diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /gfx/2d/image_operations.cpp | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'gfx/2d/image_operations.cpp')
-rw-r--r-- | gfx/2d/image_operations.cpp | 390 |
1 files changed, 390 insertions, 0 deletions
diff --git a/gfx/2d/image_operations.cpp b/gfx/2d/image_operations.cpp new file mode 100644 index 000000000..62215f007 --- /dev/null +++ b/gfx/2d/image_operations.cpp @@ -0,0 +1,390 @@ +// Copyright (c) 2006-2012 The Chromium Authors. All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in +// the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google, Inc. nor the names of its contributors +// may be used to endorse or promote products derived from this +// software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS +// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED +// AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT +// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +// SUCH DAMAGE. + +#include "base/basictypes.h" + +#include <algorithm> +#include <cmath> +#include <limits> + +#include "image_operations.h" + +#include "base/stack_container.h" +#include "convolver.h" +#include "skia/include/core/SkColorPriv.h" +#include "skia/include/core/SkBitmap.h" +#include "skia/include/core/SkRect.h" +#include "skia/include/core/SkFontLCDConfig.h" + +namespace skia { + +namespace resize { + +// TODO(egouriou): Take advantage of periods in the convolution. +// Practical resizing filters are periodic outside of the border area. +// For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the +// source become p pixels in the destination) will have a period of p. +// A nice consequence is a period of 1 when downscaling by an integral +// factor. Downscaling from typical display resolutions is also bound +// to produce interesting periods as those are chosen to have multiple +// small factors. +// Small periods reduce computational load and improve cache usage if +// the coefficients can be shared. For periods of 1 we can consider +// loading the factors only once outside the borders. +void ComputeFilters(ImageOperations::ResizeMethod method, + int src_size, int dst_size, + int dest_subset_lo, int dest_subset_size, + ConvolutionFilter1D* output) { + // method_ will only ever refer to an "algorithm method". + SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) && + (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD)); + + float scale = static_cast<float>(dst_size) / static_cast<float>(src_size); + + int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi) + + // When we're doing a magnification, the scale will be larger than one. This + // means the destination pixels are much smaller than the source pixels, and + // that the range covered by the filter won't necessarily cover any source + // pixel boundaries. Therefore, we use these clamped values (max of 1) for + // some computations. + float clamped_scale = std::min(1.0f, scale); + + float src_support = GetFilterSupport(method, clamped_scale) / clamped_scale; + + // Speed up the divisions below by turning them into multiplies. + float inv_scale = 1.0f / scale; + + StackVector<float, 64> filter_values; + StackVector<int16_t, 64> fixed_filter_values; + + // Loop over all pixels in the output range. We will generate one set of + // filter values for each one. Those values will tell us how to blend the + // source pixels to compute the destination pixel. + for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi; + dest_subset_i++) { + // Reset the arrays. We don't declare them inside so they can re-use the + // same malloc-ed buffer. + filter_values->clear(); + fixed_filter_values->clear(); + + // This is the pixel in the source directly under the pixel in the dest. + // Note that we base computations on the "center" of the pixels. To see + // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x + // downscale should "cover" the pixels around the pixel with *its center* + // at coordinates (2.5, 2.5) in the source, not those around (0, 0). + // Hence we need to scale coordinates (0.5, 0.5), not (0, 0). + float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale; + + // Compute the (inclusive) range of source pixels the filter covers. + int src_begin = std::max(0, FloorInt(src_pixel - src_support)); + int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support)); + + // Compute the unnormalized filter value at each location of the source + // it covers. + float filter_sum = 0.0f; // Sub of the filter values for normalizing. + for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end; + cur_filter_pixel++) { + // Distance from the center of the filter, this is the filter coordinate + // in source space. We also need to consider the center of the pixel + // when comparing distance against 'src_pixel'. In the 5x downscale + // example used above the distance from the center of the filter to + // the pixel with coordinates (2, 2) should be 0, because its center + // is at (2.5, 2.5). + float src_filter_dist = + ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel); + + // Since the filter really exists in dest space, map it there. + float dest_filter_dist = src_filter_dist * clamped_scale; + + // Compute the filter value at that location. + float filter_value = ComputeFilter(method, dest_filter_dist); + filter_values->push_back(filter_value); + + filter_sum += filter_value; + } + + // The filter must be normalized so that we don't affect the brightness of + // the image. Convert to normalized fixed point. + int16_t fixed_sum = 0; + for (size_t i = 0; i < filter_values->size(); i++) { + int16_t cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum); + fixed_sum += cur_fixed; + fixed_filter_values->push_back(cur_fixed); + } + + // The conversion to fixed point will leave some rounding errors, which + // we add back in to avoid affecting the brightness of the image. We + // arbitrarily add this to the center of the filter array (this won't always + // be the center of the filter function since it could get clipped on the + // edges, but it doesn't matter enough to worry about that case). + int16_t leftovers = output->FloatToFixed(1.0f) - fixed_sum; + fixed_filter_values[fixed_filter_values->size() / 2] += leftovers; + + // Now it's ready to go. + output->AddFilter(src_begin, &fixed_filter_values[0], + static_cast<int>(fixed_filter_values->size())); + } + + output->PaddingForSIMD(8); +} + +} // namespace resize + +ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod( + ImageOperations::ResizeMethod method) { + // Convert any "Quality Method" into an "Algorithm Method" + if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD && + method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) { + return method; + } + // The call to ImageOperationsGtv::Resize() above took care of + // GPU-acceleration in the cases where it is possible. So now we just + // pick the appropriate software method for each resize quality. + switch (method) { + // Users of RESIZE_GOOD are willing to trade a lot of quality to + // get speed, allowing the use of linear resampling to get hardware + // acceleration (SRB). Hence any of our "good" software filters + // will be acceptable, and we use the fastest one, Hamming-1. + case ImageOperations::RESIZE_GOOD: + // Users of RESIZE_BETTER are willing to trade some quality in order + // to improve performance, but are guaranteed not to devolve to a linear + // resampling. In visual tests we see that Hamming-1 is not as good as + // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is + // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed + // an acceptable trade-off between quality and speed. + case ImageOperations::RESIZE_BETTER: + return ImageOperations::RESIZE_HAMMING1; + default: + return ImageOperations::RESIZE_LANCZOS3; + } +} + +// Resize ---------------------------------------------------------------------- + +// static +SkBitmap ImageOperations::Resize(const SkBitmap& source, + ResizeMethod method, + int dest_width, int dest_height, + const SkIRect& dest_subset, + void* dest_pixels /* = nullptr */) { + if (method == ImageOperations::RESIZE_SUBPIXEL) + return ResizeSubpixel(source, dest_width, dest_height, dest_subset); + else + return ResizeBasic(source, method, dest_width, dest_height, dest_subset, + dest_pixels); +} + +// static +SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source, + int dest_width, int dest_height, + const SkIRect& dest_subset) { + // Currently only works on Linux/BSD because these are the only platforms + // where SkFontLCDConfig::GetSubpixelOrder is defined. +#if defined(XP_UNIX) + // Understand the display. + const SkFontLCDConfig::LCDOrder order = SkFontLCDConfig::GetSubpixelOrder(); + const SkFontLCDConfig::LCDOrientation orientation = + SkFontLCDConfig::GetSubpixelOrientation(); + + // Decide on which dimension, if any, to deploy subpixel rendering. + int w = 1; + int h = 1; + switch (orientation) { + case SkFontLCDConfig::kHorizontal_LCDOrientation: + w = dest_width < source.width() ? 3 : 1; + break; + case SkFontLCDConfig::kVertical_LCDOrientation: + h = dest_height < source.height() ? 3 : 1; + break; + } + + // Resize the image. + const int width = dest_width * w; + const int height = dest_height * h; + SkIRect subset = { dest_subset.fLeft, dest_subset.fTop, + dest_subset.fLeft + dest_subset.width() * w, + dest_subset.fTop + dest_subset.height() * h }; + SkBitmap img = ResizeBasic(source, ImageOperations::RESIZE_LANCZOS3, width, + height, subset); + const int row_words = img.rowBytes() / 4; + if (w == 1 && h == 1) + return img; + + // Render into subpixels. + SkBitmap result; + SkImageInfo info = SkImageInfo::Make(dest_subset.width(), + dest_subset.height(), + kBGRA_8888_SkColorType, + kPremul_SkAlphaType); + + + result.allocPixels(info); + if (!result.readyToDraw()) + return img; + + SkAutoLockPixels locker(img); + if (!img.readyToDraw()) + return img; + + uint32_t* src_row = img.getAddr32(0, 0); + uint32_t* dst_row = result.getAddr32(0, 0); + for (int y = 0; y < dest_subset.height(); y++) { + uint32_t* src = src_row; + uint32_t* dst = dst_row; + for (int x = 0; x < dest_subset.width(); x++, src += w, dst++) { + uint8_t r = 0, g = 0, b = 0, a = 0; + switch (order) { + case SkFontLCDConfig::kRGB_LCDOrder: + switch (orientation) { + case SkFontLCDConfig::kHorizontal_LCDOrientation: + r = SkGetPackedR32(src[0]); + g = SkGetPackedG32(src[1]); + b = SkGetPackedB32(src[2]); + a = SkGetPackedA32(src[1]); + break; + case SkFontLCDConfig::kVertical_LCDOrientation: + r = SkGetPackedR32(src[0 * row_words]); + g = SkGetPackedG32(src[1 * row_words]); + b = SkGetPackedB32(src[2 * row_words]); + a = SkGetPackedA32(src[1 * row_words]); + break; + } + break; + case SkFontLCDConfig::kBGR_LCDOrder: + switch (orientation) { + case SkFontLCDConfig::kHorizontal_LCDOrientation: + b = SkGetPackedB32(src[0]); + g = SkGetPackedG32(src[1]); + r = SkGetPackedR32(src[2]); + a = SkGetPackedA32(src[1]); + break; + case SkFontLCDConfig::kVertical_LCDOrientation: + b = SkGetPackedB32(src[0 * row_words]); + g = SkGetPackedG32(src[1 * row_words]); + r = SkGetPackedR32(src[2 * row_words]); + a = SkGetPackedA32(src[1 * row_words]); + break; + } + break; + case SkFontLCDConfig::kNONE_LCDOrder: + break; + } + // Premultiplied alpha is very fragile. + a = a > r ? a : r; + a = a > g ? a : g; + a = a > b ? a : b; + *dst = SkPackARGB32(a, r, g, b); + } + src_row += h * row_words; + dst_row += result.rowBytes() / 4; + } + result.setAlphaType(img.alphaType()); + return result; +#else + return SkBitmap(); +#endif // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID) +} + +// static +SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source, + ResizeMethod method, + int dest_width, int dest_height, + const SkIRect& dest_subset, + void* dest_pixels /* = nullptr */) { + // Ensure that the ResizeMethod enumeration is sound. + SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) && + (method <= RESIZE_LAST_QUALITY_METHOD)) || + ((RESIZE_FIRST_ALGORITHM_METHOD <= method) && + (method <= RESIZE_LAST_ALGORITHM_METHOD))); + + // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just + // return empty. + if (source.width() < 1 || source.height() < 1 || + dest_width < 1 || dest_height < 1) + return SkBitmap(); + + method = ResizeMethodToAlgorithmMethod(method); + // Check that we deal with an "algorithm methods" from this point onward. + SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) && + (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD)); + + SkAutoLockPixels locker(source); + if (!source.readyToDraw()) + return SkBitmap(); + + ConvolutionFilter1D x_filter; + ConvolutionFilter1D y_filter; + + resize::ComputeFilters(method, source.width(), dest_width, dest_subset.fLeft, dest_subset.width(), &x_filter); + resize::ComputeFilters(method, source.height(), dest_height, dest_subset.fTop, dest_subset.height(), &y_filter); + + // Get a source bitmap encompassing this touched area. We construct the + // offsets and row strides such that it looks like a new bitmap, while + // referring to the old data. + const uint8_t* source_subset = + reinterpret_cast<const uint8_t*>(source.getPixels()); + + // Convolve into the result. + SkBitmap result; + SkImageInfo info = SkImageInfo::Make(dest_subset.width(), + dest_subset.height(), + kBGRA_8888_SkColorType, + kPremul_SkAlphaType); + + if (dest_pixels) { + result.installPixels(info, dest_pixels, info.minRowBytes()); + } else { + result.allocPixels(info); + } + + if (!result.readyToDraw()) + return SkBitmap(); + + BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()), + !source.isOpaque(), x_filter, y_filter, + static_cast<int>(result.rowBytes()), + static_cast<unsigned char*>(result.getPixels())); + + // Preserve the "opaque" flag for use as an optimization later. + result.setAlphaType(source.alphaType()); + + return result; +} + +// static +SkBitmap ImageOperations::Resize(const SkBitmap& source, + ResizeMethod method, + int dest_width, int dest_height, + void* dest_pixels /* = nullptr */) { + SkIRect dest_subset = { 0, 0, dest_width, dest_height }; + return Resize(source, method, dest_width, dest_height, dest_subset, + dest_pixels); +} + +} // namespace skia |