mask[i] = 0;
+ }
+ memset(mode_skip_mask, 0, REF_FRAMES * sizeof(*mode_skip_mask));
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ if (!(cpi->ref_frame_flags & ref_frame_flag_list[ref_frame])) {
+ // Skip checking missing references in both single and compound reference
+ // modes. Note that a mode will be skipped iff both reference frames
+ // are masked out.
+ ref_frame_skip_mask[0] |= (1 << ref_frame);
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ } else {
+ // Skip fixed mv modes for poor references
+ if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) {
+ mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
+ }
+ }
+ // If the segment reference frame feature is enabled....
+ // then do nothing if the current ref frame is not allowed..
+ if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+ get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
+ ref_frame_skip_mask[0] |= (1 << ref_frame);
+ ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
+ }
+ }
+
+ // Disable this drop out case if the ref frame
+ // segment level feature is enabled for this segment. This is to
+ // prevent the possibility that we end up unable to pick any mode.
+ if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
+ // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame,
+ // unless ARNR filtering is enabled in which case we want
+ // an unfiltered alternative. We allow near/nearest as well
+ // because they may result in zero-zero MVs but be cheaper.
+ if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
+ ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << LAST2_FRAME) |
+ (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) |
+ (1 << ALTREF2_FRAME) | (1 << GOLDEN_FRAME);
+ ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
+ // TODO(zoeliu): To further explore whether following needs to be done for
+ // BWDREF_FRAME as well.
+ mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
+ const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME };
+ int_mv near_mv, nearest_mv, global_mv;
+ get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
+ get_this_mv(&near_mv, NEARMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
+ get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
+
+ if (near_mv.as_int != global_mv.as_int)
+ mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
+ if (nearest_mv.as_int != global_mv.as_int)
+ mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
+ }
+ }
+
+ if (cpi->rc.is_src_frame_alt_ref) {
+ if (sf->alt_ref_search_fp) {
+ assert(cpi->ref_frame_flags & ref_frame_flag_list[ALTREF_FRAME]);
+ mode_skip_mask[ALTREF_FRAME] = 0;
+ ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
+ ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
+ }
+ }
+
+ if (sf->alt_ref_search_fp)
+ if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
+ if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
+ mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
+
+ if (sf->adaptive_mode_search) {
+ if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
+ cpi->rc.frames_since_golden >= 3)
+ if ((x->pred_mv_sad[GOLDEN_FRAME] >> 1) > x->pred_mv_sad[LAST_FRAME])
+ mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
+ }
+
+ if (bsize > sf->max_intra_bsize) {
+ ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
+ ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
+ }
+
+ mode_skip_mask[INTRA_FRAME] |=
+ ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
+
+ if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
+ x->use_default_intra_tx_type = 1;
+ else
+ x->use_default_intra_tx_type = 0;
+
+ if (cpi->sf.tx_type_search.fast_inter_tx_type_search)
+ x->use_default_inter_tx_type = 1;
+ else
+ x->use_default_inter_tx_type = 0;
+ if (cpi->sf.skip_repeat_interpolation_filter_search) {
+ x->interp_filter_stats_idx[0] = 0;
+ x->interp_filter_stats_idx[1] = 0;
+ }
+}
+
+static void search_palette_mode(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row,
+ int mi_col, RD_STATS *rd_cost,
+ PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize,
+ MB_MODE_INFO *const mbmi,
+ PALETTE_MODE_INFO *const pmi,
+ unsigned int *ref_costs_single,
+ InterModeSearchState *search_state) {
+ const AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ int rate2 = 0;
+ int64_t distortion2 = 0, best_rd_palette = search_state->best_rd, this_rd,
+ best_model_rd_palette = INT64_MAX;
+ int skippable = 0, rate_overhead_palette = 0;
+ RD_STATS rd_stats_y;
+ TX_SIZE uv_tx = TX_4X4;
+ uint8_t *const best_palette_color_map =
+ x->palette_buffer->best_palette_color_map;
+ uint8_t *const color_map = xd->plane[0].color_index_map;
+ MB_MODE_INFO best_mbmi_palette = *mbmi;
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]];
+ const int rows = block_size_high[bsize];
+ const int cols = block_size_wide[bsize];
+
+ mbmi->mode = DC_PRED;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->ref_frame[0] = INTRA_FRAME;
+ mbmi->ref_frame[1] = NONE_FRAME;
+ rate_overhead_palette = rd_pick_palette_intra_sby(
+ cpi, x, bsize, mi_row, mi_col, intra_mode_cost[DC_PRED],
+ &best_mbmi_palette, best_palette_color_map, &best_rd_palette,
+ &best_model_rd_palette, NULL, NULL, NULL, NULL, ctx, best_blk_skip);
+ if (pmi->palette_size[0] == 0) return;
+
+ memcpy(x->blk_skip, best_blk_skip,
+ sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize));
+
+ memcpy(color_map, best_palette_color_map,
+ rows * cols * sizeof(best_palette_color_map[0]));
+ super_block_yrd(cpi, x, &rd_stats_y, bsize, search_state->best_rd);
+ if (rd_stats_y.rate == INT_MAX) return;
+
+ skippable = rd_stats_y.skip;
+ distortion2 = rd_stats_y.dist;
+ rate2 = rd_stats_y.rate + rate_overhead_palette;
+ rate2 += ref_costs_single[INTRA_FRAME];
+ if (num_planes > 1) {
+ uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
+ if (search_state->rate_uv_intra[uv_tx] == INT_MAX) {
+ choose_intra_uv_mode(
+ cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx],
+ &search_state->rate_uv_tokenonly[uv_tx],
+ &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx],
+ &search_state->mode_uv[uv_tx]);
+ search_state->pmi_uv[uv_tx] = *pmi;
+ search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV];
+ }
+ mbmi->uv_mode = search_state->mode_uv[uv_tx];
+ pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1];
+ if (pmi->palette_size[1] > 0) {
+ memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
+ search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
+ 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
+ }
+ mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx];
+ skippable = skippable && search_state->skip_uvs[uv_tx];
+ distortion2 += search_state->dist_uvs[uv_tx];
+ rate2 += search_state->rate_uv_intra[uv_tx];
+ }
+
+ if (skippable) {
+ rate2 -= rd_stats_y.rate;
+ if (num_planes > 1) rate2 -= search_state->rate_uv_tokenonly[uv_tx];
+ rate2 += x->skip_cost[av1_get_skip_context(xd)][1];
+ } else {
+ rate2 += x->skip_cost[av1_get_skip_context(xd)][0];
+ }
+ this_rd = RDCOST(x->rdmult, rate2, distortion2);
+ if (this_rd < search_state->best_rd) {
+ search_state->best_mode_index = 3;
+ mbmi->mv[0].as_int = 0;
+ rd_cost->rate = rate2;
+ rd_cost->dist = distortion2;
+ rd_cost->rdcost = this_rd;
+ search_state->best_rd = this_rd;
+ search_state->best_mbmode = *mbmi;
+ search_state->best_skip2 = 0;
+ search_state->best_mode_skippable = skippable;
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ }
+}
+
+static void init_inter_mode_search_state(InterModeSearchState *search_state,
+ const AV1_COMP *cpi,
+ const TileDataEnc *tile_data,
+ const MACROBLOCK *x, BLOCK_SIZE bsize,
+ int64_t best_rd_so_far) {
+ search_state->best_rd = best_rd_so_far;
+
+ av1_zero(search_state->best_mbmode);
+
+ search_state->best_rate_y = INT_MAX;
+
+ search_state->best_rate_uv = INT_MAX;
+
+ search_state->best_mode_skippable = 0;
+
+ search_state->best_skip2 = 0;
+
+ search_state->best_mode_index = -1;
+
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const unsigned char segment_id = mbmi->segment_id;
+
+ search_state->skip_intra_modes = 0;
+
+ search_state->num_available_refs = 0;
+ memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs));
+ memset(search_state->dist_order_refs, -1,
+ sizeof(search_state->dist_order_refs));
+
+ for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i)
+ search_state->mode_threshold[i] = 0;
+ const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
+ for (int i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
+ search_state->mode_threshold[i] =
+ ((int64_t)rd_threshes[i] * tile_data->thresh_freq_fact[bsize][i]) >> 5;
+
+ search_state->best_intra_mode = DC_PRED;
+ search_state->best_intra_rd = INT64_MAX;
+
+ search_state->angle_stats_ready = 0;
+
+ search_state->best_pred_sse = UINT_MAX;
+
+ for (int i = 0; i < TX_SIZES_ALL; i++)
+ search_state->rate_uv_intra[i] = INT_MAX;
+
+ av1_zero(search_state->pmi_uv);
+
+ for (int i = 0; i < REFERENCE_MODES; ++i)
+ search_state->best_pred_rd[i] = INT64_MAX;
+
+ av1_zero(search_state->single_newmv);
+ av1_zero(search_state->single_newmv_rate);
+ av1_zero(search_state->single_newmv_valid);
+ for (int i = 0; i < MB_MODE_COUNT; ++i) {
+ for (int j = 0; j < MAX_REF_MV_SERCH; ++j) {
+ for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
+ search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
+ search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
+ }
+ }
+ }
+
+ for (int dir = 0; dir < 2; ++dir) {
+ for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) {
+ SingleInterModeState *state;
+
+ state = &search_state->single_state[dir][mode][ref_frame];
+ state->ref_frame = NONE_FRAME;
+ state->rd = INT64_MAX;
+
+ state = &search_state->single_state_modelled[dir][mode][ref_frame];
+ state->ref_frame = NONE_FRAME;
+ state->rd = INT64_MAX;
+ }
+ }
+ }
+ for (int dir = 0; dir < 2; ++dir) {
+ for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) {
+ search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME;
+ }
+ }
+ }
+ av1_zero(search_state->single_state_cnt);
+ av1_zero(search_state->single_state_modelled_cnt);
+}
+
+// Case 1: return 0, means don't skip this mode
+// Case 2: return 1, means skip this mode completely
+// Case 3: return 2, means skip compound only, but still try single motion modes
+static int inter_mode_search_order_independent_skip(
+ const AV1_COMP *cpi, const PICK_MODE_CONTEXT *ctx, const MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mode_index, int mi_row, int mi_col,
+ uint32_t *mode_skip_mask, uint16_t *ref_frame_skip_mask,
+ InterModeSearchState *search_state) {
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ const AV1_COMMON *const cm = &cpi->common;
+ const struct segmentation *const seg = &cm->seg;
+ const MACROBLOCKD *const xd = &x->e_mbd;
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const unsigned char segment_id = mbmi->segment_id;
+ const MV_REFERENCE_FRAME *ref_frame = av1_mode_order[mode_index].ref_frame;
+ const PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode;
+ int skip_motion_mode = 0;
+ if (mbmi->partition != PARTITION_NONE && mbmi->partition != PARTITION_SPLIT) {
+ const int ref_type = av1_ref_frame_type(ref_frame);
+ int skip_ref = ctx->skip_ref_frame_mask & (1 << ref_type);
+ if (ref_type <= ALTREF_FRAME && skip_ref) {
+ // Since the compound ref modes depends on the motion estimation result of
+ // two single ref modes( best mv of single ref modes as the start point )
+ // If current single ref mode is marked skip, we need to check if it will
+ // be used in compound ref modes.
+ for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) {
+ if (!(ctx->skip_ref_frame_mask & (1 << r))) {
+ const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES];
+ if (rf[0] == ref_type || rf[1] == ref_type) {
+ // Found a not skipped compound ref mode which contains current
+ // single ref. So this single ref can't be skipped completly
+ // Just skip it's motion mode search, still try it's simple
+ // transition mode.
+ skip_motion_mode = 1;
+ skip_ref = 0;
+ break;
+ }
+ }
+ }
+ }
+ if (skip_ref) return 1;
+ }
+
+ if (cpi->sf.mode_pruning_based_on_two_pass_partition_search &&
+ !x->cb_partition_scan) {
+ const int mi_width = mi_size_wide[bsize];
+ const int mi_height = mi_size_high[bsize];
+ int found = 0;
+ // Search in the stats table to see if the ref frames have been used in the
+ // first pass of partition search.
+ for (int row = mi_row; row < mi_row + mi_width && !found;
+ row += FIRST_PARTITION_PASS_SAMPLE_REGION) {
+ for (int col = mi_col; col < mi_col + mi_height && !found;
+ col += FIRST_PARTITION_PASS_SAMPLE_REGION) {
+ const int index = av1_first_partition_pass_stats_index(row, col);
+ const FIRST_PARTITION_PASS_STATS *const stats =
+ &x->first_partition_pass_stats[index];
+ if (stats->ref0_counts[ref_frame[0]] &&
+ (ref_frame[1] < 0 || stats->ref1_counts[ref_frame[1]])) {
+ found = 1;
+ break;
+ }
+ }
+ }
+ if (!found) return 1;
+ }
+
+ if (ref_frame[0] > INTRA_FRAME && ref_frame[1] == INTRA_FRAME) {
+ // Mode must by compatible
+ if (!is_interintra_allowed_mode(this_mode)) return 1;
+ if (!is_interintra_allowed_bsize(bsize)) return 1;
+ }
+
+ // This is only used in motion vector unit test.
+ if (cpi->oxcf.motion_vector_unit_test && ref_frame[0] == INTRA_FRAME)
+ return 1;
+
+ if (ref_frame[0] == INTRA_FRAME) {
+ if (this_mode != DC_PRED) {
+ // Disable intra modes other than DC_PRED for blocks with low variance
+ // Threshold for intra skipping based on source variance
+ // TODO(debargha): Specialize the threshold for super block sizes
+ const unsigned int skip_intra_var_thresh = 64;
+ if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
+ x->source_variance < skip_intra_var_thresh)
+ return 1;
+ }
+ } else {
+ if (!is_comp_ref_allowed(bsize) && ref_frame[1] > INTRA_FRAME) return 1;
+ }
+
+ const int comp_pred = ref_frame[1] > INTRA_FRAME;
+ if (comp_pred) {
+ if (!cpi->allow_comp_inter_inter) return 1;
+
+ if (cm->reference_mode == SINGLE_REFERENCE) return 1;
+
+ // Skip compound inter modes if ARF is not available.
+ if (!(cpi->ref_frame_flags & ref_frame_flag_list[ref_frame[1]])) return 1;
+
+ // Do not allow compound prediction if the segment level reference frame
+ // feature is in use as in this case there can only be one reference.
+ if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1;
+ }
+
+ if (sf->selective_ref_frame) {
+ if (sf->selective_ref_frame >= 2 || x->cb_partition_scan) {
+ if (ref_frame[0] == ALTREF2_FRAME || ref_frame[1] == ALTREF2_FRAME)
+ if (get_relative_dist(
+ cm, cm->cur_frame->ref_frame_offset[ALTREF2_FRAME - LAST_FRAME],
+ cm->frame_offset) < 0)
+ return 1;
+ if (ref_frame[0] == BWDREF_FRAME || ref_frame[1] == BWDREF_FRAME)
+ if (get_relative_dist(
+ cm, cm->cur_frame->ref_frame_offset[BWDREF_FRAME - LAST_FRAME],
+ cm->frame_offset) < 0)
+ return 1;
+ }
+ if (ref_frame[0] == LAST3_FRAME || ref_frame[1] == LAST3_FRAME)
+ if (get_relative_dist(
+ cm, cm->cur_frame->ref_frame_offset[LAST3_FRAME - LAST_FRAME],
+ cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0)
+ return 1;
+ if (ref_frame[0] == LAST2_FRAME || ref_frame[1] == LAST2_FRAME)
+ if (get_relative_dist(
+ cm, cm->cur_frame->ref_frame_offset[LAST2_FRAME - LAST_FRAME],
+ cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0)
+ return 1;
+ }
+
+ // One-sided compound is used only when all reference frames are one-sided.
+ if (sf->selective_ref_frame && comp_pred && !cpi->all_one_sided_refs) {
+ unsigned int ref_offsets[2];
+ for (int i = 0; i < 2; ++i) {
+ const int buf_idx = cm->frame_refs[ref_frame[i] - LAST_FRAME].idx;
+ assert(buf_idx >= 0);
+ ref_offsets[i] = cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset;
+ }
+ if ((get_relative_dist(cm, ref_offsets[0], cm->frame_offset) <= 0 &&
+ get_relative_dist(cm, ref_offsets[1], cm->frame_offset) <= 0) ||
+ (get_relative_dist(cm, ref_offsets[0], cm->frame_offset) > 0 &&
+ get_relative_dist(cm, ref_offsets[1], cm->frame_offset) > 0))
+ return 1;
+ }
+
+ if (mode_skip_mask[ref_frame[0]] & (1 << this_mode)) {
+ return 1;
+ }
+
+ if ((ref_frame_skip_mask[0] & (1 << ref_frame[0])) &&
+ (ref_frame_skip_mask[1] & (1 << AOMMAX(0, ref_frame[1])))) {
+ return 1;
+ }
+
+ if (skip_repeated_mv(cm, x, this_mode, ref_frame, search_state)) {
+ return 1;
+ }
+ if (skip_motion_mode) {
+ return 2;
+ }
+ return 0;
+}
+
+static INLINE void init_mbmi(MB_MODE_INFO *mbmi, int mode_index,
+ const AV1_COMMON *cm) {
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode;
+ mbmi->ref_mv_idx = 0;
+ mbmi->mode = this_mode;
+ mbmi->uv_mode = UV_DC_PRED;
+ mbmi->ref_frame[0] = av1_mode_order[mode_index].ref_frame[0];
+ mbmi->ref_frame[1] = av1_mode_order[mode_index].ref_frame[1];
+ pmi->palette_size[0] = 0;
+ pmi->palette_size[1] = 0;
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
+ set_default_interp_filters(mbmi, cm->interp_filter);
+}
+
+static int64_t handle_intra_mode(InterModeSearchState *search_state,
+ const AV1_COMP *cpi, MACROBLOCK *x,
+ BLOCK_SIZE bsize, int mi_row, int mi_col,
+ int ref_frame_cost,
+ const PICK_MODE_CONTEXT *ctx, int disable_skip,
+ RD_STATS *rd_stats, RD_STATS *rd_stats_y,
+ RD_STATS *rd_stats_uv) {
+ const AV1_COMMON *cm = &cpi->common;
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ assert(mbmi->ref_frame[0] == INTRA_FRAME);
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const int try_palette =
+ av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type);
+ const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]];
+ const int intra_cost_penalty = av1_get_intra_cost_penalty(
+ cm->base_qindex, cm->y_dc_delta_q, cm->seq_params.bit_depth);
+ const int rows = block_size_high[bsize];
+ const int cols = block_size_wide[bsize];
+ const int num_planes = av1_num_planes(cm);
+ const int skip_ctx = av1_get_skip_context(xd);
+
+ int known_rate = intra_mode_cost[mbmi->mode];
+ known_rate += ref_frame_cost;
+ if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED)
+ known_rate += intra_cost_penalty;
+ known_rate += AOMMIN(x->skip_cost[skip_ctx][0], x->skip_cost[skip_ctx][1]);
+ const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0);
+ if (known_rd > search_state->best_rd) {
+ search_state->skip_intra_modes = 1;
+ return INT64_MAX;
+ }
+
+ TX_SIZE uv_tx;
+ int is_directional_mode = av1_is_directional_mode(mbmi->mode);
+ if (is_directional_mode && av1_use_angle_delta(bsize)) {
+ int rate_dummy;
+ int64_t model_rd = INT64_MAX;
+ if (!search_state->angle_stats_ready) {
+ const int src_stride = x->plane[0].src.stride;
+ const uint8_t *src = x->plane[0].src.buf;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ highbd_angle_estimation(src, src_stride, rows, cols, bsize,
+ search_state->directional_mode_skip_mask);
+ else
+ angle_estimation(src, src_stride, rows, cols, bsize,
+ search_state->directional_mode_skip_mask);
+ search_state->angle_stats_ready = 1;
+ }
+ if (search_state->directional_mode_skip_mask[mbmi->mode]) return INT64_MAX;
+ av1_init_rd_stats(rd_stats_y);
+ rd_stats_y->rate = INT_MAX;
+ rd_pick_intra_angle_sby(cpi, x, mi_row, mi_col, &rate_dummy, rd_stats_y,
+ bsize, intra_mode_cost[mbmi->mode],
+ search_state->best_rd, &model_rd);
+ } else {
+ av1_init_rd_stats(rd_stats_y);
+ mbmi->angle_delta[PLANE_TYPE_Y] = 0;
+ super_block_yrd(cpi, x, rd_stats_y, bsize, search_state->best_rd);
+ }
+ uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
+ memcpy(best_blk_skip, x->blk_skip,
+ sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
+ int try_filter_intra = 0;
+ int64_t best_rd_tmp = INT64_MAX;
+ if (mbmi->mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
+ if (rd_stats_y->rate != INT_MAX) {
+ const int tmp_rate = rd_stats_y->rate + x->filter_intra_cost[bsize][0] +
+ intra_mode_cost[mbmi->mode];
+ best_rd_tmp = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist);
+ try_filter_intra = !((best_rd_tmp / 2) > search_state->best_rd);
+ } else {
+ try_filter_intra = !(search_state->best_mbmode.skip);
+ }
+ }
+ if (try_filter_intra) {
+ RD_STATS rd_stats_y_fi;
+ int filter_intra_selected_flag = 0;
+ TX_SIZE best_tx_size = mbmi->tx_size;
+ TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN];
+ memcpy(best_txk_type, mbmi->txk_type,
+ sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
+ FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED;
+
+ mbmi->filter_intra_mode_info.use_filter_intra = 1;
+ for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED;
+ fi_mode < FILTER_INTRA_MODES; ++fi_mode) {
+ int64_t this_rd_tmp;
+ mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode;
+ super_block_yrd(cpi, x, &rd_stats_y_fi, bsize, search_state->best_rd);
+ if (rd_stats_y_fi.rate == INT_MAX) {
+ continue;
+ }
+ const int this_rate_tmp =
+ rd_stats_y_fi.rate +
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize,
+ intra_mode_cost[mbmi->mode]);
+ this_rd_tmp = RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist);
+
+ if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > search_state->best_rd) {
+ break;
+ }
+ if (this_rd_tmp < best_rd_tmp) {
+ best_tx_size = mbmi->tx_size;
+ memcpy(best_txk_type, mbmi->txk_type,
+ sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
+ memcpy(best_blk_skip, x->blk_skip,
+ sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
+ best_fi_mode = fi_mode;
+ *rd_stats_y = rd_stats_y_fi;
+ filter_intra_selected_flag = 1;
+ best_rd_tmp = this_rd_tmp;
+ }
+ }
+
+ mbmi->tx_size = best_tx_size;
+ memcpy(mbmi->txk_type, best_txk_type,
+ sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
+ memcpy(x->blk_skip, best_blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+
+ if (filter_intra_selected_flag) {
+ mbmi->filter_intra_mode_info.use_filter_intra = 1;
+ mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode;
+ } else {
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ }
+ }
+ if (rd_stats_y->rate == INT_MAX) return INT64_MAX;
+ const int mode_cost_y =
+ intra_mode_info_cost_y(cpi, x, mbmi, bsize, intra_mode_cost[mbmi->mode]);
+ av1_init_rd_stats(rd_stats);
+ av1_init_rd_stats(rd_stats_uv);
+ if (num_planes > 1) {
+ uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
+ if (search_state->rate_uv_intra[uv_tx] == INT_MAX) {
+ int rate_y =
+ rd_stats_y->skip ? x->skip_cost[skip_ctx][1] : rd_stats_y->rate;
+ const int64_t rdy =
+ RDCOST(x->rdmult, rate_y + mode_cost_y, rd_stats_y->dist);
+ if (search_state->best_rd < (INT64_MAX / 2) &&
+ rdy > (search_state->best_rd + (search_state->best_rd >> 2))) {
+ search_state->skip_intra_modes = 1;
+ return INT64_MAX;
+ }
+ choose_intra_uv_mode(
+ cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx],
+ &search_state->rate_uv_tokenonly[uv_tx],
+ &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx],
+ &search_state->mode_uv[uv_tx]);
+ if (try_palette) search_state->pmi_uv[uv_tx] = *pmi;
+ search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV];
+
+ const int uv_rate = search_state->rate_uv_tokenonly[uv_tx];
+ const int64_t uv_dist = search_state->dist_uvs[uv_tx];
+ const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist);
+ if (uv_rd > search_state->best_rd) {
+ search_state->skip_intra_modes = 1;
+ return INT64_MAX;
+ }
+ }
+
+ rd_stats_uv->rate = search_state->rate_uv_tokenonly[uv_tx];
+ rd_stats_uv->dist = search_state->dist_uvs[uv_tx];
+ rd_stats_uv->skip = search_state->skip_uvs[uv_tx];
+ rd_stats->skip = rd_stats_y->skip && rd_stats_uv->skip;
+ mbmi->uv_mode = search_state->mode_uv[uv_tx];
+ if (try_palette) {
+ pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1];
+ memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
+ search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
+ 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
+ }
+ mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx];
+ }
+ rd_stats->rate = rd_stats_y->rate + mode_cost_y;
+ if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) {
+ // super_block_yrd above includes the cost of the tx_size in the
+ // tokenonly rate, but for intra blocks, tx_size is always coded
+ // (prediction granularity), so we account for it in the full rate,
+ // not the tokenonly rate.
+ rd_stats_y->rate -= tx_size_cost(cm, x, bsize, mbmi->tx_size);
+ }
+ if (num_planes > 1 && !x->skip_chroma_rd) {
+ const int uv_mode_cost =
+ x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mbmi->uv_mode];
+ rd_stats->rate +=
+ rd_stats_uv->rate +
+ intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost);
+ }
+ if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED)
+ rd_stats->rate += intra_cost_penalty;
+ rd_stats->dist = rd_stats_y->dist + rd_stats_uv->dist;
+
+ // Estimate the reference frame signaling cost and add it
+ // to the rolling cost variable.
+ rd_stats->rate += ref_frame_cost;
+ if (rd_stats->skip) {
+ // Back out the coefficient coding costs
+ rd_stats->rate -= (rd_stats_y->rate + rd_stats_uv->rate);
+ rd_stats_y->rate = 0;
+ rd_stats_uv->rate = 0;
+ // Cost the skip mb case
+ rd_stats->rate += x->skip_cost[skip_ctx][1];
+ } else {
+ // Add in the cost of the no skip flag.
+ rd_stats->rate += x->skip_cost[skip_ctx][0];
+ }
+ // Calculate the final RD estimate for this mode.
+ const int64_t this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
+ // Keep record of best intra rd
+ if (this_rd < search_state->best_intra_rd) {
+ search_state->best_intra_rd = this_rd;
+ search_state->best_intra_mode = mbmi->mode;
+ }
+
+ if (sf->skip_intra_in_interframe) {
+ if (search_state->best_rd < (INT64_MAX / 2) &&
+ this_rd > (search_state->best_rd + (search_state->best_rd >> 1)))
+ search_state->skip_intra_modes = 1;
+ }
+
+ if (!disable_skip) {
+ for (int i = 0; i < REFERENCE_MODES; ++i)
+ search_state->best_pred_rd[i] =
+ AOMMIN(search_state->best_pred_rd[i], this_rd);
+ }
+ return this_rd;
+}
+
+static void collect_single_states(MACROBLOCK *x,
+ InterModeSearchState *search_state,
+ const MB_MODE_INFO *const mbmi) {
+ int i, j;
+ const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
+ const PREDICTION_MODE this_mode = mbmi->mode;
+ const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1;
+ const int mode_offset = INTER_OFFSET(this_mode);
+ const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
+
+ // Simple rd
+ int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame];
+ for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
+ int64_t rd = search_state->simple_rd[this_mode][ref_mv_idx][ref_frame];
+ if (rd < simple_rd) simple_rd = rd;
+ }
+
+ // Insertion sort of single_state
+ SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 };
+ SingleInterModeState *state_s = search_state->single_state[dir][mode_offset];
+ i = search_state->single_state_cnt[dir][mode_offset];
+ for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j)
+ state_s[j] = state_s[j - 1];
+ state_s[j] = this_state_s;
+ search_state->single_state_cnt[dir][mode_offset]++;
+
+ // Modelled rd
+ int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame];
+ for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
+ int64_t rd = search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame];
+ if (rd < modelled_rd) modelled_rd = rd;
+ }
+
+ // Insertion sort of single_state_modelled
+ SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 };
+ SingleInterModeState *state_m =
+ search_state->single_state_modelled[dir][mode_offset];
+ i = search_state->single_state_modelled_cnt[dir][mode_offset];
+ for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j)
+ state_m[j] = state_m[j - 1];
+ state_m[j] = this_state_m;
+ search_state->single_state_modelled_cnt[dir][mode_offset]++;
+}
+
+static void analyze_single_states(const AV1_COMP *cpi,
+ InterModeSearchState *search_state) {
+ int i, j, dir, mode;
+ if (cpi->sf.prune_comp_search_by_single_result >= 1) {
+ for (dir = 0; dir < 2; ++dir) {
+ int64_t best_rd;
+ SingleInterModeState(*state)[FWD_REFS];
+
+ // Use the best rd of GLOBALMV or NEWMV to prune the unlikely
+ // reference frames for all the modes (NEARESTMV and NEARMV may not
+ // have same motion vectors). Always keep the best of each mode
+ // because it might form the best possible combination with other mode.
+ state = search_state->single_state[dir];
+ best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
+ state[INTER_OFFSET(GLOBALMV)][0].rd);
+ for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) {
+ if (state[mode][i].rd != INT64_MAX &&
+ (state[mode][i].rd >> 1) > best_rd) {
+ state[mode][i].valid = 0;
+ }
+ }
+ }
+
+ state = search_state->single_state_modelled[dir];
+ best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
+ state[INTER_OFFSET(GLOBALMV)][0].rd);
+ for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode];
+ ++i) {
+ if (state[mode][i].rd != INT64_MAX &&
+ (state[mode][i].rd >> 1) > best_rd) {
+ state[mode][i].valid = 0;
+ }
+ }
+ }
+ }
+ }
+
+ // Ordering by simple rd first, then by modelled rd
+ for (dir = 0; dir < 2; ++dir) {
+ for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
+ const int state_cnt_s = search_state->single_state_cnt[dir][mode];
+ const int state_cnt_m =
+ search_state->single_state_modelled_cnt[dir][mode];
+ SingleInterModeState *state_s = search_state->single_state[dir][mode];
+ SingleInterModeState *state_m =
+ search_state->single_state_modelled[dir][mode];
+ int count = 0;
+ const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m);
+ for (i = 0; i < state_cnt_s; ++i) {
+ if (state_s[i].rd == INT64_MAX) break;
+ if (state_s[i].valid)
+ search_state->single_rd_order[dir][mode][count++] =
+ state_s[i].ref_frame;
+ }
+ if (count < max_candidates) {
+ for (i = 0; i < state_cnt_m; ++i) {
+ if (state_m[i].rd == INT64_MAX) break;
+ if (state_m[i].valid) {
+ int ref_frame = state_m[i].ref_frame;
+ int match = 0;
+ // Check if existing already
+ for (j = 0; j < count; ++j) {
+ if (search_state->single_rd_order[dir][mode][j] == ref_frame) {
+ match = 1;
+ break;
+ }
+ }
+ if (!match) {
+ // Check if this ref_frame is removed in simple rd
+ int valid = 1;
+ for (j = 0; j < state_cnt_s; j++) {
+ if (ref_frame == state_s[j].ref_frame && !state_s[j].valid) {
+ valid = 0;
+ break;
+ }
+ }
+ if (valid)
+ search_state->single_rd_order[dir][mode][count++] = ref_frame;
+ }
+ if (count >= max_candidates) break;
+ }
+ }
+ }
+ }
+ }
+}
+
+static int compound_skip_get_candidates(
+ const AV1_COMP *cpi, const InterModeSearchState *search_state,
+ const int dir, const PREDICTION_MODE mode) {
+ const int mode_offset = INTER_OFFSET(mode);
+ const SingleInterModeState *state =
+ search_state->single_state[dir][mode_offset];
+ const SingleInterModeState *state_modelled =
+ search_state->single_state_modelled[dir][mode_offset];
+ int max_candidates = 0;
+ int candidates;
+
+ for (int i = 0; i < FWD_REFS; ++i) {
+ if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break;
+ max_candidates++;
+ }
+
+ candidates = max_candidates;
+ if (cpi->sf.prune_comp_search_by_single_result >= 2) {
+ candidates = AOMMIN(2, max_candidates);
+ }
+ if (cpi->sf.prune_comp_search_by_single_result >= 3) {
+ if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX &&
+ state[0].ref_frame == state_modelled[0].ref_frame)
+ candidates = 1;
+ if (mode == NEARMV || mode == GLOBALMV) candidates = 1;
+ }
+ return candidates;
+}
+
+static int compound_skip_by_single_states(
+ const AV1_COMP *cpi, const InterModeSearchState *search_state,
+ const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame,
+ const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) {
+ const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame };
+ const int mode[2] = { compound_ref0_mode(this_mode),
+ compound_ref1_mode(this_mode) };
+ const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) };
+ const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1,
+ refs[1] <= GOLDEN_FRAME ? 0 : 1 };
+ int ref_searched[2] = { 0, 0 };
+ int ref_mv_match[2] = { 1, 1 };
+ int i, j;
+
+ for (i = 0; i < 2; ++i) {
+ const SingleInterModeState *state =
+ search_state->single_state[mode_dir[i]][mode_offset[i]];
+ const int state_cnt =
+ search_state->single_state_cnt[mode_dir[i]][mode_offset[i]];
+ for (j = 0; j < state_cnt; ++j) {
+ if (state[j].ref_frame == refs[i]) {
+ ref_searched[i] = 1;
+ break;
+ }
+ }
+ }
+
+ const int ref_set = get_drl_refmv_count(x, refs, this_mode);
+ for (i = 0; i < 2; ++i) {
+ if (mode[i] == NEARESTMV || mode[i] == NEARMV) {
+ const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME };
+ int idential = 1;
+ for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) {
+ int_mv single_mv;
+ int_mv comp_mv;
+ get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, single_refs,
+ x->mbmi_ext);
+ get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, refs, x->mbmi_ext);
+
+ idential &= (single_mv.as_int == comp_mv.as_int);
+ if (!idential) {
+ ref_mv_match[i] = 0;
+ break;
+ }
+ }
+ }
+ }
+
+ for (i = 0; i < 2; ++i) {
+ if (ref_searched[i] && ref_mv_match[i]) {
+ const int candidates =
+ compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]);
+ const MV_REFERENCE_FRAME *ref_order =
+ search_state->single_rd_order[mode_dir[i]][mode_offset[i]];
+ int match = 0;
+ for (j = 0; j < candidates; ++j) {
+ if (refs[i] == ref_order[j]) {
+ match = 1;
+ break;
+ }
+ }
+ if (!match) return 1;
+ }
+ }
+
+ return 0;
+}
+
+static INLINE int sf_check_is_drop_ref(const MODE_DEFINITION *mode,
+ InterModeSearchState *search_state) {
+ const MV_REFERENCE_FRAME ref_frame = mode->ref_frame[0];
+ const MV_REFERENCE_FRAME second_ref_frame = mode->ref_frame[1];
+ if (search_state->num_available_refs > 2) {
+ if ((ref_frame == search_state->dist_order_refs[0] &&
+ second_ref_frame == search_state->dist_order_refs[1]) ||
+ (ref_frame == search_state->dist_order_refs[1] &&
+ second_ref_frame == search_state->dist_order_refs[0]))
+ return 1; // drop this pair of refs
+ }
+ return 0;
+}
+
+static INLINE void sf_drop_ref_analyze(InterModeSearchState *search_state,
+ const MODE_DEFINITION *mode,
+ int64_t distortion2) {
+ const PREDICTION_MODE this_mode = mode->mode;
+ MV_REFERENCE_FRAME ref_frame = mode->ref_frame[0];
+ const int idx = ref_frame - LAST_FRAME;
+ if (idx && distortion2 > search_state->dist_refs[idx]) {
+ search_state->dist_refs[idx] = distortion2;
+ search_state->dist_order_refs[idx] = ref_frame;
+ }
+
+ // Reach the last single ref prediction mode
+ if (ref_frame == ALTREF_FRAME && this_mode == GLOBALMV) {
+ // bubble sort dist_refs and the order index
+ for (int i = 0; i < REF_FRAMES; ++i) {
+ for (int k = i + 1; k < REF_FRAMES; ++k) {
+ if (search_state->dist_refs[i] < search_state->dist_refs[k]) {
+ int64_t tmp_dist = search_state->dist_refs[i];
+ search_state->dist_refs[i] = search_state->dist_refs[k];
+ search_state->dist_refs[k] = tmp_dist;
+
+ int tmp_idx = search_state->dist_order_refs[i];
+ search_state->dist_order_refs[i] = search_state->dist_order_refs[k];
+ search_state->dist_order_refs[k] = tmp_idx;
+ }
+ }
+ }
+ for (int i = 0; i < REF_FRAMES; ++i) {
+ if (search_state->dist_refs[i] == -1) break;
+ search_state->num_available_refs = i;
+ }
+ search_state->num_available_refs++;
+ }
+}
+
+static void alloc_compound_type_rd_buffers(AV1_COMMON *const cm,
+ CompoundTypeRdBuffers *const bufs) {
+ CHECK_MEM_ERROR(
+ cm, bufs->pred0,
+ (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred0)));
+ CHECK_MEM_ERROR(
+ cm, bufs->pred1,
+ (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred1)));
+ CHECK_MEM_ERROR(
+ cm, bufs->residual1,
+ (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->residual1)));
+ CHECK_MEM_ERROR(
+ cm, bufs->diff10,
+ (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->diff10)));
+ CHECK_MEM_ERROR(cm, bufs->tmp_best_mask_buf,
+ (uint8_t *)aom_malloc(2 * MAX_SB_SQUARE *
+ sizeof(*bufs->tmp_best_mask_buf)));
+}
+
+static void release_compound_type_rd_buffers(
+ CompoundTypeRdBuffers *const bufs) {
+ aom_free(bufs->pred0);
+ aom_free(bufs->pred1);
+ aom_free(bufs->residual1);
+ aom_free(bufs->diff10);
+ aom_free(bufs->tmp_best_mask_buf);
+ av1_zero(*bufs); // Set all pointers to NULL for safety.
+}
+
+void av1_rd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data,
+ MACROBLOCK *x, int mi_row, int mi_col,
+ RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) {
+ AV1_COMMON *const cm = &cpi->common;
+ const int num_planes = av1_num_planes(cm);
+ const SPEED_FEATURES *const sf = &cpi->sf;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ const int try_palette =
+ av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type);
+ PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
+ const struct segmentation *const seg = &cm->seg;
+ PREDICTION_MODE this_mode;
+ unsigned char segment_id = mbmi->segment_id;
+ int i;
+ struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
+ unsigned int ref_costs_single[REF_FRAMES];
+ unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
+ int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)];
+ int *mode_map = tile_data->mode_map[bsize];
+ uint32_t mode_skip_mask[REF_FRAMES];
+ uint16_t ref_frame_skip_mask[2];
+
+ InterModeSearchState search_state;
+ init_inter_mode_search_state(&search_state, cpi, tile_data, x, bsize,
+ best_rd_so_far);
+ INTERINTRA_MODE interintra_modes[REF_FRAMES] = {
+ INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES,
+ INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES
+ };
+ HandleInterModeArgs args = {
+ { NULL }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE },
+ { NULL }, { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 },
+ NULL, NULL,
+ NULL, search_state.modelled_rd,
+ { { 0 } }, INT_MAX,
+ INT_MAX, search_state.simple_rd,
+ 0, interintra_modes
+ };
+ for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
+
+ av1_invalid_rd_stats(rd_cost);
+
+ // init params, set frame modes, speed features
+ set_params_rd_pick_inter_mode(
+ cpi, x, &args, bsize, mi_row, mi_col, ref_frame_skip_mask, mode_skip_mask,
+ ctx->skip_ref_frame_mask, ref_costs_single, ref_costs_comp, yv12_mb);
+
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ int64_t best_est_rd = INT64_MAX;
+ // TODO(angiebird): Turn this on when this speed feature is well tested
+#if 1
+ const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
+ const int do_tx_search = !md->ready;
+#else
+ const int do_tx_search = 1;
+#endif
+ InterModesInfo *inter_modes_info = &tile_data->inter_modes_info;
+ inter_modes_info->num = 0;
+#endif
+
+ int intra_mode_num = 0;
+ int intra_mode_idx_ls[MAX_MODES];
+ int reach_first_comp_mode = 0;
+
+ // Temporary buffers used by handle_inter_mode().
+ // We allocate them once and reuse it in every call to that function.
+ // Note: Must be allocated on the heap due to large size of the arrays.
+ uint8_t *tmp_buf_orig;
+ CHECK_MEM_ERROR(
+ cm, tmp_buf_orig,
+ (uint8_t *)aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE));
+ uint8_t *const tmp_buf = get_buf_by_bd(xd, tmp_buf_orig);
+
+ CompoundTypeRdBuffers rd_buffers;
+ alloc_compound_type_rd_buffers(cm, &rd_buffers);
+
+ for (int midx = 0; midx < MAX_MODES; ++midx) {
+ int mode_index = mode_map[midx];
+ int64_t this_rd = INT64_MAX;
+ int disable_skip = 0;
+ int rate2 = 0, rate_y = 0, rate_uv = 0;
+ int64_t distortion2 = 0;
+ int skippable = 0;
+ int this_skip2 = 0;
+ const MODE_DEFINITION *mode_order = &av1_mode_order[mode_index];
+ const MV_REFERENCE_FRAME ref_frame = mode_order->ref_frame[0];
+ const MV_REFERENCE_FRAME second_ref_frame = mode_order->ref_frame[1];
+ const int comp_pred = second_ref_frame > INTRA_FRAME;
+ this_mode = mode_order->mode;
+
+ init_mbmi(mbmi, mode_index, cm);
+
+ x->skip = 0;
+ set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
+
+ // Reach the first compound prediction mode
+ if (sf->prune_comp_search_by_single_result > 0 && comp_pred &&
+ reach_first_comp_mode == 0) {
+ analyze_single_states(cpi, &search_state);
+ reach_first_comp_mode = 1;
+ }
+ const int ret = inter_mode_search_order_independent_skip(
+ cpi, ctx, x, bsize, mode_index, mi_row, mi_col, mode_skip_mask,
+ ref_frame_skip_mask, &search_state);
+ if (ret == 1) continue;
+ args.skip_motion_mode = (ret == 2);
+
+ if (sf->drop_ref && comp_pred) {
+ if (sf_check_is_drop_ref(mode_order, &search_state)) {
+ continue;
+ }
+ }
+
+ if (search_state.best_rd < search_state.mode_threshold[mode_index])
+ continue;
+
+ if (sf->prune_comp_search_by_single_result > 0 && comp_pred) {
+ if (compound_skip_by_single_states(cpi, &search_state, this_mode,
+ ref_frame, second_ref_frame, x))
+ continue;
+ }
+
+ const int ref_frame_cost = comp_pred
+ ? ref_costs_comp[ref_frame][second_ref_frame]
+ : ref_costs_single[ref_frame];
+ const int compmode_cost =
+ is_comp_ref_allowed(mbmi->sb_type) ? comp_inter_cost[comp_pred] : 0;
+ const int real_compmode_cost =
+ cm->reference_mode == REFERENCE_MODE_SELECT ? compmode_cost : 0;
+
+ if (comp_pred) {
+ if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
+ search_state.best_mode_index >= 0 &&
+ search_state.best_mbmode.ref_frame[0] == INTRA_FRAME)
+ continue;
+ }
+
+ if (ref_frame == INTRA_FRAME) {
+ if (sf->adaptive_mode_search)
+ if ((x->source_variance << num_pels_log2_lookup[bsize]) >
+ search_state.best_pred_sse)
+ continue;
+
+ if (this_mode != DC_PRED) {
+ // Only search the oblique modes if the best so far is
+ // one of the neighboring directional modes
+ if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
+ (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) {
+ if (search_state.best_mode_index >= 0 &&
+ search_state.best_mbmode.ref_frame[0] > INTRA_FRAME)
+ continue;
+ }
+ if (sf->mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
+ if (conditional_skipintra(this_mode, search_state.best_intra_mode))
+ continue;
+ }
+ }
+ }
+
+ // Select prediction reference frames.
+ for (i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+ if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
+ }
+
+ if (ref_frame == INTRA_FRAME) {
+ intra_mode_idx_ls[intra_mode_num++] = mode_index;
+ continue;
+ } else {
+ mbmi->angle_delta[PLANE_TYPE_Y] = 0;
+ mbmi->angle_delta[PLANE_TYPE_UV] = 0;
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->ref_mv_idx = 0;
+ int64_t ref_best_rd = search_state.best_rd;
+ {
+ RD_STATS rd_stats, rd_stats_y, rd_stats_uv;
+ av1_init_rd_stats(&rd_stats);
+ rd_stats.rate = rate2;
+
+ // Point to variables that are maintained between loop iterations
+ args.single_newmv = search_state.single_newmv;
+ args.single_newmv_rate = search_state.single_newmv_rate;
+ args.single_newmv_valid = search_state.single_newmv_valid;
+ args.single_comp_cost = real_compmode_cost;
+ args.ref_frame_cost = ref_frame_cost;
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ this_rd = handle_inter_mode(
+ cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &disable_skip,
+ mi_row, mi_col, &args, ref_best_rd, tmp_buf, &rd_buffers, tile_data,
+ &best_est_rd, do_tx_search, inter_modes_info);
+#else
+ this_rd = handle_inter_mode(cpi, x, bsize, &rd_stats, &rd_stats_y,
+ &rd_stats_uv, &disable_skip, mi_row, mi_col,
+ &args, ref_best_rd, tmp_buf, &rd_buffers);
+#endif
+ rate2 = rd_stats.rate;
+ skippable = rd_stats.skip;
+ distortion2 = rd_stats.dist;
+ rate_y = rd_stats_y.rate;
+ rate_uv = rd_stats_uv.rate;
+ }
+
+ if (sf->prune_comp_search_by_single_result > 0 &&
+ is_inter_singleref_mode(this_mode)) {
+ collect_single_states(x, &search_state, mbmi);
+ }
+
+ if (this_rd == INT64_MAX) continue;
+
+ this_skip2 = mbmi->skip;
+ this_rd = RDCOST(x->rdmult, rate2, distortion2);
+ if (this_skip2) {
+ rate_y = 0;
+ rate_uv = 0;
+ }
+ }
+
+ // Did this mode help.. i.e. is it the new best mode
+ if (this_rd < search_state.best_rd || x->skip) {
+ int mode_excluded = 0;
+ if (comp_pred) {
+ mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
+ }
+ if (!mode_excluded) {
+ // Note index of best mode so far
+ search_state.best_mode_index = mode_index;
+
+ if (ref_frame == INTRA_FRAME) {
+ /* required for left and above block mv */
+ mbmi->mv[0].as_int = 0;
+ } else {
+ search_state.best_pred_sse = x->pred_sse[ref_frame];
+ }
+
+ rd_cost->rate = rate2;
+ rd_cost->dist = distortion2;
+ rd_cost->rdcost = this_rd;
+ search_state.best_rd = this_rd;
+ search_state.best_mbmode = *mbmi;
+ search_state.best_skip2 = this_skip2;
+ search_state.best_mode_skippable = skippable;
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ if (do_tx_search) {
+ // When do_tx_search == 0, handle_inter_mode won't provide correct
+ // rate_y and rate_uv because txfm_search process is replaced by
+ // rd estimation.
+ // Therfore, we should avoid updating best_rate_y and best_rate_uv
+ // here. These two values will be updated when txfm_search is called
+ search_state.best_rate_y =
+ rate_y +
+ x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable];
+ search_state.best_rate_uv = rate_uv;
+ }
+#else // CONFIG_COLLECT_INTER_MODE_RD_STATS
+ search_state.best_rate_y =
+ rate_y +
+ x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable];
+ search_state.best_rate_uv = rate_uv;
+#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ }
+ }
+
+ /* keep record of best compound/single-only prediction */
+ if (!disable_skip && ref_frame != INTRA_FRAME) {
+ int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ single_rate = rate2 - compmode_cost;
+ hybrid_rate = rate2;
+ } else {
+ single_rate = rate2;
+ hybrid_rate = rate2 + compmode_cost;
+ }
+
+ single_rd = RDCOST(x->rdmult, single_rate, distortion2);
+ hybrid_rd = RDCOST(x->rdmult, hybrid_rate, distortion2);
+
+ if (!comp_pred) {
+ if (single_rd < search_state.best_pred_rd[SINGLE_REFERENCE])
+ search_state.best_pred_rd[SINGLE_REFERENCE] = single_rd;
+ } else {
+ if (single_rd < search_state.best_pred_rd[COMPOUND_REFERENCE])
+ search_state.best_pred_rd[COMPOUND_REFERENCE] = single_rd;
+ }
+ if (hybrid_rd < search_state.best_pred_rd[REFERENCE_MODE_SELECT])
+ search_state.best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
+ }
+ if (sf->drop_ref && second_ref_frame == NONE_FRAME) {
+ // Collect data from single ref mode, and analyze data.
+ sf_drop_ref_analyze(&search_state, mode_order, distortion2);
+ }
+
+ if (x->skip && !comp_pred) break;
+ }
+
+ aom_free(tmp_buf_orig);
+ tmp_buf_orig = NULL;
+ release_compound_type_rd_buffers(&rd_buffers);
+
+#if CONFIG_COLLECT_INTER_MODE_RD_STATS
+ if (!do_tx_search) {
+ inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr);
+ search_state.best_rd = INT64_MAX;
+
+ int64_t top_est_rd =
+ inter_modes_info->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx];
+ for (int j = 0; j < inter_modes_info->num; ++j) {
+ const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx;
+ *mbmi = inter_modes_info->mbmi_arr[data_idx];
+ int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx];
+ if (curr_est_rd * 0.9 > top_est_rd) {
+ continue;
+ }
+ const int mode_rate = inter_modes_info->mode_rate_arr[data_idx];
+
+ x->skip = 0;
+ set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+
+ // Select prediction reference frames.
+ const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
+ for (i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
+ if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
+ }
+
+ RD_STATS rd_stats;
+ RD_STATS rd_stats_y;
+ RD_STATS rd_stats_uv;
+
+ av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
+ if (mbmi->motion_mode == OBMC_CAUSAL)
+ av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
+
+ if (!txfm_search(cpi, x, bsize, mi_row, mi_col, &rd_stats, &rd_stats_y,
+ &rd_stats_uv, mode_rate, search_state.best_rd)) {
+ continue;
+ } else {
+ const int skip_ctx = av1_get_skip_context(xd);
+ inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats.sse,
+ rd_stats.dist,
+ rd_stats_y.rate + rd_stats_uv.rate +
+ x->skip_cost[skip_ctx][mbmi->skip]);
+ }
+ rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
+
+ if (rd_stats.rdcost < search_state.best_rd) {
+ search_state.best_rd = rd_stats.rdcost;
+ // Note index of best mode so far
+ const int mode_index = get_prediction_mode_idx(
+ mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
+ search_state.best_mode_index = mode_index;
+ *rd_cost = rd_stats;
+ search_state.best_rd = rd_stats.rdcost;
+ search_state.best_mbmode = *mbmi;
+ search_state.best_skip2 = mbmi->skip;
+ search_state.best_mode_skippable = rd_stats.skip;
+ search_state.best_rate_y =
+ rd_stats_y.rate +
+ x->skip_cost[av1_get_skip_context(xd)][rd_stats.skip || mbmi->skip];
+ search_state.best_rate_uv = rd_stats_uv.rate;
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ }
+ }
+ }
+#endif
+
+ for (int j = 0; j < intra_mode_num; ++j) {
+ const int mode_index = intra_mode_idx_ls[j];
+ const MV_REFERENCE_FRAME ref_frame =
+ av1_mode_order[mode_index].ref_frame[0];
+ assert(av1_mode_order[mode_index].ref_frame[1] == NONE_FRAME);
+ assert(ref_frame == INTRA_FRAME);
+ if (sf->skip_intra_in_interframe && search_state.skip_intra_modes) break;
+ init_mbmi(mbmi, mode_index, cm);
+ x->skip = 0;
+ set_ref_ptrs(cm, xd, INTRA_FRAME, NONE_FRAME);
+
+ // Select prediction reference frames.
+ for (i = 0; i < num_planes; i++) {
+ xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
+ }
+
+ RD_STATS intra_rd_stats, intra_rd_stats_y, intra_rd_stats_uv;
+
+ const int ref_frame_cost = ref_costs_single[ref_frame];
+ intra_rd_stats.rdcost = handle_intra_mode(
+ &search_state, cpi, x, bsize, mi_row, mi_col, ref_frame_cost, ctx, 0,
+ &intra_rd_stats, &intra_rd_stats_y, &intra_rd_stats_uv);
+ if (intra_rd_stats.rdcost < search_state.best_rd) {
+ search_state.best_rd = intra_rd_stats.rdcost;
+ // Note index of best mode so far
+ search_state.best_mode_index = mode_index;
+ *rd_cost = intra_rd_stats;
+ search_state.best_rd = intra_rd_stats.rdcost;
+ search_state.best_mbmode = *mbmi;
+ search_state.best_skip2 = 0;
+ search_state.best_mode_skippable = intra_rd_stats.skip;
+ search_state.best_rate_y =
+ intra_rd_stats_y.rate +
+ x->skip_cost[av1_get_skip_context(xd)][intra_rd_stats.skip];
+ search_state.best_rate_uv = intra_rd_stats_uv.rate;
+ memcpy(ctx->blk_skip, x->blk_skip,
+ sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
+ }
+ }
+
+ // In effect only when speed >= 2.
+ sf_refine_fast_tx_type_search(
+ cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, search_state.best_mode_index,
+ &search_state.best_mbmode, yv12_mb, search_state.best_rate_y,
+ search_state.best_rate_uv, &search_state.best_skip2);
+
+ // Only try palette mode when the best mode so far is an intra mode.
+ if (try_palette && !is_inter_mode(search_state.best_mbmode.mode)) {
+ search_palette_mode(cpi, x, mi_row, mi_col, rd_cost, ctx, bsize, mbmi, pmi,
+ ref_costs_single, &search_state);
+ }
+
+ search_state.best_mbmode.skip_mode = 0;
+ if (cm->skip_mode_flag &&
+ !segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
+ is_comp_ref_allowed(bsize)) {
+ rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, mi_row, mi_col,
+ yv12_mb);
+ }
+
+ // Make sure that the ref_mv_idx is only nonzero when we're
+ // using a mode which can support ref_mv_idx
+ if (search_state.best_mbmode.ref_mv_idx != 0 &&
+ !(search_state.best_mbmode.mode == NEWMV ||
+ search_state.best_mbmode.mode == NEW_NEWMV ||
+ have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) {
+ search_state.best_mbmode.ref_mv_idx = 0;
+ }
+
+ if (search_state.best_mode_index < 0 ||
+ search_state.best_rd >= best_rd_so_far) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ assert(
+ (cm->interp_filter == SWITCHABLE) ||
+ (cm->interp_filter ==
+ av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 0)) ||
+ !is_inter_block(&search_state.best_mbmode));
+ assert(
+ (cm->interp_filter == SWITCHABLE) ||
+ (cm->interp_filter ==
+ av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 1)) ||
+ !is_inter_block(&search_state.best_mbmode));
+
+ if (!cpi->rc.is_src_frame_alt_ref)
+ av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
+ sf->adaptive_rd_thresh, bsize,
+ search_state.best_mode_index);
+
+ // macroblock modes
+ *mbmi = search_state.best_mbmode;
+ x->skip |= search_state.best_skip2;
+
+ // Note: this section is needed since the mode may have been forced to
+ // GLOBALMV by the all-zero mode handling of ref-mv.
+ if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) {
+ // Correct the interp filters for GLOBALMV
+ if (is_nontrans_global_motion(xd, xd->mi[0])) {
+ assert(mbmi->interp_filters ==
+ av1_broadcast_interp_filter(
+ av1_unswitchable_filter(cm->interp_filter)));
+ }
+ }
+
+ for (i = 0; i < REFERENCE_MODES; ++i) {
+ if (search_state.best_pred_rd[i] == INT64_MAX)
+ search_state.best_pred_diff[i] = INT_MIN;
+ else
+ search_state.best_pred_diff[i] =
+ search_state.best_rd - search_state.best_pred_rd[i];
+ }
+
+ x->skip |= search_state.best_mode_skippable;
+
+ assert(search_state.best_mode_index >= 0);
+
+ store_coding_context(x, ctx, search_state.best_mode_index,
+ search_state.best_pred_diff,
+ search_state.best_mode_skippable);
+
+ if (pmi->palette_size[1] > 0) {
+ assert(try_palette);
+ restore_uv_color_map(cpi, x);
+ }
+}
+
+void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
+ TileDataEnc *tile_data, MACROBLOCK *x,
+ int mi_row, int mi_col,
+ RD_STATS *rd_cost, BLOCK_SIZE bsize,
+ PICK_MODE_CONTEXT *ctx,
+ int64_t best_rd_so_far) {
+ const AV1_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MB_MODE_INFO *const mbmi = xd->mi[0];
+ unsigned char segment_id = mbmi->segment_id;
+ const int comp_pred = 0;
+ int i;
+ int64_t best_pred_diff[REFERENCE_MODES];
+ unsigned int ref_costs_single[REF_FRAMES];
+ unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
+ int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)];
+ InterpFilter best_filter = SWITCHABLE;
+ int64_t this_rd = INT64_MAX;
+ int rate2 = 0;
+ const int64_t distortion2 = 0;
+ (void)mi_row;
+ (void)mi_col;
+
+ av1_collect_neighbors_ref_counts(xd);
+
+ estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single,
+ ref_costs_comp);
+
+ for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
+ for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;
+
+ rd_cost->rate = INT_MAX;
+
+ assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
+
+ mbmi->palette_mode_info.palette_size[0] = 0;
+ mbmi->palette_mode_info.palette_size[1] = 0;
+ mbmi->filter_intra_mode_info.use_filter_intra = 0;
+ mbmi->mode = GLOBALMV;
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ mbmi->uv_mode = UV_DC_PRED;
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME))
+ mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
+ else
+ mbmi->ref_frame[0] = LAST_FRAME;
+ mbmi->ref_frame[1] = NONE_FRAME;
+ mbmi->mv[0].as_int =
+ gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]],
+ cm->allow_high_precision_mv, bsize, mi_col, mi_row,
+ cm->cur_frame_force_integer_mv)
+ .as_int;
+ mbmi->tx_size = max_txsize_lookup[bsize];
+ x->skip = 1;
+
+ mbmi->ref_mv_idx = 0;
+
+ mbmi->motion_mode = SIMPLE_TRANSLATION;
+ av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col);
+ if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) {
+ int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
+ mbmi->num_proj_ref = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref);
+ // Select the samples according to motion vector difference
+ if (mbmi->num_proj_ref > 1)
+ mbmi->num_proj_ref = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
+ mbmi->num_proj_ref, bsize);
+ }
+
+ set_default_interp_filters(mbmi, cm->interp_filter);
+
+ if (cm->interp_filter != SWITCHABLE) {
+ best_filter = cm->interp_filter;
+ } else {
+ best_filter = EIGHTTAP_REGULAR;
+ if (av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd) &&
+ x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
+ int rs;
+ int best_rs = INT_MAX;
+ for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+ mbmi->interp_filters = av1_broadcast_interp_filter(i);
+ rs = av1_get_switchable_rate(cm, x, xd);
+ if (rs < best_rs) {
+ best_rs = rs;
+ best_filter = av1_extract_interp_filter(mbmi->interp_filters, 0);
+ }
+ }
+ }
+ }
+ // Set the appropriate filter
+ mbmi->interp_filters = av1_broadcast_interp_filter(best_filter);
+ rate2 += av1_get_switchable_rate(cm, x, xd);
+
+ if (cm->reference_mode == REFERENCE_MODE_SELECT)
+ rate2 += comp_inter_cost[comp_pred];
+
+ // Estimate the reference frame signaling cost and add it
+ // to the rolling cost variable.
+ rate2 += ref_costs_single[LAST_FRAME];
+ this_rd = RDCOST(x->rdmult, rate2, distortion2);
+
+ rd_cost->rate = rate2;
+ rd_cost->dist = distortion2;
+ rd_cost->rdcost = this_rd;
+
+ if (this_rd >= best_rd_so_far) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->rdcost = INT64_MAX;
+ return;
+ }
+
+ assert((cm->interp_filter == SWITCHABLE) ||
+ (cm->interp_filter ==
+ av1_extract_interp_filter(mbmi->interp_filters, 0)));
+
+ av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
+ cpi->sf.adaptive_rd_thresh, bsize, THR_GLOBALMV);
+
+ av1_zero(best_pred_diff);
+
+ store_coding_context(x, ctx, THR_GLOBALMV, best_pred_diff, 0);
+}
+
+struct calc_target_weighted_pred_ctxt {
+ const MACROBLOCK *x;
+ const uint8_t *tmp;
+ int tmp_stride;
+ int overlap;
+};
+
+static INLINE void calc_target_weighted_pred_above(
+ MACROBLOCKD *xd, int rel_mi_col, uint8_t nb_mi_width, MB_MODE_INFO *nb_mi,
+ void *fun_ctxt, const int num_planes) {
+ (void)nb_mi;
+ (void)num_planes;
+
+ struct calc_target_weighted_pred_ctxt *ctxt =
+ (struct calc_target_weighted_pred_ctxt *)fun_ctxt;
+
+ const int bw = xd->n4_w << MI_SIZE_LOG2;
+ const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);
+
+ int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_col * MI_SIZE);
+ int32_t *mask = ctxt->x->mask_buf + (rel_mi_col * MI_SIZE);
+ const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE;
+ const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
+
+ if (!is_hbd) {
+ for (int row = 0; row < ctxt->overlap; ++row) {
+ const uint8_t m0 = mask1d[row];
+ const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
+ for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) {
+ wsrc[col] = m1 * tmp[col];
+ mask[col] = m0;
+ }
+ wsrc += bw;
+ mask += bw;
+ tmp += ctxt->tmp_stride;
+ }
+ } else {
+ const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
+
+ for (int row = 0; row < ctxt->overlap; ++row) {
+ const uint8_t m0 = mask1d[row];
+ const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
+ for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) {
+ wsrc[col] = m1 * tmp16[col];
+ mask[col] = m0;
+ }
+ wsrc += bw;
+ mask += bw;
+ tmp16 += ctxt->tmp_stride;
+ }
+ }
+}
+
+static INLINE void calc_target_weighted_pred_left(
+ MACROBLOCKD *xd, int rel_mi_row, uint8_t nb_mi_height, MB_MODE_INFO *nb_mi,
+ void *fun_ctxt, const int num_planes) {
+ (void)nb_mi;
+ (void)num_planes;
+
+ struct calc_target_weighted_pred_ctxt *ctxt =
+ (struct calc_target_weighted_pred_ctxt *)fun_ctxt;
+
+ const int bw = xd->n4_w << MI_SIZE_LOG2;
+ const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);
+
+ int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_row * MI_SIZE * bw);
+ int32_t *mask = ctxt->x->mask_buf + (rel_mi_row * MI_SIZE * bw);
+ const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride);
+ const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
+
+ if (!is_hbd) {
+ for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) {
+ for (int col = 0; col < ctxt->overlap; ++col) {
+ const uint8_t m0 = mask1d[col];
+ const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
+ wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
+ (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
+ mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
+ }
+ wsrc += bw;
+ mask += bw;
+ tmp += ctxt->tmp_stride;
+ }
+ } else {
+ const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
+
+ for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) {
+ for (int col = 0; col < ctxt->overlap; ++col) {
+ const uint8_t m0 = mask1d[col];
+ const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
+ wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
+ (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
+ mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
+ }
+ wsrc += bw;
+ mask += bw;
+ tmp16 += ctxt->tmp_stride;
+ }
+ }
+}
+
+// This function has a structure similar to av1_build_obmc_inter_prediction
+//
+// The OBMC predictor is computed as:
+//
+// PObmc(x,y) =
+// AOM_BLEND_A64(Mh(x),
+// AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
+// PLeft(x, y))
+//
+// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
+// rounding, this can be written as:
+//
+// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
+// Mh(x) * Mv(y) * P(x,y) +
+// Mh(x) * Cv(y) * Pabove(x,y) +
+// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
+//
+// Where :
+//
+// Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y)
+// Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y)
+//
+// This function computes 'wsrc' and 'mask' as:
+//
+// wsrc(x, y) =
+// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) -
+// Mh(x) * Cv(y) * Pabove(x,y) +
+// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
+//
+// mask(x, y) = Mh(x) * Mv(y)
+//
+// These can then be used to efficiently approximate the error for any
+// predictor P in the context of the provided neighbouring predictors by
+// computing:
+//
+// error(x, y) =
+// wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2)
+//
+static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x,
+ const MACROBLOCKD *xd, int mi_row,
+ int mi_col, const uint8_t *above,
+ int above_stride, const uint8_t *left,
+ int left_stride) {
+ const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
+ const int bw = xd->n4_w << MI_SIZE_LOG2;
+ const int bh = xd->n4_h << MI_SIZE_LOG2;
+ int32_t *mask_buf = x->mask_buf;
+ int32_t *wsrc_buf = x->wsrc_buf;
+
+ const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
+ const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA;
+
+ // plane 0 should not be subsampled
+ assert(xd->plane[0].subsampling_x == 0);
+ assert(xd->plane[0].subsampling_y == 0);
+
+ av1_zero_array(wsrc_buf, bw * bh);
+ for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA;
+
+ // handle above row
+ if (xd->up_available) {
+ const int overlap =
+ AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
+ struct calc_target_weighted_pred_ctxt ctxt = { x, above, above_stride,
+ overlap };
+ foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd, mi_col,
+ max_neighbor_obmc[mi_size_wide_log2[bsize]],
+ calc_target_weighted_pred_above, &ctxt);
+ }
+
+ for (int i = 0; i < bw * bh; ++i) {
+ wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
+ mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
+ }
+
+ // handle left column
+ if (xd->left_available) {
+ const int overlap =
+ AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
+ struct calc_target_weighted_pred_ctxt ctxt = { x, left, left_stride,
+ overlap };
+ foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd, mi_row,
+ max_neighbor_obmc[mi_size_high_log2[bsize]],
+ calc_target_weighted_pred_left, &ctxt);
+ }
+
+ if (!is_hbd) {
+ const uint8_t *src = x->plane[0].src.buf;
+
+ for (int row = 0; row < bh; ++row) {
+ for (int col = 0; col < bw; ++col) {
+ wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
+ }
+ wsrc_buf += bw;
+ src += x->plane[0].src.stride;
+ }
+ } else {
+ const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
+
+ for (int row = 0; row < bh; ++row) {
+ for (int col = 0; col < bw; ++col) {
+ wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
+ }
+ wsrc_buf += bw;
+ src += x->plane[0].src.stride;
+ }
+ }
+}