summaryrefslogtreecommitdiffstats
path: root/devtools/client/performance/modules/logic/tree-model.js
diff options
context:
space:
mode:
authorMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
committerMatt A. Tobin <mattatobin@localhost.localdomain>2018-02-02 04:16:08 -0500
commit5f8de423f190bbb79a62f804151bc24824fa32d8 (patch)
tree10027f336435511475e392454359edea8e25895d /devtools/client/performance/modules/logic/tree-model.js
parent49ee0794b5d912db1f95dce6eb52d781dc210db5 (diff)
downloadUXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.gz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.lz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.tar.xz
UXP-5f8de423f190bbb79a62f804151bc24824fa32d8.zip
Add m-esr52 at 52.6.0
Diffstat (limited to 'devtools/client/performance/modules/logic/tree-model.js')
-rw-r--r--devtools/client/performance/modules/logic/tree-model.js556
1 files changed, 556 insertions, 0 deletions
diff --git a/devtools/client/performance/modules/logic/tree-model.js b/devtools/client/performance/modules/logic/tree-model.js
new file mode 100644
index 000000000..b6376ee8a
--- /dev/null
+++ b/devtools/client/performance/modules/logic/tree-model.js
@@ -0,0 +1,556 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+"use strict";
+
+const { JITOptimizations } = require("devtools/client/performance/modules/logic/jit");
+const FrameUtils = require("devtools/client/performance/modules/logic/frame-utils");
+
+/**
+ * A call tree for a thread. This is essentially a linkage between all frames
+ * of all samples into a single tree structure, with additional information
+ * on each node, like the time spent (in milliseconds) and samples count.
+ *
+ * @param object thread
+ * The raw thread object received from the backend. Contains samples,
+ * stackTable, frameTable, and stringTable.
+ * @param object options
+ * Additional supported options
+ * - number startTime
+ * - number endTime
+ * - boolean contentOnly [optional]
+ * - boolean invertTree [optional]
+ * - boolean flattenRecursion [optional]
+ */
+function ThreadNode(thread, options = {}) {
+ if (options.endTime == void 0 || options.startTime == void 0) {
+ throw new Error("ThreadNode requires both `startTime` and `endTime`.");
+ }
+ this.samples = 0;
+ this.sampleTimes = [];
+ this.youngestFrameSamples = 0;
+ this.calls = [];
+ this.duration = options.endTime - options.startTime;
+ this.nodeType = "Thread";
+ this.inverted = options.invertTree;
+
+ // Total bytesize of all allocations if enabled
+ this.byteSize = 0;
+ this.youngestFrameByteSize = 0;
+
+ let { samples, stackTable, frameTable, stringTable } = thread;
+
+ // Nothing to do if there are no samples.
+ if (samples.data.length === 0) {
+ return;
+ }
+
+ this._buildInverted(samples, stackTable, frameTable, stringTable, options);
+ if (!options.invertTree) {
+ this._uninvert();
+ }
+}
+
+ThreadNode.prototype = {
+ /**
+ * Build an inverted call tree from profile samples. The format of the
+ * samples is described in tools/profiler/ProfileEntry.h, under the heading
+ * "ThreadProfile JSON Format".
+ *
+ * The profile data is naturally presented inverted. Inverting the call tree
+ * is also the default in the Performance tool.
+ *
+ * @param object samples
+ * The raw samples array received from the backend.
+ * @param object stackTable
+ * The table of deduplicated stacks from the backend.
+ * @param object frameTable
+ * The table of deduplicated frames from the backend.
+ * @param object stringTable
+ * The table of deduplicated strings from the backend.
+ * @param object options
+ * Additional supported options
+ * - number startTime
+ * - number endTime
+ * - boolean contentOnly [optional]
+ * - boolean invertTree [optional]
+ */
+ _buildInverted: function buildInverted(samples, stackTable, frameTable, stringTable,
+ options) {
+ function getOrAddFrameNode(calls, isLeaf, frameKey, inflatedFrame, isMetaCategory,
+ leafTable) {
+ // Insert the inflated frame into the call tree at the current level.
+ let frameNode;
+
+ // Leaf nodes have fan out much greater than non-leaf nodes, thus the
+ // use of a hash table. Otherwise, do linear search.
+ //
+ // Note that this method is very hot, thus the manual looping over
+ // Array.prototype.find.
+ if (isLeaf) {
+ frameNode = leafTable[frameKey];
+ } else {
+ for (let i = 0; i < calls.length; i++) {
+ if (calls[i].key === frameKey) {
+ frameNode = calls[i];
+ break;
+ }
+ }
+ }
+
+ if (!frameNode) {
+ frameNode = new FrameNode(frameKey, inflatedFrame, isMetaCategory);
+ if (isLeaf) {
+ leafTable[frameKey] = frameNode;
+ }
+ calls.push(frameNode);
+ }
+
+ return frameNode;
+ }
+
+ const SAMPLE_STACK_SLOT = samples.schema.stack;
+ const SAMPLE_TIME_SLOT = samples.schema.time;
+ const SAMPLE_BYTESIZE_SLOT = samples.schema.size;
+
+ const STACK_PREFIX_SLOT = stackTable.schema.prefix;
+ const STACK_FRAME_SLOT = stackTable.schema.frame;
+
+ const getOrAddInflatedFrame = FrameUtils.getOrAddInflatedFrame;
+
+ let samplesData = samples.data;
+ let stacksData = stackTable.data;
+
+ // Caches.
+ let inflatedFrameCache = FrameUtils.getInflatedFrameCache(frameTable);
+ let leafTable = Object.create(null);
+
+ let startTime = options.startTime;
+ let endTime = options.endTime;
+ let flattenRecursion = options.flattenRecursion;
+
+ // Reused options object passed to InflatedFrame.prototype.getFrameKey.
+ let mutableFrameKeyOptions = {
+ contentOnly: options.contentOnly,
+ isRoot: false,
+ isLeaf: false,
+ isMetaCategoryOut: false
+ };
+
+ let byteSize = 0;
+ for (let i = 0; i < samplesData.length; i++) {
+ let sample = samplesData[i];
+ let sampleTime = sample[SAMPLE_TIME_SLOT];
+
+ if (SAMPLE_BYTESIZE_SLOT !== void 0) {
+ byteSize = sample[SAMPLE_BYTESIZE_SLOT];
+ }
+
+ // A sample's end time is considered to be its time of sampling. Its
+ // start time is the sampling time of the previous sample.
+ //
+ // Thus, we compare sampleTime <= start instead of < to filter out
+ // samples that end exactly at the start time.
+ if (!sampleTime || sampleTime <= startTime || sampleTime > endTime) {
+ continue;
+ }
+
+ let stackIndex = sample[SAMPLE_STACK_SLOT];
+ let calls = this.calls;
+ let prevCalls = this.calls;
+ let prevFrameKey;
+ let isLeaf = mutableFrameKeyOptions.isLeaf = true;
+ let skipRoot = options.invertTree;
+
+ // Inflate the stack and build the FrameNode call tree directly.
+ //
+ // In the profiler data, each frame's stack is referenced by an index
+ // into stackTable.
+ //
+ // Each entry in stackTable is a pair [ prefixIndex, frameIndex ]. The
+ // prefixIndex is itself an index into stackTable, referencing the
+ // prefix of the current stack (that is, the younger frames). In other
+ // words, the stackTable is encoded as a trie of the inverted
+ // callstack. The frameIndex is an index into frameTable, describing the
+ // frame at the current depth.
+ //
+ // This algorithm inflates each frame in the frame table while walking
+ // the stack trie as described above.
+ //
+ // The frame key is then computed from the inflated frame /and/ the
+ // current depth in the FrameNode call tree. That is, the frame key is
+ // not wholly determinable from just the inflated frame.
+ //
+ // For content frames, the frame key is just its location. For chrome
+ // frames, the key may be a metacategory or its location, depending on
+ // rendering options and its position in the FrameNode call tree.
+ //
+ // The frame key is then used to build up the inverted FrameNode call
+ // tree.
+ //
+ // Note that various filtering functions, such as filtering for content
+ // frames or flattening recursion, are inlined into the stack inflation
+ // loop. This is important for performance as it avoids intermediate
+ // structures and multiple passes.
+ while (stackIndex !== null) {
+ let stackEntry = stacksData[stackIndex];
+ let frameIndex = stackEntry[STACK_FRAME_SLOT];
+
+ // Fetch the stack prefix (i.e. older frames) index.
+ stackIndex = stackEntry[STACK_PREFIX_SLOT];
+
+ // Do not include the (root) node in this sample, as the costs of each frame
+ // will make it clear to differentiate (root)->B vs (root)->A->B
+ // when a tree is inverted, a revert of bug 1147604
+ if (stackIndex === null && skipRoot) {
+ break;
+ }
+
+ // Inflate the frame.
+ let inflatedFrame = getOrAddInflatedFrame(inflatedFrameCache, frameIndex,
+ frameTable, stringTable);
+
+ // Compute the frame key.
+ mutableFrameKeyOptions.isRoot = stackIndex === null;
+ let frameKey = inflatedFrame.getFrameKey(mutableFrameKeyOptions);
+
+ // An empty frame key means this frame should be skipped.
+ if (frameKey === "") {
+ continue;
+ }
+
+ // If we shouldn't flatten the current frame into the previous one, advance a
+ // level in the call tree.
+ let shouldFlatten = flattenRecursion && frameKey === prevFrameKey;
+ if (!shouldFlatten) {
+ calls = prevCalls;
+ }
+
+ let frameNode = getOrAddFrameNode(calls, isLeaf, frameKey, inflatedFrame,
+ mutableFrameKeyOptions.isMetaCategoryOut,
+ leafTable);
+ if (isLeaf) {
+ frameNode.youngestFrameSamples++;
+ frameNode._addOptimizations(inflatedFrame.optimizations,
+ inflatedFrame.implementation, sampleTime,
+ stringTable);
+
+ if (byteSize) {
+ frameNode.youngestFrameByteSize += byteSize;
+ }
+ }
+
+ // Don't overcount flattened recursive frames.
+ if (!shouldFlatten) {
+ frameNode.samples++;
+ if (byteSize) {
+ frameNode.byteSize += byteSize;
+ }
+ }
+
+ prevFrameKey = frameKey;
+ prevCalls = frameNode.calls;
+ isLeaf = mutableFrameKeyOptions.isLeaf = false;
+ }
+
+ this.samples++;
+ this.sampleTimes.push(sampleTime);
+ if (byteSize) {
+ this.byteSize += byteSize;
+ }
+ }
+ },
+
+ /**
+ * Uninverts the call tree after its having been built.
+ */
+ _uninvert: function uninvert() {
+ function mergeOrAddFrameNode(calls, node, samples, size) {
+ // Unlike the inverted call tree, we don't use a root table for the top
+ // level, as in general, there are many fewer entry points than
+ // leaves. Instead, linear search is used regardless of level.
+ for (let i = 0; i < calls.length; i++) {
+ if (calls[i].key === node.key) {
+ let foundNode = calls[i];
+ foundNode._merge(node, samples, size);
+ return foundNode.calls;
+ }
+ }
+ let copy = node._clone(samples, size);
+ calls.push(copy);
+ return copy.calls;
+ }
+
+ let workstack = [{ node: this, level: 0 }];
+ let spine = [];
+ let entry;
+
+ // The new root.
+ let rootCalls = [];
+
+ // Walk depth-first and keep the current spine (e.g., callstack).
+ do {
+ entry = workstack.pop();
+ if (entry) {
+ spine[entry.level] = entry;
+
+ let node = entry.node;
+ let calls = node.calls;
+ let callSamples = 0;
+ let callByteSize = 0;
+
+ // Continue the depth-first walk.
+ for (let i = 0; i < calls.length; i++) {
+ workstack.push({ node: calls[i], level: entry.level + 1 });
+ callSamples += calls[i].samples;
+ callByteSize += calls[i].byteSize;
+ }
+
+ // The sample delta is used to distinguish stacks.
+ //
+ // Suppose we have the following stack samples:
+ //
+ // A -> B
+ // A -> C
+ // A
+ //
+ // The inverted tree is:
+ //
+ // A
+ // / \
+ // B C
+ //
+ // with A.samples = 3, B.samples = 1, C.samples = 1.
+ //
+ // A is distinguished as being its own stack because
+ // A.samples - (B.samples + C.samples) > 0.
+ //
+ // Note that bottoming out is a degenerate where callSamples = 0.
+
+ let samplesDelta = node.samples - callSamples;
+ let byteSizeDelta = node.byteSize - callByteSize;
+ if (samplesDelta > 0) {
+ // Reverse the spine and add them to the uninverted call tree.
+ let uninvertedCalls = rootCalls;
+ for (let level = entry.level; level > 0; level--) {
+ let callee = spine[level];
+ uninvertedCalls = mergeOrAddFrameNode(uninvertedCalls, callee.node,
+ samplesDelta, byteSizeDelta);
+ }
+ }
+ }
+ } while (entry);
+
+ // Replace the toplevel calls with rootCalls, which now contains the
+ // uninverted roots.
+ this.calls = rootCalls;
+ },
+
+ /**
+ * Gets additional details about this node.
+ * @see FrameNode.prototype.getInfo for more information.
+ *
+ * @return object
+ */
+ getInfo: function (options) {
+ return FrameUtils.getFrameInfo(this, options);
+ },
+
+ /**
+ * Mimicks the interface of FrameNode, and a ThreadNode can never have
+ * optimization data (at the moment, anyway), so provide a function
+ * to return null so we don't need to check if a frame node is a thread
+ * or not everytime we fetch optimization data.
+ *
+ * @return {null}
+ */
+
+ hasOptimizations: function () {
+ return null;
+ }
+};
+
+/**
+ * A function call node in a tree. Represents a function call with a unique context,
+ * resulting in each FrameNode having its own row in the corresponding tree view.
+ * Take samples:
+ * A()->B()->C()
+ * A()->B()
+ * Q()->B()
+ *
+ * In inverted tree, A()->B()->C() would have one frame node, and A()->B() and
+ * Q()->B() would share a frame node.
+ * In an uninverted tree, A()->B()->C() and A()->B() would share a frame node,
+ * with Q()->B() having its own.
+ *
+ * In all cases, all the frame nodes originated from the same InflatedFrame.
+ *
+ * @param string frameKey
+ * The key associated with this frame. The key determines identity of
+ * the node.
+ * @param string location
+ * The location of this function call. Note that this isn't sanitized,
+ * so it may very well (not?) include the function name, url, etc.
+ * @param number line
+ * The line number inside the source containing this function call.
+ * @param number category
+ * The category type of this function call ("js", "graphics" etc.).
+ * @param number allocations
+ * The number of memory allocations performed in this frame.
+ * @param number isContent
+ * Whether this frame is content.
+ * @param boolean isMetaCategory
+ * Whether or not this is a platform node that should appear as a
+ * generalized meta category or not.
+ */
+function FrameNode(frameKey, { location, line, category, isContent }, isMetaCategory) {
+ this.key = frameKey;
+ this.location = location;
+ this.line = line;
+ this.youngestFrameSamples = 0;
+ this.samples = 0;
+ this.calls = [];
+ this.isContent = !!isContent;
+ this._optimizations = null;
+ this._tierData = [];
+ this._stringTable = null;
+ this.isMetaCategory = !!isMetaCategory;
+ this.category = category;
+ this.nodeType = "Frame";
+ this.byteSize = 0;
+ this.youngestFrameByteSize = 0;
+}
+
+FrameNode.prototype = {
+ /**
+ * Take optimization data observed for this frame.
+ *
+ * @param object optimizationSite
+ * Any JIT optimization information attached to the current
+ * sample. Lazily inflated via stringTable.
+ * @param number implementation
+ * JIT implementation used for this observed frame (baseline, ion);
+ * can be null indicating "interpreter"
+ * @param number time
+ * The time this optimization occurred.
+ * @param object stringTable
+ * The string table used to inflate the optimizationSite.
+ */
+ _addOptimizations: function (site, implementation, time, stringTable) {
+ // Simply accumulate optimization sites for now. Processing is done lazily
+ // by JITOptimizations, if optimization information is actually displayed.
+ if (site) {
+ let opts = this._optimizations;
+ if (opts === null) {
+ opts = this._optimizations = [];
+ }
+ opts.push(site);
+ }
+
+ if (!this._stringTable) {
+ this._stringTable = stringTable;
+ }
+
+ // Record type of implementation used and the sample time
+ this._tierData.push({ implementation, time });
+ },
+
+ _clone: function (samples, size) {
+ let newNode = new FrameNode(this.key, this, this.isMetaCategory);
+ newNode._merge(this, samples, size);
+ return newNode;
+ },
+
+ _merge: function (otherNode, samples, size) {
+ if (this === otherNode) {
+ return;
+ }
+
+ this.samples += samples;
+ this.byteSize += size;
+ if (otherNode.youngestFrameSamples > 0) {
+ this.youngestFrameSamples += samples;
+ }
+
+ if (otherNode.youngestFrameByteSize > 0) {
+ this.youngestFrameByteSize += otherNode.youngestFrameByteSize;
+ }
+
+ if (this._stringTable === null) {
+ this._stringTable = otherNode._stringTable;
+ }
+
+ if (otherNode._optimizations) {
+ if (!this._optimizations) {
+ this._optimizations = [];
+ }
+ let opts = this._optimizations;
+ let otherOpts = otherNode._optimizations;
+ for (let i = 0; i < otherOpts.length; i++) {
+ opts.push(otherOpts[i]);
+ }
+ }
+
+ if (otherNode._tierData.length) {
+ let tierData = this._tierData;
+ let otherTierData = otherNode._tierData;
+ for (let i = 0; i < otherTierData.length; i++) {
+ tierData.push(otherTierData[i]);
+ }
+ tierData.sort((a, b) => a.time - b.time);
+ }
+ },
+
+ /**
+ * Returns the parsed location and additional data describing
+ * this frame. Uses cached data if possible. Takes the following
+ * options:
+ *
+ * @param {ThreadNode} options.root
+ * The root thread node to calculate relative costs.
+ * Generates [self|total] [duration|percentage] values.
+ * @param {boolean} options.allocations
+ * Generates `totalAllocations` and `selfAllocations`.
+ *
+ * @return object
+ * The computed { name, file, url, line } properties for this
+ * function call, as well as additional params if options specified.
+ */
+ getInfo: function (options) {
+ return FrameUtils.getFrameInfo(this, options);
+ },
+
+ /**
+ * Returns whether or not the frame node has an JITOptimizations model.
+ *
+ * @return {Boolean}
+ */
+ hasOptimizations: function () {
+ return !this.isMetaCategory && !!this._optimizations;
+ },
+
+ /**
+ * Returns the underlying JITOptimizations model representing
+ * the optimization attempts occuring in this frame.
+ *
+ * @return {JITOptimizations|null}
+ */
+ getOptimizations: function () {
+ if (!this._optimizations) {
+ return null;
+ }
+ return new JITOptimizations(this._optimizations, this._stringTable);
+ },
+
+ /**
+ * Returns the tiers used overtime.
+ *
+ * @return {Array<object>}
+ */
+ getTierData: function () {
+ return this._tierData;
+ }
+};
+
+exports.ThreadNode = ThreadNode;
+exports.FrameNode = FrameNode;