diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /js/src/jit-test/tests/v8-v5/check-deltablue.js | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'js/src/jit-test/tests/v8-v5/check-deltablue.js')
-rw-r--r-- | js/src/jit-test/tests/v8-v5/check-deltablue.js | 883 |
1 files changed, 883 insertions, 0 deletions
diff --git a/js/src/jit-test/tests/v8-v5/check-deltablue.js b/js/src/jit-test/tests/v8-v5/check-deltablue.js new file mode 100644 index 000000000..ea12d3919 --- /dev/null +++ b/js/src/jit-test/tests/v8-v5/check-deltablue.js @@ -0,0 +1,883 @@ +// Copyright 2008 the V8 project authors. All rights reserved. +// Copyright 1996 John Maloney and Mario Wolczko. + +// This program is free software; you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation; either version 2 of the License, or +// (at your option) any later version. +// +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU General Public License +// along with this program; if not, write to the Free Software +// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + +// This implementation of the DeltaBlue benchmark is derived +// from the Smalltalk implementation by John Maloney and Mario +// Wolczko. Some parts have been translated directly, whereas +// others have been modified more aggresively to make it feel +// more like a JavaScript program. + + +//var DeltaBlue = new BenchmarkSuite('DeltaBlue', 71104, [ +// new Benchmark('DeltaBlue', deltaBlue) +//]); + + +/** + * A JavaScript implementation of the DeltaBlue constrain-solving + * algorithm, as described in: + * + * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver" + * Bjorn N. Freeman-Benson and John Maloney + * January 1990 Communications of the ACM, + * also available as University of Washington TR 89-08-06. + * + * Beware: this benchmark is written in a grotesque style where + * the constraint model is built by side-effects from constructors. + * I've kept it this way to avoid deviating too much from the original + * implementation. + */ + +function alert(msg) { + print(msg); + assertEq(false, true); +} + +/* --- O b j e c t M o d e l --- */ + +Object.prototype.inheritsFrom = function (shuper) { + function Inheriter() { } + Inheriter.prototype = shuper.prototype; + this.prototype = new Inheriter(); + this.superConstructor = shuper; +} + +function OrderedCollection() { + this.elms = new Array(); +} + +OrderedCollection.prototype.add = function (elm) { + this.elms.push(elm); +} + +OrderedCollection.prototype.at = function (index) { + return this.elms[index]; +} + +OrderedCollection.prototype.size = function () { + return this.elms.length; +} + +OrderedCollection.prototype.removeFirst = function () { + return this.elms.pop(); +} + +OrderedCollection.prototype.remove = function (elm) { + var index = 0, skipped = 0; + for (var i = 0; i < this.elms.length; i++) { + var value = this.elms[i]; + if (value != elm) { + this.elms[index] = value; + index++; + } else { + skipped++; + } + } + for (var i = 0; i < skipped; i++) + this.elms.pop(); +} + +/* --- * + * S t r e n g t h + * --- */ + +/** + * Strengths are used to measure the relative importance of constraints. + * New strengths may be inserted in the strength hierarchy without + * disrupting current constraints. Strengths cannot be created outside + * this class, so pointer comparison can be used for value comparison. + */ +function Strength(strengthValue, name) { + this.strengthValue = strengthValue; + this.name = name; +} + +Strength.stronger = function (s1, s2) { + return s1.strengthValue < s2.strengthValue; +} + +Strength.weaker = function (s1, s2) { + return s1.strengthValue > s2.strengthValue; +} + +Strength.weakestOf = function (s1, s2) { + return this.weaker(s1, s2) ? s1 : s2; +} + +Strength.strongest = function (s1, s2) { + return this.stronger(s1, s2) ? s1 : s2; +} + +Strength.prototype.nextWeaker = function () { + switch (this.strengthValue) { + case 0: return Strength.WEAKEST; + case 1: return Strength.WEAK_DEFAULT; + case 2: return Strength.NORMAL; + case 3: return Strength.STRONG_DEFAULT; + case 4: return Strength.PREFERRED; + case 5: return Strength.REQUIRED; + } +} + +// Strength constants. +Strength.REQUIRED = new Strength(0, "required"); +Strength.STONG_PREFERRED = new Strength(1, "strongPreferred"); +Strength.PREFERRED = new Strength(2, "preferred"); +Strength.STRONG_DEFAULT = new Strength(3, "strongDefault"); +Strength.NORMAL = new Strength(4, "normal"); +Strength.WEAK_DEFAULT = new Strength(5, "weakDefault"); +Strength.WEAKEST = new Strength(6, "weakest"); + +/* --- * + * C o n s t r a i n t + * --- */ + +/** + * An abstract class representing a system-maintainable relationship + * (or "constraint") between a set of variables. A constraint supplies + * a strength instance variable; concrete subclasses provide a means + * of storing the constrained variables and other information required + * to represent a constraint. + */ +function Constraint(strength) { + this.strength = strength; +} + +/** + * Activate this constraint and attempt to satisfy it. + */ +Constraint.prototype.addConstraint = function () { + this.addToGraph(); + planner.incrementalAdd(this); +} + +/** + * Attempt to find a way to enforce this constraint. If successful, + * record the solution, perhaps modifying the current dataflow + * graph. Answer the constraint that this constraint overrides, if + * there is one, or nil, if there isn't. + * Assume: I am not already satisfied. + */ +Constraint.prototype.satisfy = function (mark) { + this.chooseMethod(mark); + if (!this.isSatisfied()) { + if (this.strength == Strength.REQUIRED) + alert("Could not satisfy a required constraint!"); + return null; + } + this.markInputs(mark); + var out = this.output(); + var overridden = out.determinedBy; + if (overridden != null) overridden.markUnsatisfied(); + out.determinedBy = this; + if (!planner.addPropagate(this, mark)) + alert("Cycle encountered"); + out.mark = mark; + return overridden; +} + +Constraint.prototype.destroyConstraint = function () { + if (this.isSatisfied()) planner.incrementalRemove(this); + else this.removeFromGraph(); +} + +/** + * Normal constraints are not input constraints. An input constraint + * is one that depends on external state, such as the mouse, the + * keybord, a clock, or some arbitraty piece of imperative code. + */ +Constraint.prototype.isInput = function () { + return false; +} + +/* --- * + * U n a r y C o n s t r a i n t + * --- */ + +/** + * Abstract superclass for constraints having a single possible output + * variable. + */ +function UnaryConstraint(v, strength) { + UnaryConstraint.superConstructor.call(this, strength); + this.myOutput = v; + this.satisfied = false; + this.addConstraint(); +} + +UnaryConstraint.inheritsFrom(Constraint); + +/** + * Adds this constraint to the constraint graph + */ +UnaryConstraint.prototype.addToGraph = function () { + this.myOutput.addConstraint(this); + this.satisfied = false; +} + +/** + * Decides if this constraint can be satisfied and records that + * decision. + */ +UnaryConstraint.prototype.chooseMethod = function (mark) { + this.satisfied = (this.myOutput.mark != mark) + && Strength.stronger(this.strength, this.myOutput.walkStrength); +} + +/** + * Returns true if this constraint is satisfied in the current solution. + */ +UnaryConstraint.prototype.isSatisfied = function () { + return this.satisfied; +} + +UnaryConstraint.prototype.markInputs = function (mark) { + // has no inputs +} + +/** + * Returns the current output variable. + */ +UnaryConstraint.prototype.output = function () { + return this.myOutput; +} + +/** + * Calculate the walkabout strength, the stay flag, and, if it is + * 'stay', the value for the current output of this constraint. Assume + * this constraint is satisfied. + */ +UnaryConstraint.prototype.recalculate = function () { + this.myOutput.walkStrength = this.strength; + this.myOutput.stay = !this.isInput(); + if (this.myOutput.stay) this.execute(); // Stay optimization +} + +/** + * Records that this constraint is unsatisfied + */ +UnaryConstraint.prototype.markUnsatisfied = function () { + this.satisfied = false; +} + +UnaryConstraint.prototype.inputsKnown = function () { + return true; +} + +UnaryConstraint.prototype.removeFromGraph = function () { + if (this.myOutput != null) this.myOutput.removeConstraint(this); + this.satisfied = false; +} + +/* --- * + * S t a y C o n s t r a i n t + * --- */ + +/** + * Variables that should, with some level of preference, stay the same. + * Planners may exploit the fact that instances, if satisfied, will not + * change their output during plan execution. This is called "stay + * optimization". + */ +function StayConstraint(v, str) { + StayConstraint.superConstructor.call(this, v, str); +} + +StayConstraint.inheritsFrom(UnaryConstraint); + +StayConstraint.prototype.execute = function () { + // Stay constraints do nothing +} + +/* --- * + * E d i t C o n s t r a i n t + * --- */ + +/** + * A unary input constraint used to mark a variable that the client + * wishes to change. + */ +function EditConstraint(v, str) { + EditConstraint.superConstructor.call(this, v, str); +} + +EditConstraint.inheritsFrom(UnaryConstraint); + +/** + * Edits indicate that a variable is to be changed by imperative code. + */ +EditConstraint.prototype.isInput = function () { + return true; +} + +EditConstraint.prototype.execute = function () { + // Edit constraints do nothing +} + +/* --- * + * B i n a r y C o n s t r a i n t + * --- */ + +var Direction = new Object(); +Direction.NONE = 0; +Direction.FORWARD = 1; +Direction.BACKWARD = -1; + +/** + * Abstract superclass for constraints having two possible output + * variables. + */ +function BinaryConstraint(var1, var2, strength) { + BinaryConstraint.superConstructor.call(this, strength); + this.v1 = var1; + this.v2 = var2; + this.direction = Direction.NONE; + this.addConstraint(); +} + +BinaryConstraint.inheritsFrom(Constraint); + +/** + * Decides if this constratint can be satisfied and which way it + * should flow based on the relative strength of the variables related, + * and record that decision. + */ +BinaryConstraint.prototype.chooseMethod = function (mark) { + if (this.v1.mark == mark) { + this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength)) + ? Direction.FORWARD + : Direction.NONE; + } + if (this.v2.mark == mark) { + this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength)) + ? Direction.BACKWARD + : Direction.NONE; + } + if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) { + this.direction = Strength.stronger(this.strength, this.v1.walkStrength) + ? Direction.BACKWARD + : Direction.NONE; + } else { + this.direction = Strength.stronger(this.strength, this.v2.walkStrength) + ? Direction.FORWARD + : Direction.BACKWARD + } +} + +/** + * Add this constraint to the constraint graph + */ +BinaryConstraint.prototype.addToGraph = function () { + this.v1.addConstraint(this); + this.v2.addConstraint(this); + this.direction = Direction.NONE; +} + +/** + * Answer true if this constraint is satisfied in the current solution. + */ +BinaryConstraint.prototype.isSatisfied = function () { + return this.direction != Direction.NONE; +} + +/** + * Mark the input variable with the given mark. + */ +BinaryConstraint.prototype.markInputs = function (mark) { + this.input().mark = mark; +} + +/** + * Returns the current input variable + */ +BinaryConstraint.prototype.input = function () { + return (this.direction == Direction.FORWARD) ? this.v1 : this.v2; +} + +/** + * Returns the current output variable + */ +BinaryConstraint.prototype.output = function () { + return (this.direction == Direction.FORWARD) ? this.v2 : this.v1; +} + +/** + * Calculate the walkabout strength, the stay flag, and, if it is + * 'stay', the value for the current output of this + * constraint. Assume this constraint is satisfied. + */ +BinaryConstraint.prototype.recalculate = function () { + var ihn = this.input(), out = this.output(); + out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); + out.stay = ihn.stay; + if (out.stay) this.execute(); +} + +/** + * Record the fact that this constraint is unsatisfied. + */ +BinaryConstraint.prototype.markUnsatisfied = function () { + this.direction = Direction.NONE; +} + +BinaryConstraint.prototype.inputsKnown = function (mark) { + var i = this.input(); + return i.mark == mark || i.stay || i.determinedBy == null; +} + +BinaryConstraint.prototype.removeFromGraph = function () { + if (this.v1 != null) this.v1.removeConstraint(this); + if (this.v2 != null) this.v2.removeConstraint(this); + this.direction = Direction.NONE; +} + +/* --- * + * S c a l e C o n s t r a i n t + * --- */ + +/** + * Relates two variables by the linear scaling relationship: "v2 = + * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain + * this relationship but the scale factor and offset are considered + * read-only. + */ +function ScaleConstraint(src, scale, offset, dest, strength) { + this.direction = Direction.NONE; + this.scale = scale; + this.offset = offset; + ScaleConstraint.superConstructor.call(this, src, dest, strength); +} + +ScaleConstraint.inheritsFrom(BinaryConstraint); + +/** + * Adds this constraint to the constraint graph. + */ +ScaleConstraint.prototype.addToGraph = function () { + ScaleConstraint.superConstructor.prototype.addToGraph.call(this); + this.scale.addConstraint(this); + this.offset.addConstraint(this); +} + +ScaleConstraint.prototype.removeFromGraph = function () { + ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this); + if (this.scale != null) this.scale.removeConstraint(this); + if (this.offset != null) this.offset.removeConstraint(this); +} + +ScaleConstraint.prototype.markInputs = function (mark) { + ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark); + this.scale.mark = this.offset.mark = mark; +} + +/** + * Enforce this constraint. Assume that it is satisfied. + */ +ScaleConstraint.prototype.execute = function () { + if (this.direction == Direction.FORWARD) { + this.v2.value = this.v1.value * this.scale.value + this.offset.value; + } else { + this.v1.value = (this.v2.value - this.offset.value) / this.scale.value; + } +} + +/** + * Calculate the walkabout strength, the stay flag, and, if it is + * 'stay', the value for the current output of this constraint. Assume + * this constraint is satisfied. + */ +ScaleConstraint.prototype.recalculate = function () { + var ihn = this.input(), out = this.output(); + out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); + out.stay = ihn.stay && this.scale.stay && this.offset.stay; + if (out.stay) this.execute(); +} + +/* --- * + * E q u a l i t y C o n s t r a i n t + * --- */ + +/** + * Constrains two variables to have the same value. + */ +function EqualityConstraint(var1, var2, strength) { + EqualityConstraint.superConstructor.call(this, var1, var2, strength); +} + +EqualityConstraint.inheritsFrom(BinaryConstraint); + +/** + * Enforce this constraint. Assume that it is satisfied. + */ +EqualityConstraint.prototype.execute = function () { + this.output().value = this.input().value; +} + +/* --- * + * V a r i a b l e + * --- */ + +/** + * A constrained variable. In addition to its value, it maintain the + * structure of the constraint graph, the current dataflow graph, and + * various parameters of interest to the DeltaBlue incremental + * constraint solver. + **/ +function Variable(name, initialValue) { + this.value = initialValue || 0; + this.constraints = new OrderedCollection(); + this.determinedBy = null; + this.mark = 0; + this.walkStrength = Strength.WEAKEST; + this.stay = true; + this.name = name; +} + +/** + * Add the given constraint to the set of all constraints that refer + * this variable. + */ +Variable.prototype.addConstraint = function (c) { + this.constraints.add(c); +} + +/** + * Removes all traces of c from this variable. + */ +Variable.prototype.removeConstraint = function (c) { + this.constraints.remove(c); + if (this.determinedBy == c) this.determinedBy = null; +} + +/* --- * + * P l a n n e r + * --- */ + +/** + * The DeltaBlue planner + */ +function Planner() { + this.currentMark = 0; +} + +/** + * Attempt to satisfy the given constraint and, if successful, + * incrementally update the dataflow graph. Details: If satifying + * the constraint is successful, it may override a weaker constraint + * on its output. The algorithm attempts to resatisfy that + * constraint using some other method. This process is repeated + * until either a) it reaches a variable that was not previously + * determined by any constraint or b) it reaches a constraint that + * is too weak to be satisfied using any of its methods. The + * variables of constraints that have been processed are marked with + * a unique mark value so that we know where we've been. This allows + * the algorithm to avoid getting into an infinite loop even if the + * constraint graph has an inadvertent cycle. + */ +Planner.prototype.incrementalAdd = function (c) { + var mark = this.newMark(); + var overridden = c.satisfy(mark); + while (overridden != null) + overridden = overridden.satisfy(mark); +} + +/** + * Entry point for retracting a constraint. Remove the given + * constraint and incrementally update the dataflow graph. + * Details: Retracting the given constraint may allow some currently + * unsatisfiable downstream constraint to be satisfied. We therefore collect + * a list of unsatisfied downstream constraints and attempt to + * satisfy each one in turn. This list is traversed by constraint + * strength, strongest first, as a heuristic for avoiding + * unnecessarily adding and then overriding weak constraints. + * Assume: c is satisfied. + */ +Planner.prototype.incrementalRemove = function (c) { + var out = c.output(); + c.markUnsatisfied(); + c.removeFromGraph(); + var unsatisfied = this.removePropagateFrom(out); + var strength = Strength.REQUIRED; + do { + for (var i = 0; i < unsatisfied.size(); i++) { + var u = unsatisfied.at(i); + if (u.strength == strength) + this.incrementalAdd(u); + } + strength = strength.nextWeaker(); + } while (strength != Strength.WEAKEST); +} + +/** + * Select a previously unused mark value. + */ +Planner.prototype.newMark = function () { + return ++this.currentMark; +} + +/** + * Extract a plan for resatisfaction starting from the given source + * constraints, usually a set of input constraints. This method + * assumes that stay optimization is desired; the plan will contain + * only constraints whose output variables are not stay. Constraints + * that do no computation, such as stay and edit constraints, are + * not included in the plan. + * Details: The outputs of a constraint are marked when it is added + * to the plan under construction. A constraint may be appended to + * the plan when all its input variables are known. A variable is + * known if either a) the variable is marked (indicating that has + * been computed by a constraint appearing earlier in the plan), b) + * the variable is 'stay' (i.e. it is a constant at plan execution + * time), or c) the variable is not determined by any + * constraint. The last provision is for past states of history + * variables, which are not stay but which are also not computed by + * any constraint. + * Assume: sources are all satisfied. + */ +Planner.prototype.makePlan = function (sources) { + var mark = this.newMark(); + var plan = new Plan(); + var todo = sources; + while (todo.size() > 0) { + var c = todo.removeFirst(); + if (c.output().mark != mark && c.inputsKnown(mark)) { + plan.addConstraint(c); + c.output().mark = mark; + this.addConstraintsConsumingTo(c.output(), todo); + } + } + return plan; +} + +/** + * Extract a plan for resatisfying starting from the output of the + * given constraints, usually a set of input constraints. + */ +Planner.prototype.extractPlanFromConstraints = function (constraints) { + var sources = new OrderedCollection(); + for (var i = 0; i < constraints.size(); i++) { + var c = constraints.at(i); + if (c.isInput() && c.isSatisfied()) + // not in plan already and eligible for inclusion + sources.add(c); + } + return this.makePlan(sources); +} + +/** + * Recompute the walkabout strengths and stay flags of all variables + * downstream of the given constraint and recompute the actual + * values of all variables whose stay flag is true. If a cycle is + * detected, remove the given constraint and answer + * false. Otherwise, answer true. + * Details: Cycles are detected when a marked variable is + * encountered downstream of the given constraint. The sender is + * assumed to have marked the inputs of the given constraint with + * the given mark. Thus, encountering a marked node downstream of + * the output constraint means that there is a path from the + * constraint's output to one of its inputs. + */ +Planner.prototype.addPropagate = function (c, mark) { + var todo = new OrderedCollection(); + todo.add(c); + while (todo.size() > 0) { + var d = todo.removeFirst(); + if (d.output().mark == mark) { + this.incrementalRemove(c); + return false; + } + d.recalculate(); + this.addConstraintsConsumingTo(d.output(), todo); + } + return true; +} + + +/** + * Update the walkabout strengths and stay flags of all variables + * downstream of the given constraint. Answer a collection of + * unsatisfied constraints sorted in order of decreasing strength. + */ +Planner.prototype.removePropagateFrom = function (out) { + out.determinedBy = null; + out.walkStrength = Strength.WEAKEST; + out.stay = true; + var unsatisfied = new OrderedCollection(); + var todo = new OrderedCollection(); + todo.add(out); + while (todo.size() > 0) { + var v = todo.removeFirst(); + for (var i = 0; i < v.constraints.size(); i++) { + var c = v.constraints.at(i); + if (!c.isSatisfied()) + unsatisfied.add(c); + } + var determining = v.determinedBy; + for (var i = 0; i < v.constraints.size(); i++) { + var next = v.constraints.at(i); + if (next != determining && next.isSatisfied()) { + next.recalculate(); + todo.add(next.output()); + } + } + } + return unsatisfied; +} + +Planner.prototype.addConstraintsConsumingTo = function (v, coll) { + var determining = v.determinedBy; + var cc = v.constraints; + for (var i = 0; i < cc.size(); i++) { + var c = cc.at(i); + if (c != determining && c.isSatisfied()) + coll.add(c); + } +} + +/* --- * + * P l a n + * --- */ + +/** + * A Plan is an ordered list of constraints to be executed in sequence + * to resatisfy all currently satisfiable constraints in the face of + * one or more changing inputs. + */ +function Plan() { + this.v = new OrderedCollection(); +} + +Plan.prototype.addConstraint = function (c) { + this.v.add(c); +} + +Plan.prototype.size = function () { + return this.v.size(); +} + +Plan.prototype.constraintAt = function (index) { + return this.v.at(index); +} + +Plan.prototype.execute = function () { + for (var i = 0; i < this.size(); i++) { + var c = this.constraintAt(i); + c.execute(); + } +} + +/* --- * + * M a i n + * --- */ + +/** + * This is the standard DeltaBlue benchmark. A long chain of equality + * constraints is constructed with a stay constraint on one end. An + * edit constraint is then added to the opposite end and the time is + * measured for adding and removing this constraint, and extracting + * and executing a constraint satisfaction plan. There are two cases. + * In case 1, the added constraint is stronger than the stay + * constraint and values must propagate down the entire length of the + * chain. In case 2, the added constraint is weaker than the stay + * constraint so it cannot be accomodated. The cost in this case is, + * of course, very low. Typical situations lie somewhere between these + * two extremes. + */ +function chainTest(n) { + planner = new Planner(); + var prev = null, first = null, last = null; + + // Build chain of n equality constraints + for (var i = 0; i <= n; i++) { + var name = "v" + i; + var v = new Variable(name); + if (prev != null) + new EqualityConstraint(prev, v, Strength.REQUIRED); + if (i == 0) first = v; + if (i == n) last = v; + prev = v; + } + + new StayConstraint(last, Strength.STRONG_DEFAULT); + var edit = new EditConstraint(first, Strength.PREFERRED); + var edits = new OrderedCollection(); + edits.add(edit); + var plan = planner.extractPlanFromConstraints(edits); + for (var i = 0; i < 100; i++) { + first.value = i; + plan.execute(); + assertEq(last.value, i); + } +} + +/** + * This test constructs a two sets of variables related to each + * other by a simple linear transformation (scale and offset). The + * time is measured to change a variable on either side of the + * mapping and to change the scale and offset factors. + */ +function projectionTest(n) { + planner = new Planner(); + var scale = new Variable("scale", 10); + var offset = new Variable("offset", 1000); + var src = null, dst = null; + + var dests = new OrderedCollection(); + for (var i = 0; i < n; i++) { + src = new Variable("src" + i, i); + dst = new Variable("dst" + i, i); + dests.add(dst); + new StayConstraint(src, Strength.NORMAL); + new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED); + } + + change(src, 17); + assertEq(dst.value, 1170); + change(dst, 1050); + assertEq(src.value, 5); + change(scale, 5); + for (var i = 0; i < n - 1; i++) { + assertEq(dests.at(i).value, i * 5 + 1000); + } + change(offset, 2000); + for (var i = 0; i < n - 1; i++) { + assertEq(dests.at(i).value, i * 5 + 2000); + } +} + +function change(v, newValue) { + var edit = new EditConstraint(v, Strength.PREFERRED); + var edits = new OrderedCollection(); + edits.add(edit); + var plan = planner.extractPlanFromConstraints(edits); + for (var i = 0; i < 10; i++) { + v.value = newValue; + plan.execute(); + } + edit.destroyConstraint(); +} + +// Global variable holding the current planner. +var planner = null; + +function deltaBlue() { + chainTest(100); + projectionTest(100); +} + +deltaBlue(); |