summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm64/vixl/MozAssembler-vixl.cpp
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /js/src/jit/arm64/vixl/MozAssembler-vixl.cpp
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'js/src/jit/arm64/vixl/MozAssembler-vixl.cpp')
-rw-r--r--js/src/jit/arm64/vixl/MozAssembler-vixl.cpp712
1 files changed, 712 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/MozAssembler-vixl.cpp b/js/src/jit/arm64/vixl/MozAssembler-vixl.cpp
new file mode 100644
index 000000000..3b2e0a8bc
--- /dev/null
+++ b/js/src/jit/arm64/vixl/MozAssembler-vixl.cpp
@@ -0,0 +1,712 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "jsutil.h"
+
+#include "jit/arm64/vixl/Assembler-vixl.h"
+#include "jit/Label.h"
+
+namespace vixl {
+
+
+// Assembler
+void Assembler::FinalizeCode() {
+#ifdef DEBUG
+ finalized_ = true;
+#endif
+}
+
+// Unbound Label Representation.
+//
+// We can have multiple branches using the same label before it is bound.
+// Assembler::bind() must then be able to enumerate all the branches and patch
+// them to target the final label location.
+//
+// When a Label is unbound with uses, its offset is pointing to the tip of a
+// linked list of uses. The uses can be branches or adr/adrp instructions. In
+// the case of branches, the next member in the linked list is simply encoded
+// as the branch target. For adr/adrp, the relative pc offset is encoded in the
+// immediate field as a signed instruction offset.
+//
+// In both cases, the end of the list is encoded as a 0 pc offset, i.e. the
+// tail is pointing to itself.
+
+static const ptrdiff_t kEndOfLabelUseList = 0;
+
+BufferOffset
+MozBaseAssembler::NextLink(BufferOffset cur)
+{
+ Instruction* link = getInstructionAt(cur);
+ // Raw encoded offset.
+ ptrdiff_t offset = link->ImmPCRawOffset();
+ // End of the list is encoded as 0.
+ if (offset == kEndOfLabelUseList)
+ return BufferOffset();
+ // The encoded offset is the number of instructions to move.
+ return BufferOffset(cur.getOffset() + offset * kInstructionSize);
+}
+
+static ptrdiff_t
+EncodeOffset(BufferOffset cur, BufferOffset next)
+{
+ MOZ_ASSERT(next.assigned() && cur.assigned());
+ ptrdiff_t offset = next.getOffset() - cur.getOffset();
+ MOZ_ASSERT(offset % kInstructionSize == 0);
+ return offset / kInstructionSize;
+}
+
+void
+MozBaseAssembler::SetNextLink(BufferOffset cur, BufferOffset next)
+{
+ Instruction* link = getInstructionAt(cur);
+ link->SetImmPCRawOffset(EncodeOffset(cur, next));
+}
+
+// A common implementation for the LinkAndGet<Type>OffsetTo helpers.
+//
+// If the label is bound, returns the offset as a multiple of 1 << elementShift.
+// Otherwise, links the instruction to the label and returns the raw offset to
+// encode. (This will be an instruction count.)
+//
+// The offset is calculated by aligning the PC and label addresses down to a
+// multiple of 1 << elementShift, then calculating the (scaled) offset between
+// them. This matches the semantics of adrp, for example. (Assuming that the
+// assembler buffer is page-aligned, which it probably isn't.)
+//
+// For an unbound label, the returned offset will be encodable in the provided
+// branch range. If the label is already bound, the caller is expected to make
+// sure that it is in range, and emit the necessary branch instrutions if it
+// isn't.
+//
+ptrdiff_t
+MozBaseAssembler::LinkAndGetOffsetTo(BufferOffset branch, ImmBranchRangeType branchRange,
+ unsigned elementShift, Label* label)
+{
+ if (armbuffer_.oom())
+ return kEndOfLabelUseList;
+
+ if (label->bound()) {
+ // The label is bound: all uses are already linked.
+ ptrdiff_t branch_offset = ptrdiff_t(branch.getOffset() >> elementShift);
+ ptrdiff_t label_offset = ptrdiff_t(label->offset() >> elementShift);
+ return label_offset - branch_offset;
+ }
+
+ // Keep track of short-range branches targeting unbound labels. We may need
+ // to insert veneers in PatchShortRangeBranchToVeneer() below.
+ if (branchRange < NumShortBranchRangeTypes) {
+ // This is the last possible branch target.
+ BufferOffset deadline(branch.getOffset() +
+ Instruction::ImmBranchMaxForwardOffset(branchRange));
+ armbuffer_.registerBranchDeadline(branchRange, deadline);
+ }
+
+ // The label is unbound and previously unused: Store the offset in the label
+ // itself for patching by bind().
+ if (!label->used()) {
+ label->use(branch.getOffset());
+ return kEndOfLabelUseList;
+ }
+
+ // The label is unbound and has multiple users. Create a linked list between
+ // the branches, and update the linked list head in the label struct. This is
+ // not always trivial since the branches in the linked list have limited
+ // ranges.
+
+ // What is the earliest buffer offset that would be reachable by the branch
+ // we're about to add?
+ ptrdiff_t earliestReachable =
+ branch.getOffset() + Instruction::ImmBranchMinBackwardOffset(branchRange);
+
+ // If the existing instruction at the head of the list is within reach of the
+ // new branch, we can simply insert the new branch at the front of the list.
+ if (label->offset() >= earliestReachable) {
+ ptrdiff_t offset = EncodeOffset(branch, BufferOffset(label));
+ label->use(branch.getOffset());
+ MOZ_ASSERT(offset != kEndOfLabelUseList);
+ return offset;
+ }
+
+ // The label already has a linked list of uses, but we can't reach the head
+ // of the list with the allowed branch range. Insert this branch at a
+ // different position in the list.
+ //
+ // Find an existing branch, exbr, such that:
+ //
+ // 1. The new branch can be reached by exbr, and either
+ // 2a. The new branch can reach exbr's target, or
+ // 2b. The exbr branch is at the end of the list.
+ //
+ // Then the new branch can be inserted after exbr in the linked list.
+ //
+ // We know that it is always possible to find an exbr branch satisfying these
+ // conditions because of the PatchShortRangeBranchToVeneer() mechanism. All
+ // branches are guaranteed to either be able to reach the end of the
+ // assembler buffer, or they will be pointing to an unconditional branch that
+ // can.
+ //
+ // In particular, the end of the list is always a viable candidate, so we'll
+ // just get that.
+ BufferOffset next(label);
+ BufferOffset exbr;
+ do {
+ exbr = next;
+ next = NextLink(next);
+ } while (next.assigned());
+ SetNextLink(exbr, branch);
+
+ // This branch becomes the new end of the list.
+ return kEndOfLabelUseList;
+}
+
+ptrdiff_t MozBaseAssembler::LinkAndGetByteOffsetTo(BufferOffset branch, Label* label) {
+ return LinkAndGetOffsetTo(branch, UncondBranchRangeType, 0, label);
+}
+
+ptrdiff_t MozBaseAssembler::LinkAndGetInstructionOffsetTo(BufferOffset branch,
+ ImmBranchRangeType branchRange,
+ Label* label) {
+ return LinkAndGetOffsetTo(branch, branchRange, kInstructionSizeLog2, label);
+}
+
+ptrdiff_t MozBaseAssembler::LinkAndGetPageOffsetTo(BufferOffset branch, Label* label) {
+ return LinkAndGetOffsetTo(branch, UncondBranchRangeType, kPageSizeLog2, label);
+}
+
+BufferOffset Assembler::b(int imm26) {
+ return EmitBranch(B | ImmUncondBranch(imm26));
+}
+
+
+void Assembler::b(Instruction* at, int imm26) {
+ return EmitBranch(at, B | ImmUncondBranch(imm26));
+}
+
+
+BufferOffset Assembler::b(int imm19, Condition cond) {
+ return EmitBranch(B_cond | ImmCondBranch(imm19) | cond);
+}
+
+
+void Assembler::b(Instruction* at, int imm19, Condition cond) {
+ EmitBranch(at, B_cond | ImmCondBranch(imm19) | cond);
+}
+
+
+BufferOffset Assembler::b(Label* label) {
+ // Encode the relative offset from the inserted branch to the label.
+ return b(LinkAndGetInstructionOffsetTo(nextInstrOffset(), UncondBranchRangeType, label));
+}
+
+
+BufferOffset Assembler::b(Label* label, Condition cond) {
+ // Encode the relative offset from the inserted branch to the label.
+ return b(LinkAndGetInstructionOffsetTo(nextInstrOffset(), CondBranchRangeType, label), cond);
+}
+
+void Assembler::br(Instruction* at, const Register& xn) {
+ VIXL_ASSERT(xn.Is64Bits());
+ // No need for EmitBranch(): no immediate offset needs fixing.
+ Emit(at, BR | Rn(xn));
+}
+
+
+void Assembler::blr(Instruction* at, const Register& xn) {
+ VIXL_ASSERT(xn.Is64Bits());
+ // No need for EmitBranch(): no immediate offset needs fixing.
+ Emit(at, BLR | Rn(xn));
+}
+
+
+void Assembler::bl(int imm26) {
+ EmitBranch(BL | ImmUncondBranch(imm26));
+}
+
+
+void Assembler::bl(Instruction* at, int imm26) {
+ EmitBranch(at, BL | ImmUncondBranch(imm26));
+}
+
+
+void Assembler::bl(Label* label) {
+ // Encode the relative offset from the inserted branch to the label.
+ return bl(LinkAndGetInstructionOffsetTo(nextInstrOffset(), UncondBranchRangeType, label));
+}
+
+
+void Assembler::cbz(const Register& rt, int imm19) {
+ EmitBranch(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
+}
+
+
+void Assembler::cbz(Instruction* at, const Register& rt, int imm19) {
+ EmitBranch(at, SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
+}
+
+
+void Assembler::cbz(const Register& rt, Label* label) {
+ // Encode the relative offset from the inserted branch to the label.
+ return cbz(rt, LinkAndGetInstructionOffsetTo(nextInstrOffset(), CondBranchRangeType, label));
+}
+
+
+void Assembler::cbnz(const Register& rt, int imm19) {
+ EmitBranch(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
+}
+
+
+void Assembler::cbnz(Instruction* at, const Register& rt, int imm19) {
+ EmitBranch(at, SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
+}
+
+
+void Assembler::cbnz(const Register& rt, Label* label) {
+ // Encode the relative offset from the inserted branch to the label.
+ return cbnz(rt, LinkAndGetInstructionOffsetTo(nextInstrOffset(), CondBranchRangeType, label));
+}
+
+
+void Assembler::tbz(const Register& rt, unsigned bit_pos, int imm14) {
+ VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
+ EmitBranch(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
+}
+
+
+void Assembler::tbz(Instruction* at, const Register& rt, unsigned bit_pos, int imm14) {
+ VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
+ EmitBranch(at, TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
+}
+
+
+void Assembler::tbz(const Register& rt, unsigned bit_pos, Label* label) {
+ // Encode the relative offset from the inserted branch to the label.
+ return tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(nextInstrOffset(), TestBranchRangeType, label));
+}
+
+
+void Assembler::tbnz(const Register& rt, unsigned bit_pos, int imm14) {
+ VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
+ EmitBranch(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
+}
+
+
+void Assembler::tbnz(Instruction* at, const Register& rt, unsigned bit_pos, int imm14) {
+ VIXL_ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSize)));
+ EmitBranch(at, TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
+}
+
+
+void Assembler::tbnz(const Register& rt, unsigned bit_pos, Label* label) {
+ // Encode the relative offset from the inserted branch to the label.
+ return tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(nextInstrOffset(), TestBranchRangeType, label));
+}
+
+
+void Assembler::adr(const Register& rd, int imm21) {
+ VIXL_ASSERT(rd.Is64Bits());
+ EmitBranch(ADR | ImmPCRelAddress(imm21) | Rd(rd));
+}
+
+
+void Assembler::adr(Instruction* at, const Register& rd, int imm21) {
+ VIXL_ASSERT(rd.Is64Bits());
+ EmitBranch(at, ADR | ImmPCRelAddress(imm21) | Rd(rd));
+}
+
+
+void Assembler::adr(const Register& rd, Label* label) {
+ // Encode the relative offset from the inserted adr to the label.
+ return adr(rd, LinkAndGetByteOffsetTo(nextInstrOffset(), label));
+}
+
+
+void Assembler::adrp(const Register& rd, int imm21) {
+ VIXL_ASSERT(rd.Is64Bits());
+ EmitBranch(ADRP | ImmPCRelAddress(imm21) | Rd(rd));
+}
+
+
+void Assembler::adrp(Instruction* at, const Register& rd, int imm21) {
+ VIXL_ASSERT(rd.Is64Bits());
+ EmitBranch(at, ADRP | ImmPCRelAddress(imm21) | Rd(rd));
+}
+
+
+void Assembler::adrp(const Register& rd, Label* label) {
+ VIXL_ASSERT(AllowPageOffsetDependentCode());
+ // Encode the relative offset from the inserted adr to the label.
+ return adrp(rd, LinkAndGetPageOffsetTo(nextInstrOffset(), label));
+}
+
+
+BufferOffset Assembler::ands(const Register& rd, const Register& rn, const Operand& operand) {
+ return Logical(rd, rn, operand, ANDS);
+}
+
+
+BufferOffset Assembler::tst(const Register& rn, const Operand& operand) {
+ return ands(AppropriateZeroRegFor(rn), rn, operand);
+}
+
+
+void Assembler::ldr(Instruction* at, const CPURegister& rt, int imm19) {
+ LoadLiteralOp op = LoadLiteralOpFor(rt);
+ Emit(at, op | ImmLLiteral(imm19) | Rt(rt));
+}
+
+
+BufferOffset Assembler::hint(SystemHint code) {
+ return Emit(HINT | ImmHint(code) | Rt(xzr));
+}
+
+
+void Assembler::hint(Instruction* at, SystemHint code) {
+ Emit(at, HINT | ImmHint(code) | Rt(xzr));
+}
+
+
+void Assembler::svc(Instruction* at, int code) {
+ VIXL_ASSERT(is_uint16(code));
+ Emit(at, SVC | ImmException(code));
+}
+
+
+void Assembler::nop(Instruction* at) {
+ hint(at, NOP);
+}
+
+
+BufferOffset Assembler::Logical(const Register& rd, const Register& rn,
+ const Operand operand, LogicalOp op)
+{
+ VIXL_ASSERT(rd.size() == rn.size());
+ if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ unsigned reg_size = rd.size();
+
+ VIXL_ASSERT(immediate != 0);
+ VIXL_ASSERT(immediate != -1);
+ VIXL_ASSERT(rd.Is64Bits() || is_uint32(immediate));
+
+ // If the operation is NOT, invert the operation and immediate.
+ if ((op & NOT) == NOT) {
+ op = static_cast<LogicalOp>(op & ~NOT);
+ immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
+ }
+
+ unsigned n, imm_s, imm_r;
+ if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
+ // Immediate can be encoded in the instruction.
+ return LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
+ } else {
+ // This case is handled in the macro assembler.
+ VIXL_UNREACHABLE();
+ }
+ } else {
+ VIXL_ASSERT(operand.IsShiftedRegister());
+ VIXL_ASSERT(operand.reg().size() == rd.size());
+ Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
+ return DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
+ }
+}
+
+
+BufferOffset Assembler::LogicalImmediate(const Register& rd, const Register& rn,
+ unsigned n, unsigned imm_s, unsigned imm_r, LogicalOp op)
+{
+ unsigned reg_size = rd.size();
+ Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
+ return Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
+ ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg | Rn(rn));
+}
+
+
+BufferOffset Assembler::DataProcShiftedRegister(const Register& rd, const Register& rn,
+ const Operand& operand, FlagsUpdate S, Instr op)
+{
+ VIXL_ASSERT(operand.IsShiftedRegister());
+ VIXL_ASSERT(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
+ return Emit(SF(rd) | op | Flags(S) |
+ ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
+ Rm(operand.reg()) | Rn(rn) | Rd(rd));
+}
+
+
+void MozBaseAssembler::InsertIndexIntoTag(uint8_t* load, uint32_t index) {
+ // Store the js::jit::PoolEntry index into the instruction.
+ // finishPool() will walk over all literal load instructions
+ // and use PatchConstantPoolLoad() to patch to the final relative offset.
+ *((uint32_t*)load) |= Assembler::ImmLLiteral(index);
+}
+
+
+bool MozBaseAssembler::PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr) {
+ Instruction* load = reinterpret_cast<Instruction*>(loadAddr);
+
+ // The load currently contains the js::jit::PoolEntry's index,
+ // as written by InsertIndexIntoTag().
+ uint32_t index = load->ImmLLiteral();
+
+ // Each entry in the literal pool is uint32_t-sized,
+ // but literals may use multiple entries.
+ uint32_t* constPool = reinterpret_cast<uint32_t*>(constPoolAddr);
+ Instruction* source = reinterpret_cast<Instruction*>(&constPool[index]);
+
+ load->SetImmLLiteral(source);
+ return false; // Nothing uses the return value.
+}
+
+void
+MozBaseAssembler::PatchShortRangeBranchToVeneer(ARMBuffer* buffer, unsigned rangeIdx,
+ BufferOffset deadline, BufferOffset veneer)
+{
+ // Reconstruct the position of the branch from (rangeIdx, deadline).
+ vixl::ImmBranchRangeType branchRange = static_cast<vixl::ImmBranchRangeType>(rangeIdx);
+ BufferOffset branch(deadline.getOffset() - Instruction::ImmBranchMaxForwardOffset(branchRange));
+ Instruction *branchInst = buffer->getInst(branch);
+ Instruction *veneerInst = buffer->getInst(veneer);
+
+ // Verify that the branch range matches what's encoded.
+ MOZ_ASSERT(Instruction::ImmBranchTypeToRange(branchInst->BranchType()) == branchRange);
+
+ // We want to insert veneer after branch in the linked list of instructions
+ // that use the same unbound label.
+ // The veneer should be an unconditional branch.
+ ptrdiff_t nextElemOffset = branchInst->ImmPCRawOffset();
+
+ // If offset is 0, this is the end of the linked list.
+ if (nextElemOffset != kEndOfLabelUseList) {
+ // Make the offset relative to veneer so it targets the same instruction
+ // as branchInst.
+ nextElemOffset *= kInstructionSize;
+ nextElemOffset += branch.getOffset() - veneer.getOffset();
+ nextElemOffset /= kInstructionSize;
+ }
+ Assembler::b(veneerInst, nextElemOffset);
+
+ // Now point branchInst at veneer. See also SetNextLink() above.
+ branchInst->SetImmPCRawOffset(EncodeOffset(branch, veneer));
+}
+
+struct PoolHeader {
+ uint32_t data;
+
+ struct Header {
+ // The size should take into account the pool header.
+ // The size is in units of Instruction (4bytes), not byte.
+ union {
+ struct {
+ uint32_t size : 15;
+
+ // "Natural" guards are part of the normal instruction stream,
+ // while "non-natural" guards are inserted for the sole purpose
+ // of skipping around a pool.
+ bool isNatural : 1;
+ uint32_t ONES : 16;
+ };
+ uint32_t data;
+ };
+
+ Header(int size_, bool isNatural_)
+ : size(size_),
+ isNatural(isNatural_),
+ ONES(0xffff)
+ { }
+
+ Header(uint32_t data)
+ : data(data)
+ {
+ JS_STATIC_ASSERT(sizeof(Header) == sizeof(uint32_t));
+ VIXL_ASSERT(ONES == 0xffff);
+ }
+
+ uint32_t raw() const {
+ JS_STATIC_ASSERT(sizeof(Header) == sizeof(uint32_t));
+ return data;
+ }
+ };
+
+ PoolHeader(int size_, bool isNatural_)
+ : data(Header(size_, isNatural_).raw())
+ { }
+
+ uint32_t size() const {
+ Header tmp(data);
+ return tmp.size;
+ }
+
+ uint32_t isNatural() const {
+ Header tmp(data);
+ return tmp.isNatural;
+ }
+};
+
+
+void MozBaseAssembler::WritePoolHeader(uint8_t* start, js::jit::Pool* p, bool isNatural) {
+ JS_STATIC_ASSERT(sizeof(PoolHeader) == 4);
+
+ // Get the total size of the pool.
+ const uintptr_t totalPoolSize = sizeof(PoolHeader) + p->getPoolSize();
+ const uintptr_t totalPoolInstructions = totalPoolSize / sizeof(Instruction);
+
+ VIXL_ASSERT((totalPoolSize & 0x3) == 0);
+ VIXL_ASSERT(totalPoolInstructions < (1 << 15));
+
+ PoolHeader header(totalPoolInstructions, isNatural);
+ *(PoolHeader*)start = header;
+}
+
+
+void MozBaseAssembler::WritePoolFooter(uint8_t* start, js::jit::Pool* p, bool isNatural) {
+ return;
+}
+
+
+void MozBaseAssembler::WritePoolGuard(BufferOffset branch, Instruction* inst, BufferOffset dest) {
+ int byteOffset = dest.getOffset() - branch.getOffset();
+ VIXL_ASSERT(byteOffset % kInstructionSize == 0);
+
+ int instOffset = byteOffset >> kInstructionSizeLog2;
+ Assembler::b(inst, instOffset);
+}
+
+
+ptrdiff_t MozBaseAssembler::GetBranchOffset(const Instruction* ins) {
+ // Branch instructions use an instruction offset.
+ if (ins->BranchType() != UnknownBranchType)
+ return ins->ImmPCRawOffset() * kInstructionSize;
+
+ // ADR and ADRP encode relative offsets and therefore require patching as if they were branches.
+ // ADR uses a byte offset.
+ if (ins->IsADR())
+ return ins->ImmPCRawOffset();
+
+ // ADRP uses a page offset.
+ if (ins->IsADRP())
+ return ins->ImmPCRawOffset() * kPageSize;
+
+ MOZ_CRASH("Unsupported branch type");
+}
+
+
+void MozBaseAssembler::RetargetNearBranch(Instruction* i, int offset, Condition cond, bool final) {
+ if (i->IsCondBranchImm()) {
+ VIXL_ASSERT(i->IsCondB());
+ Assembler::b(i, offset, cond);
+ return;
+ }
+ MOZ_CRASH("Unsupported branch type");
+}
+
+
+void MozBaseAssembler::RetargetNearBranch(Instruction* i, int byteOffset, bool final) {
+ const int instOffset = byteOffset >> kInstructionSizeLog2;
+
+ // The only valid conditional instruction is B.
+ if (i->IsCondBranchImm()) {
+ VIXL_ASSERT(byteOffset % kInstructionSize == 0);
+ VIXL_ASSERT(i->IsCondB());
+ Condition cond = static_cast<Condition>(i->ConditionBranch());
+ Assembler::b(i, instOffset, cond);
+ return;
+ }
+
+ // Valid unconditional branches are B and BL.
+ if (i->IsUncondBranchImm()) {
+ VIXL_ASSERT(byteOffset % kInstructionSize == 0);
+ if (i->IsUncondB()) {
+ Assembler::b(i, instOffset);
+ } else {
+ VIXL_ASSERT(i->IsBL());
+ Assembler::bl(i, instOffset);
+ }
+
+ VIXL_ASSERT(i->ImmUncondBranch() == instOffset);
+ return;
+ }
+
+ // Valid compare branches are CBZ and CBNZ.
+ if (i->IsCompareBranch()) {
+ VIXL_ASSERT(byteOffset % kInstructionSize == 0);
+ Register rt = i->SixtyFourBits() ? Register::XRegFromCode(i->Rt())
+ : Register::WRegFromCode(i->Rt());
+
+ if (i->IsCBZ()) {
+ Assembler::cbz(i, rt, instOffset);
+ } else {
+ VIXL_ASSERT(i->IsCBNZ());
+ Assembler::cbnz(i, rt, instOffset);
+ }
+
+ VIXL_ASSERT(i->ImmCmpBranch() == instOffset);
+ return;
+ }
+
+ // Valid test branches are TBZ and TBNZ.
+ if (i->IsTestBranch()) {
+ VIXL_ASSERT(byteOffset % kInstructionSize == 0);
+ // Opposite of ImmTestBranchBit(): MSB in bit 5, 0:5 at bit 40.
+ unsigned bit_pos = (i->ImmTestBranchBit5() << 5) | (i->ImmTestBranchBit40());
+ VIXL_ASSERT(is_uint6(bit_pos));
+
+ // Register size doesn't matter for the encoding.
+ Register rt = Register::XRegFromCode(i->Rt());
+
+ if (i->IsTBZ()) {
+ Assembler::tbz(i, rt, bit_pos, instOffset);
+ } else {
+ VIXL_ASSERT(i->IsTBNZ());
+ Assembler::tbnz(i, rt, bit_pos, instOffset);
+ }
+
+ VIXL_ASSERT(i->ImmTestBranch() == instOffset);
+ return;
+ }
+
+ if (i->IsADR()) {
+ Register rd = Register::XRegFromCode(i->Rd());
+ Assembler::adr(i, rd, byteOffset);
+ return;
+ }
+
+ if (i->IsADRP()) {
+ const int pageOffset = byteOffset >> kPageSizeLog2;
+ Register rd = Register::XRegFromCode(i->Rd());
+ Assembler::adrp(i, rd, pageOffset);
+ return;
+ }
+
+ MOZ_CRASH("Unsupported branch type");
+}
+
+
+void MozBaseAssembler::RetargetFarBranch(Instruction* i, uint8_t** slot, uint8_t* dest, Condition cond) {
+ MOZ_CRASH("RetargetFarBranch()");
+}
+
+
+} // namespace vixl
+