diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /gfx/angle/src/compiler/translator/ParseContext.cpp | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'gfx/angle/src/compiler/translator/ParseContext.cpp')
-rwxr-xr-x | gfx/angle/src/compiler/translator/ParseContext.cpp | 4492 |
1 files changed, 4492 insertions, 0 deletions
diff --git a/gfx/angle/src/compiler/translator/ParseContext.cpp b/gfx/angle/src/compiler/translator/ParseContext.cpp new file mode 100755 index 000000000..4ad597c4f --- /dev/null +++ b/gfx/angle/src/compiler/translator/ParseContext.cpp @@ -0,0 +1,4492 @@ +// +// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// + +#include "compiler/translator/ParseContext.h" + +#include <stdarg.h> +#include <stdio.h> + +#include "compiler/preprocessor/SourceLocation.h" +#include "compiler/translator/Cache.h" +#include "compiler/translator/glslang.h" +#include "compiler/translator/ValidateSwitch.h" +#include "compiler/translator/ValidateGlobalInitializer.h" +#include "compiler/translator/util.h" + +namespace sh +{ + +/////////////////////////////////////////////////////////////////////// +// +// Sub- vector and matrix fields +// +//////////////////////////////////////////////////////////////////////// + +namespace +{ + +const int kWebGLMaxStructNesting = 4; + +bool ContainsSampler(const TType &type) +{ + if (IsSampler(type.getBasicType())) + return true; + + if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) + { + const TFieldList &fields = type.getStruct()->fields(); + for (unsigned int i = 0; i < fields.size(); ++i) + { + if (ContainsSampler(*fields[i]->type())) + return true; + } + } + + return false; +} + +bool ContainsImage(const TType &type) +{ + if (IsImage(type.getBasicType())) + return true; + + if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) + { + const TFieldList &fields = type.getStruct()->fields(); + for (unsigned int i = 0; i < fields.size(); ++i) + { + if (ContainsImage(*fields[i]->type())) + return true; + } + } + + return false; +} + +} // namespace + +TParseContext::TParseContext(TSymbolTable &symt, + TExtensionBehavior &ext, + sh::GLenum type, + ShShaderSpec spec, + ShCompileOptions options, + bool checksPrecErrors, + TInfoSink &is, + const ShBuiltInResources &resources) + : intermediate(), + symbolTable(symt), + mDeferredSingleDeclarationErrorCheck(false), + mShaderType(type), + mShaderSpec(spec), + mCompileOptions(options), + mShaderVersion(100), + mTreeRoot(nullptr), + mLoopNestingLevel(0), + mStructNestingLevel(0), + mSwitchNestingLevel(0), + mCurrentFunctionType(nullptr), + mFunctionReturnsValue(false), + mChecksPrecisionErrors(checksPrecErrors), + mFragmentPrecisionHighOnESSL1(false), + mDefaultMatrixPacking(EmpColumnMajor), + mDefaultBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared), + mDiagnostics(is), + mDirectiveHandler(ext, + mDiagnostics, + mShaderVersion, + mShaderType, + resources.WEBGL_debug_shader_precision == 1), + mPreprocessor(&mDiagnostics, &mDirectiveHandler), + mScanner(nullptr), + mUsesFragData(false), + mUsesFragColor(false), + mUsesSecondaryOutputs(false), + mMinProgramTexelOffset(resources.MinProgramTexelOffset), + mMaxProgramTexelOffset(resources.MaxProgramTexelOffset), + mComputeShaderLocalSizeDeclared(false), + mDeclaringFunction(false) +{ + mComputeShaderLocalSize.fill(-1); +} + +// +// Look at a '.' field selector string and change it into offsets +// for a vector. +// +bool TParseContext::parseVectorFields(const TString &compString, + int vecSize, + TVectorFields &fields, + const TSourceLoc &line) +{ + fields.num = (int)compString.size(); + if (fields.num > 4) + { + error(line, "illegal vector field selection", compString.c_str()); + return false; + } + + enum + { + exyzw, + ergba, + estpq + } fieldSet[4]; + + for (int i = 0; i < fields.num; ++i) + { + switch (compString[i]) + { + case 'x': + fields.offsets[i] = 0; + fieldSet[i] = exyzw; + break; + case 'r': + fields.offsets[i] = 0; + fieldSet[i] = ergba; + break; + case 's': + fields.offsets[i] = 0; + fieldSet[i] = estpq; + break; + case 'y': + fields.offsets[i] = 1; + fieldSet[i] = exyzw; + break; + case 'g': + fields.offsets[i] = 1; + fieldSet[i] = ergba; + break; + case 't': + fields.offsets[i] = 1; + fieldSet[i] = estpq; + break; + case 'z': + fields.offsets[i] = 2; + fieldSet[i] = exyzw; + break; + case 'b': + fields.offsets[i] = 2; + fieldSet[i] = ergba; + break; + case 'p': + fields.offsets[i] = 2; + fieldSet[i] = estpq; + break; + + case 'w': + fields.offsets[i] = 3; + fieldSet[i] = exyzw; + break; + case 'a': + fields.offsets[i] = 3; + fieldSet[i] = ergba; + break; + case 'q': + fields.offsets[i] = 3; + fieldSet[i] = estpq; + break; + default: + error(line, "illegal vector field selection", compString.c_str()); + return false; + } + } + + for (int i = 0; i < fields.num; ++i) + { + if (fields.offsets[i] >= vecSize) + { + error(line, "vector field selection out of range", compString.c_str()); + return false; + } + + if (i > 0) + { + if (fieldSet[i] != fieldSet[i - 1]) + { + error(line, "illegal - vector component fields not from the same set", + compString.c_str()); + return false; + } + } + } + + return true; +} + +/////////////////////////////////////////////////////////////////////// +// +// Errors +// +//////////////////////////////////////////////////////////////////////// + + +// +// Used by flex/bison to output all syntax and parsing errors. +// +void TParseContext::error(const TSourceLoc &loc, + const char *reason, + const char *token, + const char *extraInfo) +{ + mDiagnostics.error(loc, reason, token, extraInfo); +} + +void TParseContext::warning(const TSourceLoc &loc, + const char *reason, + const char *token, + const char *extraInfo) +{ + mDiagnostics.warning(loc, reason, token, extraInfo); +} + +void TParseContext::outOfRangeError(bool isError, + const TSourceLoc &loc, + const char *reason, + const char *token, + const char *extraInfo) +{ + if (isError) + { + error(loc, reason, token, extraInfo); + } + else + { + warning(loc, reason, token, extraInfo); + } +} + +// +// Same error message for all places assignments don't work. +// +void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right) +{ + std::stringstream extraInfoStream; + extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'"; + std::string extraInfo = extraInfoStream.str(); + error(line, "", op, extraInfo.c_str()); +} + +// +// Same error message for all places unary operations don't work. +// +void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand) +{ + std::stringstream extraInfoStream; + extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " + << operand << " (or there is no acceptable conversion)"; + std::string extraInfo = extraInfoStream.str(); + error(line, " wrong operand type", op, extraInfo.c_str()); +} + +// +// Same error message for all binary operations don't work. +// +void TParseContext::binaryOpError(const TSourceLoc &line, + const char *op, + TString left, + TString right) +{ + std::stringstream extraInfoStream; + extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" + << left << "' and a right operand of type '" << right + << "' (or there is no acceptable conversion)"; + std::string extraInfo = extraInfoStream.str(); + error(line, " wrong operand types ", op, extraInfo.c_str()); +} + +void TParseContext::checkPrecisionSpecified(const TSourceLoc &line, + TPrecision precision, + TBasicType type) +{ + if (!mChecksPrecisionErrors) + return; + + if (precision != EbpUndefined && !SupportsPrecision(type)) + { + error(line, "illegal type for precision qualifier", getBasicString(type)); + } + + if (precision == EbpUndefined) + { + switch (type) + { + case EbtFloat: + error(line, "No precision specified for (float)", ""); + return; + case EbtInt: + case EbtUInt: + UNREACHABLE(); // there's always a predeclared qualifier + error(line, "No precision specified (int)", ""); + return; + default: + if (IsSampler(type)) + { + error(line, "No precision specified (sampler)", ""); + return; + } + if (IsImage(type)) + { + error(line, "No precision specified (image)", ""); + return; + } + } + } +} + +// Both test and if necessary, spit out an error, to see if the node is really +// an l-value that can be operated on this way. +bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node) +{ + TIntermSymbol *symNode = node->getAsSymbolNode(); + TIntermBinary *binaryNode = node->getAsBinaryNode(); + TIntermSwizzle *swizzleNode = node->getAsSwizzleNode(); + + if (swizzleNode) + { + bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand()); + if (ok && swizzleNode->hasDuplicateOffsets()) + { + error(line, " l-value of swizzle cannot have duplicate components", op); + return false; + } + return ok; + } + + if (binaryNode) + { + switch (binaryNode->getOp()) + { + case EOpIndexDirect: + case EOpIndexIndirect: + case EOpIndexDirectStruct: + case EOpIndexDirectInterfaceBlock: + return checkCanBeLValue(line, op, binaryNode->getLeft()); + default: + break; + } + error(line, " l-value required", op); + return false; + } + + const char *symbol = 0; + if (symNode != 0) + symbol = symNode->getSymbol().c_str(); + + const char *message = 0; + switch (node->getQualifier()) + { + case EvqConst: + message = "can't modify a const"; + break; + case EvqConstReadOnly: + message = "can't modify a const"; + break; + case EvqAttribute: + message = "can't modify an attribute"; + break; + case EvqFragmentIn: + message = "can't modify an input"; + break; + case EvqVertexIn: + message = "can't modify an input"; + break; + case EvqUniform: + message = "can't modify a uniform"; + break; + case EvqVaryingIn: + message = "can't modify a varying"; + break; + case EvqFragCoord: + message = "can't modify gl_FragCoord"; + break; + case EvqFrontFacing: + message = "can't modify gl_FrontFacing"; + break; + case EvqPointCoord: + message = "can't modify gl_PointCoord"; + break; + case EvqNumWorkGroups: + message = "can't modify gl_NumWorkGroups"; + break; + case EvqWorkGroupSize: + message = "can't modify gl_WorkGroupSize"; + break; + case EvqWorkGroupID: + message = "can't modify gl_WorkGroupID"; + break; + case EvqLocalInvocationID: + message = "can't modify gl_LocalInvocationID"; + break; + case EvqGlobalInvocationID: + message = "can't modify gl_GlobalInvocationID"; + break; + case EvqLocalInvocationIndex: + message = "can't modify gl_LocalInvocationIndex"; + break; + case EvqComputeIn: + message = "can't modify work group size variable"; + break; + default: + // + // Type that can't be written to? + // + if (node->getBasicType() == EbtVoid) + { + message = "can't modify void"; + } + if (IsSampler(node->getBasicType())) + { + message = "can't modify a sampler"; + } + if (IsImage(node->getBasicType())) + { + message = "can't modify an image"; + } + } + + if (message == 0 && binaryNode == 0 && symNode == 0) + { + error(line, " l-value required", op); + + return false; + } + + // + // Everything else is okay, no error. + // + if (message == 0) + return true; + + // + // If we get here, we have an error and a message. + // + if (symNode) + { + std::stringstream extraInfoStream; + extraInfoStream << "\"" << symbol << "\" (" << message << ")"; + std::string extraInfo = extraInfoStream.str(); + error(line, " l-value required", op, extraInfo.c_str()); + } + else + { + std::stringstream extraInfoStream; + extraInfoStream << "(" << message << ")"; + std::string extraInfo = extraInfoStream.str(); + error(line, " l-value required", op, extraInfo.c_str()); + } + + return false; +} + +// Both test, and if necessary spit out an error, to see if the node is really +// a constant. +void TParseContext::checkIsConst(TIntermTyped *node) +{ + if (node->getQualifier() != EvqConst) + { + error(node->getLine(), "constant expression required", ""); + } +} + +// Both test, and if necessary spit out an error, to see if the node is really +// an integer. +void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token) +{ + if (!node->isScalarInt()) + { + error(node->getLine(), "integer expression required", token); + } +} + +// Both test, and if necessary spit out an error, to see if we are currently +// globally scoped. +bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token) +{ + if (!symbolTable.atGlobalLevel()) + { + error(line, "only allowed at global scope", token); + return false; + } + return true; +} + +// For now, keep it simple: if it starts "gl_", it's reserved, independent +// of scope. Except, if the symbol table is at the built-in push-level, +// which is when we are parsing built-ins. +// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a +// webgl shader. +bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier) +{ + static const char *reservedErrMsg = "reserved built-in name"; + if (!symbolTable.atBuiltInLevel()) + { + if (identifier.compare(0, 3, "gl_") == 0) + { + error(line, reservedErrMsg, "gl_"); + return false; + } + if (sh::IsWebGLBasedSpec(mShaderSpec)) + { + if (identifier.compare(0, 6, "webgl_") == 0) + { + error(line, reservedErrMsg, "webgl_"); + return false; + } + if (identifier.compare(0, 7, "_webgl_") == 0) + { + error(line, reservedErrMsg, "_webgl_"); + return false; + } + } + if (identifier.find("__") != TString::npos) + { + error(line, + "identifiers containing two consecutive underscores (__) are reserved as " + "possible future keywords", + identifier.c_str()); + return false; + } + } + + return true; +} + +// Make sure there is enough data provided to the constructor to build +// something of the type of the constructor. Also returns the type of +// the constructor. +bool TParseContext::checkConstructorArguments(const TSourceLoc &line, + TIntermNode *argumentsNode, + const TFunction &function, + TOperator op, + const TType &type) +{ + bool constructingMatrix = false; + switch (op) + { + case EOpConstructMat2: + case EOpConstructMat2x3: + case EOpConstructMat2x4: + case EOpConstructMat3x2: + case EOpConstructMat3: + case EOpConstructMat3x4: + case EOpConstructMat4x2: + case EOpConstructMat4x3: + case EOpConstructMat4: + constructingMatrix = true; + break; + default: + break; + } + + // + // Note: It's okay to have too many components available, but not okay to have unused + // arguments. 'full' will go to true when enough args have been seen. If we loop + // again, there is an extra argument, so 'overfull' will become true. + // + + size_t size = 0; + bool full = false; + bool overFull = false; + bool matrixInMatrix = false; + bool arrayArg = false; + for (size_t i = 0; i < function.getParamCount(); ++i) + { + const TConstParameter ¶m = function.getParam(i); + size += param.type->getObjectSize(); + + if (constructingMatrix && param.type->isMatrix()) + matrixInMatrix = true; + if (full) + overFull = true; + if (op != EOpConstructStruct && !type.isArray() && size >= type.getObjectSize()) + full = true; + if (param.type->isArray()) + arrayArg = true; + } + + if (type.isArray()) + { + // The size of an unsized constructor should already have been determined. + ASSERT(!type.isUnsizedArray()); + if (static_cast<size_t>(type.getArraySize()) != function.getParamCount()) + { + error(line, "array constructor needs one argument per array element", "constructor"); + return false; + } + } + + if (arrayArg && op != EOpConstructStruct) + { + error(line, "constructing from a non-dereferenced array", "constructor"); + return false; + } + + if (matrixInMatrix && !type.isArray()) + { + if (function.getParamCount() != 1) + { + error(line, "constructing matrix from matrix can only take one argument", + "constructor"); + return false; + } + } + + if (overFull) + { + error(line, "too many arguments", "constructor"); + return false; + } + + if (op == EOpConstructStruct && !type.isArray() && + type.getStruct()->fields().size() != function.getParamCount()) + { + error(line, + "Number of constructor parameters does not match the number of structure fields", + "constructor"); + return false; + } + + if (!type.isMatrix() || !matrixInMatrix) + { + if ((op != EOpConstructStruct && size != 1 && size < type.getObjectSize()) || + (op == EOpConstructStruct && size < type.getObjectSize())) + { + error(line, "not enough data provided for construction", "constructor"); + return false; + } + } + + if (argumentsNode == nullptr) + { + error(line, "constructor does not have any arguments", "constructor"); + return false; + } + + TIntermAggregate *argumentsAgg = argumentsNode->getAsAggregate(); + for (TIntermNode *&argNode : *argumentsAgg->getSequence()) + { + TIntermTyped *argTyped = argNode->getAsTyped(); + ASSERT(argTyped != nullptr); + if (op != EOpConstructStruct && IsSampler(argTyped->getBasicType())) + { + error(line, "cannot convert a sampler", "constructor"); + return false; + } + if (op != EOpConstructStruct && IsImage(argTyped->getBasicType())) + { + error(line, "cannot convert an image", "constructor"); + return false; + } + if (argTyped->getBasicType() == EbtVoid) + { + error(line, "cannot convert a void", "constructor"); + return false; + } + } + + if (type.isArray()) + { + // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of + // the array. + for (TIntermNode *&argNode : *argumentsAgg->getSequence()) + { + const TType &argType = argNode->getAsTyped()->getType(); + // It has already been checked that the argument is not an array. + ASSERT(!argType.isArray()); + if (!argType.sameElementType(type)) + { + error(line, "Array constructor argument has an incorrect type", "Error"); + return false; + } + } + } + else if (op == EOpConstructStruct) + { + const TFieldList &fields = type.getStruct()->fields(); + TIntermSequence *args = argumentsAgg->getSequence(); + + for (size_t i = 0; i < fields.size(); i++) + { + if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type()) + { + error(line, "Structure constructor arguments do not match structure fields", + "Error"); + return false; + } + } + } + + return true; +} + +// This function checks to see if a void variable has been declared and raise an error message for +// such a case +// +// returns true in case of an error +// +bool TParseContext::checkIsNonVoid(const TSourceLoc &line, + const TString &identifier, + const TBasicType &type) +{ + if (type == EbtVoid) + { + error(line, "illegal use of type 'void'", identifier.c_str()); + return false; + } + + return true; +} + +// This function checks to see if the node (for the expression) contains a scalar boolean expression +// or not. +void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type) +{ + if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) + { + error(line, "boolean expression expected", ""); + } +} + +// This function checks to see if the node (for the expression) contains a scalar boolean expression +// or not. +void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType) +{ + if (pType.getBasicType() != EbtBool || pType.isAggregate()) + { + error(line, "boolean expression expected", ""); + } +} + +bool TParseContext::checkIsNotSampler(const TSourceLoc &line, + const TTypeSpecifierNonArray &pType, + const char *reason) +{ + if (pType.type == EbtStruct) + { + if (ContainsSampler(*pType.userDef)) + { + error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); + return false; + } + + return true; + } + else if (IsSampler(pType.type)) + { + error(line, reason, getBasicString(pType.type)); + return false; + } + + return true; +} + +bool TParseContext::checkIsNotImage(const TSourceLoc &line, + const TTypeSpecifierNonArray &pType, + const char *reason) +{ + if (pType.type == EbtStruct) + { + if (ContainsImage(*pType.userDef)) + { + error(line, reason, getBasicString(pType.type), "(structure contains an image)"); + + return false; + } + + return true; + } + else if (IsImage(pType.type)) + { + error(line, reason, getBasicString(pType.type)); + + return false; + } + + return true; +} + +void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line, + const TPublicType &pType) +{ + if (pType.layoutQualifier.location != -1) + { + error(line, "location must only be specified for a single input or output variable", + "location"); + } +} + +void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location, + const TLayoutQualifier &layoutQualifier) +{ + if (layoutQualifier.location != -1) + { + error(location, "invalid layout qualifier:", "location", + "only valid on program inputs and outputs"); + } +} + +void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line, + TQualifier qualifier, + const TType &type) +{ + checkOutParameterIsNotSampler(line, qualifier, type); + checkOutParameterIsNotImage(line, qualifier, type); +} + +void TParseContext::checkOutParameterIsNotSampler(const TSourceLoc &line, + TQualifier qualifier, + const TType &type) +{ + ASSERT(qualifier == EvqOut || qualifier == EvqInOut); + if (IsSampler(type.getBasicType())) + { + error(line, "samplers cannot be output parameters", type.getBasicString()); + } +} + +void TParseContext::checkOutParameterIsNotImage(const TSourceLoc &line, + TQualifier qualifier, + const TType &type) +{ + ASSERT(qualifier == EvqOut || qualifier == EvqInOut); + if (IsImage(type.getBasicType())) + { + error(line, "images cannot be output parameters", type.getBasicString()); + } +} + +// Do size checking for an array type's size. +unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr) +{ + TIntermConstantUnion *constant = expr->getAsConstantUnion(); + + // TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant + // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't + // fold as array size. + if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt()) + { + error(line, "array size must be a constant integer expression", ""); + return 1u; + } + + unsigned int size = 0u; + + if (constant->getBasicType() == EbtUInt) + { + size = constant->getUConst(0); + } + else + { + int signedSize = constant->getIConst(0); + + if (signedSize < 0) + { + error(line, "array size must be non-negative", ""); + return 1u; + } + + size = static_cast<unsigned int>(signedSize); + } + + if (size == 0u) + { + error(line, "array size must be greater than zero", ""); + return 1u; + } + + // The size of arrays is restricted here to prevent issues further down the + // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to + // 4096 registers so this should be reasonable even for aggressively optimizable code. + const unsigned int sizeLimit = 65536; + + if (size > sizeLimit) + { + error(line, "array size too large", ""); + return 1u; + } + + return size; +} + +// See if this qualifier can be an array. +bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line, + const TPublicType &elementQualifier) +{ + if ((elementQualifier.qualifier == EvqAttribute) || + (elementQualifier.qualifier == EvqVertexIn) || + (elementQualifier.qualifier == EvqConst && mShaderVersion < 300)) + { + error(line, "cannot declare arrays of this qualifier", + TType(elementQualifier).getQualifierString()); + return false; + } + + return true; +} + +// See if this element type can be formed into an array. +bool TParseContext::checkIsValidTypeForArray(const TSourceLoc &line, const TPublicType &elementType) +{ + // + // Can the type be an array? + // + if (elementType.array) + { + error(line, "cannot declare arrays of arrays", + TType(elementType).getCompleteString().c_str()); + return false; + } + // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. + // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section + // 4.3.4). + if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct && + sh::IsVarying(elementType.qualifier)) + { + error(line, "cannot declare arrays of structs of this qualifier", + TType(elementType).getCompleteString().c_str()); + return false; + } + + return true; +} + +// Check if this qualified element type can be formed into an array. +bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation, + const TPublicType &elementType) +{ + if (checkIsValidTypeForArray(indexLocation, elementType)) + { + return checkIsValidQualifierForArray(indexLocation, elementType); + } + return false; +} + +// Enforce non-initializer type/qualifier rules. +void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line, + const TString &identifier, + TPublicType *type) +{ + ASSERT(type != nullptr); + if (type->qualifier == EvqConst) + { + // Make the qualifier make sense. + type->qualifier = EvqTemporary; + + // Generate informative error messages for ESSL1. + // In ESSL3 arrays and structures containing arrays can be constant. + if (mShaderVersion < 300 && type->isStructureContainingArrays()) + { + error(line, + "structures containing arrays may not be declared constant since they cannot be " + "initialized", + identifier.c_str()); + } + else + { + error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); + } + return; + } + if (type->isUnsizedArray()) + { + error(line, "implicitly sized arrays need to be initialized", identifier.c_str()); + } +} + +// Do some simple checks that are shared between all variable declarations, +// and update the symbol table. +// +// Returns true if declaring the variable succeeded. +// +bool TParseContext::declareVariable(const TSourceLoc &line, + const TString &identifier, + const TType &type, + TVariable **variable) +{ + ASSERT((*variable) == nullptr); + + bool needsReservedCheck = true; + + // gl_LastFragData may be redeclared with a new precision qualifier + if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0) + { + const TVariable *maxDrawBuffers = static_cast<const TVariable *>( + symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion)); + if (static_cast<int>(type.getArraySize()) == maxDrawBuffers->getConstPointer()->getIConst()) + { + if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) + { + needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension()); + } + } + else + { + error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", + identifier.c_str()); + return false; + } + } + + if (needsReservedCheck && !checkIsNotReserved(line, identifier)) + return false; + + (*variable) = new TVariable(&identifier, type); + if (!symbolTable.declare(*variable)) + { + error(line, "redefinition", identifier.c_str()); + *variable = nullptr; + return false; + } + + if (!checkIsNonVoid(line, identifier, type.getBasicType())) + return false; + + return true; +} + +void TParseContext::checkIsParameterQualifierValid( + const TSourceLoc &line, + const TTypeQualifierBuilder &typeQualifierBuilder, + TType *type) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getParameterTypeQualifier(&mDiagnostics); + + if (typeQualifier.qualifier == EvqOut || typeQualifier.qualifier == EvqInOut) + { + checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type); + } + + if (!IsImage(type->getBasicType())) + { + checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, line); + } + else + { + type->setMemoryQualifier(typeQualifier.memoryQualifier); + } + + type->setQualifier(typeQualifier.qualifier); + + if (typeQualifier.precision != EbpUndefined) + { + type->setPrecision(typeQualifier.precision); + } +} + +bool TParseContext::checkCanUseExtension(const TSourceLoc &line, const TString &extension) +{ + const TExtensionBehavior &extBehavior = extensionBehavior(); + TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str()); + if (iter == extBehavior.end()) + { + error(line, "extension", extension.c_str(), "is not supported"); + return false; + } + // In GLSL ES, an extension's default behavior is "disable". + if (iter->second == EBhDisable || iter->second == EBhUndefined) + { + error(line, "extension", extension.c_str(), "is disabled"); + return false; + } + if (iter->second == EBhWarn) + { + warning(line, "extension", extension.c_str(), "is being used"); + return true; + } + + return true; +} + +// These checks are common for all declarations starting a declarator list, and declarators that +// follow an empty declaration. +void TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, + const TSourceLoc &identifierLocation) +{ + switch (publicType.qualifier) + { + case EvqVaryingIn: + case EvqVaryingOut: + case EvqAttribute: + case EvqVertexIn: + case EvqFragmentOut: + case EvqComputeIn: + if (publicType.getBasicType() == EbtStruct) + { + error(identifierLocation, "cannot be used with a structure", + getQualifierString(publicType.qualifier)); + return; + } + + default: + break; + } + + if (publicType.qualifier != EvqUniform && + !checkIsNotSampler(identifierLocation, publicType.typeSpecifierNonArray, + "samplers must be uniform")) + { + return; + } + if (publicType.qualifier != EvqUniform && + !checkIsNotImage(identifierLocation, publicType.typeSpecifierNonArray, + "images must be uniform")) + { + return; + } + + // check for layout qualifier issues + const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; + + if (layoutQualifier.matrixPacking != EmpUnspecified) + { + error(identifierLocation, "layout qualifier", + getMatrixPackingString(layoutQualifier.matrixPacking), + "only valid for interface blocks"); + return; + } + + if (layoutQualifier.blockStorage != EbsUnspecified) + { + error(identifierLocation, "layout qualifier", + getBlockStorageString(layoutQualifier.blockStorage), + "only valid for interface blocks"); + return; + } + + if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut) + { + checkLocationIsNotSpecified(identifierLocation, publicType.layoutQualifier); + } + + if (IsImage(publicType.getBasicType())) + { + + switch (layoutQualifier.imageInternalFormat) + { + case EiifRGBA32F: + case EiifRGBA16F: + case EiifR32F: + case EiifRGBA8: + case EiifRGBA8_SNORM: + if (!IsFloatImage(publicType.getBasicType())) + { + error(identifierLocation, + "internal image format requires a floating image type", + getBasicString(publicType.getBasicType())); + return; + } + break; + case EiifRGBA32I: + case EiifRGBA16I: + case EiifRGBA8I: + case EiifR32I: + if (!IsIntegerImage(publicType.getBasicType())) + { + error(identifierLocation, + "internal image format requires an integer image type", + getBasicString(publicType.getBasicType())); + return; + } + break; + case EiifRGBA32UI: + case EiifRGBA16UI: + case EiifRGBA8UI: + case EiifR32UI: + if (!IsUnsignedImage(publicType.getBasicType())) + { + error(identifierLocation, + "internal image format requires an unsigned image type", + getBasicString(publicType.getBasicType())); + return; + } + break; + case EiifUnspecified: + error(identifierLocation, "layout qualifier", "No image internal format specified"); + return; + default: + error(identifierLocation, "layout qualifier", "unrecognized token"); + return; + } + + // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers + switch (layoutQualifier.imageInternalFormat) + { + case EiifR32F: + case EiifR32I: + case EiifR32UI: + break; + default: + if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly) + { + error(identifierLocation, "layout qualifier", + "Except for images with the r32f, r32i and r32ui format qualifiers, " + "image variables must be qualified readonly and/or writeonly"); + return; + } + break; + } + } + else + { + + if (!checkInternalFormatIsNotSpecified(identifierLocation, + layoutQualifier.imageInternalFormat)) + { + return; + } + + if (!checkIsMemoryQualifierNotSpecified(publicType.memoryQualifier, identifierLocation)) + { + return; + } + } +} + +void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location, + const TString &layoutQualifierName, + int versionRequired) +{ + + if (mShaderVersion < versionRequired) + { + error(location, "invalid layout qualifier:", layoutQualifierName.c_str(), "not supported"); + } +} + +bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location, + const TLayoutQualifier &layoutQualifier) +{ + const sh::WorkGroupSize &localSize = layoutQualifier.localSize; + for (size_t i = 0u; i < localSize.size(); ++i) + { + if (localSize[i] != -1) + { + error(location, "invalid layout qualifier:", getWorkGroupSizeString(i), + "only valid when used with 'in' in a compute shader global layout declaration"); + return false; + } + } + + return true; +} + +bool TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location, + TLayoutImageInternalFormat internalFormat) +{ + if (internalFormat != EiifUnspecified) + { + error(location, "invalid layout qualifier:", getImageInternalFormatString(internalFormat), + "only valid when used with images"); + return false; + } + return true; +} + +void TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, + TIntermAggregate *fnCall) +{ + for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) + { + TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); + if (qual == EvqOut || qual == EvqInOut) + { + TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped(); + if (!checkCanBeLValue(argument->getLine(), "assign", argument)) + { + error(argument->getLine(), + "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error"); + return; + } + } + } +} + +void TParseContext::checkInvariantVariableQualifier(bool invariant, + const TQualifier qualifier, + const TSourceLoc &invariantLocation) +{ + if (!invariant) + return; + + if (mShaderVersion < 300) + { + // input variables in the fragment shader can be also qualified as invariant + if (!sh::CanBeInvariantESSL1(qualifier)) + { + error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); + } + } + else + { + if (!sh::CanBeInvariantESSL3OrGreater(qualifier)) + { + error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); + } + } +} + +bool TParseContext::supportsExtension(const char *extension) +{ + const TExtensionBehavior &extbehavior = extensionBehavior(); + TExtensionBehavior::const_iterator iter = extbehavior.find(extension); + return (iter != extbehavior.end()); +} + +bool TParseContext::isExtensionEnabled(const char *extension) const +{ + return ::IsExtensionEnabled(extensionBehavior(), extension); +} + +void TParseContext::handleExtensionDirective(const TSourceLoc &loc, + const char *extName, + const char *behavior) +{ + pp::SourceLocation srcLoc; + srcLoc.file = loc.first_file; + srcLoc.line = loc.first_line; + mDirectiveHandler.handleExtension(srcLoc, extName, behavior); +} + +void TParseContext::handlePragmaDirective(const TSourceLoc &loc, + const char *name, + const char *value, + bool stdgl) +{ + pp::SourceLocation srcLoc; + srcLoc.file = loc.first_file; + srcLoc.line = loc.first_line; + mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl); +} + +sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const +{ + sh::WorkGroupSize result; + for (size_t i = 0u; i < result.size(); ++i) + { + if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1) + { + result[i] = 1; + } + else + { + result[i] = mComputeShaderLocalSize[i]; + } + } + return result; +} + +///////////////////////////////////////////////////////////////////////////////// +// +// Non-Errors. +// +///////////////////////////////////////////////////////////////////////////////// + +const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, + const TString *name, + const TSymbol *symbol) +{ + const TVariable *variable = NULL; + + if (!symbol) + { + error(location, "undeclared identifier", name->c_str()); + } + else if (!symbol->isVariable()) + { + error(location, "variable expected", name->c_str()); + } + else + { + variable = static_cast<const TVariable *>(symbol); + + if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) && + !variable->getExtension().empty()) + { + checkCanUseExtension(location, variable->getExtension()); + } + + // Reject shaders using both gl_FragData and gl_FragColor + TQualifier qualifier = variable->getType().getQualifier(); + if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT) + { + mUsesFragData = true; + } + else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT) + { + mUsesFragColor = true; + } + if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT) + { + mUsesSecondaryOutputs = true; + } + + // This validation is not quite correct - it's only an error to write to + // both FragData and FragColor. For simplicity, and because users shouldn't + // be rewarded for reading from undefined varaibles, return an error + // if they are both referenced, rather than assigned. + if (mUsesFragData && mUsesFragColor) + { + const char *errorMessage = "cannot use both gl_FragData and gl_FragColor"; + if (mUsesSecondaryOutputs) + { + errorMessage = + "cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)" + " and (gl_FragColor, gl_SecondaryFragColorEXT)"; + } + error(location, errorMessage, name->c_str()); + } + + // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables + if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared && + qualifier == EvqWorkGroupSize) + { + error(location, + "It is an error to use gl_WorkGroupSize before declaring the local group size", + "gl_WorkGroupSize"); + } + } + + if (!variable) + { + TType type(EbtFloat, EbpUndefined); + TVariable *fakeVariable = new TVariable(name, type); + symbolTable.declare(fakeVariable); + variable = fakeVariable; + } + + return variable; +} + +TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location, + const TString *name, + const TSymbol *symbol) +{ + const TVariable *variable = getNamedVariable(location, name, symbol); + + if (variable->getConstPointer()) + { + const TConstantUnion *constArray = variable->getConstPointer(); + return intermediate.addConstantUnion(constArray, variable->getType(), location); + } + else + { + return intermediate.addSymbol(variable->getUniqueId(), variable->getName(), + variable->getType(), location); + } +} + +// +// Look up a function name in the symbol table, and make sure it is a function. +// +// Return the function symbol if found, otherwise 0. +// +const TFunction *TParseContext::findFunction(const TSourceLoc &line, + TFunction *call, + int inputShaderVersion, + bool *builtIn) +{ + // First find by unmangled name to check whether the function name has been + // hidden by a variable name or struct typename. + // If a function is found, check for one with a matching argument list. + const TSymbol *symbol = symbolTable.find(call->getName(), inputShaderVersion, builtIn); + if (symbol == 0 || symbol->isFunction()) + { + symbol = symbolTable.find(call->getMangledName(), inputShaderVersion, builtIn); + } + + if (symbol == 0) + { + error(line, "no matching overloaded function found", call->getName().c_str()); + return 0; + } + + if (!symbol->isFunction()) + { + error(line, "function name expected", call->getName().c_str()); + return 0; + } + + return static_cast<const TFunction *>(symbol); +} + +// +// Initializers show up in several places in the grammar. Have one set of +// code to handle them here. +// +// Returns true on error, false if no error +// +bool TParseContext::executeInitializer(const TSourceLoc &line, + const TString &identifier, + const TPublicType &pType, + TIntermTyped *initializer, + TIntermBinary **initNode) +{ + ASSERT(initNode != nullptr); + ASSERT(*initNode == nullptr); + TType type = TType(pType); + + TVariable *variable = nullptr; + if (type.isUnsizedArray()) + { + // We have not checked yet whether the initializer actually is an array or not. + if (initializer->isArray()) + { + type.setArraySize(initializer->getArraySize()); + } + else + { + // Having a non-array initializer for an unsized array will result in an error later, + // so we don't generate an error message here. + type.setArraySize(1u); + } + } + if (!declareVariable(line, identifier, type, &variable)) + { + return true; + } + + bool globalInitWarning = false; + if (symbolTable.atGlobalLevel() && + !ValidateGlobalInitializer(initializer, this, &globalInitWarning)) + { + // Error message does not completely match behavior with ESSL 1.00, but + // we want to steer developers towards only using constant expressions. + error(line, "global variable initializers must be constant expressions", "="); + return true; + } + if (globalInitWarning) + { + warning( + line, + "global variable initializers should be constant expressions " + "(uniforms and globals are allowed in global initializers for legacy compatibility)", + "="); + } + + // + // identifier must be of type constant, a global, or a temporary + // + TQualifier qualifier = variable->getType().getQualifier(); + if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) + { + error(line, " cannot initialize this type of qualifier ", + variable->getType().getQualifierString()); + return true; + } + // + // test for and propagate constant + // + + if (qualifier == EvqConst) + { + if (qualifier != initializer->getType().getQualifier()) + { + std::stringstream extraInfoStream; + extraInfoStream << "'" << variable->getType().getCompleteString() << "'"; + std::string extraInfo = extraInfoStream.str(); + error(line, " assigning non-constant to", "=", extraInfo.c_str()); + variable->getType().setQualifier(EvqTemporary); + return true; + } + if (type != initializer->getType()) + { + error(line, " non-matching types for const initializer ", + variable->getType().getQualifierString()); + variable->getType().setQualifier(EvqTemporary); + return true; + } + + // Save the constant folded value to the variable if possible. For example array + // initializers are not folded, since that way copying the array literal to multiple places + // in the shader is avoided. + // TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where + // it would be beneficial. + if (initializer->getAsConstantUnion()) + { + variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); + *initNode = nullptr; + return false; + } + else if (initializer->getAsSymbolNode()) + { + const TSymbol *symbol = + symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); + const TVariable *tVar = static_cast<const TVariable *>(symbol); + + const TConstantUnion *constArray = tVar->getConstPointer(); + if (constArray) + { + variable->shareConstPointer(constArray); + *initNode = nullptr; + return false; + } + } + } + + TIntermSymbol *intermSymbol = intermediate.addSymbol( + variable->getUniqueId(), variable->getName(), variable->getType(), line); + *initNode = createAssign(EOpInitialize, intermSymbol, initializer, line); + if (*initNode == nullptr) + { + assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); + return true; + } + + return false; +} + +void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier) +{ + checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision, + typeSpecifier->getBasicType()); + + if (mShaderVersion < 300 && typeSpecifier->array) + { + error(typeSpecifier->getLine(), "not supported", "first-class array"); + typeSpecifier->clearArrayness(); + } +} + +TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder, + const TPublicType &typeSpecifier) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics); + + TPublicType returnType = typeSpecifier; + returnType.qualifier = typeQualifier.qualifier; + returnType.invariant = typeQualifier.invariant; + returnType.layoutQualifier = typeQualifier.layoutQualifier; + returnType.memoryQualifier = typeQualifier.memoryQualifier; + returnType.precision = typeSpecifier.precision; + + if (typeQualifier.precision != EbpUndefined) + { + returnType.precision = typeQualifier.precision; + } + + checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision, + typeSpecifier.getBasicType()); + + checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier, + typeSpecifier.getLine()); + + checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier); + + if (mShaderVersion < 300) + { + if (typeSpecifier.array) + { + error(typeSpecifier.getLine(), "not supported", "first-class array"); + returnType.clearArrayness(); + } + + if (returnType.qualifier == EvqAttribute && + (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) + { + error(typeSpecifier.getLine(), "cannot be bool or int", + getQualifierString(returnType.qualifier)); + } + + if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) && + (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) + { + error(typeSpecifier.getLine(), "cannot be bool or int", + getQualifierString(returnType.qualifier)); + } + } + else + { + if (!returnType.layoutQualifier.isEmpty()) + { + checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout"); + } + if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || + returnType.qualifier == EvqFragmentOut) + { + checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, + typeSpecifier.getLine()); + } + if (returnType.qualifier == EvqComputeIn) + { + error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size", + "in"); + } + } + + return returnType; +} + +void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, + const TPublicType &type, + const TSourceLoc &qualifierLocation) +{ + // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. + if (type.getBasicType() == EbtBool) + { + error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); + } + + // Specific restrictions apply for vertex shader inputs and fragment shader outputs. + switch (qualifier) + { + case EvqVertexIn: + // ESSL 3.00 section 4.3.4 + if (type.array) + { + error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); + } + // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck + return; + case EvqFragmentOut: + // ESSL 3.00 section 4.3.6 + if (type.typeSpecifierNonArray.isMatrix()) + { + error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); + } + // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck + return; + default: + break; + } + + // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of + // restrictions. + bool typeContainsIntegers = + (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt || + type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt)); + if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) + { + error(qualifierLocation, "must use 'flat' interpolation here", + getQualifierString(qualifier)); + } + + if (type.getBasicType() == EbtStruct) + { + // ESSL 3.00 sections 4.3.4 and 4.3.6. + // These restrictions are only implied by the ESSL 3.00 spec, but + // the ESSL 3.10 spec lists these restrictions explicitly. + if (type.array) + { + error(qualifierLocation, "cannot be an array of structures", + getQualifierString(qualifier)); + } + if (type.isStructureContainingArrays()) + { + error(qualifierLocation, "cannot be a structure containing an array", + getQualifierString(qualifier)); + } + if (type.isStructureContainingType(EbtStruct)) + { + error(qualifierLocation, "cannot be a structure containing a structure", + getQualifierString(qualifier)); + } + if (type.isStructureContainingType(EbtBool)) + { + error(qualifierLocation, "cannot be a structure containing a bool", + getQualifierString(qualifier)); + } + } +} + +void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier) +{ + if (qualifier.getType() == QtStorage) + { + const TStorageQualifierWrapper &storageQualifier = + static_cast<const TStorageQualifierWrapper &>(qualifier); + if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst && + !symbolTable.atGlobalLevel()) + { + error(storageQualifier.getLine(), + "Local variables can only use the const storage qualifier.", + storageQualifier.getQualifierString().c_str()); + } + } +} + +bool TParseContext::checkIsMemoryQualifierNotSpecified(const TMemoryQualifier &memoryQualifier, + const TSourceLoc &location) +{ + if (memoryQualifier.readonly) + { + error(location, "Only allowed with images.", "readonly"); + return false; + } + if (memoryQualifier.writeonly) + { + error(location, "Only allowed with images.", "writeonly"); + return false; + } + if (memoryQualifier.coherent) + { + error(location, "Only allowed with images.", "coherent"); + return false; + } + if (memoryQualifier.restrictQualifier) + { + error(location, "Only allowed with images.", "restrict"); + return false; + } + if (memoryQualifier.volatileQualifier) + { + error(location, "Only allowed with images.", "volatile"); + return false; + } + return true; +} + +TIntermDeclaration *TParseContext::parseSingleDeclaration( + TPublicType &publicType, + const TSourceLoc &identifierOrTypeLocation, + const TString &identifier) +{ + TType type(publicType); + if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) && + mDirectiveHandler.pragma().stdgl.invariantAll) + { + TQualifier qualifier = type.getQualifier(); + + // The directive handler has already taken care of rejecting invalid uses of this pragma + // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all + // affected variable declarations: + // + // 1. Built-in special variables which are inputs to the fragment shader. (These are handled + // elsewhere, in TranslatorGLSL.) + // + // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It + // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but + // the way this is currently implemented we have to enable this compiler option before + // parsing the shader and determining the shading language version it uses. If this were + // implemented as a post-pass, the workaround could be more targeted. + // + // 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of + // the specification, but there are desktop OpenGL drivers that expect that this is the + // behavior of the #pragma when specified in ESSL 1.00 fragment shaders. + if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn) + { + type.setInvariant(true); + } + } + + TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, type, identifierOrTypeLocation); + + bool emptyDeclaration = (identifier == ""); + + mDeferredSingleDeclarationErrorCheck = emptyDeclaration; + + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->setLine(identifierOrTypeLocation); + + if (emptyDeclaration) + { + if (publicType.isUnsizedArray()) + { + // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an + // error. It is assumed that this applies to empty declarations as well. + error(identifierOrTypeLocation, "empty array declaration needs to specify a size", + identifier.c_str()); + } + } + else + { + singleDeclarationErrorCheck(publicType, identifierOrTypeLocation); + + checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &publicType); + + TVariable *variable = nullptr; + declareVariable(identifierOrTypeLocation, identifier, type, &variable); + + if (variable && symbol) + { + symbol->setId(variable->getUniqueId()); + } + } + + // We append the symbol even if the declaration is empty, mainly because of struct declarations + // that may just declare a type. + declaration->appendDeclarator(symbol); + + return declaration; +} + +TIntermDeclaration *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, + const TSourceLoc &identifierLocation, + const TString &identifier, + const TSourceLoc &indexLocation, + TIntermTyped *indexExpression) +{ + mDeferredSingleDeclarationErrorCheck = false; + + singleDeclarationErrorCheck(publicType, identifierLocation); + + checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); + + checkIsValidTypeAndQualifierForArray(indexLocation, publicType); + + TType arrayType(publicType); + + unsigned int size = checkIsValidArraySize(identifierLocation, indexExpression); + // Make the type an array even if size check failed. + // This ensures useless error messages regarding the variable's non-arrayness won't follow. + arrayType.setArraySize(size); + + TVariable *variable = nullptr; + declareVariable(identifierLocation, identifier, arrayType, &variable); + + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->setLine(identifierLocation); + + TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); + if (variable && symbol) + { + symbol->setId(variable->getUniqueId()); + declaration->appendDeclarator(symbol); + } + + return declaration; +} + +TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, + const TSourceLoc &identifierLocation, + const TString &identifier, + const TSourceLoc &initLocation, + TIntermTyped *initializer) +{ + mDeferredSingleDeclarationErrorCheck = false; + + singleDeclarationErrorCheck(publicType, identifierLocation); + + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->setLine(identifierLocation); + + TIntermBinary *initNode = nullptr; + if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode)) + { + if (initNode) + { + declaration->appendDeclarator(initNode); + } + } + return declaration; +} + +TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration( + TPublicType &publicType, + const TSourceLoc &identifierLocation, + const TString &identifier, + const TSourceLoc &indexLocation, + TIntermTyped *indexExpression, + const TSourceLoc &initLocation, + TIntermTyped *initializer) +{ + mDeferredSingleDeclarationErrorCheck = false; + + singleDeclarationErrorCheck(publicType, identifierLocation); + + checkIsValidTypeAndQualifierForArray(indexLocation, publicType); + + TPublicType arrayType(publicType); + + unsigned int size = 0u; + // If indexExpression is nullptr, then the array will eventually get its size implicitly from + // the initializer. + if (indexExpression != nullptr) + { + size = checkIsValidArraySize(identifierLocation, indexExpression); + } + // Make the type an array even if size check failed. + // This ensures useless error messages regarding the variable's non-arrayness won't follow. + arrayType.setArraySize(size); + + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->setLine(identifierLocation); + + // initNode will correspond to the whole of "type b[n] = initializer". + TIntermBinary *initNode = nullptr; + if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) + { + if (initNode) + { + declaration->appendDeclarator(initNode); + } + } + + return declaration; +} + +TIntermAggregate *TParseContext::parseInvariantDeclaration( + const TTypeQualifierBuilder &typeQualifierBuilder, + const TSourceLoc &identifierLoc, + const TString *identifier, + const TSymbol *symbol) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics); + + if (!typeQualifier.invariant) + { + error(identifierLoc, "Expected invariant", identifier->c_str()); + return nullptr; + } + if (!checkIsAtGlobalLevel(identifierLoc, "invariant varying")) + { + return nullptr; + } + if (!symbol) + { + error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); + return nullptr; + } + if (!IsQualifierUnspecified(typeQualifier.qualifier)) + { + error(identifierLoc, "invariant declaration specifies qualifier", + getQualifierString(typeQualifier.qualifier)); + } + if (typeQualifier.precision != EbpUndefined) + { + error(identifierLoc, "invariant declaration specifies precision", + getPrecisionString(typeQualifier.precision)); + } + if (!typeQualifier.layoutQualifier.isEmpty()) + { + error(identifierLoc, "invariant declaration specifies layout", "'layout'"); + } + + const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); + ASSERT(variable); + const TType &type = variable->getType(); + + checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(), + typeQualifier.line); + checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); + + symbolTable.addInvariantVarying(std::string(identifier->c_str())); + + TIntermSymbol *intermSymbol = + intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc); + + TIntermAggregate *aggregate = TIntermediate::MakeAggregate(intermSymbol, identifierLoc); + aggregate->setOp(EOpInvariantDeclaration); + return aggregate; +} + +void TParseContext::parseDeclarator(TPublicType &publicType, + const TSourceLoc &identifierLocation, + const TString &identifier, + TIntermDeclaration *declarationOut) +{ + // If the declaration starting this declarator list was empty (example: int,), some checks were + // not performed. + if (mDeferredSingleDeclarationErrorCheck) + { + singleDeclarationErrorCheck(publicType, identifierLocation); + mDeferredSingleDeclarationErrorCheck = false; + } + + checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); + + checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); + + TVariable *variable = nullptr; + declareVariable(identifierLocation, identifier, TType(publicType), &variable); + + TIntermSymbol *symbol = + intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation); + if (variable && symbol) + { + symbol->setId(variable->getUniqueId()); + declarationOut->appendDeclarator(symbol); + } +} + +void TParseContext::parseArrayDeclarator(TPublicType &publicType, + const TSourceLoc &identifierLocation, + const TString &identifier, + const TSourceLoc &arrayLocation, + TIntermTyped *indexExpression, + TIntermDeclaration *declarationOut) +{ + // If the declaration starting this declarator list was empty (example: int,), some checks were + // not performed. + if (mDeferredSingleDeclarationErrorCheck) + { + singleDeclarationErrorCheck(publicType, identifierLocation); + mDeferredSingleDeclarationErrorCheck = false; + } + + checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); + + checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType); + + if (checkIsValidTypeAndQualifierForArray(arrayLocation, publicType)) + { + TType arrayType = TType(publicType); + unsigned int size = checkIsValidArraySize(arrayLocation, indexExpression); + arrayType.setArraySize(size); + + TVariable *variable = nullptr; + declareVariable(identifierLocation, identifier, arrayType, &variable); + + TIntermSymbol *symbol = + intermediate.addSymbol(0, identifier, arrayType, identifierLocation); + if (variable && symbol) + symbol->setId(variable->getUniqueId()); + + declarationOut->appendDeclarator(symbol); + } +} + +void TParseContext::parseInitDeclarator(const TPublicType &publicType, + const TSourceLoc &identifierLocation, + const TString &identifier, + const TSourceLoc &initLocation, + TIntermTyped *initializer, + TIntermDeclaration *declarationOut) +{ + // If the declaration starting this declarator list was empty (example: int,), some checks were + // not performed. + if (mDeferredSingleDeclarationErrorCheck) + { + singleDeclarationErrorCheck(publicType, identifierLocation); + mDeferredSingleDeclarationErrorCheck = false; + } + + checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); + + TIntermBinary *initNode = nullptr; + if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode)) + { + // + // build the intermediate representation + // + if (initNode) + { + declarationOut->appendDeclarator(initNode); + } + } +} + +void TParseContext::parseArrayInitDeclarator(const TPublicType &publicType, + const TSourceLoc &identifierLocation, + const TString &identifier, + const TSourceLoc &indexLocation, + TIntermTyped *indexExpression, + const TSourceLoc &initLocation, + TIntermTyped *initializer, + TIntermDeclaration *declarationOut) +{ + // If the declaration starting this declarator list was empty (example: int,), some checks were + // not performed. + if (mDeferredSingleDeclarationErrorCheck) + { + singleDeclarationErrorCheck(publicType, identifierLocation); + mDeferredSingleDeclarationErrorCheck = false; + } + + checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); + + checkIsValidTypeAndQualifierForArray(indexLocation, publicType); + + TPublicType arrayType(publicType); + + unsigned int size = 0u; + // If indexExpression is nullptr, then the array will eventually get its size implicitly from + // the initializer. + if (indexExpression != nullptr) + { + size = checkIsValidArraySize(identifierLocation, indexExpression); + } + // Make the type an array even if size check failed. + // This ensures useless error messages regarding the variable's non-arrayness won't follow. + arrayType.setArraySize(size); + + // initNode will correspond to the whole of "b[n] = initializer". + TIntermBinary *initNode = nullptr; + if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) + { + if (initNode) + { + declarationOut->appendDeclarator(initNode); + } + } +} + +void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics); + const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; + + checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier, + typeQualifier.line); + + // It should never be the case, but some strange parser errors can send us here. + if (layoutQualifier.isEmpty()) + { + error(typeQualifier.line, "Error during layout qualifier parsing.", "?"); + return; + } + + if (!layoutQualifier.isCombinationValid()) + { + error(typeQualifier.line, "invalid combination:", "layout"); + return; + } + + checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); + + checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat); + + if (typeQualifier.qualifier == EvqComputeIn) + { + if (mComputeShaderLocalSizeDeclared && + !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize)) + { + error(typeQualifier.line, "Work group size does not match the previous declaration", + "layout"); + return; + } + + if (mShaderVersion < 310) + { + error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); + return; + } + + if (!layoutQualifier.localSize.isAnyValueSet()) + { + error(typeQualifier.line, "No local work group size specified", "layout"); + return; + } + + const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>( + symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion)); + + const TConstantUnion *maxComputeWorkGroupSizeData = + maxComputeWorkGroupSize->getConstPointer(); + + for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i) + { + if (layoutQualifier.localSize[i] != -1) + { + mComputeShaderLocalSize[i] = layoutQualifier.localSize[i]; + const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst(); + if (mComputeShaderLocalSize[i] < 1 || + mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue) + { + std::stringstream errorMessageStream; + errorMessageStream << "Value must be at least 1 and no greater than " + << maxComputeWorkGroupSizeValue; + const std::string &errorMessage = errorMessageStream.str(); + + error(typeQualifier.line, "invalid value:", getWorkGroupSizeString(i), + errorMessage.c_str()); + return; + } + } + } + + mComputeShaderLocalSizeDeclared = true; + } + else + { + + if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier)) + { + return; + } + + if (typeQualifier.qualifier != EvqUniform) + { + error(typeQualifier.line, "invalid qualifier:", + getQualifierString(typeQualifier.qualifier), "global layout must be uniform"); + return; + } + + if (mShaderVersion < 300) + { + error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above", + "layout"); + return; + } + + checkLocationIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier); + + if (layoutQualifier.matrixPacking != EmpUnspecified) + { + mDefaultMatrixPacking = layoutQualifier.matrixPacking; + } + + if (layoutQualifier.blockStorage != EbsUnspecified) + { + mDefaultBlockStorage = layoutQualifier.blockStorage; + } + } +} + +TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &parsedFunction, + const TSourceLoc &location) +{ + // Note: function found from the symbol table could be the same as parsedFunction if this is the + // first declaration. Either way the instance in the symbol table is used to track whether the + // function is declared multiple times. + TFunction *function = static_cast<TFunction *>( + symbolTable.find(parsedFunction.getMangledName(), getShaderVersion())); + if (function->hasPrototypeDeclaration() && mShaderVersion == 100) + { + // ESSL 1.00.17 section 4.2.7. + // Doesn't apply to ESSL 3.00.4: see section 4.2.3. + error(location, "duplicate function prototype declarations are not allowed", "function"); + } + function->setHasPrototypeDeclaration(); + + TIntermAggregate *prototype = new TIntermAggregate; + // TODO(oetuaho@nvidia.com): Instead of converting the function information here, the node could + // point to the data that already exists in the symbol table. + prototype->setType(function->getReturnType()); + prototype->getFunctionSymbolInfo()->setFromFunction(*function); + + for (size_t i = 0; i < function->getParamCount(); i++) + { + const TConstParameter ¶m = function->getParam(i); + if (param.name != 0) + { + TVariable variable(param.name, *param.type); + + TIntermSymbol *paramSymbol = intermediate.addSymbol( + variable.getUniqueId(), variable.getName(), variable.getType(), location); + prototype = intermediate.growAggregate(prototype, paramSymbol, location); + } + else + { + TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location); + prototype = intermediate.growAggregate(prototype, paramSymbol, location); + } + } + + prototype->setOp(EOpPrototype); + + symbolTable.pop(); + + if (!symbolTable.atGlobalLevel()) + { + // ESSL 3.00.4 section 4.2.4. + error(location, "local function prototype declarations are not allowed", "function"); + } + + return prototype; +} + +TIntermFunctionDefinition *TParseContext::addFunctionDefinition( + const TFunction &function, + TIntermAggregate *functionParameters, + TIntermBlock *functionBody, + const TSourceLoc &location) +{ + // Check that non-void functions have at least one return statement. + if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) + { + error(location, "function does not return a value:", "", function.getName().c_str()); + } + + if (functionBody == nullptr) + { + functionBody = new TIntermBlock(); + functionBody->setLine(location); + } + TIntermFunctionDefinition *functionNode = + new TIntermFunctionDefinition(function.getReturnType(), functionParameters, functionBody); + functionNode->setLine(location); + + functionNode->getFunctionSymbolInfo()->setFromFunction(function); + + symbolTable.pop(); + return functionNode; +} + +void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location, + TFunction **function, + TIntermAggregate **aggregateOut) +{ + ASSERT(function); + ASSERT(*function); + const TSymbol *builtIn = + symbolTable.findBuiltIn((*function)->getMangledName(), getShaderVersion()); + + if (builtIn) + { + error(location, "built-in functions cannot be redefined", (*function)->getName().c_str()); + } + else + { + TFunction *prevDec = static_cast<TFunction *>( + symbolTable.find((*function)->getMangledName(), getShaderVersion())); + + // Note: 'prevDec' could be 'function' if this is the first time we've seen function as it + // would have just been put in the symbol table. Otherwise, we're looking up an earlier + // occurance. + if (*function != prevDec) + { + // Swap the parameters of the previous declaration to the parameters of the function + // definition (parameter names may differ). + prevDec->swapParameters(**function); + + // The function definition will share the same symbol as any previous declaration. + *function = prevDec; + } + + if ((*function)->isDefined()) + { + error(location, "function already has a body", (*function)->getName().c_str()); + } + + (*function)->setDefined(); + } + + // Raise error message if main function takes any parameters or return anything other than void + if ((*function)->getName() == "main") + { + if ((*function)->getParamCount() > 0) + { + error(location, "function cannot take any parameter(s)", + (*function)->getName().c_str()); + } + if ((*function)->getReturnType().getBasicType() != EbtVoid) + { + error(location, "", (*function)->getReturnType().getBasicString(), + "main function cannot return a value"); + } + } + + // + // Remember the return type for later checking for RETURN statements. + // + mCurrentFunctionType = &((*function)->getReturnType()); + mFunctionReturnsValue = false; + + // + // Insert parameters into the symbol table. + // If the parameter has no name, it's not an error, just don't insert it + // (could be used for unused args). + // + // Also, accumulate the list of parameters into the HIL, so lower level code + // knows where to find parameters. + // + TIntermAggregate *paramNodes = new TIntermAggregate; + for (size_t i = 0; i < (*function)->getParamCount(); i++) + { + const TConstParameter ¶m = (*function)->getParam(i); + if (param.name != 0) + { + TVariable *variable = new TVariable(param.name, *param.type); + // + // Insert the parameters with name in the symbol table. + // + if (!symbolTable.declare(variable)) + { + error(location, "redefinition", variable->getName().c_str()); + paramNodes = intermediate.growAggregate( + paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); + continue; + } + + // + // Add the parameter to the HIL + // + TIntermSymbol *symbol = intermediate.addSymbol( + variable->getUniqueId(), variable->getName(), variable->getType(), location); + + paramNodes = intermediate.growAggregate(paramNodes, symbol, location); + } + else + { + paramNodes = intermediate.growAggregate( + paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); + } + } + intermediate.setAggregateOperator(paramNodes, EOpParameters, location); + *aggregateOut = paramNodes; + setLoopNestingLevel(0); +} + +TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) +{ + // + // We don't know at this point whether this is a function definition or a prototype. + // The definition production code will check for redefinitions. + // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. + // + // Return types and parameter qualifiers must match in all redeclarations, so those are checked + // here. + // + TFunction *prevDec = + static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion())); + + if (getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str())) + { + // With ESSL 3.00, names of built-in functions cannot be redeclared as functions. + // Therefore overloading or redefining builtin functions is an error. + error(location, "Name of a built-in function cannot be redeclared as function", + function->getName().c_str()); + } + else if (prevDec) + { + if (prevDec->getReturnType() != function->getReturnType()) + { + error(location, "function must have the same return type in all of its declarations", + function->getReturnType().getBasicString()); + } + for (size_t i = 0; i < prevDec->getParamCount(); ++i) + { + if (prevDec->getParam(i).type->getQualifier() != + function->getParam(i).type->getQualifier()) + { + error(location, + "function must have the same parameter qualifiers in all of its declarations", + function->getParam(i).type->getQualifierString()); + } + } + } + + // + // Check for previously declared variables using the same name. + // + TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion()); + if (prevSym) + { + if (!prevSym->isFunction()) + { + error(location, "redefinition", function->getName().c_str(), "function"); + } + } + else + { + // Insert the unmangled name to detect potential future redefinition as a variable. + symbolTable.getOuterLevel()->insertUnmangled(function); + } + + // We're at the inner scope level of the function's arguments and body statement. + // Add the function prototype to the surrounding scope instead. + symbolTable.getOuterLevel()->insert(function); + + // + // If this is a redeclaration, it could also be a definition, in which case, we want to use the + // variable names from this one, and not the one that's + // being redeclared. So, pass back up this declaration, not the one in the symbol table. + // + return function; +} + +TFunction *TParseContext::parseFunctionHeader(const TPublicType &type, + const TString *name, + const TSourceLoc &location) +{ + if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary) + { + error(location, "no qualifiers allowed for function return", + getQualifierString(type.qualifier)); + } + if (!type.layoutQualifier.isEmpty()) + { + error(location, "no qualifiers allowed for function return", "layout"); + } + // make sure a sampler or an image is not involved as well... + checkIsNotSampler(location, type.typeSpecifierNonArray, + "samplers can't be function return values"); + checkIsNotImage(location, type.typeSpecifierNonArray, "images can't be function return values"); + if (mShaderVersion < 300) + { + // Array return values are forbidden, but there's also no valid syntax for declaring array + // return values in ESSL 1.00. + ASSERT(type.arraySize == 0 || mDiagnostics.numErrors() > 0); + + if (type.isStructureContainingArrays()) + { + // ESSL 1.00.17 section 6.1 Function Definitions + error(location, "structures containing arrays can't be function return values", + TType(type).getCompleteString().c_str()); + } + } + + // Add the function as a prototype after parsing it (we do not support recursion) + return new TFunction(name, new TType(type)); +} + +TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn) +{ + TPublicType publicType = publicTypeIn; + if (publicType.isStructSpecifier()) + { + error(publicType.getLine(), "constructor can't be a structure definition", + getBasicString(publicType.getBasicType())); + } + + TOperator op = EOpNull; + if (publicType.getUserDef()) + { + op = EOpConstructStruct; + } + else + { + op = sh::TypeToConstructorOperator(TType(publicType)); + if (op == EOpNull) + { + error(publicType.getLine(), "cannot construct this type", + getBasicString(publicType.getBasicType())); + publicType.setBasicType(EbtFloat); + op = EOpConstructFloat; + } + } + + TString tempString; + const TType *type = new TType(publicType); + return new TFunction(&tempString, type, op); +} + +// This function is used to test for the correctness of the parameters passed to various constructor +// functions and also convert them to the right datatype if it is allowed and required. +// +// Returns a node to add to the tree regardless of if an error was generated or not. +// +TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments, + TOperator op, + TFunction *fnCall, + const TSourceLoc &line) +{ + TType type = fnCall->getReturnType(); + if (type.isUnsizedArray()) + { + if (fnCall->getParamCount() == 0) + { + error(line, "implicitly sized array constructor must have at least one argument", "[]"); + type.setArraySize(1u); + return TIntermTyped::CreateZero(type); + } + type.setArraySize(static_cast<unsigned int>(fnCall->getParamCount())); + } + bool constType = true; + for (size_t i = 0; i < fnCall->getParamCount(); ++i) + { + const TConstParameter ¶m = fnCall->getParam(i); + if (param.type->getQualifier() != EvqConst) + constType = false; + } + if (constType) + type.setQualifier(EvqConst); + + if (!checkConstructorArguments(line, arguments, *fnCall, op, type)) + { + TIntermTyped *dummyNode = intermediate.setAggregateOperator(nullptr, op, line); + dummyNode->setType(type); + return dummyNode; + } + TIntermAggregate *constructor = arguments->getAsAggregate(); + ASSERT(constructor != nullptr); + + // Turn the argument list itself into a constructor + constructor->setOp(op); + constructor->setLine(line); + ASSERT(constructor->isConstructor()); + + // Need to set type before setPrecisionFromChildren() because bool doesn't have precision. + constructor->setType(type); + + // Structs should not be precision qualified, the individual members may be. + // Built-in types on the other hand should be precision qualified. + if (op != EOpConstructStruct) + { + constructor->setPrecisionFromChildren(); + type.setPrecision(constructor->getPrecision()); + } + + constructor->setType(type); + + TIntermTyped *constConstructor = intermediate.foldAggregateBuiltIn(constructor, &mDiagnostics); + if (constConstructor) + { + return constConstructor; + } + + return constructor; +} + +// +// Interface/uniform blocks +// +TIntermDeclaration *TParseContext::addInterfaceBlock( + const TTypeQualifierBuilder &typeQualifierBuilder, + const TSourceLoc &nameLine, + const TString &blockName, + TFieldList *fieldList, + const TString *instanceName, + const TSourceLoc &instanceLine, + TIntermTyped *arrayIndex, + const TSourceLoc &arrayIndexLine) +{ + checkIsNotReserved(nameLine, blockName); + + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics); + + if (typeQualifier.qualifier != EvqUniform) + { + error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), + "interface blocks must be uniform"); + } + + if (typeQualifier.invariant) + { + error(typeQualifier.line, "invalid qualifier on interface block member", "invariant"); + } + + checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); + + TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; + checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier); + + if (blockLayoutQualifier.matrixPacking == EmpUnspecified) + { + blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking; + } + + if (blockLayoutQualifier.blockStorage == EbsUnspecified) + { + blockLayoutQualifier.blockStorage = mDefaultBlockStorage; + } + + checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier); + + checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat); + + TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName); + if (!symbolTable.declare(blockNameSymbol)) + { + error(nameLine, "redefinition", blockName.c_str(), "interface block name"); + } + + // check for sampler types and apply layout qualifiers + for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) + { + TField *field = (*fieldList)[memberIndex]; + TType *fieldType = field->type(); + if (IsSampler(fieldType->getBasicType())) + { + error(field->line(), "unsupported type", fieldType->getBasicString(), + "sampler types are not allowed in interface blocks"); + } + + if (IsImage(fieldType->getBasicType())) + { + error(field->line(), "unsupported type", fieldType->getBasicString(), + "image types are not allowed in interface blocks"); + } + + const TQualifier qualifier = fieldType->getQualifier(); + switch (qualifier) + { + case EvqGlobal: + case EvqUniform: + break; + default: + error(field->line(), "invalid qualifier on interface block member", + getQualifierString(qualifier)); + break; + } + + if (fieldType->isInvariant()) + { + error(field->line(), "invalid qualifier on interface block member", "invariant"); + } + + // check layout qualifiers + TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); + checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier); + + if (fieldLayoutQualifier.blockStorage != EbsUnspecified) + { + error(field->line(), "invalid layout qualifier:", + getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here"); + } + + if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) + { + fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; + } + else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct) + { + warning(field->line(), "extraneous layout qualifier:", + getMatrixPackingString(fieldLayoutQualifier.matrixPacking), + "only has an effect on matrix types"); + } + + fieldType->setLayoutQualifier(fieldLayoutQualifier); + } + + // add array index + unsigned int arraySize = 0; + if (arrayIndex != nullptr) + { + arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex); + } + + TInterfaceBlock *interfaceBlock = + new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier); + TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, + arraySize); + + TString symbolName = ""; + int symbolId = 0; + + if (!instanceName) + { + // define symbols for the members of the interface block + for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) + { + TField *field = (*fieldList)[memberIndex]; + TType *fieldType = field->type(); + + // set parent pointer of the field variable + fieldType->setInterfaceBlock(interfaceBlock); + + TVariable *fieldVariable = new TVariable(&field->name(), *fieldType); + fieldVariable->setQualifier(typeQualifier.qualifier); + + if (!symbolTable.declare(fieldVariable)) + { + error(field->line(), "redefinition", field->name().c_str(), + "interface block member name"); + } + } + } + else + { + checkIsNotReserved(instanceLine, *instanceName); + + // add a symbol for this interface block + TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false); + instanceTypeDef->setQualifier(typeQualifier.qualifier); + + if (!symbolTable.declare(instanceTypeDef)) + { + error(instanceLine, "redefinition", instanceName->c_str(), + "interface block instance name"); + } + + symbolId = instanceTypeDef->getUniqueId(); + symbolName = instanceTypeDef->getName(); + } + + TIntermSymbol *blockSymbol = + intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line); + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->appendDeclarator(blockSymbol); + declaration->setLine(nameLine); + + exitStructDeclaration(); + return declaration; +} + +void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier) +{ + ++mStructNestingLevel; + + // Embedded structure definitions are not supported per GLSL ES spec. + // They aren't allowed in GLSL either, but we need to detect this here + // so we don't rely on the GLSL compiler to catch it. + if (mStructNestingLevel > 1) + { + error(line, "", "Embedded struct definitions are not allowed"); + } +} + +void TParseContext::exitStructDeclaration() +{ + --mStructNestingLevel; +} + +void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field) +{ + if (!sh::IsWebGLBasedSpec(mShaderSpec)) + { + return; + } + + if (field.type()->getBasicType() != EbtStruct) + { + return; + } + + // We're already inside a structure definition at this point, so add + // one to the field's struct nesting. + if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) + { + std::stringstream reasonStream; + reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str() + << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; + std::string reason = reasonStream.str(); + error(line, reason.c_str(), field.name().c_str(), ""); + return; + } +} + +// +// Parse an array index expression +// +TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, + const TSourceLoc &location, + TIntermTyped *indexExpression) +{ + if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) + { + if (baseExpression->getAsSymbolNode()) + { + error(location, " left of '[' is not of type array, matrix, or vector ", + baseExpression->getAsSymbolNode()->getSymbol().c_str()); + } + else + { + error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); + } + + TConstantUnion *unionArray = new TConstantUnion[1]; + unionArray->setFConst(0.0f); + return intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), + location); + } + + TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); + + // TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able + // to constant fold all constant expressions. Right now we don't allow indexing interface blocks + // or fragment outputs with expressions that ANGLE is not able to constant fold, even if the + // index is a constant expression. + if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr) + { + if (baseExpression->isInterfaceBlock()) + { + error( + location, "", "[", + "array indexes for interface blocks arrays must be constant integral expressions"); + } + else if (baseExpression->getQualifier() == EvqFragmentOut) + { + error(location, "", "[", + "array indexes for fragment outputs must be constant integral expressions"); + } + else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData) + { + error(location, "", "[", "array index for gl_FragData must be constant zero"); + } + } + + if (indexConstantUnion) + { + // If an out-of-range index is not qualified as constant, the behavior in the spec is + // undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may + // constant fold expressions that are not constant expressions). The most compatible way to + // handle this case is to report a warning instead of an error and force the index to be in + // the correct range. + bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst; + int index = indexConstantUnion->getIConst(0); + + int safeIndex = -1; + + if (baseExpression->isArray()) + { + if (baseExpression->getQualifier() == EvqFragData && index > 0) + { + if (mShaderSpec == SH_WEBGL2_SPEC) + { + // Error has been already generated if index is not const. + if (indexExpression->getQualifier() == EvqConst) + { + error(location, "", "[", + "array index for gl_FragData must be constant zero"); + } + safeIndex = 0; + } + else if (!isExtensionEnabled("GL_EXT_draw_buffers")) + { + outOfRangeError(outOfRangeIndexIsError, location, "", "[", + "array index for gl_FragData must be zero when " + "GL_EXT_draw_buffers is disabled"); + safeIndex = 0; + } + } + // Only do generic out-of-range check if similar error hasn't already been reported. + if (safeIndex < 0) + { + safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, + baseExpression->getArraySize(), + "array index out of range", "[]"); + } + } + else if (baseExpression->isMatrix()) + { + safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, + baseExpression->getType().getCols(), + "matrix field selection out of range", "[]"); + } + else if (baseExpression->isVector()) + { + safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index, + baseExpression->getType().getNominalSize(), + "vector field selection out of range", "[]"); + } + + ASSERT(safeIndex >= 0); + // Data of constant unions can't be changed, because it may be shared with other + // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new + // sanitized object. + if (safeIndex != index) + { + TConstantUnion *safeConstantUnion = new TConstantUnion(); + safeConstantUnion->setIConst(safeIndex); + indexConstantUnion->replaceConstantUnion(safeConstantUnion); + } + + return intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location, + &mDiagnostics); + } + else + { + return intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location, + &mDiagnostics); + } +} + +int TParseContext::checkIndexOutOfRange(bool outOfRangeIndexIsError, + const TSourceLoc &location, + int index, + int arraySize, + const char *reason, + const char *token) +{ + if (index >= arraySize || index < 0) + { + std::stringstream extraInfoStream; + extraInfoStream << "'" << index << "'"; + std::string extraInfo = extraInfoStream.str(); + outOfRangeError(outOfRangeIndexIsError, location, reason, token, extraInfo.c_str()); + if (index < 0) + { + return 0; + } + else + { + return arraySize - 1; + } + } + return index; +} + +TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, + const TSourceLoc &dotLocation, + const TString &fieldString, + const TSourceLoc &fieldLocation) +{ + if (baseExpression->isArray()) + { + error(fieldLocation, "cannot apply dot operator to an array", "."); + return baseExpression; + } + + if (baseExpression->isVector()) + { + TVectorFields fields; + if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, + fieldLocation)) + { + fields.num = 1; + fields.offsets[0] = 0; + } + + return TIntermediate::AddSwizzle(baseExpression, fields, dotLocation); + } + else if (baseExpression->getBasicType() == EbtStruct) + { + const TFieldList &fields = baseExpression->getType().getStruct()->fields(); + if (fields.empty()) + { + error(dotLocation, "structure has no fields", "Internal Error"); + return baseExpression; + } + else + { + bool fieldFound = false; + unsigned int i; + for (i = 0; i < fields.size(); ++i) + { + if (fields[i]->name() == fieldString) + { + fieldFound = true; + break; + } + } + if (fieldFound) + { + TIntermTyped *index = TIntermTyped::CreateIndexNode(i); + index->setLine(fieldLocation); + return intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, + dotLocation, &mDiagnostics); + } + else + { + error(dotLocation, " no such field in structure", fieldString.c_str()); + return baseExpression; + } + } + } + else if (baseExpression->isInterfaceBlock()) + { + const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); + if (fields.empty()) + { + error(dotLocation, "interface block has no fields", "Internal Error"); + return baseExpression; + } + else + { + bool fieldFound = false; + unsigned int i; + for (i = 0; i < fields.size(); ++i) + { + if (fields[i]->name() == fieldString) + { + fieldFound = true; + break; + } + } + if (fieldFound) + { + TIntermTyped *index = TIntermTyped::CreateIndexNode(i); + index->setLine(fieldLocation); + return intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, + dotLocation, &mDiagnostics); + } + else + { + error(dotLocation, " no such field in interface block", fieldString.c_str()); + return baseExpression; + } + } + } + else + { + if (mShaderVersion < 300) + { + error(dotLocation, " field selection requires structure or vector on left hand side", + fieldString.c_str()); + } + else + { + error(dotLocation, + " field selection requires structure, vector, or interface block on left hand " + "side", + fieldString.c_str()); + } + return baseExpression; + } +} + +TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, + const TSourceLoc &qualifierTypeLine) +{ + TLayoutQualifier qualifier = TLayoutQualifier::create(); + + if (qualifierType == "shared") + { + if (sh::IsWebGLBasedSpec(mShaderSpec)) + { + error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared"); + } + qualifier.blockStorage = EbsShared; + } + else if (qualifierType == "packed") + { + if (sh::IsWebGLBasedSpec(mShaderSpec)) + { + error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed"); + } + qualifier.blockStorage = EbsPacked; + } + else if (qualifierType == "std140") + { + qualifier.blockStorage = EbsStd140; + } + else if (qualifierType == "row_major") + { + qualifier.matrixPacking = EmpRowMajor; + } + else if (qualifierType == "column_major") + { + qualifier.matrixPacking = EmpColumnMajor; + } + else if (qualifierType == "location") + { + error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), + "location requires an argument"); + } + else if (qualifierType == "rgba32f") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA32F; + } + else if (qualifierType == "rgba16f") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA16F; + } + else if (qualifierType == "r32f") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifR32F; + } + else if (qualifierType == "rgba8") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA8; + } + else if (qualifierType == "rgba8_snorm") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA8_SNORM; + } + else if (qualifierType == "rgba32i") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA32I; + } + else if (qualifierType == "rgba16i") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA16I; + } + else if (qualifierType == "rgba8i") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA8I; + } + else if (qualifierType == "r32i") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifR32I; + } + else if (qualifierType == "rgba32ui") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA32UI; + } + else if (qualifierType == "rgba16ui") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA16UI; + } + else if (qualifierType == "rgba8ui") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA8UI; + } + else if (qualifierType == "r32ui") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifR32UI; + } + + else + { + error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); + } + + return qualifier; +} + +void TParseContext::parseLocalSize(const TString &qualifierType, + const TSourceLoc &qualifierTypeLine, + int intValue, + const TSourceLoc &intValueLine, + const std::string &intValueString, + size_t index, + sh::WorkGroupSize *localSize) +{ + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + if (intValue < 1) + { + std::string errorMessage = std::string(getWorkGroupSizeString(index)) + " must be positive"; + error(intValueLine, "out of range:", intValueString.c_str(), errorMessage.c_str()); + } + (*localSize)[index] = intValue; +} + +TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, + const TSourceLoc &qualifierTypeLine, + int intValue, + const TSourceLoc &intValueLine) +{ + TLayoutQualifier qualifier = TLayoutQualifier::create(); + + std::string intValueString = Str(intValue); + + if (qualifierType == "location") + { + // must check that location is non-negative + if (intValue < 0) + { + error(intValueLine, "out of range:", intValueString.c_str(), + "location must be non-negative"); + } + else + { + qualifier.location = intValue; + qualifier.locationsSpecified = 1; + } + } + else if (qualifierType == "local_size_x") + { + parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u, + &qualifier.localSize); + } + else if (qualifierType == "local_size_y") + { + parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u, + &qualifier.localSize); + } + else if (qualifierType == "local_size_z") + { + parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u, + &qualifier.localSize); + } + else + { + error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); + } + + return qualifier; +} + +TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc) +{ + return new TTypeQualifierBuilder( + new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc), + mShaderVersion); +} + +TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, + TLayoutQualifier rightQualifier, + const TSourceLoc &rightQualifierLocation) +{ + return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation, + &mDiagnostics); +} + +TFieldList *TParseContext::addStructDeclaratorListWithQualifiers( + const TTypeQualifierBuilder &typeQualifierBuilder, + TPublicType *typeSpecifier, + TFieldList *fieldList) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics); + + typeSpecifier->qualifier = typeQualifier.qualifier; + typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier; + typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier; + typeSpecifier->invariant = typeQualifier.invariant; + if (typeQualifier.precision != EbpUndefined) + { + typeSpecifier->precision = typeQualifier.precision; + } + return addStructDeclaratorList(*typeSpecifier, fieldList); +} + +TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, + TFieldList *fieldList) +{ + checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision, + typeSpecifier.getBasicType()); + + checkIsNonVoid(typeSpecifier.getLine(), (*fieldList)[0]->name(), typeSpecifier.getBasicType()); + + checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier); + + for (unsigned int i = 0; i < fieldList->size(); ++i) + { + // + // Careful not to replace already known aspects of type, like array-ness + // + TType *type = (*fieldList)[i]->type(); + type->setBasicType(typeSpecifier.getBasicType()); + type->setPrimarySize(typeSpecifier.getPrimarySize()); + type->setSecondarySize(typeSpecifier.getSecondarySize()); + type->setPrecision(typeSpecifier.precision); + type->setQualifier(typeSpecifier.qualifier); + type->setLayoutQualifier(typeSpecifier.layoutQualifier); + type->setMemoryQualifier(typeSpecifier.memoryQualifier); + type->setInvariant(typeSpecifier.invariant); + + // don't allow arrays of arrays + if (type->isArray()) + { + checkIsValidTypeForArray(typeSpecifier.getLine(), typeSpecifier); + } + if (typeSpecifier.array) + type->setArraySize(static_cast<unsigned int>(typeSpecifier.arraySize)); + if (typeSpecifier.getUserDef()) + { + type->setStruct(typeSpecifier.getUserDef()->getStruct()); + } + + checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *(*fieldList)[i]); + } + + return fieldList; +} + +TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine, + const TSourceLoc &nameLine, + const TString *structName, + TFieldList *fieldList) +{ + TStructure *structure = new TStructure(structName, fieldList); + TType *structureType = new TType(structure); + + // Store a bool in the struct if we're at global scope, to allow us to + // skip the local struct scoping workaround in HLSL. + structure->setAtGlobalScope(symbolTable.atGlobalLevel()); + + if (!structName->empty()) + { + checkIsNotReserved(nameLine, *structName); + TVariable *userTypeDef = new TVariable(structName, *structureType, true); + if (!symbolTable.declare(userTypeDef)) + { + error(nameLine, "redefinition", structName->c_str(), "struct"); + } + } + + // ensure we do not specify any storage qualifiers on the struct members + for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) + { + const TField &field = *(*fieldList)[typeListIndex]; + const TQualifier qualifier = field.type()->getQualifier(); + switch (qualifier) + { + case EvqGlobal: + case EvqTemporary: + break; + default: + error(field.line(), "invalid qualifier on struct member", + getQualifierString(qualifier)); + break; + } + if (field.type()->isInvariant()) + { + error(field.line(), "invalid qualifier on struct member", "invariant"); + } + if (IsImage(field.type()->getBasicType())) + { + error(field.line(), "disallowed type in struct", field.type()->getBasicString()); + } + + checkIsMemoryQualifierNotSpecified(field.type()->getMemoryQualifier(), field.line()); + + checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier()); + } + + TTypeSpecifierNonArray typeSpecifierNonArray; + typeSpecifierNonArray.initialize(EbtStruct, structLine); + typeSpecifierNonArray.userDef = structureType; + typeSpecifierNonArray.isStructSpecifier = true; + exitStructDeclaration(); + + return typeSpecifierNonArray; +} + +TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, + TIntermBlock *statementList, + const TSourceLoc &loc) +{ + TBasicType switchType = init->getBasicType(); + if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || + init->isVector()) + { + error(init->getLine(), "init-expression in a switch statement must be a scalar integer", + "switch"); + return nullptr; + } + + if (statementList) + { + if (!ValidateSwitch::validate(switchType, this, statementList, loc)) + { + return nullptr; + } + } + + TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc); + if (node == nullptr) + { + error(loc, "erroneous switch statement", "switch"); + return nullptr; + } + return node; +} + +TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) +{ + if (mSwitchNestingLevel == 0) + { + error(loc, "case labels need to be inside switch statements", "case"); + return nullptr; + } + if (condition == nullptr) + { + error(loc, "case label must have a condition", "case"); + return nullptr; + } + if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || + condition->isMatrix() || condition->isArray() || condition->isVector()) + { + error(condition->getLine(), "case label must be a scalar integer", "case"); + } + TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); + // TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant + // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't + // fold in case labels. + if (condition->getQualifier() != EvqConst || conditionConst == nullptr) + { + error(condition->getLine(), "case label must be constant", "case"); + } + TIntermCase *node = intermediate.addCase(condition, loc); + if (node == nullptr) + { + error(loc, "erroneous case statement", "case"); + return nullptr; + } + return node; +} + +TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) +{ + if (mSwitchNestingLevel == 0) + { + error(loc, "default labels need to be inside switch statements", "default"); + return nullptr; + } + TIntermCase *node = intermediate.addCase(nullptr, loc); + if (node == nullptr) + { + error(loc, "erroneous default statement", "default"); + return nullptr; + } + return node; +} + +TIntermTyped *TParseContext::createUnaryMath(TOperator op, + TIntermTyped *child, + const TSourceLoc &loc, + const TType *funcReturnType) +{ + if (child == nullptr) + { + return nullptr; + } + + switch (op) + { + case EOpLogicalNot: + if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || + child->isVector()) + { + return nullptr; + } + break; + case EOpBitwiseNot: + if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || + child->isMatrix() || child->isArray()) + { + return nullptr; + } + break; + case EOpPostIncrement: + case EOpPreIncrement: + case EOpPostDecrement: + case EOpPreDecrement: + case EOpNegative: + case EOpPositive: + if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool || + child->isArray() || IsOpaqueType(child->getBasicType())) + { + return nullptr; + } + // Operators for built-ins are already type checked against their prototype. + default: + break; + } + + TIntermUnary *node = new TIntermUnary(op, child); + node->setLine(loc); + + TIntermTyped *foldedNode = node->fold(&mDiagnostics); + if (foldedNode) + return foldedNode; + + return node; +} + +TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) +{ + TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); + if (node == nullptr) + { + unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); + return child; + } + return node; +} + +TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, + TIntermTyped *child, + const TSourceLoc &loc) +{ + checkCanBeLValue(loc, GetOperatorString(op), child); + return addUnaryMath(op, child, loc); +} + +bool TParseContext::binaryOpCommonCheck(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + if (left->getType().getStruct() || right->getType().getStruct()) + { + switch (op) + { + case EOpIndexDirectStruct: + ASSERT(left->getType().getStruct()); + break; + case EOpEqual: + case EOpNotEqual: + case EOpAssign: + case EOpInitialize: + if (left->getType() != right->getType()) + { + return false; + } + break; + default: + error(loc, "Invalid operation for structs", GetOperatorString(op)); + return false; + } + } + + if (left->isArray() || right->isArray()) + { + if (mShaderVersion < 300) + { + error(loc, "Invalid operation for arrays", GetOperatorString(op)); + return false; + } + + if (left->isArray() != right->isArray()) + { + error(loc, "array / non-array mismatch", GetOperatorString(op)); + return false; + } + + switch (op) + { + case EOpEqual: + case EOpNotEqual: + case EOpAssign: + case EOpInitialize: + break; + default: + error(loc, "Invalid operation for arrays", GetOperatorString(op)); + return false; + } + // At this point, size of implicitly sized arrays should be resolved. + if (left->getArraySize() != right->getArraySize()) + { + error(loc, "array size mismatch", GetOperatorString(op)); + return false; + } + } + + // Check ops which require integer / ivec parameters + bool isBitShift = false; + switch (op) + { + case EOpBitShiftLeft: + case EOpBitShiftRight: + case EOpBitShiftLeftAssign: + case EOpBitShiftRightAssign: + // Unsigned can be bit-shifted by signed and vice versa, but we need to + // check that the basic type is an integer type. + isBitShift = true; + if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) + { + return false; + } + break; + case EOpBitwiseAnd: + case EOpBitwiseXor: + case EOpBitwiseOr: + case EOpBitwiseAndAssign: + case EOpBitwiseXorAssign: + case EOpBitwiseOrAssign: + // It is enough to check the type of only one operand, since later it + // is checked that the operand types match. + if (!IsInteger(left->getBasicType())) + { + return false; + } + break; + default: + break; + } + + // GLSL ES 1.00 and 3.00 do not support implicit type casting. + // So the basic type should usually match. + if (!isBitShift && left->getBasicType() != right->getBasicType()) + { + return false; + } + + // Check that: + // 1. Type sizes match exactly on ops that require that. + // 2. Restrictions for structs that contain arrays or samplers are respected. + // 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected. + switch (op) + { + case EOpAssign: + case EOpInitialize: + case EOpEqual: + case EOpNotEqual: + // ESSL 1.00 sections 5.7, 5.8, 5.9 + if (mShaderVersion < 300 && left->getType().isStructureContainingArrays()) + { + error(loc, "undefined operation for structs containing arrays", + GetOperatorString(op)); + return false; + } + // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, + // we interpret the spec so that this extends to structs containing samplers, + // similarly to ESSL 1.00 spec. + if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && + left->getType().isStructureContainingSamplers()) + { + error(loc, "undefined operation for structs containing samplers", + GetOperatorString(op)); + return false; + } + + if ((op == EOpAssign || op == EOpInitialize) && + left->getType().isStructureContainingImages()) + { + error(loc, "undefined operation for structs containing images", + GetOperatorString(op)); + return false; + } + case EOpLessThan: + case EOpGreaterThan: + case EOpLessThanEqual: + case EOpGreaterThanEqual: + if ((left->getNominalSize() != right->getNominalSize()) || + (left->getSecondarySize() != right->getSecondarySize())) + { + return false; + } + break; + case EOpAdd: + case EOpSub: + case EOpDiv: + case EOpIMod: + case EOpBitShiftLeft: + case EOpBitShiftRight: + case EOpBitwiseAnd: + case EOpBitwiseXor: + case EOpBitwiseOr: + case EOpAddAssign: + case EOpSubAssign: + case EOpDivAssign: + case EOpIModAssign: + case EOpBitShiftLeftAssign: + case EOpBitShiftRightAssign: + case EOpBitwiseAndAssign: + case EOpBitwiseXorAssign: + case EOpBitwiseOrAssign: + if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix())) + { + return false; + } + + // Are the sizes compatible? + if (left->getNominalSize() != right->getNominalSize() || + left->getSecondarySize() != right->getSecondarySize()) + { + // If the nominal sizes of operands do not match: + // One of them must be a scalar. + if (!left->isScalar() && !right->isScalar()) + return false; + + // In the case of compound assignment other than multiply-assign, + // the right side needs to be a scalar. Otherwise a vector/matrix + // would be assigned to a scalar. A scalar can't be shifted by a + // vector either. + if (!right->isScalar() && + (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight)) + return false; + } + break; + default: + break; + } + + return true; +} + +bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op, + const TType &left, + const TType &right) +{ + switch (op) + { + case EOpMul: + case EOpMulAssign: + return left.getNominalSize() == right.getNominalSize() && + left.getSecondarySize() == right.getSecondarySize(); + case EOpVectorTimesScalar: + return true; + case EOpVectorTimesScalarAssign: + ASSERT(!left.isMatrix() && !right.isMatrix()); + return left.isVector() && !right.isVector(); + case EOpVectorTimesMatrix: + return left.getNominalSize() == right.getRows(); + case EOpVectorTimesMatrixAssign: + ASSERT(!left.isMatrix() && right.isMatrix()); + return left.isVector() && left.getNominalSize() == right.getRows() && + left.getNominalSize() == right.getCols(); + case EOpMatrixTimesVector: + return left.getCols() == right.getNominalSize(); + case EOpMatrixTimesScalar: + return true; + case EOpMatrixTimesScalarAssign: + ASSERT(left.isMatrix() && !right.isMatrix()); + return !right.isVector(); + case EOpMatrixTimesMatrix: + return left.getCols() == right.getRows(); + case EOpMatrixTimesMatrixAssign: + ASSERT(left.isMatrix() && right.isMatrix()); + // We need to check two things: + // 1. The matrix multiplication step is valid. + // 2. The result will have the same number of columns as the lvalue. + return left.getCols() == right.getRows() && left.getCols() == right.getCols(); + + default: + UNREACHABLE(); + return false; + } +} + +TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + if (!binaryOpCommonCheck(op, left, right, loc)) + return nullptr; + + switch (op) + { + case EOpEqual: + case EOpNotEqual: + break; + case EOpLessThan: + case EOpGreaterThan: + case EOpLessThanEqual: + case EOpGreaterThanEqual: + ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && + !right->getType().getStruct()); + if (left->isMatrix() || left->isVector()) + { + return nullptr; + } + break; + case EOpLogicalOr: + case EOpLogicalXor: + case EOpLogicalAnd: + ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && + !right->getType().getStruct()); + if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar()) + { + return nullptr; + } + // Basic types matching should have been already checked. + ASSERT(right->getBasicType() == EbtBool); + break; + case EOpAdd: + case EOpSub: + case EOpDiv: + case EOpMul: + ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && + !right->getType().getStruct()); + if (left->getBasicType() == EbtBool) + { + return nullptr; + } + break; + case EOpIMod: + ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && + !right->getType().getStruct()); + // Note that this is only for the % operator, not for mod() + if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) + { + return nullptr; + } + break; + default: + break; + } + + if (op == EOpMul) + { + op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType()); + if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) + { + return nullptr; + } + } + + TIntermBinary *node = new TIntermBinary(op, left, right); + node->setLine(loc); + + // See if we can fold constants. + TIntermTyped *foldedNode = node->fold(&mDiagnostics); + if (foldedNode) + return foldedNode; + + return node; +} + +TIntermTyped *TParseContext::addBinaryMath(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); + if (node == 0) + { + binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), + right->getCompleteString()); + return left; + } + return node; +} + +TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); + if (node == 0) + { + binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), + right->getCompleteString()); + TConstantUnion *unionArray = new TConstantUnion[1]; + unionArray->setBConst(false); + return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), + loc); + } + return node; +} + +TIntermBinary *TParseContext::createAssign(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + if (binaryOpCommonCheck(op, left, right, loc)) + { + if (op == EOpMulAssign) + { + op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType()); + if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) + { + return nullptr; + } + } + TIntermBinary *node = new TIntermBinary(op, left, right); + node->setLine(loc); + + return node; + } + return nullptr; +} + +TIntermTyped *TParseContext::addAssign(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + TIntermTyped *node = createAssign(op, left, right, loc); + if (node == nullptr) + { + assignError(loc, "assign", left->getCompleteString(), right->getCompleteString()); + return left; + } + return node; +} + +TIntermTyped *TParseContext::addComma(TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + // WebGL2 section 5.26, the following results in an error: + // "Sequence operator applied to void, arrays, or structs containing arrays" + if (mShaderSpec == SH_WEBGL2_SPEC && (left->isArray() || left->getBasicType() == EbtVoid || + left->getType().isStructureContainingArrays() || + right->isArray() || right->getBasicType() == EbtVoid || + right->getType().isStructureContainingArrays())) + { + error(loc, + "sequence operator is not allowed for void, arrays, or structs containing arrays", + ","); + } + + return TIntermediate::AddComma(left, right, loc, mShaderVersion); +} + +TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) +{ + switch (op) + { + case EOpContinue: + if (mLoopNestingLevel <= 0) + { + error(loc, "continue statement only allowed in loops", ""); + } + break; + case EOpBreak: + if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) + { + error(loc, "break statement only allowed in loops and switch statements", ""); + } + break; + case EOpReturn: + if (mCurrentFunctionType->getBasicType() != EbtVoid) + { + error(loc, "non-void function must return a value", "return"); + } + break; + default: + // No checks for discard + break; + } + return intermediate.addBranch(op, loc); +} + +TIntermBranch *TParseContext::addBranch(TOperator op, + TIntermTyped *returnValue, + const TSourceLoc &loc) +{ + ASSERT(op == EOpReturn); + mFunctionReturnsValue = true; + if (mCurrentFunctionType->getBasicType() == EbtVoid) + { + error(loc, "void function cannot return a value", "return"); + } + else if (*mCurrentFunctionType != returnValue->getType()) + { + error(loc, "function return is not matching type:", "return"); + } + return intermediate.addBranch(op, returnValue, loc); +} + +void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall) +{ + ASSERT(!functionCall->isUserDefined()); + const TString &name = functionCall->getFunctionSymbolInfo()->getName(); + TIntermNode *offset = nullptr; + TIntermSequence *arguments = functionCall->getSequence(); + if (name.compare(0, 16, "texelFetchOffset") == 0 || + name.compare(0, 16, "textureLodOffset") == 0 || + name.compare(0, 20, "textureProjLodOffset") == 0 || + name.compare(0, 17, "textureGradOffset") == 0 || + name.compare(0, 21, "textureProjGradOffset") == 0) + { + offset = arguments->back(); + } + else if (name.compare(0, 13, "textureOffset") == 0 || + name.compare(0, 17, "textureProjOffset") == 0) + { + // A bias parameter might follow the offset parameter. + ASSERT(arguments->size() >= 3); + offset = (*arguments)[2]; + } + if (offset != nullptr) + { + TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion(); + if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion) + { + TString unmangledName = TFunction::unmangleName(name); + error(functionCall->getLine(), "Texture offset must be a constant expression", + unmangledName.c_str()); + } + else + { + ASSERT(offsetConstantUnion->getBasicType() == EbtInt); + size_t size = offsetConstantUnion->getType().getObjectSize(); + const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer(); + for (size_t i = 0u; i < size; ++i) + { + int offsetValue = values[i].getIConst(); + if (offsetValue > mMaxProgramTexelOffset || offsetValue < mMinProgramTexelOffset) + { + std::stringstream tokenStream; + tokenStream << offsetValue; + std::string token = tokenStream.str(); + error(offset->getLine(), "Texture offset value out of valid range", + token.c_str()); + } + } + } + } +} + +// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers +void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall) +{ + ASSERT(!functionCall->isUserDefined()); + const TString &name = functionCall->getFunctionSymbolInfo()->getName(); + + if (name.compare(0, 5, "image") == 0) + { + TIntermSequence *arguments = functionCall->getSequence(); + TIntermNode *imageNode = (*arguments)[0]; + TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode(); + + const TMemoryQualifier &memoryQualifier = imageSymbol->getMemoryQualifier(); + + if (name.compare(5, 5, "Store") == 0) + { + if (memoryQualifier.readonly) + { + error(imageNode->getLine(), + "'imageStore' cannot be used with images qualified as 'readonly'", + imageSymbol->getSymbol().c_str()); + } + } + else if (name.compare(5, 4, "Load") == 0) + { + if (memoryQualifier.writeonly) + { + error(imageNode->getLine(), + "'imageLoad' cannot be used with images qualified as 'writeonly'", + imageSymbol->getSymbol().c_str()); + } + } + } +} + +// GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters +void TParseContext::checkImageMemoryAccessForUserDefinedFunctions( + const TFunction *functionDefinition, + const TIntermAggregate *functionCall) +{ + ASSERT(functionCall->isUserDefined()); + + const TIntermSequence &arguments = *functionCall->getSequence(); + + ASSERT(functionDefinition->getParamCount() == arguments.size()); + + for (size_t i = 0; i < arguments.size(); ++i) + { + const TType &functionArgumentType = arguments[i]->getAsTyped()->getType(); + const TType &functionParameterType = *functionDefinition->getParam(i).type; + ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType()); + + if (IsImage(functionArgumentType.getBasicType())) + { + const TMemoryQualifier &functionArgumentMemoryQualifier = + functionArgumentType.getMemoryQualifier(); + const TMemoryQualifier &functionParameterMemoryQualifier = + functionParameterType.getMemoryQualifier(); + if (functionArgumentMemoryQualifier.readonly && + !functionParameterMemoryQualifier.readonly) + { + error(functionCall->getLine(), + "Function call discards the 'readonly' qualifier from image", + arguments[i]->getAsSymbolNode()->getSymbol().c_str()); + } + + if (functionArgumentMemoryQualifier.writeonly && + !functionParameterMemoryQualifier.writeonly) + { + error(functionCall->getLine(), + "Function call discards the 'writeonly' qualifier from image", + arguments[i]->getAsSymbolNode()->getSymbol().c_str()); + } + + if (functionArgumentMemoryQualifier.coherent && + !functionParameterMemoryQualifier.coherent) + { + error(functionCall->getLine(), + "Function call discards the 'coherent' qualifier from image", + arguments[i]->getAsSymbolNode()->getSymbol().c_str()); + } + + if (functionArgumentMemoryQualifier.volatileQualifier && + !functionParameterMemoryQualifier.volatileQualifier) + { + error(functionCall->getLine(), + "Function call discards the 'volatile' qualifier from image", + arguments[i]->getAsSymbolNode()->getSymbol().c_str()); + } + } + } +} + +TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, + TIntermNode *paramNode, + TIntermNode *thisNode, + const TSourceLoc &loc, + bool *fatalError) +{ + *fatalError = false; + TOperator op = fnCall->getBuiltInOp(); + TIntermTyped *callNode = nullptr; + + if (thisNode != nullptr) + { + TConstantUnion *unionArray = new TConstantUnion[1]; + int arraySize = 0; + TIntermTyped *typedThis = thisNode->getAsTyped(); + if (fnCall->getName() != "length") + { + error(loc, "invalid method", fnCall->getName().c_str()); + } + else if (paramNode != nullptr) + { + error(loc, "method takes no parameters", "length"); + } + else if (typedThis == nullptr || !typedThis->isArray()) + { + error(loc, "length can only be called on arrays", "length"); + } + else + { + arraySize = typedThis->getArraySize(); + if (typedThis->getAsSymbolNode() == nullptr) + { + // This code path can be hit with expressions like these: + // (a = b).length() + // (func()).length() + // (int[3](0, 1, 2)).length() + // ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid + // expression. + // It allows "An array name with the length method applied" in contrast to GLSL 4.4 + // spec section 5.9 which allows "An array, vector or matrix expression with the + // length method applied". + error(loc, "length can only be called on array names, not on array expressions", + "length"); + } + } + unionArray->setIConst(arraySize); + callNode = + intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), loc); + } + else if (op != EOpNull) + { + // Then this should be a constructor. + callNode = addConstructor(paramNode, op, fnCall, loc); + } + else + { + // + // Not a constructor. Find it in the symbol table. + // + const TFunction *fnCandidate; + bool builtIn; + fnCandidate = findFunction(loc, fnCall, mShaderVersion, &builtIn); + if (fnCandidate) + { + // + // A declared function. + // + if (builtIn && !fnCandidate->getExtension().empty()) + { + checkCanUseExtension(loc, fnCandidate->getExtension()); + } + op = fnCandidate->getBuiltInOp(); + if (builtIn && op != EOpNull) + { + // + // A function call mapped to a built-in operation. + // + if (fnCandidate->getParamCount() == 1) + { + // + // Treat it like a built-in unary operator. + // + TIntermAggregate *paramAgg = paramNode->getAsAggregate(); + paramNode = paramAgg->getSequence()->front(); + callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, + &fnCandidate->getReturnType()); + if (callNode == nullptr) + { + std::stringstream extraInfoStream; + extraInfoStream + << "built in unary operator function. Type: " + << static_cast<TIntermTyped *>(paramNode)->getCompleteString(); + std::string extraInfo = extraInfoStream.str(); + error(paramNode->getLine(), " wrong operand type", "Internal Error", + extraInfo.c_str()); + *fatalError = true; + return nullptr; + } + } + else + { + TIntermAggregate *aggregate = + intermediate.setAggregateOperator(paramNode, op, loc); + aggregate->setType(fnCandidate->getReturnType()); + aggregate->setPrecisionFromChildren(); + if (aggregate->areChildrenConstQualified()) + { + aggregate->getTypePointer()->setQualifier(EvqConst); + } + + // Some built-in functions have out parameters too. + functionCallLValueErrorCheck(fnCandidate, aggregate); + + // See if we can constant fold a built-in. Note that this may be possible even + // if it is not const-qualified. + TIntermTyped *foldedNode = + intermediate.foldAggregateBuiltIn(aggregate, &mDiagnostics); + if (foldedNode) + { + callNode = foldedNode; + } + else + { + callNode = aggregate; + } + } + } + else + { + // This is a real function call + TIntermAggregate *aggregate = + intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc); + aggregate->setType(fnCandidate->getReturnType()); + + // this is how we know whether the given function is a builtIn function or a user + // defined function + // if builtIn == false, it's a userDefined -> could be an overloaded + // builtIn function also + // if builtIn == true, it's definitely a builtIn function with EOpNull + if (!builtIn) + aggregate->setUserDefined(); + aggregate->getFunctionSymbolInfo()->setFromFunction(*fnCandidate); + + // This needs to happen after the function info including name is set + if (builtIn) + { + aggregate->setBuiltInFunctionPrecision(); + + checkTextureOffsetConst(aggregate); + + checkImageMemoryAccessForBuiltinFunctions(aggregate); + } + else + { + checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, aggregate); + } + + callNode = aggregate; + + functionCallLValueErrorCheck(fnCandidate, aggregate); + } + } + else + { + // error message was put out by findFunction() + // Put on a dummy node for error recovery + TConstantUnion *unionArray = new TConstantUnion[1]; + unionArray->setFConst(0.0f); + callNode = intermediate.addConstantUnion(unionArray, + TType(EbtFloat, EbpUndefined, EvqConst), loc); + } + } + return callNode; +} + +TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, + TIntermTyped *trueExpression, + TIntermTyped *falseExpression, + const TSourceLoc &loc) +{ + checkIsScalarBool(loc, cond); + + if (trueExpression->getType() != falseExpression->getType()) + { + binaryOpError(loc, ":", trueExpression->getCompleteString(), + falseExpression->getCompleteString()); + return falseExpression; + } + if (IsOpaqueType(trueExpression->getBasicType())) + { + // ESSL 1.00 section 4.1.7 + // ESSL 3.00 section 4.1.7 + // Opaque/sampler types are not allowed in most types of expressions, including ternary. + // Note that structs containing opaque types don't need to be checked as structs are + // forbidden below. + error(loc, "ternary operator is not allowed for opaque types", ":"); + return falseExpression; + } + + // ESSL1 sections 5.2 and 5.7: + // ESSL3 section 5.7: + // Ternary operator is not among the operators allowed for structures/arrays. + if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct) + { + error(loc, "ternary operator is not allowed for structures or arrays", ":"); + return falseExpression; + } + // WebGL2 section 5.26, the following results in an error: + // "Ternary operator applied to void, arrays, or structs containing arrays" + if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid) + { + error(loc, "ternary operator is not allowed for void", ":"); + return falseExpression; + } + + return TIntermediate::AddTernarySelection(cond, trueExpression, falseExpression, loc); +} + +// +// Parse an array of strings using yyparse. +// +// Returns 0 for success. +// +int PaParseStrings(size_t count, + const char *const string[], + const int length[], + TParseContext *context) +{ + if ((count == 0) || (string == NULL)) + return 1; + + if (glslang_initialize(context)) + return 1; + + int error = glslang_scan(count, string, length, context); + if (!error) + error = glslang_parse(context); + + glslang_finalize(context); + + return (error == 0) && (context->numErrors() == 0) ? 0 : 1; +} + +} // namespace sh |