diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /gfx/angle/src/common/third_party/numerics | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'gfx/angle/src/common/third_party/numerics')
8 files changed, 2149 insertions, 0 deletions
diff --git a/gfx/angle/src/common/third_party/numerics/README.angle b/gfx/angle/src/common/third_party/numerics/README.angle new file mode 100755 index 000000000..c7df1a849 --- /dev/null +++ b/gfx/angle/src/common/third_party/numerics/README.angle @@ -0,0 +1,16 @@ +Name: Chromium: base/numerics +Short Name: base::numerics +Version: +URL: https://chromium.googlesource.com/chromium/src.git/+/lkcr/base/numerics/ +SOURCE CODE: Copy the Chromium folder manually into this folder and run git cl format. +Date: 30/05/2016 +Revision: 28b5bbb227d331c01e6ff9b2f8729732135aadc7 (Chromium) +Security Critical: no +License: Chromium +License File: LICENSE in Chromium/src + +Description: +base::numerics is a library for doing some simple safe math and conversions. To update the checkout, simply +overwrite the base/numerics folder with Chromium's latest. The only modifications are to the base/logging.h +file which defines CHECK to be ASSERT to be compatible with ANGLE. + diff --git a/gfx/angle/src/common/third_party/numerics/base/logging.h b/gfx/angle/src/common/third_party/numerics/base/logging.h new file mode 100755 index 000000000..6cf05b4e6 --- /dev/null +++ b/gfx/angle/src/common/third_party/numerics/base/logging.h @@ -0,0 +1,22 @@ +// +// Copyright 2016 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// +// logging.h: Compatiblity hacks for importing Chromium's base/numerics. + +#ifndef BASE_LOGGING_H_ +#define BASE_LOGGING_H_ + +#include "common/debug.h" + +#ifndef CHECK +#define CHECK(X) ASSERT(X) +#endif + +// Unfortunately ANGLE relies on ASSERT being an empty statement, which these libs don't respect. +#ifndef NOTREACHED +#define NOTREACHED() UNREACHABLE() +#endif + +#endif // BASE_LOGGING_H_ diff --git a/gfx/angle/src/common/third_party/numerics/base/numerics/OWNERS b/gfx/angle/src/common/third_party/numerics/base/numerics/OWNERS new file mode 100755 index 000000000..41f35fc79 --- /dev/null +++ b/gfx/angle/src/common/third_party/numerics/base/numerics/OWNERS @@ -0,0 +1,3 @@ +jschuh@chromium.org +tsepez@chromium.org + diff --git a/gfx/angle/src/common/third_party/numerics/base/numerics/safe_conversions.h b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_conversions.h new file mode 100755 index 000000000..3fe496c21 --- /dev/null +++ b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_conversions.h @@ -0,0 +1,174 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_ +#define BASE_NUMERICS_SAFE_CONVERSIONS_H_ + +#include <stddef.h> + +#include <limits> +#include <type_traits> + +#include "base/logging.h" +#include "base/numerics/safe_conversions_impl.h" + +namespace base +{ + +// Convenience function that returns true if the supplied value is in range +// for the destination type. +template <typename Dst, typename Src> +constexpr bool IsValueInRangeForNumericType(Src value) +{ + return internal::DstRangeRelationToSrcRange<Dst>(value) == internal::RANGE_VALID; +} + +// Convenience function for determining if a numeric value is negative without +// throwing compiler warnings on: unsigned(value) < 0. +template <typename T> +constexpr typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type IsValueNegative( + T value) +{ + static_assert(std::numeric_limits<T>::is_specialized, "Argument must be numeric."); + return value < 0; +} + +template <typename T> +constexpr typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type IsValueNegative(T) +{ + static_assert(std::numeric_limits<T>::is_specialized, "Argument must be numeric."); + return false; +} + +// checked_cast<> is analogous to static_cast<> for numeric types, +// except that it CHECKs that the specified numeric conversion will not +// overflow or underflow. NaN source will always trigger a CHECK. +template <typename Dst, typename Src> +inline Dst checked_cast(Src value) +{ + CHECK(IsValueInRangeForNumericType<Dst>(value)); + return static_cast<Dst>(value); +} + +// HandleNaN will cause this class to CHECK(false). +struct SaturatedCastNaNBehaviorCheck +{ + template <typename T> + static T HandleNaN() + { + CHECK(false); + return T(); + } +}; + +// HandleNaN will return 0 in this case. +struct SaturatedCastNaNBehaviorReturnZero +{ + template <typename T> + static constexpr T HandleNaN() + { + return T(); + } +}; + +namespace internal +{ +// This wrapper is used for C++11 constexpr support by avoiding the declaration +// of local variables in the saturated_cast template function. +template <typename Dst, class NaNHandler, typename Src> +constexpr Dst saturated_cast_impl(const Src value, const RangeConstraint constraint) +{ + return constraint == RANGE_VALID + ? static_cast<Dst>(value) + : (constraint == RANGE_UNDERFLOW + ? std::numeric_limits<Dst>::min() + : (constraint == RANGE_OVERFLOW + ? std::numeric_limits<Dst>::max() + : (constraint == RANGE_INVALID + ? NaNHandler::template HandleNaN<Dst>() + : (NOTREACHED(), static_cast<Dst>(value))))); +} +} // namespace internal + +// saturated_cast<> is analogous to static_cast<> for numeric types, except +// that the specified numeric conversion will saturate rather than overflow or +// underflow. NaN assignment to an integral will defer the behavior to a +// specified class. By default, it will return 0. +template <typename Dst, class NaNHandler = SaturatedCastNaNBehaviorReturnZero, typename Src> +constexpr Dst saturated_cast(Src value) +{ + return std::numeric_limits<Dst>::is_iec559 + ? static_cast<Dst>(value) // Floating point optimization. + : internal::saturated_cast_impl<Dst, NaNHandler>( + value, internal::DstRangeRelationToSrcRange<Dst>(value)); +} + +// strict_cast<> is analogous to static_cast<> for numeric types, except that +// it will cause a compile failure if the destination type is not large enough +// to contain any value in the source type. It performs no runtime checking. +template <typename Dst, typename Src> +constexpr Dst strict_cast(Src value) +{ + static_assert(std::numeric_limits<Src>::is_specialized, "Argument must be numeric."); + static_assert(std::numeric_limits<Dst>::is_specialized, "Result must be numeric."); + static_assert((internal::StaticDstRangeRelationToSrcRange<Dst, Src>::value == + internal::NUMERIC_RANGE_CONTAINED), + "The numeric conversion is out of range for this type. You " + "should probably use one of the following conversion " + "mechanisms on the value you want to pass:\n" + "- base::checked_cast\n" + "- base::saturated_cast\n" + "- base::CheckedNumeric"); + + return static_cast<Dst>(value); +} + +// StrictNumeric implements compile time range checking between numeric types by +// wrapping assignment operations in a strict_cast. This class is intended to be +// used for function arguments and return types, to ensure the destination type +// can always contain the source type. This is essentially the same as enforcing +// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied +// incrementally at API boundaries, making it easier to convert code so that it +// compiles cleanly with truncation warnings enabled. +// This template should introduce no runtime overhead, but it also provides no +// runtime checking of any of the associated mathematical operations. Use +// CheckedNumeric for runtime range checks of the actual value being assigned. +template <typename T> +class StrictNumeric +{ + public: + typedef T type; + + constexpr StrictNumeric() : value_(0) {} + + // Copy constructor. + template <typename Src> + constexpr StrictNumeric(const StrictNumeric<Src> &rhs) : value_(strict_cast<T>(rhs.value_)) + { + } + + // This is not an explicit constructor because we implicitly upgrade regular + // numerics to StrictNumerics to make them easier to use. + template <typename Src> + constexpr StrictNumeric(Src value) : value_(strict_cast<T>(value)) + { + } + + // The numeric cast operator basically handles all the magic. + template <typename Dst> + constexpr operator Dst() const + { + return strict_cast<Dst>(value_); + } + + private: + const T value_; +}; + +// Explicitly make a shorter size_t typedef for convenience. +typedef StrictNumeric<size_t> SizeT; + +} // namespace base + +#endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_ diff --git a/gfx/angle/src/common/third_party/numerics/base/numerics/safe_conversions_impl.h b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_conversions_impl.h new file mode 100755 index 000000000..1591b9c8c --- /dev/null +++ b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_conversions_impl.h @@ -0,0 +1,269 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_ +#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_ + +#include <limits.h> +#include <stdint.h> + +#include <climits> +#include <limits> + +namespace base +{ +namespace internal +{ + +// The std library doesn't provide a binary max_exponent for integers, however +// we can compute one by adding one to the number of non-sign bits. This allows +// for accurate range comparisons between floating point and integer types. +template <typename NumericType> +struct MaxExponent +{ + static_assert(std::is_arithmetic<NumericType>::value, "Argument must be numeric."); + static const int value = + std::numeric_limits<NumericType>::is_iec559 + ? std::numeric_limits<NumericType>::max_exponent + : (sizeof(NumericType) * CHAR_BIT + 1 - std::numeric_limits<NumericType>::is_signed); +}; + +enum IntegerRepresentation +{ + INTEGER_REPRESENTATION_UNSIGNED, + INTEGER_REPRESENTATION_SIGNED +}; + +// A range for a given nunmeric Src type is contained for a given numeric Dst +// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and +// numeric_limits<Src>::min() >= numeric_limits<Dst>::min() are true. +// We implement this as template specializations rather than simple static +// comparisons to ensure type correctness in our comparisons. +enum NumericRangeRepresentation +{ + NUMERIC_RANGE_NOT_CONTAINED, + NUMERIC_RANGE_CONTAINED +}; + +// Helper templates to statically determine if our destination type can contain +// maximum and minimum values represented by the source type. + +template <typename Dst, + typename Src, + IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + IntegerRepresentation SrcSign = std::numeric_limits<Src>::is_signed + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED> +struct StaticDstRangeRelationToSrcRange; + +// Same sign: Dst is guaranteed to contain Src only if its range is equal or +// larger. +template <typename Dst, typename Src, IntegerRepresentation Sign> +struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign> +{ + static const NumericRangeRepresentation value = + MaxExponent<Dst>::value >= MaxExponent<Src>::value ? NUMERIC_RANGE_CONTAINED + : NUMERIC_RANGE_NOT_CONTAINED; +}; + +// Unsigned to signed: Dst is guaranteed to contain source only if its range is +// larger. +template <typename Dst, typename Src> +struct StaticDstRangeRelationToSrcRange<Dst, + Src, + INTEGER_REPRESENTATION_SIGNED, + INTEGER_REPRESENTATION_UNSIGNED> +{ + static const NumericRangeRepresentation value = + MaxExponent<Dst>::value > MaxExponent<Src>::value ? NUMERIC_RANGE_CONTAINED + : NUMERIC_RANGE_NOT_CONTAINED; +}; + +// Signed to unsigned: Dst cannot be statically determined to contain Src. +template <typename Dst, typename Src> +struct StaticDstRangeRelationToSrcRange<Dst, + Src, + INTEGER_REPRESENTATION_UNSIGNED, + INTEGER_REPRESENTATION_SIGNED> +{ + static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED; +}; + +enum RangeConstraint : unsigned char +{ + RANGE_VALID = 0x0, // Value can be represented by the destination type. + RANGE_UNDERFLOW = 0x1, // Value would overflow. + RANGE_OVERFLOW = 0x2, // Value would underflow. + RANGE_INVALID = RANGE_UNDERFLOW | RANGE_OVERFLOW // Invalid (i.e. NaN). +}; + +// Helper function for coercing an int back to a RangeContraint. +constexpr RangeConstraint GetRangeConstraint(int integer_range_constraint) +{ + // TODO(jschuh): Once we get full C++14 support we want this + // assert(integer_range_constraint >= RANGE_VALID && + // integer_range_constraint <= RANGE_INVALID) + return static_cast<RangeConstraint>(integer_range_constraint); +} + +// This function creates a RangeConstraint from an upper and lower bound +// check by taking advantage of the fact that only NaN can be out of range in +// both directions at once. +constexpr inline RangeConstraint GetRangeConstraint(bool is_in_upper_bound, bool is_in_lower_bound) +{ + return GetRangeConstraint((is_in_upper_bound ? 0 : RANGE_OVERFLOW) | + (is_in_lower_bound ? 0 : RANGE_UNDERFLOW)); +} + +// The following helper template addresses a corner case in range checks for +// conversion from a floating-point type to an integral type of smaller range +// but larger precision (e.g. float -> unsigned). The problem is as follows: +// 1. Integral maximum is always one less than a power of two, so it must be +// truncated to fit the mantissa of the floating point. The direction of +// rounding is implementation defined, but by default it's always IEEE +// floats, which round to nearest and thus result in a value of larger +// magnitude than the integral value. +// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX +// // is 4294967295u. +// 2. If the floating point value is equal to the promoted integral maximum +// value, a range check will erroneously pass. +// Example: (4294967296f <= 4294967295u) // This is true due to a precision +// // loss in rounding up to float. +// 3. When the floating point value is then converted to an integral, the +// resulting value is out of range for the target integral type and +// thus is implementation defined. +// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0. +// To fix this bug we manually truncate the maximum value when the destination +// type is an integral of larger precision than the source floating-point type, +// such that the resulting maximum is represented exactly as a floating point. +template <typename Dst, typename Src> +struct NarrowingRange +{ + typedef typename std::numeric_limits<Src> SrcLimits; + typedef typename std::numeric_limits<Dst> DstLimits; + // The following logic avoids warnings where the max function is + // instantiated with invalid values for a bit shift (even though + // such a function can never be called). + static const int shift = (MaxExponent<Src>::value > MaxExponent<Dst>::value && + SrcLimits::digits < DstLimits::digits && + SrcLimits::is_iec559 && + DstLimits::is_integer) + ? (DstLimits::digits - SrcLimits::digits) + : 0; + + static constexpr Dst max() + { + // We use UINTMAX_C below to avoid compiler warnings about shifting floating + // points. Since it's a compile time calculation, it shouldn't have any + // performance impact. + return DstLimits::max() - static_cast<Dst>((UINTMAX_C(1) << shift) - 1); + } + + static constexpr Dst min() + { + return std::numeric_limits<Dst>::is_iec559 ? -DstLimits::max() : DstLimits::min(); + } +}; + +template <typename Dst, + typename Src, + IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + IntegerRepresentation SrcSign = std::numeric_limits<Src>::is_signed + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + NumericRangeRepresentation DstRange = StaticDstRangeRelationToSrcRange<Dst, Src>::value> +struct DstRangeRelationToSrcRangeImpl; + +// The following templates are for ranges that must be verified at runtime. We +// split it into checks based on signedness to avoid confusing casts and +// compiler warnings on signed an unsigned comparisons. + +// Dst range is statically determined to contain Src: Nothing to check. +template <typename Dst, typename Src, IntegerRepresentation DstSign, IntegerRepresentation SrcSign> +struct DstRangeRelationToSrcRangeImpl<Dst, Src, DstSign, SrcSign, NUMERIC_RANGE_CONTAINED> +{ + static constexpr RangeConstraint Check(Src value) { return RANGE_VALID; } +}; + +// Signed to signed narrowing: Both the upper and lower boundaries may be +// exceeded. +template <typename Dst, typename Src> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + INTEGER_REPRESENTATION_SIGNED, + INTEGER_REPRESENTATION_SIGNED, + NUMERIC_RANGE_NOT_CONTAINED> +{ + static constexpr RangeConstraint Check(Src value) + { + return GetRangeConstraint((value <= NarrowingRange<Dst, Src>::max()), + (value >= NarrowingRange<Dst, Src>::min())); + } +}; + +// Unsigned to unsigned narrowing: Only the upper boundary can be exceeded. +template <typename Dst, typename Src> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + INTEGER_REPRESENTATION_UNSIGNED, + INTEGER_REPRESENTATION_UNSIGNED, + NUMERIC_RANGE_NOT_CONTAINED> +{ + static constexpr RangeConstraint Check(Src value) + { + return GetRangeConstraint(value <= NarrowingRange<Dst, Src>::max(), true); + } +}; + +// Unsigned to signed: The upper boundary may be exceeded. +template <typename Dst, typename Src> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + INTEGER_REPRESENTATION_SIGNED, + INTEGER_REPRESENTATION_UNSIGNED, + NUMERIC_RANGE_NOT_CONTAINED> +{ + static constexpr RangeConstraint Check(Src value) + { + return sizeof(Dst) > sizeof(Src) + ? RANGE_VALID + : GetRangeConstraint(value <= static_cast<Src>(NarrowingRange<Dst, Src>::max()), + true); + } +}; + +// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst, +// and any negative value exceeds the lower boundary. +template <typename Dst, typename Src> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + INTEGER_REPRESENTATION_UNSIGNED, + INTEGER_REPRESENTATION_SIGNED, + NUMERIC_RANGE_NOT_CONTAINED> +{ + static constexpr RangeConstraint Check(Src value) + { + return (MaxExponent<Dst>::value >= MaxExponent<Src>::value) + ? GetRangeConstraint(true, value >= static_cast<Src>(0)) + : GetRangeConstraint(value <= static_cast<Src>(NarrowingRange<Dst, Src>::max()), + value >= static_cast<Src>(0)); + } +}; + +template <typename Dst, typename Src> +constexpr RangeConstraint DstRangeRelationToSrcRange(Src value) +{ + static_assert(std::numeric_limits<Src>::is_specialized, "Argument must be numeric."); + static_assert(std::numeric_limits<Dst>::is_specialized, "Result must be numeric."); + return DstRangeRelationToSrcRangeImpl<Dst, Src>::Check(value); +} + +} // namespace internal +} // namespace base + +#endif // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_ diff --git a/gfx/angle/src/common/third_party/numerics/base/numerics/safe_math.h b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_math.h new file mode 100755 index 000000000..505efde38 --- /dev/null +++ b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_math.h @@ -0,0 +1,324 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_NUMERICS_SAFE_MATH_H_ +#define BASE_NUMERICS_SAFE_MATH_H_ + +#include <stddef.h> + +#include <limits> +#include <type_traits> + +#include "base/logging.h" +#include "base/numerics/safe_math_impl.h" + +namespace base +{ + +namespace internal +{ + +// CheckedNumeric implements all the logic and operators for detecting integer +// boundary conditions such as overflow, underflow, and invalid conversions. +// The CheckedNumeric type implicitly converts from floating point and integer +// data types, and contains overloads for basic arithmetic operations (i.e.: +, +// -, *, /, %). +// +// The following methods convert from CheckedNumeric to standard numeric values: +// IsValid() - Returns true if the underlying numeric value is valid (i.e. has +// has not wrapped and is not the result of an invalid conversion). +// ValueOrDie() - Returns the underlying value. If the state is not valid this +// call will crash on a CHECK. +// ValueOrDefault() - Returns the current value, or the supplied default if the +// state is not valid. +// ValueFloating() - Returns the underlying floating point value (valid only +// only for floating point CheckedNumeric types). +// +// Bitwise operations are explicitly not supported, because correct +// handling of some cases (e.g. sign manipulation) is ambiguous. Comparison +// operations are explicitly not supported because they could result in a crash +// on a CHECK condition. You should use patterns like the following for these +// operations: +// Bitwise operation: +// CheckedNumeric<int> checked_int = untrusted_input_value; +// int x = checked_int.ValueOrDefault(0) | kFlagValues; +// Comparison: +// CheckedNumeric<size_t> checked_size = untrusted_input_value; +// checked_size += HEADER LENGTH; +// if (checked_size.IsValid() && checked_size.ValueOrDie() < buffer_size) +// Do stuff... +template <typename T> +class CheckedNumeric +{ + static_assert(std::is_arithmetic<T>::value, "CheckedNumeric<T>: T must be a numeric type."); + + public: + typedef T type; + + CheckedNumeric() {} + + // Copy constructor. + template <typename Src> + CheckedNumeric(const CheckedNumeric<Src> &rhs) : state_(rhs.ValueUnsafe(), rhs.validity()) + { + } + + template <typename Src> + CheckedNumeric(Src value, RangeConstraint validity) : state_(value, validity) + { + } + + // This is not an explicit constructor because we implicitly upgrade regular + // numerics to CheckedNumerics to make them easier to use. + template <typename Src> + CheckedNumeric(Src value) // NOLINT(runtime/explicit) + : state_(value) + { + static_assert(std::numeric_limits<Src>::is_specialized, "Argument must be numeric."); + } + + // This is not an explicit constructor because we want a seamless conversion + // from StrictNumeric types. + template <typename Src> + CheckedNumeric(StrictNumeric<Src> value) // NOLINT(runtime/explicit) + : state_(static_cast<Src>(value)) + { + } + + // IsValid() is the public API to test if a CheckedNumeric is currently valid. + bool IsValid() const { return validity() == RANGE_VALID; } + + // ValueOrDie() The primary accessor for the underlying value. If the current + // state is not valid it will CHECK and crash. + T ValueOrDie() const + { + CHECK(IsValid()); + return state_.value(); + } + + // ValueOrDefault(T default_value) A convenience method that returns the + // current value if the state is valid, and the supplied default_value for + // any other state. + T ValueOrDefault(T default_value) const { return IsValid() ? state_.value() : default_value; } + + // ValueFloating() - Since floating point values include their validity state, + // we provide an easy method for extracting them directly, without a risk of + // crashing on a CHECK. + T ValueFloating() const + { + static_assert(std::numeric_limits<T>::is_iec559, "Argument must be float."); + return CheckedNumeric<T>::cast(*this).ValueUnsafe(); + } + + // validity() - DO NOT USE THIS IN EXTERNAL CODE - It is public right now for + // tests and to avoid a big matrix of friend operator overloads. But the + // values it returns are likely to change in the future. + // Returns: current validity state (i.e. valid, overflow, underflow, nan). + // TODO(jschuh): crbug.com/332611 Figure out and implement semantics for + // saturation/wrapping so we can expose this state consistently and implement + // saturated arithmetic. + RangeConstraint validity() const { return state_.validity(); } + + // ValueUnsafe() - DO NOT USE THIS IN EXTERNAL CODE - It is public right now + // for tests and to avoid a big matrix of friend operator overloads. But the + // values it returns are likely to change in the future. + // Returns: the raw numeric value, regardless of the current state. + // TODO(jschuh): crbug.com/332611 Figure out and implement semantics for + // saturation/wrapping so we can expose this state consistently and implement + // saturated arithmetic. + T ValueUnsafe() const { return state_.value(); } + + // Prototypes for the supported arithmetic operator overloads. + template <typename Src> + CheckedNumeric &operator+=(Src rhs); + template <typename Src> + CheckedNumeric &operator-=(Src rhs); + template <typename Src> + CheckedNumeric &operator*=(Src rhs); + template <typename Src> + CheckedNumeric &operator/=(Src rhs); + template <typename Src> + CheckedNumeric &operator%=(Src rhs); + + CheckedNumeric operator-() const + { + RangeConstraint validity; + T value = CheckedNeg(state_.value(), &validity); + // Negation is always valid for floating point. + if (std::numeric_limits<T>::is_iec559) + return CheckedNumeric<T>(value); + + validity = GetRangeConstraint(state_.validity() | validity); + return CheckedNumeric<T>(value, validity); + } + + CheckedNumeric Abs() const + { + RangeConstraint validity; + T value = CheckedAbs(state_.value(), &validity); + // Absolute value is always valid for floating point. + if (std::numeric_limits<T>::is_iec559) + return CheckedNumeric<T>(value); + + validity = GetRangeConstraint(state_.validity() | validity); + return CheckedNumeric<T>(value, validity); + } + + // This function is available only for integral types. It returns an unsigned + // integer of the same width as the source type, containing the absolute value + // of the source, and properly handling signed min. + CheckedNumeric<typename UnsignedOrFloatForSize<T>::type> UnsignedAbs() const + { + return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>( + CheckedUnsignedAbs(state_.value()), state_.validity()); + } + + CheckedNumeric &operator++() + { + *this += 1; + return *this; + } + + CheckedNumeric operator++(int) + { + CheckedNumeric value = *this; + *this += 1; + return value; + } + + CheckedNumeric &operator--() + { + *this -= 1; + return *this; + } + + CheckedNumeric operator--(int) + { + CheckedNumeric value = *this; + *this -= 1; + return value; + } + + // These static methods behave like a convenience cast operator targeting + // the desired CheckedNumeric type. As an optimization, a reference is + // returned when Src is the same type as T. + template <typename Src> + static CheckedNumeric<T> cast( + Src u, + typename std::enable_if<std::numeric_limits<Src>::is_specialized, int>::type = 0) + { + return u; + } + + template <typename Src> + static CheckedNumeric<T> cast( + const CheckedNumeric<Src> &u, + typename std::enable_if<!std::is_same<Src, T>::value, int>::type = 0) + { + return u; + } + + static const CheckedNumeric<T> &cast(const CheckedNumeric<T> &u) { return u; } + + private: + template <typename NumericType> + struct UnderlyingType + { + using type = NumericType; + }; + + template <typename NumericType> + struct UnderlyingType<CheckedNumeric<NumericType>> + { + using type = NumericType; + }; + + CheckedNumericState<T> state_; +}; + +// This is the boilerplate for the standard arithmetic operator overloads. A +// macro isn't the prettiest solution, but it beats rewriting these five times. +// Some details worth noting are: +// * We apply the standard arithmetic promotions. +// * We skip range checks for floating points. +// * We skip range checks for destination integers with sufficient range. +// TODO(jschuh): extract these out into templates. +#define BASE_NUMERIC_ARITHMETIC_OPERATORS(NAME, OP, COMPOUND_OP) \ + /* Binary arithmetic operator for CheckedNumerics of the same type. */ \ + template <typename T> \ + CheckedNumeric<typename ArithmeticPromotion<T>::type> operator OP( \ + const CheckedNumeric<T> &lhs, const CheckedNumeric<T> &rhs) \ + { \ + typedef typename ArithmeticPromotion<T>::type Promotion; \ + /* Floating point always takes the fast path */ \ + if (std::numeric_limits<T>::is_iec559) \ + return CheckedNumeric<T>(lhs.ValueUnsafe() OP rhs.ValueUnsafe()); \ + if (IsIntegerArithmeticSafe<Promotion, T, T>::value) \ + return CheckedNumeric<Promotion>(lhs.ValueUnsafe() OP rhs.ValueUnsafe(), \ + GetRangeConstraint(rhs.validity() | lhs.validity())); \ + RangeConstraint validity = RANGE_VALID; \ + T result = \ + static_cast<T>(Checked##NAME(static_cast<Promotion>(lhs.ValueUnsafe()), \ + static_cast<Promotion>(rhs.ValueUnsafe()), &validity)); \ + return CheckedNumeric<Promotion>( \ + result, GetRangeConstraint(validity | lhs.validity() | rhs.validity())); \ + } \ + /* Assignment arithmetic operator implementation from CheckedNumeric. */ \ + template <typename T> \ + template <typename Src> \ + CheckedNumeric<T> &CheckedNumeric<T>::operator COMPOUND_OP(Src rhs) \ + { \ + *this = CheckedNumeric<T>::cast(*this) \ + OP CheckedNumeric<typename UnderlyingType<Src>::type>::cast(rhs); \ + return *this; \ + } \ + /* Binary arithmetic operator for CheckedNumeric of different type. */ \ + template <typename T, typename Src> \ + CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \ + const CheckedNumeric<Src> &lhs, const CheckedNumeric<T> &rhs) \ + { \ + typedef typename ArithmeticPromotion<T, Src>::type Promotion; \ + if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \ + return CheckedNumeric<Promotion>(lhs.ValueUnsafe() OP rhs.ValueUnsafe(), \ + GetRangeConstraint(rhs.validity() | lhs.validity())); \ + return CheckedNumeric<Promotion>::cast(lhs) OP CheckedNumeric<Promotion>::cast(rhs); \ + } \ + /* Binary arithmetic operator for left CheckedNumeric and right numeric. */ \ + template <typename T, typename Src, \ + typename std::enable_if<std::is_arithmetic<Src>::value>::type * = nullptr> \ + CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \ + const CheckedNumeric<T> &lhs, Src rhs) \ + { \ + typedef typename ArithmeticPromotion<T, Src>::type Promotion; \ + if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \ + return CheckedNumeric<Promotion>(lhs.ValueUnsafe() OP rhs, lhs.validity()); \ + return CheckedNumeric<Promotion>::cast(lhs) OP CheckedNumeric<Promotion>::cast(rhs); \ + } \ + /* Binary arithmetic operator for left numeric and right CheckedNumeric. */ \ + template <typename T, typename Src, \ + typename std::enable_if<std::is_arithmetic<Src>::value>::type * = nullptr> \ + CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \ + Src lhs, const CheckedNumeric<T> &rhs) \ + { \ + typedef typename ArithmeticPromotion<T, Src>::type Promotion; \ + if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \ + return CheckedNumeric<Promotion>(lhs OP rhs.ValueUnsafe(), rhs.validity()); \ + return CheckedNumeric<Promotion>::cast(lhs) OP CheckedNumeric<Promotion>::cast(rhs); \ + } + +BASE_NUMERIC_ARITHMETIC_OPERATORS(Add, +, +=) +BASE_NUMERIC_ARITHMETIC_OPERATORS(Sub, -, -=) +BASE_NUMERIC_ARITHMETIC_OPERATORS(Mul, *, *=) +BASE_NUMERIC_ARITHMETIC_OPERATORS(Div, /, /=) +BASE_NUMERIC_ARITHMETIC_OPERATORS(Mod, %, %=) + +#undef BASE_NUMERIC_ARITHMETIC_OPERATORS + +} // namespace internal + +using internal::CheckedNumeric; + +} // namespace base + +#endif // BASE_NUMERICS_SAFE_MATH_H_ diff --git a/gfx/angle/src/common/third_party/numerics/base/numerics/safe_math_impl.h b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_math_impl.h new file mode 100755 index 000000000..341cdbc2b --- /dev/null +++ b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_math_impl.h @@ -0,0 +1,570 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_NUMERICS_SAFE_MATH_IMPL_H_ +#define BASE_NUMERICS_SAFE_MATH_IMPL_H_ + +#include <stddef.h> +#include <stdint.h> + +#include <climits> +#include <cmath> +#include <cstdlib> +#include <limits> +#include <type_traits> + +#include "base/numerics/safe_conversions.h" + +namespace base +{ +namespace internal +{ + +// Everything from here up to the floating point operations is portable C++, +// but it may not be fast. This code could be split based on +// platform/architecture and replaced with potentially faster implementations. + +// Integer promotion templates used by the portable checked integer arithmetic. +template <size_t Size, bool IsSigned> +struct IntegerForSizeAndSign; +template <> +struct IntegerForSizeAndSign<1, true> +{ + typedef int8_t type; +}; +template <> +struct IntegerForSizeAndSign<1, false> +{ + typedef uint8_t type; +}; +template <> +struct IntegerForSizeAndSign<2, true> +{ + typedef int16_t type; +}; +template <> +struct IntegerForSizeAndSign<2, false> +{ + typedef uint16_t type; +}; +template <> +struct IntegerForSizeAndSign<4, true> +{ + typedef int32_t type; +}; +template <> +struct IntegerForSizeAndSign<4, false> +{ + typedef uint32_t type; +}; +template <> +struct IntegerForSizeAndSign<8, true> +{ + typedef int64_t type; +}; +template <> +struct IntegerForSizeAndSign<8, false> +{ + typedef uint64_t type; +}; + +// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to +// support 128-bit math, then the ArithmeticPromotion template below will need +// to be updated (or more likely replaced with a decltype expression). + +template <typename Integer> +struct UnsignedIntegerForSize +{ + typedef + typename std::enable_if<std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type + type; +}; + +template <typename Integer> +struct SignedIntegerForSize +{ + typedef + typename std::enable_if<std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type + type; +}; + +template <typename Integer> +struct TwiceWiderInteger +{ + typedef typename std::enable_if< + std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign<sizeof(Integer) * 2, + std::numeric_limits<Integer>::is_signed>::type>::type type; +}; + +template <typename Integer> +struct PositionOfSignBit +{ + static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, size_t>::type + value = CHAR_BIT * sizeof(Integer) - 1; +}; + +// This is used for UnsignedAbs, where we need to support floating-point +// template instantiations even though we don't actually support the operations. +// However, there is no corresponding implementation of e.g. CheckedUnsignedAbs, +// so the float versions will not compile. +template <typename Numeric, + bool IsInteger = std::numeric_limits<Numeric>::is_integer, + bool IsFloat = std::numeric_limits<Numeric>::is_iec559> +struct UnsignedOrFloatForSize; + +template <typename Numeric> +struct UnsignedOrFloatForSize<Numeric, true, false> +{ + typedef typename UnsignedIntegerForSize<Numeric>::type type; +}; + +template <typename Numeric> +struct UnsignedOrFloatForSize<Numeric, false, true> +{ + typedef Numeric type; +}; + +// Helper templates for integer manipulations. + +template <typename T> +constexpr bool HasSignBit(T x) +{ + // Cast to unsigned since right shift on signed is undefined. + return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> + PositionOfSignBit<T>::value); +} + +// This wrapper undoes the standard integer promotions. +template <typename T> +constexpr T BinaryComplement(T x) +{ + return static_cast<T>(~x); +} + +// Here are the actual portable checked integer math implementations. +// TODO(jschuh): Break this code out from the enable_if pattern and find a clean +// way to coalesce things into the CheckedNumericState specializations below. + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type +CheckedAdd(T x, T y, RangeConstraint *validity) +{ + // Since the value of x+y is undefined if we have a signed type, we compute + // it using the unsigned type of the same size. + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; + UnsignedDst ux = static_cast<UnsignedDst>(x); + UnsignedDst uy = static_cast<UnsignedDst>(y); + UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy); + // Addition is valid if the sign of (x + y) is equal to either that of x or + // that of y. + if (std::numeric_limits<T>::is_signed) + { + if (HasSignBit(BinaryComplement(static_cast<UnsignedDst>((uresult ^ ux) & (uresult ^ uy))))) + { + *validity = RANGE_VALID; + } + else + { // Direction of wrap is inverse of result sign. + *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; + } + } + else + { // Unsigned is either valid or overflow. + *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; + } + return static_cast<T>(uresult); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type +CheckedSub(T x, T y, RangeConstraint *validity) +{ + // Since the value of x+y is undefined if we have a signed type, we compute + // it using the unsigned type of the same size. + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; + UnsignedDst ux = static_cast<UnsignedDst>(x); + UnsignedDst uy = static_cast<UnsignedDst>(y); + UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy); + // Subtraction is valid if either x and y have same sign, or (x-y) and x have + // the same sign. + if (std::numeric_limits<T>::is_signed) + { + if (HasSignBit(BinaryComplement(static_cast<UnsignedDst>((uresult ^ ux) & (ux ^ uy))))) + { + *validity = RANGE_VALID; + } + else + { // Direction of wrap is inverse of result sign. + *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; + } + } + else + { // Unsigned is either valid or underflow. + *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; + } + return static_cast<T>(uresult); +} + +// Integer multiplication is a bit complicated. In the fast case we just +// we just promote to a twice wider type, and range check the result. In the +// slow case we need to manually check that the result won't be truncated by +// checking with division against the appropriate bound. +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t), + T>::type +CheckedMul(T x, T y, RangeConstraint *validity) +{ + typedef typename TwiceWiderInteger<T>::type IntermediateType; + IntermediateType tmp = static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); + *validity = DstRangeRelationToSrcRange<T>(tmp); + return static_cast<T>(tmp); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed && + (sizeof(T) * 2 > sizeof(uintmax_t)), + T>::type +CheckedMul(T x, T y, RangeConstraint *validity) +{ + // If either side is zero then the result will be zero. + if (!x || !y) + { + *validity = RANGE_VALID; + return static_cast<T>(0); + } + else if (x > 0) + { + if (y > 0) + *validity = x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; + else + *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID : RANGE_UNDERFLOW; + } + else + { + if (y > 0) + *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID : RANGE_UNDERFLOW; + else + *validity = y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; + } + + return static_cast<T>(x * y); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed && + (sizeof(T) * 2 > sizeof(uintmax_t)), + T>::type +CheckedMul(T x, T y, RangeConstraint *validity) +{ + *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) ? RANGE_VALID : RANGE_OVERFLOW; + return static_cast<T>(x * y); +} + +// Division just requires a check for an invalid negation on signed min/-1. +template <typename T> +T CheckedDiv(T x, + T y, + RangeConstraint *validity, + typename std::enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) +{ + if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && + y == static_cast<T>(-1)) + { + *validity = RANGE_OVERFLOW; + return std::numeric_limits<T>::min(); + } + + *validity = RANGE_VALID; + return static_cast<T>(x / y); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed, + T>::type +CheckedMod(T x, T y, RangeConstraint *validity) +{ + *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; + return static_cast<T>(x % y); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, + T>::type +CheckedMod(T x, T y, RangeConstraint *validity) +{ + *validity = RANGE_VALID; + return static_cast<T>(x % y); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed, + T>::type +CheckedNeg(T value, RangeConstraint *validity) +{ + *validity = value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; + // The negation of signed min is min, so catch that one. + return static_cast<T>(-value); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, + T>::type +CheckedNeg(T value, RangeConstraint *validity) +{ + // The only legal unsigned negation is zero. + *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; + return static_cast<T>(-static_cast<typename SignedIntegerForSize<T>::type>(value)); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed, + T>::type +CheckedAbs(T value, RangeConstraint *validity) +{ + *validity = value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; + return static_cast<T>(std::abs(value)); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, + T>::type +CheckedAbs(T value, RangeConstraint *validity) +{ + // T is unsigned, so |value| must already be positive. + *validity = RANGE_VALID; + return value; +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed, + typename UnsignedIntegerForSize<T>::type>::type +CheckedUnsignedAbs(T value) +{ + typedef typename UnsignedIntegerForSize<T>::type UnsignedT; + return value == std::numeric_limits<T>::min() + ? static_cast<UnsignedT>(std::numeric_limits<T>::max()) + 1 + : static_cast<UnsignedT>(std::abs(value)); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, + T>::type +CheckedUnsignedAbs(T value) +{ + // T is unsigned, so |value| must already be positive. + return static_cast<T>(value); +} + +// These are the floating point stubs that the compiler needs to see. Only the +// negation operation is ever called. +#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ + template <typename T> \ + typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type Checked##NAME( \ + T, T, RangeConstraint *) \ + { \ + NOTREACHED(); \ + return static_cast<T>(0); \ + } + +BASE_FLOAT_ARITHMETIC_STUBS(Add) +BASE_FLOAT_ARITHMETIC_STUBS(Sub) +BASE_FLOAT_ARITHMETIC_STUBS(Mul) +BASE_FLOAT_ARITHMETIC_STUBS(Div) +BASE_FLOAT_ARITHMETIC_STUBS(Mod) + +#undef BASE_FLOAT_ARITHMETIC_STUBS + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(T value, + RangeConstraint *) +{ + return static_cast<T>(-value); +} + +template <typename T> +typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(T value, + RangeConstraint *) +{ + return static_cast<T>(std::abs(value)); +} + +// Floats carry around their validity state with them, but integers do not. So, +// we wrap the underlying value in a specialization in order to hide that detail +// and expose an interface via accessors. +enum NumericRepresentation +{ + NUMERIC_INTEGER, + NUMERIC_FLOATING, + NUMERIC_UNKNOWN +}; + +template <typename NumericType> +struct GetNumericRepresentation +{ + static const NumericRepresentation value = + std::numeric_limits<NumericType>::is_integer + ? NUMERIC_INTEGER + : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING : NUMERIC_UNKNOWN); +}; + +template <typename T, NumericRepresentation type = GetNumericRepresentation<T>::value> +class CheckedNumericState +{ +}; + +// Integrals require quite a bit of additional housekeeping to manage state. +template <typename T> +class CheckedNumericState<T, NUMERIC_INTEGER> +{ + private: + T value_; + RangeConstraint validity_ : CHAR_BIT; // Actually requires only two bits. + + public: + template <typename Src, NumericRepresentation type> + friend class CheckedNumericState; + + CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} + + template <typename Src> + CheckedNumericState(Src value, RangeConstraint validity) + : value_(static_cast<T>(value)), + validity_(GetRangeConstraint(validity | DstRangeRelationToSrcRange<T>(value))) + { + static_assert(std::numeric_limits<Src>::is_specialized, "Argument must be numeric."); + } + + // Copy constructor. + template <typename Src> + CheckedNumericState(const CheckedNumericState<Src> &rhs) + : value_(static_cast<T>(rhs.value())), + validity_(GetRangeConstraint(rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) + { + } + + template <typename Src> + explicit CheckedNumericState( + Src value, + typename std::enable_if<std::numeric_limits<Src>::is_specialized, int>::type = 0) + : value_(static_cast<T>(value)), validity_(DstRangeRelationToSrcRange<T>(value)) + { + } + + RangeConstraint validity() const { return validity_; } + T value() const { return value_; } +}; + +// Floating points maintain their own validity, but need translation wrappers. +template <typename T> +class CheckedNumericState<T, NUMERIC_FLOATING> +{ + private: + T value_; + + public: + template <typename Src, NumericRepresentation type> + friend class CheckedNumericState; + + CheckedNumericState() : value_(0.0) {} + + template <typename Src> + CheckedNumericState( + Src value, + RangeConstraint validity, + typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) + { + switch (DstRangeRelationToSrcRange<T>(value)) + { + case RANGE_VALID: + value_ = static_cast<T>(value); + break; + + case RANGE_UNDERFLOW: + value_ = -std::numeric_limits<T>::infinity(); + break; + + case RANGE_OVERFLOW: + value_ = std::numeric_limits<T>::infinity(); + break; + + case RANGE_INVALID: + value_ = std::numeric_limits<T>::quiet_NaN(); + break; + + default: + NOTREACHED(); + } + } + + template <typename Src> + explicit CheckedNumericState( + Src value, + typename std::enable_if<std::numeric_limits<Src>::is_specialized, int>::type = 0) + : value_(static_cast<T>(value)) + { + } + + // Copy constructor. + template <typename Src> + CheckedNumericState(const CheckedNumericState<Src> &rhs) : value_(static_cast<T>(rhs.value())) + { + } + + RangeConstraint validity() const + { + return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), + value_ >= -std::numeric_limits<T>::max()); + } + T value() const { return value_; } +}; + +// For integers less than 128-bit and floats 32-bit or larger, we have the type +// with the larger maximum exponent take precedence. +enum ArithmeticPromotionCategory +{ + LEFT_PROMOTION, + RIGHT_PROMOTION +}; + +template <typename Lhs, + typename Rhs = Lhs, + ArithmeticPromotionCategory Promotion = + (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) ? LEFT_PROMOTION + : RIGHT_PROMOTION> +struct ArithmeticPromotion; + +template <typename Lhs, typename Rhs> +struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> +{ + typedef Lhs type; +}; + +template <typename Lhs, typename Rhs> +struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> +{ + typedef Rhs type; +}; + +// We can statically check if operations on the provided types can wrap, so we +// can skip the checked operations if they're not needed. So, for an integer we +// care if the destination type preserves the sign and is twice the width of +// the source. +template <typename T, typename Lhs, typename Rhs> +struct IsIntegerArithmeticSafe +{ + static const bool value = + !std::numeric_limits<T>::is_iec559 && + StaticDstRangeRelationToSrcRange<T, Lhs>::value == NUMERIC_RANGE_CONTAINED && + sizeof(T) >= (2 * sizeof(Lhs)) && + StaticDstRangeRelationToSrcRange<T, Rhs>::value != NUMERIC_RANGE_CONTAINED && + sizeof(T) >= (2 * sizeof(Rhs)); +}; + +} // namespace internal +} // namespace base + +#endif // BASE_NUMERICS_SAFE_MATH_IMPL_H_ diff --git a/gfx/angle/src/common/third_party/numerics/base/numerics/safe_numerics_unittest.cc b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_numerics_unittest.cc new file mode 100755 index 000000000..052d85042 --- /dev/null +++ b/gfx/angle/src/common/third_party/numerics/base/numerics/safe_numerics_unittest.cc @@ -0,0 +1,771 @@ +// Copyright 2013 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include <stddef.h> +#include <stdint.h> + +#include <limits> +#include <type_traits> + +#include "base/compiler_specific.h" +#include "base/numerics/safe_conversions.h" +#include "base/numerics/safe_math.h" +#include "build/build_config.h" +#include "testing/gtest/include/gtest/gtest.h" + +#if defined(COMPILER_MSVC) && defined(ARCH_CPU_32_BITS) +#include <mmintrin.h> +#endif + +using std::numeric_limits; +using base::CheckedNumeric; +using base::checked_cast; +using base::IsValueInRangeForNumericType; +using base::IsValueNegative; +using base::SizeT; +using base::StrictNumeric; +using base::saturated_cast; +using base::strict_cast; +using base::internal::MaxExponent; +using base::internal::RANGE_VALID; +using base::internal::RANGE_INVALID; +using base::internal::RANGE_OVERFLOW; +using base::internal::RANGE_UNDERFLOW; +using base::internal::SignedIntegerForSize; + +// These tests deliberately cause arithmetic overflows. If the compiler is +// aggressive enough, it can const fold these overflows. Disable warnings about +// overflows for const expressions. +#if defined(OS_WIN) +#pragma warning(disable : 4756) +#endif + +// This is a helper function for finding the maximum value in Src that can be +// wholy represented as the destination floating-point type. +template <typename Dst, typename Src> +Dst GetMaxConvertibleToFloat() +{ + typedef numeric_limits<Dst> DstLimits; + typedef numeric_limits<Src> SrcLimits; + static_assert(SrcLimits::is_specialized, "Source must be numeric."); + static_assert(DstLimits::is_specialized, "Destination must be numeric."); + CHECK(DstLimits::is_iec559); + + if (SrcLimits::digits <= DstLimits::digits && + MaxExponent<Src>::value <= MaxExponent<Dst>::value) + return SrcLimits::max(); + Src max = SrcLimits::max() / 2 + (SrcLimits::is_integer ? 1 : 0); + while (max != static_cast<Src>(static_cast<Dst>(max))) + { + max /= 2; + } + return static_cast<Dst>(max); +} + +// Helper macros to wrap displaying the conversion types and line numbers. +#define TEST_EXPECTED_VALIDITY(expected, actual) \ + EXPECT_EQ(expected, CheckedNumeric<Dst>(actual).IsValid()) \ + << "Result test: Value " << +(actual).ValueUnsafe() << " as " << dst << " on line " \ + << line; + +#define TEST_EXPECTED_SUCCESS(actual) TEST_EXPECTED_VALIDITY(true, actual) +#define TEST_EXPECTED_FAILURE(actual) TEST_EXPECTED_VALIDITY(false, actual) + +#define TEST_EXPECTED_VALUE(expected, actual) \ + EXPECT_EQ(static_cast<Dst>(expected), CheckedNumeric<Dst>(actual).ValueUnsafe()) \ + << "Result test: Value " << +((actual).ValueUnsafe()) << " as " << dst << " on line " \ + << line; + +// Signed integer arithmetic. +template <typename Dst> +static void TestSpecializedArithmetic( + const char *dst, + int line, + typename std::enable_if<numeric_limits<Dst>::is_integer && numeric_limits<Dst>::is_signed, + int>::type = 0) +{ + typedef numeric_limits<Dst> DstLimits; + TEST_EXPECTED_FAILURE(-CheckedNumeric<Dst>(DstLimits::min())); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()).Abs()); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(-1).Abs()); + + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) + -1); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) + -1); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-DstLimits::max()) + -DstLimits::max()); + + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) - 1); + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()) - -1); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) - -DstLimits::max()); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-DstLimits::max()) - DstLimits::max()); + + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) * 2); + + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) / -1); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(-1) / 2); + + // Modulus is legal only for integers. + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>() % 1); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1); + TEST_EXPECTED_VALUE(-1, CheckedNumeric<Dst>(-1) % 2); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-1) % -2); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::min()) % 2); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(DstLimits::max()) % 2); + // Test all the different modulus combinations. + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(0, 1 % CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1); + CheckedNumeric<Dst> checked_dst = 1; + TEST_EXPECTED_VALUE(0, checked_dst %= 1); +} + +// Unsigned integer arithmetic. +template <typename Dst> +static void TestSpecializedArithmetic( + const char *dst, + int line, + typename std::enable_if<numeric_limits<Dst>::is_integer && !numeric_limits<Dst>::is_signed, + int>::type = 0) +{ + typedef numeric_limits<Dst> DstLimits; + TEST_EXPECTED_SUCCESS(-CheckedNumeric<Dst>(DstLimits::min())); + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()).Abs()); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) + -1); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::min()) - 1); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::min()) * 2); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) / 2); + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()).UnsignedAbs()); + TEST_EXPECTED_SUCCESS(CheckedNumeric<typename SignedIntegerForSize<Dst>::type>( + std::numeric_limits<typename SignedIntegerForSize<Dst>::type>::min()) + .UnsignedAbs()); + + // Modulus is legal only for integers. + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>() % 1); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) % 2); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(DstLimits::min()) % 2); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(DstLimits::max()) % 2); + // Test all the different modulus combinations. + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(0, 1 % CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) % 1); + CheckedNumeric<Dst> checked_dst = 1; + TEST_EXPECTED_VALUE(0, checked_dst %= 1); +} + +// Floating point arithmetic. +template <typename Dst> +void TestSpecializedArithmetic( + const char *dst, + int line, + typename std::enable_if<numeric_limits<Dst>::is_iec559, int>::type = 0) +{ + typedef numeric_limits<Dst> DstLimits; + TEST_EXPECTED_SUCCESS(-CheckedNumeric<Dst>(DstLimits::min())); + + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()).Abs()); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(-1).Abs()); + + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()) + -1); + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) + 1); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-DstLimits::max()) + -DstLimits::max()); + + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) - -DstLimits::max()); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(-DstLimits::max()) - DstLimits::max()); + + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()) * 2); + + TEST_EXPECTED_VALUE(-0.5, CheckedNumeric<Dst>(-1.0) / 2); + EXPECT_EQ(static_cast<Dst>(1.0), CheckedNumeric<Dst>(1.0).ValueFloating()); +} + +// Generic arithmetic tests. +template <typename Dst> +static void TestArithmetic(const char *dst, int line) +{ + typedef numeric_limits<Dst> DstLimits; + + EXPECT_EQ(true, CheckedNumeric<Dst>().IsValid()); + EXPECT_EQ( + false, + CheckedNumeric<Dst>(CheckedNumeric<Dst>(DstLimits::max()) * DstLimits::max()).IsValid()); + EXPECT_EQ(static_cast<Dst>(0), CheckedNumeric<Dst>().ValueOrDie()); + EXPECT_EQ(static_cast<Dst>(0), CheckedNumeric<Dst>().ValueOrDefault(1)); + EXPECT_EQ(static_cast<Dst>(1), + CheckedNumeric<Dst>(CheckedNumeric<Dst>(DstLimits::max()) * DstLimits::max()) + .ValueOrDefault(1)); + + // Test the operator combinations. + TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) + CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) - CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) * CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(2, 1 + CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(0, 1 - CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(1, 1 * CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(1, 1 / CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(2, CheckedNumeric<Dst>(1) + 1); + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>(1) - 1); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) * 1); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / 1); + CheckedNumeric<Dst> checked_dst = 1; + TEST_EXPECTED_VALUE(2, checked_dst += 1); + checked_dst = 1; + TEST_EXPECTED_VALUE(0, checked_dst -= 1); + checked_dst = 1; + TEST_EXPECTED_VALUE(1, checked_dst *= 1); + checked_dst = 1; + TEST_EXPECTED_VALUE(1, checked_dst /= 1); + + // Generic negation. + TEST_EXPECTED_VALUE(0, -CheckedNumeric<Dst>()); + TEST_EXPECTED_VALUE(-1, -CheckedNumeric<Dst>(1)); + TEST_EXPECTED_VALUE(1, -CheckedNumeric<Dst>(-1)); + TEST_EXPECTED_VALUE(static_cast<Dst>(DstLimits::max() * -1), + -CheckedNumeric<Dst>(DstLimits::max())); + + // Generic absolute value. + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>().Abs()); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1).Abs()); + TEST_EXPECTED_VALUE(DstLimits::max(), CheckedNumeric<Dst>(DstLimits::max()).Abs()); + + // Generic addition. + TEST_EXPECTED_VALUE(1, (CheckedNumeric<Dst>() + 1)); + TEST_EXPECTED_VALUE(2, (CheckedNumeric<Dst>(1) + 1)); + TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(-1) + 1)); + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::min()) + 1); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) + DstLimits::max()); + + // Generic subtraction. + TEST_EXPECTED_VALUE(-1, (CheckedNumeric<Dst>() - 1)); + TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(1) - 1)); + TEST_EXPECTED_VALUE(-2, (CheckedNumeric<Dst>(-1) - 1)); + TEST_EXPECTED_SUCCESS(CheckedNumeric<Dst>(DstLimits::max()) - 1); + + // Generic multiplication. + TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>() * 1)); + TEST_EXPECTED_VALUE(1, (CheckedNumeric<Dst>(1) * 1)); + TEST_EXPECTED_VALUE(-2, (CheckedNumeric<Dst>(-1) * 2)); + TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(0) * 0)); + TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(-1) * 0)); + TEST_EXPECTED_VALUE(0, (CheckedNumeric<Dst>(0) * -1)); + TEST_EXPECTED_FAILURE(CheckedNumeric<Dst>(DstLimits::max()) * DstLimits::max()); + + // Generic division. + TEST_EXPECTED_VALUE(0, CheckedNumeric<Dst>() / 1); + TEST_EXPECTED_VALUE(1, CheckedNumeric<Dst>(1) / 1); + TEST_EXPECTED_VALUE(DstLimits::min() / 2, CheckedNumeric<Dst>(DstLimits::min()) / 2); + TEST_EXPECTED_VALUE(DstLimits::max() / 2, CheckedNumeric<Dst>(DstLimits::max()) / 2); + + TestSpecializedArithmetic<Dst>(dst, line); +} + +// Helper macro to wrap displaying the conversion types and line numbers. +#define TEST_ARITHMETIC(Dst) TestArithmetic<Dst>(#Dst, __LINE__) + +TEST(SafeNumerics, SignedIntegerMath) +{ + TEST_ARITHMETIC(int8_t); + TEST_ARITHMETIC(int); + TEST_ARITHMETIC(intptr_t); + TEST_ARITHMETIC(intmax_t); +} + +TEST(SafeNumerics, UnsignedIntegerMath) +{ + TEST_ARITHMETIC(uint8_t); + TEST_ARITHMETIC(unsigned int); + TEST_ARITHMETIC(uintptr_t); + TEST_ARITHMETIC(uintmax_t); +} + +TEST(SafeNumerics, FloatingPointMath) +{ + TEST_ARITHMETIC(float); + TEST_ARITHMETIC(double); +} + +// Enumerates the five different conversions types we need to test. +enum NumericConversionType +{ + SIGN_PRESERVING_VALUE_PRESERVING, + SIGN_PRESERVING_NARROW, + SIGN_TO_UNSIGN_WIDEN_OR_EQUAL, + SIGN_TO_UNSIGN_NARROW, + UNSIGN_TO_SIGN_NARROW_OR_EQUAL, +}; + +// Template covering the different conversion tests. +template <typename Dst, typename Src, NumericConversionType conversion> +struct TestNumericConversion +{ +}; + +// EXPECT_EQ wrappers providing specific detail on test failures. +#define TEST_EXPECTED_RANGE(expected, actual) \ + EXPECT_EQ(expected, base::internal::DstRangeRelationToSrcRange<Dst>(actual)) \ + << "Conversion test: " << src << " value " << actual << " to " << dst << " on line " \ + << line; + +template <typename Dst, typename Src> +struct TestNumericConversion<Dst, Src, SIGN_PRESERVING_VALUE_PRESERVING> +{ + static void Test(const char *dst, const char *src, int line) + { + typedef numeric_limits<Src> SrcLimits; + typedef numeric_limits<Dst> DstLimits; + // Integral to floating. + static_assert( + (DstLimits::is_iec559 && SrcLimits::is_integer) || + // Not floating to integral and... + (!(DstLimits::is_integer && SrcLimits::is_iec559) && + // Same sign, same numeric, source is narrower or same. + ((SrcLimits::is_signed == DstLimits::is_signed && sizeof(Dst) >= sizeof(Src)) || + // Or signed destination and source is smaller + (DstLimits::is_signed && sizeof(Dst) > sizeof(Src)))), + "Comparison must be sign preserving and value preserving"); + + const CheckedNumeric<Dst> checked_dst = SrcLimits::max(); + TEST_EXPECTED_SUCCESS(checked_dst); + if (MaxExponent<Dst>::value > MaxExponent<Src>::value) + { + if (MaxExponent<Dst>::value >= MaxExponent<Src>::value * 2 - 1) + { + // At least twice larger type. + TEST_EXPECTED_SUCCESS(SrcLimits::max() * checked_dst); + } + else + { // Larger, but not at least twice as large. + TEST_EXPECTED_FAILURE(SrcLimits::max() * checked_dst); + TEST_EXPECTED_SUCCESS(checked_dst + 1); + } + } + else + { // Same width type. + TEST_EXPECTED_FAILURE(checked_dst + 1); + } + + TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max()); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1)); + if (SrcLimits::is_iec559) + { + TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max() * static_cast<Src>(-1)); + TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity()); + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1); + TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN()); + } + else if (numeric_limits<Src>::is_signed) + { + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1)); + TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::min()); + } + } +}; + +template <typename Dst, typename Src> +struct TestNumericConversion<Dst, Src, SIGN_PRESERVING_NARROW> +{ + static void Test(const char *dst, const char *src, int line) + { + typedef numeric_limits<Src> SrcLimits; + typedef numeric_limits<Dst> DstLimits; + static_assert(SrcLimits::is_signed == DstLimits::is_signed, + "Destination and source sign must be the same"); + static_assert(sizeof(Dst) < sizeof(Src) || (DstLimits::is_integer && SrcLimits::is_iec559), + "Destination must be narrower than source"); + + const CheckedNumeric<Dst> checked_dst; + TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max()); + TEST_EXPECTED_VALUE(1, checked_dst + static_cast<Src>(1)); + TEST_EXPECTED_FAILURE(checked_dst - SrcLimits::max()); + + TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max()); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1)); + if (SrcLimits::is_iec559) + { + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::max() * -1); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1)); + TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity()); + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1); + TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN()); + if (DstLimits::is_integer) + { + if (SrcLimits::digits < DstLimits::digits) + { + TEST_EXPECTED_RANGE(RANGE_OVERFLOW, static_cast<Src>(DstLimits::max())); + } + else + { + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::max())); + } + TEST_EXPECTED_RANGE(RANGE_VALID, + static_cast<Src>(GetMaxConvertibleToFloat<Src, Dst>())); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::min())); + } + } + else if (SrcLimits::is_signed) + { + TEST_EXPECTED_VALUE(-1, checked_dst - static_cast<Src>(1)); + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::min()); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(-1)); + } + else + { + TEST_EXPECTED_FAILURE(checked_dst - static_cast<Src>(1)); + TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::min()); + } + } +}; + +template <typename Dst, typename Src> +struct TestNumericConversion<Dst, Src, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL> +{ + static void Test(const char *dst, const char *src, int line) + { + typedef numeric_limits<Src> SrcLimits; + typedef numeric_limits<Dst> DstLimits; + static_assert(sizeof(Dst) >= sizeof(Src), + "Destination must be equal or wider than source."); + static_assert(SrcLimits::is_signed, "Source must be signed"); + static_assert(!DstLimits::is_signed, "Destination must be unsigned"); + + const CheckedNumeric<Dst> checked_dst; + TEST_EXPECTED_VALUE(SrcLimits::max(), checked_dst + SrcLimits::max()); + TEST_EXPECTED_FAILURE(checked_dst + static_cast<Src>(-1)); + TEST_EXPECTED_FAILURE(checked_dst + -SrcLimits::max()); + + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::min()); + TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::max()); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1)); + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, static_cast<Src>(-1)); + } +}; + +template <typename Dst, typename Src> +struct TestNumericConversion<Dst, Src, SIGN_TO_UNSIGN_NARROW> +{ + static void Test(const char *dst, const char *src, int line) + { + typedef numeric_limits<Src> SrcLimits; + typedef numeric_limits<Dst> DstLimits; + static_assert( + (DstLimits::is_integer && SrcLimits::is_iec559) || (sizeof(Dst) < sizeof(Src)), + "Destination must be narrower than source."); + static_assert(SrcLimits::is_signed, "Source must be signed."); + static_assert(!DstLimits::is_signed, "Destination must be unsigned."); + + const CheckedNumeric<Dst> checked_dst; + TEST_EXPECTED_VALUE(1, checked_dst + static_cast<Src>(1)); + TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max()); + TEST_EXPECTED_FAILURE(checked_dst + static_cast<Src>(-1)); + TEST_EXPECTED_FAILURE(checked_dst + -SrcLimits::max()); + + TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max()); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1)); + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, static_cast<Src>(-1)); + if (SrcLimits::is_iec559) + { + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::max() * -1); + TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::infinity()); + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::infinity() * -1); + TEST_EXPECTED_RANGE(RANGE_INVALID, SrcLimits::quiet_NaN()); + if (DstLimits::is_integer) + { + if (SrcLimits::digits < DstLimits::digits) + { + TEST_EXPECTED_RANGE(RANGE_OVERFLOW, static_cast<Src>(DstLimits::max())); + } + else + { + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::max())); + } + TEST_EXPECTED_RANGE(RANGE_VALID, + static_cast<Src>(GetMaxConvertibleToFloat<Src, Dst>())); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(DstLimits::min())); + } + } + else + { + TEST_EXPECTED_RANGE(RANGE_UNDERFLOW, SrcLimits::min()); + } + } +}; + +template <typename Dst, typename Src> +struct TestNumericConversion<Dst, Src, UNSIGN_TO_SIGN_NARROW_OR_EQUAL> +{ + static void Test(const char *dst, const char *src, int line) + { + typedef numeric_limits<Src> SrcLimits; + typedef numeric_limits<Dst> DstLimits; + static_assert(sizeof(Dst) <= sizeof(Src), + "Destination must be narrower or equal to source."); + static_assert(!SrcLimits::is_signed, "Source must be unsigned."); + static_assert(DstLimits::is_signed, "Destination must be signed."); + + const CheckedNumeric<Dst> checked_dst; + TEST_EXPECTED_VALUE(1, checked_dst + static_cast<Src>(1)); + TEST_EXPECTED_FAILURE(checked_dst + SrcLimits::max()); + TEST_EXPECTED_VALUE(SrcLimits::min(), checked_dst + SrcLimits::min()); + + TEST_EXPECTED_RANGE(RANGE_VALID, SrcLimits::min()); + TEST_EXPECTED_RANGE(RANGE_OVERFLOW, SrcLimits::max()); + TEST_EXPECTED_RANGE(RANGE_VALID, static_cast<Src>(1)); + } +}; + +// Helper macro to wrap displaying the conversion types and line numbers +#define TEST_NUMERIC_CONVERSION(d, s, t) TestNumericConversion<d, s, t>::Test(#d, #s, __LINE__) + +TEST(SafeNumerics, IntMinOperations) +{ + TEST_NUMERIC_CONVERSION(int8_t, int8_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(uint8_t, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING); + + TEST_NUMERIC_CONVERSION(int8_t, int, SIGN_PRESERVING_NARROW); + TEST_NUMERIC_CONVERSION(uint8_t, unsigned int, SIGN_PRESERVING_NARROW); + TEST_NUMERIC_CONVERSION(int8_t, float, SIGN_PRESERVING_NARROW); + + TEST_NUMERIC_CONVERSION(uint8_t, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL); + + TEST_NUMERIC_CONVERSION(uint8_t, int, SIGN_TO_UNSIGN_NARROW); + TEST_NUMERIC_CONVERSION(uint8_t, intmax_t, SIGN_TO_UNSIGN_NARROW); + TEST_NUMERIC_CONVERSION(uint8_t, float, SIGN_TO_UNSIGN_NARROW); + + TEST_NUMERIC_CONVERSION(int8_t, unsigned int, UNSIGN_TO_SIGN_NARROW_OR_EQUAL); + TEST_NUMERIC_CONVERSION(int8_t, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL); +} + +TEST(SafeNumerics, IntOperations) +{ + TEST_NUMERIC_CONVERSION(int, int, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(unsigned int, unsigned int, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(int, int8_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(unsigned int, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(int, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING); + + TEST_NUMERIC_CONVERSION(int, intmax_t, SIGN_PRESERVING_NARROW); + TEST_NUMERIC_CONVERSION(unsigned int, uintmax_t, SIGN_PRESERVING_NARROW); + TEST_NUMERIC_CONVERSION(int, float, SIGN_PRESERVING_NARROW); + TEST_NUMERIC_CONVERSION(int, double, SIGN_PRESERVING_NARROW); + + TEST_NUMERIC_CONVERSION(unsigned int, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL); + TEST_NUMERIC_CONVERSION(unsigned int, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL); + + TEST_NUMERIC_CONVERSION(unsigned int, intmax_t, SIGN_TO_UNSIGN_NARROW); + TEST_NUMERIC_CONVERSION(unsigned int, float, SIGN_TO_UNSIGN_NARROW); + TEST_NUMERIC_CONVERSION(unsigned int, double, SIGN_TO_UNSIGN_NARROW); + + TEST_NUMERIC_CONVERSION(int, unsigned int, UNSIGN_TO_SIGN_NARROW_OR_EQUAL); + TEST_NUMERIC_CONVERSION(int, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL); +} + +TEST(SafeNumerics, IntMaxOperations) +{ + TEST_NUMERIC_CONVERSION(intmax_t, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(uintmax_t, uintmax_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(intmax_t, int, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(uintmax_t, unsigned int, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(intmax_t, unsigned int, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(intmax_t, uint8_t, SIGN_PRESERVING_VALUE_PRESERVING); + + TEST_NUMERIC_CONVERSION(intmax_t, float, SIGN_PRESERVING_NARROW); + TEST_NUMERIC_CONVERSION(intmax_t, double, SIGN_PRESERVING_NARROW); + + TEST_NUMERIC_CONVERSION(uintmax_t, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL); + TEST_NUMERIC_CONVERSION(uintmax_t, int8_t, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL); + + TEST_NUMERIC_CONVERSION(uintmax_t, float, SIGN_TO_UNSIGN_NARROW); + TEST_NUMERIC_CONVERSION(uintmax_t, double, SIGN_TO_UNSIGN_NARROW); + + TEST_NUMERIC_CONVERSION(intmax_t, uintmax_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL); +} + +TEST(SafeNumerics, FloatOperations) +{ + TEST_NUMERIC_CONVERSION(float, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(float, uintmax_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(float, int, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(float, unsigned int, SIGN_PRESERVING_VALUE_PRESERVING); + + TEST_NUMERIC_CONVERSION(float, double, SIGN_PRESERVING_NARROW); +} + +TEST(SafeNumerics, DoubleOperations) +{ + TEST_NUMERIC_CONVERSION(double, intmax_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(double, uintmax_t, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(double, int, SIGN_PRESERVING_VALUE_PRESERVING); + TEST_NUMERIC_CONVERSION(double, unsigned int, SIGN_PRESERVING_VALUE_PRESERVING); +} + +TEST(SafeNumerics, SizeTOperations) +{ + TEST_NUMERIC_CONVERSION(size_t, int, SIGN_TO_UNSIGN_WIDEN_OR_EQUAL); + TEST_NUMERIC_CONVERSION(int, size_t, UNSIGN_TO_SIGN_NARROW_OR_EQUAL); +} + +TEST(SafeNumerics, CastTests) +{ +// MSVC catches and warns that we're forcing saturation in these tests. +// Since that's intentional, we need to shut this warning off. +#if defined(COMPILER_MSVC) +#pragma warning(disable : 4756) +#endif + + int small_positive = 1; + int small_negative = -1; + double double_small = 1.0; + double double_large = numeric_limits<double>::max(); + double double_infinity = numeric_limits<float>::infinity(); + double double_large_int = numeric_limits<int>::max(); + double double_small_int = numeric_limits<int>::min(); + + // Just test that the casts compile, since the other tests cover logic. + EXPECT_EQ(0, checked_cast<int>(static_cast<size_t>(0))); + EXPECT_EQ(0, strict_cast<int>(static_cast<char>(0))); + EXPECT_EQ(0, strict_cast<int>(static_cast<unsigned char>(0))); + EXPECT_EQ(0U, strict_cast<unsigned>(static_cast<unsigned char>(0))); + EXPECT_EQ(1ULL, static_cast<uint64_t>(StrictNumeric<size_t>(1U))); + EXPECT_EQ(1ULL, static_cast<uint64_t>(SizeT(1U))); + EXPECT_EQ(1U, static_cast<size_t>(StrictNumeric<unsigned>(1U))); + + EXPECT_TRUE(CheckedNumeric<uint64_t>(StrictNumeric<unsigned>(1U)).IsValid()); + EXPECT_TRUE(CheckedNumeric<int>(StrictNumeric<unsigned>(1U)).IsValid()); + EXPECT_FALSE(CheckedNumeric<unsigned>(StrictNumeric<int>(-1)).IsValid()); + + EXPECT_TRUE(IsValueNegative(-1)); + EXPECT_TRUE(IsValueNegative(numeric_limits<int>::min())); + EXPECT_FALSE(IsValueNegative(numeric_limits<unsigned>::min())); + EXPECT_TRUE(IsValueNegative(-numeric_limits<double>::max())); + EXPECT_FALSE(IsValueNegative(0)); + EXPECT_FALSE(IsValueNegative(1)); + EXPECT_FALSE(IsValueNegative(0u)); + EXPECT_FALSE(IsValueNegative(1u)); + EXPECT_FALSE(IsValueNegative(numeric_limits<int>::max())); + EXPECT_FALSE(IsValueNegative(numeric_limits<unsigned>::max())); + EXPECT_FALSE(IsValueNegative(numeric_limits<double>::max())); + + // These casts and coercions will fail to compile: + // EXPECT_EQ(0, strict_cast<int>(static_cast<size_t>(0))); + // EXPECT_EQ(0, strict_cast<size_t>(static_cast<int>(0))); + // EXPECT_EQ(1ULL, StrictNumeric<size_t>(1)); + // EXPECT_EQ(1, StrictNumeric<size_t>(1U)); + + // Test various saturation corner cases. + EXPECT_EQ(saturated_cast<int>(small_negative), static_cast<int>(small_negative)); + EXPECT_EQ(saturated_cast<int>(small_positive), static_cast<int>(small_positive)); + EXPECT_EQ(saturated_cast<unsigned>(small_negative), static_cast<unsigned>(0)); + EXPECT_EQ(saturated_cast<int>(double_small), static_cast<int>(double_small)); + EXPECT_EQ(saturated_cast<int>(double_large), numeric_limits<int>::max()); + EXPECT_EQ(saturated_cast<float>(double_large), double_infinity); + EXPECT_EQ(saturated_cast<float>(-double_large), -double_infinity); + EXPECT_EQ(numeric_limits<int>::min(), saturated_cast<int>(double_small_int)); + EXPECT_EQ(numeric_limits<int>::max(), saturated_cast<int>(double_large_int)); + + float not_a_number = + std::numeric_limits<float>::infinity() - std::numeric_limits<float>::infinity(); + EXPECT_TRUE(std::isnan(not_a_number)); + EXPECT_EQ(0, saturated_cast<int>(not_a_number)); +} + +#if GTEST_HAS_DEATH_TEST + +TEST(SafeNumerics, SaturatedCastChecks) +{ + float not_a_number = + std::numeric_limits<float>::infinity() - std::numeric_limits<float>::infinity(); + EXPECT_TRUE(std::isnan(not_a_number)); + EXPECT_DEATH((saturated_cast<int, base::SaturatedCastNaNBehaviorCheck>(not_a_number)), ""); +} + +#endif // GTEST_HAS_DEATH_TEST + +TEST(SafeNumerics, IsValueInRangeForNumericType) +{ + EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(0)); + EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(1)); + EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(2)); + EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(-1)); + EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(0xffffffffu)); + EXPECT_TRUE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0xffffffff))); + EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0x100000000))); + EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(UINT64_C(0x100000001))); + EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(std::numeric_limits<int32_t>::min())); + EXPECT_FALSE(IsValueInRangeForNumericType<uint32_t>(std::numeric_limits<int64_t>::min())); + + EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0)); + EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(1)); + EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(2)); + EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(-1)); + EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0x7fffffff)); + EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(0x7fffffffu)); + EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(0x80000000u)); + EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(0xffffffffu)); + EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0x80000000))); + EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0xffffffff))); + EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(INT64_C(0x100000000))); + EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>(std::numeric_limits<int32_t>::min())); + EXPECT_TRUE(IsValueInRangeForNumericType<int32_t>( + static_cast<int64_t>(std::numeric_limits<int32_t>::min()))); + EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>( + static_cast<int64_t>(std::numeric_limits<int32_t>::min()) - 1)); + EXPECT_FALSE(IsValueInRangeForNumericType<int32_t>(std::numeric_limits<int64_t>::min())); + + EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(0)); + EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(1)); + EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(2)); + EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(-1)); + EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(0xffffffffu)); + EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0xffffffff))); + EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0x100000000))); + EXPECT_TRUE(IsValueInRangeForNumericType<uint64_t>(UINT64_C(0x100000001))); + EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(std::numeric_limits<int32_t>::min())); + EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(INT64_C(-1))); + EXPECT_FALSE(IsValueInRangeForNumericType<uint64_t>(std::numeric_limits<int64_t>::min())); + + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0)); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(1)); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(2)); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(-1)); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x7fffffff)); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x7fffffffu)); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0x80000000u)); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(0xffffffffu)); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0x80000000))); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0xffffffff))); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0x100000000))); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(INT64_C(0x7fffffffffffffff))); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(UINT64_C(0x7fffffffffffffff))); + EXPECT_FALSE(IsValueInRangeForNumericType<int64_t>(UINT64_C(0x8000000000000000))); + EXPECT_FALSE(IsValueInRangeForNumericType<int64_t>(UINT64_C(0xffffffffffffffff))); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(std::numeric_limits<int32_t>::min())); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>( + static_cast<int64_t>(std::numeric_limits<int32_t>::min()))); + EXPECT_TRUE(IsValueInRangeForNumericType<int64_t>(std::numeric_limits<int64_t>::min())); +} + +TEST(SafeNumerics, CompoundNumericOperations) +{ + CheckedNumeric<int> a = 1; + CheckedNumeric<int> b = 2; + CheckedNumeric<int> c = 3; + CheckedNumeric<int> d = 4; + a += b; + EXPECT_EQ(3, a.ValueOrDie()); + a -= c; + EXPECT_EQ(0, a.ValueOrDie()); + d /= b; + EXPECT_EQ(2, d.ValueOrDie()); + d *= d; + EXPECT_EQ(4, d.ValueOrDie()); + + CheckedNumeric<int> too_large = std::numeric_limits<int>::max(); + EXPECT_TRUE(too_large.IsValid()); + too_large += d; + EXPECT_FALSE(too_large.IsValid()); + too_large -= d; + EXPECT_FALSE(too_large.IsValid()); + too_large /= d; + EXPECT_FALSE(too_large.IsValid()); +} |