diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /gfx/angle/src/common/matrix_utils.h | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'gfx/angle/src/common/matrix_utils.h')
-rwxr-xr-x | gfx/angle/src/common/matrix_utils.h | 386 |
1 files changed, 386 insertions, 0 deletions
diff --git a/gfx/angle/src/common/matrix_utils.h b/gfx/angle/src/common/matrix_utils.h new file mode 100755 index 000000000..aa3f89536 --- /dev/null +++ b/gfx/angle/src/common/matrix_utils.h @@ -0,0 +1,386 @@ +// +// Copyright 2015 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// +// Matrix: +// Utility class implementing various matrix operations. +// Supports matrices with minimum 2 and maximum 4 number of rows/columns. +// +// TODO: Check if we can merge Matrix.h in sample_util with this and replace it with this implementation. +// TODO: Rename this file to Matrix.h once we remove Matrix.h in sample_util. + +#ifndef COMMON_MATRIX_UTILS_H_ +#define COMMON_MATRIX_UTILS_H_ + +#include <vector> + +#include "common/debug.h" +#include "common/mathutil.h" + +namespace angle +{ + +template<typename T> +class Matrix +{ + public: + Matrix(const std::vector<T> &elements, const unsigned int &numRows, const unsigned int &numCols) + : mElements(elements), + mRows(numRows), + mCols(numCols) + { + ASSERT(rows() >= 1 && rows() <= 4); + ASSERT(columns() >= 1 && columns() <= 4); + } + + Matrix(const std::vector<T> &elements, const unsigned int &size) + : mElements(elements), + mRows(size), + mCols(size) + { + ASSERT(rows() >= 1 && rows() <= 4); + ASSERT(columns() >= 1 && columns() <= 4); + } + + Matrix(const T *elements, const unsigned int &size) + : mRows(size), + mCols(size) + { + ASSERT(rows() >= 1 && rows() <= 4); + ASSERT(columns() >= 1 && columns() <= 4); + for (size_t i = 0; i < size * size; i++) + mElements.push_back(elements[i]); + } + + const T &operator()(const unsigned int &rowIndex, const unsigned int &columnIndex) const + { + return mElements[rowIndex * columns() + columnIndex]; + } + + T &operator()(const unsigned int &rowIndex, const unsigned int &columnIndex) + { + return mElements[rowIndex * columns() + columnIndex]; + } + + const T &at(const unsigned int &rowIndex, const unsigned int &columnIndex) const + { + return operator()(rowIndex, columnIndex); + } + + Matrix<T> operator*(const Matrix<T> &m) + { + ASSERT(columns() == m.rows()); + + unsigned int resultRows = rows(); + unsigned int resultCols = m.columns(); + Matrix<T> result(std::vector<T>(resultRows * resultCols), resultRows, resultCols); + for (unsigned int i = 0; i < resultRows; i++) + { + for (unsigned int j = 0; j < resultCols; j++) + { + T tmp = 0.0f; + for (unsigned int k = 0; k < columns(); k++) + tmp += at(i, k) * m(k, j); + result(i, j) = tmp; + } + } + + return result; + } + + unsigned int size() const + { + ASSERT(rows() == columns()); + return rows(); + } + + unsigned int rows() const { return mRows; } + + unsigned int columns() const { return mCols; } + + std::vector<T> elements() const { return mElements; } + + Matrix<T> compMult(const Matrix<T> &mat1) const + { + Matrix result(std::vector<T>(mElements.size()), size()); + for (unsigned int i = 0; i < columns(); i++) + for (unsigned int j = 0; j < rows(); j++) + result(i, j) = at(i, j) * mat1(i, j); + + return result; + } + + Matrix<T> outerProduct(const Matrix<T> &mat1) const + { + unsigned int cols = mat1.columns(); + Matrix result(std::vector<T>(rows() * cols), rows(), cols); + for (unsigned int i = 0; i < rows(); i++) + for (unsigned int j = 0; j < cols; j++) + result(i, j) = at(i, 0) * mat1(0, j); + + return result; + } + + Matrix<T> transpose() const + { + Matrix result(std::vector<T>(mElements.size()), columns(), rows()); + for (unsigned int i = 0; i < columns(); i++) + for (unsigned int j = 0; j < rows(); j++) + result(i, j) = at(j, i); + + return result; + } + + T determinant() const + { + ASSERT(rows() == columns()); + + switch (size()) + { + case 2: + return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0); + + case 3: + return at(0, 0) * at(1, 1) * at(2, 2) + + at(0, 1) * at(1, 2) * at(2, 0) + + at(0, 2) * at(1, 0) * at(2, 1) - + at(0, 2) * at(1, 1) * at(2, 0) - + at(0, 1) * at(1, 0) * at(2, 2) - + at(0, 0) * at(1, 2) * at(2, 1); + + case 4: + { + const float minorMatrices[4][3 * 3] = + { + { + at(1, 1), at(2, 1), at(3, 1), + at(1, 2), at(2, 2), at(3, 2), + at(1, 3), at(2, 3), at(3, 3), + }, + { + at(1, 0), at(2, 0), at(3, 0), + at(1, 2), at(2, 2), at(3, 2), + at(1, 3), at(2, 3), at(3, 3), + }, + { + at(1, 0), at(2, 0), at(3, 0), + at(1, 1), at(2, 1), at(3, 1), + at(1, 3), at(2, 3), at(3, 3), + }, + { + at(1, 0), at(2, 0), at(3, 0), + at(1, 1), at(2, 1), at(3, 1), + at(1, 2), at(2, 2), at(3, 2), + } + }; + return at(0, 0) * Matrix<T>(minorMatrices[0], 3).determinant() - + at(0, 1) * Matrix<T>(minorMatrices[1], 3).determinant() + + at(0, 2) * Matrix<T>(minorMatrices[2], 3).determinant() - + at(0, 3) * Matrix<T>(minorMatrices[3], 3).determinant(); + } + + default: + UNREACHABLE(); + break; + } + + return T(); + } + + Matrix<T> inverse() const + { + ASSERT(rows() == columns()); + + Matrix<T> cof(std::vector<T>(mElements.size()), rows(), columns()); + switch (size()) + { + case 2: + cof(0, 0) = at(1, 1); + cof(0, 1) = -at(1, 0); + cof(1, 0) = -at(0, 1); + cof(1, 1) = at(0, 0); + break; + + case 3: + cof(0, 0) = at(1, 1) * at(2, 2) - + at(2, 1) * at(1, 2); + cof(0, 1) = -(at(1, 0) * at(2, 2) - + at(2, 0) * at(1, 2)); + cof(0, 2) = at(1, 0) * at(2, 1) - + at(2, 0) * at(1, 1); + cof(1, 0) = -(at(0, 1) * at(2, 2) - + at(2, 1) * at(0, 2)); + cof(1, 1) = at(0, 0) * at(2, 2) - + at(2, 0) * at(0, 2); + cof(1, 2) = -(at(0, 0) * at(2, 1) - + at(2, 0) * at(0, 1)); + cof(2, 0) = at(0, 1) * at(1, 2) - + at(1, 1) * at(0, 2); + cof(2, 1) = -(at(0, 0) * at(1, 2) - + at(1, 0) * at(0, 2)); + cof(2, 2) = at(0, 0) * at(1, 1) - + at(1, 0) * at(0, 1); + break; + + case 4: + cof(0, 0) = at(1, 1) * at(2, 2) * at(3, 3) + + at(2, 1) * at(3, 2) * at(1, 3) + + at(3, 1) * at(1, 2) * at(2, 3) - + at(1, 1) * at(3, 2) * at(2, 3) - + at(2, 1) * at(1, 2) * at(3, 3) - + at(3, 1) * at(2, 2) * at(1, 3); + cof(0, 1) = -(at(1, 0) * at(2, 2) * at(3, 3) + + at(2, 0) * at(3, 2) * at(1, 3) + + at(3, 0) * at(1, 2) * at(2, 3) - + at(1, 0) * at(3, 2) * at(2, 3) - + at(2, 0) * at(1, 2) * at(3, 3) - + at(3, 0) * at(2, 2) * at(1, 3)); + cof(0, 2) = at(1, 0) * at(2, 1) * at(3, 3) + + at(2, 0) * at(3, 1) * at(1, 3) + + at(3, 0) * at(1, 1) * at(2, 3) - + at(1, 0) * at(3, 1) * at(2, 3) - + at(2, 0) * at(1, 1) * at(3, 3) - + at(3, 0) * at(2, 1) * at(1, 3); + cof(0, 3) = -(at(1, 0) * at(2, 1) * at(3, 2) + + at(2, 0) * at(3, 1) * at(1, 2) + + at(3, 0) * at(1, 1) * at(2, 2) - + at(1, 0) * at(3, 1) * at(2, 2) - + at(2, 0) * at(1, 1) * at(3, 2) - + at(3, 0) * at(2, 1) * at(1, 2)); + cof(1, 0) = -(at(0, 1) * at(2, 2) * at(3, 3) + + at(2, 1) * at(3, 2) * at(0, 3) + + at(3, 1) * at(0, 2) * at(2, 3) - + at(0, 1) * at(3, 2) * at(2, 3) - + at(2, 1) * at(0, 2) * at(3, 3) - + at(3, 1) * at(2, 2) * at(0, 3)); + cof(1, 1) = at(0, 0) * at(2, 2) * at(3, 3) + + at(2, 0) * at(3, 2) * at(0, 3) + + at(3, 0) * at(0, 2) * at(2, 3) - + at(0, 0) * at(3, 2) * at(2, 3) - + at(2, 0) * at(0, 2) * at(3, 3) - + at(3, 0) * at(2, 2) * at(0, 3); + cof(1, 2) = -(at(0, 0) * at(2, 1) * at(3, 3) + + at(2, 0) * at(3, 1) * at(0, 3) + + at(3, 0) * at(0, 1) * at(2, 3) - + at(0, 0) * at(3, 1) * at(2, 3) - + at(2, 0) * at(0, 1) * at(3, 3) - + at(3, 0) * at(2, 1) * at(0, 3)); + cof(1, 3) = at(0, 0) * at(2, 1) * at(3, 2) + + at(2, 0) * at(3, 1) * at(0, 2) + + at(3, 0) * at(0, 1) * at(2, 2) - + at(0, 0) * at(3, 1) * at(2, 2) - + at(2, 0) * at(0, 1) * at(3, 2) - + at(3, 0) * at(2, 1) * at(0, 2); + cof(2, 0) = at(0, 1) * at(1, 2) * at(3, 3) + + at(1, 1) * at(3, 2) * at(0, 3) + + at(3, 1) * at(0, 2) * at(1, 3) - + at(0, 1) * at(3, 2) * at(1, 3) - + at(1, 1) * at(0, 2) * at(3, 3) - + at(3, 1) * at(1, 2) * at(0, 3); + cof(2, 1) = -(at(0, 0) * at(1, 2) * at(3, 3) + + at(1, 0) * at(3, 2) * at(0, 3) + + at(3, 0) * at(0, 2) * at(1, 3) - + at(0, 0) * at(3, 2) * at(1, 3) - + at(1, 0) * at(0, 2) * at(3, 3) - + at(3, 0) * at(1, 2) * at(0, 3)); + cof(2, 2) = at(0, 0) * at(1, 1) * at(3, 3) + + at(1, 0) * at(3, 1) * at(0, 3) + + at(3, 0) * at(0, 1) * at(1, 3) - + at(0, 0) * at(3, 1) * at(1, 3) - + at(1, 0) * at(0, 1) * at(3, 3) - + at(3, 0) * at(1, 1) * at(0, 3); + cof(2, 3) = -(at(0, 0) * at(1, 1) * at(3, 2) + + at(1, 0) * at(3, 1) * at(0, 2) + + at(3, 0) * at(0, 1) * at(1, 2) - + at(0, 0) * at(3, 1) * at(1, 2) - + at(1, 0) * at(0, 1) * at(3, 2) - + at(3, 0) * at(1, 1) * at(0, 2)); + cof(3, 0) = -(at(0, 1) * at(1, 2) * at(2, 3) + + at(1, 1) * at(2, 2) * at(0, 3) + + at(2, 1) * at(0, 2) * at(1, 3) - + at(0, 1) * at(2, 2) * at(1, 3) - + at(1, 1) * at(0, 2) * at(2, 3) - + at(2, 1) * at(1, 2) * at(0, 3)); + cof(3, 1) = at(0, 0) * at(1, 2) * at(2, 3) + + at(1, 0) * at(2, 2) * at(0, 3) + + at(2, 0) * at(0, 2) * at(1, 3) - + at(0, 0) * at(2, 2) * at(1, 3) - + at(1, 0) * at(0, 2) * at(2, 3) - + at(2, 0) * at(1, 2) * at(0, 3); + cof(3, 2) = -(at(0, 0) * at(1, 1) * at(2, 3) + + at(1, 0) * at(2, 1) * at(0, 3) + + at(2, 0) * at(0, 1) * at(1, 3) - + at(0, 0) * at(2, 1) * at(1, 3) - + at(1, 0) * at(0, 1) * at(2, 3) - + at(2, 0) * at(1, 1) * at(0, 3)); + cof(3, 3) = at(0, 0) * at(1, 1) * at(2, 2) + + at(1, 0) * at(2, 1) * at(0, 2) + + at(2, 0) * at(0, 1) * at(1, 2) - + at(0, 0) * at(2, 1) * at(1, 2) - + at(1, 0) * at(0, 1) * at(2, 2) - + at(2, 0) * at(1, 1) * at(0, 2); + break; + + default: + UNREACHABLE(); + break; + } + + // The inverse of A is the transpose of the cofactor matrix times the reciprocal of the determinant of A. + Matrix<T> adjugateMatrix(cof.transpose()); + T det = determinant(); + Matrix<T> result(std::vector<T>(mElements.size()), rows(), columns()); + for (unsigned int i = 0; i < rows(); i++) + for (unsigned int j = 0; j < columns(); j++) + result(i, j) = det ? adjugateMatrix(i, j) / det : T(); + + return result; + } + + void setToIdentity() + { + ASSERT(rows() == columns()); + + const auto one = T(1); + const auto zero = T(0); + + for (auto &e : mElements) + e = zero; + + for (unsigned int i = 0; i < rows(); ++i) + { + const auto pos = i * columns() + (i % columns()); + mElements[pos] = one; + } + } + + template <unsigned int Size> + static void setToIdentity(T(&matrix)[Size]) + { + static_assert(gl::iSquareRoot<Size>() != 0, "Matrix is not square."); + + const auto cols = gl::iSquareRoot<Size>(); + const auto one = T(1); + const auto zero = T(0); + + for (auto &e : matrix) + e = zero; + + for (unsigned int i = 0; i < cols; ++i) + { + const auto pos = i * cols + (i % cols); + matrix[pos] = one; + } + } + + private: + std::vector<T> mElements; + unsigned int mRows; + unsigned int mCols; +}; + +} // namespace angle + +#endif // COMMON_MATRIX_UTILS_H_ + |