diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /layout/generic/nsFlexContainerFrame.cpp | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'layout/generic/nsFlexContainerFrame.cpp')
-rw-r--r-- | layout/generic/nsFlexContainerFrame.cpp | 4804 |
1 files changed, 4804 insertions, 0 deletions
diff --git a/layout/generic/nsFlexContainerFrame.cpp b/layout/generic/nsFlexContainerFrame.cpp new file mode 100644 index 000000000..b61024324 --- /dev/null +++ b/layout/generic/nsFlexContainerFrame.cpp @@ -0,0 +1,4804 @@ +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=2 et sw=2 tw=80: */ + +/* This Source Code is subject to the terms of the Mozilla Public License + * version 2.0 (the "License"). You can obtain a copy of the License at + * http://mozilla.org/MPL/2.0/. */ + +/* rendering object for CSS "display: flex" */ + +#include "mozilla/UniquePtr.h" +#include "nsFlexContainerFrame.h" +#include "nsContentUtils.h" +#include "nsCSSAnonBoxes.h" +#include "nsDisplayList.h" +#include "nsIFrameInlines.h" +#include "nsLayoutUtils.h" +#include "nsPlaceholderFrame.h" +#include "nsPresContext.h" +#include "nsRenderingContext.h" +#include "nsStyleContext.h" +#include "mozilla/Logging.h" +#include <algorithm> +#include "mozilla/LinkedList.h" +#include "mozilla/FloatingPoint.h" +#include "WritingModes.h" + +using namespace mozilla; +using namespace mozilla::layout; + +// Convenience typedefs for helper classes that we forward-declare in .h file +// (so that nsFlexContainerFrame methods can use them as parameters): +typedef nsFlexContainerFrame::FlexItem FlexItem; +typedef nsFlexContainerFrame::FlexLine FlexLine; +typedef nsFlexContainerFrame::FlexboxAxisTracker FlexboxAxisTracker; +typedef nsFlexContainerFrame::StrutInfo StrutInfo; + +static mozilla::LazyLogModule gFlexContainerLog("nsFlexContainerFrame"); + +// XXXdholbert Some of this helper-stuff should be separated out into a general +// "main/cross-axis utils" header, shared by grid & flexbox? +// (Particularly when grid gets support for align-*/justify-* properties.) + +// Helper enums +// ============ + +// Represents a physical orientation for an axis. +// The directional suffix indicates the direction in which the axis *grows*. +// So e.g. eAxis_LR means a horizontal left-to-right axis, whereas eAxis_BT +// means a vertical bottom-to-top axis. +// NOTE: The order here is important -- these values are used as indices into +// the static array 'kAxisOrientationToSidesMap', defined below. +enum AxisOrientationType { + eAxis_LR, + eAxis_RL, + eAxis_TB, + eAxis_BT, + eNumAxisOrientationTypes // For sizing arrays that use these values as indices +}; + +// Represents one or the other extreme of an axis (e.g. for the main axis, the +// main-start vs. main-end edge. +// NOTE: The order here is important -- these values are used as indices into +// the sub-arrays in 'kAxisOrientationToSidesMap', defined below. +enum AxisEdgeType { + eAxisEdge_Start, + eAxisEdge_End, + eNumAxisEdges // For sizing arrays that use these values as indices +}; + +// This array maps each axis orientation to a pair of corresponding +// [start, end] physical mozilla::Side values. +static const mozilla::Side +kAxisOrientationToSidesMap[eNumAxisOrientationTypes][eNumAxisEdges] = { + { eSideLeft, eSideRight }, // eAxis_LR + { eSideRight, eSideLeft }, // eAxis_RL + { eSideTop, eSideBottom }, // eAxis_TB + { eSideBottom, eSideTop } // eAxis_BT +}; + +// Helper structs / classes / methods +// ================================== +// Returns true iff the given nsStyleDisplay has display:-webkit-{inline-}-box. +static inline bool +IsDisplayValueLegacyBox(const nsStyleDisplay* aStyleDisp) +{ + return aStyleDisp->mDisplay == mozilla::StyleDisplay::WebkitBox || + aStyleDisp->mDisplay == mozilla::StyleDisplay::WebkitInlineBox; +} + +// Returns true if aFlexContainer is the frame for an element with +// "display:-webkit-box" or "display:-webkit-inline-box". aFlexContainer is +// expected to be an instance of nsFlexContainerFrame (enforced with an assert); +// otherwise, this function's state-bit-check here is bogus. +static bool +IsLegacyBox(const nsIFrame* aFlexContainer) +{ + MOZ_ASSERT(aFlexContainer->GetType() == nsGkAtoms::flexContainerFrame, + "only flex containers may be passed to this function"); + return aFlexContainer->HasAnyStateBits(NS_STATE_FLEX_IS_LEGACY_WEBKIT_BOX); +} + +// Returns the "align-items" value that's equivalent to the legacy "box-align" +// value in the given style struct. +static uint8_t +ConvertLegacyStyleToAlignItems(const nsStyleXUL* aStyleXUL) +{ + // -[moz|webkit]-box-align corresponds to modern "align-items" + switch (aStyleXUL->mBoxAlign) { + case StyleBoxAlign::Stretch: + return NS_STYLE_ALIGN_STRETCH; + case StyleBoxAlign::Start: + return NS_STYLE_ALIGN_FLEX_START; + case StyleBoxAlign::Center: + return NS_STYLE_ALIGN_CENTER; + case StyleBoxAlign::Baseline: + return NS_STYLE_ALIGN_BASELINE; + case StyleBoxAlign::End: + return NS_STYLE_ALIGN_FLEX_END; + } + + MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value"); + // Fall back to default value of "align-items" property: + return NS_STYLE_ALIGN_STRETCH; +} + +// Returns the "justify-content" value that's equivalent to the legacy +// "box-pack" value in the given style struct. +static uint8_t +ConvertLegacyStyleToJustifyContent(const nsStyleXUL* aStyleXUL) +{ + // -[moz|webkit]-box-pack corresponds to modern "justify-content" + switch (aStyleXUL->mBoxPack) { + case StyleBoxPack::Start: + return NS_STYLE_ALIGN_FLEX_START; + case StyleBoxPack::Center: + return NS_STYLE_ALIGN_CENTER; + case StyleBoxPack::End: + return NS_STYLE_ALIGN_FLEX_END; + case StyleBoxPack::Justify: + return NS_STYLE_ALIGN_SPACE_BETWEEN; + } + + MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value"); + // Fall back to default value of "justify-content" property: + return NS_STYLE_ALIGN_FLEX_START; +} + +// Indicates whether advancing along the given axis is equivalent to +// increasing our X or Y position (as opposed to decreasing it). +static inline bool +AxisGrowsInPositiveDirection(AxisOrientationType aAxis) +{ + return eAxis_LR == aAxis || eAxis_TB == aAxis; +} + +// Given an AxisOrientationType, returns the "reverse" AxisOrientationType +// (in the same dimension, but the opposite direction) +static inline AxisOrientationType +GetReverseAxis(AxisOrientationType aAxis) +{ + AxisOrientationType reversedAxis; + + if (aAxis % 2 == 0) { + // even enum value. Add 1 to reverse. + reversedAxis = AxisOrientationType(aAxis + 1); + } else { + // odd enum value. Subtract 1 to reverse. + reversedAxis = AxisOrientationType(aAxis - 1); + } + + // Check that we're still in the enum's valid range + MOZ_ASSERT(reversedAxis >= eAxis_LR && + reversedAxis <= eAxis_BT); + + return reversedAxis; +} + +/** + * Converts a "flex-relative" coordinate in a single axis (a main- or cross-axis + * coordinate) into a coordinate in the corresponding physical (x or y) axis. If + * the flex-relative axis in question already maps *directly* to a physical + * axis (i.e. if it's LTR or TTB), then the physical coordinate has the same + * numeric value as the provided flex-relative coordinate. Otherwise, we have to + * subtract the flex-relative coordinate from the flex container's size in that + * axis, to flip the polarity. (So e.g. a main-axis position of 2px in a RTL + * 20px-wide container would correspond to a physical coordinate (x-value) of + * 18px.) + */ +static nscoord +PhysicalCoordFromFlexRelativeCoord(nscoord aFlexRelativeCoord, + nscoord aContainerSize, + AxisOrientationType aAxis) { + if (AxisGrowsInPositiveDirection(aAxis)) { + return aFlexRelativeCoord; + } + return aContainerSize - aFlexRelativeCoord; +} + +// Helper-macro to let us pick one of two expressions to evaluate +// (a width expression vs. a height expression), to get a main-axis or +// cross-axis component. +// For code that has e.g. a nsSize object, FlexboxAxisTracker::GetMainComponent +// and GetCrossComponent are cleaner; but in cases where we simply have +// two separate expressions for width and height (which may be expensive to +// evaluate), these macros will ensure that only the expression for the correct +// axis gets evaluated. +#define GET_MAIN_COMPONENT(axisTracker_, width_, height_) \ + (axisTracker_).IsMainAxisHorizontal() ? (width_) : (height_) + +#define GET_CROSS_COMPONENT(axisTracker_, width_, height_) \ + (axisTracker_).IsCrossAxisHorizontal() ? (width_) : (height_) + +// Logical versions of helper-macros above: +#define GET_MAIN_COMPONENT_LOGICAL(axisTracker_, wm_, isize_, bsize_) \ + wm_.IsOrthogonalTo(axisTracker_.GetWritingMode()) != \ + (axisTracker_).IsRowOriented() ? (isize_) : (bsize_) + +#define GET_CROSS_COMPONENT_LOGICAL(axisTracker_, wm_, isize_, bsize_) \ + wm_.IsOrthogonalTo(axisTracker_.GetWritingMode()) != \ + (axisTracker_).IsRowOriented() ? (bsize_) : (isize_) + +// Flags to customize behavior of the FlexboxAxisTracker constructor: +enum AxisTrackerFlags { + eNoFlags = 0x0, + + // Normally, FlexboxAxisTracker may attempt to reverse axes & iteration order + // to avoid bottom-to-top child ordering, for saner pagination. This flag + // suppresses that behavior (so that we allow bottom-to-top child ordering). + // (This may be helpful e.g. when we're only dealing with a single child.) + eAllowBottomToTopChildOrdering = 0x1 +}; +MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(AxisTrackerFlags) + +// Encapsulates our flex container's main & cross axes. +class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker { +public: + FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer, + const WritingMode& aWM, + AxisTrackerFlags aFlags = eNoFlags); + + // Accessors: + // XXXdholbert [BEGIN DEPRECATED] + AxisOrientationType GetMainAxis() const { return mMainAxis; } + AxisOrientationType GetCrossAxis() const { return mCrossAxis; } + + bool IsMainAxisHorizontal() const { + // If we're row-oriented, and our writing mode is NOT vertical, + // or we're column-oriented and our writing mode IS vertical, + // then our main axis is horizontal. This handles all cases: + return mIsRowOriented != mWM.IsVertical(); + } + bool IsCrossAxisHorizontal() const { + return !IsMainAxisHorizontal(); + } + // XXXdholbert [END DEPRECATED] + + // Returns the flex container's writing mode. + WritingMode GetWritingMode() const { return mWM; } + + // Returns true if our main axis is in the reverse direction of our + // writing mode's corresponding axis. (From 'flex-direction: *-reverse') + bool IsMainAxisReversed() const { + return mIsMainAxisReversed; + } + // Returns true if our cross axis is in the reverse direction of our + // writing mode's corresponding axis. (From 'flex-wrap: *-reverse') + bool IsCrossAxisReversed() const { + return mIsCrossAxisReversed; + } + + bool IsRowOriented() const { return mIsRowOriented; } + bool IsColumnOriented() const { return !mIsRowOriented; } + + nscoord GetMainComponent(const nsSize& aSize) const { + return GET_MAIN_COMPONENT(*this, aSize.width, aSize.height); + } + int32_t GetMainComponent(const LayoutDeviceIntSize& aIntSize) const { + return GET_MAIN_COMPONENT(*this, aIntSize.width, aIntSize.height); + } + + nscoord GetCrossComponent(const nsSize& aSize) const { + return GET_CROSS_COMPONENT(*this, aSize.width, aSize.height); + } + int32_t GetCrossComponent(const LayoutDeviceIntSize& aIntSize) const { + return GET_CROSS_COMPONENT(*this, aIntSize.width, aIntSize.height); + } + + nscoord GetMarginSizeInMainAxis(const nsMargin& aMargin) const { + return IsMainAxisHorizontal() ? + aMargin.LeftRight() : + aMargin.TopBottom(); + } + nscoord GetMarginSizeInCrossAxis(const nsMargin& aMargin) const { + return IsCrossAxisHorizontal() ? + aMargin.LeftRight() : + aMargin.TopBottom(); + } + + // Returns aFrame's computed value for 'height' or 'width' -- whichever is in + // the cross-axis. (NOTE: This is cross-axis-specific for now. If we need a + // main-axis version as well, we could generalize or clone this function.) + const nsStyleCoord& ComputedCrossSize(const nsIFrame* aFrame) const { + const nsStylePosition* stylePos = aFrame->StylePosition(); + + return IsCrossAxisHorizontal() ? + stylePos->mWidth : + stylePos->mHeight; + } + + /** + * Converts a "flex-relative" point (a main-axis & cross-axis coordinate) + * into a LogicalPoint, using the flex container's writing mode. + * + * @arg aMainCoord The main-axis coordinate -- i.e an offset from the + * main-start edge of the flex container's content box. + * @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the + * cross-start edge of the flex container's content box. + * @arg aContainerMainSize The main size of flex container's content box. + * @arg aContainerCrossSize The cross size of flex container's content box. + * @return A LogicalPoint, with the flex container's writing mode, that + * represents the same position. The logical coordinates are + * relative to the flex container's content box. + */ + LogicalPoint + LogicalPointFromFlexRelativePoint(nscoord aMainCoord, + nscoord aCrossCoord, + nscoord aContainerMainSize, + nscoord aContainerCrossSize) const { + nscoord logicalCoordInMainAxis = mIsMainAxisReversed ? + aContainerMainSize - aMainCoord : aMainCoord; + nscoord logicalCoordInCrossAxis = mIsCrossAxisReversed ? + aContainerCrossSize - aCrossCoord : aCrossCoord; + + return mIsRowOriented ? + LogicalPoint(mWM, logicalCoordInMainAxis, logicalCoordInCrossAxis) : + LogicalPoint(mWM, logicalCoordInCrossAxis, logicalCoordInMainAxis); + } + + /** + * Converts a "flex-relative" size (a main-axis & cross-axis size) + * into a LogicalSize, using the flex container's writing mode. + * + * @arg aMainSize The main-axis size. + * @arg aCrossSize The cross-axis size. + * @return A LogicalSize, with the flex container's writing mode, that + * represents the same size. + */ + LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize, + nscoord aCrossSize) const { + return mIsRowOriented ? + LogicalSize(mWM, aMainSize, aCrossSize) : + LogicalSize(mWM, aCrossSize, aMainSize); + } + + // Are my axes reversed with respect to what the author asked for? + // (We may reverse the axes in the FlexboxAxisTracker constructor and set + // this flag, to avoid reflowing our children in bottom-to-top order.) + bool AreAxesInternallyReversed() const + { + return mAreAxesInternallyReversed; + } + +private: + // Delete copy-constructor & reassignment operator, to prevent accidental + // (unnecessary) copying. + FlexboxAxisTracker(const FlexboxAxisTracker&) = delete; + FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete; + + // Helpers for constructor which determine the orientation of our axes, based + // on legacy box properties (-webkit-box-orient, -webkit-box-direction) or + // modern flexbox properties (flex-direction, flex-wrap) depending on whether + // the flex container is a "legacy box" (as determined by IsLegacyBox). + void InitAxesFromLegacyProps(const nsFlexContainerFrame* aFlexContainer); + void InitAxesFromModernProps(const nsFlexContainerFrame* aFlexContainer); + + // XXXdholbert [BEGIN DEPRECATED] + AxisOrientationType mMainAxis; + AxisOrientationType mCrossAxis; + // XXXdholbert [END DEPRECATED] + + const WritingMode mWM; // The flex container's writing mode. + + bool mIsRowOriented; // Is our main axis the inline axis? + // (Are we 'flex-direction:row[-reverse]'?) + + bool mIsMainAxisReversed; // Is our main axis in the opposite direction + // as mWM's corresponding axis? (e.g. RTL vs LTR) + bool mIsCrossAxisReversed; // Is our cross axis in the opposite direction + // as mWM's corresponding axis? (e.g. BTT vs TTB) + + // Implementation detail -- this indicates whether we've decided to + // transparently reverse our axes & our child ordering, to avoid having + // frames flow from bottom to top in either axis (& to make pagination saner). + bool mAreAxesInternallyReversed; +}; + +/** + * Represents a flex item. + * Includes the various pieces of input that the Flexbox Layout Algorithm uses + * to resolve a flexible width. + */ +class nsFlexContainerFrame::FlexItem : public LinkedListElement<FlexItem> +{ +public: + // Normal constructor: + FlexItem(ReflowInput& aFlexItemReflowInput, + float aFlexGrow, float aFlexShrink, nscoord aMainBaseSize, + nscoord aMainMinSize, nscoord aMainMaxSize, + nscoord aTentativeCrossSize, + nscoord aCrossMinSize, nscoord aCrossMaxSize, + const FlexboxAxisTracker& aAxisTracker); + + // Simplified constructor, to be used only for generating "struts": + // (NOTE: This "strut" constructor uses the *container's* writing mode, which + // we'll use on this FlexItem instead of the child frame's real writing mode. + // This is fine - it doesn't matter what writing mode we use for a + // strut, since it won't render any content and we already know its size.) + FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM); + + // Accessors + nsIFrame* Frame() const { return mFrame; } + nscoord GetFlexBaseSize() const { return mFlexBaseSize; } + + nscoord GetMainMinSize() const { + MOZ_ASSERT(!mNeedsMinSizeAutoResolution, + "Someone's using an unresolved 'auto' main min-size"); + return mMainMinSize; + } + nscoord GetMainMaxSize() const { return mMainMaxSize; } + + // Note: These return the main-axis position and size of our *content box*. + nscoord GetMainSize() const { return mMainSize; } + nscoord GetMainPosition() const { return mMainPosn; } + + nscoord GetCrossMinSize() const { return mCrossMinSize; } + nscoord GetCrossMaxSize() const { return mCrossMaxSize; } + + // Note: These return the cross-axis position and size of our *content box*. + nscoord GetCrossSize() const { return mCrossSize; } + nscoord GetCrossPosition() const { return mCrossPosn; } + + nscoord ResolvedAscent(bool aUseFirstBaseline) const { + if (mAscent == ReflowOutput::ASK_FOR_BASELINE) { + // XXXdholbert We should probably be using the *container's* writing-mode + // here, instead of the item's -- though it doesn't much matter right + // now, because all of the baseline-handling code here essentially + // assumes that the container & items have the same writing-mode. This + // will matter more (& can be expanded/tested) once we officially support + // logical directions & vertical writing-modes in flexbox, in bug 1079155 + // or a dependency. + // Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate, + // or just GetLogicalBaseline() if that fails. + bool found = aUseFirstBaseline ? + nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &mAscent) : + nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &mAscent); + + if (!found) { + mAscent = mFrame->SynthesizeBaselineBOffsetFromBorderBox(mWM, + BaselineSharingGroup::eFirst); + } + } + return mAscent; + } + + // Convenience methods to compute the main & cross size of our *margin-box*. + // The caller is responsible for telling us the right axis, so that we can + // pull out the appropriate components of our margin/border/padding structs. + nscoord GetOuterMainSize(AxisOrientationType aMainAxis) const + { + return mMainSize + GetMarginBorderPaddingSizeInAxis(aMainAxis); + } + + nscoord GetOuterCrossSize(AxisOrientationType aCrossAxis) const + { + return mCrossSize + GetMarginBorderPaddingSizeInAxis(aCrossAxis); + } + + // Returns the distance between this FlexItem's baseline and the cross-start + // edge of its margin-box. Used in baseline alignment. + // (This function needs to be told which edge we're measuring the baseline + // from, so that it can look up the appropriate components from mMargin.) + nscoord GetBaselineOffsetFromOuterCrossEdge( + AxisEdgeType aEdge, + const FlexboxAxisTracker& aAxisTracker, + bool aUseFirstLineBaseline) const; + + float GetShareOfWeightSoFar() const { return mShareOfWeightSoFar; } + + bool IsFrozen() const { return mIsFrozen; } + + bool HadMinViolation() const { return mHadMinViolation; } + bool HadMaxViolation() const { return mHadMaxViolation; } + + // Indicates whether this item received a preliminary "measuring" reflow + // before its actual reflow. + bool HadMeasuringReflow() const { return mHadMeasuringReflow; } + + // Indicates whether this item's cross-size has been stretched (from having + // "align-self: stretch" with an auto cross-size and no auto margins in the + // cross axis). + bool IsStretched() const { return mIsStretched; } + + // Indicates whether we need to resolve an 'auto' value for the main-axis + // min-[width|height] property. + bool NeedsMinSizeAutoResolution() const + { return mNeedsMinSizeAutoResolution; } + + // Indicates whether this item is a "strut" left behind by an element with + // visibility:collapse. + bool IsStrut() const { return mIsStrut; } + + WritingMode GetWritingMode() const { return mWM; } + uint8_t GetAlignSelf() const { return mAlignSelf; } + + // Returns the flex factor (flex-grow or flex-shrink), depending on + // 'aIsUsingFlexGrow'. + // + // Asserts fatally if called on a frozen item (since frozen items are not + // flexible). + float GetFlexFactor(bool aIsUsingFlexGrow) + { + MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen"); + + return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink; + } + + // Returns the weight that we should use in the "resolving flexible lengths" + // algorithm. If we're using the flex grow factor, we just return that; + // otherwise, we return the "scaled flex shrink factor" (scaled by our flex + // base size, so that when both large and small items are shrinking, the large + // items shrink more). + // + // I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink] + // factor", to more clearly distinguish it from the actual flex-grow & + // flex-shrink factors. + // + // Asserts fatally if called on a frozen item (since frozen items are not + // flexible). + float GetWeight(bool aIsUsingFlexGrow) + { + MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen"); + + if (aIsUsingFlexGrow) { + return mFlexGrow; + } + + // We're using flex-shrink --> return mFlexShrink * mFlexBaseSize + if (mFlexBaseSize == 0) { + // Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so + // regardless of mFlexShrink, we should just return 0. + // (This is really a special-case for when mFlexShrink is infinity, to + // avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.) + return 0.0f; + } + return mFlexShrink * mFlexBaseSize; + } + + const nsSize& IntrinsicRatio() const { return mIntrinsicRatio; } + bool HasIntrinsicRatio() const { return mIntrinsicRatio != nsSize(); } + + // Getters for margin: + // =================== + const nsMargin& GetMargin() const { return mMargin; } + + // Returns the margin component for a given mozilla::Side + nscoord GetMarginComponentForSide(mozilla::Side aSide) const + { return mMargin.Side(aSide); } + + // Returns the total space occupied by this item's margins in the given axis + nscoord GetMarginSizeInAxis(AxisOrientationType aAxis) const + { + mozilla::Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start]; + mozilla::Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End]; + return GetMarginComponentForSide(startSide) + + GetMarginComponentForSide(endSide); + } + + // Getters for border/padding + // ========================== + const nsMargin& GetBorderPadding() const { return mBorderPadding; } + + // Returns the border+padding component for a given mozilla::Side + nscoord GetBorderPaddingComponentForSide(mozilla::Side aSide) const + { return mBorderPadding.Side(aSide); } + + // Returns the total space occupied by this item's borders and padding in + // the given axis + nscoord GetBorderPaddingSizeInAxis(AxisOrientationType aAxis) const + { + mozilla::Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start]; + mozilla::Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End]; + return GetBorderPaddingComponentForSide(startSide) + + GetBorderPaddingComponentForSide(endSide); + } + + // Getter for combined margin/border/padding + // ========================================= + // Returns the total space occupied by this item's margins, borders and + // padding in the given axis + nscoord GetMarginBorderPaddingSizeInAxis(AxisOrientationType aAxis) const + { + return GetMarginSizeInAxis(aAxis) + GetBorderPaddingSizeInAxis(aAxis); + } + + // Setters + // ======= + // Helper to set the resolved value of min-[width|height]:auto for the main + // axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.) + void UpdateMainMinSize(nscoord aNewMinSize) + { + NS_ASSERTION(aNewMinSize >= 0, + "How did we end up with a negative min-size?"); + MOZ_ASSERT(mMainMaxSize >= aNewMinSize, + "Should only use this function for resolving min-size:auto, " + "and main max-size should be an upper-bound for resolved val"); + MOZ_ASSERT(mNeedsMinSizeAutoResolution && + (mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())), + "Should only use this function for resolving min-size:auto, " + "so we shouldn't already have a nonzero min-size established " + "(unless it's a themed-widget-imposed minimum size)"); + + if (aNewMinSize > mMainMinSize) { + mMainMinSize = aNewMinSize; + // Also clamp main-size to be >= new min-size: + mMainSize = std::max(mMainSize, aNewMinSize); + } + mNeedsMinSizeAutoResolution = false; + } + + // This sets our flex base size, and then sets our main size to the + // resulting "hypothetical main size" (the base size clamped to our + // main-axis [min,max] sizing constraints). + void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) + { + MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_INTRINSICSIZE, + "flex base size shouldn't change after we're frozen " + "(unless we're just resolving an intrinsic size)"); + mFlexBaseSize = aNewFlexBaseSize; + + // Before we've resolved flexible lengths, we keep mMainSize set to + // the 'hypothetical main size', which is the flex base size, clamped + // to the [min,max] range: + mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize); + } + + // Setters used while we're resolving flexible lengths + // --------------------------------------------------- + + // Sets the main-size of our flex item's content-box. + void SetMainSize(nscoord aNewMainSize) + { + MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen"); + mMainSize = aNewMainSize; + } + + void SetShareOfWeightSoFar(float aNewShare) + { + MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f, + "shouldn't be giving this item any share of the weight " + "after it's frozen"); + mShareOfWeightSoFar = aNewShare; + } + + void Freeze() { mIsFrozen = true; } + + void SetHadMinViolation() + { + MOZ_ASSERT(!mIsFrozen, + "shouldn't be changing main size & having violations " + "after we're frozen"); + mHadMinViolation = true; + } + void SetHadMaxViolation() + { + MOZ_ASSERT(!mIsFrozen, + "shouldn't be changing main size & having violations " + "after we're frozen"); + mHadMaxViolation = true; + } + void ClearViolationFlags() + { mHadMinViolation = mHadMaxViolation = false; } + + // Setters for values that are determined after we've resolved our main size + // ------------------------------------------------------------------------- + + // Sets the main-axis position of our flex item's content-box. + // (This is the distance between the main-start edge of the flex container + // and the main-start edge of the flex item's content-box.) + void SetMainPosition(nscoord aPosn) { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mMainPosn = aPosn; + } + + // Sets the cross-size of our flex item's content-box. + void SetCrossSize(nscoord aCrossSize) { + MOZ_ASSERT(!mIsStretched, + "Cross size shouldn't be modified after it's been stretched"); + mCrossSize = aCrossSize; + } + + // Sets the cross-axis position of our flex item's content-box. + // (This is the distance between the cross-start edge of the flex container + // and the cross-start edge of the flex item.) + void SetCrossPosition(nscoord aPosn) { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mCrossPosn = aPosn; + } + + // After a FlexItem has had a reflow, this method can be used to cache its + // (possibly-unresolved) ascent, in case it's needed later for + // baseline-alignment or to establish the container's baseline. + // (NOTE: This can be marked 'const' even though it's modifying mAscent, + // because mAscent is mutable. It's nice for this to be 'const', because it + // means our final reflow can iterate over const FlexItem pointers, and we + // can be sure it's not modifying those FlexItems, except via this method.) + void SetAscent(nscoord aAscent) const { + mAscent = aAscent; // NOTE: this may be ASK_FOR_BASELINE + } + + void SetHadMeasuringReflow() { + mHadMeasuringReflow = true; + } + + void SetIsStretched() { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mIsStretched = true; + } + + // Setter for margin components (for resolving "auto" margins) + void SetMarginComponentForSide(mozilla::Side aSide, nscoord aLength) + { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mMargin.Side(aSide) = aLength; + } + + void ResolveStretchedCrossSize(nscoord aLineCrossSize, + const FlexboxAxisTracker& aAxisTracker); + + uint32_t GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const; + + // Once the main size has been resolved, should we bother doing layout to + // establish the cross size? + bool CanMainSizeInfluenceCrossSize(const FlexboxAxisTracker& aAxisTracker) const; + +protected: + // Helper called by the constructor, to set mNeedsMinSizeAutoResolution: + void CheckForMinSizeAuto(const ReflowInput& aFlexItemReflowInput, + const FlexboxAxisTracker& aAxisTracker); + + // Our frame: + nsIFrame* const mFrame; + + // Values that we already know in constructor: (and are hence mostly 'const') + const float mFlexGrow; + const float mFlexShrink; + + const nsSize mIntrinsicRatio; + + const nsMargin mBorderPadding; + nsMargin mMargin; // non-const because we need to resolve auto margins + + // These are non-const so that we can lazily update them with the item's + // intrinsic size (obtained via a "measuring" reflow), when necessary. + // (e.g. for "flex-basis:auto;height:auto" & "min-height:auto") + nscoord mFlexBaseSize; + nscoord mMainMinSize; + nscoord mMainMaxSize; + + const nscoord mCrossMinSize; + const nscoord mCrossMaxSize; + + // Values that we compute after constructor: + nscoord mMainSize; + nscoord mMainPosn; + nscoord mCrossSize; + nscoord mCrossPosn; + mutable nscoord mAscent; // Mutable b/c it's set & resolved lazily, sometimes + // via const pointer. See comment above SetAscent(). + + // Temporary state, while we're resolving flexible widths (for our main size) + // XXXdholbert To save space, we could use a union to make these variables + // overlay the same memory as some other member vars that aren't touched + // until after main-size has been resolved. In particular, these could share + // memory with mMainPosn through mAscent, and mIsStretched. + float mShareOfWeightSoFar; + bool mIsFrozen; + bool mHadMinViolation; + bool mHadMaxViolation; + + // Misc: + bool mHadMeasuringReflow; // Did this item get a preliminary reflow, + // to measure its desired height? + bool mIsStretched; // See IsStretched() documentation + bool mIsStrut; // Is this item a "strut" left behind by an element + // with visibility:collapse? + + // Does this item need to resolve a min-[width|height]:auto (in main-axis). + bool mNeedsMinSizeAutoResolution; + + const WritingMode mWM; // The flex item's writing mode. + uint8_t mAlignSelf; // My "align-self" computed value (with "auto" + // swapped out for parent"s "align-items" value, + // in our constructor). +}; + +/** + * Represents a single flex line in a flex container. + * Manages a linked list of the FlexItems that are in the line. + */ +class nsFlexContainerFrame::FlexLine : public LinkedListElement<FlexLine> +{ +public: + FlexLine() + : mNumItems(0), + mNumFrozenItems(0), + mTotalInnerHypotheticalMainSize(0), + mTotalOuterHypotheticalMainSize(0), + mLineCrossSize(0), + mFirstBaselineOffset(nscoord_MIN), + mLastBaselineOffset(nscoord_MIN) + {} + + // Returns the sum of our FlexItems' outer hypothetical main sizes. + // ("outer" = margin-box, and "hypothetical" = before flexing) + nscoord GetTotalOuterHypotheticalMainSize() const { + return mTotalOuterHypotheticalMainSize; + } + + // Accessors for our FlexItems & information about them: + FlexItem* GetFirstItem() + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mItems.getFirst(); + } + + const FlexItem* GetFirstItem() const + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mItems.getFirst(); + } + + FlexItem* GetLastItem() + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mItems.getLast(); + } + + const FlexItem* GetLastItem() const + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mItems.getLast(); + } + + bool IsEmpty() const + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mItems.isEmpty(); + } + + uint32_t NumItems() const + { + MOZ_ASSERT(mItems.isEmpty() == (mNumItems == 0), + "mNumItems bookkeeping is off"); + return mNumItems; + } + + // Adds the given FlexItem to our list of items (at the front or back + // depending on aShouldInsertAtFront), and adds its hypothetical + // outer & inner main sizes to our totals. Use this method instead of + // directly modifying the item list, so that our bookkeeping remains correct. + void AddItem(FlexItem* aItem, + bool aShouldInsertAtFront, + nscoord aItemInnerHypotheticalMainSize, + nscoord aItemOuterHypotheticalMainSize) + { + if (aShouldInsertAtFront) { + mItems.insertFront(aItem); + } else { + mItems.insertBack(aItem); + } + + // Update our various bookkeeping member-vars: + mNumItems++; + if (aItem->IsFrozen()) { + mNumFrozenItems++; + } + mTotalInnerHypotheticalMainSize += aItemInnerHypotheticalMainSize; + mTotalOuterHypotheticalMainSize += aItemOuterHypotheticalMainSize; + } + + // Computes the cross-size and baseline position of this FlexLine, based on + // its FlexItems. + void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker); + + // Returns the cross-size of this line. + nscoord GetLineCrossSize() const { return mLineCrossSize; } + + // Setter for line cross-size -- needed for cases where the flex container + // imposes a cross-size on the line. (e.g. for single-line flexbox, or for + // multi-line flexbox with 'align-content: stretch') + void SetLineCrossSize(nscoord aLineCrossSize) { + mLineCrossSize = aLineCrossSize; + } + + /** + * Returns the offset within this line where any baseline-aligned FlexItems + * should place their baseline. Usually, this represents a distance from the + * line's cross-start edge, but if we're internally reversing the axes (see + * AreAxesInternallyReversed()), this instead represents the distance from + * its cross-end edge. + * + * If there are no baseline-aligned FlexItems, returns nscoord_MIN. + */ + nscoord GetFirstBaselineOffset() const { + return mFirstBaselineOffset; + } + + /** + * Returns the offset within this line where any last baseline-aligned + * FlexItems should place their baseline. Opposite the case of the first + * baseline offset, this represents a distance from the line's cross-end + * edge (since last baseline-aligned items are flush to the cross-end edge). + * If we're internally reversing the axes, this instead represents the + * distance from the line's cross-start edge. + * + * If there are no last baseline-aligned FlexItems, returns nscoord_MIN. + */ + nscoord GetLastBaselineOffset() const { + return mLastBaselineOffset; + } + + // Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the + // CSS flexbox spec to distribute aFlexContainerMainSize among our flex items. + void ResolveFlexibleLengths(nscoord aFlexContainerMainSize); + + void PositionItemsInMainAxis(uint8_t aJustifyContent, + nscoord aContentBoxMainSize, + const FlexboxAxisTracker& aAxisTracker); + + void PositionItemsInCrossAxis(nscoord aLineStartPosition, + const FlexboxAxisTracker& aAxisTracker); + + friend class AutoFlexLineListClearer; // (needs access to mItems) + +private: + // Helpers for ResolveFlexibleLengths(): + void FreezeItemsEarly(bool aIsUsingFlexGrow); + + void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, + bool aIsFinalIteration); + + LinkedList<FlexItem> mItems; // Linked list of this line's flex items. + + uint32_t mNumItems; // Number of FlexItems in this line (in |mItems|). + // (Shouldn't change after GenerateFlexLines finishes + // with this line -- at least, not until we add support + // for splitting lines across continuations. Then we can + // update this count carefully.) + + // Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen(). + // Mostly used for optimization purposes, e.g. to bail out early from loops + // when we can tell they have nothing left to do. + uint32_t mNumFrozenItems; + + nscoord mTotalInnerHypotheticalMainSize; + nscoord mTotalOuterHypotheticalMainSize; + nscoord mLineCrossSize; + nscoord mFirstBaselineOffset; + nscoord mLastBaselineOffset; +}; + +// Information about a strut left behind by a FlexItem that's been collapsed +// using "visibility:collapse". +struct nsFlexContainerFrame::StrutInfo { + StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize) + : mItemIdx(aItemIdx), + mStrutCrossSize(aStrutCrossSize) + { + } + + uint32_t mItemIdx; // Index in the child list. + nscoord mStrutCrossSize; // The cross-size of this strut. +}; + +static void +BuildStrutInfoFromCollapsedItems(const FlexLine* aFirstLine, + nsTArray<StrutInfo>& aStruts) +{ + MOZ_ASSERT(aFirstLine, "null first line pointer"); + MOZ_ASSERT(aStruts.IsEmpty(), + "We should only build up StrutInfo once per reflow, so " + "aStruts should be empty when this is called"); + + uint32_t itemIdxInContainer = 0; + for (const FlexLine* line = aFirstLine; line; line = line->getNext()) { + for (const FlexItem* item = line->GetFirstItem(); item; + item = item->getNext()) { + if (NS_STYLE_VISIBILITY_COLLAPSE == + item->Frame()->StyleVisibility()->mVisible) { + // Note the cross size of the line as the item's strut size. + aStruts.AppendElement(StrutInfo(itemIdxInContainer, + line->GetLineCrossSize())); + } + itemIdxInContainer++; + } + } +} + +// Convenience function to get either the "order" or the "box-ordinal-group" +// property-value for a flex item (depending on whether the container is a +// modern flex container or a legacy box). +static int32_t +GetOrderOrBoxOrdinalGroup(nsIFrame* aFlexItem, bool aIsLegacyBox) +{ + if (aFlexItem->GetType() == nsGkAtoms::placeholderFrame) { + // Always treat placeholders as having the default value, which is + // 1 for (legacy) 'box-ordinal-group' and 0 for 'order'. + return aIsLegacyBox ? 1 : 0; + } + if (aIsLegacyBox) { + // We'll be using mBoxOrdinal, which has type uint32_t. However, the modern + // 'order' property (whose functionality we're co-opting) has type int32_t. + // So: if we happen to have a uint32_t value that's greater than INT32_MAX, + // we clamp it rather than letting it overflow. Chances are, this is just + // an author using BIG_VALUE anyway, so the clamped value should be fine. + // (particularly since sufficiently-huge values are busted in Chrome/WebKit + // per https://bugs.chromium.org/p/chromium/issues/detail?id=599645 ) + uint32_t clampedBoxOrdinal = std::min(aFlexItem->StyleXUL()->mBoxOrdinal, + static_cast<uint32_t>(INT32_MAX)); + return static_cast<int32_t>(clampedBoxOrdinal); + } + + // Normal case: just use modern 'order' property. + return aFlexItem->StylePosition()->mOrder; +} + +// Helper-function to find the first non-anonymous-box descendent of aFrame. +static nsIFrame* +GetFirstNonAnonBoxDescendant(nsIFrame* aFrame) +{ + while (aFrame) { + nsIAtom* pseudoTag = aFrame->StyleContext()->GetPseudo(); + + // If aFrame isn't an anonymous container, then it'll do. + if (!pseudoTag || // No pseudotag. + !nsCSSAnonBoxes::IsAnonBox(pseudoTag) || // Pseudotag isn't anon. + nsCSSAnonBoxes::IsNonElement(pseudoTag)) { // Text, not a container. + break; + } + + // Otherwise, descend to its first child and repeat. + + // SPECIAL CASE: if we're dealing with an anonymous table, then it might + // be wrapping something non-anonymous in its caption or col-group lists + // (instead of its principal child list), so we have to look there. + // (Note: For anonymous tables that have a non-anon cell *and* a non-anon + // column, we'll always return the column. This is fine; we're really just + // looking for a handle to *anything* with a meaningful content node inside + // the table, for use in DOM comparisons to things outside of the table.) + if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableWrapperFrame)) { + nsIFrame* captionDescendant = + GetFirstNonAnonBoxDescendant(aFrame->GetChildList(kCaptionList).FirstChild()); + if (captionDescendant) { + return captionDescendant; + } + } else if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableFrame)) { + nsIFrame* colgroupDescendant = + GetFirstNonAnonBoxDescendant(aFrame->GetChildList(kColGroupList).FirstChild()); + if (colgroupDescendant) { + return colgroupDescendant; + } + } + + // USUAL CASE: Descend to the first child in principal list. + aFrame = aFrame->PrincipalChildList().FirstChild(); + } + return aFrame; +} + +/** + * Sorting helper-function that compares two frames' "order" property-values, + * and if they're equal, compares the DOM positions of their corresponding + * content nodes. Returns true if aFrame1 is "less than or equal to" aFrame2 + * according to this comparison. + * + * Note: This can't be a static function, because we need to pass it as a + * template argument. (Only functions with external linkage can be passed as + * template arguments.) + * + * @return true if the computed "order" property of aFrame1 is less than that + * of aFrame2, or if the computed "order" values are equal and aFrame1's + * corresponding DOM node is earlier than aFrame2's in the DOM tree. + * Otherwise, returns false. + */ +bool +IsOrderLEQWithDOMFallback(nsIFrame* aFrame1, + nsIFrame* aFrame2) +{ + MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(), + "this method only intended for comparing flex items"); + MOZ_ASSERT(aFrame1->GetParent() == aFrame2->GetParent(), + "this method only intended for comparing siblings"); + if (aFrame1 == aFrame2) { + // Anything is trivially LEQ itself, so we return "true" here... but it's + // probably bad if we end up actually needing this, so let's assert. + NS_ERROR("Why are we checking if a frame is LEQ itself?"); + return true; + } + + const bool isInLegacyBox = IsLegacyBox(aFrame1->GetParent()); + + int32_t order1 = GetOrderOrBoxOrdinalGroup(aFrame1, isInLegacyBox); + int32_t order2 = GetOrderOrBoxOrdinalGroup(aFrame2, isInLegacyBox); + + if (order1 != order2) { + return order1 < order2; + } + + // The "order" values are equal, so we need to fall back on DOM comparison. + // For that, we need to dig through any anonymous box wrapper frames to find + // the actual frame that corresponds to our child content. + aFrame1 = GetFirstNonAnonBoxDescendant(aFrame1); + aFrame2 = GetFirstNonAnonBoxDescendant(aFrame2); + MOZ_ASSERT(aFrame1 && aFrame2, + "why do we have an anonymous box without any " + "non-anonymous descendants?"); + + + // Special case: + // If either frame is for generated content from ::before or ::after, then + // we can't use nsContentUtils::PositionIsBefore(), since that method won't + // recognize generated content as being an actual sibling of other nodes. + // We know where ::before and ::after nodes *effectively* insert in the DOM + // tree, though (at the beginning & end), so we can just special-case them. + nsIAtom* pseudo1 = + nsPlaceholderFrame::GetRealFrameFor(aFrame1)->StyleContext()->GetPseudo(); + nsIAtom* pseudo2 = + nsPlaceholderFrame::GetRealFrameFor(aFrame2)->StyleContext()->GetPseudo(); + + if (pseudo1 == nsCSSPseudoElements::before || + pseudo2 == nsCSSPseudoElements::after) { + // frame1 is ::before and/or frame2 is ::after => frame1 is LEQ frame2. + return true; + } + if (pseudo1 == nsCSSPseudoElements::after || + pseudo2 == nsCSSPseudoElements::before) { + // frame1 is ::after and/or frame2 is ::before => frame1 is not LEQ frame2. + return false; + } + + // Usual case: Compare DOM position. + nsIContent* content1 = aFrame1->GetContent(); + nsIContent* content2 = aFrame2->GetContent(); + MOZ_ASSERT(content1 != content2, + "Two different flex items are using the same nsIContent node for " + "comparison, so we may be sorting them in an arbitrary order"); + + return nsContentUtils::PositionIsBefore(content1, content2); +} + +/** + * Sorting helper-function that compares two frames' "order" property-values. + * Returns true if aFrame1 is "less than or equal to" aFrame2 according to this + * comparison. + * + * Note: This can't be a static function, because we need to pass it as a + * template argument. (Only functions with external linkage can be passed as + * template arguments.) + * + * @return true if the computed "order" property of aFrame1 is less than or + * equal to that of aFrame2. Otherwise, returns false. + */ +bool +IsOrderLEQ(nsIFrame* aFrame1, + nsIFrame* aFrame2) +{ + MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(), + "this method only intended for comparing flex items"); + MOZ_ASSERT(aFrame1->GetParent() == aFrame2->GetParent(), + "this method only intended for comparing siblings"); + + const bool isInLegacyBox = IsLegacyBox(aFrame1->GetParent()); + + int32_t order1 = GetOrderOrBoxOrdinalGroup(aFrame1, isInLegacyBox); + int32_t order2 = GetOrderOrBoxOrdinalGroup(aFrame2, isInLegacyBox); + + return order1 <= order2; +} + +uint8_t +SimplifyAlignOrJustifyContentForOneItem(uint16_t aAlignmentVal, + bool aIsAlign) +{ + // Mask away any explicit fallback, to get the main (non-fallback) part of + // the specified value: + uint16_t specified = aAlignmentVal & NS_STYLE_ALIGN_ALL_BITS; + + // XXX strip off <overflow-position> bits until we implement it (bug 1311892) + specified &= ~NS_STYLE_ALIGN_FLAG_BITS; + + // FIRST: handle a special-case for "justify-content:stretch" (or equivalent), + // which requires that we ignore any author-provided explicit fallback value. + if (specified == NS_STYLE_ALIGN_NORMAL) { + // In a flex container, *-content: "'normal' behaves as 'stretch'". + // Do that conversion early, so it benefits from our 'stretch' special-case. + // https://drafts.csswg.org/css-align-3/#distribution-flex + specified = NS_STYLE_ALIGN_STRETCH; + } + if (!aIsAlign && specified == NS_STYLE_ALIGN_STRETCH) { + // In a flex container, in "justify-content Axis: [...] 'stretch' behaves + // as 'flex-start' (ignoring the specified fallback alignment, if any)." + // https://drafts.csswg.org/css-align-3/#distribution-flex + // So, we just directly return 'flex-start', & ignore explicit fallback.. + return NS_STYLE_ALIGN_FLEX_START; + } + + // Now check for an explicit fallback value (and if it's present, use it). + uint16_t explicitFallback = aAlignmentVal >> NS_STYLE_ALIGN_ALL_SHIFT; + if (explicitFallback) { + // XXX strip off <overflow-position> bits until we implement it + // (bug 1311892) + explicitFallback &= ~NS_STYLE_ALIGN_FLAG_BITS; + return explicitFallback; + } + + // There's no explicit fallback. Use the implied fallback values for + // space-{between,around,evenly} (since those values only make sense with + // multiple alignment subjects), and otherwise just use the specified value: + switch (specified) { + case NS_STYLE_ALIGN_SPACE_BETWEEN: + return NS_STYLE_ALIGN_START; + case NS_STYLE_ALIGN_SPACE_AROUND: + case NS_STYLE_ALIGN_SPACE_EVENLY: + return NS_STYLE_ALIGN_CENTER; + default: + return specified; + } +} + +uint16_t +nsFlexContainerFrame::CSSAlignmentForAbsPosChild( + const ReflowInput& aChildRI, + LogicalAxis aLogicalAxis) const +{ + WritingMode wm = GetWritingMode(); + const FlexboxAxisTracker + axisTracker(this, wm, AxisTrackerFlags::eAllowBottomToTopChildOrdering); + + // If we're row-oriented and the caller is asking about our inline axis (or + // alternately, if we're column-oriented and the caller is asking about our + // block axis), then the caller is really asking about our *main* axis. + // Otherwise, the caller is asking about our cross axis. + const bool isMainAxis = (axisTracker.IsRowOriented() == + (aLogicalAxis == eLogicalAxisInline)); + const nsStylePosition* containerStylePos = StylePosition(); + const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed() + : axisTracker.IsCrossAxisReversed(); + + uint8_t alignment; + if (isMainAxis) { + alignment = SimplifyAlignOrJustifyContentForOneItem( + containerStylePos->mJustifyContent, + /*aIsAlign = */false); + } else { + const uint8_t alignContent = SimplifyAlignOrJustifyContentForOneItem( + containerStylePos->mAlignContent, + /*aIsAlign = */true); + if (NS_STYLE_FLEX_WRAP_NOWRAP != containerStylePos->mFlexWrap && + alignContent != NS_STYLE_ALIGN_STRETCH) { + // Multi-line, align-content isn't stretch --> align-content determines + // this child's alignment in the cross axis. + alignment = alignContent; + } else { + // Single-line, or multi-line but the (one) line stretches to fill + // container. Respect align-self. + alignment = aChildRI.mStylePosition->UsedAlignSelf(StyleContext()); + // XXX strip off <overflow-position> bits until we implement it + // (bug 1311892) + alignment &= ~NS_STYLE_ALIGN_FLAG_BITS; + + if (alignment == NS_STYLE_ALIGN_NORMAL) { + // "the 'normal' keyword behaves as 'start' on replaced + // absolutely-positioned boxes, and behaves as 'stretch' on all other + // absolutely-positioned boxes." + // https://drafts.csswg.org/css-align/#align-abspos + alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced) ? + NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_STRETCH; + } + } + } + + // Resolve flex-start, flex-end, auto, left, right, baseline, last baseline; + if (alignment == NS_STYLE_ALIGN_FLEX_START) { + alignment = isAxisReversed ? NS_STYLE_ALIGN_END : NS_STYLE_ALIGN_START; + } else if (alignment == NS_STYLE_ALIGN_FLEX_END) { + alignment = isAxisReversed ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END; + } else if (alignment == NS_STYLE_ALIGN_LEFT || + alignment == NS_STYLE_ALIGN_RIGHT) { + if (aLogicalAxis == eLogicalAxisInline) { + const bool isLeft = (alignment == NS_STYLE_ALIGN_LEFT); + alignment = (isLeft == wm.IsBidiLTR()) ? NS_STYLE_ALIGN_START + : NS_STYLE_ALIGN_END; + } else { + alignment = NS_STYLE_ALIGN_START; + } + } else if (alignment == NS_STYLE_ALIGN_BASELINE) { + alignment = NS_STYLE_ALIGN_START; + } else if (alignment == NS_STYLE_ALIGN_LAST_BASELINE) { + alignment = NS_STYLE_ALIGN_END; + } + + return alignment; +} + +bool +nsFlexContainerFrame::IsHorizontal() +{ + const FlexboxAxisTracker axisTracker(this, GetWritingMode()); + return axisTracker.IsMainAxisHorizontal(); +} + +UniquePtr<FlexItem> +nsFlexContainerFrame::GenerateFlexItemForChild( + nsPresContext* aPresContext, + nsIFrame* aChildFrame, + const ReflowInput& aParentReflowInput, + const FlexboxAxisTracker& aAxisTracker) +{ + // Create temporary reflow state just for sizing -- to get hypothetical + // main-size and the computed values of min / max main-size property. + // (This reflow state will _not_ be used for reflow.) + ReflowInput + childRI(aPresContext, aParentReflowInput, aChildFrame, + aParentReflowInput.ComputedSize(aChildFrame->GetWritingMode())); + + // FLEX GROW & SHRINK WEIGHTS + // -------------------------- + float flexGrow, flexShrink; + if (IsLegacyBox(this)) { + flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex; + } else { + const nsStylePosition* stylePos = aChildFrame->StylePosition(); + flexGrow = stylePos->mFlexGrow; + flexShrink = stylePos->mFlexShrink; + } + + WritingMode childWM = childRI.GetWritingMode(); + + // MAIN SIZES (flex base size, min/max size) + // ----------------------------------------- + nscoord flexBaseSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM, + childRI.ComputedISize(), + childRI.ComputedBSize()); + nscoord mainMinSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM, + childRI.ComputedMinISize(), + childRI.ComputedMinBSize()); + nscoord mainMaxSize = GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, childWM, + childRI.ComputedMaxISize(), + childRI.ComputedMaxBSize()); + // This is enforced by the ReflowInput where these values come from: + MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size"); + + // CROSS SIZES (tentative cross size, min/max cross size) + // ------------------------------------------------------ + // Grab the cross size from the reflow state. This might be the right value, + // or we might resolve it to something else in SizeItemInCrossAxis(); hence, + // it's tentative. See comment under "Cross Size Determination" for more. + nscoord tentativeCrossSize = + GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, childWM, + childRI.ComputedISize(), + childRI.ComputedBSize()); + nscoord crossMinSize = + GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, childWM, + childRI.ComputedMinISize(), + childRI.ComputedMinBSize()); + nscoord crossMaxSize = + GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, childWM, + childRI.ComputedMaxISize(), + childRI.ComputedMaxBSize()); + + // SPECIAL-CASE FOR WIDGET-IMPOSED SIZES + // Check if we're a themed widget, in which case we might have a minimum + // main & cross size imposed by our widget (which we can't go below), or + // (more severe) our widget might have only a single valid size. + bool isFixedSizeWidget = false; + const nsStyleDisplay* disp = aChildFrame->StyleDisplay(); + if (aChildFrame->IsThemed(disp)) { + LayoutDeviceIntSize widgetMinSize; + bool canOverride = true; + aPresContext->GetTheme()-> + GetMinimumWidgetSize(aPresContext, aChildFrame, + disp->mAppearance, + &widgetMinSize, &canOverride); + + nscoord widgetMainMinSize = + aPresContext->DevPixelsToAppUnits( + aAxisTracker.GetMainComponent(widgetMinSize)); + nscoord widgetCrossMinSize = + aPresContext->DevPixelsToAppUnits( + aAxisTracker.GetCrossComponent(widgetMinSize)); + + // GMWS() returns border-box. We need content-box, so subtract + // borderPadding (but don't let that push our min sizes below 0). + nsMargin& bp = childRI.ComputedPhysicalBorderPadding(); + widgetMainMinSize = std::max(widgetMainMinSize - + aAxisTracker.GetMarginSizeInMainAxis(bp), 0); + widgetCrossMinSize = std::max(widgetCrossMinSize - + aAxisTracker.GetMarginSizeInCrossAxis(bp), 0); + + if (!canOverride) { + // Fixed-size widget: freeze our main-size at the widget's mandated size. + // (Set min and max main-sizes to that size, too, to keep us from + // clamping to any other size later on.) + flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize; + tentativeCrossSize = crossMinSize = crossMaxSize = widgetCrossMinSize; + isFixedSizeWidget = true; + } else { + // Variable-size widget: ensure our min/max sizes are at least as large + // as the widget's mandated minimum size, so we don't flex below that. + mainMinSize = std::max(mainMinSize, widgetMainMinSize); + mainMaxSize = std::max(mainMaxSize, widgetMainMinSize); + + if (tentativeCrossSize != NS_INTRINSICSIZE) { + tentativeCrossSize = std::max(tentativeCrossSize, widgetCrossMinSize); + } + crossMinSize = std::max(crossMinSize, widgetCrossMinSize); + crossMaxSize = std::max(crossMaxSize, widgetCrossMinSize); + } + } + + // Construct the flex item! + auto item = MakeUnique<FlexItem>(childRI, + flexGrow, flexShrink, flexBaseSize, + mainMinSize, mainMaxSize, + tentativeCrossSize, + crossMinSize, crossMaxSize, + aAxisTracker); + + // If we're inflexible, we can just freeze to our hypothetical main-size + // up-front. Similarly, if we're a fixed-size widget, we only have one + // valid size, so we freeze to keep ourselves from flexing. + if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) { + item->Freeze(); + } + + // Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might + // require us to reflow the item to measure content height) + ResolveAutoFlexBasisAndMinSize(aPresContext, *item, + childRI, aAxisTracker); + return item; +} + +// Static helper-functions for ResolveAutoFlexBasisAndMinSize(): +// ------------------------------------------------------------- +// Indicates whether the cross-size property is set to something definite. +// The logic here should be similar to the logic for isAutoWidth/isAutoHeight +// in nsFrame::ComputeSizeWithIntrinsicDimensions(). +static bool +IsCrossSizeDefinite(const ReflowInput& aItemReflowInput, + const FlexboxAxisTracker& aAxisTracker) +{ + const nsStylePosition* pos = aItemReflowInput.mStylePosition; + if (aAxisTracker.IsCrossAxisHorizontal()) { + return pos->mWidth.GetUnit() != eStyleUnit_Auto; + } + // else, vertical. (We need to use IsAutoHeight() to catch e.g. %-height + // applied to indefinite-height containing block, which counts as auto.) + nscoord cbHeight = aItemReflowInput.mCBReflowInput->ComputedHeight(); + return !nsLayoutUtils::IsAutoHeight(pos->mHeight, cbHeight); +} + +// If aFlexItem has a definite cross size, this function returns it, for usage +// (in combination with an intrinsic ratio) for resolving the item's main size +// or main min-size. +// +// The parameter "aMinSizeFallback" indicates whether we should fall back to +// returning the cross min-size, when the cross size is indefinite. (This param +// should be set IFF the caller intends to resolve the main min-size.) If this +// param is true, then this function is guaranteed to return a definite value +// (i.e. not NS_AUTOHEIGHT, excluding cases where huge sizes are involved). +// +// XXXdholbert the min-size behavior here is based on my understanding in +// http://lists.w3.org/Archives/Public/www-style/2014Jul/0053.html +// If my understanding there ends up being wrong, we'll need to update this. +static nscoord +CrossSizeToUseWithRatio(const FlexItem& aFlexItem, + const ReflowInput& aItemReflowInput, + bool aMinSizeFallback, + const FlexboxAxisTracker& aAxisTracker) +{ + if (aFlexItem.IsStretched()) { + // Definite cross-size, imposed via 'align-self:stretch' & flex container. + return aFlexItem.GetCrossSize(); + } + + if (IsCrossSizeDefinite(aItemReflowInput, aAxisTracker)) { + // Definite cross size. + return GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, aFlexItem.GetWritingMode(), + aItemReflowInput.ComputedISize(), + aItemReflowInput.ComputedBSize()); + } + + if (aMinSizeFallback) { + // Indefinite cross-size, and we're resolving main min-size, so we'll fall + // back to ussing the cross min-size (which should be definite). + return GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, aFlexItem.GetWritingMode(), + aItemReflowInput.ComputedMinISize(), + aItemReflowInput.ComputedMinBSize()); + } + + // Indefinite cross-size. + return NS_AUTOHEIGHT; +} + +// Convenience function; returns a main-size, given a cross-size and an +// intrinsic ratio. The intrinsic ratio must not have 0 in its cross-axis +// component (or else we'll divide by 0). +static nscoord +MainSizeFromAspectRatio(nscoord aCrossSize, + const nsSize& aIntrinsicRatio, + const FlexboxAxisTracker& aAxisTracker) +{ + MOZ_ASSERT(aAxisTracker.GetCrossComponent(aIntrinsicRatio) != 0, + "Invalid ratio; will divide by 0! Caller should've checked..."); + + if (aAxisTracker.IsCrossAxisHorizontal()) { + // cross axis horiz --> aCrossSize is a width. Converting to height. + return NSCoordMulDiv(aCrossSize, aIntrinsicRatio.height, aIntrinsicRatio.width); + } + // cross axis vert --> aCrossSize is a height. Converting to width. + return NSCoordMulDiv(aCrossSize, aIntrinsicRatio.width, aIntrinsicRatio.height); +} + +// Partially resolves "min-[width|height]:auto" and returns the resulting value. +// By "partially", I mean we don't consider the min-content size (but we do +// consider flex-basis, main max-size, and the intrinsic aspect ratio). +// The caller is responsible for computing & considering the min-content size +// in combination with the partially-resolved value that this function returns. +// +// Spec reference: http://dev.w3.org/csswg/css-flexbox/#min-size-auto +static nscoord +PartiallyResolveAutoMinSize(const FlexItem& aFlexItem, + const ReflowInput& aItemReflowInput, + const FlexboxAxisTracker& aAxisTracker) +{ + MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(), + "only call for FlexItems that need min-size auto resolution"); + + nscoord minMainSize = nscoord_MAX; // Intentionally huge; we'll shrink it + // from here, w/ std::min(). + + // We need the smallest of: + // * the used flex-basis, if the computed flex-basis was 'auto': + // XXXdholbert ('auto' might be renamed to 'main-size'; see bug 1032922) + if (eStyleUnit_Auto == + aItemReflowInput.mStylePosition->mFlexBasis.GetUnit() && + aFlexItem.GetFlexBaseSize() != NS_AUTOHEIGHT) { + // NOTE: We skip this if the flex base size depends on content & isn't yet + // resolved. This is OK, because the caller is responsible for computing + // the min-content height and min()'ing it with the value we return, which + // is equivalent to what would happen if we min()'d that at this point. + minMainSize = std::min(minMainSize, aFlexItem.GetFlexBaseSize()); + } + + // * the computed max-width (max-height), if that value is definite: + nscoord maxSize = + GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, aFlexItem.GetWritingMode(), + aItemReflowInput.ComputedMaxISize(), + aItemReflowInput.ComputedMaxBSize()); + if (maxSize != NS_UNCONSTRAINEDSIZE) { + minMainSize = std::min(minMainSize, maxSize); + } + + // * if the item has no intrinsic aspect ratio, its min-content size: + // --- SKIPPING THIS IN THIS FUNCTION --- caller's responsibility. + + // * if the item has an intrinsic aspect ratio, the width (height) calculated + // from the aspect ratio and any definite size constraints in the opposite + // dimension. + if (aAxisTracker.GetCrossComponent(aFlexItem.IntrinsicRatio()) != 0) { + // We have a usable aspect ratio. (not going to divide by 0) + const bool useMinSizeIfCrossSizeIsIndefinite = true; + nscoord crossSizeToUseWithRatio = + CrossSizeToUseWithRatio(aFlexItem, aItemReflowInput, + useMinSizeIfCrossSizeIsIndefinite, + aAxisTracker); + nscoord minMainSizeFromRatio = + MainSizeFromAspectRatio(crossSizeToUseWithRatio, + aFlexItem.IntrinsicRatio(), aAxisTracker); + minMainSize = std::min(minMainSize, minMainSizeFromRatio); + } + + return minMainSize; +} + +// Resolves flex-basis:auto, using the given intrinsic ratio and the flex +// item's cross size. On success, updates the flex item with its resolved +// flex-basis and returns true. On failure (e.g. if the ratio is invalid or +// the cross-size is indefinite), returns false. +static bool +ResolveAutoFlexBasisFromRatio(FlexItem& aFlexItem, + const ReflowInput& aItemReflowInput, + const FlexboxAxisTracker& aAxisTracker) +{ + MOZ_ASSERT(NS_AUTOHEIGHT == aFlexItem.GetFlexBaseSize(), + "Should only be called to resolve an 'auto' flex-basis"); + // If the flex item has ... + // - an intrinsic aspect ratio, + // - a [used] flex-basis of 'main-size' [auto?] [We have this, if we're here.] + // - a definite cross size + // then the flex base size is calculated from its inner cross size and the + // flex item’s intrinsic aspect ratio. + if (aAxisTracker.GetCrossComponent(aFlexItem.IntrinsicRatio()) != 0) { + // We have a usable aspect ratio. (not going to divide by 0) + const bool useMinSizeIfCrossSizeIsIndefinite = false; + nscoord crossSizeToUseWithRatio = + CrossSizeToUseWithRatio(aFlexItem, aItemReflowInput, + useMinSizeIfCrossSizeIsIndefinite, + aAxisTracker); + if (crossSizeToUseWithRatio != NS_AUTOHEIGHT) { + // We have a definite cross-size + nscoord mainSizeFromRatio = + MainSizeFromAspectRatio(crossSizeToUseWithRatio, + aFlexItem.IntrinsicRatio(), aAxisTracker); + aFlexItem.SetFlexBaseSizeAndMainSize(mainSizeFromRatio); + return true; + } + } + return false; +} + +// Note: If & when we handle "min-height: min-content" for flex items, +// we may want to resolve that in this function, too. +void +nsFlexContainerFrame:: + ResolveAutoFlexBasisAndMinSize(nsPresContext* aPresContext, + FlexItem& aFlexItem, + const ReflowInput& aItemReflowInput, + const FlexboxAxisTracker& aAxisTracker) +{ + // (Note: We should never have a used flex-basis of "auto" if our main axis + // is horizontal; width values should always be resolvable without reflow.) + const bool isMainSizeAuto = (!aAxisTracker.IsMainAxisHorizontal() && + NS_AUTOHEIGHT == aFlexItem.GetFlexBaseSize()); + + const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution(); + + if (!isMainSizeAuto && !isMainMinSizeAuto) { + // Nothing to do; this function is only needed for flex items + // with a used flex-basis of "auto" or a min-main-size of "auto". + return; + } + + // We may be about to do computations based on our item's cross-size + // (e.g. using it as a contstraint when measuring our content in the + // main axis, or using it with the intrinsic ratio to obtain a main size). + // BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size (if + // it's got 'align-self:stretch'), for a certain case where the spec says + // the stretched cross size is considered "definite". That case is if we + // have a single-line (nowrap) flex container which itself has a definite + // cross-size. Otherwise, we'll wait to do stretching, since (in other + // cases) we don't know how much the item should stretch yet. + const ReflowInput* flexContainerRI = aItemReflowInput.mParentReflowInput; + MOZ_ASSERT(flexContainerRI, + "flex item's reflow state should have ptr to container's state"); + if (NS_STYLE_FLEX_WRAP_NOWRAP == flexContainerRI->mStylePosition->mFlexWrap) { + // XXXdholbert Maybe this should share logic with ComputeCrossSize()... + // Alternately, maybe tentative container cross size should be passed down. + nscoord containerCrossSize = + GET_CROSS_COMPONENT_LOGICAL(aAxisTracker, aAxisTracker.GetWritingMode(), + flexContainerRI->ComputedISize(), + flexContainerRI->ComputedBSize()); + // Is container's cross size "definite"? + // (Container's cross size is definite if cross-axis is horizontal, or if + // cross-axis is vertical and the cross-size is not NS_AUTOHEIGHT.) + if (aAxisTracker.IsCrossAxisHorizontal() || + containerCrossSize != NS_AUTOHEIGHT) { + aFlexItem.ResolveStretchedCrossSize(containerCrossSize, aAxisTracker); + } + } + + nscoord resolvedMinSize; // (only set/used if isMainMinSizeAuto==true) + bool minSizeNeedsToMeasureContent = false; // assume the best + if (isMainMinSizeAuto) { + // Resolve the min-size, except for considering the min-content size. + // (We'll consider that later, if we need to.) + resolvedMinSize = PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput, + aAxisTracker); + if (resolvedMinSize > 0 && + aAxisTracker.GetCrossComponent(aFlexItem.IntrinsicRatio()) == 0) { + // We don't have a usable aspect ratio, so we need to consider our + // min-content size as another candidate min-size, which we'll have to + // min() with the current resolvedMinSize. + // (If resolvedMinSize were already at 0, we could skip this measurement + // because it can't go any lower. But it's not 0, so we need it.) + minSizeNeedsToMeasureContent = true; + } + } + + bool flexBasisNeedsToMeasureContent = false; // assume the best + if (isMainSizeAuto) { + if (!ResolveAutoFlexBasisFromRatio(aFlexItem, aItemReflowInput, + aAxisTracker)) { + flexBasisNeedsToMeasureContent = true; + } + } + + // Measure content, if needed (w/ intrinsic-width method or a reflow) + if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) { + if (aAxisTracker.IsMainAxisHorizontal()) { + if (minSizeNeedsToMeasureContent) { + nscoord frameMinISize = + aFlexItem.Frame()->GetMinISize(aItemReflowInput.mRenderingContext); + resolvedMinSize = std::min(resolvedMinSize, frameMinISize); + } + NS_ASSERTION(!flexBasisNeedsToMeasureContent, + "flex-basis:auto should have been resolved in the " + "reflow state, for horizontal flexbox. It shouldn't need " + "special handling here"); + } else { + // If this item is flexible (vertically), or if we're measuring the + // 'auto' min-height and our main-size is something else, then we assume + // that the computed-height we're reflowing with now could be different + // from the one we'll use for this flex item's "actual" reflow later on. + // In that case, we need to be sure the flex item treats this as a + // vertical resize, even though none of its ancestors are necessarily + // being vertically resized. + // (Note: We don't have to do this for width, because InitResizeFlags + // will always turn on mHResize on when it sees that the computed width + // is different from current width, and that's all we need.) + bool forceVerticalResizeForMeasuringReflow = + !aFlexItem.IsFrozen() || // Is the item flexible? + !flexBasisNeedsToMeasureContent; // Are we *only* measuring it for + // 'min-height:auto'? + + nscoord contentHeight = + MeasureFlexItemContentHeight(aPresContext, aFlexItem, + forceVerticalResizeForMeasuringReflow, + *flexContainerRI); + if (minSizeNeedsToMeasureContent) { + resolvedMinSize = std::min(resolvedMinSize, contentHeight); + } + if (flexBasisNeedsToMeasureContent) { + aFlexItem.SetFlexBaseSizeAndMainSize(contentHeight); + } + } + } + + if (isMainMinSizeAuto) { + aFlexItem.UpdateMainMinSize(resolvedMinSize); + } +} + +nscoord +nsFlexContainerFrame:: + MeasureFlexItemContentHeight(nsPresContext* aPresContext, + FlexItem& aFlexItem, + bool aForceVerticalResizeForMeasuringReflow, + const ReflowInput& aParentReflowInput) +{ + // Set up a reflow state for measuring the flex item's auto-height: + WritingMode wm = aFlexItem.Frame()->GetWritingMode(); + LogicalSize availSize = aParentReflowInput.ComputedSize(wm); + availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; + ReflowInput + childRIForMeasuringHeight(aPresContext, aParentReflowInput, + aFlexItem.Frame(), availSize, + nullptr, ReflowInput::CALLER_WILL_INIT); + childRIForMeasuringHeight.mFlags.mIsFlexContainerMeasuringHeight = true; + childRIForMeasuringHeight.Init(aPresContext); + + if (aFlexItem.IsStretched()) { + childRIForMeasuringHeight.SetComputedWidth(aFlexItem.GetCrossSize()); + childRIForMeasuringHeight.SetHResize(true); + } + + if (aForceVerticalResizeForMeasuringReflow) { + childRIForMeasuringHeight.SetVResize(true); + } + + ReflowOutput childDesiredSize(childRIForMeasuringHeight); + nsReflowStatus childReflowStatus; + const uint32_t flags = NS_FRAME_NO_MOVE_FRAME; + ReflowChild(aFlexItem.Frame(), aPresContext, + childDesiredSize, childRIForMeasuringHeight, + 0, 0, flags, childReflowStatus); + + MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), + "We gave flex item unconstrained available height, so it " + "should be complete"); + + FinishReflowChild(aFlexItem.Frame(), aPresContext, + childDesiredSize, &childRIForMeasuringHeight, + 0, 0, flags); + + aFlexItem.SetHadMeasuringReflow(); + aFlexItem.SetAscent(childDesiredSize.BlockStartAscent()); + + // Subtract border/padding in vertical axis, to get _just_ + // the effective computed value of the "height" property. + nscoord childDesiredHeight = childDesiredSize.Height() - + childRIForMeasuringHeight.ComputedPhysicalBorderPadding().TopBottom(); + + return std::max(0, childDesiredHeight); +} + +FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput, + float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize, + nscoord aMainMinSize, nscoord aMainMaxSize, + nscoord aTentativeCrossSize, + nscoord aCrossMinSize, nscoord aCrossMaxSize, + const FlexboxAxisTracker& aAxisTracker) + : mFrame(aFlexItemReflowInput.mFrame), + mFlexGrow(aFlexGrow), + mFlexShrink(aFlexShrink), + mIntrinsicRatio(mFrame->GetIntrinsicRatio()), + mBorderPadding(aFlexItemReflowInput.ComputedPhysicalBorderPadding()), + mMargin(aFlexItemReflowInput.ComputedPhysicalMargin()), + mMainMinSize(aMainMinSize), + mMainMaxSize(aMainMaxSize), + mCrossMinSize(aCrossMinSize), + mCrossMaxSize(aCrossMaxSize), + mMainPosn(0), + mCrossSize(aTentativeCrossSize), + mCrossPosn(0), + mAscent(0), + mShareOfWeightSoFar(0.0f), + mIsFrozen(false), + mHadMinViolation(false), + mHadMaxViolation(false), + mHadMeasuringReflow(false), + mIsStretched(false), + mIsStrut(false), + // mNeedsMinSizeAutoResolution is initialized in CheckForMinSizeAuto() + mWM(aFlexItemReflowInput.GetWritingMode()) + // mAlignSelf, see below +{ + MOZ_ASSERT(mFrame, "expecting a non-null child frame"); + MOZ_ASSERT(mFrame->GetType() != nsGkAtoms::placeholderFrame, + "placeholder frames should not be treated as flex items"); + MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW), + "out-of-flow frames should not be treated as flex items"); + + const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput; + if (IsLegacyBox(containerRS->mFrame)) { + // For -webkit-box/-webkit-inline-box, we need to: + // (1) Use "-webkit-box-align" instead of "align-items" to determine the + // container's cross-axis alignment behavior. + // (2) Suppress the ability for flex items to override that with their own + // cross-axis alignment. (The legacy box model doesn't support this.) + // So, each FlexItem simply copies the container's converted "align-items" + // value and disregards their own "align-self" property. + const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL(); + mAlignSelf = ConvertLegacyStyleToAlignItems(containerStyleXUL); + } else { + mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf( + containerRS->mFrame->StyleContext()); + if (MOZ_LIKELY(mAlignSelf == NS_STYLE_ALIGN_NORMAL)) { + mAlignSelf = NS_STYLE_ALIGN_STRETCH; + } + + // XXX strip off the <overflow-position> bit until we implement that + mAlignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS; + } + + SetFlexBaseSizeAndMainSize(aFlexBaseSize); + CheckForMinSizeAuto(aFlexItemReflowInput, aAxisTracker); + + // Assert that any "auto" margin components are set to 0. + // (We'll resolve them later; until then, we want to treat them as 0-sized.) +#ifdef DEBUG + { + const nsStyleSides& styleMargin = + aFlexItemReflowInput.mStyleMargin->mMargin; + NS_FOR_CSS_SIDES(side) { + if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { + MOZ_ASSERT(GetMarginComponentForSide(side) == 0, + "Someone else tried to resolve our auto margin"); + } + } + } +#endif // DEBUG + + // Map align-self 'baseline' value to 'start' when baseline alignment + // is not possible because the FlexItem's writing mode is orthogonal to + // the main axis of the container. If that's the case, we just directly + // convert our align-self value here, so that we don't have to handle this + // with special cases elsewhere. + // We are treating this case as one where it is appropriate to use the + // fallback values defined at https://www.w3.org/TR/css-align-3/#baseline + if (aAxisTracker.IsRowOriented() == + aAxisTracker.GetWritingMode().IsOrthogonalTo(mWM)) { + if (mAlignSelf == NS_STYLE_ALIGN_BASELINE) { + mAlignSelf = NS_STYLE_ALIGN_FLEX_START; + } else if (mAlignSelf == NS_STYLE_ALIGN_LAST_BASELINE) { + mAlignSelf = NS_STYLE_ALIGN_FLEX_END; + } + } +} + +// Simplified constructor for creating a special "strut" FlexItem, for a child +// with visibility:collapse. The strut has 0 main-size, and it only exists to +// impose a minimum cross size on whichever FlexLine it ends up in. +FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, + WritingMode aContainerWM) + : mFrame(aChildFrame), + mFlexGrow(0.0f), + mFlexShrink(0.0f), + mIntrinsicRatio(), + // mBorderPadding uses default constructor, + // mMargin uses default constructor, + mFlexBaseSize(0), + mMainMinSize(0), + mMainMaxSize(0), + mCrossMinSize(0), + mCrossMaxSize(0), + mMainSize(0), + mMainPosn(0), + mCrossSize(aCrossSize), + mCrossPosn(0), + mAscent(0), + mShareOfWeightSoFar(0.0f), + mIsFrozen(true), + mHadMinViolation(false), + mHadMaxViolation(false), + mHadMeasuringReflow(false), + mIsStretched(false), + mIsStrut(true), // (this is the constructor for making struts, after all) + mNeedsMinSizeAutoResolution(false), + mWM(aContainerWM), + mAlignSelf(NS_STYLE_ALIGN_FLEX_START) +{ + MOZ_ASSERT(mFrame, "expecting a non-null child frame"); + MOZ_ASSERT(NS_STYLE_VISIBILITY_COLLAPSE == + mFrame->StyleVisibility()->mVisible, + "Should only make struts for children with 'visibility:collapse'"); + MOZ_ASSERT(mFrame->GetType() != nsGkAtoms::placeholderFrame, + "placeholder frames should not be treated as flex items"); + MOZ_ASSERT(!(mFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW), + "out-of-flow frames should not be treated as flex items"); +} + +void +FlexItem::CheckForMinSizeAuto(const ReflowInput& aFlexItemReflowInput, + const FlexboxAxisTracker& aAxisTracker) +{ + const nsStylePosition* pos = aFlexItemReflowInput.mStylePosition; + const nsStyleDisplay* disp = aFlexItemReflowInput.mStyleDisplay; + + // We'll need special behavior for "min-[width|height]:auto" (whichever is in + // the main axis) iff: + // (a) its computed value is "auto" + // (b) the "overflow" sub-property in the same axis (the main axis) has a + // computed value of "visible" + const nsStyleCoord& minSize = GET_MAIN_COMPONENT(aAxisTracker, + pos->mMinWidth, + pos->mMinHeight); + + const uint8_t overflowVal = GET_MAIN_COMPONENT(aAxisTracker, + disp->mOverflowX, + disp->mOverflowY); + + mNeedsMinSizeAutoResolution = (minSize.GetUnit() == eStyleUnit_Auto && + overflowVal == NS_STYLE_OVERFLOW_VISIBLE); +} + +nscoord +FlexItem::GetBaselineOffsetFromOuterCrossEdge( + AxisEdgeType aEdge, + const FlexboxAxisTracker& aAxisTracker, + bool aUseFirstLineBaseline) const +{ + // NOTE: Currently, 'mAscent' (taken from reflow) is an inherently vertical + // measurement -- it's the distance from the border-top edge of this FlexItem + // to its baseline. So, we can really only do baseline alignment when the + // cross axis is vertical. (The FlexItem constructor enforces this when + // resolving the item's "mAlignSelf" value). + MOZ_ASSERT(!aAxisTracker.IsCrossAxisHorizontal(), + "Only expecting to be doing baseline computations when the " + "cross axis is vertical"); + + AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis(); + mozilla::Side sideToMeasureFrom = kAxisOrientationToSidesMap[crossAxis][aEdge]; + + nscoord marginTopToBaseline = ResolvedAscent(aUseFirstLineBaseline) + + mMargin.top; + + if (sideToMeasureFrom == eSideTop) { + // Measuring from top (normal case): the distance from the margin-box top + // edge to the baseline is just ascent + margin-top. + return marginTopToBaseline; + } + + MOZ_ASSERT(sideToMeasureFrom == eSideBottom, + "We already checked that we're dealing with a vertical axis, and " + "we're not using the top side, so that only leaves the bottom..."); + + // Measuring from bottom: The distance from the margin-box bottom edge to the + // baseline is just the margin-box cross size (i.e. outer cross size), minus + // the already-computed distance from margin-top to baseline. + return GetOuterCrossSize(crossAxis) - marginTopToBaseline; +} + +uint32_t +FlexItem::GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const +{ + uint32_t numAutoMargins = 0; + const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin; + for (uint32_t i = 0; i < eNumAxisEdges; i++) { + mozilla::Side side = kAxisOrientationToSidesMap[aAxis][i]; + if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { + numAutoMargins++; + } + } + + // Mostly for clarity: + MOZ_ASSERT(numAutoMargins <= 2, + "We're just looking at one item along one dimension, so we " + "should only have examined 2 margins"); + + return numAutoMargins; +} + +bool +FlexItem::CanMainSizeInfluenceCrossSize( + const FlexboxAxisTracker& aAxisTracker) const +{ + if (mIsStretched) { + // We've already had our cross-size stretched for "align-self:stretch"). + // The container is imposing its cross size on us. + return false; + } + + if (mIsStrut) { + // Struts (for visibility:collapse items) have a predetermined size; + // no need to measure anything. + return false; + } + + if (HasIntrinsicRatio()) { + // For flex items that have an intrinsic ratio (and maintain it, i.e. are + // not stretched, which we already checked above): changes to main-size + // *do* influence the cross size. + return true; + } + + if (aAxisTracker.IsCrossAxisHorizontal()) { + // If the cross axis is horizontal, then changes to the item's main size + // (height) can't influence its cross size (width), if the item is a block + // with a horizontal writing-mode. + // XXXdholbert This doesn't account for vertical writing-modes, items with + // aspect ratios, items that are multicol elements, & items that are + // multi-line vertical flex containers. In all of those cases, a change to + // the height could influence the width. + return false; + } + + // Default assumption, if we haven't proven otherwise: the resolved main size + // *can* change the cross size. + return true; +} + +// Keeps track of our position along a particular axis (where a '0' position +// corresponds to the 'start' edge of that axis). +// This class shouldn't be instantiated directly -- rather, it should only be +// instantiated via its subclasses defined below. +class MOZ_STACK_CLASS PositionTracker { +public: + // Accessor for the current value of the position that we're tracking. + inline nscoord GetPosition() const { return mPosition; } + inline AxisOrientationType GetAxis() const { return mAxis; } + + // Advances our position across the start edge of the given margin, in the + // axis we're tracking. + void EnterMargin(const nsMargin& aMargin) + { + mozilla::Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start]; + mPosition += aMargin.Side(side); + } + + // Advances our position across the end edge of the given margin, in the axis + // we're tracking. + void ExitMargin(const nsMargin& aMargin) + { + mozilla::Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_End]; + mPosition += aMargin.Side(side); + } + + // Advances our current position from the start side of a child frame's + // border-box to the frame's upper or left edge (depending on our axis). + // (Note that this is a no-op if our axis grows in the same direction as + // the corresponding logical axis.) + void EnterChildFrame(nscoord aChildFrameSize) + { + if (mIsAxisReversed) { + mPosition += aChildFrameSize; + } + } + + // Advances our current position from a frame's upper or left border-box edge + // (whichever is in the axis we're tracking) to the 'end' side of the frame + // in the axis that we're tracking. (Note that this is a no-op if our axis + // is reversed with respect to the corresponding logical axis.) + void ExitChildFrame(nscoord aChildFrameSize) + { + if (!mIsAxisReversed) { + mPosition += aChildFrameSize; + } + } + +protected: + // Protected constructor, to be sure we're only instantiated via a subclass. + PositionTracker(AxisOrientationType aAxis, bool aIsAxisReversed) + : mPosition(0), + mAxis(aAxis), + mIsAxisReversed(aIsAxisReversed) + {} + + // Delete copy-constructor & reassignment operator, to prevent accidental + // (unnecessary) copying. + PositionTracker(const PositionTracker&) = delete; + PositionTracker& operator=(const PositionTracker&) = delete; + + // Member data: + nscoord mPosition; // The position we're tracking + // XXXdholbert [BEGIN DEPRECATED] + const AxisOrientationType mAxis; // The axis along which we're moving. + // XXXdholbert [END DEPRECATED] + const bool mIsAxisReversed; // Is the axis along which we're moving reversed + // (e.g. LTR vs RTL) with respect to the + // corresponding axis on the flex container's WM? +}; + +// Tracks our position in the main axis, when we're laying out flex items. +// The "0" position represents the main-start edge of the flex container's +// content-box. +class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker { +public: + MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, + const FlexLine* aLine, + uint8_t aJustifyContent, + nscoord aContentBoxMainSize); + + ~MainAxisPositionTracker() { + MOZ_ASSERT(mNumPackingSpacesRemaining == 0, + "miscounted the number of packing spaces"); + MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0, + "miscounted the number of auto margins"); + } + + // Advances past the packing space (if any) between two flex items + void TraversePackingSpace(); + + // If aItem has any 'auto' margins in the main axis, this method updates the + // corresponding values in its margin. + void ResolveAutoMarginsInMainAxis(FlexItem& aItem); + +private: + nscoord mPackingSpaceRemaining; + uint32_t mNumAutoMarginsInMainAxis; + uint32_t mNumPackingSpacesRemaining; + // XXX this should be uint16_t when we add explicit fallback handling + uint8_t mJustifyContent; +}; + +// Utility class for managing our position along the cross axis along +// the whole flex container (at a higher level than a single line). +// The "0" position represents the cross-start edge of the flex container's +// content-box. +class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker { +public: + CrossAxisPositionTracker(FlexLine* aFirstLine, + const ReflowInput& aReflowInput, + nscoord aContentBoxCrossSize, + bool aIsCrossSizeDefinite, + const FlexboxAxisTracker& aAxisTracker); + + // Advances past the packing space (if any) between two flex lines + void TraversePackingSpace(); + + // Advances past the given FlexLine + void TraverseLine(FlexLine& aLine) { mPosition += aLine.GetLineCrossSize(); } + +private: + // Redeclare the frame-related methods from PositionTracker as private with + // = delete, to be sure (at compile time) that no client code can invoke + // them. (Unlike the other PositionTracker derived classes, this class here + // deals with FlexLines, not with individual FlexItems or frames.) + void EnterMargin(const nsMargin& aMargin) = delete; + void ExitMargin(const nsMargin& aMargin) = delete; + void EnterChildFrame(nscoord aChildFrameSize) = delete; + void ExitChildFrame(nscoord aChildFrameSize) = delete; + + nscoord mPackingSpaceRemaining; + uint32_t mNumPackingSpacesRemaining; + // XXX this should be uint16_t when we add explicit fallback handling + uint8_t mAlignContent; +}; + +// Utility class for managing our position along the cross axis, *within* a +// single flex line. +class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker : public PositionTracker { +public: + explicit SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker); + + void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, + FlexItem& aItem); + + void EnterAlignPackingSpace(const FlexLine& aLine, + const FlexItem& aItem, + const FlexboxAxisTracker& aAxisTracker); + + // Resets our position to the cross-start edge of this line. + inline void ResetPosition() { mPosition = 0; } +}; + +//---------------------------------------------------------------------- + +// Frame class boilerplate +// ======================= + +NS_QUERYFRAME_HEAD(nsFlexContainerFrame) + NS_QUERYFRAME_ENTRY(nsFlexContainerFrame) +NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame) + +NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame) + +nsContainerFrame* +NS_NewFlexContainerFrame(nsIPresShell* aPresShell, + nsStyleContext* aContext) +{ + return new (aPresShell) nsFlexContainerFrame(aContext); +} + +//---------------------------------------------------------------------- + +// nsFlexContainerFrame Method Implementations +// =========================================== + +/* virtual */ +nsFlexContainerFrame::~nsFlexContainerFrame() +{ +} + +/* virtual */ +void +nsFlexContainerFrame::Init(nsIContent* aContent, + nsContainerFrame* aParent, + nsIFrame* aPrevInFlow) +{ + nsContainerFrame::Init(aContent, aParent, aPrevInFlow); + + const nsStyleDisplay* styleDisp = StyleContext()->StyleDisplay(); + + // Figure out if we should set a frame state bit to indicate that this frame + // represents a legacy -webkit-{inline-}box container. + // First, the trivial case: just check "display" directly. + bool isLegacyBox = IsDisplayValueLegacyBox(styleDisp); + + // If this frame is for a scrollable element, then it will actually have + // "display:block", and its *parent* will have the real flex-flavored display + // value. So in that case, check the parent to find out if we're legacy. + if (!isLegacyBox && styleDisp->mDisplay == mozilla::StyleDisplay::Block) { + nsStyleContext* parentStyleContext = mStyleContext->GetParent(); + NS_ASSERTION(parentStyleContext && + (mStyleContext->GetPseudo() == nsCSSAnonBoxes::buttonContent || + mStyleContext->GetPseudo() == nsCSSAnonBoxes::scrolledContent), + "The only way a nsFlexContainerFrame can have 'display:block' " + "should be if it's the inner part of a scrollable or button " + "element"); + isLegacyBox = IsDisplayValueLegacyBox(parentStyleContext->StyleDisplay()); + } + + if (isLegacyBox) { + AddStateBits(NS_STATE_FLEX_IS_LEGACY_WEBKIT_BOX); + } +} + +template<bool IsLessThanOrEqual(nsIFrame*, nsIFrame*)> +/* static */ bool +nsFlexContainerFrame::SortChildrenIfNeeded() +{ + if (nsIFrame::IsFrameListSorted<IsLessThanOrEqual>(mFrames)) { + return false; + } + + nsIFrame::SortFrameList<IsLessThanOrEqual>(mFrames); + return true; +} + +/* virtual */ +nsIAtom* +nsFlexContainerFrame::GetType() const +{ + return nsGkAtoms::flexContainerFrame; +} + +#ifdef DEBUG_FRAME_DUMP +nsresult +nsFlexContainerFrame::GetFrameName(nsAString& aResult) const +{ + return MakeFrameName(NS_LITERAL_STRING("FlexContainer"), aResult); +} +#endif + +nscoord +nsFlexContainerFrame::GetLogicalBaseline(mozilla::WritingMode aWM) const +{ + NS_ASSERTION(mBaselineFromLastReflow != NS_INTRINSIC_WIDTH_UNKNOWN, + "baseline has not been set"); + + if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) { + // Return a baseline synthesized from our margin-box. + return nsContainerFrame::GetLogicalBaseline(aWM); + } + return mBaselineFromLastReflow; +} + +// Helper for BuildDisplayList, to implement this special-case for flex items +// from the spec: +// Flex items paint exactly the same as block-level elements in the +// normal flow, except that 'z-index' values other than 'auto' create +// a stacking context even if 'position' is 'static'. +// http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#painting +uint32_t +GetDisplayFlagsForFlexItem(nsIFrame* aFrame) +{ + MOZ_ASSERT(aFrame->IsFlexItem(), "Should only be called on flex items"); + + const nsStylePosition* pos = aFrame->StylePosition(); + if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) { + return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT; + } + return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT; +} + +void +nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, + const nsRect& aDirtyRect, + const nsDisplayListSet& aLists) +{ + // XXXdholbert hacky temporary band-aid for bug 1059138: Trivially pass this + // assertion (skip it, basically) if the first child is part of a shadow DOM. + // (IsOrderLEQWithDOMFallback doesn't know how to compare tree-position of a + // shadow-DOM element vs. a non-shadow-DOM element.) + NS_ASSERTION( + (!mFrames.IsEmpty() && + mFrames.FirstChild()->GetContent()->GetContainingShadow()) || + nsIFrame::IsFrameListSorted<IsOrderLEQWithDOMFallback>(mFrames), + "Child frames aren't sorted correctly"); + + DisplayBorderBackgroundOutline(aBuilder, aLists); + + // Our children are all block-level, so their borders/backgrounds all go on + // the BlockBorderBackgrounds list. + nsDisplayListSet childLists(aLists, aLists.BlockBorderBackgrounds()); + for (nsIFrame* childFrame : mFrames) { + BuildDisplayListForChild(aBuilder, childFrame, aDirtyRect, childLists, + GetDisplayFlagsForFlexItem(childFrame)); + } +} + +void +FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow) +{ + // After we've established the type of flexing we're doing (growing vs. + // shrinking), and before we try to flex any items, we freeze items that + // obviously *can't* flex. + // + // Quoting the spec: + // # Freeze, setting its target main size to its hypothetical main size... + // # - any item that has a flex factor of zero + // # - if using the flex grow factor: any item that has a flex base size + // # greater than its hypothetical main size + // # - if using the flex shrink factor: any item that has a flex base size + // # smaller than its hypothetical main size + // http://dev.w3.org/csswg/css-flexbox/#resolve-flexible-lengths-flex-factors + // + // (NOTE: At this point, item->GetMainSize() *is* the item's hypothetical + // main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the + // item hasn't had a chance to flex away from that yet.) + + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems; + for (FlexItem* item = mItems.getFirst(); + numUnfrozenItemsToBeSeen > 0; item = item->getNext()) { + MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen"); + + if (!item->IsFrozen()) { + numUnfrozenItemsToBeSeen--; + bool shouldFreeze = (0.0f == item->GetFlexFactor(aIsUsingFlexGrow)); + if (!shouldFreeze) { + if (aIsUsingFlexGrow) { + if (item->GetFlexBaseSize() > item->GetMainSize()) { + shouldFreeze = true; + } + } else { // using flex-shrink + if (item->GetFlexBaseSize() < item->GetMainSize()) { + shouldFreeze = true; + } + } + } + if (shouldFreeze) { + // Freeze item! (at its hypothetical main size) + item->Freeze(); + mNumFrozenItems++; + } + } + } +} + +// Based on the sign of aTotalViolation, this function freezes a subset of our +// flexible sizes, and restores the remaining ones to their initial pref sizes. +void +FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, + bool aIsFinalIteration) +{ + enum FreezeType { + eFreezeEverything, + eFreezeMinViolations, + eFreezeMaxViolations + }; + + FreezeType freezeType; + if (aTotalViolation == 0) { + freezeType = eFreezeEverything; + } else if (aTotalViolation > 0) { + freezeType = eFreezeMinViolations; + } else { // aTotalViolation < 0 + freezeType = eFreezeMaxViolations; + } + + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems; + for (FlexItem* item = mItems.getFirst(); + numUnfrozenItemsToBeSeen > 0; item = item->getNext()) { + MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen"); + if (!item->IsFrozen()) { + numUnfrozenItemsToBeSeen--; + + MOZ_ASSERT(!item->HadMinViolation() || !item->HadMaxViolation(), + "Can have either min or max violation, but not both"); + + if (eFreezeEverything == freezeType || + (eFreezeMinViolations == freezeType && item->HadMinViolation()) || + (eFreezeMaxViolations == freezeType && item->HadMaxViolation())) { + + MOZ_ASSERT(item->GetMainSize() >= item->GetMainMinSize(), + "Freezing item at a size below its minimum"); + MOZ_ASSERT(item->GetMainSize() <= item->GetMainMaxSize(), + "Freezing item at a size above its maximum"); + + item->Freeze(); + mNumFrozenItems++; + } else if (MOZ_UNLIKELY(aIsFinalIteration)) { + // XXXdholbert If & when bug 765861 is fixed, we should upgrade this + // assertion to be fatal except in documents with enormous lengths. + NS_ERROR("Final iteration still has unfrozen items, this shouldn't" + " happen unless there was nscoord under/overflow."); + item->Freeze(); + mNumFrozenItems++; + } // else, we'll reset this item's main size to its flex base size on the + // next iteration of this algorithm. + + // Clear this item's violation(s), now that we've dealt with them + item->ClearViolationFlags(); + } + } +} + +void +FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize) +{ + MOZ_LOG(gFlexContainerLog, LogLevel::Debug, ("ResolveFlexibleLengths\n")); + + // Determine whether we're going to be growing or shrinking items. + const bool isUsingFlexGrow = + (mTotalOuterHypotheticalMainSize < aFlexContainerMainSize); + + // Do an "early freeze" for flex items that obviously can't flex in the + // direction we've chosen: + FreezeItemsEarly(isUsingFlexGrow); + + if (mNumFrozenItems == mNumItems) { + // All our items are frozen, so we have no flexible lengths to resolve. + return; + } + MOZ_ASSERT(!IsEmpty(), "empty lines should take the early-return above"); + + // Subtract space occupied by our items' margins/borders/padding, so we can + // just be dealing with the space available for our flex items' content + // boxes. + nscoord spaceReservedForMarginBorderPadding = + mTotalOuterHypotheticalMainSize - mTotalInnerHypotheticalMainSize; + + nscoord spaceAvailableForFlexItemsContentBoxes = + aFlexContainerMainSize - spaceReservedForMarginBorderPadding; + + nscoord origAvailableFreeSpace; + bool isOrigAvailFreeSpaceInitialized = false; + + // NOTE: I claim that this chunk of the algorithm (the looping part) needs to + // run the loop at MOST mNumItems times. This claim should hold up + // because we'll freeze at least one item on each loop iteration, and once + // we've run out of items to freeze, there's nothing left to do. However, + // in most cases, we'll break out of this loop long before we hit that many + // iterations. + for (uint32_t iterationCounter = 0; + iterationCounter < mNumItems; iterationCounter++) { + // Set every not-yet-frozen item's used main size to its + // flex base size, and subtract all the used main sizes from our + // total amount of space to determine the 'available free space' + // (positive or negative) to be distributed among our flexible items. + nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes; + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + if (!item->IsFrozen()) { + item->SetMainSize(item->GetFlexBaseSize()); + } + availableFreeSpace -= item->GetMainSize(); + } + + MOZ_LOG(gFlexContainerLog, LogLevel::Debug, + (" available free space = %d\n", availableFreeSpace)); + + + // The sign of our free space should agree with the type of flexing + // (grow/shrink) that we're doing (except if we've had integer overflow; + // then, all bets are off). Any disagreement should've made us use the + // other type of flexing, or should've been resolved in FreezeItemsEarly. + // XXXdholbert If & when bug 765861 is fixed, we should upgrade this + // assertion to be fatal except in documents with enormous lengths. + NS_ASSERTION((isUsingFlexGrow && availableFreeSpace >= 0) || + (!isUsingFlexGrow && availableFreeSpace <= 0), + "availableFreeSpace's sign should match isUsingFlexGrow"); + + // If we have any free space available, give each flexible item a portion + // of availableFreeSpace. + if (availableFreeSpace != 0) { + // The first time we do this, we initialize origAvailableFreeSpace. + if (!isOrigAvailFreeSpaceInitialized) { + origAvailableFreeSpace = availableFreeSpace; + isOrigAvailFreeSpaceInitialized = true; + } + + // STRATEGY: On each item, we compute & store its "share" of the total + // weight that we've seen so far: + // curWeight / weightSum + // + // Then, when we go to actually distribute the space (in the next loop), + // we can simply walk backwards through the elements and give each item + // its "share" multiplied by the remaining available space. + // + // SPECIAL CASE: If the sum of the weights is larger than the + // maximum representable float (overflowing to infinity), then we can't + // sensibly divide out proportional shares anymore. In that case, we + // simply treat the flex item(s) with the largest weights as if + // their weights were infinite (dwarfing all the others), and we + // distribute all of the available space among them. + float weightSum = 0.0f; + float flexFactorSum = 0.0f; + float largestWeight = 0.0f; + uint32_t numItemsWithLargestWeight = 0; + + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems; + for (FlexItem* item = mItems.getFirst(); + numUnfrozenItemsToBeSeen > 0; item = item->getNext()) { + MOZ_ASSERT(item, + "numUnfrozenItemsToBeSeen says items remain to be seen"); + if (!item->IsFrozen()) { + numUnfrozenItemsToBeSeen--; + + float curWeight = item->GetWeight(isUsingFlexGrow); + float curFlexFactor = item->GetFlexFactor(isUsingFlexGrow); + MOZ_ASSERT(curWeight >= 0.0f, "weights are non-negative"); + MOZ_ASSERT(curFlexFactor >= 0.0f, "flex factors are non-negative"); + + weightSum += curWeight; + flexFactorSum += curFlexFactor; + + if (IsFinite(weightSum)) { + if (curWeight == 0.0f) { + item->SetShareOfWeightSoFar(0.0f); + } else { + item->SetShareOfWeightSoFar(curWeight / weightSum); + } + } // else, the sum of weights overflows to infinity, in which + // case we don't bother with "SetShareOfWeightSoFar" since + // we know we won't use it. (instead, we'll just give every + // item with the largest weight an equal share of space.) + + // Update our largest-weight tracking vars + if (curWeight > largestWeight) { + largestWeight = curWeight; + numItemsWithLargestWeight = 1; + } else if (curWeight == largestWeight) { + numItemsWithLargestWeight++; + } + } + } + + if (weightSum != 0.0f) { + MOZ_ASSERT(flexFactorSum != 0.0f, + "flex factor sum can't be 0, if a weighted sum " + "of its components (weightSum) is nonzero"); + if (flexFactorSum < 1.0f) { + // Our unfrozen flex items don't want all of the original free space! + // (Their flex factors add up to something less than 1.) + // Hence, make sure we don't distribute any more than the portion of + // our original free space that these items actually want. + nscoord totalDesiredPortionOfOrigFreeSpace = + NSToCoordRound(origAvailableFreeSpace * flexFactorSum); + + // Clamp availableFreeSpace to be no larger than that ^^. + // (using min or max, depending on sign). + // This should not change the sign of availableFreeSpace (except + // possibly by setting it to 0), as enforced by this assertion: + MOZ_ASSERT(totalDesiredPortionOfOrigFreeSpace == 0 || + ((totalDesiredPortionOfOrigFreeSpace > 0) == + (availableFreeSpace > 0)), + "When we reduce available free space for flex factors < 1," + "we shouldn't change the sign of the free space..."); + + if (availableFreeSpace > 0) { + availableFreeSpace = std::min(availableFreeSpace, + totalDesiredPortionOfOrigFreeSpace); + } else { + availableFreeSpace = std::max(availableFreeSpace, + totalDesiredPortionOfOrigFreeSpace); + } + } + + MOZ_LOG(gFlexContainerLog, LogLevel::Debug, + (" Distributing available space:")); + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems; + + // NOTE: It's important that we traverse our items in *reverse* order + // here, for correct width distribution according to the items' + // "ShareOfWeightSoFar" progressively-calculated values. + for (FlexItem* item = mItems.getLast(); + numUnfrozenItemsToBeSeen > 0; item = item->getPrevious()) { + MOZ_ASSERT(item, + "numUnfrozenItemsToBeSeen says items remain to be seen"); + if (!item->IsFrozen()) { + numUnfrozenItemsToBeSeen--; + + // To avoid rounding issues, we compute the change in size for this + // item, and then subtract it from the remaining available space. + nscoord sizeDelta = 0; + if (IsFinite(weightSum)) { + float myShareOfRemainingSpace = + item->GetShareOfWeightSoFar(); + + MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f && + myShareOfRemainingSpace <= 1.0f, + "my share should be nonnegative fractional amount"); + + if (myShareOfRemainingSpace == 1.0f) { + // (We special-case 1.0f to avoid float error from converting + // availableFreeSpace from integer*1.0f --> float --> integer) + sizeDelta = availableFreeSpace; + } else if (myShareOfRemainingSpace > 0.0f) { + sizeDelta = NSToCoordRound(availableFreeSpace * + myShareOfRemainingSpace); + } + } else if (item->GetWeight(isUsingFlexGrow) == largestWeight) { + // Total flexibility is infinite, so we're just distributing + // the available space equally among the items that are tied for + // having the largest weight (and this is one of those items). + sizeDelta = + NSToCoordRound(availableFreeSpace / + float(numItemsWithLargestWeight)); + numItemsWithLargestWeight--; + } + + availableFreeSpace -= sizeDelta; + + item->SetMainSize(item->GetMainSize() + sizeDelta); + MOZ_LOG(gFlexContainerLog, LogLevel::Debug, + (" child %p receives %d, for a total of %d\n", + item, sizeDelta, item->GetMainSize())); + } + } + } + } + + // Fix min/max violations: + nscoord totalViolation = 0; // keeps track of adjustments for min/max + MOZ_LOG(gFlexContainerLog, LogLevel::Debug, + (" Checking for violations:")); + + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + uint32_t numUnfrozenItemsToBeSeen = mNumItems - mNumFrozenItems; + for (FlexItem* item = mItems.getFirst(); + numUnfrozenItemsToBeSeen > 0; item = item->getNext()) { + MOZ_ASSERT(item, "numUnfrozenItemsToBeSeen says items remain to be seen"); + if (!item->IsFrozen()) { + numUnfrozenItemsToBeSeen--; + + if (item->GetMainSize() < item->GetMainMinSize()) { + // min violation + totalViolation += item->GetMainMinSize() - item->GetMainSize(); + item->SetMainSize(item->GetMainMinSize()); + item->SetHadMinViolation(); + } else if (item->GetMainSize() > item->GetMainMaxSize()) { + // max violation + totalViolation += item->GetMainMaxSize() - item->GetMainSize(); + item->SetMainSize(item->GetMainMaxSize()); + item->SetHadMaxViolation(); + } + } + } + + FreezeOrRestoreEachFlexibleSize(totalViolation, + iterationCounter + 1 == mNumItems); + + MOZ_LOG(gFlexContainerLog, LogLevel::Debug, + (" Total violation: %d\n", totalViolation)); + + if (mNumFrozenItems == mNumItems) { + break; + } + + MOZ_ASSERT(totalViolation != 0, + "Zero violation should've made us freeze all items & break"); + } + +#ifdef DEBUG + // Post-condition: all items should've been frozen. + // Make sure the counts match: + MOZ_ASSERT(mNumFrozenItems == mNumItems, "All items should be frozen"); + + // For good measure, check each item directly, in case our counts are busted: + for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + MOZ_ASSERT(item->IsFrozen(), "All items should be frozen"); + } +#endif // DEBUG +} + +MainAxisPositionTracker:: + MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, + const FlexLine* aLine, + uint8_t aJustifyContent, + nscoord aContentBoxMainSize) + : PositionTracker(aAxisTracker.GetMainAxis(), + aAxisTracker.IsMainAxisReversed()), + mPackingSpaceRemaining(aContentBoxMainSize), // we chip away at this below + mNumAutoMarginsInMainAxis(0), + mNumPackingSpacesRemaining(0), + mJustifyContent(aJustifyContent) +{ + // 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start', + // in the main axis + // https://drafts.csswg.org/css-align-3/#propdef-justify-content + if (mJustifyContent == NS_STYLE_JUSTIFY_NORMAL || + mJustifyContent == NS_STYLE_JUSTIFY_STRETCH) { + mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START; + } + + // XXX strip off the <overflow-position> bit until we implement that + mJustifyContent &= ~NS_STYLE_JUSTIFY_FLAG_BITS; + + // mPackingSpaceRemaining is initialized to the container's main size. Now + // we'll subtract out the main sizes of our flex items, so that it ends up + // with the *actual* amount of packing space. + for (const FlexItem* item = aLine->GetFirstItem(); item; + item = item->getNext()) { + mPackingSpaceRemaining -= item->GetOuterMainSize(mAxis); + mNumAutoMarginsInMainAxis += item->GetNumAutoMarginsInAxis(mAxis); + } + + if (mPackingSpaceRemaining <= 0) { + // No available packing space to use for resolving auto margins. + mNumAutoMarginsInMainAxis = 0; + } + + // If packing space is negative, 'space-between' falls back to 'flex-start', + // and 'space-around' & 'space-evenly' fall back to 'center'. In those cases, + // it's simplest to just pretend we have a different 'justify-content' value + // and share code. + if (mPackingSpaceRemaining < 0) { + if (mJustifyContent == NS_STYLE_JUSTIFY_SPACE_BETWEEN) { + mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START; + } else if (mJustifyContent == NS_STYLE_JUSTIFY_SPACE_AROUND || + mJustifyContent == NS_STYLE_JUSTIFY_SPACE_EVENLY) { + mJustifyContent = NS_STYLE_JUSTIFY_CENTER; + } + } + + // Map 'left'/'right' to 'start'/'end' + if (mJustifyContent == NS_STYLE_JUSTIFY_LEFT || + mJustifyContent == NS_STYLE_JUSTIFY_RIGHT) { + if (aAxisTracker.IsColumnOriented()) { + // Container's alignment axis is not parallel to the inline axis, + // so we map both 'left' and 'right' to 'start'. + mJustifyContent = NS_STYLE_JUSTIFY_START; + } else { + // Row-oriented, so we map 'left' and 'right' to 'start' or 'end', + // depending on left-to-right writing mode. + const bool isLTR = aAxisTracker.GetWritingMode().IsBidiLTR(); + const bool isJustifyLeft = (mJustifyContent == NS_STYLE_JUSTIFY_LEFT); + mJustifyContent = (isJustifyLeft == isLTR) ? NS_STYLE_JUSTIFY_START + : NS_STYLE_JUSTIFY_END; + } + } + + // Map 'start'/'end' to 'flex-start'/'flex-end'. + if (mJustifyContent == NS_STYLE_JUSTIFY_START) { + mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START; + } else if (mJustifyContent == NS_STYLE_JUSTIFY_END) { + mJustifyContent = NS_STYLE_JUSTIFY_FLEX_END; + } + + // If our main axis is (internally) reversed, swap the justify-content + // "flex-start" and "flex-end" behaviors: + if (aAxisTracker.AreAxesInternallyReversed()) { + if (mJustifyContent == NS_STYLE_JUSTIFY_FLEX_START) { + mJustifyContent = NS_STYLE_JUSTIFY_FLEX_END; + } else if (mJustifyContent == NS_STYLE_JUSTIFY_FLEX_END) { + mJustifyContent = NS_STYLE_JUSTIFY_FLEX_START; + } + } + + // Figure out how much space we'll set aside for auto margins or + // packing spaces, and advance past any leading packing-space. + if (mNumAutoMarginsInMainAxis == 0 && + mPackingSpaceRemaining != 0 && + !aLine->IsEmpty()) { + switch (mJustifyContent) { + case NS_STYLE_JUSTIFY_BASELINE: + case NS_STYLE_JUSTIFY_LAST_BASELINE: + NS_WARNING("NYI: justify-content:left/right/baseline/last baseline"); + MOZ_FALLTHROUGH; + case NS_STYLE_JUSTIFY_FLEX_START: + // All packing space should go at the end --> nothing to do here. + break; + case NS_STYLE_JUSTIFY_FLEX_END: + // All packing space goes at the beginning + mPosition += mPackingSpaceRemaining; + break; + case NS_STYLE_JUSTIFY_CENTER: + // Half the packing space goes at the beginning + mPosition += mPackingSpaceRemaining / 2; + break; + case NS_STYLE_JUSTIFY_SPACE_BETWEEN: + case NS_STYLE_JUSTIFY_SPACE_AROUND: + case NS_STYLE_JUSTIFY_SPACE_EVENLY: + nsFlexContainerFrame::CalculatePackingSpace(aLine->NumItems(), + mJustifyContent, + &mPosition, + &mNumPackingSpacesRemaining, + &mPackingSpaceRemaining); + break; + default: + MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value"); + } + } + + MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || + mNumAutoMarginsInMainAxis == 0, + "extra space should either go to packing space or to " + "auto margins, but not to both"); +} + +void +MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) +{ + if (mNumAutoMarginsInMainAxis) { + const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin; + for (uint32_t i = 0; i < eNumAxisEdges; i++) { + mozilla::Side side = kAxisOrientationToSidesMap[mAxis][i]; + if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curAutoMarginSize = + mPackingSpaceRemaining / mNumAutoMarginsInMainAxis; + + MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, + "Expecting auto margins to have value '0' before we " + "resolve them"); + aItem.SetMarginComponentForSide(side, curAutoMarginSize); + + mNumAutoMarginsInMainAxis--; + mPackingSpaceRemaining -= curAutoMarginSize; + } + } + } +} + +void +MainAxisPositionTracker::TraversePackingSpace() +{ + if (mNumPackingSpacesRemaining) { + MOZ_ASSERT(mJustifyContent == NS_STYLE_JUSTIFY_SPACE_BETWEEN || + mJustifyContent == NS_STYLE_JUSTIFY_SPACE_AROUND || + mJustifyContent == NS_STYLE_JUSTIFY_SPACE_EVENLY, + "mNumPackingSpacesRemaining only applies for " + "space-between/space-around/space-evenly"); + + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "ran out of packing space earlier than we expected"); + + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curPackingSpace = + mPackingSpaceRemaining / mNumPackingSpacesRemaining; + + mPosition += curPackingSpace; + mNumPackingSpacesRemaining--; + mPackingSpaceRemaining -= curPackingSpace; + } +} + +CrossAxisPositionTracker:: + CrossAxisPositionTracker(FlexLine* aFirstLine, + const ReflowInput& aReflowInput, + nscoord aContentBoxCrossSize, + bool aIsCrossSizeDefinite, + const FlexboxAxisTracker& aAxisTracker) + : PositionTracker(aAxisTracker.GetCrossAxis(), + aAxisTracker.IsCrossAxisReversed()), + mPackingSpaceRemaining(0), + mNumPackingSpacesRemaining(0), + mAlignContent(aReflowInput.mStylePosition->mAlignContent) +{ + MOZ_ASSERT(aFirstLine, "null first line pointer"); + + // 'normal' behaves as 'stretch' + if (mAlignContent == NS_STYLE_ALIGN_NORMAL) { + mAlignContent = NS_STYLE_ALIGN_STRETCH; + } + + // XXX strip of the <overflow-position> bit until we implement that + mAlignContent &= ~NS_STYLE_ALIGN_FLAG_BITS; + + const bool isSingleLine = + NS_STYLE_FLEX_WRAP_NOWRAP == aReflowInput.mStylePosition->mFlexWrap; + if (isSingleLine) { + MOZ_ASSERT(!aFirstLine->getNext(), + "If we're styled as single-line, we should only have 1 line"); + // "If the flex container is single-line and has a definite cross size, the + // cross size of the flex line is the flex container's inner cross size." + // + // SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line + // NOTE: This means (by definition) that there's no packing space, which + // means we don't need to be concerned with "align-conent" at all and we + // can return early. This is handy, because this is the usual case (for + // single-line flexbox). + if (aIsCrossSizeDefinite) { + aFirstLine->SetLineCrossSize(aContentBoxCrossSize); + return; + } + + // "If the flex container is single-line, then clamp the line's + // cross-size to be within the container's computed min and max cross-size + // properties." + aFirstLine->SetLineCrossSize(NS_CSS_MINMAX(aFirstLine->GetLineCrossSize(), + aReflowInput.ComputedMinBSize(), + aReflowInput.ComputedMaxBSize())); + } + + // NOTE: The rest of this function should essentially match + // MainAxisPositionTracker's constructor, though with FlexLines instead of + // FlexItems, and with the additional value "stretch" (and of course with + // cross sizes instead of main sizes.) + + // Figure out how much packing space we have (container's cross size minus + // all the lines' cross sizes). Also, share this loop to count how many + // lines we have. (We need that count in some cases below.) + mPackingSpaceRemaining = aContentBoxCrossSize; + uint32_t numLines = 0; + for (FlexLine* line = aFirstLine; line; line = line->getNext()) { + mPackingSpaceRemaining -= line->GetLineCrossSize(); + numLines++; + } + + // If packing space is negative, 'space-between' and 'stretch' behave like + // 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'. + // In those cases, it's simplest to just pretend we have a different + // 'align-content' value and share code. + if (mPackingSpaceRemaining < 0) { + if (mAlignContent == NS_STYLE_ALIGN_SPACE_BETWEEN || + mAlignContent == NS_STYLE_ALIGN_STRETCH) { + mAlignContent = NS_STYLE_ALIGN_FLEX_START; + } else if (mAlignContent == NS_STYLE_ALIGN_SPACE_AROUND || + mAlignContent == NS_STYLE_ALIGN_SPACE_EVENLY) { + mAlignContent = NS_STYLE_ALIGN_CENTER; + } + } + + // Map 'left'/'right' to 'start'/'end' + if (mAlignContent == NS_STYLE_ALIGN_LEFT || + mAlignContent == NS_STYLE_ALIGN_RIGHT) { + if (aAxisTracker.IsRowOriented()) { + // Container's alignment axis is not parallel to the inline axis, + // so we map both 'left' and 'right' to 'start'. + mAlignContent = NS_STYLE_ALIGN_START; + } else { + // Column-oriented, so we map 'left' and 'right' to 'start' or 'end', + // depending on left-to-right writing mode. + const bool isLTR = aAxisTracker.GetWritingMode().IsBidiLTR(); + const bool isAlignLeft = (mAlignContent == NS_STYLE_ALIGN_LEFT); + mAlignContent = (isAlignLeft == isLTR) ? NS_STYLE_ALIGN_START + : NS_STYLE_ALIGN_END; + } + } + + // Map 'start'/'end' to 'flex-start'/'flex-end'. + if (mAlignContent == NS_STYLE_ALIGN_START) { + mAlignContent = NS_STYLE_ALIGN_FLEX_START; + } else if (mAlignContent == NS_STYLE_ALIGN_END) { + mAlignContent = NS_STYLE_ALIGN_FLEX_END; + } + + // If our cross axis is (internally) reversed, swap the align-content + // "flex-start" and "flex-end" behaviors: + if (aAxisTracker.AreAxesInternallyReversed()) { + if (mAlignContent == NS_STYLE_ALIGN_FLEX_START) { + mAlignContent = NS_STYLE_ALIGN_FLEX_END; + } else if (mAlignContent == NS_STYLE_ALIGN_FLEX_END) { + mAlignContent = NS_STYLE_ALIGN_FLEX_START; + } + } + + // Figure out how much space we'll set aside for packing spaces, and advance + // past any leading packing-space. + if (mPackingSpaceRemaining != 0) { + switch (mAlignContent) { + case NS_STYLE_ALIGN_SELF_START: + case NS_STYLE_ALIGN_SELF_END: + case NS_STYLE_ALIGN_BASELINE: + case NS_STYLE_ALIGN_LAST_BASELINE: + NS_WARNING("NYI: align-items/align-self:left/right/self-start/self-end/baseline/last baseline"); + MOZ_FALLTHROUGH; + case NS_STYLE_ALIGN_FLEX_START: + // All packing space should go at the end --> nothing to do here. + break; + case NS_STYLE_ALIGN_FLEX_END: + // All packing space goes at the beginning + mPosition += mPackingSpaceRemaining; + break; + case NS_STYLE_ALIGN_CENTER: + // Half the packing space goes at the beginning + mPosition += mPackingSpaceRemaining / 2; + break; + case NS_STYLE_ALIGN_SPACE_BETWEEN: + case NS_STYLE_ALIGN_SPACE_AROUND: + case NS_STYLE_ALIGN_SPACE_EVENLY: + nsFlexContainerFrame::CalculatePackingSpace(numLines, + mAlignContent, + &mPosition, + &mNumPackingSpacesRemaining, + &mPackingSpaceRemaining); + break; + case NS_STYLE_ALIGN_STRETCH: { + // Split space equally between the lines: + MOZ_ASSERT(mPackingSpaceRemaining > 0, + "negative packing space should make us use 'flex-start' " + "instead of 'stretch' (and we shouldn't bother with this " + "code if we have 0 packing space)"); + + uint32_t numLinesLeft = numLines; + for (FlexLine* line = aFirstLine; line; line = line->getNext()) { + // Our share is the amount of space remaining, divided by the number + // of lines remainig. + MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines"); + nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft; + nscoord newSize = line->GetLineCrossSize() + shareOfExtraSpace; + line->SetLineCrossSize(newSize); + + mPackingSpaceRemaining -= shareOfExtraSpace; + numLinesLeft--; + } + MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines"); + break; + } + default: + MOZ_ASSERT_UNREACHABLE("Unexpected align-content value"); + } + } +} + +void +CrossAxisPositionTracker::TraversePackingSpace() +{ + if (mNumPackingSpacesRemaining) { + MOZ_ASSERT(mAlignContent == NS_STYLE_ALIGN_SPACE_BETWEEN || + mAlignContent == NS_STYLE_ALIGN_SPACE_AROUND || + mAlignContent == NS_STYLE_ALIGN_SPACE_EVENLY, + "mNumPackingSpacesRemaining only applies for " + "space-between/space-around/space-evenly"); + + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "ran out of packing space earlier than we expected"); + + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curPackingSpace = + mPackingSpaceRemaining / mNumPackingSpacesRemaining; + + mPosition += curPackingSpace; + mNumPackingSpacesRemaining--; + mPackingSpaceRemaining -= curPackingSpace; + } +} + +SingleLineCrossAxisPositionTracker:: + SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker) + : PositionTracker(aAxisTracker.GetCrossAxis(), + aAxisTracker.IsCrossAxisReversed()) +{ +} + +void +FlexLine::ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker) +{ + nscoord crossStartToFurthestFirstBaseline = nscoord_MIN; + nscoord crossEndToFurthestFirstBaseline = nscoord_MIN; + nscoord crossStartToFurthestLastBaseline = nscoord_MIN; + nscoord crossEndToFurthestLastBaseline = nscoord_MIN; + nscoord largestOuterCrossSize = 0; + for (const FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + nscoord curOuterCrossSize = + item->GetOuterCrossSize(aAxisTracker.GetCrossAxis()); + + if ((item->GetAlignSelf() == NS_STYLE_ALIGN_BASELINE || + item->GetAlignSelf() == NS_STYLE_ALIGN_LAST_BASELINE) && + item->GetNumAutoMarginsInAxis(aAxisTracker.GetCrossAxis()) == 0) { + const bool useFirst = (item->GetAlignSelf() == NS_STYLE_ALIGN_BASELINE); + // FIXME: Once we support "writing-mode", we'll have to do baseline + // alignment in vertical flex containers here (w/ horizontal cross-axes). + + // Find distance from our item's cross-start and cross-end margin-box + // edges to its baseline. + // + // Here's a diagram of a flex-item that we might be doing this on. + // "mmm" is the margin-box, "bbb" is the border-box. The bottom of + // the text "BASE" is the baseline. + // + // ---(cross-start)--- + // ___ ___ ___ + // mmmmmmmmmmmm | |margin-start | + // m m | _|_ ___ | + // m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline + // m b b m | |ascent | + // m b BASE b m | _|_ _|_ + // m b b m | | + // m bbbbbbbb m | |crossEndToBaseline + // m m | | + // mmmmmmmmmmmm _|_ _|_ + // + // ---(cross-end)--- + // + // We already have the curOuterCrossSize, margin-start, and the ascent. + // * We can get crossStartToBaseline by adding margin-start + ascent. + // * If we subtract that from the curOuterCrossSize, we get + // crossEndToBaseline. + + nscoord crossStartToBaseline = + item->GetBaselineOffsetFromOuterCrossEdge(eAxisEdge_Start, + aAxisTracker, + useFirst); + nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline; + + // Now, update our "largest" values for these (across all the flex items + // in this flex line), so we can use them in computing the line's cross + // size below: + if (useFirst) { + crossStartToFurthestFirstBaseline = + std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline); + crossEndToFurthestFirstBaseline = + std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline); + } else { + crossStartToFurthestLastBaseline = + std::max(crossStartToFurthestLastBaseline, crossStartToBaseline); + crossEndToFurthestLastBaseline = + std::max(crossEndToFurthestLastBaseline, crossEndToBaseline); + } + } else { + largestOuterCrossSize = std::max(largestOuterCrossSize, curOuterCrossSize); + } + } + + // The line's baseline offset is the distance from the line's edge (start or + // end, depending on whether we've flipped the axes) to the furthest + // item-baseline. The item(s) with that baseline will be exactly aligned with + // the line's edge. + mFirstBaselineOffset = aAxisTracker.AreAxesInternallyReversed() ? + crossEndToFurthestFirstBaseline : crossStartToFurthestFirstBaseline; + + mLastBaselineOffset = aAxisTracker.AreAxesInternallyReversed() ? + crossStartToFurthestLastBaseline : crossEndToFurthestLastBaseline; + + // The line's cross-size is the larger of: + // (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of + // all baseline-aligned items with no cross-axis auto margins... + // and + // (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of + // all last baseline-aligned items with no cross-axis auto margins... + // and + // (c) largest cross-size of all other children. + mLineCrossSize = std::max( + std::max(crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline, + crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline), + largestOuterCrossSize); +} + +void +FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize, + const FlexboxAxisTracker& aAxisTracker) +{ + AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis(); + // We stretch IFF we are align-self:stretch, have no auto margins in + // cross axis, and have cross-axis size property == "auto". If any of those + // conditions don't hold up, we won't stretch. + if (mAlignSelf != NS_STYLE_ALIGN_STRETCH || + GetNumAutoMarginsInAxis(crossAxis) != 0 || + eStyleUnit_Auto != aAxisTracker.ComputedCrossSize(mFrame).GetUnit()) { + return; + } + + // If we've already been stretched, we can bail out early, too. + // No need to redo the calculation. + if (mIsStretched) { + return; + } + + // Reserve space for margins & border & padding, and then use whatever + // remains as our item's cross-size (clamped to its min/max range). + nscoord stretchedSize = aLineCrossSize - + GetMarginBorderPaddingSizeInAxis(crossAxis); + + stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize); + + // Update the cross-size & make a note that it's stretched, so we know to + // override the reflow state's computed cross-size in our final reflow. + SetCrossSize(stretchedSize); + mIsStretched = true; +} + +void +SingleLineCrossAxisPositionTracker:: + ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, + FlexItem& aItem) +{ + // Subtract the space that our item is already occupying, to see how much + // space (if any) is available for its auto margins. + nscoord spaceForAutoMargins = aLine.GetLineCrossSize() - + aItem.GetOuterCrossSize(mAxis); + + if (spaceForAutoMargins <= 0) { + return; // No available space --> nothing to do + } + + uint32_t numAutoMargins = aItem.GetNumAutoMarginsInAxis(mAxis); + if (numAutoMargins == 0) { + return; // No auto margins --> nothing to do. + } + + // OK, we have at least one auto margin and we have some available space. + // Give each auto margin a share of the space. + const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin; + for (uint32_t i = 0; i < eNumAxisEdges; i++) { + mozilla::Side side = kAxisOrientationToSidesMap[mAxis][i]; + if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { + MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, + "Expecting auto margins to have value '0' before we " + "update them"); + + // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2. + // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half. + nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins; + aItem.SetMarginComponentForSide(side, curAutoMarginSize); + numAutoMargins--; + spaceForAutoMargins -= curAutoMarginSize; + } + } +} + +void +SingleLineCrossAxisPositionTracker:: + EnterAlignPackingSpace(const FlexLine& aLine, + const FlexItem& aItem, + const FlexboxAxisTracker& aAxisTracker) +{ + // We don't do align-self alignment on items that have auto margins + // in the cross axis. + if (aItem.GetNumAutoMarginsInAxis(mAxis)) { + return; + } + + uint8_t alignSelf = aItem.GetAlignSelf(); + // NOTE: 'stretch' behaves like 'flex-start' once we've stretched any + // auto-sized items (which we've already done). + if (alignSelf == NS_STYLE_ALIGN_STRETCH) { + alignSelf = NS_STYLE_ALIGN_FLEX_START; + } + + // Map 'left'/'right' to 'start'/'end' + if (alignSelf == NS_STYLE_ALIGN_LEFT || alignSelf == NS_STYLE_ALIGN_RIGHT) { + if (aAxisTracker.IsRowOriented()) { + // Container's alignment axis is not parallel to the inline axis, + // so we map both 'left' and 'right' to 'start'. + alignSelf = NS_STYLE_ALIGN_START; + } else { + // Column-oriented, so we map 'left' and 'right' to 'start' or 'end', + // depending on left-to-right writing mode. + const bool isLTR = aAxisTracker.GetWritingMode().IsBidiLTR(); + const bool isAlignLeft = (alignSelf == NS_STYLE_ALIGN_LEFT); + alignSelf = (isAlignLeft == isLTR) ? NS_STYLE_ALIGN_START + : NS_STYLE_ALIGN_END; + } + } + + // Map 'start'/'end' to 'flex-start'/'flex-end'. + if (alignSelf == NS_STYLE_ALIGN_START) { + alignSelf = NS_STYLE_ALIGN_FLEX_START; + } else if (alignSelf == NS_STYLE_ALIGN_END) { + alignSelf = NS_STYLE_ALIGN_FLEX_END; + } + + // If our cross axis is (internally) reversed, swap the align-self + // "flex-start" and "flex-end" behaviors: + if (aAxisTracker.AreAxesInternallyReversed()) { + if (alignSelf == NS_STYLE_ALIGN_FLEX_START) { + alignSelf = NS_STYLE_ALIGN_FLEX_END; + } else if (alignSelf == NS_STYLE_ALIGN_FLEX_END) { + alignSelf = NS_STYLE_ALIGN_FLEX_START; + } + } + + switch (alignSelf) { + case NS_STYLE_ALIGN_SELF_START: + case NS_STYLE_ALIGN_SELF_END: + NS_WARNING("NYI: align-items/align-self:left/right/self-start/self-end"); + MOZ_FALLTHROUGH; + case NS_STYLE_ALIGN_FLEX_START: + // No space to skip over -- we're done. + break; + case NS_STYLE_ALIGN_FLEX_END: + mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis); + break; + case NS_STYLE_ALIGN_CENTER: + // Note: If cross-size is odd, the "after" space will get the extra unit. + mPosition += + (aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis)) / 2; + break; + case NS_STYLE_ALIGN_BASELINE: + case NS_STYLE_ALIGN_LAST_BASELINE: { + const bool useFirst = (alignSelf == NS_STYLE_ALIGN_BASELINE); + + // Normally, baseline-aligned items are collectively aligned with the + // line's cross-start edge; however, if our cross axis is (internally) + // reversed, we instead align them with the cross-end edge. + // A similar logic holds for last baseline-aligned items, but in reverse. + AxisEdgeType baselineAlignEdge = + aAxisTracker.AreAxesInternallyReversed() == useFirst ? + eAxisEdge_End : eAxisEdge_Start; + + nscoord itemBaselineOffset = + aItem.GetBaselineOffsetFromOuterCrossEdge(baselineAlignEdge, + aAxisTracker, + useFirst); + + nscoord lineBaselineOffset = useFirst ? aLine.GetFirstBaselineOffset() + : aLine.GetLastBaselineOffset(); + + NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset, + "failed at finding largest baseline offset"); + + // How much do we need to adjust our position (from the line edge), + // to get the item's baseline to hit the line's baseline offset: + nscoord baselineDiff = lineBaselineOffset - itemBaselineOffset; + + if (aAxisTracker.AreAxesInternallyReversed() == useFirst) { + // Advance to align item w/ line's flex-end edge (as in FLEX_END case): + mPosition += aLine.GetLineCrossSize() - aItem.GetOuterCrossSize(mAxis); + // ...and step *back* by the baseline adjustment: + mPosition -= baselineDiff; + } else { + // mPosition is already at line's flex-start edge. + // From there, we step *forward* by the baseline adjustment: + mPosition += baselineDiff; + } + break; + } + default: + MOZ_ASSERT_UNREACHABLE("Unexpected align-self value"); + break; + } +} + +// Utility function to convert an InlineDir to an AxisOrientationType +static inline AxisOrientationType +InlineDirToAxisOrientation(WritingMode::InlineDir aInlineDir) +{ + switch (aInlineDir) { + case WritingMode::eInlineLTR: + return eAxis_LR; + case WritingMode::eInlineRTL: + return eAxis_RL; + case WritingMode::eInlineTTB: + return eAxis_TB; + case WritingMode::eInlineBTT: + return eAxis_BT; + } + + MOZ_ASSERT_UNREACHABLE("Unhandled InlineDir"); + return eAxis_LR; // in case of unforseen error, assume English LTR text flow. +} + +// Utility function to convert a BlockDir to an AxisOrientationType +static inline AxisOrientationType +BlockDirToAxisOrientation(WritingMode::BlockDir aBlockDir) +{ + switch (aBlockDir) { + case WritingMode::eBlockLR: + return eAxis_LR; + case WritingMode::eBlockRL: + return eAxis_RL; + case WritingMode::eBlockTB: + return eAxis_TB; + // NOTE: WritingMode::eBlockBT (bottom-to-top) does not exist. + } + + MOZ_ASSERT_UNREACHABLE("Unhandled BlockDir"); + return eAxis_TB; // in case of unforseen error, assume English TTB block-flow +} + +FlexboxAxisTracker::FlexboxAxisTracker( + const nsFlexContainerFrame* aFlexContainer, + const WritingMode& aWM, + AxisTrackerFlags aFlags) + : mWM(aWM), + mAreAxesInternallyReversed(false) +{ + if (IsLegacyBox(aFlexContainer)) { + InitAxesFromLegacyProps(aFlexContainer); + } else { + InitAxesFromModernProps(aFlexContainer); + } + + // Master switch to enable/disable bug 983427's code for reversing our axes + // and reversing some logic, to avoid reflowing children in bottom-to-top + // order. (This switch can be removed eventually, but for now, it allows + // this special-case code path to be compared against the normal code path.) + static bool sPreventBottomToTopChildOrdering = true; + + // Note: if the eAllowBottomToTopChildOrdering flag is set, that overrides + // the static boolean and makes us skip this special case. + if (!(aFlags & AxisTrackerFlags::eAllowBottomToTopChildOrdering) && + sPreventBottomToTopChildOrdering) { + // If either axis is bottom-to-top, we flip both axes (and set a flag + // so that we can flip some logic to make the reversal transparent). + if (eAxis_BT == mMainAxis || eAxis_BT == mCrossAxis) { + mMainAxis = GetReverseAxis(mMainAxis); + mCrossAxis = GetReverseAxis(mCrossAxis); + mAreAxesInternallyReversed = true; + mIsMainAxisReversed = !mIsMainAxisReversed; + mIsCrossAxisReversed = !mIsCrossAxisReversed; + } + } +} + +void +FlexboxAxisTracker::InitAxesFromLegacyProps( + const nsFlexContainerFrame* aFlexContainer) +{ + const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL(); + + const bool boxOrientIsVertical = (styleXUL->mBoxOrient == + StyleBoxOrient::Vertical); + const bool wmIsVertical = mWM.IsVertical(); + + // If box-orient agrees with our writing-mode, then we're "row-oriented" + // (i.e. the flexbox main axis is the same as our writing mode's inline + // direction). Otherwise, we're column-oriented (i.e. the flexbox's main + // axis is perpendicular to the writing-mode's inline direction). + mIsRowOriented = (boxOrientIsVertical == wmIsVertical); + + // XXXdholbert BEGIN CODE TO SET DEPRECATED MEMBER-VARS + if (boxOrientIsVertical) { + mMainAxis = eAxis_TB; + mCrossAxis = eAxis_LR; + } else { + mMainAxis = eAxis_LR; + mCrossAxis = eAxis_TB; + } + // "direction: rtl" reverses the writing-mode's inline axis. + // So, we need to reverse the corresponding flex axis to match. + // (Note this we don't toggle "mIsMainAxisReversed" for this condition, + // because the main axis will still match mWM's inline direction.) + if (!mWM.IsBidiLTR()) { + AxisOrientationType& axisToFlip = mIsRowOriented ? mMainAxis : mCrossAxis; + axisToFlip = GetReverseAxis(axisToFlip); + } + // XXXdholbert END CODE TO SET DEPRECATED MEMBER-VARS + + // Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the + // main axis (so it runs in the reverse direction of the inline axis): + if (styleXUL->mBoxDirection == StyleBoxDirection::Reverse) { + mMainAxis = GetReverseAxis(mMainAxis); + mIsMainAxisReversed = true; + } else { + mIsMainAxisReversed = false; + } + + // Legacy flexbox does not support reversing the cross axis -- it has no + // equivalent of modern flexbox's "flex-wrap: wrap-reverse". + mIsCrossAxisReversed = false; +} + +void +FlexboxAxisTracker::InitAxesFromModernProps( + const nsFlexContainerFrame* aFlexContainer) +{ + const nsStylePosition* stylePos = aFlexContainer->StylePosition(); + uint32_t flexDirection = stylePos->mFlexDirection; + + // Inline dimension ("start-to-end"): + // (NOTE: I'm intentionally not calling these "inlineAxis"/"blockAxis", since + // those terms have explicit definition in the writing-modes spec, which are + // the opposite of how I'd be using them here.) + AxisOrientationType inlineDimension = + InlineDirToAxisOrientation(mWM.GetInlineDir()); + AxisOrientationType blockDimension = + BlockDirToAxisOrientation(mWM.GetBlockDir()); + + // Determine main axis: + switch (flexDirection) { + case NS_STYLE_FLEX_DIRECTION_ROW: + mMainAxis = inlineDimension; + mIsRowOriented = true; + mIsMainAxisReversed = false; + break; + case NS_STYLE_FLEX_DIRECTION_ROW_REVERSE: + mMainAxis = GetReverseAxis(inlineDimension); + mIsRowOriented = true; + mIsMainAxisReversed = true; + break; + case NS_STYLE_FLEX_DIRECTION_COLUMN: + mMainAxis = blockDimension; + mIsRowOriented = false; + mIsMainAxisReversed = false; + break; + case NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE: + mMainAxis = GetReverseAxis(blockDimension); + mIsRowOriented = false; + mIsMainAxisReversed = true; + break; + default: + MOZ_ASSERT_UNREACHABLE("Unexpected flex-direction value"); + } + + // Determine cross axis: + // (This is set up so that a bogus |flexDirection| value will + // give us blockDimension. + if (flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN || + flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE) { + mCrossAxis = inlineDimension; + } else { + mCrossAxis = blockDimension; + } + + // "flex-wrap: wrap-reverse" reverses our cross axis. + if (stylePos->mFlexWrap == NS_STYLE_FLEX_WRAP_WRAP_REVERSE) { + mCrossAxis = GetReverseAxis(mCrossAxis); + mIsCrossAxisReversed = true; + } else { + mIsCrossAxisReversed = false; + } +} + +// Allocates a new FlexLine, adds it to the given LinkedList (at the front or +// back depending on aShouldInsertAtFront), and returns a pointer to it. +static FlexLine* +AddNewFlexLineToList(LinkedList<FlexLine>& aLines, + bool aShouldInsertAtFront) +{ + FlexLine* newLine = new FlexLine(); + if (aShouldInsertAtFront) { + aLines.insertFront(newLine); + } else { + aLines.insertBack(newLine); + } + return newLine; +} + +void +nsFlexContainerFrame::GenerateFlexLines( + nsPresContext* aPresContext, + const ReflowInput& aReflowInput, + nscoord aContentBoxMainSize, + nscoord aAvailableBSizeForContent, + const nsTArray<StrutInfo>& aStruts, + const FlexboxAxisTracker& aAxisTracker, + nsTArray<nsIFrame*>& aPlaceholders, /* out */ + LinkedList<FlexLine>& aLines /* out */) +{ + MOZ_ASSERT(aLines.isEmpty(), "Expecting outparam to start out empty"); + + const bool isSingleLine = + NS_STYLE_FLEX_WRAP_NOWRAP == aReflowInput.mStylePosition->mFlexWrap; + + // If we're transparently reversing axes, then we'll need to link up our + // FlexItems and FlexLines in the reverse order, so that the rest of flex + // layout (with flipped axes) will still produce the correct result. + // Here, we declare a convenience bool that we'll pass when adding a new + // FlexLine or FlexItem, to make us insert it at the beginning of its list + // (so the list ends up reversed). + const bool shouldInsertAtFront = aAxisTracker.AreAxesInternallyReversed(); + + // We have at least one FlexLine. Even an empty flex container has a single + // (empty) flex line. + FlexLine* curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); + + nscoord wrapThreshold; + if (isSingleLine) { + // Not wrapping. Set threshold to sentinel value that tells us not to wrap. + wrapThreshold = NS_UNCONSTRAINEDSIZE; + } else { + // Wrapping! Set wrap threshold to flex container's content-box main-size. + wrapThreshold = aContentBoxMainSize; + + // If the flex container doesn't have a definite content-box main-size + // (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at + // least wrap when we hit its max main-size. + if (wrapThreshold == NS_UNCONSTRAINEDSIZE) { + const nscoord flexContainerMaxMainSize = + GET_MAIN_COMPONENT_LOGICAL(aAxisTracker, aAxisTracker.GetWritingMode(), + aReflowInput.ComputedMaxISize(), + aReflowInput.ComputedMaxBSize()); + + wrapThreshold = flexContainerMaxMainSize; + } + + // Also: if we're column-oriented and paginating in the block dimension, + // we may need to wrap to a new flex line sooner (before we grow past the + // available BSize, potentially running off the end of the page). + if (aAxisTracker.IsColumnOriented() && + aAvailableBSizeForContent != NS_UNCONSTRAINEDSIZE) { + wrapThreshold = std::min(wrapThreshold, aAvailableBSizeForContent); + } + } + + // Tracks the index of the next strut, in aStruts (and when this hits + // aStruts.Length(), that means there are no more struts): + uint32_t nextStrutIdx = 0; + + // Overall index of the current flex item in the flex container. (This gets + // checked against entries in aStruts.) + uint32_t itemIdxInContainer = 0; + + for (nsIFrame* childFrame : mFrames) { + // Don't create flex items / lines for placeholder frames: + if (childFrame->GetType() == nsGkAtoms::placeholderFrame) { + aPlaceholders.AppendElement(childFrame); + continue; + } + + // Honor "page-break-before", if we're multi-line and this line isn't empty: + if (!isSingleLine && !curLine->IsEmpty() && + childFrame->StyleDisplay()->mBreakBefore) { + curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); + } + + UniquePtr<FlexItem> item; + if (nextStrutIdx < aStruts.Length() && + aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) { + + // Use the simplified "strut" FlexItem constructor: + item = MakeUnique<FlexItem>(childFrame, aStruts[nextStrutIdx].mStrutCrossSize, + aReflowInput.GetWritingMode()); + nextStrutIdx++; + } else { + item = GenerateFlexItemForChild(aPresContext, childFrame, + aReflowInput, aAxisTracker); + } + + nscoord itemInnerHypotheticalMainSize = item->GetMainSize(); + nscoord itemOuterHypotheticalMainSize = + item->GetOuterMainSize(aAxisTracker.GetMainAxis()); + + // Check if we need to wrap |item| to a new line + // (i.e. check if its outer hypothetical main size pushes our line over + // the threshold) + if (wrapThreshold != NS_UNCONSTRAINEDSIZE && + !curLine->IsEmpty() && // No need to wrap at start of a line. + wrapThreshold < (curLine->GetTotalOuterHypotheticalMainSize() + + itemOuterHypotheticalMainSize)) { + curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); + } + + // Add item to current flex line (and update the line's bookkeeping about + // how large its items collectively are). + curLine->AddItem(item.release(), shouldInsertAtFront, + itemInnerHypotheticalMainSize, + itemOuterHypotheticalMainSize); + + // Honor "page-break-after", if we're multi-line and have more children: + if (!isSingleLine && childFrame->GetNextSibling() && + childFrame->StyleDisplay()->mBreakAfter) { + curLine = AddNewFlexLineToList(aLines, shouldInsertAtFront); + } + itemIdxInContainer++; + } +} + +// Retrieves the content-box main-size of our flex container from the +// reflow state (specifically, the main-size of *this continuation* of the +// flex container). +nscoord +nsFlexContainerFrame::GetMainSizeFromReflowInput( + const ReflowInput& aReflowInput, + const FlexboxAxisTracker& aAxisTracker) +{ + if (aAxisTracker.IsRowOriented()) { + // Row-oriented --> our main axis is the inline axis, so our main size + // is our inline size (which should already be resolved). + NS_WARNING_ASSERTION( + aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE, + "Unconstrained inline size; this should only result from huge sizes " + "(not intrinsic sizing w/ orthogonal flows)"); + return aReflowInput.ComputedISize(); + } + + // Note: This may be unconstrained, if our block size is "auto": + return GetEffectiveComputedBSize(aReflowInput); +} + +// Returns the largest outer hypothetical main-size of any line in |aLines|. +// (i.e. the hypothetical main-size of the largest line) +static nscoord +GetLargestLineMainSize(const FlexLine* aFirstLine) +{ + nscoord largestLineOuterSize = 0; + for (const FlexLine* line = aFirstLine; line; line = line->getNext()) { + largestLineOuterSize = std::max(largestLineOuterSize, + line->GetTotalOuterHypotheticalMainSize()); + } + return largestLineOuterSize; +} + +/* Resolves the content-box main-size of a flex container frame, + * primarily based on: + * - the "tentative" main size, taken from the reflow state ("tentative" + * because it may be unconstrained or may run off the page). + * - the available BSize (needed if the main axis is the block axis). + * - the sizes of our lines of flex items. + * + * Guaranteed to return a definite length, i.e. not NS_UNCONSTRAINEDSIZE, + * aside from cases with huge lengths which happen to compute to that value. + * + * (Note: This function should be structurally similar to 'ComputeCrossSize()', + * except that here, the caller has already grabbed the tentative size from the + * reflow state.) + */ +static nscoord +ResolveFlexContainerMainSize(const ReflowInput& aReflowInput, + const FlexboxAxisTracker& aAxisTracker, + nscoord aTentativeMainSize, + nscoord aAvailableBSizeForContent, + const FlexLine* aFirstLine, + nsReflowStatus& aStatus) +{ + MOZ_ASSERT(aFirstLine, "null first line pointer"); + + if (aAxisTracker.IsRowOriented()) { + // Row-oriented --> our main axis is the inline axis, so our main size + // is our inline size (which should already be resolved). + return aTentativeMainSize; + } + + if (aTentativeMainSize != NS_INTRINSICSIZE) { + // Column-oriented case, with fixed BSize: + if (aAvailableBSizeForContent == NS_UNCONSTRAINEDSIZE || + aTentativeMainSize < aAvailableBSizeForContent) { + // Not in a fragmenting context, OR no need to fragment because we have + // more available BSize than we need. Either way, we don't need to clamp. + // (Note that the reflow state has already done the appropriate + // min/max-BSize clamping.) + return aTentativeMainSize; + } + + // Fragmenting *and* our fixed BSize is larger than available BSize: + // Mark incomplete so we get a next-in-flow, and take up all of the + // available BSize (or the amount of BSize required by our children, if + // that's larger; but of course not more than our own computed BSize). + // XXXdholbert For now, we don't support pushing children to our next + // continuation or splitting children, so "amount of BSize required by + // our children" is just the main-size (BSize) of our longest flex line. + NS_FRAME_SET_INCOMPLETE(aStatus); + nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine); + + if (largestLineOuterSize <= aAvailableBSizeForContent) { + return aAvailableBSizeForContent; + } + return std::min(aTentativeMainSize, largestLineOuterSize); + } + + // Column-oriented case, with auto BSize: + // Resolve auto BSize to the largest FlexLine length, clamped to our + // computed min/max main-size properties. + // XXXdholbert Handle constrained-aAvailableBSizeForContent case here. + nscoord largestLineOuterSize = GetLargestLineMainSize(aFirstLine); + return NS_CSS_MINMAX(largestLineOuterSize, + aReflowInput.ComputedMinBSize(), + aReflowInput.ComputedMaxBSize()); +} + +nscoord +nsFlexContainerFrame::ComputeCrossSize(const ReflowInput& aReflowInput, + const FlexboxAxisTracker& aAxisTracker, + nscoord aSumLineCrossSizes, + nscoord aAvailableBSizeForContent, + bool* aIsDefinite, + nsReflowStatus& aStatus) +{ + MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null"); + + if (aAxisTracker.IsColumnOriented()) { + // Column-oriented --> our cross axis is the inline axis, so our cross size + // is our inline size (which should already be resolved). + NS_WARNING_ASSERTION( + aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE, + "Unconstrained inline size; this should only result from huge sizes " + "(not intrinsic sizing w/ orthogonal flows)"); + *aIsDefinite = true; + return aReflowInput.ComputedISize(); + } + + nscoord effectiveComputedBSize = GetEffectiveComputedBSize(aReflowInput); + if (effectiveComputedBSize != NS_INTRINSICSIZE) { + // Row-oriented case (cross axis is block-axis), with fixed BSize: + *aIsDefinite = true; + if (aAvailableBSizeForContent == NS_UNCONSTRAINEDSIZE || + effectiveComputedBSize < aAvailableBSizeForContent) { + // Not in a fragmenting context, OR no need to fragment because we have + // more available BSize than we need. Either way, just use our fixed + // BSize. (Note that the reflow state has already done the appropriate + // min/max-BSize clamping.) + return effectiveComputedBSize; + } + + // Fragmenting *and* our fixed BSize is too tall for available BSize: + // Mark incomplete so we get a next-in-flow, and take up all of the + // available BSize (or the amount of BSize required by our children, if + // that's larger; but of course not more than our own computed BSize). + // XXXdholbert For now, we don't support pushing children to our next + // continuation or splitting children, so "amount of BSize required by + // our children" is just the sum of our FlexLines' BSizes (cross sizes). + NS_FRAME_SET_INCOMPLETE(aStatus); + if (aSumLineCrossSizes <= aAvailableBSizeForContent) { + return aAvailableBSizeForContent; + } + return std::min(effectiveComputedBSize, aSumLineCrossSizes); + } + + // Row-oriented case (cross axis is block axis), with auto BSize: + // Shrink-wrap our line(s), subject to our min-size / max-size + // constraints in that (block) axis. + // XXXdholbert Handle constrained-aAvailableBSizeForContent case here. + *aIsDefinite = false; + return NS_CSS_MINMAX(aSumLineCrossSizes, + aReflowInput.ComputedMinBSize(), + aReflowInput.ComputedMaxBSize()); +} + +void +FlexLine::PositionItemsInMainAxis(uint8_t aJustifyContent, + nscoord aContentBoxMainSize, + const FlexboxAxisTracker& aAxisTracker) +{ + MainAxisPositionTracker mainAxisPosnTracker(aAxisTracker, this, + aJustifyContent, + aContentBoxMainSize); + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + nscoord itemMainBorderBoxSize = + item->GetMainSize() + + item->GetBorderPaddingSizeInAxis(mainAxisPosnTracker.GetAxis()); + + // Resolve any main-axis 'auto' margins on aChild to an actual value. + mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(*item); + + // Advance our position tracker to child's upper-left content-box corner, + // and use that as its position in the main axis. + mainAxisPosnTracker.EnterMargin(item->GetMargin()); + mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize); + + item->SetMainPosition(mainAxisPosnTracker.GetPosition()); + + mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize); + mainAxisPosnTracker.ExitMargin(item->GetMargin()); + mainAxisPosnTracker.TraversePackingSpace(); + } +} + +/** + * Given the flex container's "flex-relative ascent" (i.e. distance from the + * flex container's content-box cross-start edge to its baseline), returns + * its actual physical ascent value (the distance from the *border-box* top + * edge to its baseline). + */ +static nscoord +ComputePhysicalAscentFromFlexRelativeAscent( + nscoord aFlexRelativeAscent, + nscoord aContentBoxCrossSize, + const ReflowInput& aReflowInput, + const FlexboxAxisTracker& aAxisTracker) +{ + return aReflowInput.ComputedPhysicalBorderPadding().top + + PhysicalCoordFromFlexRelativeCoord(aFlexRelativeAscent, + aContentBoxCrossSize, + aAxisTracker.GetCrossAxis()); +} + +void +nsFlexContainerFrame::SizeItemInCrossAxis( + nsPresContext* aPresContext, + const FlexboxAxisTracker& aAxisTracker, + ReflowInput& aChildReflowInput, + FlexItem& aItem) +{ + if (aAxisTracker.IsCrossAxisHorizontal()) { + MOZ_ASSERT(aItem.HasIntrinsicRatio(), + "For now, caller's CanMainSizeInfluenceCrossSize check should " + "only allow us to get here for items with intrinsic ratio"); + // XXXdholbert When we finish support for vertical writing-modes, + // (in bug 1079155 or a dependency), we'll relax the horizontal check in + // CanMainSizeInfluenceCrossSize, and this function will need to be able + // to measure the baseline & width (given our resolved height) + // of vertical-writing-mode flex items here. + // For now, we only expect to get here for items with an intrinsic aspect + // ratio; and for those items, we can just read the size off of the reflow + // state, without performing reflow. + aItem.SetCrossSize(aChildReflowInput.ComputedWidth()); + return; + } + + MOZ_ASSERT(!aItem.HadMeasuringReflow(), + "We shouldn't need more than one measuring reflow"); + + if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_STRETCH) { + // This item's got "align-self: stretch", so we probably imposed a + // stretched computed height on it during its previous reflow. We're + // not imposing that height for *this* measuring reflow, so we need to + // tell it to treat this reflow as a vertical resize (regardless of + // whether any of its ancestors are being resized). + aChildReflowInput.SetVResize(true); + } + ReflowOutput childDesiredSize(aChildReflowInput); + nsReflowStatus childReflowStatus; + const uint32_t flags = NS_FRAME_NO_MOVE_FRAME; + ReflowChild(aItem.Frame(), aPresContext, + childDesiredSize, aChildReflowInput, + 0, 0, flags, childReflowStatus); + aItem.SetHadMeasuringReflow(); + + // XXXdholbert Once we do pagination / splitting, we'll need to actually + // handle incomplete childReflowStatuses. But for now, we give our kids + // unconstrained available height, which means they should always complete. + MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), + "We gave flex item unconstrained available height, so it " + "should be complete"); + + // Tell the child we're done with its initial reflow. + // (Necessary for e.g. GetBaseline() to work below w/out asserting) + FinishReflowChild(aItem.Frame(), aPresContext, + childDesiredSize, &aChildReflowInput, 0, 0, flags); + + // Save the sizing info that we learned from this reflow + // ----------------------------------------------------- + + // Tentatively store the child's desired content-box cross-size. + // Note that childDesiredSize is the border-box size, so we have to + // subtract border & padding to get the content-box size. + // (Note that at this point in the code, we know our cross axis is vertical, + // so we don't bother with making aAxisTracker pick the cross-axis component + // for us.) + nscoord crossAxisBorderPadding = aItem.GetBorderPadding().TopBottom(); + if (childDesiredSize.Height() < crossAxisBorderPadding) { + // Child's requested size isn't large enough for its border/padding! + // This is OK for the trivial nsFrame::Reflow() impl, but other frame + // classes should know better. So, if we get here, the child had better be + // an instance of nsFrame (i.e. it should return null from GetType()). + // XXXdholbert Once we've fixed bug 765861, we should upgrade this to an + // assertion that trivially passes if bug 765861's flag has been flipped. + NS_WARNING_ASSERTION( + !aItem.Frame()->GetType(), + "Child should at least request space for border/padding"); + aItem.SetCrossSize(0); + } else { + // (normal case) + aItem.SetCrossSize(childDesiredSize.Height() - crossAxisBorderPadding); + } + + aItem.SetAscent(childDesiredSize.BlockStartAscent()); +} + +void +FlexLine::PositionItemsInCrossAxis(nscoord aLineStartPosition, + const FlexboxAxisTracker& aAxisTracker) +{ + SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker); + + for (FlexItem* item = mItems.getFirst(); item; item = item->getNext()) { + // First, stretch the item's cross size (if appropriate), and resolve any + // auto margins in this axis. + item->ResolveStretchedCrossSize(mLineCrossSize, aAxisTracker); + lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, *item); + + // Compute the cross-axis position of this item + nscoord itemCrossBorderBoxSize = + item->GetCrossSize() + + item->GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis()); + lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, *item, aAxisTracker); + lineCrossAxisPosnTracker.EnterMargin(item->GetMargin()); + lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize); + + item->SetCrossPosition(aLineStartPosition + + lineCrossAxisPosnTracker.GetPosition()); + + // Back out to cross-axis edge of the line. + lineCrossAxisPosnTracker.ResetPosition(); + } +} + +void +nsFlexContainerFrame::Reflow(nsPresContext* aPresContext, + ReflowOutput& aDesiredSize, + const ReflowInput& aReflowInput, + nsReflowStatus& aStatus) +{ + MarkInReflow(); + DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame"); + DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus); + MOZ_LOG(gFlexContainerLog, LogLevel::Debug, + ("Reflow() for nsFlexContainerFrame %p\n", this)); + + if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) { + return; + } + + // We (and our children) can only depend on our ancestor's bsize if we have + // a percent-bsize, or if we're positioned and we have "block-start" and "block-end" + // set and have block-size:auto. (There are actually other cases, too -- e.g. if + // our parent is itself a block-dir flex container and we're flexible -- but + // we'll let our ancestors handle those sorts of cases.) + WritingMode wm = aReflowInput.GetWritingMode(); + const nsStylePosition* stylePos = StylePosition(); + const nsStyleCoord& bsize = stylePos->BSize(wm); + if (bsize.HasPercent() || + (StyleDisplay()->IsAbsolutelyPositionedStyle() && + eStyleUnit_Auto == bsize.GetUnit() && + eStyleUnit_Auto != stylePos->mOffset.GetBStartUnit(wm) && + eStyleUnit_Auto != stylePos->mOffset.GetBEndUnit(wm))) { + AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE); + } + + // If we've never reordered our children, then we can trust that they're + // already in DOM-order, and we only need to consider their "order" property + // when checking them for sortedness & sorting them. + // + // After we actually sort them, though, we can't trust that they're in DOM + // order anymore. So, from that point on, our sort & sorted-order-checking + // operations need to use a fancier LEQ function that also takes DOM order + // into account, so that we can honor the spec's requirement that frames w/ + // equal "order" values are laid out in DOM order. + + if (!HasAnyStateBits(NS_STATE_FLEX_CHILDREN_REORDERED)) { + if (SortChildrenIfNeeded<IsOrderLEQ>()) { + AddStateBits(NS_STATE_FLEX_CHILDREN_REORDERED); + } + } else { + SortChildrenIfNeeded<IsOrderLEQWithDOMFallback>(); + } + + RenumberList(); + + const FlexboxAxisTracker axisTracker(this, aReflowInput.GetWritingMode()); + + // If we're being fragmented into a constrained BSize, then subtract off + // borderpadding BStart from that constrained BSize, to get the available + // BSize for our content box. (No need to subtract the borderpadding BStart + // if we're already skipping it via GetLogicalSkipSides, though.) + nscoord availableBSizeForContent = aReflowInput.AvailableBSize(); + if (availableBSizeForContent != NS_UNCONSTRAINEDSIZE && + !(GetLogicalSkipSides(&aReflowInput).BStart())) { + availableBSizeForContent -= + aReflowInput.ComputedLogicalBorderPadding().BStart(wm); + // (Don't let that push availableBSizeForContent below zero, though): + availableBSizeForContent = std::max(availableBSizeForContent, 0); + } + + nscoord contentBoxMainSize = GetMainSizeFromReflowInput(aReflowInput, + axisTracker); + + AutoTArray<StrutInfo, 1> struts; + DoFlexLayout(aPresContext, aDesiredSize, aReflowInput, aStatus, + contentBoxMainSize, availableBSizeForContent, + struts, axisTracker); + + if (!struts.IsEmpty()) { + // We're restarting flex layout, with new knowledge of collapsed items. + DoFlexLayout(aPresContext, aDesiredSize, aReflowInput, aStatus, + contentBoxMainSize, availableBSizeForContent, + struts, axisTracker); + } +} + +// RAII class to clean up a list of FlexLines. +// Specifically, this removes each line from the list, deletes all the +// FlexItems in its list, and deletes the FlexLine. +class MOZ_RAII AutoFlexLineListClearer +{ +public: + explicit AutoFlexLineListClearer(LinkedList<FlexLine>& aLines + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : mLines(aLines) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + } + + ~AutoFlexLineListClearer() + { + while (FlexLine* line = mLines.popFirst()) { + while (FlexItem* item = line->mItems.popFirst()) { + delete item; + } + delete line; + } + } + +private: + LinkedList<FlexLine>& mLines; + MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER +}; + +// Class to let us temporarily provide an override value for the the main-size +// CSS property ('width' or 'height') on a flex item, for use in +// nsFrame::ComputeSizeWithIntrinsicDimensions. +// (We could use this overridden size more broadly, too, but it's probably +// better to avoid property-table accesses. So, where possible, we communicate +// the resolved main-size to the child via modifying its reflow state directly, +// instead of using this class.) +class MOZ_RAII AutoFlexItemMainSizeOverride final +{ +public: + explicit AutoFlexItemMainSizeOverride(FlexItem& aItem + MOZ_GUARD_OBJECT_NOTIFIER_PARAM) + : mItemProps(aItem.Frame()->Properties()) + { + MOZ_GUARD_OBJECT_NOTIFIER_INIT; + + MOZ_ASSERT(!mItemProps.Has(nsIFrame::FlexItemMainSizeOverride()), + "FlexItemMainSizeOverride prop shouldn't be set already; " + "it should only be set temporarily (& not recursively)"); + NS_ASSERTION(aItem.HasIntrinsicRatio(), + "This should only be needed for items with an aspect ratio"); + + mItemProps.Set(nsIFrame::FlexItemMainSizeOverride(), aItem.GetMainSize()); + } + + ~AutoFlexItemMainSizeOverride() { + mItemProps.Remove(nsIFrame::FlexItemMainSizeOverride()); + } + +private: + const FrameProperties mItemProps; + MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER +}; + +void +nsFlexContainerFrame::CalculatePackingSpace(uint32_t aNumThingsToPack, + uint8_t aAlignVal, + nscoord* aFirstSubjectOffset, + uint32_t* aNumPackingSpacesRemaining, + nscoord* aPackingSpaceRemaining) +{ + MOZ_ASSERT(NS_STYLE_ALIGN_SPACE_BETWEEN == NS_STYLE_JUSTIFY_SPACE_BETWEEN && + NS_STYLE_ALIGN_SPACE_AROUND == NS_STYLE_JUSTIFY_SPACE_AROUND && + NS_STYLE_ALIGN_SPACE_EVENLY == NS_STYLE_JUSTIFY_SPACE_EVENLY, + "CalculatePackingSpace assumes that NS_STYLE_ALIGN_SPACE and " + "NS_STYLE_JUSTIFY_SPACE constants are interchangeable"); + + MOZ_ASSERT(aAlignVal == NS_STYLE_ALIGN_SPACE_BETWEEN || + aAlignVal == NS_STYLE_ALIGN_SPACE_AROUND || + aAlignVal == NS_STYLE_ALIGN_SPACE_EVENLY, + "Unexpected alignment value"); + + MOZ_ASSERT(*aPackingSpaceRemaining >= 0, + "Should not be called with negative packing space"); + + MOZ_ASSERT(aNumThingsToPack >= 1, + "Should not be called with less than 1 thing to pack"); + + // Packing spaces between items: + *aNumPackingSpacesRemaining = aNumThingsToPack - 1; + + if (aAlignVal == NS_STYLE_ALIGN_SPACE_BETWEEN) { + // No need to reserve space at beginning/end, so we're done. + return; + } + + // We need to add 1 or 2 packing spaces, split between beginning/end, for + // space-around / space-evenly: + size_t numPackingSpacesForEdges = + aAlignVal == NS_STYLE_JUSTIFY_SPACE_AROUND ? 1 : 2; + + // How big will each "full" packing space be: + nscoord packingSpaceSize = *aPackingSpaceRemaining / + (*aNumPackingSpacesRemaining + numPackingSpacesForEdges); + // How much packing-space are we allocating to the edges: + nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize; + + // Use half of that edge packing space right now: + *aFirstSubjectOffset += totalEdgePackingSpace / 2; + // ...but we need to subtract all of it right away, so that we won't + // hand out any of it to intermediate packing spaces. + *aPackingSpaceRemaining -= totalEdgePackingSpace; +} + +void +nsFlexContainerFrame::DoFlexLayout(nsPresContext* aPresContext, + ReflowOutput& aDesiredSize, + const ReflowInput& aReflowInput, + nsReflowStatus& aStatus, + nscoord aContentBoxMainSize, + nscoord aAvailableBSizeForContent, + nsTArray<StrutInfo>& aStruts, + const FlexboxAxisTracker& aAxisTracker) +{ + aStatus = NS_FRAME_COMPLETE; + + LinkedList<FlexLine> lines; + nsTArray<nsIFrame*> placeholderKids; + AutoFlexLineListClearer cleanupLines(lines); + + GenerateFlexLines(aPresContext, aReflowInput, + aContentBoxMainSize, + aAvailableBSizeForContent, + aStruts, aAxisTracker, + placeholderKids, lines); + + if (lines.getFirst()->IsEmpty() && + !lines.getFirst()->getNext()) { + // We have no flex items, our parent should synthesize a baseline if needed. + AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE); + } else { + RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE); + } + + aContentBoxMainSize = + ResolveFlexContainerMainSize(aReflowInput, aAxisTracker, + aContentBoxMainSize, aAvailableBSizeForContent, + lines.getFirst(), aStatus); + + for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { + line->ResolveFlexibleLengths(aContentBoxMainSize); + } + + // Cross Size Determination - Flexbox spec section 9.4 + // =================================================== + // Calculate the hypothetical cross size of each item: + nscoord sumLineCrossSizes = 0; + for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { + for (FlexItem* item = line->GetFirstItem(); item; item = item->getNext()) { + // The item may already have the correct cross-size; only recalculate + // if the item's main size resolution (flexing) could have influenced it: + if (item->CanMainSizeInfluenceCrossSize(aAxisTracker)) { + Maybe<AutoFlexItemMainSizeOverride> sizeOverride; + if (item->HasIntrinsicRatio()) { + // For flex items with an aspect ratio, we have to impose an override + // for the main-size property *before* we even instantiate the reflow + // state, in order for aspect ratio calculations to produce the right + // cross size in the reflow state. (For other flex items, it's OK + // (and cheaper) to impose our main size *after* the reflow state has + // been constructed, since the main size shouldn't influence anything + // about cross-size measurement until we actually reflow the child.) + sizeOverride.emplace(*item); + } + + WritingMode wm = item->Frame()->GetWritingMode(); + LogicalSize availSize = aReflowInput.ComputedSize(wm); + availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; + ReflowInput childReflowInput(aPresContext, aReflowInput, + item->Frame(), availSize); + if (!sizeOverride) { + // Directly override the computed main-size, by tweaking reflow state: + if (aAxisTracker.IsMainAxisHorizontal()) { + childReflowInput.SetComputedWidth(item->GetMainSize()); + } else { + childReflowInput.SetComputedHeight(item->GetMainSize()); + } + } + + SizeItemInCrossAxis(aPresContext, aAxisTracker, + childReflowInput, *item); + } + } + // Now that we've finished with this line's items, size the line itself: + line->ComputeCrossSizeAndBaseline(aAxisTracker); + sumLineCrossSizes += line->GetLineCrossSize(); + } + + bool isCrossSizeDefinite; + const nscoord contentBoxCrossSize = + ComputeCrossSize(aReflowInput, aAxisTracker, sumLineCrossSizes, + aAvailableBSizeForContent, &isCrossSizeDefinite, aStatus); + + // Set up state for cross-axis alignment, at a high level (outside the + // scope of a particular flex line) + CrossAxisPositionTracker + crossAxisPosnTracker(lines.getFirst(), + aReflowInput, contentBoxCrossSize, + isCrossSizeDefinite, aAxisTracker); + + // Now that we know the cross size of each line (including + // "align-content:stretch" adjustments, from the CrossAxisPositionTracker + // constructor), we can create struts for any flex items with + // "visibility: collapse" (and restart flex layout). + if (aStruts.IsEmpty()) { // (Don't make struts if we already did) + BuildStrutInfoFromCollapsedItems(lines.getFirst(), aStruts); + if (!aStruts.IsEmpty()) { + // Restart flex layout, using our struts. + return; + } + } + + // If the container should derive its baseline from the first FlexLine, + // do that here (while crossAxisPosnTracker is conveniently pointing + // at the cross-start edge of that line, which the line's baseline offset is + // measured from): + nscoord flexContainerAscent; + if (!aAxisTracker.AreAxesInternallyReversed()) { + nscoord firstLineBaselineOffset = lines.getFirst()->GetFirstBaselineOffset(); + if (firstLineBaselineOffset == nscoord_MIN) { + // No baseline-aligned items in line. Use sentinel value to prompt us to + // get baseline from the first FlexItem after we've reflowed it. + flexContainerAscent = nscoord_MIN; + } else { + flexContainerAscent = + ComputePhysicalAscentFromFlexRelativeAscent( + crossAxisPosnTracker.GetPosition() + firstLineBaselineOffset, + contentBoxCrossSize, aReflowInput, aAxisTracker); + } + } + + const auto justifyContent = IsLegacyBox(aReflowInput.mFrame) ? + ConvertLegacyStyleToJustifyContent(StyleXUL()) : + aReflowInput.mStylePosition->mJustifyContent; + + for (FlexLine* line = lines.getFirst(); line; line = line->getNext()) { + // Main-Axis Alignment - Flexbox spec section 9.5 + // ============================================== + line->PositionItemsInMainAxis(justifyContent, + aContentBoxMainSize, + aAxisTracker); + + // Cross-Axis Alignment - Flexbox spec section 9.6 + // =============================================== + line->PositionItemsInCrossAxis(crossAxisPosnTracker.GetPosition(), + aAxisTracker); + crossAxisPosnTracker.TraverseLine(*line); + crossAxisPosnTracker.TraversePackingSpace(); + } + + // If the container should derive its baseline from the last FlexLine, + // do that here (while crossAxisPosnTracker is conveniently pointing + // at the cross-end edge of that line, which the line's baseline offset is + // measured from): + if (aAxisTracker.AreAxesInternallyReversed()) { + nscoord lastLineBaselineOffset = lines.getLast()->GetFirstBaselineOffset(); + if (lastLineBaselineOffset == nscoord_MIN) { + // No baseline-aligned items in line. Use sentinel value to prompt us to + // get baseline from the last FlexItem after we've reflowed it. + flexContainerAscent = nscoord_MIN; + } else { + flexContainerAscent = + ComputePhysicalAscentFromFlexRelativeAscent( + crossAxisPosnTracker.GetPosition() - lastLineBaselineOffset, + contentBoxCrossSize, aReflowInput, aAxisTracker); + } + } + + // Before giving each child a final reflow, calculate the origin of the + // flex container's content box (with respect to its border-box), so that + // we can compute our flex item's final positions. + WritingMode flexWM = aReflowInput.GetWritingMode(); + LogicalMargin containerBP = aReflowInput.ComputedLogicalBorderPadding(); + + // Unconditionally skip block-end border & padding for now, regardless of + // writing-mode/GetLogicalSkipSides. We add it lower down, after we've + // established baseline and decided whether bottom border-padding fits (if + // we're fragmented). + const nscoord blockEndContainerBP = containerBP.BEnd(flexWM); + const LogicalSides skipSides = + GetLogicalSkipSides(&aReflowInput) | LogicalSides(eLogicalSideBitsBEnd); + containerBP.ApplySkipSides(skipSides); + + const LogicalPoint containerContentBoxOrigin(flexWM, + containerBP.IStart(flexWM), + containerBP.BStart(flexWM)); + + // Determine flex container's border-box size (used in positioning children): + LogicalSize logSize = + aAxisTracker.LogicalSizeFromFlexRelativeSizes(aContentBoxMainSize, + contentBoxCrossSize); + logSize += aReflowInput.ComputedLogicalBorderPadding().Size(flexWM); + nsSize containerSize = logSize.GetPhysicalSize(flexWM); + + // If the flex container has no baseline-aligned items, it will use this item + // (the first item, discounting any under-the-hood reversing that we've done) + // to determine its baseline: + const FlexItem* const firstItem = + aAxisTracker.AreAxesInternallyReversed() + ? lines.getLast()->GetLastItem() + : lines.getFirst()->GetFirstItem(); + + // FINAL REFLOW: Give each child frame another chance to reflow, now that + // we know its final size and position. + for (const FlexLine* line = lines.getFirst(); line; line = line->getNext()) { + for (const FlexItem* item = line->GetFirstItem(); item; + item = item->getNext()) { + LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint( + item->GetMainPosition(), + item->GetCrossPosition(), + aContentBoxMainSize, + contentBoxCrossSize); + // Adjust framePos to be relative to the container's border-box + // (i.e. its frame rect), instead of the container's content-box: + framePos += containerContentBoxOrigin; + + // (Intentionally snapshotting this before ApplyRelativePositioning, to + // maybe use for setting the flex container's baseline.) + const nscoord itemNormalBPos = framePos.B(flexWM); + + // Check if we actually need to reflow the item -- if we already reflowed + // it with the right size, we can just reposition it as-needed. + bool itemNeedsReflow = true; // (Start out assuming the worst.) + if (item->HadMeasuringReflow()) { + LogicalSize finalFlexItemCBSize = + aAxisTracker.LogicalSizeFromFlexRelativeSizes(item->GetMainSize(), + item->GetCrossSize()); + // We've already reflowed the child once. Was the size we gave it in + // that reflow the same as its final (post-flexing/stretching) size? + if (finalFlexItemCBSize == + LogicalSize(flexWM, + item->Frame()->GetContentRectRelativeToSelf().Size())) { + // Even if our size hasn't changed, some of our descendants might + // care that our bsize is now considered "definite" (whereas it + // wasn't in our previous "measuring" reflow), if they have a + // relative bsize. + if (!(item->Frame()->GetStateBits() & + NS_FRAME_CONTAINS_RELATIVE_BSIZE)) { + // Item has the correct size (and its children don't care that + // it's now "definite"). Let's just make sure it's at the right + // position. + itemNeedsReflow = false; + MoveFlexItemToFinalPosition(aReflowInput, *item, framePos, + containerSize); + } + } + } + if (itemNeedsReflow) { + ReflowFlexItem(aPresContext, aAxisTracker, aReflowInput, + *item, framePos, containerSize); + } + + // If this is our first item and we haven't established a baseline for + // the container yet (i.e. if we don't have 'align-self: baseline' on any + // children), then use this child's first baseline as the container's + // baseline. + if (item == firstItem && + flexContainerAscent == nscoord_MIN) { + flexContainerAscent = itemNormalBPos + item->ResolvedAscent(true); + } + } + } + + if (!placeholderKids.IsEmpty()) { + ReflowPlaceholders(aPresContext, aReflowInput, + placeholderKids, containerContentBoxOrigin, + containerSize); + } + + // Compute flex container's desired size (in its own writing-mode), + // starting w/ content-box size & growing from there: + LogicalSize desiredSizeInFlexWM = + aAxisTracker.LogicalSizeFromFlexRelativeSizes(aContentBoxMainSize, + contentBoxCrossSize); + // Add border/padding (w/ skipSides already applied): + desiredSizeInFlexWM.ISize(flexWM) += containerBP.IStartEnd(flexWM); + desiredSizeInFlexWM.BSize(flexWM) += containerBP.BStartEnd(flexWM); + + if (flexContainerAscent == nscoord_MIN) { + // Still don't have our baseline set -- this happens if we have no + // children (or if our children are huge enough that they have nscoord_MIN + // as their baseline... in which case, we'll use the wrong baseline, but no + // big deal) + NS_WARNING_ASSERTION( + lines.getFirst()->IsEmpty(), + "Have flex items but didn't get an ascent - that's odd (or there are " + "just gigantic sizes involved)"); + // Per spec, synthesize baseline from the flex container's content box + // (i.e. use block-end side of content-box) + // XXXdholbert This only makes sense if parent's writing mode is + // horizontal (& even then, really we should be using the BSize in terms + // of the parent's writing mode, not ours). Clean up in bug 1155322. + flexContainerAscent = desiredSizeInFlexWM.BSize(flexWM); + } + + if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) { + // This will force our parent to call GetLogicalBaseline, which will + // synthesize a margin-box baseline. + aDesiredSize.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE); + } else { + // XXXdholbert flexContainerAscent needs to be in terms of + // our parent's writing-mode here. See bug 1155322. + aDesiredSize.SetBlockStartAscent(flexContainerAscent); + } + + // Now: If we're complete, add bottom border/padding to desired height (which + // we skipped via skipSides) -- unless that pushes us over available height, + // in which case we become incomplete (unless we already weren't asking for + // any height, in which case we stay complete to avoid looping forever). + // NOTE: If we're auto-height, we allow our bottom border/padding to push us + // over the available height without requesting a continuation, for + // consistency with the behavior of "display:block" elements. + if (NS_FRAME_IS_COMPLETE(aStatus)) { + nscoord desiredBSizeWithBEndBP = + desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP; + + if (aReflowInput.AvailableBSize() == NS_UNCONSTRAINEDSIZE || + desiredSizeInFlexWM.BSize(flexWM) == 0 || + desiredBSizeWithBEndBP <= aReflowInput.AvailableBSize() || + aReflowInput.ComputedBSize() == NS_INTRINSICSIZE) { + // Update desired height to include block-end border/padding + desiredSizeInFlexWM.BSize(flexWM) = desiredBSizeWithBEndBP; + } else { + // We couldn't fit bottom border/padding, so we'll need a continuation. + NS_FRAME_SET_INCOMPLETE(aStatus); + } + } + + // Calculate the container baselines so that our parent can baseline-align us. + mBaselineFromLastReflow = flexContainerAscent; + mLastBaselineFromLastReflow = lines.getLast()->GetLastBaselineOffset(); + if (mLastBaselineFromLastReflow == nscoord_MIN) { + // XXX we fall back to a mirrored first baseline here for now, but this + // should probably use the last baseline of the last item or something. + mLastBaselineFromLastReflow = + desiredSizeInFlexWM.BSize(flexWM) - flexContainerAscent; + } + + // Convert flex container's final desired size to parent's WM, for outparam. + aDesiredSize.SetSize(flexWM, desiredSizeInFlexWM); + + // Overflow area = union(my overflow area, kids' overflow areas) + aDesiredSize.SetOverflowAreasToDesiredBounds(); + for (nsIFrame* childFrame : mFrames) { + ConsiderChildOverflow(aDesiredSize.mOverflowAreas, childFrame); + } + + FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize, + aReflowInput, aStatus); + + NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize) +} + +void +nsFlexContainerFrame::MoveFlexItemToFinalPosition( + const ReflowInput& aReflowInput, + const FlexItem& aItem, + LogicalPoint& aFramePos, + const nsSize& aContainerSize) +{ + WritingMode outerWM = aReflowInput.GetWritingMode(); + + // If item is relpos, look up its offsets (cached from prev reflow) + LogicalMargin logicalOffsets(outerWM); + if (NS_STYLE_POSITION_RELATIVE == aItem.Frame()->StyleDisplay()->mPosition) { + FrameProperties props = aItem.Frame()->Properties(); + nsMargin* cachedOffsets = props.Get(nsIFrame::ComputedOffsetProperty()); + MOZ_ASSERT(cachedOffsets, + "relpos previously-reflowed frame should've cached its offsets"); + logicalOffsets = LogicalMargin(outerWM, *cachedOffsets); + } + ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM, + logicalOffsets, &aFramePos, + aContainerSize); + aItem.Frame()->SetPosition(outerWM, aFramePos, aContainerSize); + PositionFrameView(aItem.Frame()); + PositionChildViews(aItem.Frame()); +} + +void +nsFlexContainerFrame::ReflowFlexItem(nsPresContext* aPresContext, + const FlexboxAxisTracker& aAxisTracker, + const ReflowInput& aReflowInput, + const FlexItem& aItem, + LogicalPoint& aFramePos, + const nsSize& aContainerSize) +{ + WritingMode outerWM = aReflowInput.GetWritingMode(); + WritingMode wm = aItem.Frame()->GetWritingMode(); + LogicalSize availSize = aReflowInput.ComputedSize(wm); + availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; + ReflowInput childReflowInput(aPresContext, aReflowInput, + aItem.Frame(), availSize); + + // Keep track of whether we've overriden the child's computed height + // and/or width, so we can set its resize flags accordingly. + bool didOverrideComputedWidth = false; + bool didOverrideComputedHeight = false; + + // Override computed main-size + if (aAxisTracker.IsMainAxisHorizontal()) { + childReflowInput.SetComputedWidth(aItem.GetMainSize()); + didOverrideComputedWidth = true; + } else { + childReflowInput.SetComputedHeight(aItem.GetMainSize()); + didOverrideComputedHeight = true; + } + + // Override reflow state's computed cross-size if either: + // - the item was stretched (in which case we're imposing a cross size) + // ...or... + // - the item it has an aspect ratio (in which case the cross-size that's + // currently in the reflow state is based on arithmetic involving a stale + // main-size value that we just stomped on above). (Note that we could handle + // this case using an AutoFlexItemMainSizeOverride, as we do elsewhere; but + // given that we *already know* the correct cross size to use here, it's + // cheaper to just directly set it instead of setting a frame property.) + if (aItem.IsStretched() || + aItem.HasIntrinsicRatio()) { + if (aAxisTracker.IsCrossAxisHorizontal()) { + childReflowInput.SetComputedWidth(aItem.GetCrossSize()); + didOverrideComputedWidth = true; + } else { + childReflowInput.SetComputedHeight(aItem.GetCrossSize()); + didOverrideComputedHeight = true; + } + } + if (aItem.IsStretched() && !aAxisTracker.IsCrossAxisHorizontal()) { + // If this item's height is stretched, it's a relative height. + aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE); + } + + // XXXdholbert Might need to actually set the correct margins in the + // reflow state at some point, so that they can be saved on the frame for + // UsedMarginProperty(). Maybe doesn't matter though...? + + // If we're overriding the computed width or height, *and* we had an + // earlier "measuring" reflow, then this upcoming reflow needs to be + // treated as a resize. + if (aItem.HadMeasuringReflow()) { + if (didOverrideComputedWidth) { + // (This is somewhat redundant, since the reflow state already + // sets mHResize whenever our computed width has changed since the + // previous reflow. Still, it's nice for symmetry, and it may become + // necessary once we support orthogonal flows.) + childReflowInput.SetHResize(true); + } + if (didOverrideComputedHeight) { + childReflowInput.SetVResize(true); + } + } + // NOTE: Be very careful about doing anything else with childReflowInput + // after this point, because some of its methods (e.g. SetComputedWidth) + // internally call InitResizeFlags and stomp on mVResize & mHResize. + + ReflowOutput childDesiredSize(childReflowInput); + nsReflowStatus childReflowStatus; + ReflowChild(aItem.Frame(), aPresContext, + childDesiredSize, childReflowInput, + outerWM, aFramePos, aContainerSize, + 0, childReflowStatus); + + // XXXdholbert Once we do pagination / splitting, we'll need to actually + // handle incomplete childReflowStatuses. But for now, we give our kids + // unconstrained available height, which means they should always + // complete. + MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), + "We gave flex item unconstrained available height, so it " + "should be complete"); + + LogicalMargin offsets = + childReflowInput.ComputedLogicalOffsets().ConvertTo(outerWM, wm); + ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM, + offsets, &aFramePos, + aContainerSize); + + FinishReflowChild(aItem.Frame(), aPresContext, + childDesiredSize, &childReflowInput, + outerWM, aFramePos, aContainerSize, 0); + + aItem.SetAscent(childDesiredSize.BlockStartAscent()); +} + +void +nsFlexContainerFrame::ReflowPlaceholders(nsPresContext* aPresContext, + const ReflowInput& aReflowInput, + nsTArray<nsIFrame*>& aPlaceholders, + const LogicalPoint& aContentBoxOrigin, + const nsSize& aContainerSize) +{ + WritingMode outerWM = aReflowInput.GetWritingMode(); + + // As noted in this method's documentation, we'll reflow every entry in + // |aPlaceholders| at the container's content-box origin. + for (nsIFrame* placeholder : aPlaceholders) { + MOZ_ASSERT(placeholder->GetType() == nsGkAtoms::placeholderFrame, + "placeholders array should only contain placeholder frames"); + WritingMode wm = placeholder->GetWritingMode(); + LogicalSize availSize = aReflowInput.ComputedSize(wm); + ReflowInput childReflowInput(aPresContext, aReflowInput, + placeholder, availSize); + ReflowOutput childDesiredSize(childReflowInput); + nsReflowStatus childReflowStatus; + ReflowChild(placeholder, aPresContext, + childDesiredSize, childReflowInput, + outerWM, aContentBoxOrigin, aContainerSize, 0, + childReflowStatus); + + FinishReflowChild(placeholder, aPresContext, + childDesiredSize, &childReflowInput, + outerWM, aContentBoxOrigin, aContainerSize, 0); + + // Mark the placeholder frame to indicate that it's not actually at the + // element's static position, because we need to apply CSS Alignment after + // we determine the OOF's size: + placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN); + } +} + +/* virtual */ nscoord +nsFlexContainerFrame::GetMinISize(nsRenderingContext* aRenderingContext) +{ + nscoord minISize = 0; + DISPLAY_MIN_WIDTH(this, minISize); + + RenumberList(); + + const nsStylePosition* stylePos = StylePosition(); + const FlexboxAxisTracker axisTracker(this, GetWritingMode()); + + for (nsIFrame* childFrame : mFrames) { + nscoord childMinISize = + nsLayoutUtils::IntrinsicForContainer(aRenderingContext, childFrame, + nsLayoutUtils::MIN_ISIZE); + // For a horizontal single-line flex container, the intrinsic min + // isize is the sum of its items' min isizes. + // For a column-oriented flex container, or for a multi-line row- + // oriented flex container, the intrinsic min isize is the max of + // its items' min isizes. + if (axisTracker.IsRowOriented() && + NS_STYLE_FLEX_WRAP_NOWRAP == stylePos->mFlexWrap) { + minISize += childMinISize; + } else { + minISize = std::max(minISize, childMinISize); + } + } + return minISize; +} + +/* virtual */ nscoord +nsFlexContainerFrame::GetPrefISize(nsRenderingContext* aRenderingContext) +{ + nscoord prefISize = 0; + DISPLAY_PREF_WIDTH(this, prefISize); + + RenumberList(); + + // XXXdholbert Optimization: We could cache our intrinsic widths like + // nsBlockFrame does (and return it early from this function if it's set). + // Whenever anything happens that might change it, set it to + // NS_INTRINSIC_WIDTH_UNKNOWN (like nsBlockFrame::MarkIntrinsicISizesDirty + // does) + const FlexboxAxisTracker axisTracker(this, GetWritingMode()); + + for (nsIFrame* childFrame : mFrames) { + nscoord childPrefISize = + nsLayoutUtils::IntrinsicForContainer(aRenderingContext, childFrame, + nsLayoutUtils::PREF_ISIZE); + if (axisTracker.IsRowOriented()) { + prefISize += childPrefISize; + } else { + prefISize = std::max(prefISize, childPrefISize); + } + } + return prefISize; +} |