diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /gfx/angle/src/compiler/translator/IntermNode.cpp | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'gfx/angle/src/compiler/translator/IntermNode.cpp')
-rwxr-xr-x | gfx/angle/src/compiler/translator/IntermNode.cpp | 2883 |
1 files changed, 2883 insertions, 0 deletions
diff --git a/gfx/angle/src/compiler/translator/IntermNode.cpp b/gfx/angle/src/compiler/translator/IntermNode.cpp new file mode 100755 index 000000000..b91b43ecf --- /dev/null +++ b/gfx/angle/src/compiler/translator/IntermNode.cpp @@ -0,0 +1,2883 @@ +// +// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// + +// +// Build the intermediate representation. +// + +#include <float.h> +#include <limits.h> +#include <math.h> +#include <stdlib.h> +#include <algorithm> +#include <vector> + +#include "common/mathutil.h" +#include "common/matrix_utils.h" +#include "compiler/translator/Diagnostics.h" +#include "compiler/translator/HashNames.h" +#include "compiler/translator/IntermNode.h" +#include "compiler/translator/SymbolTable.h" +#include "compiler/translator/util.h" + +namespace sh +{ + +namespace +{ + +const float kPi = 3.14159265358979323846f; +const float kDegreesToRadiansMultiplier = kPi / 180.0f; +const float kRadiansToDegreesMultiplier = 180.0f / kPi; + +TPrecision GetHigherPrecision(TPrecision left, TPrecision right) +{ + return left > right ? left : right; +} + +TConstantUnion *Vectorize(const TConstantUnion &constant, size_t size) +{ + TConstantUnion *constUnion = new TConstantUnion[size]; + for (unsigned int i = 0; i < size; ++i) + constUnion[i] = constant; + + return constUnion; +} + +void UndefinedConstantFoldingError(const TSourceLoc &loc, + TOperator op, + TBasicType basicType, + TDiagnostics *diagnostics, + TConstantUnion *result) +{ + diagnostics->warning(loc, "operation result is undefined for the values passed in", + GetOperatorString(op), ""); + + switch (basicType) + { + case EbtFloat : + result->setFConst(0.0f); + break; + case EbtInt: + result->setIConst(0); + break; + case EbtUInt: + result->setUConst(0u); + break; + case EbtBool: + result->setBConst(false); + break; + default: + break; + } +} + +float VectorLength(const TConstantUnion *paramArray, size_t paramArraySize) +{ + float result = 0.0f; + for (size_t i = 0; i < paramArraySize; i++) + { + float f = paramArray[i].getFConst(); + result += f * f; + } + return sqrtf(result); +} + +float VectorDotProduct(const TConstantUnion *paramArray1, + const TConstantUnion *paramArray2, + size_t paramArraySize) +{ + float result = 0.0f; + for (size_t i = 0; i < paramArraySize; i++) + result += paramArray1[i].getFConst() * paramArray2[i].getFConst(); + return result; +} + +TIntermTyped *CreateFoldedNode(const TConstantUnion *constArray, + const TIntermTyped *originalNode, + TQualifier qualifier) +{ + if (constArray == nullptr) + { + return nullptr; + } + TIntermTyped *folded = new TIntermConstantUnion(constArray, originalNode->getType()); + folded->getTypePointer()->setQualifier(qualifier); + folded->setLine(originalNode->getLine()); + return folded; +} + +angle::Matrix<float> GetMatrix(const TConstantUnion *paramArray, + const unsigned int &rows, + const unsigned int &cols) +{ + std::vector<float> elements; + for (size_t i = 0; i < rows * cols; i++) + elements.push_back(paramArray[i].getFConst()); + // Transpose is used since the Matrix constructor expects arguments in row-major order, + // whereas the paramArray is in column-major order. Rows/cols parameters are also flipped below + // so that the created matrix will have the expected dimensions after the transpose. + return angle::Matrix<float>(elements, cols, rows).transpose(); +} + +angle::Matrix<float> GetMatrix(const TConstantUnion *paramArray, const unsigned int &size) +{ + std::vector<float> elements; + for (size_t i = 0; i < size * size; i++) + elements.push_back(paramArray[i].getFConst()); + // Transpose is used since the Matrix constructor expects arguments in row-major order, + // whereas the paramArray is in column-major order. + return angle::Matrix<float>(elements, size).transpose(); +} + +void SetUnionArrayFromMatrix(const angle::Matrix<float> &m, TConstantUnion *resultArray) +{ + // Transpose is used since the input Matrix is in row-major order, + // whereas the actual result should be in column-major order. + angle::Matrix<float> result = m.transpose(); + std::vector<float> resultElements = result.elements(); + for (size_t i = 0; i < resultElements.size(); i++) + resultArray[i].setFConst(resultElements[i]); +} + +} // namespace anonymous + + +//////////////////////////////////////////////////////////////// +// +// Member functions of the nodes used for building the tree. +// +//////////////////////////////////////////////////////////////// + +void TIntermTyped::setTypePreservePrecision(const TType &t) +{ + TPrecision precision = getPrecision(); + mType = t; + ASSERT(mType.getBasicType() != EbtBool || precision == EbpUndefined); + mType.setPrecision(precision); +} + +#define REPLACE_IF_IS(node, type, original, replacement) \ + if (node == original) { \ + node = static_cast<type *>(replacement); \ + return true; \ + } + +bool TIntermLoop::replaceChildNode( + TIntermNode *original, TIntermNode *replacement) +{ + ASSERT(original != nullptr); // This risks replacing multiple children. + REPLACE_IF_IS(mInit, TIntermNode, original, replacement); + REPLACE_IF_IS(mCond, TIntermTyped, original, replacement); + REPLACE_IF_IS(mExpr, TIntermTyped, original, replacement); + REPLACE_IF_IS(mBody, TIntermBlock, original, replacement); + return false; +} + +bool TIntermBranch::replaceChildNode( + TIntermNode *original, TIntermNode *replacement) +{ + REPLACE_IF_IS(mExpression, TIntermTyped, original, replacement); + return false; +} + +bool TIntermSwizzle::replaceChildNode(TIntermNode *original, TIntermNode *replacement) +{ + ASSERT(original->getAsTyped()->getType() == replacement->getAsTyped()->getType()); + REPLACE_IF_IS(mOperand, TIntermTyped, original, replacement); + return false; +} + +bool TIntermBinary::replaceChildNode( + TIntermNode *original, TIntermNode *replacement) +{ + REPLACE_IF_IS(mLeft, TIntermTyped, original, replacement); + REPLACE_IF_IS(mRight, TIntermTyped, original, replacement); + return false; +} + +bool TIntermUnary::replaceChildNode( + TIntermNode *original, TIntermNode *replacement) +{ + ASSERT(original->getAsTyped()->getType() == replacement->getAsTyped()->getType()); + REPLACE_IF_IS(mOperand, TIntermTyped, original, replacement); + return false; +} + +bool TIntermFunctionDefinition::replaceChildNode(TIntermNode *original, TIntermNode *replacement) +{ + REPLACE_IF_IS(mParameters, TIntermAggregate, original, replacement); + REPLACE_IF_IS(mBody, TIntermBlock, original, replacement); + return false; +} + +bool TIntermAggregate::replaceChildNode( + TIntermNode *original, TIntermNode *replacement) +{ + return replaceChildNodeInternal(original, replacement); +} + +bool TIntermBlock::replaceChildNode(TIntermNode *original, TIntermNode *replacement) +{ + return replaceChildNodeInternal(original, replacement); +} + +bool TIntermDeclaration::replaceChildNode(TIntermNode *original, TIntermNode *replacement) +{ + return replaceChildNodeInternal(original, replacement); +} + +bool TIntermAggregateBase::replaceChildNodeInternal(TIntermNode *original, TIntermNode *replacement) +{ + for (size_t ii = 0; ii < getSequence()->size(); ++ii) + { + REPLACE_IF_IS((*getSequence())[ii], TIntermNode, original, replacement); + } + return false; +} + +bool TIntermAggregateBase::replaceChildNodeWithMultiple(TIntermNode *original, + const TIntermSequence &replacements) +{ + for (auto it = getSequence()->begin(); it < getSequence()->end(); ++it) + { + if (*it == original) + { + it = getSequence()->erase(it); + getSequence()->insert(it, replacements.begin(), replacements.end()); + return true; + } + } + return false; +} + +bool TIntermAggregateBase::insertChildNodes(TIntermSequence::size_type position, + const TIntermSequence &insertions) +{ + if (position > getSequence()->size()) + { + return false; + } + auto it = getSequence()->begin() + position; + getSequence()->insert(it, insertions.begin(), insertions.end()); + return true; +} + +bool TIntermAggregate::areChildrenConstQualified() +{ + for (TIntermNode *&child : mSequence) + { + TIntermTyped *typed = child->getAsTyped(); + if (typed && typed->getQualifier() != EvqConst) + { + return false; + } + } + return true; +} + +void TIntermAggregate::setPrecisionFromChildren() +{ + mGotPrecisionFromChildren = true; + if (getBasicType() == EbtBool) + { + mType.setPrecision(EbpUndefined); + return; + } + + TPrecision precision = EbpUndefined; + TIntermSequence::iterator childIter = mSequence.begin(); + while (childIter != mSequence.end()) + { + TIntermTyped *typed = (*childIter)->getAsTyped(); + if (typed) + precision = GetHigherPrecision(typed->getPrecision(), precision); + ++childIter; + } + mType.setPrecision(precision); +} + +void TIntermAggregate::setBuiltInFunctionPrecision() +{ + // All built-ins returning bool should be handled as ops, not functions. + ASSERT(getBasicType() != EbtBool); + + TPrecision precision = EbpUndefined; + TIntermSequence::iterator childIter = mSequence.begin(); + while (childIter != mSequence.end()) + { + TIntermTyped *typed = (*childIter)->getAsTyped(); + // ESSL spec section 8: texture functions get their precision from the sampler. + if (typed && IsSampler(typed->getBasicType())) + { + precision = typed->getPrecision(); + break; + } + ++childIter; + } + // ESSL 3.0 spec section 8: textureSize always gets highp precision. + // All other functions that take a sampler are assumed to be texture functions. + if (mFunctionInfo.getName().find("textureSize") == 0) + mType.setPrecision(EbpHigh); + else + mType.setPrecision(precision); +} + +void TIntermBlock::appendStatement(TIntermNode *statement) +{ + // Declaration nodes with no children can appear if all the declarators just added constants to + // the symbol table instead of generating code. They're no-ops so they aren't added to blocks. + if (statement != nullptr && (statement->getAsDeclarationNode() == nullptr || + !statement->getAsDeclarationNode()->getSequence()->empty())) + { + mStatements.push_back(statement); + } +} + +void TIntermDeclaration::appendDeclarator(TIntermTyped *declarator) +{ + ASSERT(declarator != nullptr); + ASSERT(declarator->getAsSymbolNode() != nullptr || + (declarator->getAsBinaryNode() != nullptr && + declarator->getAsBinaryNode()->getOp() == EOpInitialize)); + ASSERT(mDeclarators.empty() || + declarator->getType().sameElementType(mDeclarators.back()->getAsTyped()->getType())); + mDeclarators.push_back(declarator); +} + +bool TIntermTernary::replaceChildNode(TIntermNode *original, TIntermNode *replacement) +{ + REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement); + REPLACE_IF_IS(mTrueExpression, TIntermTyped, original, replacement); + REPLACE_IF_IS(mFalseExpression, TIntermTyped, original, replacement); + return false; +} + +bool TIntermIfElse::replaceChildNode(TIntermNode *original, TIntermNode *replacement) +{ + REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement); + REPLACE_IF_IS(mTrueBlock, TIntermBlock, original, replacement); + REPLACE_IF_IS(mFalseBlock, TIntermBlock, original, replacement); + return false; +} + +bool TIntermSwitch::replaceChildNode( + TIntermNode *original, TIntermNode *replacement) +{ + REPLACE_IF_IS(mInit, TIntermTyped, original, replacement); + REPLACE_IF_IS(mStatementList, TIntermBlock, original, replacement); + return false; +} + +bool TIntermCase::replaceChildNode( + TIntermNode *original, TIntermNode *replacement) +{ + REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement); + return false; +} + +TIntermTyped::TIntermTyped(const TIntermTyped &node) : TIntermNode(), mType(node.mType) +{ + // Copy constructor is disallowed for TIntermNode in order to disallow it for subclasses that + // don't explicitly allow it, so normal TIntermNode constructor is used to construct the copy. + // We need to manually copy any fields of TIntermNode besides handling fields in TIntermTyped. + mLine = node.mLine; +} + +bool TIntermTyped::isConstructorWithOnlyConstantUnionParameters() +{ + TIntermAggregate *constructor = getAsAggregate(); + if (!constructor || !constructor->isConstructor()) + { + return false; + } + for (TIntermNode *&node : *constructor->getSequence()) + { + if (!node->getAsConstantUnion()) + return false; + } + return true; +} + +// static +TIntermTyped *TIntermTyped::CreateIndexNode(int index) +{ + TConstantUnion *u = new TConstantUnion[1]; + u[0].setIConst(index); + + TType type(EbtInt, EbpUndefined, EvqConst, 1); + TIntermConstantUnion *node = new TIntermConstantUnion(u, type); + return node; +} + +// static +TIntermTyped *TIntermTyped::CreateZero(const TType &type) +{ + TType constType(type); + constType.setQualifier(EvqConst); + + if (!type.isArray() && type.getBasicType() != EbtStruct) + { + ASSERT(type.isScalar() || type.isVector() || type.isMatrix()); + + size_t size = constType.getObjectSize(); + TConstantUnion *u = new TConstantUnion[size]; + for (size_t i = 0; i < size; ++i) + { + switch (type.getBasicType()) + { + case EbtFloat: + u[i].setFConst(0.0f); + break; + case EbtInt: + u[i].setIConst(0); + break; + case EbtUInt: + u[i].setUConst(0u); + break; + case EbtBool: + u[i].setBConst(false); + break; + default: + UNREACHABLE(); + return nullptr; + } + } + + TIntermConstantUnion *node = new TIntermConstantUnion(u, constType); + return node; + } + + TIntermAggregate *constructor = new TIntermAggregate(sh::TypeToConstructorOperator(type)); + constructor->setType(constType); + + if (type.isArray()) + { + TType elementType(type); + elementType.clearArrayness(); + + size_t arraySize = type.getArraySize(); + for (size_t i = 0; i < arraySize; ++i) + { + constructor->getSequence()->push_back(CreateZero(elementType)); + } + } + else + { + ASSERT(type.getBasicType() == EbtStruct); + + TStructure *structure = type.getStruct(); + for (const auto &field : structure->fields()) + { + constructor->getSequence()->push_back(CreateZero(*field->type())); + } + } + + return constructor; +} + +TIntermConstantUnion::TIntermConstantUnion(const TIntermConstantUnion &node) : TIntermTyped(node) +{ + mUnionArrayPointer = node.mUnionArrayPointer; +} + +void TFunctionSymbolInfo::setFromFunction(const TFunction &function) +{ + setName(function.getMangledName()); + setId(function.getUniqueId()); +} + +TIntermAggregate::TIntermAggregate(const TIntermAggregate &node) + : TIntermOperator(node), + mUserDefined(node.mUserDefined), + mUseEmulatedFunction(node.mUseEmulatedFunction), + mGotPrecisionFromChildren(node.mGotPrecisionFromChildren), + mFunctionInfo(node.mFunctionInfo) +{ + for (TIntermNode *child : node.mSequence) + { + TIntermTyped *typedChild = child->getAsTyped(); + ASSERT(typedChild != nullptr); + TIntermTyped *childCopy = typedChild->deepCopy(); + mSequence.push_back(childCopy); + } +} + +TIntermSwizzle::TIntermSwizzle(const TIntermSwizzle &node) : TIntermTyped(node) +{ + TIntermTyped *operandCopy = node.mOperand->deepCopy(); + ASSERT(operandCopy != nullptr); + mOperand = operandCopy; +} + +TIntermBinary::TIntermBinary(const TIntermBinary &node) + : TIntermOperator(node), mAddIndexClamp(node.mAddIndexClamp) +{ + TIntermTyped *leftCopy = node.mLeft->deepCopy(); + TIntermTyped *rightCopy = node.mRight->deepCopy(); + ASSERT(leftCopy != nullptr && rightCopy != nullptr); + mLeft = leftCopy; + mRight = rightCopy; +} + +TIntermUnary::TIntermUnary(const TIntermUnary &node) + : TIntermOperator(node), mUseEmulatedFunction(node.mUseEmulatedFunction) +{ + TIntermTyped *operandCopy = node.mOperand->deepCopy(); + ASSERT(operandCopy != nullptr); + mOperand = operandCopy; +} + +TIntermTernary::TIntermTernary(const TIntermTernary &node) : TIntermTyped(node) +{ + TIntermTyped *conditionCopy = node.mCondition->deepCopy(); + TIntermTyped *trueCopy = node.mTrueExpression->deepCopy(); + TIntermTyped *falseCopy = node.mFalseExpression->deepCopy(); + ASSERT(conditionCopy != nullptr && trueCopy != nullptr && falseCopy != nullptr); + mCondition = conditionCopy; + mTrueExpression = trueCopy; + mFalseExpression = falseCopy; +} + +bool TIntermOperator::isAssignment() const +{ + return IsAssignment(mOp); +} + +bool TIntermOperator::isMultiplication() const +{ + switch (mOp) + { + case EOpMul: + case EOpMatrixTimesMatrix: + case EOpMatrixTimesVector: + case EOpMatrixTimesScalar: + case EOpVectorTimesMatrix: + case EOpVectorTimesScalar: + return true; + default: + return false; + } +} + +// +// returns true if the operator is for one of the constructors +// +bool TIntermOperator::isConstructor() const +{ + switch (mOp) + { + case EOpConstructVec2: + case EOpConstructVec3: + case EOpConstructVec4: + case EOpConstructMat2: + case EOpConstructMat2x3: + case EOpConstructMat2x4: + case EOpConstructMat3x2: + case EOpConstructMat3: + case EOpConstructMat3x4: + case EOpConstructMat4x2: + case EOpConstructMat4x3: + case EOpConstructMat4: + case EOpConstructFloat: + case EOpConstructIVec2: + case EOpConstructIVec3: + case EOpConstructIVec4: + case EOpConstructInt: + case EOpConstructUVec2: + case EOpConstructUVec3: + case EOpConstructUVec4: + case EOpConstructUInt: + case EOpConstructBVec2: + case EOpConstructBVec3: + case EOpConstructBVec4: + case EOpConstructBool: + case EOpConstructStruct: + return true; + default: + return false; + } +} + +TOperator TIntermBinary::GetMulOpBasedOnOperands(const TType &left, const TType &right) +{ + if (left.isMatrix()) + { + if (right.isMatrix()) + { + return EOpMatrixTimesMatrix; + } + else + { + if (right.isVector()) + { + return EOpMatrixTimesVector; + } + else + { + return EOpMatrixTimesScalar; + } + } + } + else + { + if (right.isMatrix()) + { + if (left.isVector()) + { + return EOpVectorTimesMatrix; + } + else + { + return EOpMatrixTimesScalar; + } + } + else + { + // Neither operand is a matrix. + if (left.isVector() == right.isVector()) + { + // Leave as component product. + return EOpMul; + } + else + { + return EOpVectorTimesScalar; + } + } + } +} + +TOperator TIntermBinary::GetMulAssignOpBasedOnOperands(const TType &left, const TType &right) +{ + if (left.isMatrix()) + { + if (right.isMatrix()) + { + return EOpMatrixTimesMatrixAssign; + } + else + { + // right should be scalar, but this may not be validated yet. + return EOpMatrixTimesScalarAssign; + } + } + else + { + if (right.isMatrix()) + { + // Left should be a vector, but this may not be validated yet. + return EOpVectorTimesMatrixAssign; + } + else + { + // Neither operand is a matrix. + if (left.isVector() == right.isVector()) + { + // Leave as component product. + return EOpMulAssign; + } + else + { + // left should be vector and right should be scalar, but this may not be validated + // yet. + return EOpVectorTimesScalarAssign; + } + } + } +} + +// +// Make sure the type of a unary operator is appropriate for its +// combination of operation and operand type. +// +void TIntermUnary::promote() +{ + TQualifier resultQualifier = EvqTemporary; + if (mOperand->getQualifier() == EvqConst) + resultQualifier = EvqConst; + + unsigned char operandPrimarySize = + static_cast<unsigned char>(mOperand->getType().getNominalSize()); + switch (mOp) + { + case EOpFloatBitsToInt: + setType(TType(EbtInt, EbpHigh, resultQualifier, operandPrimarySize)); + break; + case EOpFloatBitsToUint: + setType(TType(EbtUInt, EbpHigh, resultQualifier, operandPrimarySize)); + break; + case EOpIntBitsToFloat: + case EOpUintBitsToFloat: + setType(TType(EbtFloat, EbpHigh, resultQualifier, operandPrimarySize)); + break; + case EOpPackSnorm2x16: + case EOpPackUnorm2x16: + case EOpPackHalf2x16: + setType(TType(EbtUInt, EbpHigh, resultQualifier)); + break; + case EOpUnpackSnorm2x16: + case EOpUnpackUnorm2x16: + setType(TType(EbtFloat, EbpHigh, resultQualifier, 2)); + break; + case EOpUnpackHalf2x16: + setType(TType(EbtFloat, EbpMedium, resultQualifier, 2)); + break; + case EOpAny: + case EOpAll: + setType(TType(EbtBool, EbpUndefined, resultQualifier)); + break; + case EOpLength: + case EOpDeterminant: + setType(TType(EbtFloat, mOperand->getType().getPrecision(), resultQualifier)); + break; + case EOpTranspose: + setType(TType(EbtFloat, mOperand->getType().getPrecision(), resultQualifier, + static_cast<unsigned char>(mOperand->getType().getRows()), + static_cast<unsigned char>(mOperand->getType().getCols()))); + break; + case EOpIsInf: + case EOpIsNan: + setType(TType(EbtBool, EbpUndefined, resultQualifier, operandPrimarySize)); + break; + default: + setType(mOperand->getType()); + mType.setQualifier(resultQualifier); + break; + } +} + +TIntermSwizzle::TIntermSwizzle(TIntermTyped *operand, const TVector<int> &swizzleOffsets) + : TIntermTyped(TType(EbtFloat, EbpUndefined)), + mOperand(operand), + mSwizzleOffsets(swizzleOffsets) +{ + ASSERT(mSwizzleOffsets.size() <= 4); + promote(); +} + +TIntermUnary::TIntermUnary(TOperator op, TIntermTyped *operand) + : TIntermOperator(op), mOperand(operand), mUseEmulatedFunction(false) +{ + promote(); +} + +TIntermBinary::TIntermBinary(TOperator op, TIntermTyped *left, TIntermTyped *right) + : TIntermOperator(op), mLeft(left), mRight(right), mAddIndexClamp(false) +{ + promote(); +} + +TIntermTernary::TIntermTernary(TIntermTyped *cond, + TIntermTyped *trueExpression, + TIntermTyped *falseExpression) + : TIntermTyped(trueExpression->getType()), + mCondition(cond), + mTrueExpression(trueExpression), + mFalseExpression(falseExpression) +{ + getTypePointer()->setQualifier( + TIntermTernary::DetermineQualifier(cond, trueExpression, falseExpression)); +} + +// static +TQualifier TIntermTernary::DetermineQualifier(TIntermTyped *cond, + TIntermTyped *trueExpression, + TIntermTyped *falseExpression) +{ + if (cond->getQualifier() == EvqConst && trueExpression->getQualifier() == EvqConst && + falseExpression->getQualifier() == EvqConst) + { + return EvqConst; + } + return EvqTemporary; +} + +void TIntermSwizzle::promote() +{ + TQualifier resultQualifier = EvqTemporary; + if (mOperand->getQualifier() == EvqConst) + resultQualifier = EvqConst; + + auto numFields = mSwizzleOffsets.size(); + setType(TType(mOperand->getBasicType(), mOperand->getPrecision(), resultQualifier, + static_cast<unsigned char>(numFields))); +} + +bool TIntermSwizzle::hasDuplicateOffsets() const +{ + int offsetCount[4] = {0u, 0u, 0u, 0u}; + for (const auto offset : mSwizzleOffsets) + { + offsetCount[offset]++; + if (offsetCount[offset] > 1) + { + return true; + } + } + return false; +} + +void TIntermSwizzle::writeOffsetsAsXYZW(TInfoSinkBase *out) const +{ + for (const int offset : mSwizzleOffsets) + { + switch (offset) + { + case 0: + *out << "x"; + break; + case 1: + *out << "y"; + break; + case 2: + *out << "z"; + break; + case 3: + *out << "w"; + break; + default: + UNREACHABLE(); + } + } +} + +TQualifier TIntermBinary::GetCommaQualifier(int shaderVersion, + const TIntermTyped *left, + const TIntermTyped *right) +{ + // ESSL3.00 section 12.43: The result of a sequence operator is not a constant-expression. + if (shaderVersion >= 300 || left->getQualifier() != EvqConst || + right->getQualifier() != EvqConst) + { + return EvqTemporary; + } + return EvqConst; +} + +// Establishes the type of the result of the binary operation. +void TIntermBinary::promote() +{ + ASSERT(!isMultiplication() || + mOp == GetMulOpBasedOnOperands(mLeft->getType(), mRight->getType())); + + // Comma is handled as a special case. + if (mOp == EOpComma) + { + setType(mRight->getType()); + return; + } + + // Base assumption: just make the type the same as the left + // operand. Then only deviations from this need be coded. + setType(mLeft->getType()); + + TQualifier resultQualifier = EvqConst; + // Binary operations results in temporary variables unless both + // operands are const. + if (mLeft->getQualifier() != EvqConst || mRight->getQualifier() != EvqConst) + { + resultQualifier = EvqTemporary; + getTypePointer()->setQualifier(EvqTemporary); + } + + // Handle indexing ops. + switch (mOp) + { + case EOpIndexDirect: + case EOpIndexIndirect: + if (mLeft->isArray()) + { + mType.clearArrayness(); + } + else if (mLeft->isMatrix()) + { + setType(TType(mLeft->getBasicType(), mLeft->getPrecision(), resultQualifier, + static_cast<unsigned char>(mLeft->getRows()))); + } + else if (mLeft->isVector()) + { + setType(TType(mLeft->getBasicType(), mLeft->getPrecision(), resultQualifier)); + } + else + { + UNREACHABLE(); + } + return; + case EOpIndexDirectStruct: + { + const TFieldList &fields = mLeft->getType().getStruct()->fields(); + const int i = mRight->getAsConstantUnion()->getIConst(0); + setType(*fields[i]->type()); + getTypePointer()->setQualifier(resultQualifier); + return; + } + case EOpIndexDirectInterfaceBlock: + { + const TFieldList &fields = mLeft->getType().getInterfaceBlock()->fields(); + const int i = mRight->getAsConstantUnion()->getIConst(0); + setType(*fields[i]->type()); + getTypePointer()->setQualifier(resultQualifier); + return; + } + default: + break; + } + + ASSERT(mLeft->isArray() == mRight->isArray()); + + // The result gets promoted to the highest precision. + TPrecision higherPrecision = GetHigherPrecision(mLeft->getPrecision(), mRight->getPrecision()); + getTypePointer()->setPrecision(higherPrecision); + + const int nominalSize = + std::max(mLeft->getNominalSize(), mRight->getNominalSize()); + + // + // All scalars or structs. Code after this test assumes this case is removed! + // + if (nominalSize == 1) + { + switch (mOp) + { + // + // Promote to conditional + // + case EOpEqual: + case EOpNotEqual: + case EOpLessThan: + case EOpGreaterThan: + case EOpLessThanEqual: + case EOpGreaterThanEqual: + setType(TType(EbtBool, EbpUndefined, resultQualifier)); + break; + + // + // And and Or operate on conditionals + // + case EOpLogicalAnd: + case EOpLogicalXor: + case EOpLogicalOr: + ASSERT(mLeft->getBasicType() == EbtBool && mRight->getBasicType() == EbtBool); + setType(TType(EbtBool, EbpUndefined, resultQualifier)); + break; + + default: + break; + } + return; + } + + // If we reach here, at least one of the operands is vector or matrix. + // The other operand could be a scalar, vector, or matrix. + TBasicType basicType = mLeft->getBasicType(); + + switch (mOp) + { + case EOpMul: + break; + case EOpMatrixTimesScalar: + if (mRight->isMatrix()) + { + setType(TType(basicType, higherPrecision, resultQualifier, + static_cast<unsigned char>(mRight->getCols()), + static_cast<unsigned char>(mRight->getRows()))); + } + break; + case EOpMatrixTimesVector: + setType(TType(basicType, higherPrecision, resultQualifier, + static_cast<unsigned char>(mLeft->getRows()), 1)); + break; + case EOpMatrixTimesMatrix: + setType(TType(basicType, higherPrecision, resultQualifier, + static_cast<unsigned char>(mRight->getCols()), + static_cast<unsigned char>(mLeft->getRows()))); + break; + case EOpVectorTimesScalar: + setType(TType(basicType, higherPrecision, resultQualifier, + static_cast<unsigned char>(nominalSize), 1)); + break; + case EOpVectorTimesMatrix: + setType(TType(basicType, higherPrecision, resultQualifier, + static_cast<unsigned char>(mRight->getCols()), 1)); + break; + case EOpMulAssign: + case EOpVectorTimesScalarAssign: + case EOpVectorTimesMatrixAssign: + case EOpMatrixTimesScalarAssign: + case EOpMatrixTimesMatrixAssign: + ASSERT(mOp == GetMulAssignOpBasedOnOperands(mLeft->getType(), mRight->getType())); + break; + case EOpAssign: + case EOpInitialize: + ASSERT((mLeft->getNominalSize() == mRight->getNominalSize()) && + (mLeft->getSecondarySize() == mRight->getSecondarySize())); + break; + case EOpAdd: + case EOpSub: + case EOpDiv: + case EOpIMod: + case EOpBitShiftLeft: + case EOpBitShiftRight: + case EOpBitwiseAnd: + case EOpBitwiseXor: + case EOpBitwiseOr: + case EOpAddAssign: + case EOpSubAssign: + case EOpDivAssign: + case EOpIModAssign: + case EOpBitShiftLeftAssign: + case EOpBitShiftRightAssign: + case EOpBitwiseAndAssign: + case EOpBitwiseXorAssign: + case EOpBitwiseOrAssign: + { + const int secondarySize = + std::max(mLeft->getSecondarySize(), mRight->getSecondarySize()); + setType(TType(basicType, higherPrecision, resultQualifier, + static_cast<unsigned char>(nominalSize), + static_cast<unsigned char>(secondarySize))); + ASSERT(!mLeft->isArray() && !mRight->isArray()); + break; + } + case EOpEqual: + case EOpNotEqual: + case EOpLessThan: + case EOpGreaterThan: + case EOpLessThanEqual: + case EOpGreaterThanEqual: + ASSERT((mLeft->getNominalSize() == mRight->getNominalSize()) && + (mLeft->getSecondarySize() == mRight->getSecondarySize())); + setType(TType(EbtBool, EbpUndefined, resultQualifier)); + break; + + case EOpIndexDirect: + case EOpIndexIndirect: + case EOpIndexDirectInterfaceBlock: + case EOpIndexDirectStruct: + // These ops should be already fully handled. + UNREACHABLE(); + break; + default: + UNREACHABLE(); + break; + } +} + +const TConstantUnion *TIntermConstantUnion::foldIndexing(int index) +{ + if (isArray()) + { + ASSERT(index < static_cast<int>(getType().getArraySize())); + TType arrayElementType = getType(); + arrayElementType.clearArrayness(); + size_t arrayElementSize = arrayElementType.getObjectSize(); + return &mUnionArrayPointer[arrayElementSize * index]; + } + else if (isMatrix()) + { + ASSERT(index < getType().getCols()); + int size = getType().getRows(); + return &mUnionArrayPointer[size * index]; + } + else if (isVector()) + { + ASSERT(index < getType().getNominalSize()); + return &mUnionArrayPointer[index]; + } + else + { + UNREACHABLE(); + return nullptr; + } +} + +TIntermTyped *TIntermSwizzle::fold() +{ + TIntermConstantUnion *operandConstant = mOperand->getAsConstantUnion(); + if (operandConstant == nullptr) + { + return nullptr; + } + + TConstantUnion *constArray = new TConstantUnion[mSwizzleOffsets.size()]; + for (size_t i = 0; i < mSwizzleOffsets.size(); ++i) + { + constArray[i] = *operandConstant->foldIndexing(mSwizzleOffsets.at(i)); + } + return CreateFoldedNode(constArray, this, mType.getQualifier()); +} + +TIntermTyped *TIntermBinary::fold(TDiagnostics *diagnostics) +{ + TIntermConstantUnion *leftConstant = mLeft->getAsConstantUnion(); + TIntermConstantUnion *rightConstant = mRight->getAsConstantUnion(); + switch (mOp) + { + case EOpIndexDirect: + { + if (leftConstant == nullptr || rightConstant == nullptr) + { + return nullptr; + } + int index = rightConstant->getIConst(0); + + const TConstantUnion *constArray = leftConstant->foldIndexing(index); + return CreateFoldedNode(constArray, this, mType.getQualifier()); + } + case EOpIndexDirectStruct: + { + if (leftConstant == nullptr || rightConstant == nullptr) + { + return nullptr; + } + const TFieldList &fields = mLeft->getType().getStruct()->fields(); + size_t index = static_cast<size_t>(rightConstant->getIConst(0)); + + size_t previousFieldsSize = 0; + for (size_t i = 0; i < index; ++i) + { + previousFieldsSize += fields[i]->type()->getObjectSize(); + } + + const TConstantUnion *constArray = leftConstant->getUnionArrayPointer(); + return CreateFoldedNode(constArray + previousFieldsSize, this, mType.getQualifier()); + } + case EOpIndexIndirect: + case EOpIndexDirectInterfaceBlock: + // Can never be constant folded. + return nullptr; + default: + { + if (leftConstant == nullptr || rightConstant == nullptr) + { + return nullptr; + } + TConstantUnion *constArray = + leftConstant->foldBinary(mOp, rightConstant, diagnostics, mLeft->getLine()); + + // Nodes may be constant folded without being qualified as constant. + return CreateFoldedNode(constArray, this, mType.getQualifier()); + } + } +} + +TIntermTyped *TIntermUnary::fold(TDiagnostics *diagnostics) +{ + TIntermConstantUnion *operandConstant = mOperand->getAsConstantUnion(); + if (operandConstant == nullptr) + { + return nullptr; + } + + TConstantUnion *constArray = nullptr; + switch (mOp) + { + case EOpAny: + case EOpAll: + case EOpLength: + case EOpTranspose: + case EOpDeterminant: + case EOpInverse: + case EOpPackSnorm2x16: + case EOpUnpackSnorm2x16: + case EOpPackUnorm2x16: + case EOpUnpackUnorm2x16: + case EOpPackHalf2x16: + case EOpUnpackHalf2x16: + constArray = operandConstant->foldUnaryNonComponentWise(mOp); + break; + default: + constArray = operandConstant->foldUnaryComponentWise(mOp, diagnostics); + break; + } + + // Nodes may be constant folded without being qualified as constant. + return CreateFoldedNode(constArray, this, mType.getQualifier()); +} + +TIntermTyped *TIntermAggregate::fold(TDiagnostics *diagnostics) +{ + // Make sure that all params are constant before actual constant folding. + for (auto *param : *getSequence()) + { + if (param->getAsConstantUnion() == nullptr) + { + return nullptr; + } + } + TConstantUnion *constArray = nullptr; + if (isConstructor()) + constArray = TIntermConstantUnion::FoldAggregateConstructor(this); + else + constArray = TIntermConstantUnion::FoldAggregateBuiltIn(this, diagnostics); + + // Nodes may be constant folded without being qualified as constant. + TQualifier resultQualifier = areChildrenConstQualified() ? EvqConst : EvqTemporary; + return CreateFoldedNode(constArray, this, resultQualifier); +} + +// +// The fold functions see if an operation on a constant can be done in place, +// without generating run-time code. +// +// Returns the constant value to keep using or nullptr. +// +TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op, + TIntermConstantUnion *rightNode, + TDiagnostics *diagnostics, + const TSourceLoc &line) +{ + const TConstantUnion *leftArray = getUnionArrayPointer(); + const TConstantUnion *rightArray = rightNode->getUnionArrayPointer(); + + ASSERT(leftArray && rightArray); + + size_t objectSize = getType().getObjectSize(); + + // for a case like float f = vec4(2, 3, 4, 5) + 1.2; + if (rightNode->getType().getObjectSize() == 1 && objectSize > 1) + { + rightArray = Vectorize(*rightNode->getUnionArrayPointer(), objectSize); + } + else if (rightNode->getType().getObjectSize() > 1 && objectSize == 1) + { + // for a case like float f = 1.2 + vec4(2, 3, 4, 5); + leftArray = Vectorize(*getUnionArrayPointer(), rightNode->getType().getObjectSize()); + objectSize = rightNode->getType().getObjectSize(); + } + + TConstantUnion *resultArray = nullptr; + + switch(op) + { + case EOpAdd: + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + resultArray[i] = TConstantUnion::add(leftArray[i], rightArray[i], diagnostics, line); + break; + case EOpSub: + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + resultArray[i] = TConstantUnion::sub(leftArray[i], rightArray[i], diagnostics, line); + break; + + case EOpMul: + case EOpVectorTimesScalar: + case EOpMatrixTimesScalar: + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + resultArray[i] = TConstantUnion::mul(leftArray[i], rightArray[i], diagnostics, line); + break; + + case EOpMatrixTimesMatrix: + { + // TODO(jmadll): This code should check for overflows. + ASSERT(getType().getBasicType() == EbtFloat && rightNode->getBasicType() == EbtFloat); + + const int leftCols = getCols(); + const int leftRows = getRows(); + const int rightCols = rightNode->getType().getCols(); + const int rightRows = rightNode->getType().getRows(); + const int resultCols = rightCols; + const int resultRows = leftRows; + + resultArray = new TConstantUnion[resultCols * resultRows]; + for (int row = 0; row < resultRows; row++) + { + for (int column = 0; column < resultCols; column++) + { + resultArray[resultRows * column + row].setFConst(0.0f); + for (int i = 0; i < leftCols; i++) + { + resultArray[resultRows * column + row].setFConst( + resultArray[resultRows * column + row].getFConst() + + leftArray[i * leftRows + row].getFConst() * + rightArray[column * rightRows + i].getFConst()); + } + } + } + } + break; + + case EOpDiv: + case EOpIMod: + { + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + { + switch (getType().getBasicType()) + { + case EbtFloat: + if (rightArray[i] == 0.0f) + { + diagnostics->warning( + getLine(), "Divide by zero error during constant folding", "/", ""); + resultArray[i].setFConst(leftArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX); + } + else + { + ASSERT(op == EOpDiv); + resultArray[i].setFConst(leftArray[i].getFConst() / rightArray[i].getFConst()); + } + break; + + case EbtInt: + if (rightArray[i] == 0) + { + diagnostics->warning( + getLine(), "Divide by zero error during constant folding", "/", ""); + resultArray[i].setIConst(INT_MAX); + } + else + { + int lhs = leftArray[i].getIConst(); + int divisor = rightArray[i].getIConst(); + if (op == EOpDiv) + { + // Check for the special case where the minimum representable number is + // divided by -1. If left alone this leads to integer overflow in C++. + // ESSL 3.00.6 section 4.1.3 Integers: + // "However, for the case where the minimum representable value is + // divided by -1, it is allowed to return either the minimum + // representable value or the maximum representable value." + if (lhs == -0x7fffffff - 1 && divisor == -1) + { + resultArray[i].setIConst(0x7fffffff); + } + else + { + resultArray[i].setIConst(lhs / divisor); + } + } + else + { + ASSERT(op == EOpIMod); + if (lhs < 0 || divisor < 0) + { + // ESSL 3.00.6 section 5.9: Results of modulus are undefined when + // either one of the operands is negative. + diagnostics->warning(getLine(), + "Negative modulus operator operand " + "encountered during constant folding", + "%", ""); + resultArray[i].setIConst(0); + } + else + { + resultArray[i].setIConst(lhs % divisor); + } + } + } + break; + + case EbtUInt: + if (rightArray[i] == 0) + { + diagnostics->warning( + getLine(), "Divide by zero error during constant folding", "/", ""); + resultArray[i].setUConst(UINT_MAX); + } + else + { + if (op == EOpDiv) + { + resultArray[i].setUConst(leftArray[i].getUConst() / rightArray[i].getUConst()); + } + else + { + ASSERT(op == EOpIMod); + resultArray[i].setUConst(leftArray[i].getUConst() % rightArray[i].getUConst()); + } + } + break; + + default: + UNREACHABLE(); + return nullptr; + } + } + } + break; + + case EOpMatrixTimesVector: + { + // TODO(jmadll): This code should check for overflows. + ASSERT(rightNode->getBasicType() == EbtFloat); + + const int matrixCols = getCols(); + const int matrixRows = getRows(); + + resultArray = new TConstantUnion[matrixRows]; + + for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++) + { + resultArray[matrixRow].setFConst(0.0f); + for (int col = 0; col < matrixCols; col++) + { + resultArray[matrixRow].setFConst(resultArray[matrixRow].getFConst() + + leftArray[col * matrixRows + matrixRow].getFConst() * + rightArray[col].getFConst()); + } + } + } + break; + + case EOpVectorTimesMatrix: + { + // TODO(jmadll): This code should check for overflows. + ASSERT(getType().getBasicType() == EbtFloat); + + const int matrixCols = rightNode->getType().getCols(); + const int matrixRows = rightNode->getType().getRows(); + + resultArray = new TConstantUnion[matrixCols]; + + for (int matrixCol = 0; matrixCol < matrixCols; matrixCol++) + { + resultArray[matrixCol].setFConst(0.0f); + for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++) + { + resultArray[matrixCol].setFConst(resultArray[matrixCol].getFConst() + + leftArray[matrixRow].getFConst() * + rightArray[matrixCol * matrixRows + matrixRow].getFConst()); + } + } + } + break; + + case EOpLogicalAnd: + { + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + { + resultArray[i] = leftArray[i] && rightArray[i]; + } + } + break; + + case EOpLogicalOr: + { + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + { + resultArray[i] = leftArray[i] || rightArray[i]; + } + } + break; + + case EOpLogicalXor: + { + ASSERT(getType().getBasicType() == EbtBool); + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + { + resultArray[i].setBConst(leftArray[i] != rightArray[i]); + } + } + break; + + case EOpBitwiseAnd: + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + resultArray[i] = leftArray[i] & rightArray[i]; + break; + case EOpBitwiseXor: + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + resultArray[i] = leftArray[i] ^ rightArray[i]; + break; + case EOpBitwiseOr: + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + resultArray[i] = leftArray[i] | rightArray[i]; + break; + case EOpBitShiftLeft: + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + resultArray[i] = TConstantUnion::lshift(leftArray[i], rightArray[i], diagnostics, line); + break; + case EOpBitShiftRight: + resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + resultArray[i] = TConstantUnion::rshift(leftArray[i], rightArray[i], diagnostics, line); + break; + + case EOpLessThan: + ASSERT(objectSize == 1); + resultArray = new TConstantUnion[1]; + resultArray->setBConst(*leftArray < *rightArray); + break; + + case EOpGreaterThan: + ASSERT(objectSize == 1); + resultArray = new TConstantUnion[1]; + resultArray->setBConst(*leftArray > *rightArray); + break; + + case EOpLessThanEqual: + ASSERT(objectSize == 1); + resultArray = new TConstantUnion[1]; + resultArray->setBConst(!(*leftArray > *rightArray)); + break; + + case EOpGreaterThanEqual: + ASSERT(objectSize == 1); + resultArray = new TConstantUnion[1]; + resultArray->setBConst(!(*leftArray < *rightArray)); + break; + + case EOpEqual: + case EOpNotEqual: + { + resultArray = new TConstantUnion[1]; + bool equal = true; + for (size_t i = 0; i < objectSize; i++) + { + if (leftArray[i] != rightArray[i]) + { + equal = false; + break; // break out of for loop + } + } + if (op == EOpEqual) + { + resultArray->setBConst(equal); + } + else + { + resultArray->setBConst(!equal); + } + } + break; + + default: + UNREACHABLE(); + return nullptr; + } + return resultArray; +} + +// The fold functions do operations on a constant at GLSL compile time, without generating run-time +// code. Returns the constant value to keep using. Nullptr should not be returned. +TConstantUnion *TIntermConstantUnion::foldUnaryNonComponentWise(TOperator op) +{ + // Do operations where the return type may have a different number of components compared to the + // operand type. + + const TConstantUnion *operandArray = getUnionArrayPointer(); + ASSERT(operandArray); + + size_t objectSize = getType().getObjectSize(); + TConstantUnion *resultArray = nullptr; + switch (op) + { + case EOpAny: + ASSERT(getType().getBasicType() == EbtBool); + resultArray = new TConstantUnion(); + resultArray->setBConst(false); + for (size_t i = 0; i < objectSize; i++) + { + if (operandArray[i].getBConst()) + { + resultArray->setBConst(true); + break; + } + } + break; + + case EOpAll: + ASSERT(getType().getBasicType() == EbtBool); + resultArray = new TConstantUnion(); + resultArray->setBConst(true); + for (size_t i = 0; i < objectSize; i++) + { + if (!operandArray[i].getBConst()) + { + resultArray->setBConst(false); + break; + } + } + break; + + case EOpLength: + ASSERT(getType().getBasicType() == EbtFloat); + resultArray = new TConstantUnion(); + resultArray->setFConst(VectorLength(operandArray, objectSize)); + break; + + case EOpTranspose: + { + ASSERT(getType().getBasicType() == EbtFloat); + resultArray = new TConstantUnion[objectSize]; + angle::Matrix<float> result = + GetMatrix(operandArray, getType().getRows(), getType().getCols()).transpose(); + SetUnionArrayFromMatrix(result, resultArray); + break; + } + + case EOpDeterminant: + { + ASSERT(getType().getBasicType() == EbtFloat); + unsigned int size = getType().getNominalSize(); + ASSERT(size >= 2 && size <= 4); + resultArray = new TConstantUnion(); + resultArray->setFConst(GetMatrix(operandArray, size).determinant()); + break; + } + + case EOpInverse: + { + ASSERT(getType().getBasicType() == EbtFloat); + unsigned int size = getType().getNominalSize(); + ASSERT(size >= 2 && size <= 4); + resultArray = new TConstantUnion[objectSize]; + angle::Matrix<float> result = GetMatrix(operandArray, size).inverse(); + SetUnionArrayFromMatrix(result, resultArray); + break; + } + + case EOpPackSnorm2x16: + ASSERT(getType().getBasicType() == EbtFloat); + ASSERT(getType().getNominalSize() == 2); + resultArray = new TConstantUnion(); + resultArray->setUConst( + gl::packSnorm2x16(operandArray[0].getFConst(), operandArray[1].getFConst())); + break; + + case EOpUnpackSnorm2x16: + { + ASSERT(getType().getBasicType() == EbtUInt); + resultArray = new TConstantUnion[2]; + float f1, f2; + gl::unpackSnorm2x16(operandArray[0].getUConst(), &f1, &f2); + resultArray[0].setFConst(f1); + resultArray[1].setFConst(f2); + break; + } + + case EOpPackUnorm2x16: + ASSERT(getType().getBasicType() == EbtFloat); + ASSERT(getType().getNominalSize() == 2); + resultArray = new TConstantUnion(); + resultArray->setUConst( + gl::packUnorm2x16(operandArray[0].getFConst(), operandArray[1].getFConst())); + break; + + case EOpUnpackUnorm2x16: + { + ASSERT(getType().getBasicType() == EbtUInt); + resultArray = new TConstantUnion[2]; + float f1, f2; + gl::unpackUnorm2x16(operandArray[0].getUConst(), &f1, &f2); + resultArray[0].setFConst(f1); + resultArray[1].setFConst(f2); + break; + } + + case EOpPackHalf2x16: + ASSERT(getType().getBasicType() == EbtFloat); + ASSERT(getType().getNominalSize() == 2); + resultArray = new TConstantUnion(); + resultArray->setUConst( + gl::packHalf2x16(operandArray[0].getFConst(), operandArray[1].getFConst())); + break; + + case EOpUnpackHalf2x16: + { + ASSERT(getType().getBasicType() == EbtUInt); + resultArray = new TConstantUnion[2]; + float f1, f2; + gl::unpackHalf2x16(operandArray[0].getUConst(), &f1, &f2); + resultArray[0].setFConst(f1); + resultArray[1].setFConst(f2); + break; + } + + default: + UNREACHABLE(); + break; + } + + return resultArray; +} + +TConstantUnion *TIntermConstantUnion::foldUnaryComponentWise(TOperator op, + TDiagnostics *diagnostics) +{ + // Do unary operations where each component of the result is computed based on the corresponding + // component of the operand. Also folds normalize, though the divisor in that case takes all + // components into account. + + const TConstantUnion *operandArray = getUnionArrayPointer(); + ASSERT(operandArray); + + size_t objectSize = getType().getObjectSize(); + + TConstantUnion *resultArray = new TConstantUnion[objectSize]; + for (size_t i = 0; i < objectSize; i++) + { + switch(op) + { + case EOpNegative: + switch (getType().getBasicType()) + { + case EbtFloat: + resultArray[i].setFConst(-operandArray[i].getFConst()); + break; + case EbtInt: + if (operandArray[i] == std::numeric_limits<int>::min()) + { + // The minimum representable integer doesn't have a positive + // counterpart, rather the negation overflows and in ESSL is supposed to + // wrap back to the minimum representable integer. Make sure that we + // don't actually let the negation overflow, which has undefined + // behavior in C++. + resultArray[i].setIConst(std::numeric_limits<int>::min()); + } + else + { + resultArray[i].setIConst(-operandArray[i].getIConst()); + } + break; + case EbtUInt: + if (operandArray[i] == 0x80000000u) + { + resultArray[i].setUConst(0x80000000u); + } + else + { + resultArray[i].setUConst(static_cast<unsigned int>( + -static_cast<int>(operandArray[i].getUConst()))); + } + break; + default: + UNREACHABLE(); + return nullptr; + } + break; + + case EOpPositive: + switch (getType().getBasicType()) + { + case EbtFloat: + resultArray[i].setFConst(operandArray[i].getFConst()); + break; + case EbtInt: + resultArray[i].setIConst(operandArray[i].getIConst()); + break; + case EbtUInt: + resultArray[i].setUConst(static_cast<unsigned int>( + static_cast<int>(operandArray[i].getUConst()))); + break; + default: + UNREACHABLE(); + return nullptr; + } + break; + + case EOpLogicalNot: + switch (getType().getBasicType()) + { + case EbtBool: + resultArray[i].setBConst(!operandArray[i].getBConst()); + break; + default: + UNREACHABLE(); + return nullptr; + } + break; + + case EOpBitwiseNot: + switch (getType().getBasicType()) + { + case EbtInt: + resultArray[i].setIConst(~operandArray[i].getIConst()); + break; + case EbtUInt: + resultArray[i].setUConst(~operandArray[i].getUConst()); + break; + default: + UNREACHABLE(); + return nullptr; + } + break; + + case EOpRadians: + ASSERT(getType().getBasicType() == EbtFloat); + resultArray[i].setFConst(kDegreesToRadiansMultiplier * operandArray[i].getFConst()); + break; + + case EOpDegrees: + ASSERT(getType().getBasicType() == EbtFloat); + resultArray[i].setFConst(kRadiansToDegreesMultiplier * operandArray[i].getFConst()); + break; + + case EOpSin: + foldFloatTypeUnary(operandArray[i], &sinf, &resultArray[i]); + break; + + case EOpCos: + foldFloatTypeUnary(operandArray[i], &cosf, &resultArray[i]); + break; + + case EOpTan: + foldFloatTypeUnary(operandArray[i], &tanf, &resultArray[i]); + break; + + case EOpAsin: + // For asin(x), results are undefined if |x| > 1, we are choosing to set result to + // 0. + if (fabsf(operandArray[i].getFConst()) > 1.0f) + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + else + foldFloatTypeUnary(operandArray[i], &asinf, &resultArray[i]); + break; + + case EOpAcos: + // For acos(x), results are undefined if |x| > 1, we are choosing to set result to + // 0. + if (fabsf(operandArray[i].getFConst()) > 1.0f) + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + else + foldFloatTypeUnary(operandArray[i], &acosf, &resultArray[i]); + break; + + case EOpAtan: + foldFloatTypeUnary(operandArray[i], &atanf, &resultArray[i]); + break; + + case EOpSinh: + foldFloatTypeUnary(operandArray[i], &sinhf, &resultArray[i]); + break; + + case EOpCosh: + foldFloatTypeUnary(operandArray[i], &coshf, &resultArray[i]); + break; + + case EOpTanh: + foldFloatTypeUnary(operandArray[i], &tanhf, &resultArray[i]); + break; + + case EOpAsinh: + foldFloatTypeUnary(operandArray[i], &asinhf, &resultArray[i]); + break; + + case EOpAcosh: + // For acosh(x), results are undefined if x < 1, we are choosing to set result to 0. + if (operandArray[i].getFConst() < 1.0f) + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + else + foldFloatTypeUnary(operandArray[i], &acoshf, &resultArray[i]); + break; + + case EOpAtanh: + // For atanh(x), results are undefined if |x| >= 1, we are choosing to set result to + // 0. + if (fabsf(operandArray[i].getFConst()) >= 1.0f) + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + else + foldFloatTypeUnary(operandArray[i], &atanhf, &resultArray[i]); + break; + + case EOpAbs: + switch (getType().getBasicType()) + { + case EbtFloat: + resultArray[i].setFConst(fabsf(operandArray[i].getFConst())); + break; + case EbtInt: + resultArray[i].setIConst(abs(operandArray[i].getIConst())); + break; + default: + UNREACHABLE(); + return nullptr; + } + break; + + case EOpSign: + switch (getType().getBasicType()) + { + case EbtFloat: + { + float fConst = operandArray[i].getFConst(); + float fResult = 0.0f; + if (fConst > 0.0f) + fResult = 1.0f; + else if (fConst < 0.0f) + fResult = -1.0f; + resultArray[i].setFConst(fResult); + break; + } + case EbtInt: + { + int iConst = operandArray[i].getIConst(); + int iResult = 0; + if (iConst > 0) + iResult = 1; + else if (iConst < 0) + iResult = -1; + resultArray[i].setIConst(iResult); + break; + } + default: + UNREACHABLE(); + return nullptr; + } + break; + + case EOpFloor: + foldFloatTypeUnary(operandArray[i], &floorf, &resultArray[i]); + break; + + case EOpTrunc: + foldFloatTypeUnary(operandArray[i], &truncf, &resultArray[i]); + break; + + case EOpRound: + foldFloatTypeUnary(operandArray[i], &roundf, &resultArray[i]); + break; + + case EOpRoundEven: + { + ASSERT(getType().getBasicType() == EbtFloat); + float x = operandArray[i].getFConst(); + float result; + float fractPart = modff(x, &result); + if (fabsf(fractPart) == 0.5f) + result = 2.0f * roundf(x / 2.0f); + else + result = roundf(x); + resultArray[i].setFConst(result); + break; + } + + case EOpCeil: + foldFloatTypeUnary(operandArray[i], &ceilf, &resultArray[i]); + break; + + case EOpFract: + { + ASSERT(getType().getBasicType() == EbtFloat); + float x = operandArray[i].getFConst(); + resultArray[i].setFConst(x - floorf(x)); + break; + } + + case EOpIsNan: + ASSERT(getType().getBasicType() == EbtFloat); + resultArray[i].setBConst(gl::isNaN(operandArray[0].getFConst())); + break; + + case EOpIsInf: + ASSERT(getType().getBasicType() == EbtFloat); + resultArray[i].setBConst(gl::isInf(operandArray[0].getFConst())); + break; + + case EOpFloatBitsToInt: + ASSERT(getType().getBasicType() == EbtFloat); + resultArray[i].setIConst(gl::bitCast<int32_t>(operandArray[0].getFConst())); + break; + + case EOpFloatBitsToUint: + ASSERT(getType().getBasicType() == EbtFloat); + resultArray[i].setUConst(gl::bitCast<uint32_t>(operandArray[0].getFConst())); + break; + + case EOpIntBitsToFloat: + ASSERT(getType().getBasicType() == EbtInt); + resultArray[i].setFConst(gl::bitCast<float>(operandArray[0].getIConst())); + break; + + case EOpUintBitsToFloat: + ASSERT(getType().getBasicType() == EbtUInt); + resultArray[i].setFConst(gl::bitCast<float>(operandArray[0].getUConst())); + break; + + case EOpExp: + foldFloatTypeUnary(operandArray[i], &expf, &resultArray[i]); + break; + + case EOpLog: + // For log(x), results are undefined if x <= 0, we are choosing to set result to 0. + if (operandArray[i].getFConst() <= 0.0f) + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + else + foldFloatTypeUnary(operandArray[i], &logf, &resultArray[i]); + break; + + case EOpExp2: + foldFloatTypeUnary(operandArray[i], &exp2f, &resultArray[i]); + break; + + case EOpLog2: + // For log2(x), results are undefined if x <= 0, we are choosing to set result to 0. + // And log2f is not available on some plarforms like old android, so just using + // log(x)/log(2) here. + if (operandArray[i].getFConst() <= 0.0f) + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + else + { + foldFloatTypeUnary(operandArray[i], &logf, &resultArray[i]); + resultArray[i].setFConst(resultArray[i].getFConst() / logf(2.0f)); + } + break; + + case EOpSqrt: + // For sqrt(x), results are undefined if x < 0, we are choosing to set result to 0. + if (operandArray[i].getFConst() < 0.0f) + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + else + foldFloatTypeUnary(operandArray[i], &sqrtf, &resultArray[i]); + break; + + case EOpInverseSqrt: + // There is no stdlib built-in function equavalent for GLES built-in inversesqrt(), + // so getting the square root first using builtin function sqrt() and then taking + // its inverse. + // Also, for inversesqrt(x), results are undefined if x <= 0, we are choosing to set + // result to 0. + if (operandArray[i].getFConst() <= 0.0f) + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + else + { + foldFloatTypeUnary(operandArray[i], &sqrtf, &resultArray[i]); + resultArray[i].setFConst(1.0f / resultArray[i].getFConst()); + } + break; + + case EOpVectorLogicalNot: + ASSERT(getType().getBasicType() == EbtBool); + resultArray[i].setBConst(!operandArray[i].getBConst()); + break; + + case EOpNormalize: + { + ASSERT(getType().getBasicType() == EbtFloat); + float x = operandArray[i].getFConst(); + float length = VectorLength(operandArray, objectSize); + if (length) + resultArray[i].setFConst(x / length); + else + UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(), + diagnostics, &resultArray[i]); + break; + } + + case EOpDFdx: + case EOpDFdy: + case EOpFwidth: + ASSERT(getType().getBasicType() == EbtFloat); + // Derivatives of constant arguments should be 0. + resultArray[i].setFConst(0.0f); + break; + + default: + return nullptr; + } + } + + return resultArray; +} + +void TIntermConstantUnion::foldFloatTypeUnary(const TConstantUnion ¶meter, + FloatTypeUnaryFunc builtinFunc, + TConstantUnion *result) const +{ + ASSERT(builtinFunc); + + ASSERT(getType().getBasicType() == EbtFloat); + result->setFConst(builtinFunc(parameter.getFConst())); +} + +// static +TConstantUnion *TIntermConstantUnion::FoldAggregateConstructor(TIntermAggregate *aggregate) +{ + ASSERT(aggregate->getSequence()->size() > 0u); + size_t resultSize = aggregate->getType().getObjectSize(); + TConstantUnion *resultArray = new TConstantUnion[resultSize]; + TBasicType basicType = aggregate->getBasicType(); + + size_t resultIndex = 0u; + + if (aggregate->getSequence()->size() == 1u) + { + TIntermNode *argument = aggregate->getSequence()->front(); + TIntermConstantUnion *argumentConstant = argument->getAsConstantUnion(); + const TConstantUnion *argumentUnionArray = argumentConstant->getUnionArrayPointer(); + // Check the special case of constructing a matrix diagonal from a single scalar, + // or a vector from a single scalar. + if (argumentConstant->getType().getObjectSize() == 1u) + { + if (aggregate->isMatrix()) + { + int resultCols = aggregate->getType().getCols(); + int resultRows = aggregate->getType().getRows(); + for (int col = 0; col < resultCols; ++col) + { + for (int row = 0; row < resultRows; ++row) + { + if (col == row) + { + resultArray[resultIndex].cast(basicType, argumentUnionArray[0]); + } + else + { + resultArray[resultIndex].setFConst(0.0f); + } + ++resultIndex; + } + } + } + else + { + while (resultIndex < resultSize) + { + resultArray[resultIndex].cast(basicType, argumentUnionArray[0]); + ++resultIndex; + } + } + ASSERT(resultIndex == resultSize); + return resultArray; + } + else if (aggregate->isMatrix() && argumentConstant->isMatrix()) + { + // The special case of constructing a matrix from a matrix. + int argumentCols = argumentConstant->getType().getCols(); + int argumentRows = argumentConstant->getType().getRows(); + int resultCols = aggregate->getType().getCols(); + int resultRows = aggregate->getType().getRows(); + for (int col = 0; col < resultCols; ++col) + { + for (int row = 0; row < resultRows; ++row) + { + if (col < argumentCols && row < argumentRows) + { + resultArray[resultIndex].cast(basicType, + argumentUnionArray[col * argumentRows + row]); + } + else if (col == row) + { + resultArray[resultIndex].setFConst(1.0f); + } + else + { + resultArray[resultIndex].setFConst(0.0f); + } + ++resultIndex; + } + } + ASSERT(resultIndex == resultSize); + return resultArray; + } + } + + for (TIntermNode *&argument : *aggregate->getSequence()) + { + TIntermConstantUnion *argumentConstant = argument->getAsConstantUnion(); + size_t argumentSize = argumentConstant->getType().getObjectSize(); + const TConstantUnion *argumentUnionArray = argumentConstant->getUnionArrayPointer(); + for (size_t i = 0u; i < argumentSize; ++i) + { + if (resultIndex >= resultSize) + break; + resultArray[resultIndex].cast(basicType, argumentUnionArray[i]); + ++resultIndex; + } + } + ASSERT(resultIndex == resultSize); + return resultArray; +} + +// static +TConstantUnion *TIntermConstantUnion::FoldAggregateBuiltIn(TIntermAggregate *aggregate, + TDiagnostics *diagnostics) +{ + TOperator op = aggregate->getOp(); + TIntermSequence *sequence = aggregate->getSequence(); + unsigned int paramsCount = static_cast<unsigned int>(sequence->size()); + std::vector<const TConstantUnion *> unionArrays(paramsCount); + std::vector<size_t> objectSizes(paramsCount); + size_t maxObjectSize = 0; + TBasicType basicType = EbtVoid; + TSourceLoc loc; + for (unsigned int i = 0; i < paramsCount; i++) + { + TIntermConstantUnion *paramConstant = (*sequence)[i]->getAsConstantUnion(); + ASSERT(paramConstant != nullptr); // Should be checked already. + + if (i == 0) + { + basicType = paramConstant->getType().getBasicType(); + loc = paramConstant->getLine(); + } + unionArrays[i] = paramConstant->getUnionArrayPointer(); + objectSizes[i] = paramConstant->getType().getObjectSize(); + if (objectSizes[i] > maxObjectSize) + maxObjectSize = objectSizes[i]; + } + + if (!(*sequence)[0]->getAsTyped()->isMatrix() && aggregate->getOp() != EOpOuterProduct) + { + for (unsigned int i = 0; i < paramsCount; i++) + if (objectSizes[i] != maxObjectSize) + unionArrays[i] = Vectorize(*unionArrays[i], maxObjectSize); + } + + TConstantUnion *resultArray = nullptr; + if (paramsCount == 2) + { + // + // Binary built-in + // + switch (op) + { + case EOpAtan: + { + ASSERT(basicType == EbtFloat); + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + float y = unionArrays[0][i].getFConst(); + float x = unionArrays[1][i].getFConst(); + // Results are undefined if x and y are both 0. + if (x == 0.0f && y == 0.0f) + UndefinedConstantFoldingError(loc, op, basicType, diagnostics, + &resultArray[i]); + else + resultArray[i].setFConst(atan2f(y, x)); + } + break; + } + + case EOpPow: + { + ASSERT(basicType == EbtFloat); + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + float x = unionArrays[0][i].getFConst(); + float y = unionArrays[1][i].getFConst(); + // Results are undefined if x < 0. + // Results are undefined if x = 0 and y <= 0. + if (x < 0.0f) + UndefinedConstantFoldingError(loc, op, basicType, diagnostics, + &resultArray[i]); + else if (x == 0.0f && y <= 0.0f) + UndefinedConstantFoldingError(loc, op, basicType, diagnostics, + &resultArray[i]); + else + resultArray[i].setFConst(powf(x, y)); + } + break; + } + + case EOpMod: + { + ASSERT(basicType == EbtFloat); + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + float x = unionArrays[0][i].getFConst(); + float y = unionArrays[1][i].getFConst(); + resultArray[i].setFConst(x - y * floorf(x / y)); + } + break; + } + + case EOpMin: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + resultArray[i].setFConst(std::min(unionArrays[0][i].getFConst(), + unionArrays[1][i].getFConst())); + break; + case EbtInt: + resultArray[i].setIConst(std::min(unionArrays[0][i].getIConst(), + unionArrays[1][i].getIConst())); + break; + case EbtUInt: + resultArray[i].setUConst(std::min(unionArrays[0][i].getUConst(), + unionArrays[1][i].getUConst())); + break; + default: + UNREACHABLE(); + break; + } + } + break; + } + + case EOpMax: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + resultArray[i].setFConst(std::max(unionArrays[0][i].getFConst(), + unionArrays[1][i].getFConst())); + break; + case EbtInt: + resultArray[i].setIConst(std::max(unionArrays[0][i].getIConst(), + unionArrays[1][i].getIConst())); + break; + case EbtUInt: + resultArray[i].setUConst(std::max(unionArrays[0][i].getUConst(), + unionArrays[1][i].getUConst())); + break; + default: + UNREACHABLE(); + break; + } + } + break; + } + + case EOpStep: + { + ASSERT(basicType == EbtFloat); + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + resultArray[i].setFConst( + unionArrays[1][i].getFConst() < unionArrays[0][i].getFConst() ? 0.0f + : 1.0f); + break; + } + + case EOpLessThan: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + resultArray[i].setBConst(unionArrays[0][i].getFConst() < + unionArrays[1][i].getFConst()); + break; + case EbtInt: + resultArray[i].setBConst(unionArrays[0][i].getIConst() < + unionArrays[1][i].getIConst()); + break; + case EbtUInt: + resultArray[i].setBConst(unionArrays[0][i].getUConst() < + unionArrays[1][i].getUConst()); + break; + default: + UNREACHABLE(); + break; + } + } + break; + } + + case EOpLessThanEqual: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + resultArray[i].setBConst(unionArrays[0][i].getFConst() <= + unionArrays[1][i].getFConst()); + break; + case EbtInt: + resultArray[i].setBConst(unionArrays[0][i].getIConst() <= + unionArrays[1][i].getIConst()); + break; + case EbtUInt: + resultArray[i].setBConst(unionArrays[0][i].getUConst() <= + unionArrays[1][i].getUConst()); + break; + default: + UNREACHABLE(); + break; + } + } + break; + } + + case EOpGreaterThan: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + resultArray[i].setBConst(unionArrays[0][i].getFConst() > + unionArrays[1][i].getFConst()); + break; + case EbtInt: + resultArray[i].setBConst(unionArrays[0][i].getIConst() > + unionArrays[1][i].getIConst()); + break; + case EbtUInt: + resultArray[i].setBConst(unionArrays[0][i].getUConst() > + unionArrays[1][i].getUConst()); + break; + default: + UNREACHABLE(); + break; + } + } + break; + } + case EOpGreaterThanEqual: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + resultArray[i].setBConst(unionArrays[0][i].getFConst() >= + unionArrays[1][i].getFConst()); + break; + case EbtInt: + resultArray[i].setBConst(unionArrays[0][i].getIConst() >= + unionArrays[1][i].getIConst()); + break; + case EbtUInt: + resultArray[i].setBConst(unionArrays[0][i].getUConst() >= + unionArrays[1][i].getUConst()); + break; + default: + UNREACHABLE(); + break; + } + } + } + break; + + case EOpVectorEqual: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + resultArray[i].setBConst(unionArrays[0][i].getFConst() == + unionArrays[1][i].getFConst()); + break; + case EbtInt: + resultArray[i].setBConst(unionArrays[0][i].getIConst() == + unionArrays[1][i].getIConst()); + break; + case EbtUInt: + resultArray[i].setBConst(unionArrays[0][i].getUConst() == + unionArrays[1][i].getUConst()); + break; + case EbtBool: + resultArray[i].setBConst(unionArrays[0][i].getBConst() == + unionArrays[1][i].getBConst()); + break; + default: + UNREACHABLE(); + break; + } + } + break; + } + + case EOpVectorNotEqual: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + resultArray[i].setBConst(unionArrays[0][i].getFConst() != + unionArrays[1][i].getFConst()); + break; + case EbtInt: + resultArray[i].setBConst(unionArrays[0][i].getIConst() != + unionArrays[1][i].getIConst()); + break; + case EbtUInt: + resultArray[i].setBConst(unionArrays[0][i].getUConst() != + unionArrays[1][i].getUConst()); + break; + case EbtBool: + resultArray[i].setBConst(unionArrays[0][i].getBConst() != + unionArrays[1][i].getBConst()); + break; + default: + UNREACHABLE(); + break; + } + } + break; + } + + case EOpDistance: + { + ASSERT(basicType == EbtFloat); + TConstantUnion *distanceArray = new TConstantUnion[maxObjectSize]; + resultArray = new TConstantUnion(); + for (size_t i = 0; i < maxObjectSize; i++) + { + float x = unionArrays[0][i].getFConst(); + float y = unionArrays[1][i].getFConst(); + distanceArray[i].setFConst(x - y); + } + resultArray->setFConst(VectorLength(distanceArray, maxObjectSize)); + break; + } + + case EOpDot: + ASSERT(basicType == EbtFloat); + resultArray = new TConstantUnion(); + resultArray->setFConst( + VectorDotProduct(unionArrays[0], unionArrays[1], maxObjectSize)); + break; + + case EOpCross: + { + ASSERT(basicType == EbtFloat && maxObjectSize == 3); + resultArray = new TConstantUnion[maxObjectSize]; + float x0 = unionArrays[0][0].getFConst(); + float x1 = unionArrays[0][1].getFConst(); + float x2 = unionArrays[0][2].getFConst(); + float y0 = unionArrays[1][0].getFConst(); + float y1 = unionArrays[1][1].getFConst(); + float y2 = unionArrays[1][2].getFConst(); + resultArray[0].setFConst(x1 * y2 - y1 * x2); + resultArray[1].setFConst(x2 * y0 - y2 * x0); + resultArray[2].setFConst(x0 * y1 - y0 * x1); + break; + } + + case EOpReflect: + { + ASSERT(basicType == EbtFloat); + // genType reflect (genType I, genType N) : + // For the incident vector I and surface orientation N, returns the reflection + // direction: + // I - 2 * dot(N, I) * N. + resultArray = new TConstantUnion[maxObjectSize]; + float dotProduct = VectorDotProduct(unionArrays[1], unionArrays[0], maxObjectSize); + for (size_t i = 0; i < maxObjectSize; i++) + { + float result = unionArrays[0][i].getFConst() - + 2.0f * dotProduct * unionArrays[1][i].getFConst(); + resultArray[i].setFConst(result); + } + break; + } + + case EOpMul: + { + ASSERT(basicType == EbtFloat && (*sequence)[0]->getAsTyped()->isMatrix() && + (*sequence)[1]->getAsTyped()->isMatrix()); + // Perform component-wise matrix multiplication. + resultArray = new TConstantUnion[maxObjectSize]; + int size = (*sequence)[0]->getAsTyped()->getNominalSize(); + angle::Matrix<float> result = + GetMatrix(unionArrays[0], size).compMult(GetMatrix(unionArrays[1], size)); + SetUnionArrayFromMatrix(result, resultArray); + break; + } + + case EOpOuterProduct: + { + ASSERT(basicType == EbtFloat); + size_t numRows = (*sequence)[0]->getAsTyped()->getType().getObjectSize(); + size_t numCols = (*sequence)[1]->getAsTyped()->getType().getObjectSize(); + resultArray = new TConstantUnion[numRows * numCols]; + angle::Matrix<float> result = + GetMatrix(unionArrays[0], static_cast<int>(numRows), 1) + .outerProduct(GetMatrix(unionArrays[1], 1, static_cast<int>(numCols))); + SetUnionArrayFromMatrix(result, resultArray); + break; + } + + default: + UNREACHABLE(); + // TODO: Add constant folding support for other built-in operations that take 2 + // parameters and not handled above. + return nullptr; + } + } + else if (paramsCount == 3) + { + // + // Ternary built-in + // + switch (op) + { + case EOpClamp: + { + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + switch (basicType) + { + case EbtFloat: + { + float x = unionArrays[0][i].getFConst(); + float min = unionArrays[1][i].getFConst(); + float max = unionArrays[2][i].getFConst(); + // Results are undefined if min > max. + if (min > max) + UndefinedConstantFoldingError(loc, op, basicType, diagnostics, + &resultArray[i]); + else + resultArray[i].setFConst(gl::clamp(x, min, max)); + break; + } + + case EbtInt: + { + int x = unionArrays[0][i].getIConst(); + int min = unionArrays[1][i].getIConst(); + int max = unionArrays[2][i].getIConst(); + // Results are undefined if min > max. + if (min > max) + UndefinedConstantFoldingError(loc, op, basicType, diagnostics, + &resultArray[i]); + else + resultArray[i].setIConst(gl::clamp(x, min, max)); + break; + } + case EbtUInt: + { + unsigned int x = unionArrays[0][i].getUConst(); + unsigned int min = unionArrays[1][i].getUConst(); + unsigned int max = unionArrays[2][i].getUConst(); + // Results are undefined if min > max. + if (min > max) + UndefinedConstantFoldingError(loc, op, basicType, diagnostics, + &resultArray[i]); + else + resultArray[i].setUConst(gl::clamp(x, min, max)); + break; + } + default: + UNREACHABLE(); + break; + } + } + break; + } + + case EOpMix: + { + ASSERT(basicType == EbtFloat); + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + float x = unionArrays[0][i].getFConst(); + float y = unionArrays[1][i].getFConst(); + TBasicType type = (*sequence)[2]->getAsTyped()->getType().getBasicType(); + if (type == EbtFloat) + { + // Returns the linear blend of x and y, i.e., x * (1 - a) + y * a. + float a = unionArrays[2][i].getFConst(); + resultArray[i].setFConst(x * (1.0f - a) + y * a); + } + else // 3rd parameter is EbtBool + { + ASSERT(type == EbtBool); + // Selects which vector each returned component comes from. + // For a component of a that is false, the corresponding component of x is + // returned. + // For a component of a that is true, the corresponding component of y is + // returned. + bool a = unionArrays[2][i].getBConst(); + resultArray[i].setFConst(a ? y : x); + } + } + break; + } + + case EOpSmoothStep: + { + ASSERT(basicType == EbtFloat); + resultArray = new TConstantUnion[maxObjectSize]; + for (size_t i = 0; i < maxObjectSize; i++) + { + float edge0 = unionArrays[0][i].getFConst(); + float edge1 = unionArrays[1][i].getFConst(); + float x = unionArrays[2][i].getFConst(); + // Results are undefined if edge0 >= edge1. + if (edge0 >= edge1) + { + UndefinedConstantFoldingError(loc, op, basicType, diagnostics, + &resultArray[i]); + } + else + { + // Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth + // Hermite interpolation between 0 and 1 when edge0 < x < edge1. + float t = gl::clamp((x - edge0) / (edge1 - edge0), 0.0f, 1.0f); + resultArray[i].setFConst(t * t * (3.0f - 2.0f * t)); + } + } + break; + } + + case EOpFaceForward: + { + ASSERT(basicType == EbtFloat); + // genType faceforward(genType N, genType I, genType Nref) : + // If dot(Nref, I) < 0 return N, otherwise return -N. + resultArray = new TConstantUnion[maxObjectSize]; + float dotProduct = VectorDotProduct(unionArrays[2], unionArrays[1], maxObjectSize); + for (size_t i = 0; i < maxObjectSize; i++) + { + if (dotProduct < 0) + resultArray[i].setFConst(unionArrays[0][i].getFConst()); + else + resultArray[i].setFConst(-unionArrays[0][i].getFConst()); + } + break; + } + + case EOpRefract: + { + ASSERT(basicType == EbtFloat); + // genType refract(genType I, genType N, float eta) : + // For the incident vector I and surface normal N, and the ratio of indices of + // refraction eta, + // return the refraction vector. The result is computed by + // k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) + // if (k < 0.0) + // return genType(0.0) + // else + // return eta * I - (eta * dot(N, I) + sqrt(k)) * N + resultArray = new TConstantUnion[maxObjectSize]; + float dotProduct = VectorDotProduct(unionArrays[1], unionArrays[0], maxObjectSize); + for (size_t i = 0; i < maxObjectSize; i++) + { + float eta = unionArrays[2][i].getFConst(); + float k = 1.0f - eta * eta * (1.0f - dotProduct * dotProduct); + if (k < 0.0f) + resultArray[i].setFConst(0.0f); + else + resultArray[i].setFConst(eta * unionArrays[0][i].getFConst() - + (eta * dotProduct + sqrtf(k)) * + unionArrays[1][i].getFConst()); + } + break; + } + + default: + UNREACHABLE(); + // TODO: Add constant folding support for other built-in operations that take 3 + // parameters and not handled above. + return nullptr; + } + } + return resultArray; +} + +// static +TString TIntermTraverser::hash(const TString &name, ShHashFunction64 hashFunction) +{ + if (hashFunction == NULL || name.empty()) + return name; + khronos_uint64_t number = (*hashFunction)(name.c_str(), name.length()); + TStringStream stream; + stream << HASHED_NAME_PREFIX << std::hex << number; + TString hashedName = stream.str(); + return hashedName; +} + +void TIntermTraverser::updateTree() +{ + for (size_t ii = 0; ii < mInsertions.size(); ++ii) + { + const NodeInsertMultipleEntry &insertion = mInsertions[ii]; + ASSERT(insertion.parent); + if (!insertion.insertionsAfter.empty()) + { + bool inserted = insertion.parent->insertChildNodes(insertion.position + 1, + insertion.insertionsAfter); + ASSERT(inserted); + } + if (!insertion.insertionsBefore.empty()) + { + bool inserted = + insertion.parent->insertChildNodes(insertion.position, insertion.insertionsBefore); + ASSERT(inserted); + } + } + for (size_t ii = 0; ii < mReplacements.size(); ++ii) + { + const NodeUpdateEntry &replacement = mReplacements[ii]; + ASSERT(replacement.parent); + bool replaced = replacement.parent->replaceChildNode( + replacement.original, replacement.replacement); + ASSERT(replaced); + + if (!replacement.originalBecomesChildOfReplacement) + { + // In AST traversing, a parent is visited before its children. + // After we replace a node, if its immediate child is to + // be replaced, we need to make sure we don't update the replaced + // node; instead, we update the replacement node. + for (size_t jj = ii + 1; jj < mReplacements.size(); ++jj) + { + NodeUpdateEntry &replacement2 = mReplacements[jj]; + if (replacement2.parent == replacement.original) + replacement2.parent = replacement.replacement; + } + } + } + for (size_t ii = 0; ii < mMultiReplacements.size(); ++ii) + { + const NodeReplaceWithMultipleEntry &replacement = mMultiReplacements[ii]; + ASSERT(replacement.parent); + bool replaced = replacement.parent->replaceChildNodeWithMultiple( + replacement.original, replacement.replacements); + ASSERT(replaced); + } + + clearReplacementQueue(); +} + +void TIntermTraverser::clearReplacementQueue() +{ + mReplacements.clear(); + mMultiReplacements.clear(); + mInsertions.clear(); +} + +void TIntermTraverser::queueReplacement(TIntermNode *original, + TIntermNode *replacement, + OriginalNode originalStatus) +{ + queueReplacementWithParent(getParentNode(), original, replacement, originalStatus); +} + +void TIntermTraverser::queueReplacementWithParent(TIntermNode *parent, + TIntermNode *original, + TIntermNode *replacement, + OriginalNode originalStatus) +{ + bool originalBecomesChild = (originalStatus == OriginalNode::BECOMES_CHILD); + mReplacements.push_back(NodeUpdateEntry(parent, original, replacement, originalBecomesChild)); +} + +} // namespace sh |