diff options
author | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
---|---|---|
committer | Matt A. Tobin <mattatobin@localhost.localdomain> | 2018-02-02 04:16:08 -0500 |
commit | 5f8de423f190bbb79a62f804151bc24824fa32d8 (patch) | |
tree | 10027f336435511475e392454359edea8e25895d /gfx/2d/PathHelpers.h | |
parent | 49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff) | |
download | UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip |
Add m-esr52 at 52.6.0
Diffstat (limited to 'gfx/2d/PathHelpers.h')
-rw-r--r-- | gfx/2d/PathHelpers.h | 424 |
1 files changed, 424 insertions, 0 deletions
diff --git a/gfx/2d/PathHelpers.h b/gfx/2d/PathHelpers.h new file mode 100644 index 000000000..553a886b9 --- /dev/null +++ b/gfx/2d/PathHelpers.h @@ -0,0 +1,424 @@ +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef MOZILLA_GFX_PATHHELPERS_H_ +#define MOZILLA_GFX_PATHHELPERS_H_ + +#include "2D.h" +#include "UserData.h" + +#include <cmath> + +namespace mozilla { +namespace gfx { + +// Kappa constant for 90-degree angle +const Float kKappaFactor = 0.55191497064665766025f; + +// Calculate kappa constant for partial curve. The sign of angle in the +// tangent will actually ensure this is negative for a counter clockwise +// sweep, so changing signs later isn't needed. +inline Float ComputeKappaFactor(Float aAngle) +{ + return (4.0f / 3.0f) * tanf(aAngle / 4.0f); +} + +/** + * Draws a partial arc <= 90 degrees given exact start and end points. + * Assumes that it is continuing from an already specified start point. + */ +template <typename T> +inline void PartialArcToBezier(T* aSink, + const Point& aStartOffset, const Point& aEndOffset, + const Matrix& aTransform, + Float aKappaFactor = kKappaFactor) +{ + Point cp1 = + aStartOffset + Point(-aStartOffset.y, aStartOffset.x) * aKappaFactor; + + Point cp2 = + aEndOffset + Point(aEndOffset.y, -aEndOffset.x) * aKappaFactor; + + aSink->BezierTo(aTransform.TransformPoint(cp1), + aTransform.TransformPoint(cp2), + aTransform.TransformPoint(aEndOffset)); +} + +/** + * Draws an acute arc (<= 90 degrees) given exact start and end points. + * Specialized version avoiding kappa calculation. + */ +template <typename T> +inline void AcuteArcToBezier(T* aSink, + const Point& aOrigin, const Size& aRadius, + const Point& aStartPoint, const Point& aEndPoint, + Float aKappaFactor = kKappaFactor) +{ + aSink->LineTo(aStartPoint); + if (!aRadius.IsEmpty()) { + Float kappaX = aKappaFactor * aRadius.width / aRadius.height; + Float kappaY = aKappaFactor * aRadius.height / aRadius.width; + Point startOffset = aStartPoint - aOrigin; + Point endOffset = aEndPoint - aOrigin; + aSink->BezierTo(aStartPoint + Point(-startOffset.y * kappaX, startOffset.x * kappaY), + aEndPoint + Point(endOffset.y * kappaX, -endOffset.x * kappaY), + aEndPoint); + } else if (aEndPoint != aStartPoint) { + aSink->LineTo(aEndPoint); + } +} + +/** + * Draws an acute arc (<= 90 degrees) given exact start and end points. + */ +template <typename T> +inline void AcuteArcToBezier(T* aSink, + const Point& aOrigin, const Size& aRadius, + const Point& aStartPoint, const Point& aEndPoint, + Float aStartAngle, Float aEndAngle) +{ + AcuteArcToBezier(aSink, aOrigin, aRadius, aStartPoint, aEndPoint, + ComputeKappaFactor(aEndAngle - aStartAngle)); +} + +template <typename T> +void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius, + float aStartAngle, float aEndAngle, bool aAntiClockwise, + float aRotation = 0.0f) +{ + Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f; + + // Calculate the total arc we're going to sweep. + Float arcSweepLeft = (aEndAngle - aStartAngle) * sweepDirection; + + // Clockwise we always sweep from the smaller to the larger angle, ccw + // it's vice versa. + if (arcSweepLeft < 0) { + // Rerverse sweep is modulo'd into range rather than clamped. + arcSweepLeft = Float(2.0f * M_PI) + fmodf(arcSweepLeft, Float(2.0f * M_PI)); + // Recalculate the start angle to land closer to end angle. + aStartAngle = aEndAngle - arcSweepLeft * sweepDirection; + } else if (arcSweepLeft > Float(2.0f * M_PI)) { + // Sweeping more than 2 * pi is a full circle. + arcSweepLeft = Float(2.0f * M_PI); + } + + Float currentStartAngle = aStartAngle; + Point currentStartOffset(cosf(aStartAngle), sinf(aStartAngle)); + Matrix transform = Matrix::Scaling(aRadius.width, aRadius.height); + if (aRotation != 0.0f) { + transform *= Matrix::Rotation(aRotation); + } + transform.PostTranslate(aOrigin); + aSink->LineTo(transform.TransformPoint(currentStartOffset)); + + while (arcSweepLeft > 0) { + Float currentEndAngle = + currentStartAngle + std::min(arcSweepLeft, Float(M_PI / 2.0f)) * sweepDirection; + Point currentEndOffset(cosf(currentEndAngle), sinf(currentEndAngle)); + + PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform, + ComputeKappaFactor(currentEndAngle - currentStartAngle)); + + // We guarantee here the current point is the start point of the next + // curve segment. + arcSweepLeft -= Float(M_PI / 2.0f); + currentStartAngle = currentEndAngle; + currentStartOffset = currentEndOffset; + } +} + +/* This is basically the ArcToBezier with the parameters for drawing a circle + * inlined which vastly simplifies it and avoids a bunch of transcedental function + * calls which should make it faster. */ +template <typename T> +void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius) +{ + Matrix transform(aRadius.width, 0, 0, aRadius.height, aOrigin.x, aOrigin.y); + Point currentStartOffset(1, 0); + + aSink->LineTo(transform.TransformPoint(currentStartOffset)); + + for (int i = 0; i < 4; i++) { + // cos(x+pi/2) == -sin(x) + // sin(x+pi/2) == cos(x) + Point currentEndOffset(-currentStartOffset.y, currentStartOffset.x); + + PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform); + + // We guarantee here the current point is the start point of the next + // curve segment. + currentStartOffset = currentEndOffset; + } +} + +/** + * Appends a path represending a rectangle to the path being built by + * aPathBuilder. + * + * aRect The rectangle to append. + * aDrawClockwise If set to true, the path will start at the left of the top + * left edge and draw clockwise. If set to false the path will + * start at the right of the top left edge and draw counter- + * clockwise. + */ +GFX2D_API void AppendRectToPath(PathBuilder* aPathBuilder, + const Rect& aRect, + bool aDrawClockwise = true); + +inline already_AddRefed<Path> MakePathForRect(const DrawTarget& aDrawTarget, + const Rect& aRect, + bool aDrawClockwise = true) +{ + RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder(); + AppendRectToPath(builder, aRect, aDrawClockwise); + return builder->Finish(); +} + +struct RectCornerRadii { + Size radii[RectCorner::Count]; + + RectCornerRadii() {} + + explicit RectCornerRadii(Float radius) { + for (int i = 0; i < RectCorner::Count; i++) { + radii[i].SizeTo(radius, radius); + } + } + + explicit RectCornerRadii(Float radiusX, Float radiusY) { + for (int i = 0; i < RectCorner::Count; i++) { + radii[i].SizeTo(radiusX, radiusY); + } + } + + RectCornerRadii(Float tl, Float tr, Float br, Float bl) { + radii[RectCorner::TopLeft].SizeTo(tl, tl); + radii[RectCorner::TopRight].SizeTo(tr, tr); + radii[RectCorner::BottomRight].SizeTo(br, br); + radii[RectCorner::BottomLeft].SizeTo(bl, bl); + } + + RectCornerRadii(const Size& tl, const Size& tr, + const Size& br, const Size& bl) { + radii[RectCorner::TopLeft] = tl; + radii[RectCorner::TopRight] = tr; + radii[RectCorner::BottomRight] = br; + radii[RectCorner::BottomLeft] = bl; + } + + const Size& operator[](size_t aCorner) const { + return radii[aCorner]; + } + + Size& operator[](size_t aCorner) { + return radii[aCorner]; + } + + bool operator==(const RectCornerRadii& aOther) const { + for (size_t i = 0; i < RectCorner::Count; i++) { + if (radii[i] != aOther.radii[i]) return false; + } + return true; + } + + void Scale(Float aXScale, Float aYScale) { + for (int i = 0; i < RectCorner::Count; i++) { + radii[i].Scale(aXScale, aYScale); + } + } + + const Size TopLeft() const { return radii[RectCorner::TopLeft]; } + Size& TopLeft() { return radii[RectCorner::TopLeft]; } + + const Size TopRight() const { return radii[RectCorner::TopRight]; } + Size& TopRight() { return radii[RectCorner::TopRight]; } + + const Size BottomRight() const { return radii[RectCorner::BottomRight]; } + Size& BottomRight() { return radii[RectCorner::BottomRight]; } + + const Size BottomLeft() const { return radii[RectCorner::BottomLeft]; } + Size& BottomLeft() { return radii[RectCorner::BottomLeft]; } +}; + +/** + * Appends a path represending a rounded rectangle to the path being built by + * aPathBuilder. + * + * aRect The rectangle to append. + * aCornerRadii Contains the radii of the top-left, top-right, bottom-right + * and bottom-left corners, in that order. + * aDrawClockwise If set to true, the path will start at the left of the top + * left edge and draw clockwise. If set to false the path will + * start at the right of the top left edge and draw counter- + * clockwise. + */ +GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder, + const Rect& aRect, + const RectCornerRadii& aRadii, + bool aDrawClockwise = true); + +inline already_AddRefed<Path> MakePathForRoundedRect(const DrawTarget& aDrawTarget, + const Rect& aRect, + const RectCornerRadii& aRadii, + bool aDrawClockwise = true) +{ + RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder(); + AppendRoundedRectToPath(builder, aRect, aRadii, aDrawClockwise); + return builder->Finish(); +} + +/** + * Appends a path represending an ellipse to the path being built by + * aPathBuilder. + * + * The ellipse extends aDimensions.width / 2.0 in the horizontal direction + * from aCenter, and aDimensions.height / 2.0 in the vertical direction. + */ +GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder, + const Point& aCenter, + const Size& aDimensions); + +inline already_AddRefed<Path> MakePathForEllipse(const DrawTarget& aDrawTarget, + const Point& aCenter, + const Size& aDimensions) +{ + RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder(); + AppendEllipseToPath(builder, aCenter, aDimensions); + return builder->Finish(); +} + +/** + * If aDrawTarget's transform only contains a translation, and if this line is + * a horizontal or vertical line, this function will snap the line's vertices + * to align with the device pixel grid so that stroking the line with a one + * pixel wide stroke will result in a crisp line that is not antialiased over + * two pixels across its width. + * + * @return Returns true if this function snaps aRect's vertices, else returns + * false. + */ +GFX2D_API bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2, + const DrawTarget& aDrawTarget, + Float aLineWidth); + +/** + * This function paints each edge of aRect separately, snapping the edges using + * SnapLineToDevicePixelsForStroking. Stroking the edges as separate paths + * helps ensure not only that the stroke spans a single row of device pixels if + * possible, but also that the ends of stroke dashes start and end on device + * pixels too. + */ +GFX2D_API void StrokeSnappedEdgesOfRect(const Rect& aRect, + DrawTarget& aDrawTarget, + const ColorPattern& aColor, + const StrokeOptions& aStrokeOptions); + +/** + * Return the margin, in device space, by which a stroke can extend beyond the + * rendered shape. + * @param aStrokeOptions The stroke options that the stroke is drawn with. + * @param aTransform The user space to device space transform. + * @return The stroke margin. + */ +GFX2D_API Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions, + const Matrix& aTransform); + +extern UserDataKey sDisablePixelSnapping; + +/** + * If aDrawTarget's transform only contains a translation or, if + * aAllowScaleOr90DegreeRotate is true, and/or a scale/90 degree rotation, this + * function will convert aRect to device space and snap it to device pixels. + * This function returns true if aRect is modified, otherwise it returns false. + * + * Note that the snapping is such that filling the rect using a DrawTarget + * which has the identity matrix as its transform will result in crisp edges. + * (That is, aRect will have integer values, aligning its edges between pixel + * boundaries.) If on the other hand you stroking the rect with an odd valued + * stroke width then the edges of the stroke will be antialiased (assuming an + * AntialiasMode that does antialiasing). + * + * Empty snaps are those which result in a rectangle of 0 area. If they are + * disallowed, an axis is left unsnapped if the rounding process results in a + * length of 0. + */ +inline bool UserToDevicePixelSnapped(Rect& aRect, const DrawTarget& aDrawTarget, + bool aAllowScaleOr90DegreeRotate = false, + bool aAllowEmptySnaps = true) +{ + if (aDrawTarget.GetUserData(&sDisablePixelSnapping)) { + return false; + } + + Matrix mat = aDrawTarget.GetTransform(); + + const Float epsilon = 0.0000001f; +#define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon) + if (!aAllowScaleOr90DegreeRotate && + (!WITHIN_E(mat._11, 1.f) || !WITHIN_E(mat._22, 1.f) || + !WITHIN_E(mat._12, 0.f) || !WITHIN_E(mat._21, 0.f))) { + // We have non-translation, but only translation is allowed. + return false; + } +#undef WITHIN_E + + Point p1 = mat.TransformPoint(aRect.TopLeft()); + Point p2 = mat.TransformPoint(aRect.TopRight()); + Point p3 = mat.TransformPoint(aRect.BottomRight()); + + // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, + // two opposite corners define the entire rectangle. So check if + // the axis-aligned rectangle with opposite corners p1 and p3 + // define an axis-aligned rectangle whose other corners are p2 and p4. + // We actually only need to check one of p2 and p4, since an affine + // transform maps parallelograms to parallelograms. + if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) { + Point p1r = p1; + Point p3r = p3; + p1r.Round(); + p3r.Round(); + if (aAllowEmptySnaps || p1r.x != p3r.x) { + p1.x = p1r.x; + p3.x = p3r.x; + } + if (aAllowEmptySnaps || p1r.y != p3r.y) { + p1.y = p1r.y; + p3.y = p3r.y; + } + + aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); + aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(), + std::max(p1.y, p3.y) - aRect.Y())); + return true; + } + + return false; +} + +/** + * This function has the same behavior as UserToDevicePixelSnapped except that + * aRect is not transformed to device space. + */ +inline bool MaybeSnapToDevicePixels(Rect& aRect, const DrawTarget& aDrawTarget, + bool aAllowScaleOr90DegreeRotate = false, + bool aAllowEmptySnaps = true) +{ + if (UserToDevicePixelSnapped(aRect, aDrawTarget, + aAllowScaleOr90DegreeRotate, aAllowEmptySnaps)) { + // Since UserToDevicePixelSnapped returned true we know there is no + // rotation/skew in 'mat', so we can just use TransformBounds() here. + Matrix mat = aDrawTarget.GetTransform(); + mat.Invert(); + aRect = mat.TransformBounds(aRect); + return true; + } + return false; +} + +} // namespace gfx +} // namespace mozilla + +#endif /* MOZILLA_GFX_PATHHELPERS_H_ */ |